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1 Introduction

To the modern mind, geometry is often thought of as an offspring of arithemtic;

yet to the ancient mind, in particular the Ancient Greeks, arithmetic was but

a by-product of geometry. This flip in how we look at geometry, has probably

come as a result of the modern developments of algebra and calculus, resulting

in the study of geometry becoming the hybrid it is today. One such field that

was concieved out of this mix is differential geometry. Complex geometry, which

is a particular sect of differential geometry, is the focus of this thesis.

Complex geometry has been a subject of much interest in theoretical physics,

mainly due to the folowing reason: solutions to certain supersymmetric string

theories, are equivalent to the existence of a group of special complex manifolds

[1]. That is, the geometry of complex manifolds, provides the link between

supersymmetric string theories, and the local, observable world. To illustarte
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this point further, consider the background space of a 10 dimensional superstring

theory, M10. What sort of geometric structure must this space have? Locally,

we know our geometry is Minkowski and thus somehow the space M4 must

be involved. A natural way to proceed, is by postulating a compactification

product space

M10 = M4 ×M6

where the manifold M6 is some 6-dimensional, compact manifold. In par-

ticualr, it must be sufficiently compactified so as to not be observable at low

energies. The problem has been reduced to the finding of such a 6-dimensional

manifold, with geometry that admits the Standard Model supersymmetry at

low energy. The salient point is that the supersymmetry imposes a Calabi-

Yau structure on the compactification manifold. That is, M6 turns out to be

a Calabi-Yau 3-fold which is a special type of 3-dimensional complex manifold

(see chapter 9 for details).

In this thesis, I provide a review of complex geometry beginning with the

complex manifold. The complex manifold is defined by two equivalent prescrip-

tions; one using holomorphic maps, and the other by the introduction of an

almost-complex structure. The almost-complex structure is examined in terms

of an integrability condition, that determines whether the manifold is in fact

complex or almost-complex. The chapter ends with an example of the canonical

complex coordinates, which will characterise future complex manifold coordinate

sysyems. Chapter 3 marks the first extensions of real structures to the complex

manifold. These include the exterior deriavative, tensor field, and differential

form field, which are complexified and decomposed into constituent holomor-

phic and antiholomorphic parts. They will form the basis for more advanced
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constructions later on such as the Ricci form and Kähler form. Chapters 4 and 5

explore the geometry resulting from the addition of a special Riemannian metric

on an almost complex manifold. We outline the conditions of compatibility be-

tween the metric and almost complex structure, that will impose a special kind

of geometry; namely the Kähler geometry. This geometry is also characterised

by a connection that preserves holomorphicity. We find that this connection

that develops naturally from Kähler geometry, actually coincides with the Levi-

Civita connection. The remarkable property of Kähler geometric structures, is

that they can all be determined (locally) if given the Kähler potential function.

Once the Kähler manifold is defined, Hodge theory and Hodge decomposition

theorems are extended to Kähler manifolds. Hodge decompositions lead nat-

urally to a discussion of cohomology. Specifically, we consider the Dolbeault

generalisation to the de Rahm cohomology. The resulting Hodge numbers that

characterise the cohomology classes are discussed in detail. We then turn to

a gauge-theory-perspective introduction of the Chern classes of complex vector

bundles. These are characteristic classes and thus are subsets of the cohomology

classes. It turns out, the first Chern class is essentially given by the Ricci form.

Finally, we get to constructing the Calabi-Yau manifold in chapter 9. We

spend considerable time describing the various geometric aspects of this man-

ifold with regards to supersymmetry, holonomy, Ricci flatness; making sure to

highlight their interconnections. The condition for the existence of a Calabi-

Yau metric is encapsulated by the Monge-Ampére equation, which we motivate

by two different methods. We close the chapter by looking at further relations

betweem the Hodge numbers and in particular write the Hodge diamond of the

Calabi-Yau 3-fold. The final chapter represents a much briefer story on the gen-

eralised Calabi-Yau manifold that is used for compactifications with flux. It is

outside the scope of this thesis to examine the generalised Calabi-Yau manifold
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to the same rigor as the Calabi-Yau manifold was discussed. Following the pre-

scription [2], we quote the corresponding generlaisations to the mathematucal

structures that were developed in chapter 2-5, giving references to more detailed

accounts.

This thesis is aimed at graduate students of theoretical physics. I presup-

pose a standard graduate level knowledge of differential geometry, Riemannian

geometry, and basic fibre bundles such as the tangent bundle (see [3] for an in

depth examination of fibre bundles). I include an appendix on complex vec-

tor bundles and holomorphic bundles, as these are not typically included in an

introductory course.

2 Complex Manifolds and Almost Complex Man-

ifolds

2.1 Construction using Holomorphic Maps

A Holomorphic map Cm → Cn is a collection of complex valued functions

(f1, ..., fn) where f i is holomorphic, meaning both f1 and f2 in f = f1 +

if2 satisfy the Cauchy Riemann relations for each zµ = xµ + iyµ where µ =

{1, ...,m}:

∂f1
∂xµ

=
∂f2
∂yµ

(1)

∂f2
∂xµ

=− ∂f1
∂yµ

. (2)

A complex manifold M, requries both a topological condition and a differ-

entiability condition. A complex manifold must be a dimRM = 2m topological

space that is locally homeomorphic to Cm, together with a smooth holomorphic
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differentiable structure. Explicitly the following must hold,

1. M is a topological space (M,O)

2. There exists an atlas {(Ui, ϕi)} of charts where {Ui} ⊂ O form an open

cover on M and ϕi is a homeomorphism from Ui to an open set in Cm.

3. Coordinate transition maps on manifold regions Ui ∩ Uj ̸= ∅ given by

ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) are holomorphic maps, as defined above. In

other words they depend only on zµ and not on z̄µ. An atlas consisting

only of such transition functions is then labeled a holomorphic atlas. This

procedure is independent of the choice of chart, so as to be a coordinate

independent condition.

The complex structure of such a manifold is defined as the maximal holomor-

phic atlas. The union of two distinct holomorphic atlases may produce another

complex structure, provided the axioms still hold, implying a complex manifold

may in general have many complex structures.

By virtue of the above definition, a complex manifold of dimCM = m (de-

noted a complex m-fold) may be identified with a real manifold of dimRM = 2m

(denoted a real 2m-fold) because of the isomorphism Cm ∼= R2m. However

the converse is not always true. Under what circumstances is a real manifold

then also a complex manifold? In order to answer this question, we formulate

an equivalent definition of a complex manifold, by introducing the almost-

complex structure. We also find that a slighly weaker condition on the

almost-complex structure defines an almost-complex manifold.
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2.2 Construction using Almost Complex Structure

Definition 3.1: Let M be a real 2m-fold. The almost-complex structure

J ∈ Γ(TM ⊗ T ∗M) is smooth (1, 1) tensor field, such that J i
lJ

l
j = −δij .

The manifold together with the almost-complex structure defines an almost-

complex 2m-fold, given as (M,J).

As a linear map, J ∈ Γ(End(TM)) : TM −→ TM . Taking a vector field

X ∈ Γ(TM), we define the action of the field J as (JX)i = J i
jX

j . Acting

once more we have J(JX)i = J l
iJ

i
jX

j = −δljX
j = −Xj , noting we used

the almost-complex property. This shows that J2 acts as minus the identity

operator, and therefore, is the manifold generlisation of multiplication by ±ı. In

other words it gives Γ(TM) a complex vector space structure. This prescription

is always valid locally [4]; in other words, any 2m-dimensional manifold admits

an almost-complex structure J where

J2 = −I2m (3)

Given a basis { ∂
∂xi } and dual basis {dxj}, the almost-complex structure can

then be written as

J = J i
j
∂

∂xi
⊗ dxj (4)

where the components J i
j satisfy the equation in the above definition.

In the case of a complex manifold however, this tensor field can also be

patched globally on the manifold. To ellucidate this point further, we introduce

the Nijenhuis tensor field N ∈ Γ(TM ⊗ T ∗M ⊗ T ∗M), defined by its action

N : Γ(TM)× Γ(TM) −→ Γ(TM) given by
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N(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ] (5)

where [ , ] is the usual Lie Bracket operation on vector fields. In component

form we have N i
jk = J l

j(∂lJ
i
k − ∂kJ

i
l) − J l

k(∂lJ
i
j − ∂jJ

i
l). We then state

two theorems to complete the connection between almost-complex structure and

complex manifolds

Theorem 3.1: An almost-complex structure J is integrable ⇐⇒ N(X,Y ) =

0 ∀ X,Y ∈ Γ(TM)

Theorem 3.2 (Newlander and Nirenberg Theorem [6]): Let (M, J)

be an almost-complex 2m-fold. The almost-complex structure J is integrable

⇐⇒ The almost-complex manifold is actually a complex manifold.

These theorems imply that integrability is both nessessary and sufficient, in

order to establish a global covering of complex coordiantes on a manifold. If J

is indeed integrable, the almost-complex structure is labeled the complex struc-

ture, and the almost-complex manifold becomes a complex manifold, denoted

(M,J). The interrelation between the two definitions of a complex manifold

can be summarised by the following:

Holomorphic atlas ⇐⇒ Integrable almost-complex structure ⇐⇒ Complex

manifold

We now complexify the notions of a tangent bundle and the corresponding

complex structure endomorphism J :
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TM −→TCM = TM ⊗ C (6)

J −→JC : TM ⊗ C −→ TM ⊗ C (7)

where for conveniance we drop the C from the complex structure. But what

are the geometrical implications of these complexifications? The eigenvalues

of the complex structure are ±ı, implying a natural projection of the tangent

bundle into two isomorphic subspaces.

