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Abstract

In this thesis we introduce the causal set approach to quantum gravity and

review the formalism for doing scalar quantum field theory on a causal set.

We then look at the Sorkin-Johnston (SJ) ground state of a two dimensional

causal diamond and review work done on exploring this vacuum state on two

subregions, the center and wedge. In the two dimensional case, it was found

that although the SJ vacuum resembled the Minkowski vacuum in the center

of the causal diamond, it did not resemble the expected Rindler vacuum on

the wedge. Instead the SJ vacuum in this region resembled the ground state

of a scalar field with reflecting boundary conditions at the corner, resembling

mirror behavior. We explore this result further in the case of a three dimen-

sional causal diamond and mention preliminary results indicating that this

may also be the case in three dimensions.
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Chapter 1

Causal Sets

1.1 Introduction

The great challenge today in theoretical physics involves finding a unified

description of two distinct theories, quantum mechanics and general rela-

tivity, merging them into a single theory of quantum gravity. On the one

hand, quantum theory makes astounding predictions at the smallest scales

while on the other, general relativity provides a framework for understand-

ing space-time at the largest. At the heart of this search is the question

regarding the nature of space-time, whether it is fundamentally discrete or

continuous. As pointed out by ’t Hooft [1], many of the divergences that arise

in quantum field theory can be avoided by starting with a framework where

space-time is viewed as a collection of discrete points satisfying a causal or-

der. Traditionally continuum space-time is viewed as a manifold endowed
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with a differentiable structure given by the metric, however in the discrete

case the metric is replaced by causal relationships between discrete space-

time points. Building on this movement towards discreteness, a possible

approach to a unified theory of quantum gravity is that of causal sets, first

proposed by Bombelli, Lee, Meyer and Sorkin (BLMS) [5], and inspired in

part by earlier work by authors including Hawking, King and McCarthy [9],

as well as Malament [16], ’t Hooft [1] and Myrheim [17]. The starting point

here is the discrete set of space-time points with a causal structure imposed

on them. The causal order is determined by asking whether each point sits

in the future or past light cone with respect to other points in the set. As

mentioned in [1], this is enough to determine the continuum metric tensor up

to a conformal factor that is related to the volume of space-time [5]. Similar

approaches have also been explored in the past dating back to Riemann [7]

and revisited by authors such as Zeeman [27], Hemion [10] and Finkelstein

[8]. Other important results regarding the causal structure were also demon-

strated by Hawking [9], Malament [16] and Levichev [15], culminating in the

Hawking-King-McCarthy-Malament (HKMM) theorem. This states that if a

chronological bijection exists between two d-dimensional space-times that are

both future and past distinguishing, then these space-times must be confor-

mally isometric for d > 2 [25]. What this means for causal sets is that if the

volume is determined by the number of causal set points, while each point

satisfies a causal order with respect to the others, then this is enough to fully

describe a Lorentzian geometry. This is summarised in the slogan ”Order +
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Number = Geometry”. Since the paper by BLMS, research into causal sets

has branched out in several directions, where in particular, scalar quantum

field theory was developed in this framework building on work done by Steven

Johnston [14]. As the traditional quantisation approach does not work for

discrete causal sets, work was done to formally define a vacuum state for a

free scalar quantum field theory on a causal set, leading to a suggestion for a

distinguished ground state by Sorkin, Aslanbeigi and Afshordi [2], called the

Sorkin-Johnston (SJ) vacuum. This proposal was then tested in the case of

a two dimensional causal diamond to determine whether the SJ vacuum is

indeed consistent with the vacuum state predicted by the traditional quan-

tisation approach [3]. This will be of particular relevance to this thesis as,

following an initial introduction to causal set theory, we review work done in

[3]. We ultimately want to explore the vacuum states of a free scalar quan-

tum field theory on a causal diamond in three space-time dimensions. In this

thesis, the metric convention we will be using is (−+ ++), following [3].

1.2 Basic Definitions

In this section we formally introduce key definitions that will be referred back

to frequently in later chapters. The definitions introduced in this section

follow the formalism established in [5][14][25].
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1.2.1 Partial Orders, Causal Sets and Embeddings

We start off by defining relations and partially ordered sets. A relation R on

a set S is the subset of S×S, where ’×’ denotes the cartesian product of two

sets of ordered pairs of elements (s, t) ∈ S, where we write sRt to denote s

is R-related to t. A partially ordered set (poset) is a set S together with a

relation R that satisfies the following properties [14],

(i) ∀s ∈ S, sRs (Reflexive)

(ii) ∀s, t ∈ S, sRtRs =⇒ s = t (Antisymmetric)

(iii) ∀s, t, u ∈ S, sRtRu =⇒ sRu (Transitive)

A causal set is then a poset with the additional requirement that it is locally

finite [5]. Hence it is defined as a pair (C,�), where C is a set and the relation

R is replaced with �, the partial order, such that the elements u, v, w ∈ C

satisfy the following properties [5],

(i) ∀u ∈ C, u � u (Reflexive)

(ii) ∀u, v ∈ C, if u � v and v � u, then u = v (Antisymmetric)

(iii) ∀u, v, w ∈ C if u � v and v � w, then u � w (Transitive)

(iv) ∀u, v ∈ C, |[u, v]| <∞ (Locally finite)

If ∀u, v ∈ C, u � v and u 6= v, we write u ≺ v so u strictly precedes v.

Additionally, if u, v have no causal relationship as they may, for example, lie
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outside each other’s light cones, we write u||v. In other words, a causal set is

a set of space-time points with a causal relation between them, depending on

whether or not they lie inside each other’s light cones. In the last condition

we define the Causal Interval or Alexandrov Set as the set,

[u, v] := {w ∈ C : u � w � v} for u � v (1.1)

Hence it is the last condition that highlights space-time discreteness as it

adds the condition that the cardinality of the causal interval between any

two causal set points must be finite [14]. To understand how large causal

sets approximate the continuum Lorentzian manifold structure, we need to

define the notion of an embedding. If (C,�) is a causal set, an embedding of

a causal set into a Lorentzian manifold (M, g) is defined as a map f : C →M

such that x � y ⇐⇒ f(x) � f(y). Additionally, a faithful embedding is an

embedding where the image of the causal set points under f are uniformly

distributed in M according to the volume measure on M [14][25]. There are

causal sets, however, that don’t exhibit manifold like structure on the large

scale, and the precise dynamics that lead to suppressing these is not fully

understood [13]. An important conjecture related to embeddings, referred

to as the Hauptvermutang of causal set theory, states that if a causal set

can be faithfully embedded into two distinct space-times (M, g) and (M ′, g′),

then these two space-times must be approximately isometric [25]. In order

to generate causal sets that faithfully embed in a given Lorentzian manifold,
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we use a process called sprinkling. By sprinkling, we mean generating points

on the Lorentzian manifold so that they are Poisson distributed, where the

probability of finding n points in a space-time volume V is given by,

P (n points in volume V) =
(ρV )n

n!
e−ρV

where ρ is the sprinkling density [14]. The Poisson distribution prevents

causal set points from picking out a particular direction in space-time, whilst

also allowing the statistical distribution to be invariant under Lorentz boosts

[11]. We see an example of such a spinkling in Figure 1.1 below.
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Figure 1.1: A sprinkling into a 2D causal diamond with N = 500 points.
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1.2.2 Chains, Links and Paths

