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1 Introduction

In this dissertation, we are interested in building an axion model where the

quasinormal modes can simulate the hydrodynamics with momentum dissipa-

tion. This idea is motivated by AdS/CFT correspondence [1], which indicates that

a d+1 dimensional conformal field theory is dual to a d+2 supergravity theory

at the low energy limit. The motivation that we are interested in the holographic

model for hydrodynamics is that perturbation method is not valid for strongly

coupled systems [2], and AdS/CFT correspondence is introduced as a method

which can do the calculation. On the other hand, it is possible to design exper-

iments in condensed matter to test the holographic principle, for example the

optical lattice [3].

The AdS/CFT correspondence is the bridge between gravity theories on asymp-

totically Anti-de Sitter spacetimes to conformal field theories. The famous ex-

ample is that N = 4 Super Yang-Mills theory in 3+1 dimensions is dual to IIB

superstring theory on AdS5 ×S5. [4] For the purpose of this dissertation, gauge/-

gravity duality has a very successful and important application in hydrodynam-

ics. Heavy-ion experiments have shown that the quark-gluon plasma is best

modeled by a strongly coupled relativistic fluid, which is hard to be computed by

normal methods. [4] With the help of fluid/gravity correspondence, one can cal-

culate transport coefficients systematically. It is worth noting that gauge/gravity

duality successfully predict the universal result for the ratio of shear viscosity

over entropy density:η/s = 1/(4π) [4], which gives a better result than the tradi-

tional perturbative methods, which gives a much larger value in the range where

perturbative methods are valid.

For the structure of this dissertation, in section 2, we introduce the basic know-

ledge in hydrodynamics, and derive the dispersion relations for both non-dissipative

and dissipative hydrodynamic modes. On the gravity side, we derived the Ein-

stein’s field equation for the axion model from the perspective of the least action

principle by the method of functional derivative in section 3. In the same section,

we also introduce linearized gravity to derive the equations of motion for small

perturbations around the black brane solution. Then we spend some pages on
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the detail of deriving the gauge invariant variables and their equations of mo-

tion, and finally we illustrate the numerical method to find the dispersion rela-

tion from the gravity side. In section 4, we present the numerical results of the

dispersion relation for the choices of m
T = 1

100 and m
T = 100, and compare it with

the analytic dispersion relations directly derived by hydrodynamics.
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2 Hydrodynamics

Hydrodynamics is an effective long-distance theory for a thermal system, whose

length and time scales are much larger than the scale of corresponding micro-

scopic constituents. In the context of this thesis, hydrodynamics constrained by

Lorentz symmetry (e.g. relativistic hydrodynamics) is discussed. Relativistic hy-

drodynamics can not only be applied to describe the collective behavior of relativ-

istic particles, but can also be generalized to describe other matter with Lorentz

symmetry, for example, the quark-gluon plasma [5].

2.1 Degrees of Freedom for Hydrodynamics system

The degrees of freedom to describe hydrodynamics are the densities of conserved

current of the corresponding microscopic field theory. According to the Noether

theorem, the continuous symmetries of the microscopic theory are related to

conserved currents obeying conservation equation. In particular, the continu-

ous symmetries include Poincaré symmetry (i.e. translation, rotations and boosts

in spacetime), and internal symmetry (e.g. U(1) baryon number symmetry).

For example, in a translationally invariant theory with a U(1) global symmetry,

the U(1) symmetry corresponds to a rank-1 current jµ, and the translational

symmetry in space-time corresponds to the rank-2 energy-momentum tensor

Tµν, which can be defined by the variation of the action with respect to the met-

ric [6].

