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Abstract

In this paper we introduce a type of fibre bundle with added structure known
as a Courant Algebroids. We aim to show how Courant Algebroids can be
used to build the generalised geometry of type II supergravity and how their
structure capture the symmetries of their bosonic fields. We also aim to show
that it is possible to characterise whether a Courant Algebroid is parallelisable
and how this enables us to predict consistent truncations on theories of gravity
constructed using them.
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1 Introduction

As string theory remains a favoured candidate for quantum gravity, tools for
investigating the intimidatingly broad landscape in order to identify consistent
and physically relevant theories are all the more vital [1]. Consistent truncations
provide us with a means of reducing the complexity of a theory without losing
key information about the symmetries. They are however rare and in better
need of categorising. In this paper we shall consider one area where this is
possible using spaces that are parallelisable. In particular we shall consider
consistent truncations of theories represented by a type of fibre bundle known
as a Courant algebroid which turn out to be closely linked to the bosonic fields
of type IIA supergravity.

The structure of this paper will therefore be as follows. First we shall in-
troduce type II supergravity (section 2) and then the mathematical objects
(algebroids) that we shall use to capture their structures (section 3).

After this we aim to introduce a few key ideas of generalised geometry in
the context of type II supergravity or order for us to introduce the concept of
general parallelisability. We shall use parallelisability in the final section on
consistent truncations (section 5) where we hope to both illustrate an example
of a truncation on S3 followed by a discussion on how we can use generalised
geometry to identify a particular set of consistent truncations found on pullbacks
of algebras.

2 Type II Supergravity

Theories of supergravity can be thought of as either the direct application of a
supersymmetry to a theory with gravity [2] [3] or as the extension of bosonic
string theory to include fermions. Type II supergravity is of dimension d = 10
and unlike type I supergravity has no open strings. By assessing the boundary
conditions [4] [5] we can identify two sectors of relevance for a superstring theory:
the Neveu-Schwarz Neveu-Schwarz sector (NSNS) which contains the bosonic
fields of the theory, and the Ramond Ramond sector (RR) which introduce
chiral sources and will not be considered in much detail in this paper.

Type II supergravity consists of the following fields:

{gµν , Bµν , φ,A(n)
µ1,µ2,...,µn , ψ

±
µ , λ

±} (1)

As expected for a theory of gravity we have a metric gµν but we also have a
few new objects resulting from the extended theory. Bµν is a two form tensor
analogous to the one form field strength tensor found in theories of electromag-
netism. The raising of the form is to reflect the fact that within the regime
of string theory we have moved from one to two dimensional sources of fields.
φ is ta scalar field also known as the dilaton another product of string theory
which appears in theories consisting of extra dimensions which are compacted
down. The remaining fields are related to the RR sector: Aµ1,µ2,...,µn are the
potentials, ψ± are chiral gravitini and λ± are a pair of chiral dilatinis.
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Type II supergravity can be distinguished further by the choice of type IIA
and type IIB. This reflects two separate theories one that is chiral (IIB) and
one that is not (IIA).

Let us just consider the Bosonic fields of type II supergravity [6]. The action
of the fields have the form:

SB =
1

2κ2

∫ √
−g
[
e−2φ

(
R+ 4(∂φ)2 − 1

12H
2
)
− 1

4

∑
n

1
n! (F

(B)
(n) )2

]
(2)

where H = dB and the last term depends on both Bµν and the RR potentials
Aµ1,µ2,...,µn .

The equations of motions resulting from the action, remembering that we
have switched off the fermion contribution for the time being, are given by:

Rµν − 1
4HµλρHν

λρ + 2∇µ∇νφ− 1
4e2φ

∑
n

1
(n−1)!F

(B)
µλ1...λn−1

F (B)λ1...λn−1
ν = 0,

∇µ
(
e−2φHµνλ

)
− 1

2

∑
n

1
(n−2)!F

(B)
µνλ1...λn−2

F (B)λ1...λn−2 = 0,

∇2φ− (Rφ)
2

+ 1
4R−

1
48H

2 = 0,

dF (B) −H ∧ F (B) = 0,
(3)

The bosonic symmetries of this theory are given by:

δv+λg = Lvg, δv+λφ = Lvφ, δv+λB(i) = LvB(i) − dλ(i), (4)

3 Fibre Bundles and Algebroids

The mathematical language of generalised geometry is principally based on two
simpler mathematical structures: fibre bundles, a type of manifold whose lo-
cal structure is equivalent to the Cartesian product of two other manifolds,
and algebroids, a generalisation of an algebra which can be defined using fibre
bundles.