We can label the elements vi of a causal set C by assigning them indices

i ∈ 1, ..., |C|. A labelling is a natural labelling if vi � vj =⇒ i ≤ j. A set

is totally ordered if there is a partial order between all pairs of elements in

the set. An interesting point to note is that the labelling one chooses is the

analogue of a choice of coordinate system in the continuum [25]. We now

define the important notions of chains, multichains and antichains following

[14]. A chain is a sub-poset of the causal set (C,�) that is totally ordered.

A chain of length n is given by a sequence of elements u0 ≺ u1 ≺ ... ≺ un

where ui ∈ C for all i ∈ [1, .., n], while a multichain is a chain with repeated

elements. An important point that will be useful when we start looking at

propagators is that the length of the longest chain between two points in a

causal set is proportional to the proper time between them [25]. An antichain

is a set of elements in the causal set which are mutually causally unrelated. A

link is a relation u ≺ v such that there exists no element w where u ≺ w ≺ v.

If this is the case we define u and v as nearest neighbors, denoted by u ≺ ∗v.

A path is a subset P ⊂ C such that given u, v ∈ P , there exists no element

w ∈ C−P such that u ≺ w ≺ v. A path of length n is a sequence of distinct

elements u0 ≺ ∗u1 ≺ ∗... ≺ ∗un. We can encode the causal relationships

between points in the causal set via the causal matrix. If we have a causal
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set (C,�) with p elements, the causal matrix C is defined as,

Cxy :=

1 if vx ≺ vy

0 otherwise.
(1.2)

where x, y ∈ [1, ..., p]. We also define the link matrix on a causal set by,

Lxy :=

1 if vx ≺ ∗vy

0 otherwise.
(1.3)

We can always use a natural labelling to index points in the causal set so that

both the causal and link matrices become strictly upper triangular. The way

we do this is by ordering points by their time coordinate. We can visualise a

causal set through the use of a Hasse diagram as depicted in Figure 1.2 [14].

Figure 1.2 (a) depicts the causal links between points in a causal set made up

of six elements, {v1, ..., v6}, while (b) highlights the full causal structure. We

can use these diagrams to read off the entries of the causal and link matrices

respectively. A path can be visualised as a route drawn between points in

(a), while in (b) this would be called a chain. The corresponding link and

causal matrices, denoted by L and C respectively, would in this case be given
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Time

(a) Link diagram (b) Causal diagram

Figure 1.2: Hasse diagrams of Link and Causal matrices.

by,

L =



0 1 1 0 0 0

0 0 0 0 0 0

0 0 0 1 1 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0


C =



0 1 1 1 1 1

0 0 0 0 0 0

0 0 0 1 1 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0


(1.4)

We can see that, as the points in the figure are labelled by their time index,

we do indeed get upper triangular matrices for L and C. The causal and link

matrices are the crucial starting point for any kind of analysis on causal sets,

and form the basis for defining the Greens function, or propagator, in scalar

quantum field theory on causal sets. As such we will state some useful results
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regarding the entries of powers of the causal and link matrices [14][24].

(Cn)xy = Number of chains of length n from vx to vy. (1.5)

(Ln)xy = Number of paths of length n from vx to vy. (1.6)

Using this we see that the entries of (C)xy and of (C2)xy represent the number

of chains of length one and two from point vx to vy respectively. Hence we

know that if we have a non-zero entry in the (x, y) position of the C2 matrix,

vx and vy could not have been nearest neighbors. As a result we conclude

that Lxy = Cxy − 1{(C2)xy>0}, where the indicator function is defined as,

1A =

 1 if A

0 if Ac.
(1.7)

for the event A = {(C2)xy > 0}. Finally, we also note that we can calculate

the volume of the causal interval between two points in the causal set vx, vy ∈

(C,�) directly from the causal matrix using the equation [14],

Vxy =
1

ρ
(C + I)2xy (1.8)

After establishing these basic definitions, we can now look at how one can

start doing quantum field theory on causal sets.
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1.3 QFT on Causal Sets

In this chapter we aim to establish the formalism for doing quantum field

theory on a causal set. We start by briefly reviewing how free scalar quantum

field theory works in the traditional, continuum approach for a flat Minkowski

space-time. Then, following Johnston’s formalism, we see what the analogue

would be in the case of causal sets.

1.3.1 Continuum Free Scalar QFT

For a free classical scalar field theory in a flat d-dimensional Minkowski space-

time with coordinates x = (t,x), the equations of motion are given by the

Klein-Gordon equations,

(�−m2)φ(x) = 0 (1.9)

where � stands for the d’Alembert operator ∂µ∂µ = (−∂2t ,∇2). We can

obtain the solution for φ(x) in terms of it’s Fourier coefficient expansion,

φ(x) =

∫
ddk̃

(
a(k)e−ikx + a†(k)eikx

)
(1.10)

where the measure ddk̃ = ddk
(2π)d2E(k)

. To then go from a classical field theory

to quantum, we promote φ(x) to an operator valued field φ̂(x) resulting in

the Fourier coefficients also being promoted to the operators â(k) and â†(k)
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respectively. Together with the canonical commutation relation,

[
φ̂(t,x),

∂φ̂(t,y)

∂t

]
= iδd(x− y) (1.11)

this defines a vacuum state |0〉 as the state annihilated by the positive fre-

quency Fourier modes of φ̂(x) [23] so that,

â(k) |0〉 = 0 (1.12)

From this we can construct the usual Fock space by acting on the vacuum

state with creation operators to obtain general states of the form [26],

|k1...kn〉 = â†(k1)...â
†(kn) |0〉 (1.13)

1.3.2 The Continuum Propagator

Next we define the retarded Greens function of the Klein-Gordon operator

as the function GR(x) that satisfies the equation,

(�−m2)GR(x) = δ(d)(x) (1.14)