According to Noether theorem, both jµ and Tµν are divergence-free,

∂µ jµ = 0, (1)

∂µTµν = 0. (2)
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Separating the time and space index, these equations are equivalent to

∂0 j0 +∂i j i = 0,

∂0T00 +∂iT i0 = 0,

∂0T0i +∂ jT ji = 0. (3)

If we integrate these three equations above over the space, then applying the

Gauss’s theorem [7] and appropriate boundary conditions, we will get the expec-

ted conserved charges and the corresponding charge densities: j0,T00,T i0. we

further define

T00 ≡ ε, (4)

T i0 ≡Πi, (5)

where ε is the energy density and Πi is the momentum density. Hence we can

write rewrite equation (3) as

∂t j0 =−∂i j i, (6)

∂tε=−∂iΠ
i, (7)

∂tΠ
i =−∂ jT ji. (8)

These are the equations of motion of our hydrodynamic degrees of freedom j0, ε

and Πi. They describe a hydrodynamic system with momentum conservation.

2.2 Constitutive relations

According to equations (1) and (2), the number of unknowns is larger than the

number of equations. Therefore, constitutive relations the equations of state are

needed to determine the system. The constitutive relations [8] are assumed to be

able to express Tµν and jµ in terms of the hydrodynamic variables: a local tem-

perature T, a local fluid velocity uµ, and a local chemical potential µ. In other

words, these relations express the spatial components j i and T i j in terms of the

densities of conserved charges. In particular, the general constitutive relations
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for jµ to the lowest order in derivatives can be written as:

j i =−D∂i j0, (9)

where D is the diffusion constant. Then, taking the derivative with respect to

spatial coordinates, equating with the conservation law (6), we get the diffusion

equation for a conserved density j0:

∂t j0 −D∇2 j0 = 0, (10)

where ∇2 is the spatial Laplacian.

In turn, the stress-energy tensor can be decomposed as [8]

Tµν = (ε+ p)uµuν+ pηµν−ζ(
ηµν+uµuν

)
∂αuα

−η(
ηµα+uµuα

)(
ηνβ+uνuβ

)(
∂αuβ+∂βuα− 2

d
ηαβ∂σuσ

)
(11)

where uµ is the local four-velocity of the fluid with normalization condition uµuµ =
−1; d is the spatial dimensions; ηµν = diag(−1,+1,+1, ...,+1) is the (d+1) Minkowski

metric,ε is the local energy density, p is the thermodynamic pressure in the local

rest frame of the fluid, ζ is the bulk viscosity, η is the shear viscosity. [8]

To see the long-lived collective excitations predicted by hydrodynamics, we con-

sider a field theory that is slightly perturbed away from equilibrium:

uα = (−1,vi), i = 1, ...,d, |v|¿ 1, (12)

ε= ε+δε, (13)

p = P +δp. (14)

where ε=< ε>, P = 1
d < Tii > are the density and pressure of the fluid in thermo-

dynamic equilibrium, and δε, δp and vi are the respective small perturbations.

Substituting equations (12), (13) and (14) into equations (11), we get the perturb-

ative expansion for the energy-momentum tensor. As a result, at zeroth order in
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derivatives, we have the constitutive relation

Tµν = (ε+P)uµuν+Pηµν. (15)

Equivalently,

T00 = ε, (16)

T i j = Pδi j, (17)

T0i ≡Πi = (ε+P)u0ui = (ε+P)vi. (18)

Then with the substitution of vi from equation (18), we have the constitutive

relation at the first order in derivatives:

δTi j = δi jv2
sδε−

ζ

ε+P
δi j∂kΠk −

η

ε+P
(∂iΠ j +∂ jΠi − 2

d
δi j∂kΠk) (19)

where the free parameters: vs =
√

∂P
∂ε

is the speed of sound. Like in any effect-

ive field theory, these free parameters cannot be calculated directly by hydro-

dynamics but can be derived by microscopic kinetic theory, for example using the

Boltzmann equation [9].