TCM = TM ⊗ C = (T (1,0)M)⊗ (T (0,1)M) (8)

where (T (1,0)M) is conjugate to (T (0,1)M), and they are respectfully la-

beled the holomorphic and anti-holomorphic tangent bundle’s. Correspond-

ingly, the cotangent bundle can also be complexified as TC
∗M = T ∗M ⊗ C =

(T ∗(1,0)M)⊗ (T ∗(0,1)M).

To make this more concrete we look at the canonical coordinate example.

Consider a real (co)tangent space at a point p given by (Tp
∗M) TpM , which

we complexify to (TC∗
pM) TC

pM by the following prescription. A complex

(co)vector Z ∈ (TC∗
pM)TC

pM = X + ıY where X,Y ∈ (Tp
∗M)TpM . Define a

complex (dual) basis for the complexified (co)tangent space out of the real basis

we introduced in the previous section:
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∂

∂zµ
=
1

2
{ ∂

∂xµ
− ı

∂

∂yµ
} (9)

∂

∂z̄µ
=
1

2
{ ∂

∂xµ
+ ı

∂

∂yµ
} (10)

dzµ =dx+ ıdy (11)

dz̄µ =dx− ıdy (12)

Note the relabelling of the (co)tangent vectors from ({dxµ}) { ∂
∂xµ } to ({dyµ})

{ ∂
∂yµ } for µ = {m + 1, ...,m}. As in the real case these satisfy the same du-

ality conditions, namely the only non vanishing products are < dzµ, ∂
∂zν >=<

dz̄µ, ∂
∂z̄ν >= δµν .

The complex structure then acts as Jp(X + ıY ) = JpX + ıJpY for X,Y ∈

TpM . We define its action on the holomorphic and anti-holomorphic basis

vectors as

Jp(
∂

∂zµ
) =ı(

∂

∂zµ
) (13)

Jp(
∂

∂z̄µ
) =− ı(

∂

∂z̄µ
), (14)

noting that the complex structure property is accordingly satisfied.

A tensorial expression for J using the complex bases above is then Jp =

ıdzµ ⊗ ∂
∂zµ − ıdz̄µ ⊗ ∂

∂z̄µ with components given by

Jp =

iIm 0

0 −iIm

 (15)
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The components of the complex structure are all constant. Looking at the

components of the Nijenhuis tensor, we see they must vanish due to the partial

derivatives in each term. This implies integrability of the almost-complex struc-

ture. By Theorem 3.2, this confirms these complex coordinates can be used

globally, and the manifold is not just almost-complex but complex.

Using the almost-complex structure, the complexified tangent space is split

into disjoint vector spaces TpM
C = Tp

1,0M ⊕ Tp
0,1M where

Tp
1,0M ={Z ∈ TpM

C : JpZ = +iZ} (16)

Tp
0,1M ={Z ∈ TpM

C : JpZ = −iZ}. (17)

For notational convenience we define these spaces Tp
1,0M := Tp

+M and

Tp
0,1M := Tp

−M . The (anti)holomorphic tangent bundles (see appendix for an

introduction to holomorphic vector bundles) are then given by

TM± :=
⋃
p∈M

Tp
±M. (18)

Projection operators may then be used to project onto these subspaces as

P± : TpM
C → TpM

±. We define them as P± = 1
2 (I2m ∓ ıJ). The eigenvalue

equation JpP
±Z = ±iP±Z then shows that Z± = P±Z ∈ TpM

±. Finally a

general complex vector Z ∈ TpM
C is decomposed as

Z = Z+ + Z− (19)

Naturally, a holomorphic vector is a vector Z1 ∈ TpM
+, with a coordinate

basis ∂
∂zµ . An anti-holomorphic vector is a vector Z2 ∈ TpM

− with coordiante

basis ∂
∂z̄µ .
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3 Tensors and Exterior Forms on Complex Man-

ifolds

3.1 Tensor Field Complexification and Decomposition

Motivated by the decomposition of vectors, we may also decompose a tensor field

into holomorphic and anti-holomorphic parts. Superscript indices decompose as

Sa = Sα +Sᾱ and subscript indices decompose as Tb = Tβ + Tβ̄ . The unbarred

indices form tensor products of holomorphic (co)tangent spaces and the barred

indices the anti-holomorphic (co)tangent spaces. For example, if we consider

complexifying the (co)tangent bundles on a real manifold to give complex valued

tensor fields; a (p, q)-tensor field would be an element of Γ(⊗pTCM⊗qTC
∗M),

where each complexified bundle has the unique decomposition given previously.

3.2 Differential Form Field Complexification and Decom-

position

The next question one should ask is how to complexify a real differential form,

and what do forms look like on complex manifolds (note these are different

questions)? A real differential form may be complexified with the addition of

an imaginary form of the same order. Let ω, η ∈ Ωp
q(M). We define a unique

complex differential q-form at p as ζ = ω + ıη. More formally, a complex q-

form is a smooth section of ∧qTC
∗M and the vector space of complex q-forms is

Γ(∧qTC
∗M) := Ωq

C. However, we can use the complex cotangent decomposition

to state the following theorem

Theorem 3.2.1:
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∧qTC
∗M =

⊕
r+s=q

∧r,sM (20)

where ∧r,sM := ∧rT ∗(1,0)M ⊗ ∧sT ∗(0,1)M . A section of this defines a bi-

degree (r, s)-form.

Let us motivate this in a slightly less abstarct way. Let M be a complex

manifold M with TpM
C and Ωp

q(M)
C
. A bi-degree (r, s) is an r + s = q form

ω, for which ω(V1, ...Vq) = 0 unless r of the Vi ∈ Tp
(1,0)(M), and s of the

Vi ∈ Tp
(0,1)(M). For example, dzµ is of bidegree (1, 0), dz̄µ is of bidegree (0, 1).

An (r, s) form thus has a basis dzα1 ∧ ... ∧ dzαr ∧ dz̄β1 ∧ ...dz̄βs at each point

p ∈ M . In general a form of bidegree (r, s) labeled ω(r,s), is given by

ω(r,s) =
1

r!s!
ωα1...αrβ1...βsdz

α1 ∧ ... ∧ dzαr ∧ dz̄β1 ∧ ...dz̄βs (21)

where the antisymmetric components are defined in the usual way for tensors.

Note that in order for this structure to be useful it must be chart independent,

thus a bi-degree (a, b) will remain a bi-degree (a, b) in a different coordinate

system. Theorem 3.2.1 then implies that a general complex q-form ω, is uniquely

decomposed into a sum of its bi-degrees as

ω =
∑

r+s=q

ω(r,s). (22)

In terms of vector spaces the decomposition becomes

Ωq(M)
C
=

⊕
r+s=q

Ωr,s(M) (23)

where Ωr,s(M) is the space of (r, s) bi-degrees.
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3.3 Dolbeault Operators

Due to (23), the exterior derivative of a complex q-form may be defined in terms

of the exterior derivative of the component (r, s) forms where r + s = q. As

in the non-complex case the exterior deriavtive increases the q-form form to a

(q+1)-form, or equivalently to a collection of unique (r+s+1)-form terms. How-

ever a (r+s+1)-form may be split into two different bidegrees; a bidgree (r+1,

s)-form and a (r, s+1)-form. Therefore it is natural to break the exterior deriva-

tive into the sum of two linear operators acting on each part of a the bidegree

seperately. This motivates the following definition.

Definition 3.3.1:

The Dolbeault operators ∂ and ∂̄ form the sum d = ∂ + ∂̄, where

∂ : Ωr,s(M) → Ωr+1,s(M), ∂̄ : Ωr,s(M) → Ωr,s+1(M).

The action on a general q = r + s form is then

∂ω =
∑

r+s=q

∂ω(r,s) (24)

∂̄ω =
∑

r+s=q

∂̄ω(r,s). (25)

For example, consider a (1, 1) form ω = ωµν̄dz
µ∧dz̄ν . ∂̄ω =

∂ωµν̄

∂z̄σ dz̄σ∧dzµ∧

dz̄ν . Note that the nilpotency of the external deriavtive implies the Dolbeault

operators obey the identites ∂∂ = ∂̄∂̄ = ∂∂̄ + ∂̄∂ = 0.

Definition 3.3.2:

Let M be a complex manifold and ω ∈ Ωr,0(M) satisfy ∂̄ω = 0. That is ω is

an (r, 0) form that is ∂̄ closed. ω is then called a holomorphic r-form.
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On a chart (U, ϕ) such an r-form can be expressed as ω = 1
r!ωµ1...µrdz

µ1 ∧

... ∧ dzµr where

∂

∂z̄λ
ωµ1...µr = 0. (26)

This is simply the holomorphic condition (on the local chart) for each func-

tion ωµ1...µr
. The canonical vector bundle [7] (see appendix) of a complex man-

ifold is defined as KM = ∧m,0M . Sections of this bundle are the (m, 0) holo-

morphic forms.

We now turn to introducing various complex vector spaces that will be needed

in later chapters. Consider the ∂̄-closed and ∂̄-exact (r, s) forms. That is, the

ω ∈ Ωr,s(M) that satisfy ∂̄ω = 0, and the ω = ∂̄ω1 for ω1 ∈ Ω(r,s−1).

Definition 3.3.3: We respectfully define the set of ∂̄-closed (r, s) forms as

the (r, s)-cocycle = Ker(∂̄ : Ωr,s(M) −→ Ωr,s+1(M)) := Z∂̄
r,s(M), and the

set of ∂̄-exact (r, s) forms as the (r, s)-coboundary = im(∂̄ : Ωr,s−1(M) −→ Ωr,s(M)) :=

B∂̄
r,s.

Clearly the holomorphic r-forms are a subset of the (r, s)-cocycle, andB∂̄
r,s(M) ⊂

Z∂̄
r,s as every ∂̄-exact form must be ∂̄-closed due to the nilpotency of ∂̄.

