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0
Overview

For quantumfield theories in flat space, wemayperformaWick rotation towork in
imaginary time, which has the effect of changing the spacetime fromMinkowski to Eu-
clidean. The path integral then contains an 4−(� term, where (� is the Euclidean action.
Very roughly speaking, only field configurations with finite (� would contribute to the
path integral. Such field configurations in Euclidean space with finite-action are called
instantons. We shall see that instanton effects give the leading-order nonperturbative
contributions to the path integral in the semiclassical approximation. For example, in-
stanton solutions describe leading tunnelling effects in quantummechanics.

Theaimof thisdissertation is toprovideabasic introduction to the fascinating sub-
ject of instantons, aimed at a level suitable for recent QFFF graduate to follow. This is a
very calculation-intensive report, especially in Chapter 1, it is easy to lose sight of the
big picture amidst the endless equation-grinding. As such it wouldn’t hurt to have an
overview of the structure of this dissertation, which goes as follows:

In Chapter 1 we focus on instantons in pure (* (# ) Yang-Mills theory. After a brief
reviewof gauge theory inChapter 1.1,wederive the instanton solutions in the(* (2) case
in Chapter 1.2. We shall see that there is a whole moduli space (the space of solutions)
parametrisedbywhatwecall the collective coordinates. InChapter 1.3webrieflydiscuss
the most general way of constructing instanton solutions, called the ADHM construc-
tion. In Chapter 1.4 we study the so-called instanton zero modes. We shall see a close
relation between zeromodes and the collective coordinates of themoduli space, in par-
ticular the zero modes can be used to construct the moduli space metric, the subject of
study inChapter 1.5. We also see that a naïve treatment of zeromodes leads to patholog-
ical results in path integrals, we learn how to deal with them in the same section.
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2 OVERVIEW

In Chapter 2 we study the topological aspects of instantons. Chapter 2.1 is a re-
view. We shall see that instantons themselves are topological objects; furthermore, their
moduli spaces are alsomanifolds with interesting structures, to be discussed in Chapter
2.2. We briefly survey the subject of characteristic classes in Chapter 2.3, before finally
moving on to the index theorem in Chapter 2.4. The index theorem is a deep and impor-
tant result, as it relates analytical properties of differential operators to the background
spaces those operators are defined on. The index theorem allows us to learn about func-
tions through studying geometry, and vice versa.

What does going to Euclidean geometry accomplish and what do instantons do?
In Chapter 3we finally discuss some real-world applications of instantons. We start with
a toy model of periodic potential in Chapter 3.1, and show that instanton solutions take
into account tunnelling effects and reproduce important results in solid state physics.
In Chapter 3.2 we couple scalars to our theory, and show the surprising result that in-
stantons cause confinement in (1 + 1)-dimension. In Chapter 3.3 we couple fermions to
mimic a QCD-like theory. We shall show how fermions interfere with instanton effects
and study the vacuum structure of such a theory.



1
Instantons in Quantum Field Theory

This chapter provides a detailed guide through someof the essential instanton cal-
culations. Themain referencematerial is the lecture notes by Vandoren [1]. The section
on ADHM construction is based more on Ref. [2]. Other helpful resources include the
book by Rajaraman [3] (very explicit) and the lecture notes by Tong [4] (more concep-
tual).

1.1 Preliminaries

1.1.1 A review of gauge theory

Here we give a brief review of gauge theory, and sort out the various conventions
we will adopt. We focus primarily on (* (# ) Yang-Mills theory in 4D spacetime with flat
Euclideanmetric 6`a = X`a = diag(+,+,+,+). The action is given by

( = − 1
26 2

∫
34F tr�`a�`a , (1.1)

where �`a = � 0`aB
0 . Here B 0 are (* (# ) generators in their fundamental representation,

taken to be traceless and anti-hermitian# × # matrices, satisfying [B 0 , B 1 ] = 5 012B 2 and
tr(B 0B 1 ) = −12X01 . In the case of (* (2), B 0 = g0

27 , whereg0 are the three Pauli matrices, and
5 012 = n012 , with n123 = 1. Another useful representation is the adjoint representation,
with 5 012 = (B 1 )02 , and tr(B 0B 1 ) = −2X01 .

3



4 INSTANTONS IN QUANTUM FIELD THEORY

The covariant derivative is defined as

�`q = m`q + [�`, q] (1.2)

for some Lie algebra valued field q , and

�`a = m`�a − ma�` + [�`, �a ] = [�`, �a ]. (1.3)

As is well-known, one can add a theta term to the action,

(\ = − 7 \

16c2
∫

34F tr�`a ★ �`a , (1.4)

where★�`a = 1
2 n`adf�df is thedual field strength tensor, and n1234 = 1. This termappears

to be not very interesting because it is the integral of a total divergence (see Appendix B.1
for derivation):

(\ = − 7 \8c2
∫

34F n`adf tr m`
(
�amd�f +

2
3�a�d�f

)
, (1.5)

and thus has no effect on the classical equation of motion. It is more interesting in the
context of instanton, as we shall see.

The classical equation of motion is

�`�`a = 0. (1.6)

The Bianchi identity is

�` ★ �`a = 0, (1.7)

which is satisfied by construction, and we present some proofs in Appendix B.2.

Note there are no distinctions between upstairs and downstairs indices, this is true
for the group indices 0, 1, . . . , and for the spacetime indices `,a, . . . since we are in Eu-
clidean space.

Also, our definition with (anti-)symmetrisation has a 1/<! factor in front, so

((`a) =
1
2! ((`a + (a`) (1.8)

etc. This means that, for example, � [`a] = �`a .

Lastly, we can recast everything above in the language of differential form. The ac-
tion is

( = − 1
6 2

∫
tr� ∧ ★� . (1.9)
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The covariant derivative acting on the adjoint representation of some field it is

�q = 3q + [�, q]. (1.10)

And

� = 3� + � ∧ � = [�,�] (1.11)

The theta term is written

(\ = − 7 \8c2
∫

tr� ∧ � . (1.12)

The equation of motion is

� ★ � = 0. (1.13)

The Bianchi identity is

�� = 0. (1.14)

1.1.2 (Anti-)self-dual Yang-Mills equations

By definition, instanton solutions are solutions to the Yang-Mills equation of mo-
tion that leaves the Euclidean action finite. Very roughly speaking, the Euclidean path
integral of the form 4−( only gives nonzero contribution for finite ( . Importantly, instan-
tons are also topologically nontrivial, in the sense that the topological quantity,

9 = − 1
16c2

∫
34F tr�`a ★ �`a , (1.15)

is nonzero. Note 9 already appeared in the \-term in equation (1.4) as (\ = 7 \9 . 9 goes
bymany names, including thewinding number or instanton number. Remarkably, 9 is
always an integer. Instanton solutions are thus divided into topological sectors accord-
ing to their their instanton numbers 9 , and solutions with different 9 ’s cannot be related
by continuous gauge transformations, i.e. 9 is gauge invariant. Instanton solutions with
9 > 0 are simply called instantons, but solutions with 9 < 0 are called anti-instantons.

Now let’s try to find the solutions that would give theminimum possible ( by con-
sideringwhat is called itsBPS bound, after Bogomol’nyi, Prasad and Sommerfield [5, 6]:

( = − 1
26 2

∫
34F tr�`a�`a (1.16a)

= − 1
46 2

∫
34F tr(�`a�`a + ★�`a ★ �`a ) (1.16b)



6 INSTANTONS IN QUANTUM FIELD THEORY

= − 1
46 2

∫
34F tr(�`a ∓ ★�`a )2 ∓ 1

26 2
∫

34F tr�`a ★ �`a (1.16c)

> ∓ 1
26 2

∫
34F tr�`a ★ �`a =

8c2
6 2
(±9 ), (1.16d)

where in the second line we used that

★�`a ★ �`a =
1
4 n`adf n`aUV�df�UV =

1
2 (X

U
d X

V
f − XUf X

V
d )�df�UV = �`a�`a (1.17)

in Euclidean space. We see that if

�`a = ± ★ �`a , (1.18)

then ( is finite, and it should represent an instanton configuration! It is also a valid solu-
tion to the equation of motion�`�`a = 0 by virtue of the Bianchi identity,�` ★ �`a = 0.
The above equationwith a plus sign is called the self-dual Yang-Mills equation, and the
corresponding �`a is said to be self-dual and gives an instanton solution. Conversely,
in the case of a minus sign, we have the anti-self-dual Yang-Mills equation and �`a is
called anti-self-dual, corresponding to an anti-instanton solution.

Indeed, staring at the equation of motion and Bianchi identity, we see that any
�`a = _ ★ �`a for some proportionality constant _ should solve the equation of motion.
But we now show that this only gives a valid solution in Euclidean space, in which case
_ = ±1; and it does not work inMinkowski. Take the dual on both sides of �`a = _ ★ �`a :

★�`a = _ ★ ★�`a , (1.19a)

⇒ �`a = _2 ★ ★�`a =
_2

4 n`adf n
dfUV�UV (1.19b)

= ∓_
2

2 (�`a − �a`) = ∓_
2�`a . (1.19c)

where we used the n − X identity n`adf ndfUV = ∓2!(XU` X Va − XUa X V` ) again, now with − sign
for Minkowski space and + for Euclidean. We see in Minkowski space, we must have
_2 = −1 ⇒ _ = ±7 , and we end up with

�`a = ±7 ★ �`a . (1.20)

Recall both�`a and★�`a lives in someLiealgebrag, and theabovecondition then implies
g = 7g, i.e. for every element - ∈ g, 7- is also in g. This causes the Lie group to be
unbounded. For the simplest example, think 4 7 \B 0 ∈ * (1), generated by B 0 = 1 ∈ g. If
we modify the group so that g = 7g, then 4 \ is an element of this group, and the group is
not compact. Non-compactness is a serious problemas in physicswe typically only deal
with compact gauge groups [7]. However, in Euclidean space the issue disappears. Pick
the + sign in equation (1.19c), we have �`a = _2�`a , or _2 = 1, so

�`a = ± ★ �`a , (1.21)
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the familiar (anti-)self-dual equations.

Taking a closer look at the requirement for finite action: Since ( ∼
∫
34F � 2 in four-

dimension, we see the requirement of finite action means �`a should go to zero faster
than |F |−2 as |F | → ∞ (although the requirement that 9 ≠ 0 means �`a shouldn’t go to
zero too fast). What does all this mean for the gauge potential �`? We claim �`a → 0 as
|F | → ∞ can be achieved if �` to approach a pure gauge at infinity, i.e. �` → *m`*

−1,
* ∈ (* (# ). Then the field strength becomes

�`a = m[` (*ma]* −1) +*m[`* −1*ma]* −1, (1.22a)

now use m`* −1 = −* −1m`** −1 on the second term, we have

⇒ �`a = m[`*ma]*
−1 +*m[`ma]* −1 − m[`*ma]* −1 = 0, (1.22b)

the first term and the third term cancel, and m[`ma] = 0 because partial derivatives com-
mute. In fact, there is an ‘if and only if’ relation between �`a → 0 and �` → *m`*

−1 at
infinity, even though we will not prove the ‘only if’ part here.

Note that since thefield configurationat spatial infinity is the same inall directions,
we can identify all of spatial infinity to a single point. This effectively compactifies the
space from ℝ4 to ℝ4 ∪ {∞} = (4. To understand this ‘one-point compactification’ pro-
cedure, go down to two dimensions and consider removing a single point from (2, say
the North pole# . Then what we have left is isomorphic toℝ2: (2\{# } � ℝ2. Conversely,
ℝ2 ∪ {∞} = (2. This generalises to arbitrary dimensions, so ℝ< ∪ {∞} = (< . Working in
the compact (4 instead of ℝ4 is desirable due to the many useful theorems in topology
that apply in compact spaces.

Note while (anti-)self-dual field strengths are guaranteed to give instanton solu-
tions, instanton solutions need not be self-dual or anti-self-dual. For example, we may
take a linear combination of self-dual and anti-self-dual solution to give a solution that
is neither. See Chapter 1.2.6

Also note the remarkable fact that, since the action ( is proportional to the wind-
ing number 9 , we see the action of one instanton with winding number 9 is equal to the
action of 9 instantons each with winding number one. Typically, we would expect the
interaction among the 9 instantons to have an effect, say a change in the interaction en-
ergy. But since we are dealing with the action, not energy, interaction does not seem to
have such effects. Perhaps something deeper is at play here.

1.1.3 Euclidean Lorentz generators and ’t Hooft symbols

Recall inMinkowski space with signature[`a = diag(−,+,+,+), the Lorentz algebra
so(3, 1) = su(2) × su(2), so a representation of the Lorentz algebra separates into two 2-
component spinor representations, _U and j̄ ¤U , U = 1, 2, ¤U = ¤1, ¤2. The generators of the
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spinor representations are

f`a ≡ 12 (f
`f̄a − fa f̄`), f̄`a =

1
2 (f̄

`fa − f̄af`), (1.23a)

where

f
`

U ¤V = (g 7 , � ), f̄` ¤UV = (g 7 ,−� ), (1.23b)

` = 1, 2, 3, 0, � is the identity, and g 7 are the Pauli matrices satisfying g 7g 8 = X 7 8 + 7 n7 89g9 .
So specifically,

f 7 8 = 7 n7 89g9 , f07 = g 7 , (1.23c)

f̄ 7 8 = 7 n7 89g9 , f̄07 = −g 7 . (1.23d)

Note the rotations are antihermitian, while the boosts are hermitian. Under a rotation
or a boost, both spinors simultaneously transform.

In Euclidean space with signature X`a = diag(+,+,+,+), the symmetry is group is
($ (4). The generators for the spinor representations of the Euclidean Lorentz algebra
are now all anti-hermitian, given by

f`a ≡
1
2 (f`f̄a − fa f̄`), f̄`a =

1
2 (f̄`fa − f̄af`), (1.24a)

f`U ¤V = (g0 , 7 ), f̄
¤UV
` = (g0 ,−7 ), ` = 1, 2, 3, 4, (1.24b)

f7 8 = 7 n7 89g9 , f74 = −7g7 , (1.24c)

f̄7 8 = 7 n7 89g9 , f̄74 = 7g7 . (1.24d)

We review the Euclidean generators due to their importance in calculations related to
Yang-Mills instantons. In particular, f̄`a and f`a are self-dual and anti-self-dual respec-
tively, i.e.

f̄`a = ★f̄`a =
1
2 n`adf f̄df , f`a = − ★ f`a = −12 n`adffdf , (1.25)

This can be proved by considering all possibilities of `,a :

★f̄7 8 =
1
2 n7 8`a f̄`a =

1
2 (n7 894f̄94 + n7 849 f̄49 ) = n7 894f̄94 = 7 n7 894g9 = f̄7 8 , (1.26a)

★f̄74 =
1
2 n7489 f̄89 =

7

2 n7489 n 89>4g> = 7X7>g> = 7g7 = f̄74, (1.26b)

as desired. Note that n7 89 → n7 894 (andnot, for example, n47 89 ) in going from3d to 4d. The
proof for the anti-self-duality of f`a is similar.

Recall any self-dual or anti-self-dual field strength tensors satisfying ★�`a = ±�`a
are automatically instanton solutions. So the (anti)-self-duality of f̄`a (f`a ) make them
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a natural basis for the (anti-)self-dual �`a , i.e. if �`a ∝ f̄`a it is a valid self-dual instanton
solution, and if �`a ∝ f`a it is an anti-self-dual anti-instanton solution.

Now recall �`a lives in some Lie algebra, �`a = � 0`aB
0 . In the su(2) case, �`a =

� 0`a (g
0

27 ). If we want to work in terms of the components of the Lie algebra, � 0`a , it is con-
venient to introduce the ’t Hooft symbols,[0`a and [̄0`a , defined as

f̄`a = 7[0`ag
0 , f`a = 7[̄0`ag

0 . (1.27)

This definition guarantees that, if �`a is proportional to f̄`a (or f`a ), then � 0`a is propor-
tional to [0`a (or [̄0`a ). Also, from the (anti-)self-duality properties of f̄`a and f`a , it im-
mediately follows that[0`a is self-dual, while [̄0`a is anti-self-dual:

[0`a =
1
2 n`adf[

0
df , [̄0`a = −12 n̄`adf[

0
df . (1.28)

Or we may use the following identity to prove the (anti-)self-duality of the ’t Hooft sym-
bols directly,

n`adg[
0
fg = X`f[

0
ad − Xaf[0`d + Xdf[0`a , (1.29)

then
1
2 n`adf[

0
df =

1
2 (X`d[

0
ad − Xad[0`d + Xdd[0`a ) =

1
2 ([

0
a` −[0`a + 4[0`a ) = [0`a (1.30)

as desired.

We refer the readers to Appendix A for a collection of frequently-used identities of
the f-matrices and the ’t Hooft symbols,

1.2 (* (2) instanton solutions

1.2.1 �` in singular gauge

We have shown that f̄`a = 1
2 n`adf f̄df is self-dual, thus any �`a ∝ f̄`a is self-dual

and a solution to the self-dual Yang-Mills equation. To construct such a field strength,
onemight have guessed that the corresponding gauge potential �` likely also contains a
factor of f̄`a , i.e. �` ∝ f̄`a , where the extra index a is contracted with some other space-
time vector, say ma of some scalar field. This is a very good guess, except that it is in fact
more convenient to let �` ∝ f`a . We shall see later that such an �` can still lead to a field
strength tensor that is self-dual. So we consider the ansatz [1, 3]

�` (F) = Uf`amaq (F2) (1.31)



10 INSTANTONS IN QUANTUM FIELD THEORY

for some constant U. The F2 dependence is to emphasise the fact thatq does not depend
on any particular direction. This gauge potential gives the field strength

�`a = m`�a − ma�` + [�`, �a ] (1.32a)

= Ufadm`mdq − (` ↔ a) + U2 [f`d , faf ]mdqmfq. (1.32b)

The commutator of f`a is given by

[f`a , fdf ] = −2(X`dfaf + Xaff`d − X`ffad − Xadf`f ), (1.33)

which unsurprisingly looks like Lorentz algebra. So the term with the commutator be-
comes

− 2U2(X`afdf + Xdff`a − X`ffda − Xdaf`f )mdqmfq (1.34a)

= − 2U2
(
X`afdfmdqmfq

= 0

+f`a (mq)2 − fdamdqm`q − f`fmaqmfq
)

(1.34b)

= − 2U2f`a (mq)2 + (2U2fdamdqm`q − (` ↔ a)), (1.34c)

the first term in the second line vanishes because it’s a symmetric× antisymmetric prod-
uct. Now �`a is

⇒ �`a = (Ufadm`mdq + 2U2fdamdqm`q) − (` ↔ a) − 2U2f`a (mq)2 (1.35a)

= fad (Um`mdq − 2U2m`qmdq) − (` ↔ a) − 2U2f`a (mq)2, (1.35b)

And the dual field strength:

★�`a =
1
2 n`adf�df (1.36a)

= n`adfffg

(U
2mdmgq − U

2mdqmgq
)
− (d ↔ f) − U2n`adffdf (mq)2 (1.36b)

= Un`adfffgmdmgq − 2U2n`adfffgmdqmgq − U2n`adffdf (mq)2, (1.36c)

substitute in the anti-self-dual equation, f`a = −12 n`adffdf , we have

⇒ ★�`a = −12 n`adf nfgUVfUV (Umdmgq − 2U
2mdqmgq) + 2U2f`a (mq)2. (1.36d)

Using the n-X identity:

nf`ad nfgUV ≡ XgUV`ad ≡

������
Xg` Xga Xgd
XU` XUa XUd

X
V
` X

V
a X

V
d

������ = 2(Xg`XU[aX Vd] − Xga XU[`X Vd] + Xgd XU[`X Va]) , (1.37)
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we have

⇒ ★�`a = U
(
fadmdm`q − f`dmdmaq + f`am2q

)
(1.38a)

− 2U2(fadmdqm`q − f`dmdqmaq + f`a (mq)2) − 2U2f`a (mq)2 (1.38b)

= Ufadmdm`q − (` ↔ a) + 2U2f`dmdqmaq − (` ↔ a) + Uf`am2q. (1.38c)

Now equate �`a in equation (1.35b) with ★�`a in (1.38c). The coefficients of fad are triv-
ially the same. Matching coefficients of f`a give the equation

−2U (mq)2 = m2q. (1.39)

To solve this, let q = logk1/2U , then

(m logk )2 = −m2 logk, (1.40a)

⇒ k−1m2k = 0, (1.40b)

with general solution

k (F) = d2

(F − - )2
+� . (1.41)

Substitute everything back to the gauge potential �`:

�` =
1
2f`ama log

[
� + d2

(F − - )2

]
. (1.42)

We demand �` → 0 as F →∞, which requires� = 1. The final result is then

�` =
1
2f`ama log

[
1 + d2

(F − - )2

]
(1.43a)

=
1
2f`a

1
1 + d2

(F−- )2
· (−1) d2

((F − - )2)2
· 2(F − - )a (1.43b)

⇒ �` = −f`a
d2(F − - )a

(F − - )2 [(F − - )2 + d2]
. (1.44)

Or in terms of the ’t Hooft symbols (recall �` = �0`
g0

27 and f`a = 7[̄0`ag
0):

�0` = 2[̄0`a
d2(F − - )a

(F − - )2 [(F − - )2 + d2]
= −[̄0`ama log

[
1 + d2

(F − - )2

]
. (1.45)

This solution is knownas theBPST instanton [8], the9 = 1 instantonof the(* (2) theory.
To find the anti-instanton solution, replace f`a or [̄0`a with f̄`a or[0`a .
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Note equation (1.44) is the instanton solution in the fundamental representation
of (* (2), whereas no representation is specified in equation (1.45). Thus we may con-
tract�0` in equation (1.45)with someother representation) 0 to generate other instanton
solutions.

Also note amore general solution that solvesk−1m2k = 0 is

k (F) = 1 +
9∑
7=1

d2
7

(F − -7 )2
, (1.46)

these give rise to 9-instanton solutions.

Finally, the solution above is said to be in the singular gauge due to the singularity
at F = - . We now show that the singularity can be removed by a gauge transformation.

1.2.2 �` in regular gauge

Without loss of generality, first shift (F − - )` → F` in the definition of �`, so �` =

−f`ad2Fa/F2(F2 + d2). The singularity is now at F` = 0. Nowperform a gauge transforma-
tion �` →*�`*

−1 +*m`* −1, choosing

* (F) = 7
f̄`F`√
F2

, and * −1(F) =* †(F) = −7
f`F`√
F2

, (1.47a)

so that ** −1 =
1
F2
f̄`faF`Fa =

1
F2
(X`a + f̄`a

= 0

)F`Fa =
1
F2
F2 = 1, (1.47b)

The transformed gauge potential is

�` →*�`*
−1 +*m`* −1 (1.48a)

=
1
F2
f̄aFa

(
−f`d

d2Fd
F2 [F2 + d2]

)
f_F_

¬

− (m`* )* −1



, (1.48b)

the first term is

¬ = − 1
F4
f̄af`df_FaFdF_

d2

F2 + d2
= − 1

2F4 (f̄af`f̄df_ − f̄afd f̄`f_)FaFdF_
d2

F2 + d2
, (1.49a)

recall from equation (1.47b) that f̄afdFaFd = F2, then the above becomes

¬ = − 1
2F4F

2(f̄af`Fa − f̄`f_F_)
d2

F2 + d2
=
f̄`aFa

F2
d2

F2 + d2
. (1.49b)
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The second term in equation (1.48b) reads

 = (m`* )* −1 = m`
(
f̄aFa√
F2

)
fdFd√
F2

(1.50a)

=

(
f̄`√
F2
−
f̄aFaF`

(F2)3/2

)
fdFd√
F2

(1.50b)

=
f̄`fdFd

F2
−
f̄afdFaF`Fd

(F2)2
. (1.50c)

Apply the identity f̄`fa = X`a + f̄`a to the first term; and to simplify the second term,
recall again from equation (1.47b) that f̄afdFaFd = F2, then

⇒ (m`* )* −1 =
F` + f̄`dFd

F2
−
F2F`
F4

=
f̄`aFa

F2
. (1.51)

Substitute the above results back to equation (1.48b), we see the gauge transformed �`
is (we can shift F` back to (F − - )` again to find the expression in its most general form)

�` = (m`* )* −1
(

d2

(F − - )2 + d2
− 1

)
(1.52a)

= −
f̄`a (F − - )a
(F − - )2

(F − - )2
(F − - )2 + d2

. (1.52b)

We have now arrived at the final result

�` = −f̄`a
(F − - )a
(F − - )2 + d2

, (1.53)

or �0` = 2[0`a
(F − - )a
(F − - )2 + d2

. (1.54)

This is the standard formof BPST-instanton. Note if�` ∝ f`a in regular gauge, then
�` ∝ f̄`a in singular gauge. More interestingly, �` in regular gauge has a 1/@ falls off at
large distance, whereas�` in singular gauge in equation (1.44) has a 1/@ 3 fall off. Howdid
this happen? Looking back to our derivation, we see that the gauge term (m`* )* −1 ∼ 1

|F | ,
whereas the*�`* −1 ∼ − 1

|F |
d2

F2+d2 , sowhenwe combine these two terms, we have∼ 1
|F | (1−

d2

F2+d2 ) ∼
1
|F | .

Physical observables are of course gauge independent, so the seemingly slower fall
off of �` in regular gauge has no physical effect. It only means that in practical calcula-
tions each individual term containing �` in regular gauge may appear to fall off slowly.
But when we combine all the contributing terms, the final answer should give the same
large distance behaviour as if we had used the singular gauge from the start. With sin-
gular gauge, however, each individual piece always fall off as 1/@ 3, whichmakes the con-
vergence of various integralsmore apparent. For this reasonwemost often use the form
of �` in singular gauge in this report.
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1.2.3 �`a in regular gauge

Now for the field strength tensor �`a in standard form (set - ` = 0 again):

�`a = m`�a − ma�` + [�`, �a ] (1.55a)

= −f̄a_m`
(

F_

F2 + d2

)
− (` ↔ a) +

F_Fd

(F2 + d2)2
[f̄`_, f̄ad ] (1.55b)

= −f̄a_
X`_

F2 + d2
+ 2f̄a_

F_F`

(F2 + d2)2
− (` ↔ a)+ (1.55c)

+
F_Fd

(F2 + d2)2
(−2)©«X`a f̄_d= 0

+X_d f̄`a − X`d f̄_a − X_a f̄`d
ª®¬ (1.55d)

= −f̄a`
1

F2 + d2
+
���

���
���:¬

2f̄a_
F_F`

(F2 + d2)2
+ f̄`a

1
F2 + d2

−
���

���
���:

2f̄`_
F_Fa

(F2 + d2)2
(1.55e)

− 2
(F2 + d2)2

(
f̄`aF

2 −����
�:¬

f̄_aF_F` −����
�:

f̄`dFaFd

)
(1.55f)

= 2f̄`a
1

F2 + d2
− 2f̄`a

F2

(F2 + d2)2
, (1.55g)

⇒ �`a = 2f̄`a
d2

((F − - )2 + d2)2
. (1.56)

or � 0`a = −4[0`a
d2

((F − - )2 + d2)2
. (1.57)

1.2.4 �`a in singular gauge

To find �`a in the singular gauge, reverse the gauge transformation with* = 7
f̄`F`√
F2

�`a →* −1�`a* =
f_F_√
F2

�`a
f̄dFd√
F2

=
2d2

F2(F2 + d2)2
f_f̄`a f̄dF_Fd , (1.58)

focus on the (f_f̄`a f̄dF_Fd ) term. Use the identity given in equation (A.20),

f`f̄ad = X`afd − X`dfa + n`adfff , (1.59)

then

f_f̄`a f̄dF_Fd = (X_`fa − X_af` + n_`afff )f̄dF_Fd (1.60a)
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= F`Fdfa f̄d − FaFdf`f̄d + n_`afff f̄dF_Fd (1.60b)

= F`Fd (��Xad + fad ) − FaFd (��X`d + f`d ) + n_`af (Xfd + ffd )F_Fd (1.60c)

= F`Fdfad − FaFdf`d + n_`afF_Ff
= 0

−12 n_`af nfdUVfUVF_Fd (1.60d)

= F`Fdfad − FaFdf`d + (X d_ X
U
[`X

V

a] − X
d
`X

U
[_X

V

a] + X
d
a X

U
[_X

V

`])fUVF_Fd (1.60e)

= F`Fdfad − FaFdf`d + F2f[`a] − F_f[_a]F` + F_f[_`]Fa (1.60f)

= 2F`Fdfad − 2FaFdf`d + F2f`a . (1.60g)

Substitute the result into the original expression, we find �`a in singular gauge (singular-
ity at - ` = 0) is

�`a =
2d2

(F2 + d2)2
(
f`a + 2fad

F`Fd

F2
− 2f`d

FaFd

F2

)
, (1.61)

or � 0`a = − 4d2
(F2 + d2)2

(
[̄0`a + 2[̄0ad

F`Fd

F2
− 2[̄0`d

FaFd

F2

)
. (1.62)

It is not apparent that �`a is self-dual since it contains f`a . But of course, self-duality is
gauge-invariant, so

★�`a ∼
1
2 n`a_f

(
f_f + 2ffd

F_Fd

F2
− 2f_d

FfFd

F2

)
(1.63a)

= −f`a −
1
2 n`a_f nfdUVfUV

F_Fd

F2
+ 12 n`a_f n_dUVfUV

FfFd

F2
(1.63b)

= −f`a + nf`a_nfdUVfUV
F_Fd

F2
(1.63c)

= −f`a + 2(X d`XU[aX
V

_] − X
d
a X

U
[`X

V

_] + X
d

_
XU[`X

V

a])fUV
F_Fd

F2
(1.63d)

= −f`a + 2fa_
F_F`

F2
− 2f`_

F_Fa

F2
+ 2f`a (1.63e)

= f`a + 2fa_
F`F_

F2
− 2f`_

FaF_

F2
(1.63f)

∼ �`a , (1.63g)

as expected. Alternatively, as an exercise of working with ’t Hooft symbols, wemay show
directly that � 0`a is self-dual. We will need to use the following identity:

n`adg[̄
0
fg = −Xf`[̄0ad + Xfa[̄0`d − Xfd[̄0`a , (1.64)
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then

★� 0`a ∼
1
2 n`a_f

(
[̄0_f + 2[̄0fd

F_Fd

F2
− 2[̄0_d

FfFd

F2

)
(1.65a)

=
1
2 n`a_f[̄

0
_f − 2n`a_f[̄0df

F_Fd

F2
(1.65b)

= −[̄0`a − 2(−Xd`[̄0a_ + Xda[̄0`_ − Xd_[̄0`a )
F_Fd

F2
(1.65c)

= −[̄0`a + 2[̄0a_
F_F`

F2
− 2[̄0`_

F_Fa

F2
+ 2[̄0`a (1.65d)

= [̄0`a + 2[̄0a_
F_F`

F2
− 2[̄0`_

F_Fa

F2
(1.65e)

∼ � 0`a , (1.65f)

as desired.