2.3 Dispersion relations of hydrodynamic modes

To find the dispersion relations of hydrodynamic modes, we need to take Fourier

transform of hydrodynamic equation of motion and constitutive equations. In the

case of the diffusion equation, we substitute for [8]

j0(t,x)=
∫

d(d+1)q
(2π)(d+1) e−iωt+iq·x j̃0(ω,q) (20)

into equation (10), to then get the diffusive mode

ω=−iq2D. (21)
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By introducing new variables

a = v2
sδε

b =− ζ

ε+P
c =− η

ε+P
, (22)

the constitutive relation (19) is simplified as

δTi j = aδi j +b∂kΠk + c(∂iΠ j +∂ jΠi − 2
d
δi j∂kΠk) (23)

Analog to the process for the diffusion equation, Fourier transform of the con-

stitutive equation is given by

δTi j = aδi j +biqlΠl + c(iqiΠ j + iq jΠi − 2
d
δi j iqlΠl). (24)

The Fourier transform of equation (8) is given by

∂ jT i j = iq jT i j

= iaqi −bqi(q ·Π)− c
(
(q ·Π)qi

(
1− 2

d

)
+ q2Πi

)
=−∂tΠ

i = iωΠi (25)

The Fourier transform of the small variation of equation (7) is given by

−iωδε=−iqiΠ
i −→ ωδε= q ·Π. (26)

From equations (25) and (26), we get:

iωΠi = (ia−bωδε)qi − c
(
ωδεqi

(
1− 2

d

)
+ q2Πi

)
. (27)

It is natural to decompose the momentum in transverse and longitudinal com-
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ponents with respect to qi [8]:

Πi =Πi
∥+Πi

⊥ (28)

where qiΠ
i
⊥ = 0. Multiplying equation (27) with Πi

⊥, we get the shear mode:

ω⊥ =−iq2 ζ

ε+P
. (29)

Similarly, multiplying equation (27) with qi and rearranging, we obtain:

ω2δε+ iωδεq2(−b− c
2d−2

d
)−aq2 = 0. (30)

With the substitution for a = v2
sδε, and δε canceling out, we get an implicit dis-

persion relation:

ω2 + iωq2(−b− c
2d−2

d
)−v2

s q2 = 0. (31)

Solving this quadratic equation, we get:

ω± =
iq2(b+ c(2d−2)/d)±

√
q2(4v2

s − (b+ c(2d−2)/d)2q2

2
(32)

= iq2(b+ c(2d−2)/d)±2vsq+O(q3)
2

. (33)

Replacing b and c, we find for the longitudinal mode:

ω∥ =±vsq− i
2

q2(ζ+ 2d−2
d

η)/(ε+P). (34)

This is the standard dispersion relation of a sound mode propagating in vis-

cous medium, where we observed that the real part of ω∥ is proportional to the

wavenumber q, while its imaginary part is proportional to q2. The imaginary

part of ω∥ leads to the exponential decay of the hydrodynamic mode, hence cor-

responds to the damping of the mode.
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2.4 Correlation Functions

The transport coefficients D, η, ζ of the hydrodynamics can be treated as para-

meters in the effective field theory which need to be determined by the micro-

scopic theory. Different from the constitutive relations of first and second or-

der hydrodynamics which depends on the choice of frame, the coefficients D, η,

ζ are frame invariant. They can be matched to microscopic theory by the lin-

ear response theory, which allows to express the coefficients in terms of correl-

ation functions via the so-called Kubo formulas. The retarded function [8] for

momentum density is given by

GR
ΠIΠ j

(ω,k)=
(
δi j −

kik j

k2

)
ηk2

iω−γηk2 + kik j

k2
w(k2v2

s − iωγsk2)
ω2 −k2v2

s + iωγsk2
(35)

GR
εΠ j

(ω,k)=GR
Π jε

(ω,k)= wωki

ω2 −k2v2
s + iωγsk2

(36)

GR
εε(ω,k= wk2

ω2 −k2v2
s + iωγsk2

(37)

where w = ε+P is the equilibrium enthalpy density, v2
s = ∂p/∂ε, γη = η/(ε+P),

γs =
(2d−2

d η+ζ) /(ε+P), d is the number of spatial dimensions. Kubo formulas are

found by evaluating the imaginary parts of the retarded functions [8]:

η=− ω

k2
1

d−1

(
δi j −

kik j

k2

)
ImGR

ΠIΠ j
(ω,k→ 0), (38)

2d−2
d

η+ζ=−ω
3

k4 ImGR
εε(ω,k→ 0) (39)

Evidently, the poles of the retarded functions give the dispersion relations.