There are two fundamental differential forms that must be considered on the

path to Calabi-Yau geometry; these are the Kähler and Ricci forms. However in

order to define these, we must add some more structure to the complex manifold.

Specifically, we introduce a Riemannian metric and impose a condition on it

to define a Hermition metric. Unless stated otherwise, from now on we work

exclusively with (atleast) an almost-complex manifold structure of dimC = m

which we denote by (M,J).
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4 Hermition Geometry

4.1 Hermition Metric and Hermition Manifold

Definition 4.1.1:

On an almost-complex manifold equipped with a Riemannian metric g, the

metric is defined Hermition if it satisifes

gp(JpX, JpY ) = gp(X,Y ) (27)

∀ p ∈ M and X,Y ∈ TpM .

We say that the metric is compatible with J. Note infact that JpX is per-

pendicular to X with repsect to the Hermition metric. The components are

then gij = J l
iJ

k
jglk. The manifold is then called Hermition and is represented

by (M,J, g)

Theorem 4.1.1:

A Hermition metric can always be found on a complex manifold.

Proof :

Consider a new metric ĝp(X,Y ) = 1
2 [gp(X,Y ) + gp(JpX, JpY )]. The Hermi-

tion condition is satisfied due to the cancellation of the minus signs from each

J2 = −I. It is also automatically positive definite. 2

We now extend the metric tensor domain to include complex vector imputs

Z = X + ıY , W = U + ıV ∈ TC
pM :

gp(Z,W ) = gp(X,U)− gp(Y, V ) + ı[gp(X,Y ) + gp(Y,U)]. (28)
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The metric is then a complex bi-linear, symmetric, positive definite map

TpM
C ⊗ TpM

C → C. Using the canonical coordinates for the holomorphic

and anti-holomorphic basis vectors, the two unmixed metric components be-

come gµν = g( ∂
∂zµ ,

∂
∂zν ), gµ̄ν̄ = g( ∂

∂z̄µ ,
∂

∂z̄ν ), and similarly for the two mixed

components. Symmetries follow naturally: gµν = gνµ, gµ̄ν = gνµ̄, gµ̄ν̄ = gν̄µ̄,

ḡµν̄ = gµ̄ν , ḡµν = gν̄µ̄.

In complex components, (27) constrains the unmixed indices to vanish gµν =

gµ̄ν̄ = 0, leaving block diagonal metric components gab = gαβ̄ + gᾱβ . In tensor

notation it can be written as

g = gµν̄dz
µ ⊗ dz̄ν + gµ̄νdz̄

µ ⊗ dzν , (29)

where we can now more clearly see the Hermition metric is a map T (1,0)M⊗

T (0,1)M −→ C. Consider the following inner product on T (1,0)M :

h(X,Y ) = g(X, Ȳ )forX, Y ∈ T (1,0)M (30)

It is easily shown that h is both positive definite and Hermition. Further

note that ¯h(X,Y ) = h(Y,X), indicating why we use the familiar Hermition

label for the above metric.

4.2 Connections, Tensors and Forms on Hermition Mani-

folds

In order to define a covariant derivative on a Hermition manifold, we must first

define a connection compatiblle with the complex structure. Only then, can

we establish connection components on the holomorphic and anti-holonorphic

(co)tangent complexified bundles. We first assume that on a Hermition mani-
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fold, a holomorphic vector remains holomorphic after parralel transport. Paral-

lel transport a holomorphic vector X, an infinitesimal coordiante displacement

(select a chart) dzµ, from point p → q, giving X → X ′. The components of the

parallely transported vector differ from the old by −XσΓλ
µσdz

µ, which defines

the connection components on the holomorphic basis vector. We summarise

below all non vanishing connection components:

∇µ
∂

∂zν
=Γλ

µν(z)
∂

∂zλ

∇µ̄
∂

∂z̄ν
=Γλ̄

µ̄ν̄(z)
∂

∂z̄λ

∇µdz
ν =− Γν

µλ(z)dz
λ

∇µ̄dz̄
ν =− Γν̄

µ̄λ̄(z)dz̄

where Γν
µλ and Γν̄

µ̄λ̄
= Γ̄ν

µλ are the only non zero components of the connec-

tion coefficients.

Definition 4.2.1:

A Hermition connection is the unique connection on a Hermition manifold

when the metric is covariantly conserved ∇κgµν̄ = ∇κ̄gµν̄ = 0 , and the unmixed

connection components are the only non vanishing connection components .

The metric connection imposes the components

Γλ
κµ = gν̄λ∂κgµν̄ (31)

Γλ̄
κ̄ν̄ = gλ̄µ∂κ̄gµν̄ . (32)
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J is also covariantly constant with respect to the Hermition connection

(∇κJ)ν
µ
= 0 (33)

which one can verify by using the tensorial expression of J along with the

action of the connection on basis (co)tangent vectors.

Using the Hermition connection, the non zero components of the Torsion

tensor are

Tλ
µν =gσ̄λ(∂µgνσ − ∂νgµσ) (34)

T λ̄
µ̄ν̄ =gλ̄σ(∂µ̄gν̄σ − ∂ν̄gµ̄σ) (35)

Similarly for the Riemann curvature tensor, the non-zero components are

Rκ
σµ̄ν , R

κ
σµν̄ , R

κ̄
σ̄µ̄ν , R

κ̄
σ̄µν̄ . Due to the anti-symmetry in the final two indices,

we are left with only two independent components

Rκ
σµ̄ν =∂µ̄(g

λ̄κ∂νgσλ̄) (36)

Rκ̄
σ̄µν̄ =∂µ(g

κ̄λ∂ν̄gλσ̄). (37)

Contract the first two indices of (36) as Rκ
κµν̄ = −∂ν(g

κλ̄∂µgκλ̄) (note

we used the symmetry Rκ
λµ̄ν = −Rκ

κνµ̄). Using the identity δdet(gµν̄) =

det(gµν̄)g
µν̄δgµν̄ , we rewrite the above contraction asRκ

κµν̄ = −∂µ∂ν̄ log det(gµν̄).

We now define the Ricci form ℜ, which is a (1, 1) bi-degree (also a real 2-form)

with complex components [8] ℜµν̄ = Rκ
κµν̄ as

ℜ := ıℜµν̄dz
µ ∧ dz̄ν = −ı∂µ∂ν̄ log det(gαβ̄)dz

µ ∧ dz̄ν = ı∂∂̄ log det(gαβ̄) (38)
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If we consider the identity ∂∂̄ = − 1
2d(∂− ∂̄), the Ricci form is clearly closed

(but not necessarily exact). We will see later this forms defines a special co-

homoology class called the first Chern classes, and how it relates to the Calabi

conjecture.

Consider now a (0, 2) tensor field Ω on a Hermition manifold. Its action on

vectors X,Y ∈ Tp(M) is defined as

Ωp(X,Y ) = gp(JpX,Y ) (39)

Properties:

1. Ω(X,Y ) = −Ω(Y,X) : Anti-symmetric

2. Ω(JX, JY ) = Ω(X,Y ) : Invariant under J action (Compatible with J)

3. If Ω(X,Y ) = 0 ∀ Y ∈ Tp(M), then X = 0 : Non-degenerate

4. Ωij =
1
2J

l
iglj : Real components

An anti-symmetric (0, 2) tensor field can be made into a 2-form in the usual

way. Complexifying the domain from TpM → TpM
C, the complex components

of Ω are found as Ωµν = Ωµ̄ν = 0 and Ωµν̄ = −Ων̄µ = ıgµν̄ . The resulting form

is called the Kähler form. We then say that the existence of such a structure on

a Hermition manifold ensures the compatibility of the tripple (g, J,Ω). Ω can

then be written in differntial form notation as

Ω = −Jµν̄dz
µ ∧ dz̄ν (40)

where Ωµν̄ = −Jµν̄ := ıgµν̄ . Note Ω is a real form.

20



Theorem 4.2.1: All complex manifolds are orientable.

The proof essensially follows from the fact that the Kähler form on a Her-

mition manifold is a real, non degenerate 2-form. Its maximal wedge power is

given by Ω1 ∧ ... ∧ Ωm, and is nowhere vanishing. Since any complex manifold

can be made hermition, a natural volume form exists on any complex manifold,

thus ensuring all complex manifolds are inherantly orientable.

5 Kähler Geometry

5.1 Conditions for Kählerity

Definition 5.1.1:

A symplectic form is a closed, non-degenerate, differential 2-form. If a

symplectic form is assigned smoothly to a manifold, the manifold is said to be

symplectic.

Now consider the Kähler form Ω defined on a hermition manifold. If we

impose its closure, i.e the condition dΩ = 0, it defines a symplectic form on a

particular symplectic manifold. We define this special type of symplectic man-

ifold: the Kähler manifold. We show later that in addition to the symplectic

structure, a Kähler manifold comes with a compatible integrable complex struc-

ture. Note that a symplectic manifold automatically carries an almost-complex

structure, but there is no apriori integrability imposed on it. If we were to relax

this integrability condition, our Kähler manifold would generalise to an almost

Kähler manifold.
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Lets now unpack the geometric consequences. Explicitly, the closure of the

Kähler form can be expressed as a condition on the partial derivatives of the

metric:

(∂ + ∂̄)(−Jµν̄dz
µ ∧ dz̄ν) = 0 =⇒ ∂λgµν̄ =∂µgλν̄ (41)

∂λ̄gµν̄ =∂ν̄gµλ̄. (42)

Equivalentlly the closure of the Kähler form is imposed by the covariant

conservation of the almost-complex structure on the hermition manifold (which

all complex manifolds satisfy)

Theorem 5.1.1 :

dΩ = 0 ⇐⇒ ∇µJ = 0[8] (43)

where ∇ is now the familiar Levi-Civita connection. We say that the com-

plex structure is parallel on a Kähler manifold. Unlike a hermition manifold

which doesn’t require intergability, a Kähler manifold does, and is thus always

a subset of the complex manifolds.