1.2.5 Collective coordinates

We see the solution �` (F) is not only a function of F`, the coordinate inℝ4. �` de-
pends on a number of other parameters, called collective coordinates. These are coor-
dinates on themoduli spaceM9 , the space of inequivalent (i.e. equivalent up to local
gauge transformation) solutions to the (anti)-self-dual Yang-Mills equation. In our case,
the collective coordinates are

• One d : Interpreted as the size of the instanton, sometimes also called the dilatation
parameter;

• Four - `: The instanton solutions are localised somewhere inℝ4, and - ` labels the
centre of the instanton;

• Three* : Although not obvious, there are also three global/rigid gauge transforma-
tions. Being global they are genuine symmetry transformations that generate new
solutions, and not just gauge artefacts.

Note that, in the current case of (* (2) instanton, there is clear physical interpretation
of most of the collective coordinates: d is the size and - ` the position in ℝ4 where the
instanton solution is localised somewhere inℝ4. But in the more general case of (* (# )
instantons or instantons of other arbitrary gauge group,whilewe still expect the solution
�` to be a function of F` ∈ ℝ3 and collective coordinates, the collective coordinatesmay
not have a clear physical interpretation.
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Note the existence of the collective coordinates break several symmetries: The di-
latationbreaks theglobal conformal symmetry, thepositionsbreak the translational sym-
metry, and the gauge orientations break the global gauge symmetry. The collective co-
ordinates can then be interpreted as the ‘Goldstonemodes’. The idea shouldn’t be taken
too far, and no such interpretation exists for instanton solutions with |9 | ≠ 1.

Finally note we used the winding number 9 to label the moduli spaceM9 . Instan-
ton solutions with different windings 9 have altogether different collective coordinates.
A recurring theme of this report is to count the number of collective coordinates on the
moduli space of a 9-instanton solution. We shall show in the next subsection, using
group theoretic method, that the number of collective coordinates in the moduli space
of a 9 = 1 (* (# ) (anti-)instanton is 4# . For the 9 ≠ 1 case, the number of collective co-
ordinates is in fact 4# |9 |, whichwe later showusing twomethods, once from the ADHM
construction, and once from zero-mode counting.

Let’s use this opportunity to calculate 9 . Recall having a finite action requires �`a
to fall off quickly. But then howdowe know 9 ∼ �`a ★�`a wouldn’t vanish? Let’s calculate
9 with our instanton solution. Use �`a in regular gauge:

9 = − 1
16c2

∫
34F tr�`a ★ �`a (1.66a)

= − 1
16c2

∫
34F

4d4
[(F − - )2 + d2]4

tr f̄`a f̄`a (1.66b)

= − 4d4
16c2Vol(3

∫
3@

@ 3

(@ 2 + d2)4
1
2 tr{f̄`a , f̄`a }, (1.66c)

now use

{f̄`a , f̄df } = −2(X`dXaf − X`fXad + n`adf )�2×2, (1.67a)∫
3@

@ 3

(@ 2 + d2)4
=

1
12d4 , (1.67b)

and Vol(3 = 2c2, (1.67c)

we have

⇒ 9 =
8c2d4
32c2

1
12d4 · 2(X``Xaa

= 16

− X`aX`a
= 4

+ n`a`a
= 0

) tr �2×2 = 1. (1.68)



18 INSTANTONS IN QUANTUM FIELD THEORY

1.2.6 (* (2) embeddings in (* (# )

(* (3) instantons

Let’s brieflydiscuss(* (# ) instantons. Startwith(* (3), whose instanton solutions
can be very easily obtained by embedding (* (2) instantons in 3 × 3matrices, say

�
(* (3)
` =

(
�
(* (2)
` 0
0 0

)
. (1.69)

More explicitly, recall the generators for (* (3) are the eight Gell-Mannmatrices _0 :

_1 =
©«
0 1 0
1 0 0
0 0 0

ª®¬, _2 =
©«
0 −7 0
7 0 0
0 0 0

ª®¬, _3 =
©«
1 0 0
0 −1 0
0 0 0

ª®¬, _4 =
©«
0 0 1
0 0 0
1 0 0

ª®¬,
_5 =

©«
0 0 −7
0 0 0
7 0 0

ª®¬, _6 =
©«
0 0 0
0 0 1
0 1 0

ª®¬, _7 =
©«
0 0 0
0 0 −7
0 7 0

ª®¬, _8 = 1√
3
©«
1 0 0
0 1 0
0 0 −2

ª®¬.
(1.70)

Thefirst three_0 forman(* (2) subalgebra. Sowemay take�0`_0 ,0 = 1, 2, 3,where�0` are
the BPST solutions either in singular gauge (equation (1.45)) or standard form (equation
(1.54)), and this gives the (* (3) solution above, with 9 = 1.

Now let’s count the number of collective coordinates. The (* (2) instanton comes
with the usual size and four positions as usual. However, this time the number of global
gauge transformations, �(* (3)` → *�

(* (3)
` * †, has changed, as we can act _0 for 0 =

1, 2, . . . , 7 on �(* (3)` and they all generate new solutions. Only _8 trivially commutes with
the gauge field. So this time we have 1 + 4 + 7 = 12 collective coordinates.

By the way, there is another way to fit �(* (2)` into a 3 × 3 matrix. Recall the adjoint
representationof(* (2), definedby (B 1 )02 = 5012 = n012 , is 3-dimensional, and thuscalled
3. The generators take the form

B 1 =
©«
0 0 0
0 0 −1
0 1 0

ª®¬, B 2 =
©«
0 0 1
0 0 0
−1 0 0

ª®¬, B 3 =
©«
0 −1 0
1 0 0
0 0 0

ª®¬. (1.71)

Contract theBPSTsolution�0`with theadjoint generators B 0 givesadifferent embedding.
Now note that tr(B 0B 1 ) = −2, is four times larger compared to the case with fundamental
representation. Since9 is proportional to tr(B 0B 1 ) , itmeans the9-value for this construc-
tion is four times larger, i.e. 9 = ±4,with+ sign for instantonand− sign foranti-instanton.

(* (# ) instantons

More generally, one can simply embed (* (2) instantons in the fundamental rep-
resentation into# × # matrices to generate (* (# ) instanton solutions in the following
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way:

�
(* (# )
` =

(
�
(* (2)
` 0
0 0

)
. (1.72)

Onecangenerateother gaugeconfigurationsbyacting(* (# ) elementson�(* (# )` above,
but doing so does not necessarily generate new solutions. For example, an element act-
ing only on the lower right 0’s certainly leaves the configuration invariant; alternatively
the* (1) that commutes with the (* (2) embedding also does not change the configura-
tion. Sowehave a stability group(* (# −2) ×* (1) that only acts trivially on our solution.
Dividing the group out, themost general �(* (# )` can be written as

�
(* (# )
` =*

(
�
(* (2)
` 0
0 0

)
* †, * ∈ (* (# )

(* (# − 2) ×* (1) . (1.73)

We now count the number of the collective coordinates. The number of global
gauge transformations in (* (# )/((* (# − 2) ×* (1)) is

# 2 − 1 − ((# − 2)2 − 1 + 1) = 4# − 5, (1.74)

together with the five coordinates from the (* (2) instanton (one size, four positions),
we conclude the total number of collective coordinates for one (* (# ) instanton (9 = 1)
is 4# .

We can embed other representations) 0 of (* (2) into (* (# ), provided that it fits
into the # × # matrix. Doing so generate solutions with higher values of |9 |. Recall the
action and the winding number 9 are proportional to tr() 0) 1

) , which is proportional to
� (') dim' (see, for example, Ref. [9]), where for a spin-8 representation, the quadratic
Casimir is� (') = 8 (8+1), anddim' is thedimensionof the representation, dim' = 28+1.
So 9 ∝ 8 (8 + 1) (28 + 1). To find the proportionality constant, recall for the fundamental
representation of (* (2), 8 = 1/2 and 9 = ±1. This means

9 = ±23 8 (8 + 1) (28 + 1). (1.75)

For example, as we have seen with (* (3), we could embed in the 2, a.k.a. the fun-
damental, a.k.a. the 8 = 1

2 representation of (* (2), which gives 9 = ±1; or we could fit
the 3, or 8 = 1, or the adjoint representation, which gives 9 = ±4.

With (* (4), on top of the |9 | = 1 and 4 solutions, we can now fit 4, a 4 × 4 matrix,
corresponding to the 8 = 3

2 representation of (* (2). This gives 9 = ±10. Additionally, we
can also fit two 8 = 1

2 representations in block diagonal form, i.e. 8 = 1
2 ⊕

1
2 , corresponding

to 9 = ±2.

With (* (5), we can fit 2,3,4,5, corresponding to 8 = 1
2 , 1, 32 , 2, and therefore |9 | =

1, 4, 10, 20 respectively. Or we can fit in 8 = 1
2 ⊕

1
2 or 8 = 1

2 ⊕ 1, corresponding to |9 | = 2, 5
respectively.
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We can keep going. However, it turns out that for large instanton numbers, not all
instantons can be constructed from such embedding method. The most general way to
construct any instantons is called the ADHMconstruction, whichwe briefly study in the
next subsection, Chapter 1.3.

Finally,wecanembedmultiple(* (2) solutions in thediagonalof an(* (# )matrix,
which we do not discuss in detail. These are valid solutions that give finite action, but
immediately we see that they do not have to be self-dual or anti-self-dual. For example,
wemay embed an (* (2) instanton �+` and an anti-instnaton �−` into an (* (4)matrix, to
get

�
(* (4)
` =

(
�+` 0
0 �−`

)
, (1.76)

which is neither self-dual or anti-self-dual. In general, if one embeds 9+ instantons and
9− anti-instantons into the diagonal of (* (# ), which is possible if 2(9+ + 9−) 6 # , we
have the action given by ( = 8c2

6 2 (9+ + 9−), and the winding number 9+ − 9−.

1.3 ADHM construction

1.3.1 Overview

In this subsection we study the ADHM construction, named after Michael Atiyah,
Vladimir Drinfeld, Nigel Hitchin and Yuri I. Manin [10]. The ADHM construction gives
thegeneral solution to the (anti-)self-dual equation�`a = ±★�`a withwinding/instanton
number 9 ,

9 = − 1
16c2

∫
34F tr�`a ★ �`a . (1.77)

We consider anti-self-dual solutions in this subsection. Recall that since, for exam-
ple,f`a is anti-self-dual, any�`a proportional tof`a satisfies the anti-self-dual equation.
The idea of the ADHM construction is to find themost general �` that gives rise to such
�`a ∝ f`a . To this end, first introduce (# +29 ) ×29 complexmatrixΔ(F), whose elements
are taken tobe linear in F`. Wewill label thematrices by their dimensions insteadof their
indices, and contracted indices are represented by underscores:

Δ(F) ≡ Δ[#+29 ]×[29 ] (F) ≡ Δ[#+29 ]×[9 ]×[2] (F) = 0 [#+29 ]×[9 ]×[2] + 1 [#+29 ]×[9 ]×[2] F [2]×[2] .
(1.78)

We represented the [29 ] index as a product [9 ] × [2] and have used a quaternionic rep-
resentation of F`:

F [2]×[2] = FU ¤U = F`f
`
U ¤U . (1.79)
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It follows that m`Δ = 1f`. Now we consider the nullspace of the Hermitian conjugate
Δ̄[29 ]×[#+29 ] (F), let thenullspacebe spannedby somecomplexmatrix* , so Δ̄* = *̄Δ = 0.
What shouldbe thedimensionof* ? Itmusthave# +29 rows to contractwith Δ̄, butwhat
should be the number of columns? Each column of* is basically a vector D such that
Δ̄D = 0, the number of such D is the dimension of the nullspace (or kernel) of Δ̄, which is
given by the rank-nullity theorem as

rank(matrix) + dim(kernel of matrix) = dim(vector space). (1.80)

Here the dim(vector space) is # + 29 , and recall the rank of a matrix is the number of
linearly independent rows (or columns, the twonumbers are always equal) of thematrix;
if we view amatrix as a linearmap, the rank is also the dimension of its image. The rank-
nullity theorem basically comes from the fact that image = domain/kernel. Consider a
matrix" as a linearmap+ →, , then everyD ∈ + has to be eithermapped to 0, inwhich
case D ∈ ker" ; or D is mapped to a nonzero element, in which case"D ∈ im" . Recall
dim im" = rank" , so the theorem is proved.

In our case,Δ is a (# +29 ) ×29 matrix, the number of linearly independent rows (or
columns) is atmost 29 . In fact, it has tobeexactly 29 , so all columnsofΔhas tobe linearly
independent, for the solution �`a to be a non-singular matrix [11]. So Δ(F) has rank 29
for each value of F . Then from the rank-nullity theorem, the nullspace is# -dimensional,
and* (F) has to be (# + 29 ) ×# matrices to contain the# basis vectors of the nullspace:

Δ̄[29 ]×[#+29 ] *[#+29 ]×[# ] = 0 = *̄[# ]×[#+29 ] Δ[#+29 ]×[29 ] . (1.81)

We normalise* as

*̄[# ]×[#+29 ] *[#+29 ]×[# ] = 1[# ]×[# ] . (1.82)

We then construct the classical gauge field as

�
`

[# ]×[# ] = *̄[# ]×[#+29 ] m`*[#+29 ]×[# ] , (1.83)

note that when 9 = 0, �` is a pure gauge, which we know satisfies the self-dual equa-
tion/givefinite action. TheADHMansatz is that, the above gaugefield continues to solve
the instanton equation, provided the additional factorisation condition

Δ̄[2]×[9 ]×[#+29 ] Δ[#+29 ]×[9 ]×[2] = 1[2]×[2] 5 −1[9 ]×[9 ] (F) (1.84)

is satisfied for some hermitian 5 (F).

To check that this construction gives the desired instanton solution, first note that
theaboveequation, pairedwith thenullspaceequation, equation (1.81), implies thecom-
pleteness relation,

Δ[#+29 ]×[9 ]×[2] 5 [9 ]×[9 ] Δ̄[2]×[9 ]×[#+29 ] = 1[#+29 ]×[#+29 ] −*[#+29 ]×[# ] *̄[# ]×[#+29 ] . (1.85)
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We can verify this relation is correct by either multiplying both sides by Δ on the right or
by Δ̄ on the left. Then the field strength is

1
2�`a = m[`�a] + �[`�a] (1.86a)

= m[` (*̄ ma]* ) + (*̄ m[`* ) (*̄a]* ) (1.86b)

(m` (*̄* ) = 0) = m[` (1 −**̄ )ma]* (1.86c)

(completeness relation) = m[`*̄Δ5 Δ̄ma]* (1.86d)

(m` (*̄Δ) = m` (Δ̄* ) = 0) = *̄ m[`Δ5 ma]Δ̄* (1.86e)

(m`Δ = 1f`) = *̄1f[`f̄a] 5 1̄* (1.86f)

= *̄1f`a 5 1̄* , (1.86g)

which is proportional to f`a , meaning �`a is anti-self-dual as desired.

1.3.2 ADHM constraints

To bemore explicit, let’s now introduce various indices:

Instanton number indices [9 ] : 7 , 8 , : , · · · = 1, . . . 9 ,

Colour indices [# ] : C,D, · · · = 1, . . . # ,

ADHM indices [# + 29 ] : 0, 1, · · · = 1, . . . # + 29,

Quaternionic (Weyl) indices [2] : U, V, ¤U, ¤V, · · · = 1, 2,

Lorentz indices [4] : `,a, · · · = 1, 2, 3, 0 or 1, 2, 3, 4.

(1.87)

The indices in Δ, 0 and 1 are splitted into [29 ] = [9 ] × [2] = 7 ¤U etc. Then equation (1.78)
with indices reads

Δ07 ¤U (F) = 007 ¤U + 1V07FV ¤U , Δ̄ ¤U07 (F) = 0̄
¤U0
7 + F̄

¤UU1̄0U7 , (1.88)

where the factorisation condition (1.84) reads

Δ̄
¤V0
7
Δ0 8 ¤U = X

¤V
¤U ( 5
−1)7 8 . (1.89)

Expand Δ and Δ̄, the left hand side becomes

(0̄ ¤V0
7
+ F̄ ¤VV1̄0V7 ) (00 8 ¤U + 1

V

0 8
FV ¤U) = 0̄

¤V0
7
00 8 ¤U

¬

+ 0̄ ¤V0
7
1
V

0 8
FV ¤U + F̄

¤VV1̄0V700 8 ¤U



+ F̄ ¤VV1̄0V71
U
0 8FU ¤U

®

, (1.90)
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wemust have

¬ = 0̄
¤V0
7
00 8 ¤U ≡

1
2 (0̄0)7 8X

¤V
¤U ∝ X

¤V
¤U , (1.91)

where we defined 0̄000 ≡ 1
2 0̄0 , which contributes to the arbitrary function 5 −1. The sec-

ond term is

 = 0̄
¤V0
7
1
V

0 8
FV ¤U + F̄

¤VV1̄0V700 8 ¤U (1.92a)

= F`f
`

V ¤U0̄
¤V0
7
1
V

0 8
+ F`f̄` ¤VV1̄0V700 8 ¤U (1.92b)

(f̄` ¤VV = n
¤V ¤W nVWf`W ¤W ) = F`

(
f
`

V ¤U0̄
¤V0
7
1
V

0 8
+ f`W ¤W n

¤V ¤W nVW 1̄0V700 8 ¤U
)

(1.92c)

(1̄W = nWV1̄V , 0 ¤U = n ¤U ¤X0
¤X ) = F`

(
f
`

V ¤U0̄
¤V0
7
1
V

0 8
− f`

V ¤W n
¤V ¤W n ¤U ¤X 1̄

0V

7
0
¤X
0 8

)
(1.92d)

(n ¤V ¤W n ¤U ¤X = X
¤W
¤U X
¤V
¤X − X

¤V
¤U X
¤W
¤X ) = F`

(
f
`

V ¤U0̄
¤V0
7
1
V

0 8
− f`

V ¤U1̄
0V

7
0
¤V
0 8
+ X ¤V¤Uf

`

V ¤W 1̄
0V

7
0
¤W
0 8

)
(1.92e)

= F`f
`

V ¤U

(
0̄
¤V0
7
1
V

0 8
− 1̄0V

7
0
¤V
0 8

)
+ X ¤V¤U (1̄f

`0)7 8 , (1.92f)

again this must be proportional to X ¤V¤U 5 −1. We see that 1̄f`0 contributes to the arbitrary
function 5 −1, whereas the first bracketed termmust vanish. That is,

0̄ ¤07 1
V

0 8
= 1̄

V0

7
0 ¤U0 8 . (1.93)

The third term is

® = F
¤VV1̄0V71

U
0 8FU ¤U = F̄`Fa f̄`

¤VVfaU ¤U1̄
0
V71

U
0 8 , (1.94)

the only way to massage this term into the form X
¤V
¤U 5
−1 is if we could contract the two

sigmamatrices, so that f̄` ¤VVfaU ¤U ∼ X
¤V
¤U ; to do this we need to contract U and V, this is only

possible if (defining the inner product 1̄010 ≡ 1
21̄1 similar to the case for 0̄0)

1̄0V71
U
0 8 =

1
2 (1̄1)7 8X

U
V , (1.95)

then

® =
1
2 (1̄1)7 8F

`Fa f̄`
¤VUfaU ¤U =

1
2 (1̄1)7 8F

`Fa (f̄`a

= 0
−X`a ) ¤V¤U = −12 (1̄1)7 8F

2X
¤V
¤U . (1.96)

In summary, the factorisation condition contains in fact three conditions:

0̄ ¤U07 00 8 ¤V =
1
2 (0̄0)7 8X

¤U
¤V ∝ X

¤U
¤V , (1.97a)

0̄ ¤U07 1
V

0 8
= 1̄

V0

7
0 ¤U0 8 , (1.97b)
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1̄0U71
V

0 8
=
1
2 (1̄1)7 8X

V
U ∝ X

V
U . (1.97c)

These are theADHMconstraints. Note this is the same condition as requiring 0̄0, 1̄1, 1̄0
to be symmetric, 9 × 9 quaternionicmatrices (but this is not the same as requiring them
to be symmetric as 29 × 29 complex matrices) [11]. Note that we may expand the first
constraint as

0̄
¤1
7 0 8 ¤2 = 0, (1.98a)

0̄
¤2
7 0 8 ¤1 = 0, (1.98b)

0̄
¤1
7 0 8 ¤1 = 0̄

¤2
7 0 8 ¤2 =

1
2 (0̄0)7 8 , (1.98c)

we could summarise the three relations as

tr2(g2 0̄0)7 8 = g2
¤V
¤U 0̄
¤U
7 0 8 ¤V = 0, (1.99)

where g2 are the Pauli matrices. Check: For 2 = 1, 2, 3 respectively, the above reads

(g2 = g1) 0̄
¤1
7 0 8 ¤2 + 0̄

¤2
7 0 8 ¤1 = 0, (1.100a)

(g2 = g2) 0̄
¤1
7 0 8 ¤2 − 0̄

¤2
7 0 8 ¤1 = 0, (1.100b)

(g2 = g3) 0̄
¤1
7 0 8 ¤1 − 0̄

¤2
7 0 8 ¤2 = 0, (1.100c)

which is the same as equation (1.98) above.

1.3.3 Canonical form

(Recall we use ¯ and † both to denote Hermitian conjugate.)

The 0 and 1 in ADHM construction are highly redundant sets. This can be seen
from the fact that, on topof theusual spacetimeandgauge symmetries, the construction
is unaffected by the following F-independent transformations:

Δ[#+29 ]×[9 ]×[2] → Λ[#+29 ]×[#+29 ] Δ[#+29 ]×[9 ]×[2] �
−1
[9 ]×[9 ] , (1.101a)

*[#+29 ]×[# ] → Λ[#+29 ]×[#+29 ] *[#+29 ]×[# ] , (1.101b)

5 [9 ]×[9 ] → � [9 ]×[9 ] 5 [9 ]×[9 ] �̄ [9 ]×[9 ] , (1.101c)

whereΛ ∈ * (# +29 ) and� ∈ �: (9,ℂ). Check that thenullspace equation, normalisation
of* and the factorisation condition are satisfied under these transformations:

0 = Δ̄* → �̄−1Δ̄Λ̄Λ* = �̄−1Δ̄* = 0, (1.102a)
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0 = *̄Δ→ *̄ Λ̄ΛΔ�−1 = *̄Δ�−1 = 0, (1.102b)

1 = *̄* → *̄ Λ̄Λ* = *̄* = 1, (1.102c)

5 −1 = Δ̄Δ→ �̄−1Δ̄Λ̄ΛΔ�−1 = �̄−1Δ̄Δ�−1 = (� 5 �̄)−1, (1.102d)

all as desired.

Now recall the notion of equivalence class of matrices: Two; × < matrices � and
� are in the same equivalence class if

� = %�&, (1.103)

for some invertible; ×; matrix % and < × < matrix& . (This is not to be confused with
the more advanced notion of similar matrices, where two square matrices � and � are
similar if � = (�(−1 for some invertible ( .) A basic result in linear algebra is that every
non-singular matrix of a certain rank is in the same equivalent class as the matrix in the
canonical form, which has only 1’s and 0’s in its ‘diagonal elements’, and the number of
1’s is equal to the rank of the matrix. We will see an example directly below in equation
(1.104).

Recall Δ(F) has rank 29 , i.e. its 29 columns vectors are all linearly independent of
each other for each value of F . We cannot put Δ(F) into canonical form due to the F-
dependence, but from Δ = 0 + 1F , and the symmetry transformation Δ → ΛΔ�−1, we
can choose a constant matrix in Δ—either 0 or 1—and put it in its canonical form. We
choose 1 , so that in this representation:

1 [#+29 ]×[29 ] =

(
0[# ]×[29 ]
1[29 ]×[29 ]

)
, 0 [#+29 ]×[29 ] =

(
E [# ]×[29 ]

0′[29 ]×[29 ]

)
. (1.104)

Nowwe decompose the ADHM index 0 ∈ [# + 29 ] into

0 = C + :W , C = 1, . . . , # , : = 1, . . . , 9 , W = 1, 2, (1.105)

note thatW is on the same footings as the quaternionic indices U, V, . . . , in the sense that
W , along with U, V, . . . are raised or lowered with the same n tensors. The locations of the
[# ] and [9 ] indices do not matter. We see that, for the top [# ] × [29 ] submatrices in
equation (1.104), the [# ] are labelled by C ; for the bottom [29 ] × [29 ] submatrices, the
[29 ] rows are indexed by the pair :W ∈ [9 ] × [2], similar to how the [29 ] columns are
labelled by U7 (or ¤U7 etc.) ∈ [9 ] × [2]. More explicitly,

007 ¤U = 0C+:W7 ¤U = EC7 ¤U + (0′W ¤U):7 =
(
EC7 ¤U

(0′W ¤U):7

)
, (1.106a)

0̄ ¤U07 = 0̄
¤U (C+:W )
7

= Ē ¤U7C + (0̄
′ ¤UW )7: =

(
Ē ¤U
7C
(0̄′ ¤UW )7:

)
, (1.106b)

1U07 = 1
U
(C+:W )7 = X

U
W X:7 =

(
0

XUW X:7

)
, (1.106c)
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1̄0U7 = 1̄
C+:W
U7

= X
W
U X7: =

(0 X
W
U X7:

)
. (1.106d)

Nowwe review the three ADHM constraints in equation (1.97). With our simple form of
1 , the third constraint is automatically satisfied:

1̄0U71
V

0 8
=

(0 X
W
U X7:

) ( 0
X
V
W X8 :

)
= X

V
U X7 8 , (1.107)

proportional to X VU as desired. Recall the second constraint is 0̄ ¤U07 1
V

0 8
= 1̄

V0

7
0 ¤U
0 8
, the left

hand side reads

0̄ ¤U07 1
V

0 8
=

(
Ē ¤U
7C
(0̄′ ¤UW )7:

) ( 0
X
V
W X: 8

)
= (0̄′ ¤UV)7 8 , (1.108)

the right hand side reads:

1̄
V0

7
0 ¤U0 8 = nVU n ¤U

¤V1̄0U700 8 ¤V = nVU n ¤U
¤V (0 X

W
U X7:

) ( EC8 ¤V

(0′
W ¤V): 8

)
= nVU n ¤U

¤V (0′
U ¤V)7 8 = (0

′ ¤UV)7 8 . (1.109)

Wemay expand

0′ ¤UV = 0′`f̄` ¤UV , note also 0′V ¤U = 0′`f`
V ¤U , (1.110)

then the second constraint reduces to (0′`)7 8 = (0̄′`)7 8 ≡ (0′`)†7 8 .