2.5 Hydrodynamics with dissipation

To describe a hydrodynamics system with momentum dissipation, the transla-

tion symmetry in space is broken hence the momentum conservation equation

(7) is modified to

∂tΠ
i +∂ jT ji =−ΓΠi (40)
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where the constant rate Γ is a parameter to ensure the momentum dissipates

isotropically, while the constitutive relations (18) remain the same if Γ is suffi-

ciently small [10]. In the case of relevance for this work, we consider a (2+1) di-

mensional system without bulk viscosity, hence the constitutive relations become

δTi j = δi jv2
sδε−

η

ε+P
(∂iΠ j +∂ jΠi −δi j∂kΠk) (41)

Analog to the method used in section 2.3, from equations (7), (40) and (41), we

can derive the modified momentum conservation equations for small perturba-

tion around the equilibrium

∂tδε+∂iδΠ
i = 0, (42)

∂tδΠ
i +ΓδΠi + ∂p

∂ε
∂iδε− η

ε+P
∂ j∂ jδΠ

i = 0, (43)

where if we Fourier transform these equations, we find the equations in mo-

mentum space (ω,k):

−iωδε+ ik ·δΠ= 0, (44)

−iωδΠi +ΓδΠi + ∂p
∂ε

ikiδε− η

ε+P
(ik)2δΠi = 0. (45)

Cancelling k ·Π, we get the dispersion relation

−iω2 + (Γ+ η

ε+P
k2)ω+ ∂p

∂ε
ik2 = 0. (46)

Solving for ω, we have

ω± =− i
2

(Γ+ η

ε+P
k2)±k

√
∂p
∂ε

− 1
4

(
Γk−1 + η

ε+P

)2
(47)

We compare this dispersion relation to the translational invariant case (34) for
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d = 2 and ζ= 0:

ω∥ =− i
2

η

ε+P
k2 ±

√
∂p
∂ε

k. (48)

Supposing that Γ and η is small enough, in the range of k which is small enough

so that the second terms of (47) is imaginary, the frequency ω becomes pure ima-

ginary and hence the corresponding mode is heavily damped. In the comple-

mentary range of k, ω is a complex number and we observe that the momentum

dissipation rate Γ makes the imaginary part of omega increase, and the real

part decrease; physically, the corresponding hydrodynamic modes damps more

heavily and oscillates with less frequency due to the momentum dissipation ana-

log to the damped simple harmonic oscillator.
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3 Axion Model

The microscopic theory for the dissipative hydrodynamics is a field theory for a

specific, strongly coupled thermal state. This theory is dual to an axion model.

On the gravity side, the presence of axion fields breaks the translation symmetry

which is what we expected to be happened on the field theory side. In practice,

we are interested in using the perturbation abound the black brane solution for

the axion model to calculate the numerical results of dispersion relation for the

dual hydrodynamics with dissipation.

3.1 Einstein Field Equations

The Einstein’s field equations [11] describe the dynamics of the spacetime, which

can be expressed in a general form:

Rµν− 1
2

gµνR+Λgµν = κ2Tµν (49)

where Rµν− 1
2 gµνR is the Einstein tensor, Λ is the cosmological constant and the

constant κ can be expressed in terms of the Newton’s gravitational constant G

by κ2 = 8πG. These equations relate the geometric properties of spacetime to the

matter, given by the stress-energy tensor Tµν. Moreover, in the weak field limit,

Einstein’s field equations boil down to the Newtonian gravity. Einstein equations

are encoded in the action of the gravitational system, and derived by the least

action principle. The generic action can be written as

S[gµν,φ]= SEH[gµν]+Smatter[gµν,φ], (50)

where Smatter is the action of any possible field φ living in the spacetime, which

can be any type of matter fields, for instance, scalar, vector and spinor field, and

SEH[gµν] is the Einstein-Hilbert action for the spacetime.