Another important consequence of Kählerity is the existence of a Kähler

potential Ki. In particular, we find that any Kähler metric can be expressed lo-

cally by this potential. This is a very powerful consequence of Kähler geometry,

for once the Kähler metric is determined, all other geometric quantities can be

calculated using the methods outlined already. This then reduces the geometry

to the finding of a single scalar fucntion.
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Theorem 5.1.2 :

Given a hermition metric on a patch Ui, the metric components can always

be written as

gµν̄ = ∂µ∂ν̄Ki (44)

.

whereKi ∈ O(Ui), with O(Ui) the space of holomorphic functions fi : Ui −→

C. Its partial derivatives clearly satisfy the Kähler condition. Given the above

theorem, the Kähler form on a patch Ui becomes

Ω = ı∂∂̄Ki. (45)

Likewise, any closed (1, 1)-form can be expressed locally in this way. Similar

to a Maxwell or Yang-Mills potential, the function can not generally be patched

up globally on the maifold, as (anti)holomorphic transition functions will always

vanish under the partial deriavtives. A Kähler potential is thus generally of the

form Ki = Kj + ϕ1(z) + ϕ2(z̄). In fact, for a compact Kähler manifold, there

exists no globally defined Ki.

For the Kähler metric, the Riemann tensor acquires an extra symmetry such

that the components of the Ricci form satisfy ℜµν̄ = Rκ
κµν̄ = Rκ

µκν̄ = Ricµν̄ .

Hence why the name Ricci for the form previously defined was appropriate.

Further note that combining (41, 42) with the torsion tensor components (34,

35) ensure that the torsion on a Kähler manifold is vanishing. This shows that

the Kähler coincides with the Levi Civita connection. Torsionless geometry is

also familiar from General Relativity.
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We now consider the holonomy of a Kähler manifold. This will give us our

final equivalent Kählerity condition. Due to the parallel complex structure,

the Levi-Civita connection has no mixed components. Parallel transport then

preserves holomorphicity which thus implies a constraint on the holonomy.

Consider parallely transporting a holomorphic vector X|p around a loop L to

obtain X ′|p. The components (selecting a chart) X ′µ = Xµhν
µ where hν

µ are

the elements of the holonomy group. The critical point is that the connection

preserves the length of the complex vector after parallel transport, meaning hν
µ

is an element of (or a sub-group of) U(m) ⊂ O(2m).

We may now give a comprehensive definition of a Kähler manifold, incoorpo-

rating the various equivalent structures we have defined in this section (noting

we have not proved all the equivalencies).

Definition 5.1.2 :

1. A Kähler manifold is a Hermition manifold with a closed Kähler form Ω.

2. A Kähler manifold is a symplectic manifold with symplectic form Ω, and

a compatible, integrable complex structure.

3. A Kähler manifold has a holonomy group U(m).

The metric of a Kähler manifold is then said to be a Kähler metric. Un-

like hermition metrics however, not all complex manifolds admit Kähler metrics.

Note additionally, that the line element of a Kähler metric is ds2 = 2gαβ̄dz
αdz̄β̄ .

A simple example of a Kähler manifold is a Riemann surface. This is a

1-dimesnional compact, orientable complex manifold. Infact, the bosonic world

sheet in string theory happens to be a Riemann surface. Its symmetries are

studied in [9].
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6 Hodge Theory on Complex Manifolds

We start by generalising the Hodge star operation to complex manifolds endowed

with Hermition / Kähler metrics, and complex bi-linear forms. Analogous to

the Hodge star action on a real form, the hodge star action on a bi-linear

form utilises the natural isomorphism (∗̄ :)Ωr,s(M) −→ Ωm−r,m−s(M). Note

∗β =: ∗̄β = ∗β̄. If instead we were to consider complexified (r+s=q)-forms,

the Hodge star operation becomes an isomorphism of complex vector bundles,

represented ∗ : ΛqT ∗
CM −→ Λ2m−kT ∗

CM .

Let M be a compact Hermition manifold of dimCM = m. We define an

L2 inner product [7]: < α, β >=
∫
M
(α, β)Ωm, where α, β ∈ Ωr,s(M) and Ωm

is the volume form defined previously on a Hermition manifold. < α, β > is

then a complex function, bilinear in α and β̄. ∗β is then defined as the unique

(2m− q)-form such that α ∧ ∗β = (α, β)Ωm ∀ α.

We further define the adjoint dolbeault operators:

d†β =− ∗d ∗ β (46)

∂†β =− ∗∂ ∗ β : Ωr,s(M) −→ Ωr−1,s(M) (47)

∂̄†β =− ∗∂̄ ∗ β : Ωr,s(M) −→ Ωr,s−1(M) (48)

Noting that (∂†)
2
= (∂̄†)

2
, just as one would expect.
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6.1 Laplacians, Harmonic Forms and Decomposition The-

orems

In order to formulate Hodge Theory on a Hermition manifold, the analog of the

Laplacian must also be defined.

The Laplacian on a real manifold ∆ = (dd† + d†d), is naturally extended to

a Hermition manifold by considering the Dolbeault operators seperately:

∆∂ =(∂ + ∂†)
2
= ∂∂† + ∂†∂ (49)

∆∂̄ =(∂̄ + ∂̄†)
2
= ∂̄∂̄† + ∂̄†∂̄ (50)

where ∆∂ : Ωr,s(M) −→ Ωr,s(M) is the ∂-Laplacian and ∆∂̄ : Ωr,s(M) −→

Ωr,s(M) is the ∂̄-Laplacian. On a Hermition maifold there exists no relation

between the real ∆, the ∂-Laplacian and ∂̄-Laplacian.

On a real manifold, a harmonic form is a form ω that satisfies ∆ω = 0; on a

Hermition manifold, a ∂-harmonic form is a bidegree (r, s)-form ω, that satisfies

∆∂ω = 0. Correspondingly, a ∂̄-harmonic is a bi-degree (r, s)-form ω, satsfying

∆∂̄ω = 0. The following theorem is the complex analogue of the theorem stating

that a form is harmonic on a compact real maifold, if and only if the form is

both closed and co-closed.

Theorem 6.1.1:

Let ω be a ∂-harmonic (∂̄-harmonic) form, ω then satisfies ∂ω = ∂†ω = 0

(∂̄ω = ∂̄†ω = 0).
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Proof :

Consider the positive definite condition of the pointwise inner product on a Her-

mition manifold: (β, β) ≥ 0. Now consider (ω,∆ω) = (ω, ∂∂†ω) + (ω, ∂†∂ω) =

(∂ω, ∂ω) + (∂†ω, ∂†ω) ≥ 0. If we now stipulate that ∆ω = 0 the LHS vanishes,

but in order for the RHS to vanish both ∂ω = 0 and ∂†ω = 0. The correspond-

ing case in brackets is similarly proveable. 2

It is convention when concerning Hermition or Kähler manifolds, to label the

∂̄-Laplacian ∆∂̄ , simply the Laplacian, oftend denoted just ∆. The ∂̄-harmonic

is often termed the harmonic (r, s)-form. The set of harmonic (r, s)-forms is

denoted Harm∂̄
r,s. That is

Harm∂̄
r,s = {ω ∈ Ωr,s(M) : ∆∂̄ω = 0}. (51)

We have now defined enough mathematical structure, to state the analogue

of the Hodge decomposition theorem for a Hermition manifold. The proof can

be found in [10].

Theorem 6.1.2:

Ωr,s(M) = ∂̄Ωr,s−1(M)⊕ ∂̄†Ωr,s+1(M)⊕Harm∂̄
r,s. (52)

That is, the space of (r, s) forms decomposes uniquely into 3 orthogonal

spaces. A general bidegree (r, s)-form ω is then uniquely expressed as

ω = ∂̄α+ ∂̄†β + γ (53)

where α ∈ Ωr,s−1(M), β ∈ Ωr,s+1(M) and γ ∈ Harm∂̄
r,s.
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A corollary to the Hodge decomposition of forms, gives one the unique de-

composition of any element in Z∂̄
r,s(M) or any ∂̄†-closed form := Z∂̄

†r,s(M)

(this is not standard notation but it seems convenient).

Z∂̄
r,s(M) = Ker∂̄ =Harm∂̄

r,s ⊕ ∂̄Ωr,s−1(M) (54)

Z∂̄
†r,s(M) = Ker∂̄† =Harm∂̄

r,s ⊕ ∂̄†Ωr,s−1(M) (55)

Proof :

By acting with ∂̄ on both sides of equation (), the ∂̄-exact and the ∂̄-harmonic

term’s vanish for reasons already stated, leaving the condition ∂̄ω = ∂̄∂̄†β = 0.

Now considering the inner product 0 = (∂̄∂̄†β, β) = (∂̄†β, ∂̄†β) ≥ 0, requires

∂̄†β = 0. Therefore the ∂̄†-exact term in the decomposition is vanishing. Any

∂̄-closed (r, s) form ω, can thus be written as ω = ∂̄α+ γ with α ∈ Ωr,s−1 and

γ ∈ Harm∂̄
r,s. A similar procedure works for the ∂̄†-closed form. 2

6.2 Hodge Theory on Kähler Manifolds

Unlike the Hermition manifold, the Kähler manifold with its added structure

(existsence of a closed Kähler form), does establish a relationship between the

Laplacians. In fact apart from a constat of proportionality, the Laplacians are

all equivalent. The proof is complicated and is again found in [10].