Wemay also expand the first constraint

0̄ ¤U07 00 8 ¤V = Ē ¤U7CEC8 ¤V + (0̄′
¤UV)7: (0′V ¤V): 8 ∝ X

¤U
¤V , (1.111)

which is not terribly illuminating. We will keep writing the first constraint as tr2(g2 0̄0) =
0 as in equation (1.99). In summary, the ADHM constraints now read:

tr2(g2 0̄0)7 8 = 0, (1.112a)

(0̄′`)7 8 = 0′`7 8 . (1.112b)

1.3.4 Solution counting

Recall from the symmetry transformations of the construction (equation (1.101))
that the symmetry group is* (# + 29 ) ×�: (9 ,ℂ). Note the* (9 ) subgroup preserves the
canonical form of 1 :

Δ[#+29 ]×[29 ] →
(
1[# ]×[# ] 0[29 ]×[# ]
0[# ]×[29 ] R̄ [29 ]×[29 ]

)
Δ[#+29 ]×[29 ] R [29 ]×[29 ] , (1.113)
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where R [29 ]×[29 ] = '7 8X
¤V
¤U and '7 8 ∈ * (9 ). Check:

1 =

( 0
XU
V
X:7

)
→

( 0
'̄:>X>?'?7X

U
V

)
X
¤V
¤W X
¤W
¤U =

( 0
'̄:>'>7X

U
V

)
X
¤V
¤U =

( 0
X:7X

U
V

)
X
¤V
¤U , (1.114)

we find an extra X ¤V¤U , but this acts as the identity matrix on f`U ¤U when it contracts with 1U ,
so the form of 1Uf`U ¤U is unchanged.

E and 0′ in 0 do change from this residual transformation:

0 =

(
EC7 ¤U

(0′
V ¤U):7

)
→

(
EC8 ¤U' 8 7

'̄:> (0′V ¤U)>?'?7

)
, (1.115)

but this does not affect any physical result as neitherE or 0′ showup in the field strength
tensor �`a , which only depends on 1 . And being a symmetry transformation, one can
check that theADHMconstraints areunaffected: 0̄′ = 0′ is still true, and 0̄0 = ĒE+0̄′0′→
'̄ĒE' + '̄ 0̄′''̄0′' = '̄ (ĒE + 0̄′0′)' = '̄� ' = � is also as expected.

Sowe found the residual gaugesymmetrygroup is* (9 ). Thephysicalmoduli space
of self-dual gauge configurations with winding number 9 ," 9

phys, is then the space" 9 of
all solutions to the ADHM constraints, quotient the residual symmetry group* (9 ):

" 9
phys = "

9/* (9 ). (1.116)
We’re now ready to count the dimension of themoduli space of ADHM instantons,

i.e. the number of independent collective coordinates. All degrees of freedom are en-
coded in the complexmatrix 0 [#+29 ]×[29 ] , which in general would have 4|9 | (# +2|9 |) real
degrees of freedom. We already know that the residual* (9 ) symmetry removes 92 de-
grees of freedom.

Now consider the first ADHM constraint, tr2(g2 0̄0), it contains three sets of equa-
tions for 2 = 1, 2, 3, each set contains 92 equations for 7 , 8 = 1, . . . , 9 (this is perhapsmost
clear when written in expanded form, as in equation (1.98)), so it imposes 392 real con-
straints. The second constraint, written in the form of (0̄′`)7 8 = 0

′`
7 8
, we see there are 92

equations for each value of ` = 1, 2, 3, 4, therefore there are 492 real constraints in total.
In total the number of degrees of freedom left is

4|9 | (# + 2|9 |) − 392 − 492 − 92 = 4# |9 | (1.117)
realdegreesof freedom. This is thenumberof collectivecoordinates fora(* (# )-instanton
solution with winding number ±9 .

1.4 Zeromodes

Wemaydeformaroundour instanton solution�` by�` → �`+q . The correspond-
ing equation of motion that is linear in q are the zero-mode equations. Zeromodes are



28 INSTANTONS IN QUANTUM FIELD THEORY

normalisable deformationsq that solve these linearised field equations, they also donot
increase the value of the action. We shall see a close relationship between zero modes
and collective coordinates. In particular, the number of zeromodes is equal to the num-
ber of collective coordinates. Later, we will also see how one can use zeromodes to con-
struct a metric for themoduli space of solutions.

1.4.1 Zero-mode equations from the field equation

A zero mode is a normalisable solution to the linearised field equation. First note
the (anti-)self-dual Yang-Mills equation can be written

�`a = ±12 n`adf�df , (1.118a)

⇒ m`�a − ma�` + (�`�a − �a�`) = ±
1
2 n`adf (md�f − mf�d + (�d�f − �f�d )), (1.118b)

⇒ (m` + �`)�a − (ma + �a )�` = ±n`adf (md + �d )�f . (1.118c)

Now linearise the equation: Perturb around a solution �` → �` + X�` ≡ �` + q` which is
also a solution to the equation of motion, we obtain

(m` + �` + q`) (�a + qa ) − (` ↔ a) = ±n`adf (md + �d + qd ) (�f + qf ), (1.119a)

⇒ m`qa + �`qa − qa�` − (` ↔ a) = ±n`adf (mdqf + �dqf + qd�f ), (1.119b)

⇒ [m` + �`, qa ] − [ma + �a , q`] = ±n`adf [md + �d , qf ], (1.119c)

⇒ �`qa −�aq` = ±12 n`adf (�dqf −�fqd ). (1.119d)

We took �` = �classical
` = m` + �` so that the above equation is linear in q`. Write 5`a ≡

�`qa −�aq`, we have 5`a = ±★ 5`a . So perhaps surprisingly, we find even the fluctuation
must satisfy the (anti-)self-dual equation. The above expression in fact represents three
independent equations. Restrict to instantons:

�1q2 −�2q1 = �3q4 −�4q3, (1.120a)

�1q3 −�3q1 = �4q2 −�2q4, (1.120b)

�1q4 −�4q1 = �2q3 −�3q2. (1.120c)

More compactly, the three equations above can be written as

f`a�`qa = 0. (1.121)

One can prove this by writing out the sum explicitly, alternatively multiply on the left by
fdf and take the trace, then use the anticommutation relation of f̄`a :

0 = trfdff`a�`qa (1.122a)
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=
1
2tr

(
( [fdf , f`a ]

trace = 0

+{fdf , f`a })�`qa

)
(1.122b)

=
1
2 · 2 tr

(
−Xd`Xaf + X`fXda + ndf`a

)
�`qa (1.122c)

⇒ 0 = (tr � ) (�fqd −�dqf + ndf`a�`qa ) (1.122d)

as desired.

It is instructive to write the zero-mode equation in the spinor notation as

(g7 ) V
U /�V ¤Uq

¤UU = 0, (1.123)

where

f`U ¤U = (®g, 7 ), f̄ ¤UU` = (®g,−7 ), (1.124a)

/�U ¤U = f`U ¤U�` =

(
�3 + 7�4 �1 − 7�2
�1 + 7�2 −�3 + 7�4

)
, (1.124b)

/̄� ¤UU = f̄ ¤UU` �` =

(
�3 − 7�4 �1 − 7�2
�1 + 7�2 −�3 − 7�4

)
, (1.124c)

qU ¤U = f`U ¤U�` =

(
q3 + 7q4 q1 − 7q2
q1 + 7q2 −q3 + 7q4

)
, (1.124d)

q̄ ¤UU = f̄ ¤UU` �` =

(
q3 − 7q4 q1 − 7q2
q1 + 7q2 −q3 − 7q4

)
. (1.124e)

Proof: First write out the three equations encoded in equation (1.123), we get:

7 = 1 : /�2 ¤Uq
¤U1 + /�1 ¤Uq̄

¤U2 = 0, (1.125a)

7 = 2 : /�2 ¤Uq
¤U1 − /�1 ¤Uq̄

¤U2 = 0, (1.125b)

7 = 3 : /�1 ¤Uq̄
¤U1 − /�2 ¤Uq̄

¤U2 = 0. (1.125c)

Combine the first two equations, we find /�2 ¤Uq ¤U1 = /�1 ¤Uq ¤U2 = 0. In summary, we have

/�2 ¤Uq̄
¤U1 = /�1 ¤Uq̄

¤U2 = 0 , /�1 ¤Uq̄
¤U1 = /�2 ¤Uq̄

¤U2. (1.126)

Write out the first equation, /�2 ¤UX �̄ ¤U1 = 0:

0 = (�1 + 7�2) (q3 − 7q4) + (−�3 + 7�4) (q1 + 7q2) (1.127a)

= �1q3 −�3q1 +�2q4 −�4q2 + 7 (�2q3 −�3q2 +�4q1 −�1q4), (1.127b)

and the second equation, /�1 ¤Uq̄ ¤U2 = 0,

0 = (�3 + 7�4) (q1 − 7q2) (�1 − 7�2) (−q3 − 7q4) (1.128a)
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= �3q1 −�1q3 +�4q2 −�2q4 + 7 (�4q1 −�1q4 +�2q3 −�3q2), (1.128b)

add and subtract, we obtain �1q4 − �4q1 = �2q3 − �3q2 and �1q3 − �3q1 = �4q2 −
�2q4. Similarly, the 7 = 3 equation, /�1 ¤Uq̄ ¤U1 = /�2 ¤Uq̄ ¤U2 gives the final zero-mode equation,
�1q2 −�2q1 = �3q4 −�4q3. �

Similarly, for anti-instantons satisfying the anti-self-dual equation, the zero-mode
equation is

f̄`a�`qa = 0 or (g7 ) ¤U ¤V /̄�
¤VU
qU ¤U = 0. (1.129)

Now, we also want the fluctuation q` to be physical, in the sense that it is indepen-
dent of local gauge transformations. Let the gauge transformationbeparametrisedbyΩ,
then q` should be orthogonal to the gauge transformation, in the sense that their inner
product defined in the following vanishes:∫

34F tr�`Ωq` = 0, (1.130)

this means

�`q` = 0. (1.131)

Using f`a = f`f̄a − X`a , we can combine the zero-mode equation f`a�`qa = 0, and the
gauge condition,�`q` = 0, into one single equation:

f`f̄a�`qa = 0. (1.132)

The corresponding equation for anti-instanton is

f̄`fa�`qa = 0 (1.133)

Using f`U ¤Uf̄ ¤UUa = 2[`a , the instanton equation can be rewritten in the spinor notation as
/�U ¤Uq

¤UU = 0. (1.134)

This, combined with the zero-mode equation, equation (1.126), gives
/�2 ¤Uq̄

¤U1 = /�1 ¤Uq̄
¤U2 = /�1 ¤Uq̄

¤U1 = /�2 ¤Uq̄
¤U2 = 0. (1.135)

So
/�U ¤Uq̄

¤UV = 0. (1.136)

For anti-instantons, this is written

/̄� ¤UUqU ¤V = 0. (1.137)

Note q is in the adjoint representation. So for example, the instanton zero-mode equa-
tionmeans

/�U ¤Uq̄
¤UV = [/mU ¤U + �U ¤U , q̄ ¤UV] = 0. (1.138)
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1.4.2 Zero-mode equations from the Lagrangian

Are the above conditions for zero modes too strong? Onemight expect some arbi-
trary fluctuation around a zero-mode solution to still be a valid solution, but we see that
even the fluctuation must obey the (anti-)self-dual equation. We now provide another
derivation of the zero-mode equation, starting from perturbing the Lagrangian and de-
manding that zero-modefluctuationsdonot increase thevalueof theaction. Wewill ver-
ify our conditions above are correct, and also see that the gauge condition above comes
from the familiar gauge-fixing term in the Lagrangian. First let F`a be the ‘perturbed’
field strength tensor,

F`a ≡ m` (�a + qa ) − ma (�` + q`) + [�` + q`, �a + qa ] (1.139a)

= m`�a − ma�` + [�`, �a ]
�`a

+ m`qa + [�`, qa ]
�`qa

−(maq` + [�a , q`]
�aq`

) + [q`, qa ] (1.139b)

= �`a +�`qa −�aq`
≡ 5`a

+[q`, qa ] (1.139c)

= �`a + 5`a + [q`, qa ]. (1.139d)

Or

F 0
`a = � 0`a + 5 0`a + 5 012q1`q2a . (1.140)

Then the Lagrangian to second order is (set 6 = 1)

L =
1
4F

02
`a =

1
4�

02
`a +

1
4 5

02
`a +

1
2 5

012�`aq
1
`q

2
a + O(q3), (1.141)

whereweassumed the terms linear inq canbe removedby some ‘completing the square’
procedure.

Add in a Lagrange multiplier/gauge fixing term 1
26 2 (�`q

0
`)2, we have the second

order Lagrangian equal to

L (2) = 1
4 5

02
`a +

1
2 5

012� 0`aq
1
`q

2
a +

1
2 (�`q

0
`)2. (1.142)

We claim that

L (2) = 1
8 ( 5

0
`a ∓ ★5 0`a )2 +

1
2 (�`q

0
`)2. (1.143)

Proof: First note

(★5 0`a )2 =
1
4 n`adf n`aUV 5

0
df 5

0
UV =

2
4 (XdUXfV − XdVXfU) 5

0
df 5

0
UV =

1
2 5

0
df ( 5 0df − 5 0fd ) = 5 02`a .

(1.144)
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Also (let tr(B 0B 1 ) = �X01 )
1
2 5

012� 0`aq
1
`q

2
a =

1
2�

0
`a [q`, qa ]0 =

1
2� tr

(
B 0B 1

)
� 0`a [q`, qa ]1 (1.145a)

=
1
2� tr(�`a [q`, qa ]) = ± 1

4� n`adf
(tr(�dfq`qa ) − tr(�dfqaq`) ) (1.145b)

= ± 1
4� n`adf

(tr(�dfq`qa − q`�dfqa ) ) = ± 1
4� n`adf tr

(
[�df , q`]qa

) (1.145c)

= ± 1
4� n`adf tr

(
�dfq`qa

)
= ± 1

4� n`adf tr
(
qa�dfq`

) (1.145d)

= ± 1
4� n`adf tr

(
qa [�d , �f ]q`

)
= ± 1

2� n`adf tr
(
qa�d�fq`

) (1.145e)

= ∓ 1
2� n`adf tr

(
�dqa�fq`

)
= ∓ 1

8� n`adf tr
[
(�dqa −�aqd ) (�fq` −�`qf )

]
(1.145f)

= ∓ 1
8� n`adf tr

(
5da 5f`

)
= ∓ 1

4� tr(5da ★ 5da
)
= ∓14 5

0
`a ★ 5 0`a , (1.145g)

whereat theendof the third last linewe ‘integratedbyparts’. Butwhy is [�df , q`] = �dfq`
in going into equation (1.145d)? Write �df on the right hand side as [�d , �f ], and recall
q` is in the adjoint representation, then we have

[�`, �a ]q = �`�aq − (` ↔ a) (1.146a)

= m`�aq + [�`, �aq] − (` ↔ a) (1.146b)

= m`maq

= 0

+m` [�a , q] + [�`, maq] + [�`, [�a , q]] − (` ↔ a) (1.146c)

= [m`�a , q] + [�a , m`q] + [�`, maq]
= 0

+[�`, [�a , q]] − (` ↔ a) (1.146d)

= [m`�a , q] − [ma�`, q] + [�`, [�a , q]] − [�a , [�`, q]]
= [[�` , �a ], q] by Jacobi

(1.146e)

= [m`�a − ma�` + [�`, �a ], q] (1.146f)

= [�`a , q]. (1.146g)

In the sloppy but not uncommon notation this is written �`aq = [�`a , q].

Anyway, we see we can write L (2) as

L (2) = 1
8 ( 5

02
`a ∓ 25 0`a ★ 5 0`a + ★5 02`a ) +

1
2 (�`q

0
`)2 (1.147a)

=
1
8 ( 5

0
`a ∓ ★5 0`a )2 +

1
2 (�`q

0
`)2. � (1.147b)
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Zero-modefluctuationsbydefinitiondonot increase thevaluesof theaction,mean-
ing L (2) vanishes. This means that the two terms in (1.147b) must separately vanish. We
see this amounts to the (anti)-self-dual condition for thefluctuations, and thegaugecon-
dition.

Let’s investigate the perturbed Lagrangian further. Write

F`a = �`a + 5`a + [q`, qa ], (1.148)

this time do not expand the Lie bracket. The Lagrangian to second order is (this is equa-
tion (1.142), the gauge fixing term is now − 1

6 2 tr
(
�`q`

)2)
⇒ L = −12 trF`aF`a − tr

(
�`q`

)2 (1.149a)

= −12 tr
(
�`a�`a + 5`a 5`a + �`a [q`, qa ] + [q`, qa ]�`a

)
− tr(�`q`

)2 (1.149b)

= L (0) − 12
(
tr 5`a 5`a + 2(tr�`aq`qa − tr�`aqaq`)

)
− tr(�`q`

)2 (1.149c)

= L (0) − 12
(
tr(�`qa −�aq`

)
(�`qa −�aq`) + 2 tr

[
�`a , q`

]
qa

)
− tr(�`q`

)2
(1.149d)

= L (0) − 12
(
− 2 trq`�2q` + 2 trq`�a�`qa + 2 tr

[
�`, �a

]
q`qa

)
− tr(�`q`

)2
(1.149e)

= L (0) + tr
(
q`

[
(�2X`a −�a�` + �`a ) +�`�a

]
qa

)
(1.149f)

= L (0) + trq` (�2X`a + 2�`a )qa . (1.149g)

Again the �`a in the last two lines are really understood as the operator [�`, �a ], which
acts on qa as [�`, �a ]qa = [�`a , qa ] .

Let’s write this equation in the spinor notation. We claim that in an anti-instanton
background, the second-order term in the Lagrangian above is equivalent to

L (2) = 1
2 tr q̄

¤UU (�2 + 12f`a�`a )
V

U qV ¤U . (1.150)

Proof: In the above equation, the first term in the bracket is
1
2 tr f̄

¤UU
` q`�

2X VUfaV ¤Uqa =
1
2 f̄
¤UU
` faU ¤U trq`�2qa = X`a trq`�2qa = trq`�2q`, (1.151)

where we used f̄ ¤UU` faU ¤U = 2X`a . The second term is

1
4 tr f̄ ¤UUd qd�`a (f`a ) V

U ffV ¤Uqf (1.152a)
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=
1
4 f̄

¤UU
d (−X`a

= 0

+f`f̄a ) V
U ffV ¤U trqd�`aqf (1.152b)

=
1
4 f̄

¤UU
d f`U ¤W f̄

¤WV
a ffV ¤U trqd�`aqf (1.152c)

=
1
4 tr f̄df`f̄aff trqd�`aqf (1.152d)

=
1
4 (2nd`af + 2Xd`Xaf − 2XdaX`f + 2Xdf X`a

= 0

) trqd�`aqf (1.152e)

=
1
4 qd tr

(4�df + 2�df − 2�fd )qf (1.152f)

= 2 trq`�`aqa , (1.152g)

as desired. In going to the second last line, we’ve used the self-dual condition for an anti-
instanton, �`a = −12 n`adf�df . �

Analogously, in an instanton background, L (2) = trq` (�2X`a + 2�`a )qa is written

L (2) = 1
2 trqU ¤U (�

2 + 12 f̄`a�`a )
¤U
¤V q̄
¤VU . (1.153)

Now,note thedifferential operator�2+12f`a�`a and thecompanionoperator�2+12 f̄`a�`a
can be written compactly as

Δ− ≡ /� /̄� = �2 + 12f`a�`a , (1.154a)

Δ+ ≡ /̄� /� = �2 + 12 f̄`a�`a . (1.154b)

The equalities are straight-forward to show, for example,

/� /̄� = f`f̄a�`�a = (X`a + f`a )�`�a = �2 + 12f`a [�`, �a ] = �2 + 12f`a�`a , (1.155)

and similarly for Δ+.

Inananti-instantonbackground,L (2) = 1
2 tr q̄ ¤UUΔ

− V
U qV ¤U . Bydefinition, zeromodes

do not increase the value of the action, therefore we must have that Δ−q = /� /̄�q =

/̄�q = 0. We now see where the name ‘zero modes’ come from: Usually they denote
the eigenstates of some differential operator with zero eigenvalues. In this case, q are
the zeromodes of Δ−. Similarly, in an instanton background, q̄ are the zeromodes of Δ+:
Δ+q̄ = /̄� /� = /�q̄ = 0.

DoesΔ− have zeromodes in an instanton background? The answer is no. Note that
in an instanton background, Δ− = �2 + 1

2f`a�`a = �2. Now it had some zero modes j,
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then Δ−j = �2j = 0. But zero modes must also be normalisable, and we now show that
solutions to �2j = 0 are not. Proof: Multiply �2j = 0 by j∗ from the left and integrate,
we have ∫

34F j∗�2j =

∫
34F

���`j
��2 = 0, (1.156)

so �`j = 0. Now note that �`aj = [�`, �a ]j = 0 ⇒ � 0`aB
0j = 0, a self-dual � 0`a is

proportional to [0`a , multiply the expression by [1`a , from [0`a[
1
`a = 4X01 , we have that

B 0j = 0 for all B 0 , so �`j = 0 reduces to m`j = 0. j cannot be normalisable in this case,
wemust have j = 0. �

The bottom line is that, in an instanton background, Δ− = /� /̄� has no zero modes,
i.e. eigenstates with zero eigenvalues. Similarly, in an anti-instanton background, Δ+ =

/̄� /� has no zeromodes.

1.4.3 Solution counting

Let’s focus on the case of anti-instanton background. The zero-mode equation is
written as the Dirac equation

/̄�q = �̄ ¤UUqU ¤V = 0, (1.157)

where we write

qU ¤V = q`f`U ¤V =

(
q3 + 7q4 q1 − 7q2
q1 + 7q2 −q3 + 7q4

)
=

(
0 1∗

1 −0∗

)
. (1.158)

Then /̄�q = 0 becomes two spinor equations:

_ =

(
0

1

)
, 7f2_∗ =

(
1∗

−0∗
)
, ⇒ /̄�_ = 0 and /̄� (7f2_∗) = 0. (1.159)

These are two linearly independent solutions. They are not related by Lorentz transfor-
mation as F` is not transformed. If _ corresponds to the deformation (q1, q2, q3, q4),
then 7f2_∗ corresponds to (−q3, q4, q1,−q2). Both spinors are adjoint-valued.

While we have two independent spinor solutions, we have twice asmany indepen-
dent bosonic solutions q (7 ), given by

q (1) =
(
0 1∗

1 −0∗
)
, q (2) =

(
70 −71∗
71 70∗

)
= q (1)7f3, (1.160a)

q (3) =
(
−71∗ −70
70∗ −71

)
= q (1) (−7f1), q (4) =

(
1∗ −0
−0∗ −1

)
= q (1) (−7f2). (1.160b)
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We see q (1) = (
_ 7f2_∗

) and we obtain q (2) by basically replacing _ → 7_. Back when
counting spinor components, _ and 7_ are not linearly independent so we do not count
themseparately. Butwithq (7 ), we count themas independent solutions, which has to do
with the fact that the deformation q` are real functions, so each complex solutions need
tobecounted twice. Note that these ‘new’ solutionsdonot containanynew information.
If we write them all out, we see these new solutions are simply permutations of the four
relevant equations (the three zero-mode equations and one gauge condition).

The important thing is that generally, the number of bosonic solutions q (7 ) is twice
the number of two-component spinor solutions. For the purpose of counting the num-
ber of bosonic zero modes, we will find the zero-mode solutions to the Dirac equation
on an (anti-)instanton background, thenmultiply the number of solutions by two.

Write the Dirac equation on an (anti-)instanton background as

W`�`k ≡ /Dk = 0, (1.161)

for some Dirac fermionk . Here �` is the ordinary covariant derivative, but /D is a 4 × 4
matrix, see below. The gammamatrices in theWeyl representation is given by

W` =

( 0 −7f`U ¤U
7 f̄ ¤UU` 0

)
, W 5 =

(
� 0
0 −�

)
. (1.162)

And decomposek into chiral and anti-chiral components, we have

k =

(
_U

j̄ ¤U

)
. (1.163)

Then Dirac equation reads

/Dk =

( 0 −7 /�
7 /̄� 0

) (
_

j̄

)
= 0 ⇒

{
/̄�_ = 0,
/�j̄ = 0. (1.164)

_ and j̄ are zero modes of the operator /̄� and /� respectively. In other words, _ ∈ ker /̄� ,
where ker denotes the kernel. The number of zeromodes associated with an operator /̄�
is the dimension of its kernel.

The counting of the number of zeromodes can be done by considering a property
of /D, known as its analytical index, given as

ind /D ≡ ind /̄� = dimker /̄� − dimker /� = dimker /� /̄� − dimker /̄� /�, (1.165)

where we used that ker /̄� = ker /� /̄� and ker /� = ker /̄� /� . If we want, wemay simplify the
above formula by recalling that /� /̄�_ = Δ−_ = 0 only has solution in an anti-instanton
background; similarly, /̄� /�j̄ = Δ+j̄ = 0 only has solutions in an instanton background.
The bottom line is that, in an (anti-)instanton background, wemay forget about the op-
erator /� /̄� ( /̄� /�). For example, the index formula reduces to ind /̄� = dimker /� /̄� in an
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anti-instanton background, so the number of zeromode solutions is the same as the in-
dex of the operator /̄� .

The analytical index of an operator can be calculated by the remarkable Atiyah-
Singer index theorem. Fornowwesimply state thefinal result, that inan (anti-)instanton
background:

ind /̄� =

{
|9 | fundamental representation,

2# |9 | adjoint representation,
(1.166)

which equals to the number of fermionic zeromodes. In our case recall that every spinor
we dealt with has been in the adjoint representation. And recall we are interested in the
number of bosonic zero modes which is twice that of the fermionic ones. So in the end
we have the number of zeromodes equal to 4# |9 |. This agrees with the conclusion from
the ADHM construction, as it should be.

It may seems unsatisfying that we pulled a theorem out of thin air and used it to
directly jumpto thefinal resultwithoutdoinghonest calculations. But the index theorem
will be the subject of study in Chapter 2.4, and the index of /̄� will be derived in detail in
Chapter 2.4.6.

1.5 Themetric on themoduli space

The metric on an instanton moduli space is a very important object that encodes
much of the instanton solutions, but often simpler to determine compared to finding
those explicit solutions [4]. In this subsection we show one of the uses for the moduli
space metric: We shall see that in defining path integrals, zero modes should be treated
differently than nonzero modes. In particular, we cannot naïvely integrate over zero
modes, insteadwe should integrate over the collective coordinates on themoduli space,
which requires themoduli spacemetric. Indeed,muchof this subsectionwill bedevoted
tocalculating thismetric. Wewill alsomakeprecise the relationshipbetweenzeromodes
and collective coordinates. Our focus will be on bosonic zero modes, although we will
briefly discuss and list the key results for the fermionic case. But first, let’s explain why
zeromodes have to be treated differently:

1.5.1 Motivation: The troublesome zero-modemeasure

Think back to the second-order perturbed Lagrangian in equation (1.149), repro-
duced here:

( [�U + qU] = ( (0) +
∫

34F tr
(
q`

[
(�2X`a −�a�` + �`a )

"
(1)
`a

+�`�a

"
(2)
`a

]
qa

)
(1.167a)
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=
8c2
6 2
|9 | +

∫
34F trq` (�2X`a + 2�`a )qa , (1.167b)

where we defined" (1)`a as coming from the second order expansion of the classical La-
grangian, and " (2)`a comes from the gauge-fixing term. Since a zero mode /` does not
increase the value of the action, it satisfies

"`a/` ≡ (" (1)`a +" (2)`a )/` = (�2X`a + 2�`a )/` = 0. (1.168)
/` would depend on its set of collective coordinates, W = {W7 }. We will focus on bosonic
zeromodes with (* (# ) instantons, so 7 = 1, . . . , 4# |9 |.

Note the path integral of our perturbed action reads something like

/ [q] =
∫

�q exp
(
−

∫
34F trq` (�2X`a + 2�`a )qa

)
= � det("`a

)− 12 , (1.169)

where the determinant is the product of all eigenvalues of the operator"`a = �2X`a +
2�`a . But we know that there are zero modes, and the eigenvalues of these zero modes
are zero! This is nonsensical and leaves the path integral ill-defined. The solution is that
we must isolate the zero modes from "`a by introducing the amputated determinant,
denotedbydet′"`a , which contains theproduct of only thenonzero eigenvalues of"`a .
We then integrate over the collective coordinateswith some appropriatemeasure. Sowe
redefine the path integral as∫

�q 4−( ≡
∫ 4# |9 |∏

7=1

3W7√
2c
(det* 7 8 ) 124−(cl (det′"`a )−

1
2 , (1.170)

here W7 are the collective coordinates, and here* 7 8 is the matrix of the norm squared of
the zeromodes (recall zeromodes are by definition normalisable), defined as

* 7 8 = 〈/ (7 ) |/ (8 )〉 ≡ − 2
6 2

∫
34F tr

(
/
(7 )
` /

(8 )
`

)
=

1
6 2

∫
34F / (7 )0` /

(8 )0
` , (1.171)

and 7 , 8 = 1, . . . , 4# |9 |. We add in a factor 1/6 2 so that 6 doesn’t appear in the determi-
nant.* 7 8 can be interpreted as themetric on themoduli space of collective coordinate.
The measure defined as such is invariant under general coordinate transformation on
the moduli space. We will spend much of this subsection finding the elements of the
moduli space metric, with the final goal of constructing a measure for the collective co-
ordinates.