In particular, the Einstein-Hilbert action with cosmological constant in (d + 1)
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spacetime dimensions is given by

S = 1
2κ2

∫
dd+1x

p−g (R+2Λ) . (51)

Varying the action S with respect to the metric gµν, we will get:

δSEH

δgµν
=

p−g
2κ2

(
Rµν− 1

2
gµνR+Λgµν

)
. (52)

To match to the Einstein equations (49), we define the generic form of the energy-

momentum tensor Tµν in terms of the functional derivative of the matter action

as:

Tµν =− 2p−g
δSmatter

δgµν
. (53)

These are the basic equations governing the spacetime dynamics, where the spe-

cific expression of the right hand side of the equations changes with respect to

different matter content. Note that here and throughout we are using the mostly

plus signature.

3.2 Maximally symmetric Anti-de Sitter spacetime

Here we briefly review the concepts of symmetry and killing vector in the context

of general relativity. Although any system in the real world has somewhat sym-

metry breaking, the symmetric metric can be regarded as the background in the

perturbation theory. The spacetime has a symmetry if the geometry is invariant

under a certain coordinate transformation. In other words, the corresponding

metric is invariant under such transformation [11]. In particular, the symmetry

of metric is also called an isometry and isometries are related to Killing vector

fields K which satisfy the Killing’s equation [11]:

LK gµν =∇(µKν) = 0, (54)

where LK gµν is the Lie derivative of the metric gµν and ∇µ is the normal covari-

ant derivative with respect to gµν and K is also the generator of corresponding
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isometries.

n-dimensional spacetime either Euclidean or not contains at most 1
2 n(n + 1)

Killing vectors [11], and hence it is obvious that an n-dimensional spacetime

with 1
2 n(n + 1) Killing vectors is the so-called maximally symmetric space. It

has remarkable properties: first the curvature is a constant everywhere and in

every direction. In a normal coordinate system, the Riemann tensor Rρσµν with

maximal symmetry should be proportional to gρµgσν− gρνgσµ, since we require

the Riemann tensor to be invariant under local Lorentz transformation and its

symmetries under the permutations of the indices [11]. Finally, by contracting

the tensors twice, we can confirm the coefficient as:

Rρσµν = R
n(n−1)

(gρµgσν− gρνgσµ). (55)

In other words, the metric of maximally symmetric spacetime should have the

same Riemann tensor Rρσµν as equation (55).

From the point view of general relativity, Anti-de Sitter (AdS) spacetime is the

maximally symmetric solution of source-free Einstein field equation with negat-

ive cosmological constant [4]. AdS space time has negative constant curvature

[4], compared to Minkowski and de Sitter spacetimes which have zero and posit-

ive curvature respectively.

The (d +1)-dimensional Anti-de Sitter spacetime can be defined as a spacetime

embedded into a (d + 2)-dimensional Minkowski spacetime with metric ηµν =

diag(-, +, +, ... , +,-). Suppose the Minkowski spacetime has coordinates (X0, X1,

..., X d, X d+1) ∈ Rd,2, with the line element,

ds2 =−(dX0)2 + (dX1)2 +·· ·+ (dX d)2 − (dX d+1)2 = ηµνdXµdXν, (56)

where the indices µ,ν ∈ (0, . . . ,d+1). The AdSn+1 in this spacetime is a hypersur-

face, satisfying the relation:

−(X0)2 + (X1)2 +·· ·+ (X d)2 − (X d+1)2 = ηµνXµXν =−L2, (57)
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where L is the radius of curvature of this spacetime.