Additionally, GR has the boundary conditions that it is only non-zero in the

future light cone [14]. From GR we can also define the advanced Greens

function as GA(x) = GR(−x), which thus must have the boundary condition

12



that it is only non-zero in the past light cone. Writing δd(x) as,

δ(d)(x) =
1

(2π)d

∫
ddk eikx (1.15)

where k = (k0,k), we see that inverting Equation 1.14 we have,

GR(x) =
1

(�−m2)
δ(d)(x) =

1

(2π)d

∫
ddk

1

(�−m2)
eikx

=
1

(2π)d

∫
ddk

eikx

(−k2 −m2)

=
1

(2π)d

∫
ddk

eikx

(k20 − k2 −m2)

(1.16)

We can then write the d-dimensional Minkowski space-time Klein-Gordon

propagator more formally as [14],

(GR)(d)m (x) = lim
ε→0+

− 1

(2π)d

∫
ddk

e−ikx

(k0 + iε)2 − k2 −m2
(1.17)

where now we include the iε term, as the k0 integral is in fact a contour

integral in the complex plane around the poles at k0 = ±
√
k2 +m2, and

hence to evaluate this integral we need to shift the integrand slightly away

from the poles. The index m and d make explicit the mass and dimension

dependence of GR(x). In order to make the comparison between the causal

set and continuum propagators later, we will need the explicit forms for these
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Greens functions in various dimensions. These are listed in [14] as,

(GR)(1)m (x) = θ(x0)
sin (mx0)

m
(1.18)

(GR)(2)m (x) = θ(x0)θ(τ 2)
1

2
J0(mτ) (1.19)

(GR)(3)m (x) = θ(x0)θ(τ 2)
1

2π

cos (mτ)

τ
(1.20)

(GR)(4)m (x) = θ(x0)θ(τ 2)

(
1

2π
δ(τ 2)− m

4π

J1(mτ)

τ

)
(1.21)

where τ =
√
−(x0)2 + x2 is the proper time, Jα(x) is the Bessel function of

the first kind, and θ(x) is the heavy-side function defined as,

θ(x) =


1 for x ≥ 0

0 for x < 0

As we will focused on massless free scalar field theory, we will primarily be

using the massless versions of these expressions. The Greens function can

also be interpreted as the propagator between two space-time points x and

x′ satisfying the equation,

(�−m2)GR(x, x′) = δ(d)(x− x′) (1.22)
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By using a similar process, we can invert Equation 1.22 and integrate over

the k0 variable to find the explicit expression for GR(x, x′) as

GR(x, x′) = i

∫
ddk̃

(
e−ik(x−x

′) − eik(x−x′)
)

(1.23)

Using the Greens function in this form, we can then define the Pauli-Jordan

function, ∆(x, x′), as the difference between the retarded and advanced

Greens functions [12],

∆(x, x′) = GR(x, x′)−GA(x, x′) (1.24)

This will play a central role in the alternative definition of the vacuum state

introduced in chapter two. Equation 1.11 imposes the condition,

[
â(k1), â†(k2)

]
= (2π)d2E(k1)δd(k1 − k2) (1.25)

on the Fourier coefficients, while all other commutators give us zero. Using

this we can calculate the commutator
[
φ̂(x), φ̂(x′)

]
given by,

[∫
ddk̃1

(
â(k1)e−ik1x + â†(k1)eik1x

)
,

∫
ddk̃2

(
â(k2)e−ik2x

′
+ â†(k2)eik2x

′
)]

(1.26)

which results in the final expression,

[
φ̂(x), φ̂(x′)

]
=

∫
ddk̃

(
e−ik(x−x

′) − eik(x−x′)
)

= i∆(x, x′) (1.27)
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Finally, the Wightman or two-point function, W (x, x′), is defined in terms of

the vacuum expectation value,

〈0| φ̂(x)φ̂(x′) |0〉 = W (x, x′) (1.28)

From Equation 1.27, it is easy to see that the relationship between the Wight-

man function and the Pauli-Jordon function is given by [21],

i∆(x, x′) = 〈0| [φ̂(x), φ̂(x′)] |0〉 = W (x, x′)−W (x′, x) (1.29)

For ”Gaussian” theories, the Wightman function can be used to determine all

higher order correlation functions, and will play a central role in determining

the ground state of a scalar quantum field theory on a causal set [23].

1.3.3 QFT on causal sets

To transition from continuum quantum field theory to the discrete, causal

set version, we begin by reviewing the model introduced in [14]. We start

by sprinkling a causal set into a Lorentzian manifold and imagine a particle

initially at rest at some space-time point within this causal set. It can move

through the causal set by jumping from one causally related point to another,

resting for some time after each jump. The process of jumping is called a

’hop’ and has a probability amplitude a, while when it’s resting it’s a ’stop’,

with amplitude b, hence the name ’Hop and Stop Model’ [14]. The particle
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travels along a trajectory which is either on chains or on links within the

causal set, and we imagine it hops n times and stops n− 1 times. The total

probability amplitude for this trajectory is then anbn−1. In this model the

hopping and stopping amplitudes are constant and independent of the path

taken. This gives a Markov chain process for the particle hopping between

points in the causal set, where, depending on whether we sum over chains or

paths, the transition matrices of these processes are given by either Φ = aC

or Φ = aL, where C and L are the causal and link matrices respectively. If

the causal set has p elements then C and L must both be p × p matrices.

Additionally, as with all probability transition matrices, the entries of (Φn)xy,

the nth power of the transition matrix, gives the probability that a particle

starting at vx ends up at vy after n hops. If we include the n− 1 stops, this

is given by the matrix elements (bn−1Φn)xy. Hence to get an expression for

the total probability Kxy of a particle going from vx to vy in the causal set,

we sum over all possible hop lengths n,

Kxy = (Φ + bΦ2 + b2Φ3 + ...)xy =

(
∞∑
n=1

bn−1Φn

)
xy

(1.30)

As Φ is strictly upper triangular1 it must be nil-potent, guaranteeing the

terms in the summation eventually terminate. Thus we can use the sum of

1Recall this is always possible when the causal set elements are defined through natural
labelling.
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a geometric series formula to rewrite K as,

K = Φ(I − bΦ)−1 (1.31)

where explicitly in the case of propagation over chains we have,

K = aC(I − abC)−1 (1.32)

The values for a and b are set so that K matches the known results for the

retarded Klein-Gordon propagator in ordinary continuum scalar quantum

field theory. Johnston gives these as a = Aρ1−
2
d and b = −m2

ρ
, using an argu-

ment employing dimensional analysis [14], where ρ is once again the causal

set sprinkling density, A is a constant and d is the space-time dimension. To

make the comparison with the continuum, we see that the causal set version

of the propagator in Equation 1.31 is identified as the analogue of the re-

tarded Greens function GR in the continuum, and so is actually the retarded

causal set propagator K = KR. We also get the analogous advanced propaga-

tor KA, from KR, using that KA = (KR)T , which is the matrix equivalent of

GA(x, x′) = GR(x′, x). The causal set version of the continuum Pauli-Jordan

function ∆(x) is then similarly defined as [12],

∆ = KR −KA (1.33)

18



where this is now a matrix equation due to the discreteness of the causal set.