How exactly are collective coordinates and zero modes related? We need the ex-
plicit form of /` (W ) to answer this question. Let’s try to find /` (W ) by requiring it to be
annihilated by both" (1)`a and" (2)`a . First consider" (1)`a . Note that when we expand the
classical action without the gauge-fixing term"

(2)
`a around a solution �U , we get some-

thing like

(cl [�U + qU] ≈ (cl [�U] +
∫
`

X(cl [�U]
X�`

= 0

q` +
1
2

∫
`

∫
a

X 2(cl [�U]
X�`X�a

q`qa . (1.172)
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This means that " (1)`a , as the coefficient of q`qa in equation (1.167a), must be propor-
tional to X 2(cl [�U ]

X�`X�a
. Now, start from the equation of motion, X(cl

X�`
= 0, take the derivative

w.r.tW7 :

0 =
m

mW7

X(cl

X�` (F)
=

∫
34G

X 2(cl

X�` (F)X�a (G )
m�a (G )
mW7

∝ " (1)`a

m�a

mW7
, (1.173)

so m�a
mW7

is annihilated by" (1)`a , making it a candidate for a zeromode. We can add another
set of terms,�aΛ7 , where Λ7 is some gauge parameter, 7 = 1, . . . , 4# |9 |, that is also anni-
hilated by" (1)`a :

"
(1)
`a �aΛ

7 = (�2�` −�a�`�a + �`a�a )Λ = (�a [�a , �`] + �`a�a )Λ7 (1.174a)

=
(
(�a�a`) + �a`�a + �`a�a

)
Λ7 = 0, (1.174b)

it vanishes in the last step because the last two terms cancel, and�a�a` = 0 by the equa-
tion of motion. So let’s define

/
(7 )
` =

m�`

mW7
+�`Λ

7 , (1.175)

then" (1)`a /
(7 )
a = 0. It turns out we can always choose the gauge parameter Λ so that / (7 )`

satisfies the gauge condition�`/
(7 )
` = 0, this way it is also annihilated by" (2)`a . The / (7 )`

above is the most general expression for a zero mode. We also see there is indeed one
zeromode per collective coordinate.

We can define the inverse metric*7 8 . With the metric and its inverse, we can raise
or lower the indices for collective coordinates. For example, we have (set 6 = 1)

* 7:*:9 =

(∫
34F / (7 )0` /

(: )0
`

)
*:9 =

(∫
34F / (7 )0` /

(: )0
`

) (∫
34G / 1(: )a/

1
(9 )a

)
(1.176a)

=

∫
34F / (7 )0` / 0

(9 )`, (1.176b)

compare the first and second line, we see wemust have

/
(: )0
` (F)/ 1(: )a (G ) = X

01X`aX (F − G ), (1.177)

where : is summed over.

1.5.2 Calculating themetric

Let’s start evaluating the matrix * 7 8 for one anti-instanton. Recall there are four
translational zero mode, one dilatation and three global gauge parameters. We will deal
with these one by one.



40 INSTANTONS IN QUANTUM FIELD THEORY

Translationmodes

First deal with the four translational zeromodes, pickW7 = - a , note that m
m- a = − m

mFa
,

and set Λ7 = �a (recall �a is also a pure gauge), we have

/
(a)
` = −

m�`

mFa
+�`�a = m`�a − ma�` + [�`, �a ] = �`a , (1.178)

theclassicalfield strength tensor,whichsatisfies thebackgroundgaugecondition�`/
(7 )
` =

0 by the equation of motion. The norms of these zeromodes are

* `a = − 2
6 2

∫
34F tr(�_`�_a ) = (clX`a =

8c2 |9 |
6 2

X`a . (1.179)

To see that* `a is only non-zero when ` = a , recall �_` is proportional to f_`, so

tr�_`�_a ∼ tr{�_`, �_a } ∼ tr{f_`, f_a } ∼ (X__X`a + X_aX_` − n_`_a
= 0

) ∼ X`a , (1.180)

this in fact holds for both self-dual and anti-self-dual �_`. So* `a = 0 if ` ≠ a . * `a ap-
pearsas if it’s four times theusual action, but if` = a , wehave* `` = − 2

6 2

∫
34F tr�_`�_` =

4(cl = (clX``, so we have the correct normalisation factor.

Dilatationmode

Now for the dilatationmode associated with d , take �` to be the 9 = −1 solution in
singular mode as in equation (1.44), reproduced here:

�` = −f̄`a
d2Fa

F2(F2 + d2)
. (1.181)

Take the derivative with respect to d to find the zero-mode solution:

/
(d)
` =

m�`

md
= −f̄`a

( 2dFa
F2(F2 + d2)

− 2d3Fa
F2(F2 + d2)2

)
(1.182a)

= −f̄`a
2dFa (F2 + d2) − 2d3Fa

F2(F2 + d2)2
(1.182b)

= −2f̄`a
dFa

(F2 + d2)2
. (1.182c)

It turns out we don’t need a gauge parameter Λ: / (d)` at its current form already satisfies
the gauge condition�`/

(d)
` = 0. Check:

m`/
(d)
` = −2 d

(F2 + d2)2
f̄`aX`a + 8

d

F2(F2 + d2)3
f̄`aF`Fa = 0, (1.183a)
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and [�`, / (d)` ] =
2d

F2(F2 + d2)3
FaFf [f̄`f , f̄`a ] (1.183b)

= − 4d
F2(F2 + d2)3

FaFf (X``f̄fa + Xfa f̄`` − X`a f̄f` − Xf`f̄`a ) = 0, (1.183c)

in each case the terms vanish because f̄`a is anti-symmetric, so f̄`` = 0 and f̄`aF`Fa = 0.

Now we can calculate * dd . Both here and in the future we will use a very useful
integration formula, listed in equation (A.1), and reproduced below:∫

33F
(F2)<

(F2 + d2);
= c

3
2 (d2)<−;+32

Γ[< + 3
2 ]Γ[; − < −

3
2 ]

Γ[;]Γ[32 ]
, (1.184a)

in particular,
∫

34F
(F2)<

(F2 + d2);
= c2(d2)<−;+2 Γ[< + 2]Γ[; − < − 2]

Γ[;] , (1.184b)

where Γ[<] = (< − 1)! for integer <, and the integral converges for; − < > 2 in 3 = 4.
Now:

* dd = − 2
6 2

∫
34F tr f̄`aFa f̄`fFf

4d2
(F2 + d2)4

(1.185a)

= −8d
2

6 2

∫
34F

1
2 tr{f̄`a , f̄`f }

FaFf

(F2 + d2)4
(1.185b)

=
8d2
6 2

∫
34F

(
X``Xaf − X`fXa` + n`a`f

) FaFf

(F2 + d2)4
tr � (1.185c)

=
48d2
6 2

∫
34F

F2

(F2 + d2)4
(1.185d)

=
48d2
6 2

c2(d2)1−4+2 Γ[1 + 2]Γ[4 − 1 − 2]
Γ[4] (1.185e)

=
16c2
6 2

= 2(cl. (1.185f)

What about �` in regular gauge, which would look like �reg` = −f`a Fa
F2+d2 ? We of course

expect the norm * dd to be the same. Check: m�
reg
`

md
=

2df`aFa
(F2+d2)2 = /

(d)
` , again �`/

(d)
` =

0, since m`/ (d)` ∼ f`aF`Fa = 0 and [�reg` , /
(d)
` ] ∼ [f`aFa , f`fFf ] = 0. Finally * dd =

− 2
6 2

∫
34F trf`af`f 4d2FaFf

(F2+d2)4 , which is the same as the norm in singular gauge but with
f̄`a replaced with f`a . But the anticommutators {f̄`a , f̄`f } and {f`a , f`f } are exactly
the same (only true because of the duplicate index `), so * dd is indeed gauge invari-
ant. Another way to arrive at / (d)` at regular gauge is to use m

md
�
reg
` = m

md
* −1(m` + �sin` )* =

m
md
* −1�sin` * . One finds that

* −1f̄`aFa* =

(
−7fUFU√

F2

)
f̄`aFa

(
7 f̄VFV√
F2

)
=
FUFaFV

F2
(XU`fa − XUaf` + nU`a_f_)f̄V (1.186a)
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=
F`FaFV

F2
(XaV + faV) − FV (X`V + f`V) = −f`aFa , (1.186b)

where we used the identities (A.12) and (A.20). Then / (d)` =
m�

reg
`

md
= m

md
d2

F2 (F2+d2) (f`aFa ) =
· · · = 2df`aFa

(F2+d2)2 which agrees with our previous result.

Gauge orientationmodes

Recall there are three global gauge parameters in our collective coordinates, call
them ®\ . One can generate new solutions by the action

�` ( ®\ ) =* −1( ®\ )�` (0)* ( ®\ ), (1.187)

let* ( ®\ ) = 4 \
0B 0 for some representation B 0 of (* (# ) and expand the exponentials, we

find to first order in \0 , �` ( ®\ ) = 1 − \0 [B 0 , �`], so

m�`

m\0
= [�`, B 0 ]. (1.188)

However, this doesnot satisfy the gauge condition�`/` = 0. For our(* (2) case,weneed
to pick a�`Λ0 to add, where

Λ0 = − d2

F2 + d2
B 0 , (1.189a)

⇒ �`Λ0 = −m`
d2

F2 + d2
B 0 − d2

F2 + d2
[�`, B 0 ], (1.189b)

⇒ /
(0)
` =

m�`

m\0
+�`Λ0 = −m`

d2

F2 + d2
B 0 + F2

F2 + d2
[�`, B 0 ]. (1.189c)

Note that −m` d2

F2+d2 = m`
F2

F2+d2 , the above becomes

/
(0)
` =

[
m` + �`,

F2

F2 + d2
B 0

]
= �`

(
F2

F2 + d2
B 0

)
. (1.190)

Explicitly, using equation (1.45) for �` in singular gauge and in terms of the ’t Hooft sym-
bols, we have

/
(0)
` = m`

F2

F2 + d2
B 0 +

[
2[1`a

d2Fa
F2(F2 + d2)

B 1 ,
F2

F2 + d2
B 0

]
(1.191a)

=
2F`d2
(F2 + d2)2

B 0 + 2[1`a
d2Fa

(F2 + d2)2
n102B 2 . (1.191b)
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Let’s check that �`/
(0)
` = 0. Note m` acting on the second term gives 0 due to the anti-

symmetric[1`a ; also�` acting on the first term is proportional to[1`aF`Fa which vanishes.
We only need to deal with

�`/
(0)
` = m`

2F`d2
(F2 + d2)2

B 0 + 2[1`a
d2Fa

(F2 + d2)2
n102

[
2[3`_

d2F_
F2(F2 + d2)

B 3 , B 2
]

(1.192a)

=
2X``d2
(F2 + d2)2

B 0 − 8F2d2
(F2 + d2)3

B 0 + 4[1`a[3`_n102 n324B 4
d4FaF_

F2(F2 + d2)3
, (1.192b)

merge the first two terms, and note in the last term: n210 n243 = X14X03 − X13X04 , so we
have

⇒ �`/
(0)
` =

8d2(F2 + d2) − 8F2d2
(F2 + d2)3

+ 4([1`a[0`_B 1 −[1`a[1`_B 0 )
d4FaF_

F2(F2 + d2)3
, (1.192c)

now use[0`a[1`_ = X01Xa_ + n012[2a_, we have

⇒ �`/
(0)
` =

8d4
(F2 + d2)3

+ 4(Xa_B 0 − X11Xa_B 0 )
d4FaF_

F2(F2 + d2)3
(1.192d)

=
8d4

(F2 + d2)3
− 8d4
(F2 + d2)3

= 0, (1.192e)

where we noted that X11 = 3 since there are three generators of (* (2).

Having verified that the/ (0)` is a valid solution, we nowuse it to calculate the norm:

* 01 = − 2
6 2

∫
34F tr/ (0)` /

(1)
` (1.193a)

= − 2
6 2

∫
34F tr�`

(
F2

F2 + d2
B 0

)
�`

(
F2

F2 + d2
B 1

)
(1.193b)

= − 2
6 2

∫
34F tr

[( 2F`d2
(F2 + d2)2

B 0 + 2[2`a
d2Fa

(F2 + d2)2
n203B 3

)
· (1.193c)

·
(

2F`d2
(F2 + d2)2

B 1 + 2[4`f
d2Ff

(F2 + d2)2
n41 5 B 5

)]
, (1.193d)

the cross terms are proportional to[2`aFaF` = 0, so we have

* 01 = − 2
6 2

∫
34F tr

( 4F2d4
(F2 + d2)4

B 0B 1 + 4d4FaFf
(F2 + d2)4

[2`a[
4
`f

= X 24Xaf + n24 6[6af

n203 n41 5 B 3B 5
)

(1.193e)
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= − 2
6 2

∫
34F

(
tr

(
B 0B 1

) 4F2d4
(F2 + d2)4

+ tr
(
B 3B 5

)
n203 n21 5

= X01X3 5 − X0 5 X31

4F2d4
(F2 + d2)4

)
(1.193f)

= − 2
6 2

∫
34F

(
−12X

01 − 12 (X
01X33 − X01 )

) 4F2d4
(F2 + d2)4

(1.193g)

=
12d4
6 2

X01
∫

34F
F2

(F2 + d2)4
(1.193h)

=
12d4
6 2

X01 · c2(d2)−1 Γ[1 + 2]Γ[4 − 1 − 2]
Γ[4] (1.193i)

=
4c2d2
6 2

X01 =
1
2X

01d2(cl. (1.193j)

Note that all terms in / (0)` falls off as 1/@ 3 for large |F |.

Recall in theabove that thegaugeparameter \0 is assumed tobe infinitesimal. Now
we want to find the general case where \0 is arbitrary. We simply claim the result and
refer the readers to Ref. [1] for derivation. What we do basically is to introduce a new
basis (vielbein) for the Lie algebra, 4U (\ ) = 4U0 (\ )B 0 . Formally this is written

40U (\ )B 0 = B U + 12! [B
U , \ · B ] + 13! [[B

0 , \ · B ], \ · B ] + . . . . (1.194)

4U satisfies* −1m\* = 4U (\ ), the group metric is given by 6UV = [014
0
U4

1
V
, and the Haar

measure of the group (for integrating over group volume) is det 40U (\ ) 33\ .

Now we simply replace B 0 by the new basis 4U everywhere in our calculation. For
example, the analogy of m\�` = [�`, B 0 ] becomes

m�` (\ )
m\U

= [�` (\ ), 4U (\ )]. (1.195)

The gauge-fixing term becomes ΛU (\ ) = − d2

F2+d24U (\ ). And in the end, the zero-mode
expression becomes (here�\

` indicates it is a function of �` (\ ))

/
(U)
` (\ ) = �\

`

(
F2

F2 + d2
40U (\ )B 0

)
. (1.196)

Compared to our previous calculation, the only difference here is an extra 40U (\ ). The
norm is then given by

* UV = 〈/ (U)` |/
(V)
` 〉 = 40U (\ )40V (\ ) (

1
2d

2(cl). (1.197)
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1.5.3 Zeromodemeasure

Note that there are no off-diagonal terms in thematrix* 7 8 . For example, the cross
term between translational mode and dilatationmode goes like tr/ (a)` /

(d)
` ∼ tr�`a f̄`a =

0 in our anti-instanton background. So using our results, themetric is

* 7 8 =
©«
X`a(cl

2(cl
1
26UV (\ )d

2(cl

ª®¬. (1.198)

Note this is an 8 × 8matrix. The square root of the determinant is√
det* 7 8 =

1
2(

4
cld

3
√
det 6UV (\ ) =

211c8d3
6 8

√
det 6UV (\ ). (1.199)

This is the result for (* (2). In path integral calculations, we must single out the zero
modes and use this formula as their determinant.

We claim that for(* (# ) instantons, there are 4# −5 gaugeorientation zeromodes,
and the bosonic zeromode determinant is√

det* 7 8 =
22#+7
d5

(
cd

6

)4#
. (1.200)

Now recall we defined the correct path integral measure in equation (1.170). The
part associated with the zeromodes is

4# |9 |∏
7=1

3W7√
2c
(det* 7 8 ) 12 , (1.201)

where∏4# |9 |
7=1 3W7 = 34- 3d [3`](* (# ). Here [3`](* (# ) is the corresponding gauge group

integral measure, which is related to the volume of the coset space [1]:

Vol
{

(* (# )
(* (# − 2) ×* (1)

}
=

∫ √
det 6UV [3`](* (# ) =

24#−5c2#−2
(# − 1)!(# − 2)! . (1.202)

Putting everything together, we find in the case of |9 | = 1, the measure for mudoli space
is

4# |9 |∏
7=1

3W7√
2c
(det* 7 8 ) 12 =

1
(
√
2c)4#

· 2
2#+7

d5

(
cd

6

)4#
· 24#−5c2#−2
(# − 1)!(# − 2)! (1.203a)

=
24#+2c4#−2d4#

(# − 1)!(# − 2)!6 4# 34-
3d

d5
. (1.203b)
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2
A Topologist’s Instanton

In this chapter we study the various topological aspects of instantons. This allows
us to view some of the familiar concepts with a new perspective. For example, we shall
see that instantonmoduli spaces are a special type ofmanifold called hyperKählerman-
ifold, and how the instanton number 9 is related to certain characteristic classes. But
the major goal of this chapter is to study the index theorem and use it to complete the
counting for instanton zero modes. Much of what we discuss here is very formal, and
the physical motivationsmay not be immediately obvious. Nevertheless, instantons are
topological objects, and topology is an important prerequisite for understanding rele-
vant literature.

The default reference material for this chapter is Nakahara [12]. There is a good
chance that any omitted proofs or calculations can be found there. At places we follow
other useful references such as the lecture notes from Paul Loya [13] and Hirosi Ooguri
[14].

2.1 A primer on topology

2.1.1 Fibre bundles

We give a brief review of fibre bundles here. Here are the essential ingredients we
need to define a fibre bundle:

47
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• Total space � : A differential manifold. Examples we will consider:

– Möbius strip.
– Tangent bundle)" ≡ ⋃

>∈" )>" , the collection of all tangent spaces)>" of
" , one at each point > ∈ " . Recall elements of a tangent space are vectors
+ ∈ )>" . Given a chart*7 with coordinates {F`> }, the vector has coordinate
representation+ =+ ` m

mF`
|> .

• Base space" : A differential manifold.

– In the case of aMöbius strip, the base space is a circle.
– In the case of)" , the base space is" .

• Fibre � : A differential manifold. We attach a fibre at each point of the base space
" to construct the total space. We call the original fibre � , and the copy of the fibre
attached at point > is denoted �> .

– With theMöbius strip, the fibre is a line segment, say � = [−1, 1]. A copy of � is
attached at every point on the circle.

– With)" , the fibre is the tangent space)>" � ℝ< where< = dim" . We attach
one)>" at each point in" to construct)" .

• Projection c : � → " , 5 ↦→ > where 5 ∈ �> , > ∈ � . So points on a fibre �> are
mapped to the point in base space where the fibre is attached. c is surjective but
not injective.

– Pick a point > on the Möbius strip, the point exists on a fibre attached to the
base space (1. c : � → (1, sends us back to the point on (1 where the fibre is
attached. In doing so we lose information about where on the fibre > is.

– Pick any vector in some)>" ,c : )" → " maps onto the point> at which the
vector is defined. We lose information about the vector.

• Define a set of open covering {*7 } of the base space" . Note a fibre bundle should
be independent of the definition of {*7 }, nevertheless we include it here for con-
creteness.

– The base space for the Möbius strip, (1, needs to be covered by at least two
open sets, say*1 = (0, 2c) and*2 = (−c,c), under standard topology. Weneed
open sets to make sense of the notion of continuity and thus differentiability.

– In obvious notation, we define)*7 ≡
⋃
>∈*7 )>" , i.e. it only consists of tangent

spaces defined within the open set*7 .

• q7 : c−1(*7 ) →*7 ×� : Local trivilisation. q7 untwistsc−1(*7 ), which is a part of the
total space that possibly has complicated structure, onto*7 × � , which is a direct
(trivial) product. It is called ‘local’ because fibre bundles are locally diffeomorphic
to a direct product, but possibly not globally.
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– For aMöbius strip, q7 maps a part of theMöbius strip onto a rectangle. Imag-
ine taking part of theMöbius strip and straightening it out.

– Locally a tangent bundle is isomorphic to*7 ×ℝ< .

• Section (or cross section) A of � : A smoothmap A : " → � such that c ◦ A = id" .
Note A (>) is an element of �> = c−1(>), where if � is the (original) fibre then �> is
the copy of � at point > . The set of sections on" is denoted by Γ(",� ). If* ⊂ " ,
wemay talk of a local sectionwhich is defined only on* , then Γ(* , � ) is the set of
local sections on* .

– WithMöbius strip, imagine picking one point on each fibre in a smoothman-
ner. These points trace out a line which is a section.

– With)" , a section is a vector field - on" , which picks a single vector from
each tangent space )>" in a smooth manner. I.e. - : > ↦→ - |> ∈ )>" , so a
vector - |> is assigned at each point > ∈ " . Γ(",)" ) is the set of vector fields
X(" ). Recall each vector field picks out one vector fromeach tangent space at
every point in a smoothmanner.

– Recall the cotangent space) ∗>" is the space dual to)>" , and) ∗" is the col-
lection of) ∗>" which is the cotangent bundle. A section on ) ∗" is a 1-form,
a.k.a a co-vector field.

A section is a generalisation of a function. For example, 5 : ℝ → ℂ is typically
thought of as a functionwhere points inℝ aremapped to points inℂ. Alternatively
wemay consider 5 as a section in the bundleℝ × ℂ, where an 5 (F) ∈ ℂ is assigned
for each F ∈ ℝ. The philosophical difference being now there are an infinite copies
ofℂ as fibres, one attached at each point onℝ.

• Transition function. If we have two charts*7 ∩*8 ≠ ∅, then at point > ∈ *7 ∩*8

thereare twomapsq7 andq 8 , theywouldmap the samepoint in thefibre 5 ∈ c−1(>)
into different 57 , 58 ∈ � . The two 57 , 58 are related by the transition function B7 8 (>),
defined as

B7 8 (>) ≡ q7 ,> ◦ q−18 ,> : � → � , 5 ↦→ B7 8 (>) 5 , 5 ∈ � , (2.1)

Another way to understand transition function is to consider how one can con-
struct a fibre bundle: Let *7 ,*8 cover " with nonzero overlaps. A generic point
on the fibre bundle in the overlapping region can be labelled (>, 5 ) ∈ *7 × � or
(>′, 5 ′) ∈ *8 × � . But (>, 5 ) and (>′, 5 ′) really describe the same point, so we de-
mand the equivalence relation (>, 5 ) ∼ (>′, 5 ′), satisfying > = >′ and B7 8 (>) 5 = 5 ′.
In summary, the transition function tells us how to patch different local regions to-
gether, according to the relation

*7 × � 3 (>, 5 ) ∼ (>, B7 8 5 ) ∈ *8 × � . (2.2)

The transition function isa smoothmap, andrequired tobeanelementof the struc-
ture group� , to be discussed below.
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• Structure group:� . Typically a Lie group. So q7 and q 8 are related by B7 8 (>) ∈ � as

q 8 (>, 5 ) = q7 (>, B7 8 (>) 5 ). (2.3)

– With Möbius strip the structure group is ℤ2 = {4 , 6 }, 6 2 = 4 . This is the only
timewherewewillworkwithadiscrete group. Let thebase space(1 becovered
by two semicircles with two overlapping regions � and � . On each region, we
need (>, 5 ) ∼ (>, 5 ′) = (>, B7 8 5 ),where the transition function is B7 8 = {4 , 6 }. Let
B7 8 = 4 on �, so 5 ′ = 5 . And let B7 8 = 6 on � (if B7 8 is the same on � and � then
the whole bundle is a trivial cylinder, and the structure group would not have
been ℤ2), then 5 ′ = 6 5 . Note 6 5 is basically (−5 ). This means that on region
� where*U and*V intersect, the points (>, 5 ) ∈ *U × � and (>,−5 ) ∈ *V × �
are to be identified. This is only possible if we ‘twist’ the fibres on*V by 180°
before gluing it to the fibres on*U .

– With )" , the fibre � is )>" , an element 5 ∈ � is a vector+ ∈ )>" . We can
havemultiple coordinate representations for+ :

+ =+ ` m

mF`

����
>

= +̃ ` m

mG`

����
>

, (2.4)

they are related by

+̃ a =
mGa

mF`
+ `. (2.5)

Here the transition function is mGa

mF`
. Note that it must be non-singular and thus

an element of the Lie group� = �! (;,ℝ),; is the dimension of" .

We describe a fibre bundle by the notation � → " .

Further types of fibre bundles:

• A Lie group is amanifold itself, so it can play the role of the fibre � . If � is the same
as the structure group� , the fibre bundle is called a principal bundle.

• A vector bundle of rank 9 is a fibre bundlewhere the fibre isℝ9 (real vector bundle)
or ℂ9 (complex vector bundle). A line bundle is a bundle of rank one. A Möbius
strip is a real line bundle. The tangent space for any smooth manifold" is also a
real vector bundle.

• Fromaprincipal� -bundle� , one can construct related vector bundleswhose fibre
is some vector space+ . By ‘related’ we mean we will let some representation d of
the group� to act on+ . More precisely, define an action of 6 ∈ � on � ×+ by

(C,D ) → (C6 , d (6 )−1D ), (2.6)
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where C ∈ � and D ∈ + . Then the equivalence class (� ×+ )/� in which two points
(C,D ) and (C6 , d (6 )−1D ) are identified has a vector bundle structure, and is called
an associated vector bundle of � . The sections A : � →+ on the associated bundle
satisfy a neat relation: A (C6 ) = 6 · A (C).

• Conversely, one can go from a vector bundle to an associated principal bundle as
follows: Let the fibre of the vector bundle � → " be a vector space of dimension
<, say ℝ< , then for every F ∈ " , assign a frame—a local choice of < basis vectors,
41(F), . . . , 4< (F), witheachvectorbeing<-dimensional. Then� (F) ≡ (

41(F) . . . 4< (F)
)

is an < × < matrix. Since its rows/columns are all linearly independent, we have
det� (F) ≠ 0. So � (F) ∈ �! (<,ℝ<). The set of all frames at a point is isomorphic
to �! (<,ℝ<), in other words, the fibre of this bundle is �! (<,ℝ<). The different
�! (<,ℝ<) at different points are related to each other by a change of basis, the
change of basis matrices are again elements of �! (<,ℝ<), meaning the structure
group for transition functions is�! (<,ℝ<) also. Since the structure group = the fi-
bre, this is a principal fibre bundle. We call it the frame bundle.

In gauge theory, say(* (# ) theory, there is a single electromagnetic fieldwithpotential�
coupled tomultiplematter fields. In the context of fibre bundles, we say there is a single
principal bundle with structure group (* (# ), and multiple associated vector bundles.
� is the connection on the principal bundle, while each matter field is a section of their
respective vector bundle.

For our purpose, a connection is just a Lie-algebra valued 1-form � that appears
in the covariant derivative, � = 3 + �, its purpose it to tell us how to take directional
derivative of smooth sections on a space. On a vector bundle a connection is defined
locally. Suppose it is �7 on*7 and �8 on*8 , then on the overlapping region*7 ∩*8 , �7 and
�8 need to be patched together with the aid of the transition function as follows:

�7 = B7 8�8B
−1
7 8 − B

−1
7 8 3B7 8 , (2.7)

so we recognise the transition functions as gauge transformations. On a principal bun-
dle (say the frame bundle associated to the vector bundles), however, � can be globally
defined.

2.1.2 Homotopy groups

In homotopy groups we study the continuous deformation of maps to each other.
For example, consider mapping (1 toℝ< , which amounts to drawing a loop somewhere
inℝ< . Nomatter howwe twist and turn this loop, a loop is still a loop, and any two loops
we draw can be continuously deformed into one another.

Now consider mapping a loop to ℝ2 − {0}, i.e. a plane with a hole in the origin.
One loopmaywrap around the hole, another loopmay only contain empty space. These
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two loops are fundamentally different as they can never continuously deform into each
other. In fact a loop can encircle the hole/wrap around itself < times; and two loops can
only be continuously deformed into each other if they have the samewindingnumber<,
we say these two loops are of the same homotopy class. This way we divide all possible
mappings into categories according to their homotopy classes, characterised by <.

We also introduce a sense of direction, so that a loop may encircle the hole in a
clockwise manner (< positive), and it should be differentiated from another loop encir-
cling the hole in a counter-clockwisemanner (< negative). Finally, we allow loops based
on the same point to combine with each other in an obvious way, so a clockwise loop
encircling the hole combined with a counter-clockwise loop encircling the hole gives a
loop that doesn’t contain the hole. The combination of loops is a group action, hence the
name homotopy groups.

In somespace- , the setofhomotopyclassesof loopsatF ∈ - isdenotedbyc1(- , F)
and is called the fundamental group or the first homotopy group. The fundamental
group gives another way to detect holes in a space.