From the point view of an intrinsic definition of a manifold, the AdSd+1 space-

time can be described by the following metric:

ds2 = r2

R2 (−dτ2 +d~x2)+ R2

r2 dr2 (58)

where −dτ2 + d~x2 is the metric of a d-dimensional Minkowski spacetime, r is a

coordinate ranging from 0 to infinity, L is a parameter of this spacetime called

the AdS curvature radius. It is worth noting that as expected AdSd+1 spacetime

has a maximally symmetric Riemann tensor:

Rµναβ =−L2(gµαgνβ− gµβgνα) (59)

and hence the corresponding Ricci scalar is constant:

R =−d(d+1)L−2. (60)

There is a convenient way to rewrite equation (59) by a coordinate transforma-

tion z = L2/r:

ds2 = L2

z2 (−dτ2 +d~x2 +dz2). (61)

In this work, we are interested in spacetime where the scale invariance is broken

by a non-zero temperature.

3.3 The Axion model and the Equation of Motions

We are interested in the axion model which is dual to the hydrodynamics with

energy and momentum dissipation. This model has an action including scalar

fields:
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S =
∫

dx4p−g
(
1
2

M2
Pl

(
R+ 6

L2

)
− 1

2
∂µφI∂µφI

)
, (62)

where the index I, J = 1,2, MPl is the Planck mass, R is the Riemann scalar, L

is the Anti-de Sitter radius, φI is a doublet of scalar fields. Hence we can identify

SEH and Smatter as

SEH =
∫

dx4 1
2

M2
Pl
p−g

(
R+ 6

L2

)
, (63)

Smatter =
∫

dx4
(
−1

2
p−ggµν∂µφI∂µφI

)
. (64)

To get the Einstein field equation for this model, we apply the variational method

as shown in section (2.1): first varying the SEH with respect to the metric gµν

δSgravity =
∫

dx4 M2
Pl

2

(
δ(
p−g)(R+ 6

L2 )+p−gδR
)

(65)

=
∫

dx4 M2
Pl

2
δgµν

p−g
(
Rµν− 1

2
R gµν− 3

L2 gµν
)
+p−gδR, (66)

where we use the following identities

δ
p−g = 1

2
p−ggµνδgµν =−1

2
p−ggµνδgµν, (67)

and the Palatini equation:

δRµν =∇α(δΓαµν)−∇ν(δΓααν). (68)

Moreover, the boundary term
p−gδR is cancelled by introducing the Gibbson-

Hawking-York boundary term [12].

Finally, we get the functional derivative:

δSgravity

δgµν
= M2

Pl

2
p−g

(
Rµν− 1

2
gµνR− 3

L2

)
. (69)
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Similarly, varying Smatter with respect to gµν, we get:

δSmatter =
∫

d4x(−1
2
p−g

(
−1

2
gµν∂αφI∂αφI +∂µφI∂νφI

)
δgµν (70)

and the corresponding functional derivative:

δSmatter

δgµν
=−1

2
p−g

(
−1

2
gµν∂αφI∂αφI +∂µφI∂νφI

)
. (71)

Then according to the least action principle, we get the equation of motion for

the metric:

δSgravity

δgµν
+ δSmatter

δgµν
= 0 →

M2
Pl

2
p−g

(
Rµν− 1

2
gµνR− 3

L2

)
− 1

2
p−g

(
−1

2
gµν∂αφI∂αφI +∂µφI∂νφI

)
= 0. (72)

Rearrange it:

Rµν− 1
2

gµνR = 3
L2 gµν+8πGTµν, (73)

where

Tµν =
(
−1

2
gµν∂αφI∂αφI +∂µφI∂νφI

)
, (74)

and the cosmological constant can be expressed in terms of the Anti de Sitter

radius as:

Λ= 3
L2 . (75)
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Varying Smatter with respect to the scalar field, we get:

δSmatter =−
∫

d4x
p−ggµν∂µφI∂νδφI (76)