We will be mainly interested in a slightly modified version of the Pauli-Jordon

function, i∆, which as we saw earlier in Equation 1.27, is equated to the com-

mutator between two operator valued free scalar fields. From Equation 1.27

we also see that i∆(x, y) is split into a positive and negative frequency part,

where the positive frequency part is defined to be the Wightman function.

This will also turn out to be the case in the discrete case, where the ’positive

frequency’ part is defined in terms of the spectral decomposition of i∆. First

we note some properties of i∆. It is antisymmetric,

(i∆)T = i(KT
R −KT

A) = i(KA −KR) = −i∆ (1.34)

as well as Hermitian,

(i∆)† = −i(∆)† = −i(∆)T = i∆ (1.35)

where we have used that ∆† = ∆T as ∆ is a real matrix. Using these two

properties we infer the eigenvalues of i∆ must be real due to Hermiticity and

come in positive and negative pairs due to antisymmetry. We can thus write

the eigenvalue equation for i∆ as [14],

i∆u±i = ±λu±i (1.36)
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where u±i are the normalised eigenvectors corresponding to the pair of eigen-

values ±λ > 0, while the indices i ∈ [1, .., l] for r = 2l, where r is the rank of

i∆. The eigenvectors u±i also satisfy the conditions [12],

u+i = (u−i )∗ u+i (u+j )† = u−i (u−j )† = δij u+i (u−j )† = 0 (1.37)

due to the Hermiticity and antisymmetry of i∆. We can then expand i∆

using spectral decomposition to get,

i∆ =
l∑

i=1

λi(u
+
i )(u+i )† −

l∑
i=1

λi(u
−
i )(u−i )† (1.38)

This can also alternatively be written as i∆ = UDU †, where U is the matrix

of eigenvectors and D a diagonal matrix with the corresponding eigenvalues

on the diagonal. The causal set Wightman function w is then defined as the

positive part of the spectral decomposition of i∆,

w =
l∑

i=1

λi(u
+
i )(u+i )† (1.39)

and hence we can write i∆ = w−wT [14]. We can also write w in matrix form

as w = UD+U †, where D+ is now the original diagonal eigenvalue matrix D

with all eigenvalues less than zero set to zero so that D+ only contains the

positive eigenvalues of w. The causal set version of the scalar field operator

can also be given by an algebra of field operators φ̂x for each one of the p

causal set elements vx acting on a Hilbert space H. These field operators
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must satisfy the conditions [14],

1. φ̂x = φ̂†x

2. [φ̂x, φ̂y] = i∆xy

3. i∆w = 0 =⇒
∑p

j=1wjφ̂j = 0

For a p-component complex vector w. We can write the causal set field

operator φ̂x as [12],

φ̂x =
l∑

i=1

(u+i )xâi + (u−i )xâ
†
i (1.40)

where âi and â†i are the creation and annihilation operators satisfying similar

commutation relations as those in the continuum case,

[âi, âj] = 0 [â†i , â
†
j] = 0 [âi, â

†
j] = λjδij (1.41)

The creation and annihilation operators written in terms of φ̂x are [12],

âi =

p∑
x=i

(u−i )xφ̂x â†i =

p∑
x=i

(u+i )xφ̂x (1.42)

As in the continuum case, the vacuum state |0〉 ∈ H is defined as the state

annihilated by the âi operators so that âi |0〉 = 0 and is normalised so that

〈0|0〉 = 1. H is then the Fock space spanned by basis vectors of the form

(â1
†)n1(â2

†)n2 ...(âl
†)nl |0〉 for positive integers ni. We can check that this for-

mulation gives the correct causal set Wightman function wxy by calculating
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the two point correlator in terms of the causal set fields φ̂x and φ̂y so that

[12],

〈0| φ̂xφ̂y |0〉 =
l∑

i=1

l∑
j=1

(u+i )x(u
−
j )y 〈0| âiâ†j |0〉

=
l∑

i=1

l∑
j=1

(u+i )x(u
−
j )y 〈0| [âi, â†j] |0〉

=
l∑

i=1

l∑
j=1

(u+i )x(u
+
j )∗yλjδij

=

(
l∑

i=1

λi(u
+
i )(u+i )†

)
xy

= wxy

(1.43)

where in the third line we used the first condition of (1.37). Hence we see that

this formalism is consistent with what we would expect from Equation 1.39.

As we will see in the following chapter, the Pauli-Jordan function and the

Wightman function play a key role in establishing an alternative definition of

the ground state of a free scalar quantum field theory, both in the continuum

and causal set frameworks.
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Chapter 2

The Ground State

In this chapter we will look more closely at how the ground, or vacuum state

is defined in a free scalar quantum field theory and look at the alternative

proposal made in [2] following work done in [23] [14]. We will begin by review-

ing this proposal in the continuum case and see how the definitions naturally

carry over to causal sets. We then review work done in [3] with the aim

of understanding the vacuum state on two subregions of a two dimensional

causal diamond in Minkowski space.

2.1 The Ground State in Scalar QFT

As we saw in the previous chapter, the vacuum state of a quantum field theory

can be defined as the state annihilated by the positive frequency Fourier

modes. An alternative way to characterise the vacuum state however, is to
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define it through it’s correlation functions, in particular using the Wightman

function, as all higher order correlations are determined by this in a free

Gaussian theory. As we also saw, the Wightman function can be obtained

from the positive frequency part of i∆, which in turn is defined through the

retarded Greens propagator GR. This chain of ideas was used by Sorkin

in [23] and developed further in [2] to specify a unique vacuum state for a

quantum field theory in more general curved space-times, called the Sorkin-

Johnston (SJ) vacuum. Defining the vacuum state in this way is beneficial

for several reasons. First, it doesn’t require the notion of positive frequencies

or symmetries and hence can be used to define a vacuum state in arbitrary

curved space-times. Additionally, it is manifestly covariant as it only works

with space-time quantities. Finally, defining the vacuum state in this way will

be particularly useful to causal sets as the notion of positive frequencies isn’t

well defined and hence traditional quantisation wouldn’t work. Following

[2], we start off by generalising the equations from the previous section to

curved space-times. Thus φ is now viewed as a real valued scalar field on a

hyperbolic space-time (M, gµν) and the operator ∂µ transforms as ∂µ → ∇µ,

the covariant derivative operator on M . The Klein-Gordon equation then

becomes, (
∇µ∇µ +m2

)
φ(x) = 0 (2.1)
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where the mass m is non-negative. Additionally the retarded and advanced