Higher homotopy groups are defined similarly. c< (- ) is the set of the homotopy
classes of (< in - , and classifies the inequivalent ways one can map an <-sphere to the
space - . The c< (- ) for various < and - can be readily looked up in tables. One particu-
larly homotopy group relevant for studying instantons is

c3((* (# )) = ℤ, (2.8)

the integer here represents how many times one can wrap (3 around itself in the space
(* (# ). The integer is nothing other than the instanton number or winding number 9 .
The logic goes roughly as follows: We know the finite action configuration of �` are pure
gauges at spatial infinity, |F | → ∞, �` → * −1m`* , where * (F) ∈ (* (# ). In this way,
any configuration provides a map from the Euclidean space to (* (# ). The Euclidean
space here is in fact mℝ4 = (3, so we have a map: (3 → (* (# ), F ↦→ * (F). Such a map is
classified by c3((* (# )) = ℤ.

Alternatively, in the language of fibre bundles, the topological setting of an instan-
ton is a principal bundle with the gauge group � being the fibre and structure group.
One might think the base space of the fibre bundle to be ℝ4, but this would have made
the fibre bundle trivial, since there is a theorem stating that a bundle is trivial if the base
space is contractible to a point. So we apply the one-point compactification process to
compactify our base space to (4.

Recall gauge transformations are transition functions on the bundle, so a �` that is
a pure gauge is classified the sameway as the transition function, B7 8 : > ↦→ B7 8 (>). Where
does> live? The transition functions B7 8 are defined over the overlapping regions of open
covers, and these overlapping regions are essentially (3 (this is easier to understandwith
(2, where the overlap of two open covers is a strip which is equivalent to (1, one can
imagine this generalises to higher dimension), so > ∈ (3. Also, B7 8 (>) acts on the group
element, with the group being (* (2), meaning B7 8 (>) ∈ (* (2) itself. Therefore, B7 8 is a
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map: (3 → (* (2). Such a map is again classified by c3((* (2)) = ℤ, and this integer is
our instanton number 9 .

2.1.3 De Rham cohomology

Let’s first give a short motivation by discussing homology group. In the study of
geometry we are naturally led to the study of cycles and boundaries. Given some poten-
tially complicated space" , we may take an @ -chain—an @ -dimensional generalisation
of a loop—then the boundary operator m finds us the boundary of that @ -chain. mΩmay
be 0 (no boundaries exist), then the regionΩ is called an @ -cycle; or mΩmay be an (@ −1)-
dimensional object, called an (@ −1)-boundary. Interestingly both the set of @ -cycles and
@ -boundaries admit abeliangroup structures, in the sense that one cancombine @ -cycles
together to obtain bigger @ -cycles, and similarly for boundaries.

Within a space" , call the set of @ -cycles /@ (" ), and the set of @ -boundaries�@ (" ).
Note that the boundary of a boundary never exists, so �@ (" ) ⊆ /@ (" ). We are particu-
larly interested in the set of @ -cycles that are NOT boundaries of other regions. They are
given by the quotient /@ (" )/�@ (" ) ≡ �@ (" ), called the @ -th homology group, again an
abelian group.

�@ (" ) is of great practical interest as it detects holes on a space. For example, inℝ<

all cycles are boundaries, so�@ is trivial. More interestingly, consider a hollow cylinder:
A circle wrapping around the cylinder is a cycle, but not a boundary. This is only pos-
sible due to the hole through the middle of the cylinder. In fact dim�@ (" ) is precisely
the number of @ -dimensional holes in the geometry (@ -th Betti number). Homeomor-
phic manifolds have the same �@ (" ), in other words the groups �@ (" ) is a topological
invariant.

However, describing shapes and geometries in a precise, mathematical manner is
extremely difficult. But thanks to Stoke’s theorem, we don’t have to:∫

"

3l =

∫
m"

l. (2.9)

Stoke’s theoremrelates geometrical objects" and m" with functions (differential forms)
l. So instead of workingwith spaces and geometries, we could just as well workwith the
much simpler and familiar functions.

An @ -form is closed if 3l = 0, exact if l = 3[ for some (@ − 1)-form[. Exact forms
are closed, but the converse is not true. The set of closed @ -forms on" is called the @ -
th cocycle group / @ (" ), the set of exact @ -forms are called the @ -th coboundary group
�@ (" ), and �@ (" ) ⊆ / @ (" ). Then the @ -th de Rham cohomology group is defined by

� @ (" ) = / @ (" )/�@ (" ). (2.10)
Explicitly, the quotient means for l ∈ / @ (" ), l and l + 3[ are identified as element in
� @ (" ).
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Due to their likenesses, it’s no surprise that we have the isomorphism

� @ (" ) � �@ (" ). (2.11)

Given a smooth map 5 : " → # ,> ↦→ 5 (>), 5 naturally induces a pullback 5 ∗ :
Ω5 (>)# → Ω@

>" . If one has to know the details: In coordinate basis, let the coordinates
be {F`} on" and {G`} on# . Given a 1-forml = l`3G

` on# , the pullback on" is given
by

5 ∗l = l`
mG`

mFa
3Fa . (2.12)

It is important to note that 5 ∗ commutes with the exterior derivative, 3 ( 5 ∗l) = 5 ∗(3l).
So 5 ∗ also induces a map between de Rham cohomology groups: � @ (# ) → � @ (" ). And
if 5 , 6 : " → # are homotopic maps, then they induce the samemap on the level of de
Rham cohomology group: [ 5 ∗] = [6 ∗] : � 9 (# ) → � 9 (" ).

The importantPoincaré lemma states thatonaspace that is contractible toapoint,
i.e. a topologically trivial manifold, every closed form is exact. So 3l = 0 implies l = 3[.
A concrete example is seen inMaxwell theory, where if spacetime is topologically trivial,
we have the equation of motion 3� = 0 implying � = 3�. If the spacetime is non-trivial,
we only have 3� = 0, and � defines a cohomology class [� ] ∈ � 2(" ).

Also from theabove isomorphism/Stoke’s theorem,we see a close relationbetween
analytical properties of functions and topological properties of background manifold.
This is a recurring theme in topology, wewill encountermore examples later in the study
of index theorem.

2.2 The geometry of moduli spaces

Weknowthat themoduli spacesof instantonsolutionsaremanifoldsparameterised
by 4# |9 | variables. An instantonmoduli space is in fact a special type ofmanifold called
a hyperKähler manifold. We give a brief introduction to such manifolds and show the
above claim.

2.2.1 Complexmanifold

Wewant to generalise the notion of complex numbers and holomorphic functions
to manifolds. We only consider manifolds with even dimensions dim" = 2;. Let a
local patch* have coordinates {F1, . . . , F2;}, and an overlapping region *̃ have coordi-
nates {G 1, . . . , G 2;}. To generalise to complex coordinates, we can introduce {H1 = F1 +
7F2, . . . , H; = F2;−1 + 7F2;} on* , and {E1 = G 1 + 7 G 2, . . . ,E; = G 2;−1 + 7 G 2;} on *̃ . But
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this does not make amanifold complex. We still have the original real manifold, just ex-
pressed in a more convoluted way. And since the assignment of F and G to H andE are
completely arbitrary, there may not be a nice relationship between H andE .

Inparticular, recall the transition functionbetween {F`} and {G`} shouldbesmooth
for a manifold. For a complex manifold, we want to go a step further by demanding the
transition function between {H 7 } and {E 7 } to be holomorphic, in the sense thatE 7 can
be expressed as a function of H 7 only, and not of H̄ 7 , i.e. the coordinates must satisfy the
differential equation mE 8

mH̄ 7
= 0. This should be true for any arbitrary choice of {H 7 } and

{E 8 }. To this end we need to imposemore structures on themanifold.

Structures on amanifold canbe characterisedby some tensors. For example, a Rie-
mannian manifold is defined through the metric 6`a (F). Similarly, a complex manifold
is defined through a tensor � a

` (F). We require � to satisfy �a` � da = −X d` , `,a = 1, . . . , 2;, so
� is a 2; × 2; tensor and the above relationship reads � 2 = −� in matrix notation.

� is a linear map acting on the tangent space, so � : )>" → )>", + ` ↦→ �
`
a +

a in
some basis. Or in matrix notation,+ ↦→ �+ . From � 2 = −1, we see the eigenvalues must
be
√
−1 = ±7 , so the eigenvalue equation is �+ = ±7+ (+ is usually real, so is � , but we can

make senseof this equationbycomplexifying the tangent space). In a complexmanifold,
it turns out the tangent spacewould separate into two subspaces of the same dimension
according to their eigenvalues of � , )>" = )>"

+ ⊕ )>" −, where vectors in )>" + have
eigenvalue 7 andvectorson)>" − haveeigenvalues−7 . Moreprecisely, if themanifoldhas
complex coordinates {H1, . . . , H;}, we can define a basis on the tangent space as { m

mH 7
≡

1
2 (

m
mF27−1 − 7

m
mF27 )} and {

m
mH̄ 7
≡ 1

2 (
m

mF27−1 + 7
m

mF27 )}, 7 = 1, . . . ,;. And we have

�

(
m

mH 7

)
= 7

m

mH 7
, �

(
m

mH̄ 7

)
= −7 m

mH̄ 7
. (2.13)

Locally, we can always write � =

(
7 0
0 −7

)
. � is called an almost complex structure.

It’s ‘almost’ complex because it turns out the division )>" = )>"
+ ⊕ )>" − is not al-

ways possible. Consider under a change of coordinate from {F`} to {H 7 }, we should have
�a`

mH 7

mFa
mF`

mH 8
=
√
−1X 7

8
and �a`

mH 7

mFa
mF`

mH̄ 8
= 0 etc. But there are examples where no solutions to

these equations exist. To have a entirely complex structure, we need an additional con-
straint on � , which turns out to be �a` md �`f − �a` mf �`d − �`f m` �ad + �`f md �a` = 0, where the
left hand side is called the Nijenhuis tensor, or torsion. This equation is not important
for our discussion. The bottom line is that a manifold is complex if it has a � satisfying
� 2 = −� and that the Nijenhuis tensor vanishes.

2.2.2 Kähler and hyperKählermanifold

Whathappenswhenwehaveboth a complex structure andametric 6`a , with some
sortof compatibility conditionbetween them? The result is calledaKählermanifold. The
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compatibility conditions are

6`a �
`
d �

a
f = 6df , ∇` �ad = 0. (2.14)

The two conditions ensure that the torsion vanishes. The first condition, 6 � � = 6 , can
be restated as 3A2 = 6`a 3F

`3Fa = 267 z̄ 3H 73H z̄ , meaning there is only one non-vanishing
component of themetric tensor when expressing in terms of coordinates {H 7 }.

Tounderstand the secondcondition, it is convenient to introduce theKähler form:

9 =
1
26`a �

`
d 3F

d ∧ 3Fa = 7 67 z̄ 3H
7 ∧ 3H̄ z̄ . (2.15)

The second condition, ∇` � = 0, implies 9 is closed, 39 = 0:

39 =
1
2 (m_6`a �

`
d + 6`am_ �

`
d ) 3F_ ∧ 3F d ∧ 3Fa (2.16a)

=
1
2 (m_6`a �

`
d − 6`a (Γ

`

_U
� Ud + ΓU_d �

`
U )) 3F_ ∧ 3F d ∧ 3Fa (2.16b)

=
1
2 (m_6`a �

`
d − 6`a

1
26

`V (m_6VU + mU6V_ − mV6U_) � Ud ) 3F_ ∧ 3F d ∧ 3Fa (2.16c)

=
1
2 (m_6`a �

`
d −

1
2m_6a` �

`
d +

1
2ma6`_ �

`
d ) 3F_ ∧ 3F d ∧ 3Fa = 0. (2.16d)

In components, we have m7 6 8 9̄ = m8 67 9̄ and m z̄67 9̄ = m9̄ 67 z̄ . The two equations are
complex conjugate to each other. With this, one can show that the only nonzero compo-
nent of the Christoffel symbol is Γ7

89
= 6 7 :̄m8 69:̄ ; the curvature tensor is ' 9

ȳ 8 :
= mȳΓ98: ; and

the Ricci tensor is '7 z̄ = −m7m z̄ log det 6 . And finally, locally, we can always write

67 z̄ = m7m z̄ (H, H̄), (2.17)

where  is known as the Kähler potential. In fact the existence of a Kähler potential
implies themanifold is Kähler, and wemake use of this fact in the next subsection [15].

Onemaywonder if it’s possible to havemore than one (almost) complex structure,
so we have � (0) , 0 = 1, . . . , <. In fact there are only two allowed cases, either < = 1, which
we discussed above, or we can have < = 3, in which case the manifold is called hyper-
Kähler. Each of the three complex structures � (0) satisfies 6 � (0) � (0) = 6 and ∇` � (0) = 0.
There are also three Kähler forms, each related to the metric by the defining equation
(2.15). The three complex structures are linearly independent, and satisfy

� (0) � (1) = −X01 + n012 � (2 ) . (2.18)

The Euclidean spacetime ℝ4 itself is hyperKähler. Use the identity [0d`[1`f = −X01Xdf −
n012[2df , so we see that wemay define the complex structure as � (0) = −[0 .
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2.2.3 Instantonmoduli spaces are hyperKähler

We first claim that the three (almost) complex structures on the moduli space can
be defined as

( � (0))7 8 =*
79

∫
34F [0`a/

2
(8 )`/

2
(9 )a , (2.19)

where 0 = 1, 2, 3, [0 are the ’t Hooft symbols, the repeated group indices 2 means we
take the trace over / (8 )`/ (9 )a . The zero modes / (7 )` and the moduli space metric* 7 8 are
defined in Chapter 1.5. We can showdirectly this definition of � satisfies equation (2.18):

( � (0))7; ( � (1));8 =

(
* 79

∫
34F [0`a/

2
(;)`/

2
(9 )a

) (
*;:

∫
34G [1df/

3
(8 )d/

3
(: )f

)
. (2.20a)

From equation (1.177) we have that / 2
(;)` (F)/

3
(: )f (G )*

;: = X 23X`fX (F − G ), so

⇒ ( � (0))7; ( � (1));8 =*
79

∫
34F [0`a[

1
d`/

2
(9 )a/

2
(8 )d , (2.20b)

now use[0`a[1`d = X01Xad + n012[2ad , we have

⇒ ( � (0))7; ( � (1));8 = −*
79

∫
34F

(
X01/ 3

(9 )a/
3
(8 )a + n

012[2ad/
3
(9 )a/

3
(8 )d

)
(2.20c)

= −X01* 79*9 8 + n012* 79

∫
34F [2da/

3
(8 )d/

3
(9 )a (2.20d)

= −X01X 78 + n
012 ( � (2 ))7 8 (2.20e)

as desired. So the given � (0) are indeed almost complex structures.

To show that themanifold is hyperKähler, wewill be contentedwith showing there
is a hyperKähler potential. First, pick one of the three complex structures � (2 ) to diago-
nalise in some local complex coordinates {H 7 , H̄ 7 }, 7 = 1, . . . , 12 dim" for themanifold" .
So � (2 ) =

(
7 0
0 −7

)
locally, meaning

� (2 )
m�`

mH 7
= 7

m�`

mH 7
, � (2 )

m�`

mH̄ 7
= −7

m�`

mH̄ 7
, (2.21)

for some instanton solutions �`. As the derivative of �` with respect to collective coor-
dinates, m�`

mH 7
≡ X7�` and m�`

mH̄ 7
≡ X̄7�` are zeromode solutions.

m

mH̄ 8

m�`

mH 7
=

m

mH̄ 8
(+7 )

m�`

mH 7
= � (2 )

m

mH 7

m�`

mH̄ 8
=

m

mH 7
(−7 )

m�`

mH̄ 8
, (2.22a)

⇒
m2�`
mH̄ 8mH 7

= 0. (2.22b)
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Nowwe claim that

 = − 1
26 2

∫
34F F2 tr�`a�`a (2.23)

is a valid hyperKähler potential. One finds that (see Ref. [15], regrettably I could not
figure out how to show this)

m2

mH̄ 8mH 7
tr�`a�`a = (m2X`a − 2m`ma ) tr X7�`X̄8�a . (2.24)

Substitute this into  , integrate by parts twice and discard the surface terms, we have
m2 
mH̄ 8mH 7

= − 1
26 2

∫
34F F2(m2X`a − 2m`ma ) tr X7�`X̄8�a (2.25a)

= − 1
26 2

∫
34F (2X`aXdd − 4X`a ) tr X7�`X̄8�a (2.25b)

= − 2
6 2

∫
34F tr X7�`X̄8�`. (2.25c)

Comparedwithourdefinition for themetriconmoduli space,* 7 8 = − 2
6 2

∫
34F tr/ (7 )` /

(8 )
` ,

we see that the above formula indeeddescribes ametric onmoduli space,* 7 z̄ . So m2 
mH̄ 8mH 7

=

* 7 z̄ ,  is indeed a Kähler potential for the structure � (2 ). But 2 is arbitrary, so  does not
depend on the choice of index 2 = 1, 2, 3, so  is in fact a hyperKähler potential, which
implies that themoduli space is a hyperKähler manifold.

2.3 Characteristic classes

We give a brief survey of characteristic classes. Wewill see that the instanton num-
ber 9 is given by what is called the second Chern number and the first Pontrjagin class.
Wemention some other characteristic classes due to their appearances in the index the-
orem.

2.3.1 Invariant polynomials

Let" → � be a principal� -bundle and g be the Lie algebra of� . Define a polyno-
mial map % : g→ ℂ invariant under the adjoint of� :

% (Ad6 (- )) = % (- ), (2.26)

where Ad6 (- ) = 6 −1- 6 , - ∈ g, 6 ∈ � . We denote the set of invariant polynomials of de-
gree9 as � 9 . Examples of invariant polynomials include tr- , det- anddet(1 + - ) (which
can be written as an expansion of tr- ).
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Wemay also define an invariant symmetric bilinear map:
%̃ : g × · · · × g︸       ︷︷       ︸

9 times

→ ℂ, (2.27)

invariant under the adjoint of� again:
%̃ (Ad6 (-1), . . . ,Ad6 (-9 )) = %̃ (-1, . . . , -9 ), (2.28)

where -7 ∈ g, 6 ∈ � . We call both % and %̃ as invariant polynomials.

Given %̃ (-1, . . . , -9 ), the diagonal combination of %̃ is
% (- ) ≡ %̃ (- , . . . , -︸    ︷︷    ︸

9 times

), (2.29)

where % ∈ � 9 is an invariant polynomial of degree 9 . Conversely, given a % , its polarisa-
tion defines an invariant symmetric %̃ as

%̃ (-1, . . . , -9 ) ≡
(−1)9
9 !

9∑
8=1

∑
71<···<7 8

% (-71 + · · · + -7 8 ). (2.30)

For example, for 9 = 2:

%̃ (-1, -2) =
1
2 (% (-1 + -2) − % (-1) − % (-2)). (2.31)

In particular, we want invariant polynomials as a function of the curvature � . The
fact that thepolynomials are invariant under� → 6 −1� 6 means they are invariant under
gauge transformations.

Given aprincipal� -bundle" → � and% ∈ � 9 an invariant polynomial of degree9 .
Let � and � ′ be curvature 2-forms corresponding to connections � and �′ respectively,
so % (� (�)) is a 29-form. Then the fundamental theorem of invariant polynomial, the
Chern-Weil theorem, states that

1. The form % (� (�)) is closed: 3% (� (�)) = 0;

2. The difference % (� ′) − % (� ) is exact, i.e. % (� ′) − % (� ) = 3! for some (29 − 1)-form
!. This also means that as elements of the de Rham cohomology group � 29 (" ),
[% (� )] = [% (� ′)], i.e. the induced de Rham cohomology group is independent of
the connection �.

Proof: See, for example, Nakahara Chapter 11.1 [12]. �

Note the definition above is for principal bundles. In practice wewant to deal with
vector bundles of a certain rank, say 9 . In this case simply move to the frame bundle
of the vector bundle, which is the principal bundle with � = �! (9,ℂ). Then, for any
invariant polynomials % on the Lie algebra g, we obtain a characteristic class.
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2.3.2 Chern class and Chern characters

For an9 ×9 matrix- , det(� + B- ) is an invariant polynomial. In fact it definesmany
invariant polynomials of various degrees, %@ ∈ � @ , as can be seen from its expansion:

det(� + B- ) = @ + B tr- + B
2

2 (tr
(
- 2

)
− tr(- )2) + · · · + B 9 det- (2.32)

= %0 + B%1 + B 2%2 + · · · + B 9%9 , (2.33)

where %1 = tr- is of degree 1 etc.

Now let � → " be a complex vector bundle with fibre ℂ9 and structure group
�! (9,ℂ). The connection � and curvature � are 9 × 9 matrices taking values in g.

The totalChernclass2 (� ) is the invariantpolynomialobtainedby lettingB = 7
2c , - =

� where � is the curvature 2-form:

2 (� ) ≡ det
(
� + 7�2c

)
= 20(� ) + 21(� ) + 22(� ) + . . . , (2.34)

the 28 -forms 2 8 (� ) are called the 8 th Chern class. The first few degrees are

20(� ) = rank(� ) ∈ � 0(" ), (2.35a)

21(� ) =
7

2c tr� (�) ∈ � 2(" ), (2.35b)

22(� ) =
1
2

(
7

2c

)2
(tr� (�) ∧ tr� (�) − tr(� (�) ∧ � (�))) ∈ � 4(" ). (2.35c)

...

29 (� ) =
(
7

2c

)9
det� ∈ � 29 (" ). (2.35d)

For any complex vector bundle � → " and any closed compact 29-dimensional
oriented submanifold ( ⊂ " , the Chern number is given by the integral∫

(

29 (� ). (2.36)

A theorem states that the Chern numbers are integers.

Note that clearly everything would be easy if � is diagonal:

7�

2c =

©«
F1

F2
. . .

F9

ª®®®®¬
, (2.37)
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where each F7 is a 2-form. Then the total Chern class is

det
(
� + 7�2c

)
=

9∏
7=1
(1 + F7 ), (2.38)

and the Chern classes are

20 = 1, 21 =
9∑
7=1

F7 , 22 =
∑
7<8

F7F8 , . . . (2.39)

Can � be diagonalised at all? Thankfully, the splitting principle states that, as far as cal-
culatingcharacteristic classesareconcerned,wemay replaceanycomplexvectorbundle
by a sumof complex line bundles. After this replacement, � is diagonal, with F7 being the
first Chern class of the 7 th line bundle.

The total Chern characters are defined as

ch(� ) ≡ tr exp
(
7�

2c

)
= ch0(� ) + ch1(� ) + ch2(� ) + . . . (2.40)

where the individual ch7 are theChern characters. Using the splitting principle, wehave
simply that

ch(� ) = tr exp
(
7�

2c

)
=

9∑
7

exp(F7 ) =
9∑
7

(
1 + F7 +

1
2!F

2
7 +

1
3!F

3
7 + . . .

)
, (2.41)

so
ch0 = 9, (2.42a)

ch1 =
9∑
7=1

F7 = 21(� ), (2.42b)

ch2 =
1
2

9∑
7=1

F27 =
1
221(� )

2 − 22(� ), (2.42c)

...

Thecherncharactersdonotcontainanynewinformationcompared to theChernclasses.
But again, all the invariantpolynomialswecanwritedownare functionsofF1, . . . , F9 , so it
is no surprise that there are relationships among them. Nevertheless somecharacteristic
classes are more convenient than others in certain circumstances. For example, Chern
characters, instead of Chern classes, appear in the Atiyah-Singer index theorem.

Relevance to instantons: For (* (2) instantons in 4D, the first Chern class ∼ tr�
vanishes, the second Chern class is

1
8c2 tr� ∧ � , (2.43)
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and the second Chern number is
1
8c2

∫
ℝ4
tr� ∧ � , (2.44)

which is minus the instanton winding number 9 .

2.3.3 Todd, Euler, and Pontrjagin class

The Todd class is defined as

Td(� ) =
9∏
7=1

F7

1 − 4−F7 = Td0(� ) + Td1(� ) + Td2(� ) + . . . (2.45a)

= 1 + 1221 +
1
12 (2

2
1 + 22) +

1
242122 + . . . (2.45b)

Wemention Todd class also because it appears in the index theorem.

Now, for a real vector bundle, it is in general not possible to diagonalise the curva-
ture tensor. But one can write it in block diagonal form as

7�

2c =

©«

0 F1
−F1 0

0 F2
−F2 0

. . .

ª®®®®®®¬
. (2.46)

But one can complexify the bundle (replace its fibresℝ9 byℂ9 ), thenwemay diagonalise
the curvature by the splitting principle as

7�

2c =

©«

7F1
−7F1

7F2
−7F2

. . .

ª®®®®®®¬
. (2.47)

For an even-dimensionalmanifold with dimension 9 , we define the Euler class of a tan-
gent bundle as

4 ()" ) =

√
det

(
7�

2c

)
=

9/2∏
7=1

F7 . (2.48)

And if dim" = 9 is odd, 4 ()" ) = 0.
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Let � → " be a real vector bundle. We can complexify the bundle by defining
�ℂ = � ⊕ 7� . We then define the 8 -th Pontryagin class of � to be

>8 (� ) = (−1) 8228 (�ℂ), (2.49)

and the total Pontryagin class,

> (� ) =
∑
8

>8 (� ). (2.50)

The first couple Pontryagin classes are

>1(� ) = −
1
8c2 tr� ∧ � , (2.51a)

>2(� ) =
1

128c4
[
(tr� ∧ � )2 − 2 tr(� ∧ � ∧ � ∧ � )

]
. (2.51b)

We see our instanton number 9 is both the second Chern number and the integral over
the first Pontryagin class.

2.4 Index theorem

We invoked the Atiyah-Singer index theorem without proof in Chapter 1.4.3, but
the theorem is famed and important enough that it deserves amore detailed discussion.
Wewill startwith some ‘toy index theorems’ in linear algebra and functional analysis and
work our way up to the actual index theorem. Wewill present the full index formula just
for completeness, but will use a so-called heat kernelmethod to calculate the number of
zeromodes for instantons.

2.4.1 In linear algebra

Let+ ,, be vector spaces, and first consider the easy examples of+ and, being
finite dimensional. Let � be a linear map, � : + → , . So � could be a dim, × dim+

matrix. The kernel of� is given by

ker� = {D ∈ + |�D = 0}. (2.52)

We also used the termnullspace to describe kernel in the ADHMsection. The kernel of a
map� describes the extend at which� fails to be injective, with� being injective iff ker
� = ∅. Also introduce the cokernel of� :

coker� =, /im�, im� = {E ∈, |E = �D for some D ∈ + } ⊆, , (2.53)
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so coker� is isomorphic to the subspace of, that is not reacheable by� , we could say
coker� is orthogonal to im� . The cokernel measures the extend at which � fails to be
surjective, with� surjective iff coker� = ∅ (so im� =, ).

In practical situations we might be interested in the solutions to a linear equation
�D = E , hereE is given. The number of solutions is termed the analytical index of � ,
and is defined as

ind� = dimker� − dimcoker�. (2.54)

Solving the equationmight be a challenging task, but from the above formula we can at
least deduce how many solutions there are. Intuitively, dimker� gives the number of
solutions to�D = 0, and dimcoker� is the number of additional constraint introduced
from making the right hand sideE : For �D = E to have a solution,E has to lie entirely
inside im� , it cannot have any component in, /im� which is orthogonal to im� . Let
the basis vectors in, /im� be 47 , 7 = 1, . . . ,dim(, /im�), then E needs to be orthog-
onal to all of 47 ’s: E · 47 = 0. This amounts to dim(, /im�), or dimcoker� , additional
constraints. The number of solutions to�D = E is then the total number of solutions to
�D = 0minus the number of constraints onE : dimker� − dimcoker� = ind� .

It seems ind� is apropertyof theoperator� andmustdependondetails of� . . .But
surprisingly, ind� is a topological invariant, and only depends on+ and, ! To see this,
first invoke the rank-nullity theorem again,

dimker� + dim im� = dim+ , (2.55)

and consider the quantity dim+ − dim, :

dim+ − dim, = dimker� + dim im� − dim, (2.56a)

= dimker� − (dim, − dim im�) (2.56b)

= dimker� − dim(, /im�) (2.56c)

= ind�, (2.56d)

it is precisely the index of� ! The fact that the index of� does not depend on the details
of� itself, but only on the background spaces+ and, , is a deep result. We shall see that
the actual index theorem followsmore or less the same story.

2.4.2 In functional analysis

Now consider the case where the vector spaces are infinite-dimensional. Now the
formula ind� = dim+ − dim, no longer makes sense, we have to use the original def-
inition, ind� = ker� − coker� . We will restrict to studying operators � whose index
is finite, i.e. both the kernel and cokernel are finite-dimensional. Such operators are
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called Fredholm operators. Fredholm operators are operators that are ‘almost bijec-
tive’, in the sense that while ker� and coker� might not be exactly ∅, they are at least
finite. If ind� = 0, a result states that we can always redefine � on ker� to make � bi-
jective/invertible. So ind� is a measure of how far� is from being invertible. Finally, if
an operator is not Fredholm, i.e. if dimker� and/or dimcoker� are infinite, its index is
not defined.