A full introduction to fibre bundles can be found in [7], it will suffice to list
the key definitions used as the basis for generalised geometry. A fibre bundle

(E, π,M,F,G) also denoted E
π //M consists of three (differentiable) mani-

folds: M known as the base space; F the fibre, and E the total space. It also
includes a surjective map π : E →M called the projection whose pre-image for
any point p ∈M is called the fibre at p and is equivalent to the fibre F . Lastly
the bundle contains a Lie group G known as the structure group, this acts on
F to the left by convention. To complete the definition, it must be possible to
take an open covering of the base space {Ui} such that Ui × F → π−1(Ui) is
a diffeomorphism. Furthermore, any transition between two overlapping open
sets Ui and Uj must be consistent. Importantly, it does not necessarily follow
that E ∼= M × F , when true the bundle is said to be trivial.
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The section of a fibre bundle is as a smooth map s : M → E such that
π ◦ s = idM , the space of all sections is denoted Γ(E).

The tangent bundle is an example of a fibre bundle where for any point
p ∈ M the fibre Fp is equivalent to the tangent space TpM ∼= Rm where m is
the dimension of M . This means the tangent bundle takes the form of a disjoint
union

TM :=
⊔
p∈M

TpM (5)

It is possible to define other bundles based on the properties of their fibres.
The fibres of a vector bundle are vector spaces. The structure group of a vector
bundle is the general linear group of dimension m = dimM . 1

It is also possible to introduce a right action on a fibre bundle (in addition to
the left already included by definition) using the structure group G. In particu-
lar, we are interested in the case where we can define a right action E×G→ E
that is regular(transitive and free), preserves the fibre of any point p, and where
at least one fibre Fp is diffeomorphic to G. It follows from having this single
fibre that all fibres are diffeomorphic to G. A principal bundle denoted in this
case E(M,G) is therefore a bundle whose fibre is identified as G.

Suppose our principal bundle was also a vector bundle. We are free to choose
an ordered basis for the fibre (which is a vector space) at some point p. This
fibre, which we shall call a frame, is homeomorphic to the general linear group
GL(m,R) since this is the structure group of the bundle. We may therefore
interpret the action of G on the fibres as a change of basis between frames. A
bundle which is identified as the disjoint union of frames is called a frame bundle
F (E).

We can also construct new fibre bundles from old ones using pullbacks. Let

E
π //M be a fibre bundle with fibre F . Let N be a manifold and f : N →M

be a smooth function, then the pullback of E is given by:

f∗E = {(p, u) ∈ N × E : f(p) = π(u)} (6)

If we introduce a new projection map π′ : f∗E → N , that is (p, u) 7→ p, then
f∗E is endowed with the structure of a fibre bundle. Furthermore, the following
diagram commutes.

g
f∗E → E

π′ ↓ ↓ π
f

N → M

(7)

We can therefore interpret the map g : f∗E → E as yet another projection,
that is (p, u) 7→ u.

1It is worth noting that the general linear group is also the structure group of a tangent
bundle. This simply follows because a tangent space is a vector space by definition.
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3.1 Algebroids

Now that we have introduced fibre bundles we can use them to construct a
generalised algebra over them much in the same way to how we could define a
Lie algebra over a manifold. Specifically these are algebroids 2.

Definition 3.1 (Lie Algebroid) Let E
π //M be a vector bundle, with the

following two objects:

• A Lie bracket defined on the bundle’s space of sections:

[·, ·] : Γ(E)× Γ(E)→ Γ(E)

• A map from the total space of the vector bundle to the tangent bundle
ρ : E → TM

The triple (E, [·, ·], ρ) forms a Lie Algebroid if the following condition is satisfied:

[u, fv] = ρ(u)f · v + f [u, v]

where u, v ∈ Γ(E), f is smooth and ρ(u)f denotes the derivative of f along
the vector field ρ(u) in the tangent bundle.

It follows from the last condition that

ρ([u, v]) = [ρ(u), ρ(v)] (8)

We can already consider how an algebroid may be used to construct an ex-
tended theory of gravity. Intuitively it should include a vector bundle which we
have defined as a smooth manifold, furthermore the objects defined on it ought
to be diffeomorphisms which we expect to encode the symmetries associated
with a theory that includes gravity.