Greens functions GR,A now satisfy the equations,

(
∇µ∇µ +m2

)
GR,A(x, x′) = −δ

(d)(x− x′)√
−g

(2.2)

where g is the determinant of the metric tensor gµν . The Pauli-Jordan func-

tion ∆(x, x′) has the same form as in Equation 1.24, and we now use it to

define the integral operator [2],

(∆f) (x) ≡
∫
M

∆(x, x′)f(x′) dVx′ (2.3)

where dVx′ =
√
−g(x′)ddx′ is the volume measure on M . We also note that

as ∆(x, x′) is the difference of two Greens functions it trivially satisfies the

Klein-Gordon equation [2],

(
� +m2

)
∆ = 0 (2.4)

Once again we go to the quantum theory by promoting φ to an operator φ̂,

and the canonical commutation relations now take the form,

[
φ̂(x), φ̂(x′)

]
= i

∫
M

f(x)∆(x, x′)f(x′) dVxdVx′ (2.5)
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which in short hand can be written as [23],

[
φ̂(x), φ̂(x′)

]
= i∆ (2.6)

i∆(x, x′) is again Hermitian and antisymmetric as we saw before, and so it’s

eigenvalues must again be real and come in positive and negative pairs.

2.2 The SJ Vacuum

The Sorkin Johnston (SJ) vacuum is defined in terms of the Pauli-Jordan

function i∆, as the state |SJ〉, such that 〈SJ | φ̂(x)φ̂(x′) |SJ〉 = Pos(i∆(x, x′)),

where Pos(i∆(x, x′)) is the positive spectral projection of i∆ through the

spectral theorem. We view i∆ as an operator acting on the Hilbert space of

square integrable functions L2(M,dV ) [2]. The ”ground state condition” is

then interpreted as defining the two-point function WSJ(x, x′) to be the pos-

itive part of the Pauli-Jordon function so that WSJ(x, x′) = Pos(i∆(x, x′)).

For a free scalar field in a d-dimensional globally hyperbolic spacetime (M, gµν),

the Wightman function WSJ of the SJ state is defined by the three conditions

[3][23],

1. i∆ =
[
φ̂(x), φ̂(x′)

]
= WSJ(x, x′)−W ∗

SJ(x′, x) (Commutator)

2.
∫
M

∫
M
f ∗(x)WSJ(x, x′)f(x′) dVxdVx′ ≥ 0 (Positivity)

3.
∫
M
WSJ(x, x′)W ∗

SJ(x′, x′′) dVx′ = 0 (Orthogonal Support)
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where once again dVx = ddx
√
−g(x). It can also be shown that WSJ is

unique and hence these conditions specify the state fully [3]. We can slightly

modify the integral operator in (2.3) and define it to be the Pauli-Jordan

operator i∆ on L2(M,dV ),

(i∆f)(x) =

∫
M

dVx′i∆(x, x′)f(x′) (2.7)

where the inner product on L2(M,dV ) is given by,

〈f, g〉 =

∫
M

dV f(x)∗g(x) (2.8)

Analogous to the causal set case in the previous chapter, we can use the

Hermiticity and antisymmetry of i∆ to write the eigenvalue equation [3],

(i∆T±q )(x) = ±λqT±q (x) (2.9)

where q indexes the set of eigenfunctions, while T−q (x) =
[
T+
q (x)

]∗
and λq > 0

for all q. The spectral decomposition of the Pauli-Jordan operator is similarly,

i∆(x, x′) =
∑
q

λqT
+
q (x)T+

q (x′)∗ −
∑
q

λqT
−
q (x)T−q (x′)∗ (2.10)

where we also assume the eigenfunctions T±q are L2-normalised so that ||T±q ||2 =〈
T±q , T

±
q

〉
= 1. Now WSJ(x, x′) = Pos(i∆(x, x′) is then just the first term on
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the right hand side of this expression,

WSJ(x, x′) =
∑
q

λqT
+
q (x)T+

q (x′)∗ =
∑
q

τq(x)τq(x
′) (2.11)

where τq(x) = T+
q (x)

√
λq. The ground state defined in this way provides

a consistent definition for the vacuum state in both the causal set and con-

tinuum framework. The discrete nature of causal sets provides the added

benefit that the operators mentioned here are all finite dimensional and well

defined [3].

2.3 Continuum Massless Scalar Fields on the

2D Causal Diamond

As we now have a consistent definition for the ground state of a massless

scalar field in both the continuum and causal set framework, namely the

SJ vacuum state, we will review the comparison between the continuum and

causal set expressions for the SJ Wightman function on a 2D causal diamond,

as done in [3]. Two sub-regions were explored, namely the center of the causal

diamond and the corner, corresponding to Minkowski and Rindler space-

times respectively. We start with the familiar metric on a two dimensional

Minkowski space-time with coordinates (t, x) given by,

ds2M = −dt2 + dx2 (2.12)
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and the massless scalar field equations,

�Mφ = −∂2t φ+ ∂2xφ = 0 (2.13)

We can separate the solutions to this equation in positive and negative fre-

quencies and once again define the vacuum state |0M〉 as the state annihilated

by the operator version of the positive frequency modes in the Fourier ex-

pansion of φ̂. The Wightman function with respect to this vacuum state is

given by,

WM(t, x; t′, x′) = 〈0M | φ̂(t, x)φ̂(t′, x′) |0M〉 =
1

4π

∫ ∞
−∞

dk

|k|
e−i|k|(t−t

′)+ik(x−x′)

(2.14)

which is logarithmically divergent at k = 0. As done in [3], the divergence

can be removed by introducing an infrared momentum cutoff λ so that (2.14)

can be evaluated as,

WM(t, x; t′, x′) =
1

4π

∫ ∞
−∞

dk

|k|
e−i|k|(t−t

′)+ik(x−x′)θ(|k| − λ)

= − 1

2π
ln(µ|d|)− i

4
sgn(∆t)θ(∆t2 −∆x2) +O(λ∆)

(2.15)

where µ = λeγ, γ is the Euler-Mascheroni constant, ∆t = t− t′, ∆x = x− x′

and d =
√
−∆t2 + ∆x2. Dropping the O(λ) term, WM,λ is defined as,

WM,λ = − 1

2π
ln(µ|d|)− i

4
sgn(∆t)θ(∆t2 −∆x2) (2.16)
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Equation 2.16 then serves as an approximation to the massless SJ two point

function in the centre of a flat causal diamond [3]. Working in lightcone

coordinates u = (t + x)/
√

2 and v = (t − x)/
√

2, we start with a causal

diamond centred at the origin u = v = 0 corresponding to the region u, v ∈

(−L,L) as shown in Figure 2.1 and has a space-time volume of V = 4L2. The

full theoretical calculation was done in [3] to find the exact SJ Wightman

function on the flat causal diamond starting with the Pauli-Jordan function

[4],

i∆(u, v;u′, v′) = − i
2

[θ(u− u′) + θ(v − v′)− 1] (2.17)

It was found that the SJ Wightman function, WSJ,L, was the same as the

exact continuum two-point function of the ground state of a massless scalar

field in a box with reflecting boundaries at x = ±
√

2L up to a correction

term.