Now recall Euler characteristic j(- ) of a shape - ⊆ ℝ3 is defined as such: Con-
tinuously deform the shape into a polyhedron  , which is an object with vertices, edges
and faces. Then the Euler characteristic is

j(- ) = (number of vertices in  ) − (number of edges in  ) + (number of faces in  ).
(2.57)

(And in four-dimension, minus the number of 3D solids; in five-dimension, plus the
number of 4D spaces, etc. . . ) It doesn’t matter how one deforms the object, the Euler
characteristic is always the same, i.e. it’s a topological invariant, another word for it is a
topological index. Some examples of j(- ):

• j of a line is 2 − 1 = 1. It is true even if the line is infinite, such as the real lineℝ. In
fact there is a result that j of any contractible space, for exampleℝ< , is 1.

• To find j((1), one can deform (1 into a triangle Δ, then j(Δ) = 3 − 3 + 0 = 0. Note
the inside of the triangle does not count as a face, as it is not part of (1.

It turns out the index of an operator� is still closely related to the space - over which�
is defined. In particular, we have the relevant index theorem:

ind� = j(- ). (2.58)

We will provide a physicist’s proof of this result, called proof by giving two examples:

In our first example, consider� = 3
3F

: �∞(ℝ) → �∞(ℝ), so+ =, = �∞(ℝ),�5 =

5 ′ for some real function 5 . Then ker� = {constant functions} � ℝ, and dimker� = 1.
On the other hand im� = , , because any function 6 can be reached by 3

3F
5 ; to find 5 ,

simply take the integral of 6 . Sodimcoker� = dim(, /, ) = 0. Wehave ind� = 1 = j(ℝ)
as expected.

In the secondexample, take+ =, = �∞((1)where the(1 is parametrisedby \ , and
let � : 3

3\
: + → , , note this means that for any function 5 (\ ), we have 5 (0) = 5 (2c).

Here ker� is still {constant functions} � ℝ, dimker� = 1. To find im� , the claim is

ℎ ∈ im� iff
∫ 2c

0
ℎ (\ ) 3\ = 0. (2.59)

Proof: If ℎ = �5 = 5 ′ for some 5 ∈ + , then
∫ 2c
0 ℎ (\ ) 3\ = 5 (2c) − 5 (0) = 0. Conversely,

if
∫ 2c
0 ℎ (\ ) 3\ = 0, then define 5 (\ ) =

∫ \

0 ℎ (B ) 3B , and we have 5 (0) = 5 (2c) = 0, so
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5 ∈ �∞((1); also�5 = 5 ′(\ ) = ℎ (\ ), so ℎ ∈ im� . Note that for a general 6 ∈, , 6 differs
from ℎ ∈ im� by at most a constant, 6 = ℎ + 1

2c
∫ 2c
0 6 (B ) 3B . Here ℎ ∈ im� because∫ 2c

0 ℎ (\ ) 3\ =
∫ 2c
0 6 (\ ) 3\ − 1

2c
∫ 2c
0 3\

∫ 2c
0 6 (B ) 3B = 0. So, /im� = {constants} � ℝ.

Finally, this means dimker� − dimcoker� = 1 − 1 = 0. Again this is the same as the
topological index j((1). We have proved the index theorem at the desired rigour. �

Generally, theEuler indexofaneven-dimensional compactorientableRiemannian
manifold" can be calculated by theGauss-Bonnet theorem:∫

"

4 (" ) = j(" ), (2.60)

where 4 (" ) is the Euler class that depends on the curvature on the manifold. The cur-
vature at a point measures howmuch the surface bends away from the tangent plane at
that point. For example, a unit sphere has curvature 4 = positive constant 1/2c , so that∫
(2 4 = 4 × (area) = 4 × 4c = 2 = j((2). With a torus, 4 > 0 along the outer circle, 4 < 0
along the inner circle, and somewhere in-between 4 = 0. The details can be found in e.g.
Nakahara 11.4.2 [12].

2.4.3 Curved space preliminaries

Wenowwant to generalise to finding the index of some operator� that act on sec-
tions: � : Γ(",� ) → Γ(",� ) where � → " and � → " are fibre bundles.

Elliptic operator

Given an <-th order differential operator� , i.e. � contain at most < partial deriva-
tives, and let F1, . . . , F; be the variables these derivatives differentiate respect to, then
the symbol (or principal symbol): f of� is defined by replacing m

mF1 , . . .
m

mF;
with real vari-

ables, 7 b1, . . . , 7 b; , respectively. For example, consider the operator
� = −m2F − m2G + 3mF − F2mG + 4F+G , (2.61)

where mF ≡ m
mF
etc. Then the symbol f (�) is obtained by taking the highest order terms

and replace mF with 7 b1 and mG with 7 b2:

f (�) (b1, b2) = −(7 b1)2 − (7 b2)2 = b21 + b
2
2 = |b |2. (2.62)

Anellipticoperator is anoperatorwhere thesymbol is invertible for b = (b1, . . . , b;) ≠
0. The operator above is elliptic because for b = (b1, b2) ≠ 0, f (�) (b )−1 = |b |−2 exists. A
result states that elliptic operators on a compact manifold are Fredholm, hence we will
only concern ourselves with elliptic operators. Most operators are not elliptic, for exam-
ple, consider

� = −m2F + mG , (2.63)
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then f (�) (b1, b2) = b21 , and for example, for b = (0, b2) ≠ 0, the symbol is nonzero, but
f (�) (0, b2) = 0 is not invertible.

Where are the ellipses in elliptic operators? Recall that second order PDEs divide
into three classes: Elliptic PDEs describe steady-state or equilibrium solutions; there are
also the hyperbolic PDEs (e.g. the wave equation) and parabolic PDEs (e.g. the heat
equation), both of which involve propagation. Canonical examples of elliptic PDEs in-
clude the Poisson equation:

Δ5 ≡ −m
2 5
mF2
− m

2 5
mG 2

= 6 (F, G ), (2.64)

where Δ ≡ − m2
mF2 −

m2
mG2 is the Laplacian. And of course when 6 (F, G ) = 0, we have the

Laplace equation Δ5 = 0 which is also elliptic. One can check that operators that give
rise to elliptic PDEs, such as Δ, are elliptic operators. Also, with f (Δ) (b ) = |b |2, we see a
notion of length, and therefore geometry, emerges.

Dirac-type operators

Elliptic operators, unlike elliptic PDEs, are not only defined for the second-order
case. For example, the Cauchy-Riemann operator is a first-order operator defined as

��' = mF + 7mG , (2.65)

its symbol is

f (��' ) (b ) = 7 b1 − b2, (2.66)

which one can check is invertible for b ≠ 0.

Recallwe foundanotionof lengthwith thesymbolof theLaplacianoperator,f (Δ) (b ) =
|b |2. This notion is still presentwith��' , we see this bymultiplyingf (��' ) (b ) by its com-
plex (Hermitian really) conjugate:

f (��' ) (b ) f (��' ) (b ) = (−7 b1 − b2) (7 b1 − b2) = b21 + b
2
2 = |b |2. (2.67)

Such an operator, which is: 1) first-order, 2) elliptic, and 3) satisfies

f (�) (b ) f (�) (b ) = |b |2, (2.68)

is called a Dirac-type operator. A Dirac-type operator is like the ‘square root’ of Lapla-
cian, in the sense that the square of the symbol of a Dirac-type operator equals the sym-
bol of the Laplacian. But being a first-order operator, a Dirac-type operator is simpler to
work with compared to the Laplacian.

Another example is what sometimes known as theGauss-Bonnet operator:

��� = 3 + 3†, (2.69)
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where3 is the exterior derivative, 3 : Ω> (" ) → Ω>+1(" ), andΩ> (" ) is the set of>-forms
over amanifold" .

Given 3 , its adjoint, 3†, is a map 3† : Ω> (" ) → Ω>−1(" ). Compared to 3 , we see
the domain and the codomain (the space that contains the image) have been switched.
This is reminiscent of how amatrix �may be viewed as a linearmap � :+ →, , then the
adjoint of thematrix �† is a map �† :, →+ .

When there is ametricover themanifold" , onecandefinean innerproduct 〈l,[〉,
where l,[ are >-forms. The adjoint is then defined by the relation

〈3U, l〉 = 〈U, 3†l〉 , (2.70)

where ifl is a>-form, thenU needs tobe a (>−1)-form. Equivalently, 〈l,3U〉 = 〈3†l, U〉.

Explicitly, for l,[ ∈ Ω9 (" ), the inner product 〈 , 〉 can be defined via the Hodge
dual,

〈l,[〉 =
∫
"

l ∧ ★[, (2.71)

if" is <-dimensional, then ★[ is a (< − >)-form and therefore l ∧ ★[ is a top form that
can be integrated over. Then 3† acting on a >-form is defined as:

3† = (−1)<>+<−1 ★ 3 ★ . (2.72)

One can check this definition of 3† satisfies 〈3U, l〉 = 〈U, 3†l〉.

Lastly, we define the Laplacian as

Δ := (3 + 3†)2 = 33† + 3†3. (2.73)

Now the Dirac-type operator 3 + 3† is literally the square root of the Laplacian.

A very explicit example

Consider" = ℝ2, in this case there are three Ω9 (ℝ2) with 9 = 0, 1, 2 (elements of
Ω0(ℝ2) are just smooth functions �∞(ℝ2)), they’re related to one another by the action
of 3 , and can be represented by the following exact sequence:

Ω0(ℝ2) 3−−→ Ω1(ℝ2) 3−−→ Ω2(ℝ2) 3−−→ 0. (2.74)

We call a sequence of the form . . . space operator
−−−−−−−−→ space operator

−−−−−−−−→ space . . . as a complex.
In particular, one might recognise the sequence above as a de Rham complex. We will
also use the term elliptic complex for complexes related by elliptic operators. Beware
that the elliptic operator here is not 3—its kernel is infinite-dimensional—but ��� =

3 + 3†.
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We see from the above complex that 3 is really three maps. In particular, 3 acting
on a 0-form is the gradient:

3 5 = mF 5 3F + mG 5 3G ; (2.75)

and 3 acting on a 1-form is the curl:

3 ( 5F 3F + 5G 3G ) = mG 5F 3G ∧ 3F + mF 5G 3F ∧ 3G = (mF 5G − mG 5F ) 3F ∧ 3G . (2.76)

Like 3 , the adjoint 3† = − ★ 3★ also represents threemaps:

Ω2(ℝ2) 3†−−−→ Ω1(ℝ2) 3†−−−→ Ω0(ℝ2) 3†−−−→ 0. (2.77)

Let’s see what 3† does really. Acting on a 2-form (note that ★3F = 3G , ★3G = −3F, ★1 =

3F ∧ 3G and ★(3F ∧ 3G ) = 1):

3†( 5 3F ∧ 3G ) = − ★ 3 ★ ( 5 3F ∧ 3G ) (2.78a)

= − ★ 3 5 (2.78b)

= − ★ (mF 5 3F + mG 5 3G ) (2.78c)

= mG 5 3F − mF 5 3G , (2.78d)

so 3† = −curl on 2-form. Acting on 1-form:

3†( 5F 3F + 5G 3G ) = − ★ 3 ★ ( 5F 3F + 5G 3G ) (2.79a)

= − ★ 3 (−5G 3F + 5F 3G ) (2.79b)

= − ★ (mF 5F + mG 5G ) 3F ∧ 3G (2.79c)

= −mF 5F − mG 5G , (2.79d)

so 3† = −div on 1-form.

Let’s check��� = 3 +3† is ofDirac-type, recall thismeans the symbol of��� should
satisfy f̄f = |b |2 for b ≠ 0. When acting on 0-form,��� = 3 is just the gradient, it can be
represented as��� =

(
mF
mG

)
, so f (��� ) (b ) =

(
7 b1
7 b2

)
, and

f (��� ) (b )f (��� ) (b ) =
(
−7 b1 −7 b2

) (7 b1
7 b2

)
= b21 + b

2
2 = |b |2, (2.80)

as desired. Nowwhen acting on 2-form,��� = 3† =

(
mG
−mF

)
, so f (��� ) (b ) =

(
7 b2
−7 b1

)
, and

f (��� ) (b )f (��� (b ) =
(
−7 b2 7 b1

) ( 7 b2
−7 b1

)
= |b |2. (2.81)
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Finally for the case of acting on 1-form, recall 3 : ( 5F , 5G ) ↦→ (mF 5G − mG 5F ) 3F ∧ 3G and
3† : ( 5F , 5G ) ↦→ −(mF 5F + mG 5G ), we can thus represent��� as

��� =

(
−mG mF

−mF −mG

)
, ���

(
5F

5G

)
=

(
mF 5G − mG 5F
−mF 5F − mG 5G

)
, (2.82)

then

f (��� ) (b ) =
(
−7 b2 7 b1

−7 b1 −7 b2

)
, (2.83)

⇒ f (��� ) (b )f (��� ) (b ) =
(
7 b2 7 b1

−7 b1 7 b2

) (
−7 b2 7 b1

−7 b1 −7 b2

)
=

(
|b |2 0
0 |b |2

)
= |b |2. (2.84)

So��� is indeed Dirac-type.

Lastly, let’s see what the Laplacian Δ = 33† + 3†3 = −3 ★ 3 ★ − ★ 3 ★ 3 does. As an
example, let’s act Δ on a 1-form:

Δ( 5F 3F + 5G 3G ) (2.85a)

= (−3 ★ 3 ★ − ★ 3 ★ 3) ( 5F 3F + 5G 3G ) (2.85b)

= −3 ★ 3 ( 5F 3G + 5G 3F) − ★3 ★ (−mG 5F + mF 5G ) 3F ∧ 3G (2.85c)

= −3 ★ (mF 5F + mG 5G ) 3F ∧ 3G + ★3 (mG 5F − mF 5G ) (2.85d)

= −3 (mF 5F + mG 5G ) + ★
(
(mFmG 5F − m2F 5G ) 3F + (m2G 5F − mFmG 5G ) 3G

) (2.85e)

= (−m2F 5F − mFmG 5G − m2G 5F + mFmG 5G ) 3F + (−mFmG 5F − m2G 5G + mFmG 5F − m2F 5G ) 3G (2.85f)

= (−m2F − m2G ) ( 5F 3F + 5G 3G ). (2.85g)

No surprise here: The Laplacian is the Laplacian.

2.4.4 Generalisation to fibre bundles

Recall the objects of interest so far:

• 3 : Ω> (" ) → Ω>+1(" ),

• 3† : Ω> (" ) → Ω>−1(" ),

• Δ = 33† + 3†3 : Ω> (" ) → Ω> (" ),

• 〈3U, l〉 = 〈U, 3†l〉 for l ∈ Ω> (" ), U ∈ Ω>−1(" ).
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We want to generalise the above. Starting from generalising 3 to an arbitrary elliptic op-
erator � , now defined over fibre bundles. Also recall the generalisations of functions to
fibre bundles are sections, the space of which is denoted Γ. Given fibre bundles � → " ,
� → " , we may have � : Γ(",� ) → Γ(",� ), then �† : Γ(",� ) → Γ(",� ), and the
definition of adjoint becomes

〈A ′, �A 〉� = 〈�†A ′, A 〉� , (2.86)

where A ∈ Γ(",� ) and A ′ ∈ Γ(",� ), 〈 , 〉� and 〈 , 〉� are inner products defined on � and
� respectively (fibremetrics required). We can also define kernel and cokernel as usual:

ker� = {A ∈ Γ(",� ) |�A = 0}, (2.87a)

coker� = Γ(",� )/im�. (2.87b)

The index of� (actually the index of the elliptic complex Γ(",� )
�−−−⇀↽−−−
�†

Γ(",� )) is

ind� = dimker� − dimcoker� (2.88)

as usual. But we claim that we can get rid of the confusing coker by the isomorphism:

coker� � ker�† = {A ∈ Γ(",� ) |�†A = 0}, (2.89)

then

ind� = dimker� − dimker�† . (2.90)

Proof of the isomorphism: First there is a surjection ker�† → coker� , namely for any
[A ] ∈ coker� , we have (recall [A ] defines an equivalence class [A ] = {A +�C},C ∈ Γ(",� )
but otherwise arbitrary)

A0 = A −�
1

�†�
�†A , (2.91)

where one can check that �†A0 = 0, so A0 ∈ ker�†. Also the map is injective: For A0, A ′0 ∈
ker�†, if [A0] = [A ′0], and assume A0 ≠ A ′0, then wemust have A0 = A ′0 +�C for someC , then
0 = 〈C,�†(A0 − A ′0)〉� = 〈C,�†�C〉� = 〈�C,�C〉� > 0, therefore �C = 0, this contradicts
our assumption that A0 ≠ A ′0, we must have A0 = A ′0 if [A0] = [A ′0], meaning the map is
injective. So themap is a bijection, and coker� � ker�†. �

Dirac operator and spin complex

Recall our original problem in Chapter 1.4.3 wherewe try to find the zeromodes to
theoperator /̄� . Let’s review theproblemby rephrasing it in the languageof fibrebundles.
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In this language, the Weyl spinor on " is a section of the fibre bundle denoted (total
space, base space, fibre, structure group)

(, ," ,ℂ2, (! (2,ℂ)) or (, ," ,ℂ2, (! (2,ℂ)) (2.92)

for ( 12 , 0) and (0, 12 ) representations respectively. The Dirac spinor on" is a section of

(�," ,ℂ4, (! (2,ℂ) ⊕ (! (2,ℂ)). (2.93)

The two fibre bundles above where spinor fields are sections of are called spin bundles,
let’s denote it ( (" ). Let the set of sections of this bundle be Δ(" ) ≡ Γ(",( (" )). We
assume that dim" = ; is an even integer.

For a Dirac spinor, the eigenspacek ∈ Δ(" ) splits into two parts,

Δ(" ) = Δ+(" ) ⊕ Δ−(" ), (2.94)

(Δ±(" ) are not to be confused with the differential operators Δ± ∼ �2 + 1
2f`a�`a we de-

fined in equation (1.154)) where the projector onto Δ±(" ) are

% + =
1
2 (� +W

5) =
(
� 0
0 0

)
, (2.95a)

%− =
1
2 (� −W

5) =
(
0 0
0 �

)
. (2.95b)

Wemay write (
k+

0

)
∈ Δ+(" ),

(
0
k−

)
∈ Δ−(" ). (2.96a)

The archetypal example of a Dirac-type operator is, not surprisingly, the Dirac opera-
tor 7 /D, as in the Dirac equation 7 /Dk = 0. In our (Weyl) representation of the gamma
matrices,

W` =

(
0 −7f`
7 f̄` 0

)
,

f` = (g0 , 7 )
f̄` = (g0 ,−7 ), (2.97)

so the Dirac operator is

7 /D =

( 0 /�
− /̄� 0

)
, (2.98)

where /� = f`�`, /̄� = f̄`�`. The Diracmatrices are Hermitian, so we have /�† = /̄� .

Now for
(
k+

0

)
∈ Δ+(" ),

7 /D
(
k+

0

)
=

(
0
/�k+

)
∈ Δ−(" ), (2.99a)
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7 /D
(
0
k−

)
=

(
− /̄�k−
0

)
∈ Δ−(" ), (2.99b)

we have a two-term complex

Δ+(" )
/�−−−⇀↽−−−
/�†

Δ−(" ), (2.100)

called a spin complex. The index of this complex is

ind /� = dimker /� − dimker /�† = a+ − a−, (2.101)

wherea± is the number of zeromodes of chirality ±.

2.4.5 Heat kernel expression

Given an elliptic operator Δ : Γ(",� ) → Γ(",� ), define the heat kernel by

ℎ (B ) = 4−BΔ. (2.102)

ℎ (B ) satisfies the heat equation: (
m

mB
+ Δ

)
ℎ (B ) = 0, (2.103)

hence the name.

Let {|<〉} be an eigenbasis of Δ, so Δ |<〉 = _< |<〉, then we define

Trℎ (B ) =
∫

3F 〈F |
∑
<

〈< | 4−BΔ |<〉 |F〉 =
∑
<

4−B_< , (2.104)

where we defined the capital Tr to be the ordinary trace with an integration over space-
time. It follows that in the B → ∞ limit, only zero eigenvalues contribute to Trℎ (B ), that
is:

lim
B→∞

Trℎ (B ) = dimkerΔ. (2.105)

Note in the special case of a two-term complex, if we define two Laplacians:

Δ� = �†� : Γ(",� ) → Γ(",� ), (2.106a)

Δ� = ��† : Γ(",� ) → Γ(",� ), (2.106b)

then remarkably, if we exclude zero modes, the spectra for Δ� and Δ� are completely
identical. This is because for every eigenvector of Δ� , Δ� |_〉 = _ |_〉, we have� |_〉 which
is an eigenvector of Δ� with the exact same eigenvalue:

Δ� (� |_〉) = ��†� |_〉 = �Δ� |_〉 = _(� |_〉). (2.107)



74 A TOPOLOGIST’S INSTANTON

This is reminiscentofhowinsupersymmetry, thenumberofbosonicand fermionicmodes
always match up except for vacuum states.

From Δ� and Δ� we can define two heat kernels, ℎ� (B ) = 4−BΔ� and ℎ� (B ) = 4−BΔ� .
The index theorem becomes

ind� = dimker� − dimker�† (2.108a)

= dimkerΔ� − dimkerΔ� (2.108b)

= lim
B→∞
(Trℎ� (B ) − Trℎ� (B )) (2.108c)

= Trℎ� (B ) − Trℎ� (B ), (2.108d)

the last step follows from the fact that the B -dependent part of ℎ� (B ) and ℎ� (B ) cancel.

In the instantoncalculationbelow,wecanput the index inamoreconvenient form:

ind� = lim
" 2→0

Tr
∫ ∞

0
3) 4−)

(
4−() /"

2)Δ� − 4−() /" 2)Δ�
)

(2.109a)

= lim
" 2→0

Tr
(

" 2

−Δ� +" 2 (4
−∞ − 40) − " 2

−Δ� +" 2 (4
−∞ − 40)

)
(2.109b)

= lim
" 2→0

Tr
(

" 2

−�†� +" 2 −
" 2

−��† +" 2

)
. (2.109c)

The first line follows once again from the fact that the nonzero spectra for Δ� and Δ�
are identical, so all contributions from nonzero energies cancel, and the term inside
the bracket becomes dimkerΔ� − dimkerΔ� . The integration is over ) is then trivial:∫ ∞
0 3) 4−) = −4−)

��∞
0 = 1. Just like how the original heat kernel equation is independent

of B , this formula is independent of" 2.

2.4.6 Instanton zero-mode counting

Recall our original problem of zero-mode counting, we established that in an anti-
instanton background, the number of zero modes is equal to the index of the operator
/̄� , that is (the below is equation (1.165) reproduced)

ind /̄� = dimker /� /̄� − dimker /̄� /�. (2.110)

Nowwe knowwe can write the index as

ind /̄� = lim
" 2→0

Tr
(

" 2

− /� /̄� +" 2
− " 2

− /̄� /� +" 2

)
, (2.111)
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where" is arbitrary, and in fact the expression before taking the limit is independent of
" , so we will ignore the limit. Now insert a complete set of momentum eigenstates:

ind /̄� =

∫
34F

∫
349
(2c)4

349 ′

(2c)4 tr 〈F |9
′〉 〈9 ′|

(
" 2

− /� /̄� +" 2
− " 2

− /̄� /� +" 2

)
|9 〉 〈9 |F〉 . (2.112)

Now introduce some shorthand notation. Recall

/D =

( 0 −7 /�
7 /̄� 0

)
⇒ /D2

=

(
/� /̄� 0
0 /̄� /�

)
, (2.113)

and recallW5 =
(
� 0
0 −�

)
, then the bracketed term in the index formula becomes

" 2

− /� /̄� +" 2
− " 2

− /̄� /� +" 2
= tr

(
" 2

− /� /̄�+" 2 0
0 − " 2

− /̄� /�+" 2

)
≡ tr

(
" 2

− /D2 +" 2
W5

)
. (2.114)

Also substitute in 〈9 |F〉 = 4−79F , then the index formula simplifies to

ind /̄� =

∫
34F

∫
349
(2c)4

349 ′

(2c)4 tr
[
4+79

′F 〈9 ′|
(

" 2

− /D2 +" 2
W5

)
|9 〉 4−79F

]
, (2.115)

note that /D acts on F , but not 9 or |9 〉. So wemay commute |9 〉 to the left to give 〈9 ′|9 〉 =
(2c)4X 4(9 − 9 ′). Also since

/D4−79F = 4−79F (−7 /9 ) + 4−79F /D, (2.116)

we need to replace /D with /D − 7 /9 if we want to commute 4−79F past /D. After all that we
have

ind /̄� =

∫
34F

∫
349
(2c)4 tr

(
" 2

−( /D − 7 /9 )2 +" 2W5

)
. (2.117)

The denominator is:

−( /D2 − 7 /9 )2 −" 2 = −( /D /D − 7 /9 /D − 7 /D/9 − /9 /9 ) −" 2, (2.118)

where

/D /D = D`DaW`Wa = D`Da (W{`Wa} +W[`Wa]) (2.119a)

= D`DaX`a + D[`Da]W[`Wa] = D2 + 12�`aW`Wa , (2.119b)

andwe used {W`,Wa } = 2X`a and one can check that [D`,Da ] = [�`, �a ] = �`a . Similarly,

/9 /9 = 9`9a (W{`Wa} +W[`Wa]
= 0

) = 92, (2.120a)
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and 7 /9 /D + 7 /D/9 = 79`Da (W`Wa +WaW`) = 279 · D. (2.120b)

Putting it all together,

ind /̄� =

∫
34F

∫
349
(2c)4 tr

(
" 2

(92 +" 2) − (D2 − 279 · D + 1
2W`Wa�`a )

W5

)
. (2.121)

Wemay rescale 9 → "9 , then

ind /̄� = " 4
∫

34F
∫

349
(2c)4 tr

(
1

92 + 1

F

−
(
D2

" 2 −
279 · D
"

+ 12
W`Wa�`a

" 2

)
G

W5

)
. (2.122)

In the limit" 2 → ∞, we may use the expansion 1
F−G = 1

F
+ 1

F
G 1
F
+ 1

F
G 1
F
G 1
F
+ . . . to expand

the denominator. The terms that are first order, third order and fourth order in G are all
0 since trW 5 = tr(W`WaW 5) = 0, and also because terms with more than four powers of 1

"

vanish in the limit" 2 → ∞. The only term that contributes is
(
1
2
W`Wa�`a

" 2

)2
in the G 2 term.

That is:

ind /̄� =

∫
34F

∫
349
(2c)4

1
(92 + 1)3

1
4 tr

(
W`Wa�`aWdWf�dfW5

) (2.123a)

=

∫
34F

2c2
(2c)4

∫ ∞

0

@ 3 3@
(@ 2 + 1)3

1
4 tr

(
B 0B 1

)
tr (

W`WaWdWfW5
)
� 0`a�

1
df (2.123b)

=
1

32c2
∫

34F tr
(
B 0B 1

)
(n`adf� 0`a�1df ) (2.123c)

= 2 · 1
32c2

∫
34F � 0`a ★ �

1
`a tr

(
B 0B 1

)
, (2.123d)

where we used
∫
3Ω3 = Vol((3) = 2c2,

∫ ∞
0

@ 3 3@
(@ 2+1)3 = 1

4 and tr(W`WaWdWfW5) = 4n`adf .
Here B 0 is the generator of some arbitrary representation of (* (# ). We define tr(B 0

'
B 1
'

)
=

−X01) ('). For the fundamental representation, ) (') = 1
2 , then the above simply be-

comes the winding number |9 |. For the adjoint representation,) (') = # . Therefore

ind /̄� =

{
|9 | fundamental representation,

2# |9 | adjoint representation,
(2.124)

And as we have shown in Chapter 1.4.3, an (anti-)instanton in (* (# ) has twice asmany
bosonic collective coordinates than fermionic zeromodes in the adjoint representation.
Therefore there are a total of 4# |9 | bosonic collective coordinates for an (anti-)instanton
with winding number 9 (−9 ) and gauge group (* (# ).
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2.4.7 The Atiyah-Singer index theorem

For completeness, we present the index formula in its full glory, even though we
managed to avoid using it. Let Γ(",� ) �−−→ Γ(",� ) be a two-term elliptic complex, and
" an ;-dimensional compact manifold without a boundary. The index of � or of the
complex is written

ind� = dimker� − dimker�† (2.125a)

= (−1); (;+1)/2
∫
"

(ch� − ch� )Td()"
ℂ)

4 ()" )

����
vol
, (2.125b)

where ch is the total Chern character defined in equation (2.40), Td is the Todd class
defined in equation (2.45), and 4 is the Euler class defined in equation (2.48). Note; is
even. The index vanishes for odd;.
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3
Instanton Effects in Physics

Other than being ‘finite-action field configurations in Euclidean space’, what are
instantons really and what do they do? For one thing, the actual spacetime is not Eu-
clidean. But we shall see that, despite having an Euclidean origins, instantons can play
an important role in physics.