Theorem. 6.2: If (M, g) is a Kähler manifold, ∆ = 2∆∂ = 2∆∂̄ .

A corollary of the above theorem is that a form is holomorphic if and only if

it is harmonic with repect to the Kähler metric. This is certainly a non trivial

property on a Kähler manifold. That is ∂̄ω = 0 ⇐⇒ ∆ω = 0.
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Proof :

First consider direction =⇒. A holomorphic r-form ω satisfies ∂̄ω = 0. Also

consider its adjoint ∂̄†ω. By definition, a holomorphic r-form is an (r, 0) form,

meaning there is no expansion of anti-holomorphic basis forms dz̄µ. Noting

that the ∂̄† operator lowers the anti-holomorphic part of the bi-degree by 1, the

holomorphoc form must vanish. However ∂̄ω = ∂̄†ω = 0 then also implies that

∆ = 0. Considering direction ⇐= now, if ∆ω = 0, then ∆∂̄ = 0 and as was

stated previously a ∂̄-harmonic must satisfy ∂̄ω = 0. 2

We now define a related space of harmonic forms. Let HarmC
q be the set of

complex harmonic k forms that satisfy ∆d = 0. That is HarmC
k = Ker(∆d :

ΩC
q −→ ΩC

k). Using (26), a complex harmonic k-form decomposes into a sum

of bi-degrees (r, s) with r + s = q

HarmC
k =

q⊕
r=0

Harmr,s=q−r (56)

7 Cohomology on Complex Manifolds

One way of classifying different geometries is by finding particular groups of

transformations that leave the geometric structures invariant. This is analogous

to finding gauge transformations in physical systems, where physical observables

group into equivalence classes that are gauge invariant. Correspondingly, co-

homology theory is a way of constructing algebraic invariants on a topological

space. The coarsest structure on a manifold is of course its topological space, and

thus its topological non-triviality can be characterised by cohomology. In fact,

physical problems concerning manifold’s can be recast directly into topoligcal

problems; something evident in String Theory compactifications [11] (see section

on Calabi-Yau).
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7.1 Dolbeault Cohomology

Possibily the most important cohomology is that of de Rahm, as it is a rela-

tively simple way to measure the topological non-triviality of a manifold. But

how does one generalise the familiar de Rahm cohomology to complex manifolds

with complex forms? Due to the splitting of the exterior derivative d = ∂ + ∂̄,

we choose to focus on the ∂̄ operator in order to utilise the (r, s)-cocyle and

(r, s)-coboundary sets that were defined previously. This is just a convention,

as the cohomology could just as easily be defined in terms of the ∂ operator.

The corresponding cohomology is called the Dolbeault cohomology, and as one

would expect, it depends on the complex structure of the manifold.

We first define the Dolbault complex as a sequence of linear maps (noting

that ∂̄ is nilpotent)

Ωr,0(M)
∂̄−→ Ωr,1(M)

∂̄−→ ....
∂̄−→ Ωr,m(M)

∂̄−→ 0. (57)

Using the Dolbeault complex, we may now define the (r, s)
th
∂̄-cohomology

group denoted H∂̄
r,s(M) by

H∂̄
r,s(M) =

Ker(∂̄ : Ωr,s(M) −→ Ωr,s+1(M))

Im(∂̄ : Ωr,s−1(M) −→ Ωr,s(M))
= Z∂̄

r,s(M)/B∂̄
r,s. (58)

An element [ω] ∈ H∂̄
r,s(M) is an equivalence class of bi-degree (r, s)-

forms, that have two properties: they are elements of the (r, s)-cocycle and

they differ from one another by an element in the (r, s)-coboundary. That is,

[ω1] = {ω2 ∈ Ωr,s(M) : ω2 ∈ Z∂̄
r,s(M), ω1 − ω2 ∈ B∂̄

r,s}. Elements in the same

equivalanece class are of course cohomologous to one another.
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In fact, this cohomology is essentially the same space as one already in-

troduced. Looking at (54) for the decomposition of the (r, s)-cocycle space

Z∂̄
r,s(M), one can easily show that every element of H∂̄

r,s(M) has a unique

harmonic representative. This can be formalised by introducing an opera-

tor P , to project an (r, s) form to its unique harmonic representative, as

P : Ωr,s(M) −→ Harm∂̄
r,s. Therefore an identification is made between

[ω] ∈ H∂̄
r,s(M) and Pω ∈ Harm∂̄

r,s. This is captured in the following com-

plexified version of Hodges Theorem.

Theorem 7.1.1: On a compact, orientable, complex manifold M, H∂̄
r,s(M)

is isomorphic to Harm∂̄
r,s:

H∂̄
r,s(M) ∼= Harm∂̄

r,s. (59)

This theorem implies that dimCHarm∂̄
r,s = dimCH∂̄

r,s(M) =: hr,s, where

hr,s are the hodge numbers of the complex manifold. These Hodge numbers can

be arranged in a Hodge diamond (we show this in section 9.3 for the Calabi-Yau

3-fold). The hodge diamond is of finite size for compact manifolds (we are also

always assuming conectivity of M) [12]. For dimC = m, there are (m + 1)2

hodge numbers, however they are not all independent. For example, the added

structure of the complex manifold such as Kählerity or Calabi-Yau, restricts

these numbers greatly as we will see.

7.2 Hodge numbers on Kähler manifolds

For the remainder of this section, we consider the hodge numbers on a Kähler

manifold, and their relation to the familiar betti numbers.

Theorem 7.1.2 : The Hodge numbers on a Kähler manifold (M, g) satisfy
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the following

1. hr,s = hs,r

2. hr,s = hm−r,m−s

The proofs can be found in [8]. Roughly, 1) follows from the use of com-

plex conjugation, showing that Harm∂̄
r,s ∼= Harm∂̄

s,r with 1) then following

immediately from theorem 7.1.1. 2) follows from the Poincare duality between

H∂̄
r,s(M) and H∂̄

m−r,m−s(M).

The consequnce of these relations is that the Hodge diamond acquires a hor-

izontal and vertical symmetry. Depending on whether m is even or odd, the

number of independent Hodge numbers reduces respectively to ( 12m + 1)2 and

1
4 (m+ 1)(m+ 3).

Using the decomposition theorem for complex harmonic k-forms HarmC
q =

q⊕
r=0

Harm∂̄
r,s=q−r, and the isomorphism H∂̄

r,s(M) ∼= Harm∂̄
r,s, we motivate

the following decomposition

Hq
d(M,C) =

q⊕
r=0

H∂̄
r,s=q−r. (60)

Note Hq
d(M,C) is not the Dolbeault cohomology but the complexified de

Rahm cohomology i.e equivalence classes containing elements of Ωq
C(M) that

are closed with repsect to the d operator, and differ from one another by an

exact form dα where α ∈ Ωq−1
C(M). Therefore it can be seen that the com-

plexified de Rahm cohomology decomposes uniquely into a sum over dolbeault

cohomologies.

The Betti numbers are the topological invariants given by the dimension

of the de Rahm cohomology: bk = dimRHd
k(M,R) = dimCHd

k(M,C). This
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relates the Betti numbers to the complexified cohomology. Now considering the

dimension of each side of (60), there exists a relation between the Betti numbers

and the hodge numbers (for a compact Kähler manifold only)

bk =

k∑
r=0

hr,k−r. (61)

Two further relations between the Betti numbers and the Hodge numbers

can be established on compact Kähler manifolds with no boundary (∂M = ∅):

1. b2k−1 = 2n, n ∈ N and 1 ≤ p ≤ m

2. b2k ≥ 1, 1 ≤ p ≤ m

Relation 1) implies that an odd Hodge number is even. This is because an

odd hodge number decomposes only into symmetric pairs which by br,s = bs,r

are equal, meaning the decomposition bk =
k∑

r=0
hr,k−r will always factor out a

2. This property can reverse engineer whether a complex manifold admits a

Kähler metric; if one of the odd hodge numbers is found to be odd then this

automatically excludes it from being Kähler.

Relation 2) : Consider the Kähler from Ω, a top form Ωm and k-form Ωk,

given by the respective exterior products of Ω. Ω is a closed, real 2-form there-

fore its k’th wedge product is also a closed real 2k-form. If Ωk is exact, it can

be shown that V olM ∝
∫
M

Ωm = 0, using stokes’s theorem. But on a compact

manifold V olM > 0, implying a contradiction. The Ωk must then not be exact,

and so the 2k-form defines a non trivial equivalence class of H2k, with non 0

dimension.

The Euler characteristic χ(M), is a topological invariant that can be formed

entirely from the objects introduced thus far: χ(M) =
2m∑
r
(−1)rbr =

∑
r,s

(−1)r+shr,s.
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The Euler characteristic is used in many areas of theoretical physics; for exam-

ple in the calculation of scattering amplitudes in string theory. We will further

see (in chapter 9) the remarkable relation between χ(M) and the number of

particle generations in a string compactification [13].

7.3 The Kähler Class

Now that we have introduced both the Kähler metric g, the Kähler form Ω,

and the Dolbeault cohomology H∂̄
r,s , we can define one of the most important

equivalence classes in Kähler geometry. Consider the Kähler form Ω on a com-

pact Kähler manifold. Its closure implies it is a representative of an equivalence

class of H∂̄
1,1, i.e [ω] ∈ H∂̄

1,1. We call this particular class the Kähler class.

8 Chern Classes

Chern classes are a type of characteristic classes. That is, they are topological

invariants on the vector bundles of a manifold. They simultaneously obstruct

the vector bundle from being its trivial bundle M ×F , and provide a necessary

condition on two isomorphic bundles; namely that they must have the same

chern class. As characteristic classes are subsets of the cohomology classes, so

too are the Chern classes. These classes appear in various areas of mathematics

and physics, and as such have many equivalent definitions.