3.1.1 Lie Algebroids as a Theory of Gravity

Let us make a quick comparison:
Let E ∼= TM ⊕ R be a bundle and let us consider an element in the space

of sections to take the form (ξµ, α) where ξ ∈ TM and α ∈ R. Let us suppose
that the bundle is not twisted, then with a slight relaxing of notation we can
express a particular element as simply ξµ + α.

Let us now promote this bundle to a Lie Algebroid by defining the following
bracket and anchor:

[ξµ + α, ξ′
µ

+ α′] = [ξµ, ξ′
µ

] + Lξµα′ − Lξ′µα
ρ(ξµ + α) = ξµ

(9)

2In representation theory a groupoid structure is achieved by relaxing the totality condition
on a group. It is indeed possible to approach these objects from the field of category theory
but we shall not take this more mathematical approach as we have further generalisations to
consider.
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Let us compare this to the symmetry found in a simple theory of gravity
with a charged scalar field given by the complex function φ. The action for said
theory will have the form:∫ √

−g
(

1
2DµϕD

µϕ∗ − 1
2m

2ϕϕ∗
)

(10)

D is a covariant derivative since this is a local theory with gravity. Its full
form is Dµϕ = ∂µϕ− iAµϕ.

Let us now consider a variation on our scalar field:

δξ+αϕ = Lξϕ+ iαϕ (11)

If we take the bracket we are left with:

[δξ+α, δξ′+α′ ]ϕ = [Lξ,Lξ′ ]ϕ+ Lξ(iα′ϕ)− iα′Lξϕ− Lξ′(iαϕ) + iα′Lξϕ (12)

noting that the lie derivative is distributive we can rearrange to get:

[δξ+α, δξ′+α′ ]ϕ = L [ξ,ξ′]︸︷︷︸
=ξ′′

ϕ+ i (Lξα′ − Lξ′α)︸ ︷︷ ︸
=α′′

ϕ (13)

or specifically of the closed form:

[δξ+α, δξ′+α′ ]ϕ = δξ′′+α′′ϕ (14)

A comparison with the Lie algebroid above confirm that the brackets both
have the same structure.

We are however interested in a supergravity which shall require more general
structures than Lie algebroids to enable us to accommodate two form tensors
and the dilaton. We shall see the machinery needed in the next section on
generalised geometry but we shall close this section by making a step towards
this by introducing Courant algebroids.

3.2 Courant algebroids

Courant algebroids derive from the study of Lie Bialgebroids where in addition
to a regular bilinear bracket; an inner product has also been introduced [8][9]
[10].

Definition 3.2 (Courant Algebroid) Let E
π //M be a vector bundle; let

[·, ·] be a bilinear bracket 3 defined on Γ(E) × Γ(E) → Γ)E); let ρ : E → TM
be the anchor, and let 〈·, ·〉 : Γ(E) × Γ(E) → C∞(M) be a non-degenerate
bilinear symmetric form. Together (E, [·, ·], ρ, 〈·, ·〉) form a Courant Algebroid if
the following are true: For u, v, w ∈ Γ(E) :

1. [u, [v, w]] = [[u, v], w] + [v[u,w]]

3Not necessarily a Lie bracket or Skew-Symmetric
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2. [u, fv] = ρ(u)fv + f [u, v]

3. [u, v] = d̂〈u, v〉

4. ρ(u)〈v, w〉 = 〈[u, v], w〉+ 〈v, [u,w]〉

where f is a smooth function on M and d̂f ∈ Γ(E) such that 〈u, d̂f〉 = ρ(u)f .

If the sequence:

0 −→ T ∗M −→ E −→ TM −→ 0, (15)

is exact then we say that the Courant algebroid is exact.
A relation between a Lie algebroid and a Courant algebroid is present if we

were to consider restrict the base space M to a sngle point. In both cases the
resulting object would be a Lie algebra however in Courant Algebroid case we
would have the added bracket 〈·, ·〉.

4 Generalised Geometry

We shall define the generalised structure bundle using a conformal basis which
is best understood by first introducing another generalised structure.

Let the following sequence

0 −→ T ∗M −→ E −→ TM −→ 0, (16)

for a spin manifold M of dimension d be exact. Then it can be shown, using
the splitting lemma, that the E which we shall call the generalised tangent space
is isomorphic to T ∗M o TM . It can be further shown [6] (though no canonical
construction exists) that the semi-direct product can be promoted to a direct
product.