Our main reference material for this chapter is the book by Rajaraman [3]. Other
honourable mentions include Coleman [16], as well as Parajape [17].

Inwhatmight be a drastic departure fromour style in Chapter 1, in this chapter we
give up all attempts at trying to be rigorous. We will be perfectly contented with getting
approximated, qualitative solutions that capture the general spirits of things.

3.1 Tunnelling in a periodic potential

We start with a toy example of a massive particle in a one-dimensional periodic
potential in quantummechanics.

Consider a particle in one-dimension under a periodic potential, satisfying+ (F) =
+ (F +2c), and let theminima of the potential be+ (2#c) = 0 for integer# . As a concrete
example, onecan think+ (F) = 1−cos F . Aroundaminimumonecanexpand+ (F) = 1

2F
2+

O(F3). Then if we ignore tunnelling, we would have an infinite number of degenerate
groundstatewithenergy�0 = 1

2 (toput inamore familiar form, sometimeswewill rescale
F so+ (F) = 1 − coslF , then+ (F) ≈ 1

2l
2F2, and �0 = 1

2l).

79
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Whenwe take into account the tunnelling effects, thedegenerate energy level splits
into a band. The energy of the states in this band is given by �9 ≈ �0 − U cos09 (see,
for example, Kittel, [18]), where U is some constant, 0 = 2c is the lattice spacing, and
9 = \/2c is the wavenumber for some \ that parametrises the states in the band. So
equivalently, we can write

�\ ≈ �0 − U cos \ . (3.1)

The famous Bloch theorem states that the energy eigenfunction satisfies q9 (F +
2c) = 4 72c9q9 (F), or equivalently,

q\ (F + 2c) = 4 7 \q\ (F). (3.2)

Weshall nowtry to reproduce the twoabove resultsusingEuclideanactionand instanton
method.

Consider the transition amplitude from F = 0 at timeg = −)2 to F = 2c at timeg = )
2 ,

this is given by

〈2c | 4−�) |0〉 =
∫

�F 4−(� [F (g)] =
∑
<

〈2c |q<〉 〈q< |0〉 4−�<) , (3.3)

where q< are energy eigenstates, |0〉 , |2c〉 are position eigenstates, and all paths go from
F (−)2 ) = 0 to F ()2 ) = 2c . We are interested in taking ) → ∞ limit, then the sum will be
dominated by the states in the lowest-energy band. In fact, the Euclidean action (� is
nothing but the energy functional:

(� =
1
2

∫
3F

[(
3F

3g

)2
++ (F)

]
. (3.4)

The equation of motion is (let ¤denote g derivative, and ′ denote F derivative)

X(�

XF (g) = −¥F ++
′ = 0. (3.5)

The ‘(anti-)instantons’ in this system are the finite-action solutions to the equation of
motion, but now we see that the requirement of finite action in Euclidean space is ex-
actly the same as having finite energy in Minkowski space. Also, instantons and anti-
instantons differ by that instantons are defined to satisfy F (−)2 ) = 0, F ()2 ) = 2c , and the
‘anti-instantons’ satisfy F (−)2 ) = 2c, F ()2 ) = 0. We claim such solutions always exist. Call
an instanton solution F0(g), which has action (� [F0(g)] = (0. The precise shape of the

solution is not of interest to us, but will look something like
g

F

0

2c
.
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Expand around a solution as F = F0 + XF , we have the amplitude equals something
like

〈2c | 4−�) |0〉 =
∫

�F exp
(
−(� [F0] −

X 2(� [F0]
XF2

XF2
)
= 4−(0� det

(
− 3

2

3g2
++ ′′[F0]

)− 12
,

(3.6)

for some constant � appearing in �F . Note, again, following the exact same discussion
around equation (1.173), we can show that the operator − 32

3g2 ++
′′ has a zero eigenfunc-

tion ¤F0. Or even simpler: From −¥F0 + + ′ = 0, take the time derivative again, one finds(
− 32
3g2 ++

′′
)
¤F0 = 0. The zero eigenvalue causes a divergence, which has to do with the

translational invariance of the action in g : Given F0(g), we immediately have infinitely
many new solutions F0(g − g′), where g′ is arbitrary, which also solves the equation of
motion with the same action (0.

We know how to deal with the divergence from Chapter 1.5 though: We recognise
¤F0 as the ‘zeromode’ andg the ‘collective coordinate’. Define an amputated determinant
excluding thezeromode, then integrateover thezeromodeseparately. Themoduli space
is much simpler here, the integral over it simply gives something like � (

∫ ) /2
−) /2 3g) = �) ,

where � is a Jacobian factor that relates zero mode and collective coordinates. The final
result is

〈2c | 4−�) |0〉 = 4−(0� �) det′
(
− 3

2

3g2
++ ′′[F0]

)− 12
. (3.7)

Nowmake another approximation: The instanton solution spends the vast major-
ity of its time at F = 0 and F = 2c , at both points+ ′′ = l2 if we reinstate l (think of the
potential+ = 1 − coslF). We then let det′( 32

3g2 + +
′′[F0])−

1
2 ≈  det′( 32

3g2 + l
2)− 12 in the

above, and claim that  is a constant independent of) as) →∞. So we have

〈2c | 4−�) |0〉 = 4−(0� �) det′
(
− 3

2

3g2
+ l2

)− 12
. (3.8)

Acting
(
− 32
3g2 + l

2
)
on a sine function to find its eigenvalues:(
− 3

2

3g2
+ l2

)
sin

(<cg
)

)
=

(
<2c2

) 2 + l
2
)
sin

(<cg
)

)
. (3.9)

Now use∏∞
<=1 H

(
1 + H2

<2c2

)
= sinh H , we have the determinant equal to

det
(
− 3

2

3g2
+ l2

)− 12
= (l) ) 12

[ ∞∏
<=1

<2c2

) 2 (l) )
(
1 + l

2) 2

<2c2

)]− 12
∝

( l

sinhl)
) 1
2
. (3.10)



82 INSTANTON EffECTS IN PHYSICS

In the) →∞ limit, sinhl) → 4l) /2. We are not terribly interested in themultiplicative
constant, although it turns out� is killed off somewhere and we are left with

lim
)→∞

〈2c | 4−�) |0〉 = 4−(0 � )
(l
c

) 1
2
4−l) /2. (3.11)

Now consider a configuration with an instanton localised around g1, then an anti-
instanton atg2 � g1, followed by an instanton atg3 � g2. . . . Or we could have ten instan-
tons locatedatg1, . . . ,g10 in thebeginning, followedbynineanti-instantonsatg11, . . . ,g19.
Both are valid configurations. In short, we can generate infinitely many valid configura-
tions, provided 1) that g7+1 − g7 < ∞, and 2) that if there are <1 instantons (tunnelling to
the right) and <2 anti-instantons (tunnelling to the left), then we must have <1 − <2 = 1
so that that the boundary condition F (−∞) = 0, F (∞) = 2c is satisfied.

Such a configuration will not be an exact solution to −¥F ++ ′ = 0, but as the sepa-
rations g7+1 − g7 increase, the configuration will give a better and better approximation
to the exact solution. This is called a dilute-gas approximation, and the configuration
called an instanton gas. Each (anti-)instanton adds (0 to the total action, and a factor of
( � ) ) to our amplitude, in the end we have the total amplitude given by

lim
)→∞

〈2c | 4−�) |0〉<1,<2 = X<1−<2,1
exp(−(<1 + <2)(0)

<1!<2!
( � ) )<1+<24−l) /2

(l
c

) 1
2
, (3.12)

where the 1/<1!<2! factor comes from the indistinguishability of the (anti-)instantons.

The total contribution from instantons/semi-classical approximation come from
summing over all possible values of <1, <2 (use X<1−<2,1 =

∫ 2c
0

3\
2c 4
−7 \ (<1−<2−1)):

lim
)→∞

〈2c | 4−�) |0〉 =
(l
c

)
4−l) /2

∑
<1,<2

( � ) 4−(0)<1+<2
<1!<2!

X<1−<2,1 (3.13a)

=

(l
c

) 1
2
4−l) /2

∑
<1,<2

∫ 2c

0

3\

2c 4
−7 \ (<1−<2−1) ( � ) 4

−(0)<1
<1!

( � ) 4−(0)<2
<2!

(3.13b)

=

∫ 2c

0

3\

2c 4
7 \

( l
cℏ

) 1
2 exp

(
2� ) 4−(0/ℏ cos \ − l)2

)
(3.13c)

= lim
)→∞

∑
<

〈2c |q<〉 〈q< |0〉 exp(−�<) /ℏ), (3.13d)

wherewe reinstated ℏ in the end for completeness. For) →∞, the sum∑
< will be domi-

nated by the contribution from the lowest-energy band. Equate the exponentials, we see
we have reproduced the result of an energy band parametrised by a continuous variable
0 6 \ 6 2c , with energy given by �\ ∼ l)

2 − U cos \ , as expected.

Now equate coefficients, we find 〈2c |q\ 〉〈q\ |0〉 = 4 7 \

2c
(
l
c

) 1
2 . Had we calculated the

amplitude 〈2#c | 4−�) |0〉 from the beginning, it would indicates the particle ends up at
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# blocks away from its initial position, then we replace <1 − <2 = 1 everywhere with
<1 − <2 = # , and find 〈2#c |q\ 〉 〈q\ |0〉 = 4 7# \

2c
(
l
c

) 1
2 . We see that we have

〈2#c |q\ 〉 = 4 7# \ 〈0|q\ 〉 . (3.14)
We have reproduced Bloch theorem as given in equation (3.2): q\ (F + 2c) = 4 7 \q\ (F).
Amazing!

3.2 Confinement in the abelian Higgsmodel

A very encouraging fact about instantons is that instanton effects are shown to
lead to confinement in (2 + 1)-dimensional non-abelian Higgs model by Polyakov [19].
We do not discuss Polyakov’s proof here, but instead study a simpler model of (1 + 1)-
dimensional abelian Higgs model that captures the same spirit, and we show how in-
stantoneffectsqualitatively change the low-energyphysics. Unfortunately, confinement
in four-dimension seems unlikely to be explained by instanton effects, at least not by
straight-forward dilute instanton gas calculation [3].

3.2.1 Higgsmechanism

Recall the Lagrangian for the* (1) theory coupled to a complex scalar q in (1 + 1)-
dimension is

L = − 1
46 2�`a�

`a + (�`q)∗(�`q) − _4

(
q∗q − `

2

_

)2
, (3.15)

where�`q = m`q +7�`q , �`a = m`�a −ma�`. For`2 > 0, the potential has a trueminimum
at q = 0. Note that in (1 + 1)-dimension, the Coulomb force is always constant : Gauss’
law states states the electric field from a point charge is constant on a Gaussian surface
enclosing the charge, this means that in 3D, the field decreases as 1/@ 2; in 2D, the field
decreases as 1/@ . But in one spatial dimension, the field does not decreasewith distance.
Therefore, it costs an infinite amount of energy to separate two charges to infinity. Fur-
thermore, boundstates of particle-anti-particlepairs are stable, they cannotdisintegrate
into photons because there are no photons. And there are no photons because the po-
larisation degrees of freedom of photons must be transverse to the direction of motion,
but there is no transverse direction in one spatial dimension. In summary, the `2 > 0,
(1 + 1)-dimensional physics of abelian Higgs model is confinement.

When `2 < 0, the story is different. q = 0 is now an unstable state, and the vacuum
is at |q | = |` |√

_
. Fix a gauge so that q is real, and expand around q =

|` |√
_
+ 1√

2i , we have the
quadratic part of the Lagrangian equal to

L (2) = − 1
46 2�`a�

`a + 12m`im
`i −

��`2��
_
�`�

` −
��`2��i2. (3.16)
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From analysing the equation of motion, or simply from reading off the Lagrangian, we
find two particles in our spectrum: A real scalar i with mass ;i =

√
2`, and a vector

which gained a mass;� =
`√
_
by eating up the other scalar. We then expect the interac-

tions mediated by i and �` to give a Yukawa drop off as 4−@/;i and 4−@/;� . There is no
confinement, and themain physics isHiggsmechanism through spontaneous symme-
try breaking.

3.2.2 Instanton effects and the \-vacuum

The result above is one that we are all familiar with. But why is it incorrect? (Yes
it is incorrect.) It turns out there is no Higgs mechanism in (1 + 1)-dimension due to
nonperturbative (i.e. instanton) effects, which we study now.

There aremany vacua

Write theMinkowski Lagrangian as

L = − 1
46 2�`a�

`a + (�`q)∗(�`q) + _4
(
q∗q − D2

)2
, (3.17)

where D =
|` |√
_
and�`q = m`q + �`q . The system has aminimum (zero) energy iff

q (F) = D4 7U (F) and �`q (F) = �`a (F) = 0, (3.18a)

where �`a = 0 requires �` = 4 7 Ũm`4
−7 Ũ for some Ũ, then�`q = 7m`UD4

7U − 7m`ŨD4 7U , which
we see if we want�`q = 0, we need U = Ũ, therefore, we have

�` = 4 7Um`4
−7U . (3.18b)

When we performed our perturbation around the vacuum in the previous subsection,
wepicked thevacuum 〈�`〉 = 0. This isfine, butweseeany�` that is apuregauge is alsoa
validvacuum, so thereare infinitelymanyvacua. And just like the four-dimensional case,
the two-dimensional �` divide into topological inequivalent classes labelled by an inte-
ger which is the winding number, albeit of a slightly different origin. In four-dimension,
the integer comes from c3((3) = ℤ. Here, however, the spatial infinity |F | = ∞ as the
boundary of the 2D Euclidean space is topologically equivalent to a circle (1. Let the cir-
cle be parametrised by \ . Then the gauge transformation 4 7U (\ ) defines a mapping from
\ ∈ (1 into 4 7U (F) ∈ * (1) � (1. So each set of {q, �`} at infinity defines a function of
the form 4 7U (\ ) on the group* (1). Such functions are divided into homotopy classes, the
relevant homotopy group is c1((1) = ℤ. The bottom line is we expect the uncountably
infinite number of vacua to divide into countably infinite number of classes of vacua,
classified by some integer.
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Vacuum classification in the �0 = 0 gauge

In the rest of this subsection we elaborate on the above claim and describe exactly
how the vacua divide into classes. First, use our freedom for gauge-fixing to set �0 = 0
(recall we are still in Minkowski space). There is still a time-independent part of gauge
transformation that we can perform, the precise form of which we try to find now.

Consider the equation ofmotion, m`�`a = 8a , where 8a = 7 (q (�aq)∗−q∗�aq) is the
Noether current. Using �F = �0F = m0�F − m0�g = m0�F , we have

mF�F0 = 80, ⇒ 3�

3F
= 7 (q∗�0q − q (�0q)∗). (3.19)

This is in fact Gauss’ law: � (F) ≡ div� (F) − 80(F) = 0. Note since this equation does
not involve time derivatives of �`, it is more of a constraint than a dynamical equation
of motion. Also recall the way to impose constraint as an operator expression is not to
define �̂ (F) = 0, but

�̂ (F) | phys 〉 = 0 (3.20)

for all physical states | phys 〉. Now define the operator

*Λ = exp
(
7

∫ ∞

−∞
3F Λ(F)� (F)

)
, ⇒ *Λ | phys 〉 = | phys 〉 , (3.21)

where Λ(F) is some function. Now restrict to a subset of Λ(F), satisfying Λ̃(F) → 0 at
F → ±∞. Then*Λ̃ is

*Λ̃ = exp
(
7

∫ ∞

−∞
3F

[
(mF�F − 7 (q∗�0q − q (�0q)∗))Λ̃(F)

] )
(3.22a)

= exp
(
7

∫ ∞

−∞
3F

[
(−�F )mF Λ̃

]
− (7 Λ̃q∗)�0q + 7 q̃ (�0q)∗

)
(3.22b)

= exp
(
7

∫ ∞

−∞
3F

[
−cFmF Λ̃ + cq∗ (−7 Λ̃q∗) + cq (7 Λ̃q)

] )
, (3.22c)

where we integrated by parts in the second line, and used that cF = XL
Xm0�F

= �F , cq∗ =
XL

X (m0q∗) = �0q ,cq = (�0q)∗ are theconjugatemomentawhichdisplace thecorresponding
fields (c.f. how 4 7>F generates translation in free theory). Written in this form, we see*Λ̃
act on the fields in the following ways:

q → q4 7 Λ̃, q∗ → q∗4−7 Λ̃, �F → �F − mF Λ̃. (3.23)

So *Λ̃ is a gauge transformation. From *Λ̃ | phys 〉 = | phys 〉, these gauge transforma-
tions leave physical states invariant. Crucially, the ‘integration by parts’ step above relies
on the fact that Λ̃(F) → 0 at spatial infinity. We call Λ̃(F) small gauge transformations;
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gauge transformations that are not small are called large. Large gauge transformations
have Λ(F) ≠ 0 at infinity. Being gauge transformations, they still leave the Lagrangian
and Hamiltonian invariant, but q, q∗, �` transform in different ways; and the topologi-
cal vacuum |# 〉, to be defined later, is not invariant under larga gauge transformations
either.

Eigenstates of the field operators, |q, �F〉, are not physical since they are not invari-
ant under*Λ̃. However, one can construct physical states through the following super-
position of |q, �F〉:

|q, �F〉phys ≡
∫

�Λ̃(F)*Λ̃ |q, �F〉 . (3.24)

This defines an equivalent class of states. That is, all field configurations {q, �F } are di-
vided into equivalent classes, with members in each class related by small gauge trans-
formations.

Now, the solution forminimumaction is givenbyq = D4 7U , andunder a small gauge
transformation, q → q4 7 Λ̃, this means we have U → U′ = U + Λ̃, and U′(±∞) = U (±∞) +
Λ̃(±∞) = U (±∞). So under a small gauge transformation, the following winding number
is unchanged:

# =
1
2c

∫ ∞

−∞

3U

3F
3F =

1
2c [U (∞) − U (−∞)]. (3.25)

So classical vacua are divided according to their homotopy class# , andwemay perform
perturbative analysis around each such vacuum. Call these states |# 〉. In the previous
subsection, we expanded around the vacuum, q = D, �` = 0 that corresponds to |# = 0〉.
Whatwe shouldhavedone instead is to take intoaccount all possible vacua, aswell as the
tunnelling (instanton) effects between vacua at different homotopy sectors. This is anal-
ogous to how we considered all possible degenerate vacua and the tunnelling between
them in the periodic potential problem.

Transition amplitude

Let’s now try to find the tunnelling amplitude between vacua. To this end, we need
to go to Euclidean space. The path integral is

/ () ) ≡
∫

�q �q∗��` exp(−(� ), (3.26)

where (set 6 = 1)

(� =

∫ ∞

−∞
3F

∫ ) /2

−) /2
3g

[1
4�`a�`a +

1
2 (�`q)∗(�`q) +

1
4_( |q |

2 − D2)2
]
. (3.27)
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Again we shall later take the limit ) → ∞. Do not gauge fix for now. For the boundary
conditions at g = ±)2 and F = ±∞, we demand the field to be in vacuum, so q and �`
are given by equation (3.18), reproduced below. And again, the boundary of F-g space is
equivalent to a circle, whichweparametrisewith \ . So the boundary condition becomes

q = D4 7U (\ ) , �` = 4 7U (\ )m`4
−7U (\ ) . (3.28)

The path integral starts and ends with vacua states, so it computes the amplitude for
vacuum-vacuum tunnelling. Again, each set of boundary {q, �`} amounts to specify-
ing a function 4 7U (\ ) on a circle parametrised by \ , so they divide into homotopy classes,
characterised by the winding number

9 =
1
2c

∫ 2c

0

3U

3\
3\ =

1
2c

∮
(1
G · 3l =

1
4c

∫
32F �`a n`a . (3.29)

But note this is not quite the same as the winding number# defined in equation (3.25).
In particular,# is defined after gauge-fixing, whereas 9 is defined before it, and it is clear
from the above formula that 9 is gauge-invariant, whereas # is not invariant under a
large gauge transformation. If we fix the same �0 = 0 gauge, though, we expect 9 = # .

Under a gauge transformation with boundary behaviour lim@→∞ Λ(F,g) = Λ(\ ),
neither9 nor theactionchange, since theybotharegauge-invariant. Thismeans thatany
U (\ ) and U′(\ ) belonging to the same topology sector 9 can be related by a gauge trans-
formation U′(\ ) = U (\ ) +Λ(\ ). It alsomeans that all path integrals whose boundaries are
of the same homotopy type 9 have the same value (we need to define a gauge-invariant
measure, which we assume it has been done). The continuously infinite number of am-
plitudes then reduce toadiscrete infinite classes, classifiedby9 . This is analogous tohow
in theperiodic potential problem, the amplitude 〈(# + 9̃ )2c | 4−�) |2c# 〉 is independent
of the initial or final configurations# , but only depends on 9̃ .

Withineach sector9 , we thenfixagauge to remove the redundancyof all thegauge-
equivalent states. This is done by adding a gauge fixing term, (6 5 = −12

∫
32F (m`�`)2.

Then the path integral at any given 9 sector is

/ () )9 =

∫
(�q �q∗��`)9 4−((�+(6 5 ) , (3.30)

where all fields obey the boundary condition where |q | = D and �` is a pure gauge, with
parameter U9 (\ ) belonging to homotopy class 9 .

We now fix �0 = 0 again using the time-dependent part of our gauge freedom,
and take the spacetime boundary to be a rectangle

� �

��

F

g

, which is topologi-
cally equivalent to a circle so all of our previous results hold. Recall 9 = 1

2c
∮
G · 3l , taken

clockwise around the rectangle. Since �0 = 0, the side �� and �� give no contributions
to 9 , so

9 ≡ #+ −#− (3.31a)
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≡ 1
2c

(∫ ∞

−∞
3F �F (F,) = ∞) −

∫ ∞

−∞
3F �F (F,) = −∞)

)
(3.31b)

=
1
2c

∫ ∞

−∞
3F

(
3U

3F

����
) =+∞

− 3U
3F

����
) =−∞

)
. (3.31c)

So under the �0 = 0 gauge, 9 reduces to# in equation (3.25), as anticipated.

We may use our remaining time-independent gauge freedom to make �F = 0 at
) = −∞ as well, then U (F,−∞) = 0 on �� , and we have

9 = #+ =
1
2c

∫ ∞

−∞
3F

(
3U

3F

)
) =∞

. (3.32)

Now, since �0 = 0, we have on �� and �� ,

0 = �0(±∞,g) = 74 7Umg4−7U = mgU, (3.33)

so U is a constant in time along �� and �� , and if on �� we started with U (F,−∞) = 0,
then at � and � , we still have U (±∞,∞) = 0, 4 7U = 1. That is, in the �0 = 0 gauge, initial
configurations with U (F,−∞) = 0 can only evolve into configurations where U (±∞,∞) =
0.

Recall from the discussion following equation (3.25), we know a state with # = 0
corresponds to the �` = 0 vacuum. Since 9 = #+ − #− = #+ − 0 in our gauge choice, we
can interpret the result#− = 0 as that the configuration starts with vanishing �`. So any
amplitude with a winding number 9 can be calculated by considering a configuration
starting from the homotopy sector where �` = 0, and ends in the sector where#+ = 9 .

Each instanton has winding 9 = 1 and a finite size. So a collection of <1 instantons
and <2 anti-instantons have 9 = <1 − <2. With our dilute-gas approximation, the config-
uration becomes an exact solution in the limit where the (anti-)instantons have infinite
separation from each other.

The actual amplitude calculation follows very closely our previous calculation on
the periodic potential problem, as such we will not repeat all the steps here, but only
give a rough outline: Expand around the classical solution, we have the amplitude /9 =

4−(0� �) ! detΔ− 12 , where (0 is the action including the gauge-fixing term evaluated at the
classical solution,� a constant,Δ is the second functional derivative of the action. There
are two collective coordinates in this case, so we need to perform integration over both
of them, this gives

∫
3g

∫
3F ∼ �) !, for some Jacobian � ,) the total time, and ! →∞ the

length of space.

Wecanendup in the topological sectorwithwinding9 byhaving<1 instantons and
<2 anti-instantons such that9 = <1−<2, so insert adelta functionX<1−<2,9 =

∫ 2c
0

3\
2c 4
−7 \ (<1−<2−9 ),

we have

lim
)→∞

/9 ∼
∫ 2c

0
3\

∑
<1,<2

(4−(0 �) !)<1+<2
<1!<2!

4−7 \ (<1−<2−9 ) detΔ− 12 (3.34a)
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∼
∫ 2c

0
3\ 4 79 \ exp

(
(4−(02� cos \ −� )!)

)
, (3.34b)

where� ∼ log detΔ is not of interest to us. Recall /9 gives the transition amplitude the
system goes from the �` = 0 vacuum to a vacuumwith winding 9 . Given /9 ≠ 0, we see
tunnelling does occur.

Also, compared with the usual energy eigenstate expansion, / ∼ ∑
< 4
−�<) , we see

instanton effects lifted thedegeneracy of the lowest energy levels into a continuousband
parametrised by \ , and the energy density is

�\

!
= � − 4−(02� cos \ . (3.35)

The \-vacuum

Now let’s find the expression for this band of vacua states. Define the vacuum state
with instanton effects taken into account as |\ 〉, which receives contributions from all
topological vacua |# 〉. Is the true vacuum simply the sum of all |# 〉, so |\ 〉 = ∑

# |# 〉?
Not quite! Recall with a periodic potential, let the vacua be located at F − 2#c , then
summing all vacua gives something like |\ (F)〉%% =

∑∞
#=−∞ |F − 2#c〉 (%% = periodic po-

tential). But this is not quite the vacuum state because Bloch theorem forces us to have
|\ (F + 2c)〉%% = 4 7 \ |\ (F)〉%% . This means the correct vacuum state is something like

|\ (F)〉%% =

∞∑
#=−∞

4 7# \ |F − 2#c〉 , (3.36)

which can be readily checked to satisfy Bloch theorem. This reflects the fact the trans-
formation ? → ? +2c (which can be performed by) = 4−27c>̂ where >̂ is themomentum)
is a symmetry transformation of the system (i.e. [) ,� ] = 0 where� is the Hamiltonian).

Similarly, in the abelian Higgs model, we need to take into account the physical
equivalence between different |# 〉’s. Consider a time-independent gauge transforma-
tion 4 7Λ1 (F) where Λ1(−∞) = 0 and Λ1(+∞) = 2c (an example is Λ1(F) = −c (1 + tanh F)).
Recall a classical vacuum state is classified by some U (F), e.g. we have q = 4 7U (F). Under
such a gauge transformation 4 7Λ1 (F), the classical vacua change as

U (±∞) → U (±∞) + Λ1(±∞). (3.37)
And being a large gauge transformation, Λ1(F) changes# as well:

# =
1
2c (U (+∞) − U (−∞)) → # − 1. (3.38)

Such a gauge transformation can be performed by the following operator (flashback to
equation (3.22c))

) = exp
(
7

∫ ∞

−∞
3F

[
−cFmFΛ + cq∗ (−7Λq∗) + cq (7Λq)

] )
. (3.39)
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Integrate the first term by parts, this time the boundary term does not vanish because
our gauge transformation is large. We have:

) = exp
(
7�FΛ1(F)

����
F=∞

)
exp

(
7

∫ ∞

−∞
3F Λ1(F) [mF�F − 7 (q∗�0q − q�0q∗)]

)
(3.40a)

= exp(−2c7�F (∞)). (3.40b)

Recall the secondexponential vanisheswhenactingonphysical statebecause it contains
an equation of motion. So we have

) |# 〉 = |# − 1〉 and [) ,� ] = 0. (3.41)

Following the periodic potential case, we should define the correct vacua to have) |\ 〉 =
4 7 \ |\ 〉, which can be done if

|\ 〉 =
∞∑

#=−∞
4 7# \ |# 〉 , (3.42)

and we have a band of states parametrised by 0 6 \ < 2c . We call this combination of
infinite classes of vacua the )-vacuum.