The following is a brief introduction to Chern classes, employing features of

gauge theory and differential geometry that would be familiar to a physicist.

We particularly focus on the constructions that will be pertinant to Calabi-Yau

theory.
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8.1 What are Chern classes?

Consider a complex vector bundle E
π−→ M of rank r, where the dimension of

M is m (see appendix for an introduction to complex vector bundles). Let F

be a 2-form, and A be a connection 1-form of the bundle with structure Lie

group G. The Lie algebra generators are in some representation Tα, satisfying

[Tα, Tβ ] = fαβ
γTγ . From a gauge theory perspective, F is identified as the

Yang-Mill field strength, while A is identitifed with the gauge potential. We

express the field strength in terms of the potnetial as

F = dA+A ∧A, (62)

where the action of F on vectors of the tangent bundle is F(X,Y ) =

dA(X,Y ) + [A(X),A(Y )]. On a chart with coordinates xµ, we can write

F =
1

2
Fµνdx

µ ∧ dxν (63)

A =Aµdx
µ, (64)

where the components of the field strength are then Fµν = ∂µAν − ∂νAµ +

[Aµ,Aν ]. Because Fµν and Aµ are g-valued functions, we can express them in

terms of the generators of the Lie algebra as

Fµν =Fµν
αTα (65)

Aµ =Aµ
αTα, (66)

where Fµν
α = ∂µAν

α − ∂νAα + fβγ
αAµ

βAν
γ . The Yang-Mill equation of

motion for the non abelian gauge field (ignoring the gauge coupling constant)

is given in terms of the covariant derivative
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D[ρFµν] = ∂[ρFµν]
α + fβγ

αAβ
[ρFµν]

γ = 0. (67)

Definition 8.1.1 : The total Chern class c(F) of a complex vector bundle

is defined

c(F) = det(1 +
i

2π
F) = 1 + c1(F) + c2(F) + ...+ cr(F). (68)

Assuming the Lie group G is a matrix Lie group, the algebra generators are

matrices and the field strength can be represented by a matrix. It is in this

sense we can take the determinant of the above combination (where we note 1

as the identity matrix). On the RHS we have the expansion of the total Chern

class into a sum over Chern classes where the i’th Chern class is ci(F). We

list the first few:

c0(F) =[1] (69)

c1(F) =
[( ı

2π

)
TrF

]
(70)

c2(F) =

[
1

2

( ı

2π

)2

(TrF ∧ TrF − Tr (F ∧ F))

]
(71)

... (72)

cr(F) =
[( ı

2π

)r

detF
]

(73)

To be precise, a Chern class is an equivalence class of Chern forms. That

is, a Chern class is given by the cohomology class of one of its representatives,

where the representative is a particular Chern form.
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Properties:

1. ci(F) = 0 for i > r. That is, the series terminates at the rth chern class

given by the determinant of F .

2. ci(F) = 0 for 2i > m.

3. The total Chern class is closed as it is a scalar. Since F is a 2-form,

the Chern classes must be cohomology classes of closed 2i-forms, so that

[ci(F)] ∈ H2i(M,R).

4. Chern classes are independent of the choice of connection. A connection

A′ would rotate the representative within the same cohomology class

We now take the complex vector bundle to be the holomorphic tangent

bundle (T (1,0)M). It can be shown that in this case, F becomes the curvature 2-

form−ıℜ [7]. The first Chern class of this holomorphic bunlde is then completely

determined by the Ricci form ℜ, and given by

c1(F) =

[
1

2π
ℜ
]
=

[
1

2π
ı∂∂̄ log det(gµν̄)

]
:= c1(M) (74)

Theorem 8.1.1 : c1(M) is invariant under a change of the metric: g →

g + δg.

Proof : Recall the identities δdet(gµν̄) = det(gµν̄)g
µν̄δgµν̄ and ∂∂̄ = − 1

2d(∂−

∂̄). Now consider

δℜ = ı∂∂̄gµν̄δgµν̄ = dη

where η = − 1
2 (∂ − ∂̄)gµν̄δgµν̄ is a one form. As δℜ is an exact form, the

cohomology class [ℜ+ δℜ] represents only a change in the representative by an

37



exact form. Therefore [ℜ] = [ℜ+ δℜ] and c1(M) → c1(M). 2

Finally, it is interesting to note that the Euler characteristic defined in sec-

tion 7.2 can be written in terms of the m’th Chern class [7]:

χ(M) =

∫
M

cm(M). (75)

Although this has not been motivated we will see in nect section it will have

implications for determining the Hodge numbers of the Calabi-Yau 3-fold. We

introduce the Calabi-Yau manifold, and for this, we only require the first Chern

class.

9 Calabi-Yau Manifolds

9.1 Why Calabi-Yau?

On the question of what fixed, background, space-time geometry is able to

accommodate a superstring theory, the candidates must satisfy certain con-

straints imposed on them by the supersymmetric string theory itself. First and

foremost, superstrings exist in 10 dimensions. In order to reconcile this with

our local 4 dimensional surroundings, we propose a compactification of an extra

6 dimensional space; small enough so that at familiar low energies, they are

unobservable. We represent this as a product manifold of the local minkowski

spacetime with an extra 6 dimensional compact manifold: M10 = M4 ×M6.

Consider a supergravity theory. The solutions to the supergravity Euler-

Lagrange equations, admit a global supersymmetry if there exists a Killing
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spinner; that is a covariantly conserved spinner with respect to the Levi-Civita

conection. For low energy standard model physics, only N = 1 global super-

symmetries are present. Remarkably, this condition is precicely realised if M6 is

a Calabi-Yau manifold (a Calabi-Yau 3 fold has 6 real dimensions). Specifically,

at low energies a Calabi-Yau compactification keeps the N = 1 supersymmetry,

but spontaneously breaks the superfluous supersymmetries . At high energies,

any additional unbroken supersymmetries are welcomed as they would extend

physics beyond the standard model. If we then include background gauge fields

in addition to gravity, we can incoorporate these by creating a more general

structure, namely ”Generalised Calabi-Yau geometry” [15].

A Calabi-Yau manifold can then be used to construct a supersymmetric com-

pactification of the Heterotic String [14]. For example, consider Heterotic Type

1 Supergravity in 10 dimensions. This theory possesses 16 local supersymme-

tries. If we use the Calabi-Yau 3-fold as the background, at low energies and in 4

dimensions, a quarter of the local supersymmetries would spontaneously break.

The 4 supersymmetries preserved correspond to an N = 1 supersymmetry (recall

in 4 dimensions a spinor has 4 components).

9.2 Calabi-Yau Geometry

A covariantly conserved spinner is a crucial property that the background geom-

etry must accommodate in order to give a realistic standard model supersym-

metry. In examining this property, one can reverse engineer the geometry that

will end up characterising the Calabi-Yau manifold. We start off by showing

that a covariantly conserved spinor ϵ, automatically leads to a restriction on the

holonomy [20]. Consider the following manipulation:
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∇ϵ = 0 =⇒ ∇µϵ = ∂µϵ+
1

8
ωµ

abΓabϵ = 0 (76)

where the covariant derivative is expressed in terms of the spin connection

ωµ
ab, and the antiymmetric product of two connections Γab. Antisymmetrising,

we can form the commutator [∇ν ,∇µ]ϵ where

[∇ν ,∇µ]ϵ = 0 =⇒
(
RµνabΓ

ab
)α

β
ϵβ = 0. (77)

First note that we have used a vielbein to convert to two flat indices a, b and

that
(
RµνabΓ

ab
)α

β
is a matrix in spinner space. Suppose we consider a 6 dimen-

sional euclidean space with a 4 component spiner. Such a spinner transforms

under Spin(6) ∼= SU(4) in the usual way as ϵ → ϵ′ = exp( 18ΛijΓ
ij)ϵ where

Λij = −Λji. In order to be a 0 of this equation, the subgroup → SU(n2 ) =

SU(3) ⊂ SU(4). We will return shortly to examine this holonomy in more de-

tail.

We can also show that the restriction ∇ϵ = 0 has implications on the curva-

ture. Consider the following manipulations:

RcdabΓ
abϵ = 0 =⇒ ΓcRcdabΓ

abϵ = 0 =⇒ RdaΓ
aϵ = 0 (78)

where we have made use of the following properties:

1. Rc[dab] = 0

2. ΓcΓab = αΓcab + βδc[aΓb]. Here the product of Γc with the antisymmetric

Γab gives both a totally anysymmetric term and a term with a kronecker

delta. (α, β) are constants that are not important due to the equality to

zero.
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Ultimately, we find that a necessary condition for ∇ϵ = 0 is Ricci flatness or

ℜ = 0 (recall in Kähler geometry Ricµν̄ = ℜµν̄). Ricci flatness is then said to

be an integrability condition for the equation ∇ϵ = 0. Note that the converse

is not true, as there exist many Ricci flat metris that do not lead to covariantly

conserved spinners. Thus the condition is necessary but not sufficient. Using

the Ricci flatness let us look at the holonomy in more detail now.

In a Kähler system, consider parallely transporting a holomorphic vector

X around an infinitesimal parallelogram of sides ϵ and δ. The new vector has

components X ′µ = Xµ + XνRµ
νκλ̄ϵ

κδλ̄. The components of the holonomy

group are then hµ
ν = δµ

ν + Rµ
νκλ̄ϵ

κδλ̄. The Lie group U(m) has correspond-

ing Lie algebra u(m), that decomposes into a tracless part and a trace part

as u(m) = su(m) ⊕ u(1). Now using the fact that the geometry is Ricci flat,

the trace part of the Lie algebra can be shown to vanish as Rκ
κµν̄ϵ

µδν̄ = 0 [8]

implying only the traceless part remains. The holonomy group then becomes

SU(m). In comparing this with the Kähler holonomy, we can see that the Ricci

flatness takes U(M) → SU(M).