We can define an additional bundle Ẽ = detT ∗M ⊗E. This slight extension
is required in order for the dilation to appear in this generalised construction.

We can now write a conformal basis for Ẽ which shall enable us to write
down the definition of a generalised structure bundle. Specifically we say {ÊA}
where A = 1, 2, . . . , 2d is a conformal basis of Ẽ such that:

〈ÊA, ÊB〉 = Φ2ηAB (17)

where,

η =
1

2

(
0 1
1 0

)
and Φ ∈ Γ(detT ∗M) (18)

Now we can define a generalised structure bundle:

Definition 4.1 (Generalised Structure Bundle) F̃ = {(x, {ÊA}) : x ∈
M, {ÊA}is the conformal basis of Ẽ as defined above}
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On the generalised tangent space shared with this bundle we can introduce
a generalisation of a Lie derivative Lv called the Dorfman derivatives given by:

LvW = LvW + Lvζ − iW dλ (19)

where W = w + ζ.
We can in fact use these derivatives to build a courant bracket:

‖V,W‖ =
1

2
(LvW − LWV )

= [V,W ] + LV ζ − Lwλ−
1

2
d(ivζ − iwλ)

(20)

We wish to show that the metric g along with the patched B-field and
dilaton φ structure, as one would expect to find in the NSNS sector of type II
supergravity, can be recovered from the generalised structure bundle F̃ .

We start by considering a sub-bundle of F̃ of the form O(p, q)×O(q, p). It
is possible to split the bundle E into the sub-bundles C+⊕C− [6]. The metric:

〈V, V 〉 = iνλ (21)

is restricted by the signature (p, q) and (q, p) on C+ and C− such that they are
both homeomorphic to TM .

〈Ê+
a , Ê

+
b 〉 = Φ2ηab

〈Ê−ā , Ê−b̄ 〉 = −Φ2ηāb̄

〈Ê+
a , Ê

−
ā 〉 = 0

(22)

where Φ is defined over a non-vanishing section which has now been fixed. The
metric ηab is flat and has the signature (p, q).

We introduce a new basis:

ÊA =

{
Ê+
a for A = a

Ê−ā for A = ā+ d
(23)

which can be given by the bracket:

〈ÊA, ÊB〉 = Φ2ηAB (24)

where,

ηAB =

(
ηab 0
0 −ηāb̄

)
(25)

We can calculate the form of Ê+
a and Ê−ā explicitly:

Ê+
a = e−2φ√−g

(
ê+
a + e+

a + iê+aB
)

Ê−ā = e−2φ√−g
(
ê−ā − e−ā + iê−ā B

) (26)
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We can express the metric in this frame as follows:

g
(
ê+
a , ê

+
b

)
= ηab and g

(
ê−ā , ê

−
b̄

)
= ηāb̄ (27)

It is possible to construct an invariant generalised metric [6]:

G = Φ2
(
ηabÊ+

a ⊗ Ê+
b + ηāb̄Ê−ā ⊗ Ê−b̄

)
(28)

where we have an invariant density:

Φ = e−2φ√−g (29)

Thinking back to the non-generalised Reimannian geometry, we know that
manifolds always admit what is known as the Levi-Civita connection. This is
a unique torsion free connection. We shall show that it is both possible to
construct such a connection however we shall discuss the finding that this is not
unique in the generalised case.

We can also construct a generalised connection D. To ensure that it is
consistent we require:

DG = 0 or DΦ = 0 (30)

For w ∈ Γ(Ẽ) this is equivalent as requiring D to have the form:

DMW
A =

{
∂Mw

a
+ + ΩM

a
bw

b
+ A = a

∂Mw
ā
− + ΩM

ā
b̄w

b̄
− A = ā

(31)

where:
ΩMab = −ΩMba and ΩMāb̄ = −ΩMb̄ā (32)

5 Consistent Truncations

Consistent truncations are known to exist for the spheres S3, S5 and S7. We
shall look at S3 more thoroughly since evidence points to the consistent trun-
cation on this sphere as capturing the bosonic fields and dilaton of type IIA
supergravity.

The existence of a consistent truncation is based on the parallelisability
of the space, this is why we take interest in spheres since which spheres are
parallelisable is a classic problem in the field of mathematics. S2 famous for
being non-parallelisable.