2.3.1 The Center Region

We wish to determine what the SJ Wightman function looks like in the large

L limit as one would expect the boundary effects to become negligible and

approximate the true vacuum of Minkowski space. As such, near the center

of the causal diamond points are chosen so that,

|u− u′| � L, |v − v′| � L, |u− v′| � L, |v − u′| � L (2.18)

Following this approximation, the continuum Wightman function near the
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Figure 2.1: The 2D causal diamond [3]. The continuum analysis is carried
out on the shaded center and corner regions.

center of the causal diamond is given by [3],

Wcenter(u, v;u′, v′) =− 1

4π
ln(|∆u∆v|)− i

4
sgn(∆u+ ∆v)θ(∆u∆v)

− 1

2π
ln
( π

4L

)
+ εcenter +O(

δ

L
)

(2.19)

where εcenter ≈ −0.063 is a correction term in the derivation and |∆u∆v| =

1
2
|d|2. We then see that for large L this agrees with WM,λ, the Minkowski

Wightman function with cutoff λ in Equation 2.16. The specific value for

the cutoff was given by [3],

λ =
π

4
√

2
exp(−γ − 2πεcentre)L

−1 ≈ 0.46× L−1 (2.20)
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This result demonstrates that by taking the large L limit of the causal di-

amond, the SJ state in the center then approximates that of a Minkowski

vacuum as was expected.

2.3.2 The Corner Region

A similar analysis was also done on the corner region of the causal diamond

corresponding to the Rindler space-time, starting with the Rindler metric

[19][20],

ds2R = e2aξ(−dη2 + dξ2) (2.21)

such that the coordinates (t, x) are related to (ξ, η) via the coordinate trans-

formations,

t = a−1eaξ sinh aη x = a−1eaξ cosh aη

Here a > 0 is a constant with dimensions of inverse length, while ξ and η

satisfy the conditions −∞ < ξ, η < ∞. ξ and η are coordinates covering

the right Rindler wedge, x > |t| shown in Figure 2.2. Lines of constant

ξ represent the trajectories of observers moving with constant acceleration

ae−aξ [3]. Following a similar analysis as was done starting at Equation 2.14,

the two point function is given by,

WR,λ(η, ξ; η
′, ξ′) = − 1

4π
lnµ2|∆η2 −∆ξ2| − i

4
sgn(∆η)θ(∆η2 −∆ξ2) (2.22)
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Figure 2.2: The left and right Rindler wedge [3]. The hyperbolic lines repre-
sent lines of constant ξ.

However, working once again with the SJ Wightman function WSJ,L and

looking at this in the corner region for the L → ∞ limit, it was shown to

take the form,

Wcorner(t, x; t′, x′) = WM,λ(t, x; t′, x′)−WM,λ(t, x; t′,−x′) (2.23)

which does not resemble the form of WR,λ(η, ξ; η
′, ξ′) in Equation 2.22. In-

stead this looks like the ground state of a scalar field with a mirror placed at

the corner of the right Rindler wedge. Hence one finds that the vacuum state

in the corner region of the causal diamond does not seem to resemble the

Rindler vacuum as was expected. As was suggested in [3], a possible reason

for this discrepancy is the fact that we are working with massless fields which

would be able to ’sense’ the boundaries of the region even in the L → ∞
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limit, although intuitively one would assume that the left corner would be-

come unaware of the right mirror in the large L limit. This discrepancy will

be of particular interest when we look to explore this region in the case of a

three dimensional causal diamond.

2.4 The SJ Causal Set Wightman function

After establishing the continuum expressions for the SJ Wightman functions

on the causal diamond for the two sub-regions in [3], these results were then

compared to the causal set Wightman functions calculated directly from

the points in the causal diamond using the formalism developed in chapter

one. Starting with a sprinkling of points in the causal diamond CL, the

massless retarded propagator KR can be calculated using the Equation 1.33

and setting Φ = 1
2
C [14],

KR =
1

2
C (2.24)

where C is the causal matrix. From this the Pauli-Jordan function i∆ can

be calculated using

i∆ = i(KR −KT
R) (2.25)

As described earlier the positive part of i∆ is then equated to the causal

set Wightman function wij = w(vi, vj) for vi, vj ∈ CL. We can compare

this directly to the values of the continuum Wightman functions W ij =

W (Xi, Xj) calculated in the previous section. The real parts of W and w were
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Figure 2.3: The real part of WM,λ(X,X
′) (black line) against the causal set

SJ Wightman function wij in the center of causal diamond [3].

plotted against proper time |d(Xi, Xj)| for time-like related points, where in

the center, the real part of the continuum Wightman function with infrared

cutoff λ = 0.02 was given by [3],

R[WM,λ(x, y)] = − 1

2π
ln(|d(x, y)|) + 0.53 (2.26)

The plot for this against the causal set Wightman function is shown in Figure

2.3 above, taken from [3], where we can see there was a strong agreement be-

tween the values of the two functions. Similarly, the comparison between the

causal set SJ Wightman function and the continuum Wightman function was

also explored in the corner of the causal diamond. The causal set Wightman

function was compared to various candidate continuum functions mentioned

earlier, namely the SJ, Minkowski, left mirror and Rindler two point func-
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Figure 2.4: Correlation plots for the two-point functions in the corner of the
causal diamond with wij on the horizontal axis and W ij on the vertical [3].

tions. The comparison was done via correlation plots as the continuum two

point functions were functions of more variables than just the proper time.