We now look more closely at the implications of a vanishing Ricci form

ℜ = 0. Firstly, Ricci flat of course implies a solution to the Einstein field equa-

tions in a vacuum (Tµν = 0); this is imperative for a theory respecting General

Relativity. In fact, excluding the Joyce manifolds, Calabi-Yau manifolds are the

only known compact manifolds to satisfy the Einstein equations [5]. Secondly,

the following theorem relates this discussion to the Chern classes of chapter 8.

Theorem 9.2.1 : If a Kähler manifold (M,J, g) admits a Ricci flat metric
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h, the first chern class c1(M) = 0.

Proof : Theorem 8.1.1 states the invariance of the first Chern class under a

change of metric. Therefore we just have to show that for the Ricci flat matric

h, the first chern class is 0. But ofcourse this is trivial as c1(M) =
[

1
2πℜ

]
, so

that setting the Ricci form to 0 immediately gives a vanishing first Chern class

for the Kähler manifold that admits such a metric. 2

We can go one step further. Consider the Ricci form ℜ = ı∂∂̄ log det(gµν̄).

Ricci-flatness implies log det(gµν̄) = f + f̄ , where f and f̄ are functions that

vanish exclusively under one or the other partial derivative.

If we make a holomorphic coordinate transofrmation z′
µ
= z′

µ
(zµ) (sim-

ilarly for conjugate coordinate) the metric components transforms as g′µν̄ =

gαβ̄
∂zα

∂z′µ
∂z̄β̄

∂z̄′ν̄ . The log part of the Ricci form then transforms as log[det(g′µν̄)] =

log[det(gαβ̄)] + log[det ∂zα

∂z′µ ] + log[det ∂z̄β̄

∂z̄′ν̄ ], where the two additional terms are

absorbed into the functions f and f̄ . This shows that the solution to the Ricci

form doesn’t change form with holomorphic changes in the coordinates.

Due to this, we are able to choose a particular coordinate system such that

log det(gµν̄) = 0, so that det(gµν̄) = 1. Expressing the metric in terms of the

Kähler potential yields

det
∂2K

∂zµ∂z̄ν̄
= 1. (79)

This is the Monge-Ampére equation. It is a complicated non-linear dif-

ferential equation, where in order to find a Calabi-Yau metric, there must exist

a solution K. In fact we can motivate this equation another way. Suppose we
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look at Calabi-Yau 3-fold, and suppose this comes with a nowhere-vanishing (3,

0) form α which is parallel. That is ∇α = 0 implying both ∂̄α = ∂α = 0. α

then satisfies the folowing properties:

1. α ∧ ᾱ = V ol

2. α = 1
6ϵαβγdz

α ∧ dzβ ∧ dzγ f̂ , where ϵ is the usual antisymmetric cyclic

tensor and f̂ ∈ O(Ui) (a holomorphic function).

As a result of these considerations, we can write

f̂
¯̂
f =

√
det(gαβ̄) = 1. (80)

This once again gives the Monge-Ampére equation (once the potential is

inserted) that we got to by considering Ricci flatness. It appeared this time

however by postulating the existence of a global nowhere-vanishing holomor-

phic m-form, given by α = 1
6ϵαβγdz

α ∧ dzβ ∧ dzγ when we set f̂ to 1. As we

will see, this will in fact be an equivalent way of defining a Calabi-Yau manifold.

The critical point is the following: there exists a unique solution to the

Monge-Ampére equation for a compact manifold of vanishing first chern class.

We already saw from Theorem 9.2.1, that a Kähler manifold admitting a metric

with vanishing Ricci form, also forces a vanishing first Chern class; but now

this implies the converse is also true. This is summarised in the folowing Calabi

conjecture which was initially postulated by Calabi and was later proved by Yau

[16].

Calabi Conjecture Theorem :

Given a compact Kähler manifold (M,J, g) with Kähler form Ω and vanish-

ing first chern class c1(M) = 0, there exists a unique Ricci flat Kähler metric g′
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with associated Kähler form Ω′ ∈ [Ω].

This implies the existence of a unique Ricci flat Kähler metric associated to

a Kähler form in each equivalence class of H∂̄
1,1. That is, the unique existence

of a Ricci flat Kähler metric for each Kähler class. Recall there are h1,1 Kähler

classes, so the number of possible such metrics is h1,1 for a given Kähler man-

ifold. We return to this point once we have examined the Hodge numbers of a

Calabi-Yau manifold.

Using the mathematical machinery of the previous sections, we are now in

a position to define the Calabi-Yau manifold.

Definition 9.2.1 : A Calabi-Yau manifold is a compact Kähler manifold

(M, J, g) with

1. Zero Ricci form: ℜ = 0

2. Zero first Chern class: c1(M) = 0

3. Holonomy group ⊆ SU(m)

4. Existence of a global, nowhere-vanishing holomorphic m-form.

We have already highlighted some of the geometric interconnections between

these conditions. In particular, it was shown how they relate to supersymmetry

restrictions, and how they culminate in the Monge-Ampére equation. We now

look more closely at the cohomology casses of the Calabi-Yau manifold, and

show the remarkable simplifications of the Hodge numbers.
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9.3 Cohomology and Hodge Numbers

As a Calabi-Yau manifold is a special type of Kähler manifold, the complex

conjugation and Poincare duality restrictions on the Hodge numbers transfer di-

rectly over. However, the extra structure on a Calabi-Yau manifold establishes

many more relations between the Hodge humbers. We then show the reduction

of the number of independent Hodge numbers on a Calabi-Yau 3-fold, which we

recall is a candidate for the 6 dimensional compactification of superstring theory.

The first simplification we can make to the hodge numbers makes use of

the compactness of the Calabi-Yau manifold. Consider h0,0 = dimH∂̄
0,0(M) =

dimHarm∂̄
0,0, which shows that h0,0 is equal to the dimension of the space of

harmonic functions. A well known theorem states that on a compact complex

manifold, a holomorphic function must be a constant, and thus the space of

such functions must be of unit complex dimension: h0,0 = 1. Using the Hodge

duality hr,s = hm−r,m−s, we immediately have hm,m = 1. This determines the

top and bottom of the Hodge diamond.

The next simplification makes use of the existence of a no-where vanishing

(m, 0) form. In fact this condition is equivalent to the triviality of the canonical

bundle [12] (see apendix for description of the canonical bundle) of the Calabi-

Yau manifold: KM = ∧m,0 = M × C. Holomorphic sections of the canonical

bundle are holomorphic volume forms proportional to dz1 ∧ ... ∧ dzm, as this

is the only basis vector. As the bundle is trivial, we can always pick out one

non-vanishing, globally defined (m, 0) form α, which corresponds to the unit

section M × {1}. Since α is a holomorphic form giving [α] ∈ Hm,0, and due

to the single basis vector, any other holomorphic volume form will be given by

fα where f is some complex function. But in order to remain a holomorphic
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volume form, the function f must also be holomorphic and thus a constant func-

tion. Multiplication by a constant will not change the cohomology class, and so

we can instead define the class with the representative fα as [fα] ∈ Hm,0. As

a result of this, there is only one cohomology class for holomorphic forms and

hm,0 = h0,m = 1.

We now explore another relation called holomorphic duality. Consider the

Calabi-Yau 3-fold to be precise. For [β] ∈ H0,s there exists a unique [γ] ∈ H0,3−s

such that ∫
M

α ∧ β ∧ γ = 1. (81)

Note that here we are integrating over a (3, 3) top form and by stokes

theorem, integrating over the enitre manifold give unity. This shows that

h0,s = h0,3−s. The final Hodge condition is that h1,0 = 0. This comes from

0 = b1 = 2h1,0 on a compact Kähler manifold. Using all the relations outlined

above, we can now write out the Hodge diamond for the Calabi-Yau 3-fold:

We can now make note of the symmetries of the Hodge diamond (for a
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Calabi-Yau 3-fold).

Note first the horizontal and vertical symmetry which came from the Kähler

structure. Note also that the sides are composed of 0’s and 1’s. This is actaully

true for Calabi-Yau m-forms in general. We then see that the only undeter-

mined (independent) Hodge numbers are h1,1 and h2,1. As expected, Calabi-

Yau manifolds of higher dimension will have generally more independent Hodge

numbers. Note also that h1,1 ≥ 1, as there must exist at least one non trivial

Kähler class on a Calabi-Yau manifold for the existence of a Ricci flat metric. In

principle, the properties of the particular Calabi-yau manifold would determine

these other Hodge numbers. Recalling the formula for the Euler characteris-

tic χ(M) =
∑
r,s

(−1)r+shr,s, we can express χ in terms of the unknown Hodge

numbers as

χ(M) = 2(h1,1 − h2,1). (82)

The Euler Characteristic can often be calculated by other means. For ex-

ample, χ(M) can be found from χ(M) =
∫
M

cm(M) =
∫
M

c3(M) (from the

section on Chern classes) in the 3-fold case. Once calulated, the independent

Hodge numbers would be reduced to just finding h1,1. In fact, we can take

this one step further if we consider the following. A remarkable result of cer-

tain Calabi-Yau compactifications, is that the number of particle generations

ends up being proportional to the Euler characteristic. That is, a topological

inavriant of a manifold will characterise the number of generation’s of particles

it admits. For example, the E8 × E8 heterotic string compactification leads to

the number of generations being equal to 1
2 |χ| [13]. For 3 particle generations

as in the standard model, χ(M) would have to be ±6, so that

±3 = (h1,1 − h2,1), (83)
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which would again eliminate one of the independent Hodge numbers. A rigid

Calabi-Yau[] manifold is defined to be one with h2,1 = 0, and so the Hodge num-

bers are completely determined in this case as h1,1 would have to be 3 (must be

greater than 0 so cannot be -3).