5.1 Consistent Truncations on S3

There exists consistent truncations for type II supergravity for both S5 and S3

spheres. Specifically the S5 sphere relates to IIB supergravity and considers the
contributions of fermions which is not within the scope of this work. Instead we
shall be looking at the S3 case which describes the near-horizon NS-fivebrane
background which we understand as relating to the bosonic fields of type II
supergravity.
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The solutions of type II exist on:

R5,1 × Rt︸ ︷︷ ︸
Dilaton

×S3 (33)

We can write the volume element as:

ds2 = ds2(R5,1) + dt2 +R2ds2(S3) (34)

where R is the radius of the 3-sphere.
We can write two additional constants of note:

H = 2R−1vol(g) and φ =
−t
R

(35)

The generalised frame for SO(4) is given by:

Êij = νij + σij − ivijB (36)

Ultimately we can recover the structure so(2) × so(2) when we calculate
algebra give by the generalised Lie derivatives [11]:

LÊLā
ÊLb̄ = ‖ÊLā , ÊLb̄ ‖ = R−1εāb̄c̄Ê

L
c̄

LÊRa
ÊRb = ‖ÊRa , ÊRb ‖ = R−1εabcÊ

R
c

LÊLā
ÊRa = ‖ÊLā , ÊRa ‖ = 0

(37)

where R is the radius of the sphere.

5.2 Categorising consistent truncations

We have shown that it is possible to find a consistent truncation by identifying
a viable frames that are parallelisable. This is not an easy problem, however
we are fortunate that there exists a means of simplifying this to an algebraic
problem. There exists a general structure known as a G-Algebroid which can be
used to express various structures including: Lie algebroids, Courant algebroids
and Elgebroids (constructed using exceptional groups). We shall proceed by
introducing this new object and consider how pullbacks on these algebroids
provide a means of simplifying our characterisation of Leibniz Parallelisable
structures.

5.2.1 G-Algebroids

Definition 5.1 (G-Algebroid) Let P (M,G) be a principal bundle and let
E → M and N → M be associated vector bundles endowed with the follow-
ing structures:

• [·, ·] : Γ(E)× Γ(E)→ Γ(E)

• ρ : E → TM
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• D : Γ(N)→ Γ(E)

Together they form a G-Algebroid under the following conditions:

1. [u, [v, w]] = [[u, v], w] + [v, [u,w]]

2. [u, fv] = (ρ(u)f)v + f [u, v]

3. [u, v] + [v, u] = D(u⊗ v)N

4. D(fn) = fDn + (d̂f ⊗ n)E

where d̂ = ρt ◦ d ; u, v, w ∈ Γ(E) ; n ∈ Γ(N) , and f ∈ C∞(M). Furthermore
we require that [u, ·] forms an action that preserves the G-structure.

The G-algebroid can be restricted to recover several familiar objects. If we
set the associated bundle N to vanish then conditions 3. and 4. are trivial. Fur-
thermore we have by virtue of condition 2. a Lie algebroid. In other words if the
triple (G,E,N) = (GL(n,R),Rn, 0) then our restricted G-algebroid coincides
with a Lie algebroid. If we restrict our algebroid, so that M is a point, the
resulting G-algebra coincides with a standard Lie algebra.

We can also recover a Courant algebroid if we set the triple (G,E,N) =

(O(p, q),Rp+q,R) and set the operator D = d̂. The choice of operator is made
clearer by noting that O(p, q) is its own dual, or in other words E ∼= E∗. Thus

our new operator is of the form d̂ : C∞(M) → Γ(E). It is also important to
note that the structure-preserving action [u, ·] is essential for recovering axiom
4. in definition 3.2.

We saw in section 3.1 that we can use pullbacks to build new fibre bundles,
we can likewise use them to build G-algebroids.

Proposition 5.2 Let E → M be a G-algebroids and let f : M ′ → M be a
surjective submersion 4. Then f∗E → M ′ is a G-algebroid endowed with the
G-structure ([·, ·]E′ , ρ′,D′) if the following conditions are met:

• [f∗u, f∗v]E′ = f∗[u, v]

• f∗ρ
′(f∗u) = ρ(u)

• D′f∗n = f∗Dn

where u, v ∈ Γ(E) n ∈ Γ(N) and E′ := f∗E.

Note that in the second condition we have used f∗ to denote a pushforward 5

another naturally induced map of f .

Theorem 5.3 A G-algebroid is Liebniz paralellisable if it can be expressed as
the pullback of a a G-algebra

4By this we mean that f is a differentiable map where both f and its differential are
surjective everywhere

5also known as a differenetial map
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Now that we have identified pullbacks as a key means of obtaining Liebniz
paralellisable algebroids we may consider the question of what conditions are
need to guarantee a pullback exists.