=−
∫

d4x
p−ggµν∇µφ

I∇νδφI (77)

=
∫

d4x∇ν(
p−ggµν∇µφ

I)δφI , (78)

where we have used expansion of Gauss’s theorem to general relativity and as-

sumed that the boundary terms vanish. And then, equation of motion for the

scalar fields is given by

∇ν(
p−ggµν∇µφ

I)= 0. (79)

In my calculation, I use the conventions of [10], and set M2
Pl = 2 so that the ac-

tion becomes:

S =
∫

dx4p−g
((

R+ 6
L2

)
− 1

2
∂µφI∂µφI

)
, (80)

and the stress-energy tensor becomes:

Tµν =−1
2

gµν∂αφI∂αφI +∂µφI∂νφ. (81)

The equations of motion become:

Rµν− 1
2

gµνR =Λgµν+ 1
2

Tµν (82)

∇ν(
p−ggµν∇µφ

I)= 0 (83)

where the cosmological constant is Λ = 3
L2 . In the following we use the units L ≡

1.

The theory with the action in eq.(80) has a planar Schwarzschild-AdS4 black
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brane solution [10]:

ds2 =−r2 f dt2 + r2(dx2 +d y2)+ dr2

r2 f
,

φ1 = mx, φ2 = my,

f (r)= 1− m2

2r2 − r3
0

r3

(
1− m2

2r2
0

)
, (84)

where the radial coordinate r ranges from r0 (the horizon radius of the black

brane) to infinity (the asymptotically AdS boundary), and the coordinates t, x, y

is the direction of the dual field theory.

We use the thermodynamic relations of the field theory state computed via the

standard AdS/CFT dictionary [10], [13], [14]:

T = r0

4π

(
3− m2

2r2
0

)
, (85)

ε= 2r3
0

(
1− m2

2r2
0

)
, (86)

P = r3
0

(
1+ m2

2r2
0

)
, (87)

s = 4πr2
0, (88)

where T is the temperature, ε is the equilibrium energy density, P is the equilib-

rium pressure and s is the entropy density of the state and r0 is the position of

the black brane horizon. The momentum dissipation rate for sufficiently small

values of m

Γ= s
4π(ε+P)

m2 = m2

4πT
, (89)

which after substituting in the dispersion relation in equation (47) gives [10]

ω± =±k

√√√√√
1
4
+ 3m2

32π2T2 − (m2 +k2)2

64π2k2T2 − i
8πT

(m2 +k2)+ ..... (90)
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For the purpose of comparison to the numerical results in section (4), we can ex-

pand this equation for small m
T and small k, which gives

ω(k)± =
(
± kp

2
− ik2

8πT
∓ k3

64(
p

2π2T2)
+O[k]4

)
+(

− iT
8π

+ (−1+3π)k
32

p
2π2

+ (−1+3π)k3

2048
p

2π4T2

)(m
T

)2 +O[
m
T

]4. (91)

It is clear that the dominant terms for small k and small m
T are

ω(k)=± kp
2
− ik2

8πT
, (92)

where we see that the hydrodynamic modes at small k and small m
T behave like

standard sound modes.

By comparison, we are also interested in the behaviour of the hydrodynamics

modes for small k but large m
T . In this region, equivalently, we expand equation

(90) for small k and small T
m , which is given by

ω(k)=e

(
∓i

√
3π
2

k2

T
+O

(
k4))+

e3

(
∓i

2
p

2/3π3/2

T
k2 +O

(
k4))+O

(
e4) , (93)

where 1
e ≡ m

T , and we can see the dominant terms are purely imaginary

ω(k)± =±i(− T
m

− T2

m3 2

√
2
3
π3/2)k2. (94)

We shall verify the behaviour (92) and (94) in section 4.
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3.4 Linearized Gravity and the equations of motion for the
Axion model