In a correlation plot, the continuum value of the Wightman function W i,j is

directly plotted against the discrete value wi,j. The plots for these are taken

from [3] and shown above in Figure 2.4, where going left to right we have the

SJ, the Minkowski, the mirror, and the Rindler two-point functions. As we

can see, there is a very close agreement between both the SJ and the mirror

plots, confirming that vacuum in the corner region is indeed closer to the

mirror function than what would intuitively be expected to be the Rindler

Wightman function. Hence it was the shown the continuum calculation for

the SJ state in the Rindler wedge doesn’t agree with the limiting procedure

used when constructing the finite diamond and letting the size of the dia-

mond tend to infinity. A possible explanation for this was suggested in [3]

relating to the infrared divergences of the two dimensional massless theory.

In the next chapter we will explore whether this behavior is also observed in

the case of three space-time dimensions.
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Chapter 3

The SJ Vacuum in 3D

In this chapter, we aim to extend some of the numerical work done in [3]

to the case of a three dimensional causal diamond. In three dimensions the

diamond will look like a double cone joined by their circular base of radius

r, centered at the origin. We once again want to determine the SJ ground

state in the center of the causal diamond and in the wedge region, which as

we saw in the previous chapter, we would have expected to correspond to

the Minkowski and Rindler vacuums respectively, in the large diamond limit.

The way we try to simulate this limit will involve trying to pick small enough

subregions so that the boundary of the full diamond has a minimal effect.
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3.1 The Setup

As we will be working in d = 3 space-time dimensions, to generate the 3-

dimensional causal set CD, we start off by sprinkling points into a cube of

side length l = 2 centered at the origin. This is done by sampling each of the

(x, y, t) coordinates from a uniform distribution on the interval [−1, 1]. We

then keep points within the causal diamond centered at the origin, described

by the region,

{
t <

l

2
−
√
x2 + y2

}⋂{
t >

√
x2 + y2 − l

2

}

This is shown below in Figure 3.1. The number of points inside the causal

diamond is thus approximately Poisson distributed around the mean ND =

ρCVD, where ND is the number of points inside the causal diamond, ρC is the

sprinkling density into the cube and VD is the volume of the causal diamond.

The time coordinate on the vertical axis will once again provide a natural

labelling for the points inside the causal diamond. We can then calculate

the proper time τij between pairs of points vi, vj ∈ CD and use the fact

that if τij > 0 then the points are time-like separated, and hence causally

related, while if τij < 0 we know the points are space-like separated and

hence causally unrelated. We can then calculate C and L, the causal and

link matrices respectively, from the causal diamond using the setup from

chapter one.
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Figure 3.1: A sprinkling into a 3D causal diamond.

3.2 Propagators and Wightman functions

Once we have the Causal and Link matrices, we calculate the causal retarded

Greens functionKR on the full causal diamond using Equation 1.11 in chapter

one. As we are only working with massless fields, this expression simplifies

giving KR = Φ, where in d = 3 space-time dimensions Φ is defined as [14],

Φxy =


1
2π

(
πρC
12

) 1
3 ((C + I)2)

− 1
3

xy if vx ≺ vy

0 otherwise

(3.1)

Here the sprinkling density ρC is given by ρC = NC/VC . We can check the

agreement between the causal set Greens function and the continuum Greens
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Figure 3.2: Plot of causal set versus continuum propagators.

function by comparing KR to the expression for the continuum retarded

Greens function in (1.19) given by,

(GR)
(3)
0 (x) = θ(t)θ(τ 2)

1

2πτ
(3.2)

This is shown in Figure 3.2, where the blue points represent the causal set

Greens function and the purple represent the continuum values. Equation

3.2 is derived in [14] by assuming the proper time is proportional to the

cube root of the causal set volume between two points, however one can also

calculate KR using a different method, using the length of the longest chain.

This uses the fact that the length of the longest chain between two causal set

points vx and vy, denoted by lxy, is proportional to the proper time between
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Figure 3.3: Plot of causal and continuum propagators via the length of the
longest chain method.

them [18] [6]. The proper time τ is then related to lxy through the equation,

τ = lim
ρ→∞
〈lxy〉

(πρ
12

)− 1
3 1

m3

(3.3)

where the brackets < . > denotes the mean over the entries of lxy, while m3

is given by the equation [25],

m3 = lim
ρ→∞
〈lxy〉 (ρV )−

1
3 (3.4)

so that it lies in the range 1.77 ≤ m3 ≤ 2.62 [18]. For our calculations, we

will use the average value of m3 in range mentioned above, namely m3 =

2.19. This then gives an alternative definition for the retarded causal set
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propagator [18],

(K̃R)(3)xy =


1

2πlxy

(
πρ
12

) 1
3 for vx ≺ vy

0 otherwise

(3.5)

Once we have the propagator we can calculate the Pauli-Jordon function

using definition (1.33), and hence obtain i∆. By using the spectral decom-

position in (1.38), we obtain the Wightman function, wij, on the full causal

diamond by taking the positive part as in Equation 1.39.

3.3 The SJ Vacuum in the Center

The first subregion we wish to explore is the center of the causal diamond.

In order to approximate the vacuum of flat Minkowski space, we must look

at a subdiamond in the center of the full causal diamond that, as mentioned

earlier, is small enough that the role of boundary effects is negligible. If

the full causal diamond has radius r = 1, we choose a sub-diamond of radius

r = 0.4, so the volume of the subdiamond represents 6.4% of the full diamond.

We then calculate the Wightman function w on the subdiamond by only

keeping entries in the Wightman function matrix corresponding to points

inside the subdiamond. We then compare this to the continuum Wightman
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(a) Time-like points

(b) Space-like points

Figure 3.4: Causal set versus continuum Wightman functions in the center
region. Here τ is the proper time and R[W ] is the real part of the Wightman
function. 43



function on a three dimensional Minkowski spacetime given by [21],

Wmink(x, x
′) =

|x− x′|1−D
2

2(2π)
D
2

∫ ∞
0

du
u

D
2

√
u2 +m2

JD
2
−1(u|x− x′|)e−i

√
u2+m2(t−t′)

(3.6)

where here D = 2 is the spatial dimension and m = 0 as we are working

in the massless case. Jα(x) is the Bessel function of the first kind and the

bold vectors here represents only the spatial components of the vector. As

was done in the case of the two dimensional causal diamond, we introduce

a ultraviolet and infrared cutoff, where the instead of having the integral

limits as zero and infinity, for the numerical computation of Equation 3.6

we replace these with π/4 and 133 respectively. The comparison between

Wmink(vi, vj) = W ij
mink and w(vi, vj) = wij for vi, vj ∈ CD is shown in Figure

3.4 on the previous page, where a total of N = 20, 000 points were used in the

full causal diamond. The real part of the Wightman functions were plotted

for two cases, depending on whether the causal set points were space-like

separated or time-like separated. We see close agreement between the two

functions for large proper times, however for very short proper times the

two functions differ significantly. We also see this in the correlation plots

in Figure 3.5 where the causal set SJ Wightman function is plotted on the

horizontal axis and the Minkowski Wightman function on the vertical. We

see there is an obvious positive correlation, however this is not as tight as

what we saw in the two dimensional case. This might partially be due to the

cutoffs used, as using different values for the cutoffs may provide a better
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fit between the two functions. Despite the discrepancy at the small proper

time scale, the SJ causal set Wightman function does seem to bear close

resemblance to the Minkowski Wightman function in this region.