The \-term

|\ 〉 are energy eigenstates with �\ given in equation (3.35). Consider the following
amplitude:

〈\ | 4−�) |\ ′〉 = 2cX (\ − \ ′)4−�\) , (3.43)

so

〈\ | 4−�) |\ 〉 = 2cX (0)4−�\) (3.44a)

=
∑
# ,"

4 7 (#−" )\ 〈" | 4−�) |# 〉 (3.44b)

=
∑
#

(∑
9

4−79 \ 〈# + 9 | 4−�) |# 〉
)

(3.44c)

=
∑
#

(∑
9

4−79 \ 〈9 | 4−�) |0〉
)
, (3.44d)

whereweusedequation (3.42) ingoing to thesecond line. And in the last line,weused the
fact that the transition amplitude between topological sectors# and# +9 depends only
on 9 . And we know the transition amplitude is given by the path integral as in equation
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(3.30). And use ∑
# = 2cX (0) in the above, equate the first line with the fourth line, we

have

lim
)→∞

4−�\) = lim
)→∞

∑
9

4−79 \
∫
(��`�q �q∗)9 4−((�+(6 5 ) . (3.45)

Since 9 = 1
4c

∫
32F n`a�`a , wemay bring the 4−79 \ as well as the∑

9 into the path integral,
to obtain

lim
)→∞

4−�\) = lim
)→∞

∫
� [�`, q, q∗]all 9 exp

[
−
(
(� + (6 5 +

7 \

4c

∫
32F �`a n`a

)]
. (3.46)

Themeasurenowindicates thatwe integrateoverfields fromall9-sectors. Inotherwords,
we do not need to worry about homotopy class if we used themodified action

(\ = (� + (6 5 +
7 \

4c

∫
32F n`a�`a , (3.47)

the last term is the 2D equivalence of the \-term, whichwe saw all theway back in equa-
tion (1.4). And now we see that by adding it to the Lagrangian we essentially take into
account instanton effects. In this approach, \ is considered a parameter, and for each
\ , we have a different theory with its own sector of states whose vacuum is in |\ 〉. No
gauge-invariant operators can connect states from different \-sectors. Proof: Consider
a general gauge transformation given by the operator) in equation (3.39), it must com-
mute with any physical operators � , hence

0 = 〈\ | [�,) ] |\ ′〉 = 〈\ | � |\ ′〉 (4 7 \ ′ − 4 7 \ ), (3.48)

so 〈\ | � |\ ′〉 = 0 if \ ≠ \ ′, and no physical operator can take |\ 〉 into |\ ′〉.

Finally, note that the \ term is simply proportional to the electric field, �F ∼ �12 ∼
n`a�`a . As such it violates both charge� and parity % symmetries.

|\ 〉 is qualitatively different

How does the \-vacuum behave? Consider the expectation value of the Euclidean
electric field, which is proportional to �12 ∼ n`a�`a . In a background of \-vacuum, we
have

〈�12(F,g)〉\ =
1

2!) 〈
∫

32F n`a�`a 〉\ =
2c
!)
〈9 〉\ , (3.49)

where !) → ∞ is the volume of the Euclidean spacetime, and the first equality comes
about because of the translational invariance of the vacuum states, and 9 is the winding
number. The expectation value is defined as

〈9 〉\ =

∫
��`�q �q

∗ 4−(4−79 \9∫
��`�q �q∗ 4−(4−79 \

, (3.50)
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where ( = (� + (6 5 . So

〈�12(F,g)〉\ =
2c
!)
〈9 〉\ (3.51a)

= −2c7
!)

3

3\
log

[ ∫
��`�q �q

∗ 4−79 \−(
]

(3.51b)

(using (3.46)) = −2c7
!)

3

3\
(−�\) ) (3.51c)

(using (3.35)) =
2c7
!)

3

3\
(� − 2�4−(0 cos \ )!) (3.51d)

= (2c7 )2�4−(0 sin \ . (3.51e)
The factor of 7 would disappear back inMinkowski space. The point is, unless \ = 0 orc ,
there is a constant background electric field in the \-vacuum. Wenaturally expect the \-
vacuumtobequalitatively different than the trivial vacuumwhen it comes to interaction
between particles. Indeed, we now show that instead of Higgs mechanism, there is now
confinement in our model.

3.2.3 Proof of confinement

Consider the configuration given by
%

&

)̃
!̃+? −? : Two charges ±? are created

at some point % , separated to a large finite distance !̃ for a large Euclidean time )̃ , then
brought back together and annihilated at& . The world lines of the two charges form a
closed loop. We consider the limit where the Euclidean boundary !,) → ∞, )̃ → ∞ but
with theunderstanding that)̃ � ) , and !̃ is large but finite. The genetic interaction term
is given by (int =

∫
32F 8`�`. In our case, the current density 8` is only caused by the two

charges moving along the loop, so 8` 32F → ? 3F`, where 3F` is the line-element on the
loop. Therefore (int reduces to (int = ?

∮
�` 3F`, and we recognise the quantity

, ≡ 4 7(int = exp
(
7?

∮
�` 3F`

)
(3.52)

as theWilson loop. The vacuum path integral with the interaction termwould be∫
� [�`, q, q∗]all 9 4−(4−79 \, . (3.53)

This is the same as the numerator of the v.e.v. of theWilson loop:

〈, 〉\ =

∫
� [�`, q, q∗]all 9 4−(4−79 \,∫
� [�`, q, q∗]all 9 4−(4−79 \

. (3.54)
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The denominator is given by equation (3.46) as 4−�\) . We should be able to put the nu-
merator to the same form, so the effect of the, term is to give an additional energy
contribution, equal to the potential energy Δ�\ (!̃) between the two charges separated
by !̃ for a duration )̃ . We ignore the time it takes to separate and to bring together the
two charges, since they can be neglected compared to large )̃ →∞. So

lim
)̃→∞

〈, 〉\ =
exp(−�\) − Δ�\ (!̃))̃ )

exp(−�\) )
, (3.55)

or

Δ�\ (!̃) = lim
)̃→∞

− 1
)̃
log 〈, 〉\ . (3.56)

Nowwe just need to evaluate 〈, 〉\ as given in equation (3.54). Thedenominatormirrors
the calculation in equation (3.34), except now we have an 4−79 \ term, which cancels the
9-dependent term inequation (3.34). Indeed, there shouldbeno9-dependencebecause
we are summing over 9 , and the constraint <1 − <2 = 9 is no longer needed. So we have
for the denominator

denominator ∼ 4−�!)
∑
<1,<2

4 7 (<1−<2)\
( �!) 4−(0)<1+<2

<1!<2!
(3.57a)

= 4−�!) exp
(
2�!) cos \4−(0

)
. (3.57b)

On the other hand, the numerator factorises into a part inside the loop and a part
outside. Any configuration with <1 instantons will have

(a) some number < in1 of instantons inside the loop;

(b) some number <out1 of instantons outside the loop;

(c) some instantons overlapping with the boundary of the loop.

Talking about the locations of instantons makes sense since they are well localised. In
the limit of large !̃, and )̃ →∞. The fraction of instantons in category (c) is small due to
the large area-to-perimeter ratio for the loop, andapproaches 0 in the large !̃, and)̃ →∞
limit, so wewill ignore them. Anti-instantons can be similarly divided into < in2 inside the
loop and <out2 outside.

Note also that

, = exp
(
7?

∮
�` 3F`

)
= exp

(
2c7?

[ 1
4c

∫
in
32F n`a�`a

] )
, (3.58)

where the integral is only taken to contain the inside of the loop, but otherwise identical
to the winding number 9 . By this logic, the integral gives the number < in1 − < in2 , and,
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gives exp
(
2c7? (< in1 − < in2 )

)
. Wemayuse the result for the denominator in equation (3.57)

above, but 1) add in our result for, , and 2) factorise the integral into two regions: Inside
the loopandoutside; andwheneverwe see an!) , we change it to the correspondingarea
of the region. We then have

numerator ∼ 4−�!)
©«

∑
< in1 ,<

in
2

4 7 (<
in
1 −<

in
2 ) (\+2c?) ( � !̃)̃ 4

−(0)< in1 +< in2
(< in1 )!(< in2 )!

ª®®¬·
· ©«

∑
<out1 ,<out2

4 7 (<
out
1 −<

out
2 )\ª®¬ ( � (!) − !̃)̃ )4

−(0)<out1 +<
out
2

(<out1 )!(<out2 )!

(3.59a)

= 4−�) ! exp
(
2�4−(0

[
(!) − !̃)̃ ) cos \ + !̃)̃ (\ + 2c?)

] )
. (3.59b)

Dividing by the denominator, we have

〈, 〉\ = exp
(
2�4−(0!̃)̃ [cos(\ + 2c?) − cos \ ]

)
. (3.60)

From equation (3.56), this means
Δ�\ (!̃) = 2�4−(0!̃ [cos \ − cos(\ + 2c?)]. (3.61)

The important thing is we have a linear potential, and therefore a constant, confining
Coulomb force! This is the same as in the `2 > 0 case with no symmetry breaking. The
fact that the force is long range already indicates that the particles are massless, Higgs
mechanism could not have happened.

We can reinstate the electric charge unit by replacing ? → ?
4
. Then note that the

potential vanisheswhen the external charge is an integermultiple of 4 : ? = #4 . A natural
interpretation of this result is that the system creates # charged pairs ±4 between the
external charges ±? , where negative charges can move to the +? side, and the positive
charges to the −? side, and screen the external charges. When ? is not an integer, the
screening is incomplete, so there is a residual confining potential. This interpretation
suggests there are both positively and negatively charged particles in our model. This
contradicts the resultwhere symmetrybreakinghappens: Inequation (3.16)we see there
is only one scalar particle i , there is no room for another particle with opposite charge.
Therefore, again, spontaneous symmetrybreakingandHiggsmechanismcouldnothave
occurred.

Where does the above argument fails in four-dimension? In four-dimension, we
can similarly construct a Wilson loop, but for instantons well within the loop, �` falls
off quickly to a pure gauge by the time they reach the loop. So �` = *m`*

−1 along the
loop, which can be gauged away to give 0 contribution to the integral (note this is not the
case in 2D, where �` is a pure gauge only for vacuum states). So only instantons near the
loop can contribute, and the total contribution would be proportional to the perimeter,
instead of the area, of the loop. As a result there is no confining force.
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3.3 The vacuum of non-abelian gauge theories

3.3.1 The Yang-Mills vacuum

Consider pure Yang-Mills theory with (* (2) gauge group, we have the Minkowski
Lagrangianequal toL = 1

26 2 tr�`a�`a . The structureof the vacuumwouldbe very similar
to that of the abelian Higgs model we considered in the previous subsection, so we will
only give a brief survey of the key results.

First consider fixing the time-dependent part of the gauge to �0 = 0. We are still
permitted to have time-independent gauge transformations of the form 4Λ(x). The set
of classical vacua have the form �7 = 4−U (x)∇74U (x), where U (x) is a traceless and anti-
hermitian 2 × 2matrix.

Recall in the abelian Higgs model, following equation (3.33), we showed if a con-
figuration started with U = 0 at) = −∞, it can only evolve to configurations with U = 0
at) = ∞ and |F | = ∞. Similarly, here, an initial U (x) = 0 configurations can only evolve
to a configuration where [U (x)] |x |→∞ = 0. Since U (x) takes the same value for the entire
spatial infinity, wemay for our purposemapall of the infinity to a single point, thus com-
pactifying our space to (3 again. 4U (x) then defines a function from (3 to (* (2) � (3, and
is classified by c3((* (2)) = ℤ. So again, the many vacua can be divided into homotopy
sectors classified by some integer. Call this integer # , # is not gauge-invariant and not
equal to 9 . It is calculated as

# =
1

24c2
∫

33F n7 89 tr
(
(4U∇74−U) (4U∇84−U) (4U∇94−U)

)
. (3.62)

Let |# 〉 be topological vacua classified by their homotopy sector# . They are not the cor-
rect vacuumas they can tunnel into each other. The true vacuum is again the \-vacuum,
|\ 〉 = ∑∞

#=−∞ 4
7# \ |# 〉. No gauge-invariant operators can connect one \-vacuum to an-

other.

Nextwewant tofind the tunnellingamplitude, sogo toEuclidean space. Theaction
is (� = − 1

26 2
∫
34F tr�`a�`a . The boundary of the spacetime is again (3. �` in a vacuum

state must be a pure gauge, �` = 4−Um`4U , where 4U ∈ (* (2). Again, 4U (F) defines a func-
tion from(3 to(* (2) � (3, as such it is classifiedbyan integer9 = − 1

16c2
∫
34F tr�`a★�`a .

9 is gauge-invariant. TheEuclideanpath integral ina sector9 is lim)→∞ /9 =
∫
(��`)9 4−(� .

Again, the \-vacuacanbe interpretedasbeingcausedbya \-dependent term in the
Lagrangian (see our discussion around equation (3.46)), L\ = −7 \

16c2
∫
34F tr�`a ★ �`a .

This time, since �`a ★ �`a ∼ K · H , the \-term violates) and % symmetries.

So far, we see that the features of the pure Yang-Mills vacuum in four-dimension
closely mirror those in the abelian Higgs model in two-dimension.
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3.3.2 The QCD-like vacuum

We now show that the story is different once we couple fermions to our theory. We
discuss a miniature version of QCD here, where the gauge group is taken to be (* (2)
instead of (* (3), and only consider quarks of one flavour to be our fermion fields, which
transform in the fundamental representation of (* (2). Much of our previous discussion
is unaffected: Fermions have no vacuum expectation values, so classical vacua are still
expanded around �` in pure gauge configurations, which are classified into topological
vacuum states |# 〉. However, we shall see that the tunnelling amplitude 〈# + 9 | 4−�) |# 〉
will change due to the presence of the fermions.

The Lagrangian in Euclidean space is

(� = (� + (k = − 1
26 2

∫
34F tr�`a�`a +

∫
34F k̄ (7 /� − 7;)k. (3.63)

The Dirac Lagrangian gives a conserved current, the vector current 8+` = k̄W`k , coming
from k → 4−7Uk . Also, when; = 0, there is also the axial current, 8�` = k̄W`W5k , com-
ing fromk → 4 7UW

5
k and k̄ → k̄4 7UW

5 , which is also conserved. If there is a mass, then
m` 8

�
` = −2;k̄W5k . The massless case is relevant, as the up and down quarks can be ap-

proximated asmassless in QCD.

An interesting feature of the axial symmetry is that it is anomalous—it is a symme-
try of the classical theory, but ceases to be a symmetry after quantisation. An important
result states that the current conservation law becomes (for a derivation, see for exam-
ple, Nakahara Chapter 13.2 [12])

m` 8
�
` =

7

8c2 tr�`a ★ �`a = −279 (F), (3.64)

where 9 (F) is the integrand of the winding number 9 = − 1
16c2

∫
34F tr�`a ★ �`a . Now

consider the case of a massive Dirac field, so
m` 8

�
` = −2;k̄W5k − 279 (F). (3.65)

Integrate and take the expectation value of both sides, the left hand side becomes∫
34F 〈m` 8�` 〉 =

∮
(3
3f` 〈8�` 〉 = 0, (3.66)

where the surface integral at infinity vanishes because the massive Dirac field is short-
ranged. We then have

2;
∫

34F 〈k̄W5k〉 = −279 . (3.67)

The expectation value on the left hand side is

〈
∫

34F k̄W5k〉 =
∫
�k̄ �k 4−(

∫
34F k̄ (F)W5k (F)∫

�k̄ �k 4−(
. (3.68)
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The denominator is

denominator =

∫
�k̄ �k exp

(
−

∫
34F k̄ (7 /� − 7;)k

)
(3.69a)

= det(7 /� − 7;)
=

∏
7

(_7 − 7;). (3.69b)

(Recall for fermions, the determinants obtained fromevaluatingGaussian integrals have
positive powers; also repeated indices does not represent summations in this subsec-
tion.) Here we defined _7 as the eigenvalues for 7 /� . Now work in a basis where 7 /� is
diagonal, and let k7 represent Grassmann-valued vectors, so 7 /�k7 = _7k7 . Note that∫
34F k̄7k8 = X7 8k̄7k7 , andbeingGrassmannnumbers,

∫
3k7 k8 = X7 8 and exp

(
k8

)
= 1+k8 .

Using these properties, we can write the numerator as

numerator =

∫ ∏
7

3k̄7 3k7 exp©«−
∑
8 ,9

∫
34F k̄8 (_9 − 7;)k9

ª®¬
∑
;,<

∫
34F k̄;W5k<

(3.70a)

=

∫ ∏
7

3k̄7 3k7

∏
9

(1 − (_9 − 7;)k̄9k9 )
∑
<

∫
34F k̄<W5k< , (3.70b)

whereweused theorthogonalpropertiesofk̄7 andk8 . Wealsoexpanded theexponential,
where the higher order terms do not contribute because they cannot be integrated over
by

∫
3k̄7k7 . Also with the

∑
;,<

∫
34F k̄;W5k< term, we used the fact that;must equal to

<, otherwise the termwould also be killed by
∫
3k̄73k7 .

Now, suppose in
∫ ∏

7 3k̄7 3k7 , 7 runs from 1 to # , then in the integrand, the only
nonzero contributions are formedby (# −1) terms coming from∏

9 −(_9 − 7;)k̄9k9 and
1 termwhich is

∫
34F k̄<W5k< . That is, we have

numerator =
∑
<

[∏
7≠<

(∫
3k̄73k7 − (_9 − 7;)k̄7k7

) ∫
34F k̄<W5k<

]
. (3.71)

Nowconsider the integral containingW5. First note that ifk7 is an eigenvectorwith eigen-
value _7 , thenW5k7 is an eigenvector with eigenvalue −_7 . This follows from the anticom-
munitivity ofW` andW5:

7 /� (W5k7 ) = −W57 /�k7 = −_7 (W5k7 ). (3.72)

SinceW5k7 andk7 are eigenvectorswithdifferent eigenvalues, they are orthogonal, unless
the eigenvalue is 0: ∫

34F k̄;W5k< = 0 if _; ≠ 0. (3.73)
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If the eigenvalue_7 = 0, thenk7 andW5k7 are degenerate zeromodes, andone can choose
k7 to have any chirality, i.e. W5k7 = ±k7 . So

∫
34F k̄<W5k< = ±k̄<k< if k< is a zero mode,

and vanishes for nonzeromodes. We have

numerator =
∑

zeromode <

(∏
7≠<

(_7 − 7;)j<

)
, (3.74)

where j< = ±1 is the chirality of the zeromode labelled by <. Divide by the denominator,
we have

〈
∫

34F k̄W5k〉 =
∑

zeromode <

j<

_< − 7;
=
<+ − <−
−7; , (3.75)

where <± is the number of zeromodes with chirality ±1. Recall from equation (3.67) that
2; 〈

∫
34F k̄W5k〉 = −279 , so

9 = <− − <+. (3.76)
This expression has no;-dependence, so it still holds in the; → 0 limit.

Now, for a non-zero winding number 9 , <− and <+ cannot both vanish, meaning
the operator 7 /� has at least one zero mode. What are the consequences? Consider the
tunnelling amplitude between topological vacua |# 〉 and |# + 9 〉, this is simply

lim
)→∞

〈# + 9 | 4−�) |# 〉 =
∫

�k̄ �k (��`)9 4−(� = � det /�
∫
(��`)9 4−(� (3.77)

for some constant� . Zeromodesmake det /� vanish. Since the determinant has positive
power, zero modes do not lead to divergence this time. It simply means that the tran-
sition amplitude vanishes! In other words, there is no vacuum tunnelling thanks to the
fermions (in particular, massless fermions, even thoughwe did not show this explicitly).

Let’s consider the effects on the true vacuum state of the theory—the \-vacuum.
First, all \-vacua have the same \-independent energy. Consider

〈\ | 4−�) |\ ′〉 =
∑
# ,"

〈# | 4−�) |" 〉 4 7 (# \−"\ ′) , (3.78)

all topological vacua |# 〉 have the same energy. This is because they can be related by a
large gauge transformation, which commutes with the Hamiltonian. Let the energy be
�0, then

⇒ 〈\ | 4−�) |\ ′〉 = 4−�0)
∑
#

4 7# (\−\
′) = 2cX (\ − \ ′)4−�0) , (3.79)

so all |\ 〉 have the same energy �0. In fact, the different \-vacua can be obtained from
one another by chiral rotation. Under k → 4 7UW5k , the Lagrangian changes by m` 8�` by
definition of Noether current, so the Euclidean action changes by

Δ( = U

∫
34F m` 8�` =

7U

8c

∫
34F tr�`a ★ �`a . (3.80)
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Compare this to the \-term thatwecanadd to theaction,(\ = − 7 \
16c2

∫
34F tr�`a★�`a , we

see that a chiral rotation changes \ to \ − 2U. So different \ sectors are related by a chiral
rotation, which is simply a redefinition of the fermion fields. This is in stark contrast to
the case of abelian Higgsmodel and pure Yang-Mills theory, where different values for \
should be considered different theories altogether.

Thus concluded our final example on the applications of instantons. The bottom
line is that the many vacua and the tunnelling effects we have seen in the previous sec-
tions are suppressed through introducing fermions.
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A
Reference Formulae

A.1 Miscellaneous

A useful integral:∫
33F

(F2)<
(F2 + d2);

= c
3
2 (d2)<−;+32

Γ[< + 3
2 ]Γ[; − < −

3
2 ]

Γ[;]Γ[32 ]
, (A.1)∫

34F
(F2)<

(F2 + d2);
= c2(d2)<−;+2 Γ[< + 2]Γ[; − < − 2]

Γ[;] . (A.2)

Convention with spinors: ↘ contraction for undotted indices,↗ contraction for
dotted indices.

kj = kUjU = −kUjU = jk, k̄ j̄ = k̄ ¤U j̄
¤U = −k̄ ¤U j̄ ¤U = j̄k̄ , (A.3)

n12 = n21 = −1, n21 = n12 = 1, (A.4)

i.e. nUV = n ¤U
¤V = −nUV = −n ¤U ¤V =

(
0 1
−1 0

)
, (A.5)

kU = nUVkV , kU = nUVk
V , k̄ ¤U = n ¤U

¤Vk̄ ¤V , k̄ ¤U = n ¤U ¤Vk̄
¤V , (A.6)

101
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A.2 Sigmamatrices

Definitions f`a ≡
1
2 (f`f̄a − fa f̄`), f̄`a =

1
2 (f̄`fa − f̄af`), (A.7)

f`U ¤V = (g0 , 7 ), f̄
¤UV
` = (g0 ,−7 ), ` = 1, 2, 3, 4, (A.8)

f7 8 = 7 n7 89g9 , f74 = −7g7, (A.9)

f̄7 8 = 7 n7 89g9 , f̄74 = 7g7 , (A.10)

Clifford alg. f`f̄a + fa f̄` = 2X`a , (A.11)

f`f̄a = X`a + f`a , (A.12)

f̄`fa = X`a + f̄`a , (A.13)

n`adfffg = X`gfad − Xagf`d + Xdgf`a , (A.14)

n`adf f̄fg = −X`g f̄ad + Xag f̄`d − Xdg f̄`a , (A.15)

Commutators [f`a , fdf ] = −2(X`dfaf + Xaff`d − X`ffad − Xadf`f ), (A.16)

{f`a , fdf } = −2(X`dXaf − X`fXad − n`adf ), (A.17)

[f̄`a , f̄df ] = −2(X`d f̄af + Xaf f̄`d − X`f f̄ad − Xad f̄`f ), (A.18)

{f̄`a , f̄df } = −2(X`dXaf − X`fXad + n`adf ), (A.19)

f̄`fad = X`a f̄d − X`d f̄a − n`adf f̄f , f`f̄ad = X`afd − X`dfa + n`adfff , (A.20)

f`afd = Xadf` − X`dfa + n`adfff , f̄`a f̄d = Xad f̄` − X`d f̄a − n`adf f̄f , (A.21)

trf`f̄afd f̄f = −2n`adf + 2X`aXdf − 2X`dXaf + 2X`fXad , (A.22)

tr f̄`fa f̄dff = +2n`adf + 2X`aXdf − 2X`dXaf + 2X`fXad . (A.23)

A.3 ’t Hooft symbols

n012[1`a[
2
df = X`d[

0
af + Xaf[0`d − X`f[0ad − Xad[0`f , (A.24)

[0`a[
0
df = X`dXaf − X`fXad + n`adf , (A.25)

[0`d[
1
`f = X01Xdf + n012[2df , (A.26)

n`adg[
0
fg = X`f[

0
ad − Xaf[0`d + Xdf[0`a , (A.27)
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[0`a[
0
`a = 12, [0`a[

1
`a = 4X01 , [0`d[

0
`d = 3Xdf , (A.28)

[[0 ,[1 ] = −2n012[2 , {[0 ,[1 } = −2X01 . (A.29)

Identities involving [̄0`a : Most of the identities stay the same if one replace all of the [0`a
abovewith [̄0`a , but all n`adf tensors (appeared in (A.25) and (A.27)) switch sign to−n`adf .
Note n012 does not switch sign.
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B
Omitted Calculations

B.1 tr�`a ★ �`a is a total derivative

Let’s calculate
2 tr�`a ★ �`a = Y`aUV tr�`a�UV (B.1)

= Y`aUV tr
[(
m`�a − ma�` + [�`, �a ]

) (
mU�V − mV�U + [�U , �V]

)]
(B.2)

= Y`aUV tr
[
(m`�a − ma�`) (mU�V − mV�U) (B.3)

+ [�`, �a ] (mU�V − mV�U) + (m`�a − ma�`) [�U , �V] (B.4)

+ [�`, �a ] [�U , �V]
]

(B.5)

= Y`aUV tr
[
4m`�0a mU�1VB 0B 1 + 45 312m`�0a�1U�2VB 0B 3 + �`�a�U�V

]
(B.6)

= 2Y`aUV
(
m`�

0
a mU�

0
V + 5

012m`�
0
a�

1
U�

2
V

)
− 8Y`aUV tr

[
�`�a�U�V

]
, (B.7)

the last term vanishes because
Y`aUV tr�`�a�U�V = Y`aUV Tr�a�U�V�` = YV`aU tr�`�a�U�V = −Y`aUV tr�`�a�U�V = 0,

(B.8)
also

Y`aUV 5
012m`

(
�0a�

V
U�

2
V

)
(B.9)
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= Y`aUV 5 012
(
m`�

0
a�

1
U�

2
V + �

0
a m`�

2
U�

2
V + �

0
a�

1
Um`�

2
V

)
(B.10)

= (Y`aUV 5 012 + Y`UaV 5 102 + Y`VUa 5 210 )m`�0a�1U�2V (B.11)

= 3Y`aUV 5 012m`�0a�1U�2V . (B.12)

So putting it together:

tr�`a ★ �`a = Y`aUV tr m`
(
�0a mU�

0
V +

1
3 5

012�0a�
1
U�

2
V

)
. �

B.2 Bianchi identity

The dual ★�`a satisfies the Bianchi identity by construction:

�` ★ �`a =
1
2 n`adf (m`�df + [�`, �df ]) (B.13a)

=
1
2 n`adf

(
m`md�f − m`mf�d

¬

+ m` [�d , �f ] + [�`, md�f ] − [�`, mf�d ]


(B.13b)

+ [�`, [�d , �f ]]
®

)
, (B.13c)

where the¬ termvanishesbecause n`adf is antisymmetric in its indicesbutpartialderiva-
tives are symmetric. The term reads

1
2 n`adf

(
m` (�0d�1f ) + �0`md�1f − �0`mf�1d

)
[B 0 , B 1 ] (B.14a)

=
1
2 n`adf

(
m`�

0
d�

1
f + m`�1f�0d + md�1f�0` − mf�1d�0`

)
[B 0 , B 1 ] (B.14b)

=
1
2 n`adf

(
m`�

0
d�

1
f + m`�0d�1f − m`�0d�1f − m`�0d�1f

)
[B 0 , B 1 ] (B.14c)

= 0, (B.14d)

wherewemadeuse of the antisymmetric properties of both `df and 01 . The® term reads

1
2 n`adf�

0
`�

1
d�

2
f [B 0 , [B 1 , B 2 ]] = −

1
2 n`adf�

0
`�

1
d�

2
f 5

123 5 034B 4 (B.15a)

= − 12 n`adf�
0
[`�

1
d�

2
f] 5

123 5 034B 4 = −12 n`adf�
[0
[`�

1
d�

2 ]
f] 5

123 5 034B 4 (B.15b)

= − 12 n`adf�
[0
[`�

1
d�

2 ]
f] 5

3 [12 | 5 34 |0]B 4 = 0, (B.15c)
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where 5 3 [12 | 5 34 |0] = 0 by Jacobi identity. �

An easier proof is to use Jacobi:

[�`, [�a , �d ]] + [�a , [�d , �`]] + [�d , [�`, �a ]] = 0, (B.16a)

⇒ n`adf [�`, [�a , �d ]] = 0, (B.16b)

⇒ n`adf [�`, �ad ] = 0, (B.16c)

⇒ [�`,★�`f ] = �` ★ �`f = 0. � (B.16d)

In the language of form, Bianchi identity is written�� = 0. Proof of the identity:

�� = 3� + [�, � ] = 3� + � ∧ � − � ∧ � (B.17a)

= 3 (3� + � ∧ �) + � ∧ (3� + � ∧ �) − (3� + � ∧ �) ∧ � (B.17b)

= 3� ∧ � − � ∧ 3� + � ∧ 3� + � ∧ � ∧ � − 3� ∧ � − � ∧ � ∧ � (B.17c)

= 0. � (B.17d)

Proof�� = 0 is equivalent to�` ★ �`a = 0:

0 = �� = 3� + � ∧ � − � ∧ � =
1
2 (md�`a + �d�`a − �`a�d ) 3F

` ∧ 3Fa ∧ 3F d , (B.18a)

⇒ m[d�`a] + [�[d , �`a]] = 0, (B.18b)

⇒ n`adfmd�`a + [�d , �`a ] = 0, (B.18c)

⇒ md ★ �df + [�d ,★�df ] = 0, (B.18d)

The last expression is�d ★ �df = 0 as desired. �
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