In [12] it is demonstrated for elgebroids (exceptional algebroids) that an
action is promoted to a pullback of an exact elgebroid if and only if the stabilisers
of action are co-lagrangian. To understand this we shall consider the simpler
case of Courant Algebroids.

5.2.2 Courant Algebroids

Let us first note that we can define a pullback Courant Algebroid by adapting
the conditions of proposition 5.2. We can identify E as a Courant algebroid by
imposing the same restrictions as we did in the previous section. Furthermore,
the last condition of proposition 5.2 on the operator is dropped and a new
condition is applied to the brackets 〈·, ·〉:

〈f∗u, f∗v〉E′ = f∗〈u, v〉 for u, v ∈ Γ(E) (38)

Together this is sufficient to define Courant Algebroid structure over the
pullback [10]. The following proposition shall allow us to go a step further by
refining these conditions.

Proposition 5.4 Any Courant algebroid structure on the pullback f∗E is char-
acterised uniquely by the anchor map ρ′ : f∗E → TM ′. Furthermore, the struc-
ture exists if and only if all the following condition hold for u, v ∈ Γ(E)

• f∗(ρ
′(f∗(u)) = ρ(u)

• [ρ′(f∗u), ρ′(f∗v)] = ρ(f∗[u, v])

• for any p ∈ M ′ the kernel of ρ′ at p is a subspace of E at the point f(p)
such that ker(ρ′p) ⊂ Ef(p) is coisotropic with respect to the bracket 〈·, ·〉.

We can better realise this by considering the case of when the Courant Alge-
broid E has a base space M that is a single point. E is therefore a Lie algebra
g with the additional bracket 〈·, ·〉. The first two conditions of proposition 5.4
tells us that if we let ρ′ be an action of g then it will preserve the brackets the
sections Γ(E) which are constants. The pullback built using g and manifold M ′

is E′ = g×M ′ [13] [10]. The last condition of proposition 5.4 tells us for every
point p ∈ M ′ the stabilisers of action ρ′ must be coisotropic in order for E′ to
be a Courant algebroid.

We also have the further result from [13] that if M ′ is quotient in form,
that is M ′ = G/H, and h⊥ = h for the Lie group of H then E is furthermore
exact. The condition on h is also known as Lagrangian or maximally isotropic.
6 Had we chosen O(d, d) as our prospective Courant algebroid we would have
also required dim h = d to achieve this.

6in the case where h⊥ ⊂ h, in other words coisotropic but not necessarily Lagrangian, then
the Courant algebroid is transative rather than exact.
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In summary, we have linked the problem of classifying whether our Courant
Algebroid is Liebniz parallelisable to a far more straight forward problem of
assessing the isotropy of algebras. This is still not a trivial problem and may
not be approachable canonically but is still a distinct improvement [12].

5.2.3 Elgebroids

While our interest has been limited to the scope of Courant Algebroids and type
IIA supergravity, for completeness it is worth taking a quick look at how these
results are applicable more generally to G-algebroids and elgabroids associated
with other supergravity theories.

As before we can define an action to characterise the G-algebroid.

Definition 5.5 (Action of a G-algebra) Let E be a G-algebra. The action
of the G-algebra on the manifold M ′ is a map χ : E → Γ(TM ′) that preserves
the bracket [·, ·].

For each point p ∈ M ′ we can define a stabiliser for χp as the kernal of the
map.

We can now state for elgebroids a similar result to proposition 5.4.

Theorem 5.6 The transitive action of an elgebra E on an n-dimensional man-
ifold M ′ defines an M-exact pullback elgebroid on E′ = E ×M ′ if and only if
the stabilisers of the action are co-Lagrangian of co-dimension n.

M-exact is understood to mean E′ is exact and dimM is equal to n, the
dimension of the corresponding exceptional algebra.

It can be shown [12] from this theorem that for the pair (E, V ), where E
is an elgebra and V ⊂ E a subalgebra, that there exists a natural action of E
on M ′ which generates a Leibniz parallelisable elgebroid over M ′ in complete
analogy to the courant algebroid. Here the condition is that the subalgebra is
co-Lagrangian with codimension n.

This result means all Leibniz parallelisable elgebroids which are M-exact are
characterised by (E, V ). This leads to an analogous simplification of the problem
of classifying Leibniz parallelisable elgebroids by transfering the problem to an
algebraic one.
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