Figure 3.5: Correlation plots of the causal set versus Minkowski Wightman
function. The left diagram is for the time-like separated points while the
right for space-like separated points.

3.4 The SJ Vacuum in the Wedge

We now shift our analysis to the wedge region of the causal diamond. Recall

that in the two dimensional case explored in [3], the SJ state was expected

to resemble the Rindler vacuum, however, it seemed to more closely resemble

the Minkowski space-time with a static mirror on the corner. In this section

we explore whether this might be the case in the three space-time dimensions

as well. We do a comparison between three different vacuua, characterised

by the Rindler, Minkowski and Mirror Wightman functions Wrind, Wmink

and Wmirr respectively. To define the wedge region, we shift our coordinate
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Figure 3.6: The three dimensional causal diamond with points in the wedge
region highlighted in red.

axis so the ”corner” lies at the origin. For our numerical calculations, we

look at a thickened two dimensional slice extending 0.4 of the way along the

radii towards the centre of the diamond. We use a thickened wedge, as a

flat plane would have a zero probability of finding points on the plane in

three dimensions. We set the thickness of the wedge to ε = 0.1 and work

with 25, 000 points in the causal diamond as this gives us approximately 380

points in the wedge region. The large number of causal set points required to

obtain enough points in the wedge makes it challenging to obtain a definitive

answer as to what the SJ vacuum state looks like, however we do review

the preliminary results. The origin is placed at the right Rindler wedge, such

that x1 > t and the Rindler coordinates (τ, ξ,x) are related to the Minkowski
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coordinates (t, x1,x) by [22],

t = ξ sinh τ, x1 = ξ cosh τ (3.7)

Wmink is the same as Equation 3.6 above, while Wrind is given by [22],

Wrind(x, x′) = Wmink(x, x
′)− 1

2π

∫ ∞
−∞

du

π2 + u2

(
m

2πγ1

)D−1
2

K(D−1)/2(mγ1)

(3.8)

whereKα(x) is the modified Bessel function of the second kind and γ1 satisfies

the condition,

γ21 = ξ2 + ξ′2 + 2ξξ′ cosh (y − τ + τ ′) + |x− x′|2 (3.9)

In our three dimensional case, x1 = x and x = y. Finally, Wmirr takes a

similar form to Equation 2.23,

Wmirr(x, t;x
′, t′) = Wmink(x, t;x

′, t′)−Wmink(x, t;−x′, t′) (3.10)

We can see the comparison through the plots for these functions in Fig-

ure 3.7 and Figure 3.9 below, which compare the space-like and time-like

separated points respectively. The correlation plots in Figure 3.8 are taken

for proper times greater than 0.1 as this ignores large fluctuations coming

from integrating over the Bessel functions at short proper times. Going from

left to right in Figure 3.8 we have the correlation plots for the Minkowski,
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Rindler and Mirror Wightman functions on the vertical axis, plotted against

the SJ causal Wightman function on the horizontal axis for space-like sepa-

rated points. Similarly, we also have the comparison for time-like separated

points in Figure 3.9. Due to the heavily oscillatory behaviour of the time-like

functions, correlation plots of these did not produce any meaningful way of

making a comparison between the vacuum states. From these plots we can

see that once again the Rindler and Mirror Wightman functions show the

closest fit to the SJ causal set Wightman function. The plots seem to most

closely support mirror behavior, as was observed in the two dimensional case,

however, in order to definitively confirm this we must ultimately use larger

causal sets.
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(a) Causal v Minkowski

(b) Causal v Rindler
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(c) Causal v Mirror

Figure 3.7: Plots of SJ causal set versus continuum Wightman functions for
space-like separated points.

Figure 3.8: Correlation plots of, going left to right, Wmink, Wrind and Wmirr,
for space-like separated points.

50



(a) Causal v Minkowski

(b) Causal v Rindler
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(c) Causal v Mirror

Figure 3.9: Plots of SJ causal set versus continuum Wightman functions for
time-like separated points.
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Chapter 4

Conclusion

To summarise the contents of this thesis, we started off by introducing the

causal set approach to quantum gravity as a way of side stepping the con-

ceptual difficulties and divergences found in traditional quantum field the-

ory. The causal relations between discrete space-time points takes the center

stage in this approach, and as we saw, this is almost enough to completely

reconstruct Lorentzian space-time geometry. The discreteness scale acts as a

natural barrier to the infrared and ultraviolet divergences found in traditional

quantum field theory, however it also demands a new basis for quantisation.

This was reviewed in chapter two, where we introduced the Sorkin-Johnston

vacuum as an alternative distinguished vacuum state for a free scalar quan-

tum field theory. Here the Pauli-Jordan function played a central role in

the quantisation process and allowed us to avoid the ambiguity arising from

defining positive frequency modes, whilst also making the quantisation pro-
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cess intrinsically covariant. We looked at the consequences of this new ground

state proposal by reviewing the work done in [3], where the SJ continuum

Wightman functions characterising the SJ ground state was compared to the

traditional vacuum state Wightman functions on the two dimensional causal

diamond in the large L limit. The comparisons were also made to the causal

set SJ Wightman function and it was found that while the SJ vacuum agreed

with the expected Minkowski vacuum at the center of the causal diamond, it

didn’t match the expected result in the corner wedge region, which was ex-

pected to resemble the Rindler vacuum. Rather, it resembled the Minkowski

vacuum with a mirror. In the final chapter we investigated this further in

the case of a three dimensional causal diamond, where preliminary tests seem

to show that the SJ vacuum in the wedge region once again resembles the

Minkowski vacuum with a mirror rather than the Rindler vacuum. It was

highlighted in [3] that ultimately the expressions used in the continuum com-

parison suffered from infrared divergences that were removed with a cutoff

and perhaps a massive theory would result in a unique SJ state that agrees

with the Rindler vacuum. These results provide a several possible routes for

further research. First one could consolidate the preliminary results for the

three dimensional diamond by working with larger causal sets, which may

provide a more definitive answer regarding the SJ vacuum state in the wedge

region. It may also be of interest to carry out a similar analysis in the case

of a massive case to see whether this does indeed result in the SJ vacuum

state resembling the Rindler vacuum.
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