Another interesting phenomenon relating the Hodge diamond to theoretical

physics is mirror symmetry [17]. This is when h1,1 and h2,1 are flipped in the

Hodge diamond. This new Calabi-Yau manifold, with its own distinct geometry,

appears to lead to completely equivalent string theory compactifications. This

is a vast topic and is only mentioned as an interesting note of further study.

This ends our discussion on Calabi-Yau manifolds and their various geoemtric

properties.

10 Generalised Calabi-Yau

Generalised geometry encapsulates a generalisation of many of the math-

ematical structures we developed thus far. A natural question is why is this

needed? Didn’t the geometry culminating in the Calabi-Yau manifold, suffice

in providing a suitable background for a supersymmetric string theory? Of

course the devil is in the details, as the type of string compactification has all

to do with answering that question. For example, if we want a supergravity

theory with additional fields such as the dilaton ϕ and H field, we would have

to generalise the Calabi-Yau geometry in some way to accommodate these.

The methodology behind generalising a Calabi-Yau manifold, consits in gen-

eralising each of the following:

1. Complexified tangent budle, TCM
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2. Almost complex structure, J

3. Lie bracket, [, ]|L

4. Kähler structure and potential, K

5. Calabi-Yau structure and Monge-Ampére equation, det ∂2K
∂zµ∂z̄ν̄ = 1

The prescription for generlaising the above structures is far from trivial,

and different generalisations are in fact used. [18] prescription is chosen, as

it couples more naturally to the physics. This section is mainly for conceptual

completeness; as such, we summarise the bottom line equations that are relevant,

leaving the details to [18, 2] .

10.1 Generalised Calabi-Yau Geometry

The generalised geometry approach begins with the replacement of the tangent

bundle with the tangent bundle plus the cotangent bundle: TM → TM⊕T ∗M .

A natural inner product is defined on this space as

< X + ω, Y + η >=
1

2
(iXη + iY ω) (84)

where X,Y ∈ Γ(TM) and ω, η ∈ Γ(T ∗M) and recalling iV is the interior

derivative with respect to vector field V . Under this inner product, the sub-

bundle of TM ⊕T ∗M such that all possible inner products of vector fields (sec-

tions of the sub bundle) are vanishing is called the isotropic sub-bundle. This

sub-bundle is maximally isotropic if after picking a section, you keep adding

only other sections that are isotrpic with respect to it until no more can be

added.
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Definition 10.1.1 :

The Lie bracket is geenralised to a Courant bracket given by

[X + ω, Y + η]|C = {X,Y }+ LXη − LY ω − 1

2
d(iXη − iY ω) (85)

Properties:

1. Diffeomorphically invariant under M just as the Lie bracket was (can say

that Courant bracket forms the algebra of a genralised differomorphism

[19]).

2. Does not satisfy the Jacobi identity unlike the Lie bracket.

Definition 10.1.2 :

A maximally isotropic sub-bundle with closed sections under the Courant

bracket (involutive) is labeled a dirac structure.

Analogous to the complex decomposition of the tangent bundle in chapter

2.2, we have the decomposition of the new generalised bundle:

(TM ⊕ T ∗M)⊗ C = L+ L̄ (86)

where L is a dirac structure. This can equivalently be achieved by general-

ising the almost complex structure J to an endomorphism on TM ⊕ T ∗M .

We now begin generalising Kähler geomtry. We introduce two of the above

almost complex structure and label them J1 and J2 where [J1,J2] = 0. The

Gualtieri map [18] relates this to a manifold with a metric and a B field labeled

(g,B) with complex structures J+ and J−. Connections are defined

∇± : Γij
±k = Γij

k ± 1

2
Hij

k (87)
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where Γij
k are the ordianry Levi-Civita connection components. These can

be shown to give

∇+J+ =0 =⇒ Hol(∇+) ⊂ U(m) (88)

∇−J− =0 =⇒ Hol(∇−) ⊂ U(m) (89)

just as in Kähler geometry. The next step is to relate the differential forms

on M to spinors ρ on the generalised bundle such that (X + η)ρ = iXρ+ η ∧ ρ.

Using an invariant bi-linear form between two such spinors ρ1 and ρ2, we form

the Mukai pairing, denoted (ρ1, ρ2). The precise evaluation is given in [2].

We still need some more structure however. We must first constrain ρ1 and

ρ2 to be closed, pure spinors. Purity implies the spinor annihilates a maximally

isotropic sub-bundle of the generalised bundle (or generalised complexified bun-

dle). In this case each spinor is defining a generalised complex structure: J1,J2.

Definition 10.1.3 :

The existence of two closed, pure spinners ρ1 and ρ2 that define their own

generalised complex structures, and also satisfy

(ρ1, ρ̄1) = α(ρ2, ρ̄2) ̸= 0, (90)

are said to form the the generalised Calabi-Yau metric structure. Note α ̸= 0 is

a constant.

The normalisation of the spinors is now (ρ1, ρ̄1) = V ol exp(−2ϕ). We see

the dilaton field ϕ being introduced through the generalisation. Therefore we

now have the tripple (g,B, ϕ). Infact the metric and B field are given locally
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by the generalised Kähler potential. For completeness we state the remaining

generalistions and again postpone the details to [2].

1. ℜ → Rij
++2∇i

(−)∇jϕ = 0 where Rij
+ is the trace of the curvature with

respect to the ∇+ connection which has torsion. This is the generalisation

fo the Ricci flatness.

2. det ∂2K
∂zµ∂z̄ν̄ = 1 → exp(−4ϕ)

√
det(gµν = 1. Again we see the presence of a

dilaton term that ends up generalising the Monge-Ampére equation.

11 Conclusion

In conclusion, the rich structure of complex geometry has been introduced.

The emphasis of the complex geometry in this thesis was on the construction

of Calabi-Yau manifolds, whereby starting from a basic almost complex struc-

ture and Riemannian metric, we build up towards Calabi-Yau geometry. The

Calabi-Yau 3-fold is examined in particular. This manifold was shown to have

properties suitable for flux-less compactifications in 10 dimensional superstring

theories. A more thorough exposition of this is given in [21]. Considerable time

was also spent on forming and analysing the symmetries of its Hodge diamond.

Finally a very brief introduction to generalised Calabi-Yau geometry is sketched

out. More varied and detailed expositions on this vast subject can be found in

[1, 2].

There are still many open questions relating to complex geometry.For exam-

ple, one can always consider various specifications of the 2 independent Hodge

numbers of the Calabi-Yau 3-fold, and thus probe any resulting interesting ge-

ometries. The briefly mentioned mirror symmetry, is another popular phenom-

ena specific to Calabi-Yau manifolds, with implications for both pure mathemat-

ics and theoretical physics. For example, the relation to T-duality in theoretical
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physics is examined in [22]. Moreover, testament to the complexity of Calabi-

Yau geometry, the Calabi-Yau 3-fold has never even been completely classified

and may even be infinite in number[23]. This is also a possible direction one

could pursue.

12 Appendix

12.1 Complex Vector Bundles

Vector bundles are fibre bundles whose fibre has a vector space structure. Com-

plex vector bundles are then vector bundles with complex vector spaces, i.e

vector spaces over a complex scalar field, such that a general fiber F = Cr.

A complex vector bundle over a complex manifold consists of the following

elements:

1. Total space : smooth manifold E where dimCE = m+ r.

2. Base space : Complex manifold M where dimCM = m.

3. Fibre : smooth fibre manifold F = Cr where r = fibre dimension := rank

of bundle.

4. Structure group : lie group G = GL(r,C) giving a left action on each

fibre.

5. Surjective projection map : π : E → M such that π−1(p) = Cr|p ∼= Cr.

6. Local trivialisation : set of diffeomorphisms {ϕi} : π−1(Ui) −→ Ui × Cr,

where {Ui} is an open covering of M such that π ◦ ϕi
−1(p,Cr|p) = p.

7. For Ui ∩ Uj ̸= ∅, the transition functions tij : Cr −→ Cr are elements of

G.
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An example of a complex vector bundle is ∧r,sM . Its sections are the (r,

s)-forms and the space of all such sections is Γ(∧r,sM). The complex vector

bundle is labeled trivial when the transition functions are the identity maps,

and the bundle is then given by the direct product M × Cr. In fact, this is

the most trivial example of a structure called the holomorphic vector bundle. A

holomorphic vector bundle requires additional structure imposed on the complex

vector bundle:

1. E must also be a complex manifold.

2. π : E → M is a holomorphic map between the two complex manifolds.

3. {ϕi} local trivialisations are biholomorphic maps. That is ϕ and ϕ−1 are

both holomorphic maps.

4. The transition functions Tij are holomoprhic maps.

Note the definition of a holomorphic map is given in section 2.1. Examples

of non trivial holomorphic vector bundles, include the complexified tangent and

cotangent bundles, given by TCM and TC
∗M (section 2.2).

We can also form a holomorphic vector bundle by taking the subset s = 0

of the previously defined complex vector bundle ∧r,sM , to form ∧r,0M . Holo-

morphic sections of this bundle are the holomorphic r-forms which we examine

in section 3.3. If we further take the case r = m, the resulting vector bundle

is called the holomorphic line bundle. Its fibre F = C, so that it is has a bun-

dle rank of 1. Note that the tensor product of holomorphic line bundles are

also holomorphic line bundles. Sections of this bundle are termed holomorphic

volume forms. We call this holomorphic line bundle the canonical bundle of a

complex manifold M, given by
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KM = ∧m,0. (91)
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