In this dissertation, we are interested in small perturbations around the black

brane solution (84) so that we can ignore any terms of order higher than the first

order :

gµν = g(0)
µν+hµν, |hµν|¿ 1, (95)

φ̃I =φ(0)
I +δφI , |δφI |¿ 1, (96)

where g(0)
µν and φ(0)

I correspond to the black brane solution, hµν and δφI are the

perturbation fields. In particular, we focus on the longitudinal sector [10] (htt,hxx,

hyy,hrr, hxt,hxr,htr,δφ1) at non-zero frequency ω and wavenumber k pointing in

the direction of x. In other words, we are interested in the Fourier modes

htt(t, r, x)= htt(r)eikx−itω, htr(t, r, x)= htr(r)eikx−itω, etc. (97)

Substituting these fields with the perturbation in longitudinal sector back into

the equations of motion (82) and (83), we get eight independent equations of mo-

tion (The symmetric Einstein equations gives 3× (3+1)/2+1 = 7 equations and

the equation of motion for the scalar fields contributes one equation).

We thus find that the longitudinal perturbations obey eight coupled equations of

motions:

1
4

f (2hr
r(2r3 f ′+6r2 f +k2)−2ht

t(2r3 f ′+6r2 f +m2 −6r2)+2ikr4hx
r f ′− r4 f ′hx

x
′−

r4 f ′hy
y
′+4r3 f hr

r
′+4ikr4 f hx

r
′+16ikr3 f hx

r −8r3 f hx
x
′−2r4 f hx

x
′′−8r3 f hy

y
′−

2r4 f hy
y
′′+m2hx

x +2k2hy
y +m2hy

y −2ikmδφ1)= 0, (98)

1
4r4 f

{2hr
t(2r3 f ′+k2 +m2 −6r2)− ir4 f ′(2khx

t +ω(hx
x +hy

y))+

2r2 f [−2irωhr
r +6hr

t + r2(kωhx
r + i(khx

t
′+ω(hx

x
′+hy

y
′)))]}= 0, (99)
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1
2

(6r3hx
t f ′+ r4hx

t f ′′+ r2 f (r(−irωhx
r
′−4hx

t
′− rhx

t
′′)−

4irωhx
r +6hx

t)−kωhr
r + ikhr

t
′+m2hx

t −6r2hx
t −kωhy

y+
imωδφ1)= 0, (100)

1
4r5 f 2 (r f (−2ikr4hx

r f ′+ r4 f ′hx
x
′+ r4 f ′hy

y
′+2hr

r(m2 −6r2)−

2k2ht
t −m2hx

x −2k2hy
y −m2hy

y +2ikmδφ1)+4r4 f 2(ht
t
′−

2ikhx
r +hx

x
′+hy

y
′)+2ω(−4ihr

t +2krhx
t + rω(hx

x +hy
y)))= 0, (101)

1
4

(
i(khr

r f ′−kht
t f ′+2iω2hx

r +2ωhx
t
′)

f
+

2hx
r(6r3 f ′+ r4 f ′′+m2 −6r2)− 2kωhr

t

r4 f 2 +12r2 f hx
r + 4ikhr

r

r
−

2i(kht
t
′+khy

y
′− imδφ1

′))= 0, (102)
1

4 f 2 ( f 2(r4(− f ′)hr
r
′−12r3hr

r f ′−2r4hr
r f ′′+3r4 f ′ht

t
′+

hx
x(12r3 f ′+2r4 f ′′+m2 −12r2)+2r4 f ′hy

y
′−m2hy

y −2ikmδφ1)+
2iωhr

t f ′+2r2 f 3(r(−2hr
r
′+4ht

t
′+ rht

t
′′+4hy

y
′+ rhy

y
′′)−

6hr
r +6hx

x)+2ω f (ωhr
r −2ihr

t
′+ωhy

y))= 0, (103)
1

4 f 2 (− f 2(r4 f ′hr
r
′+2hr

r(6r3 f ′+ r4 f ′′+k2)−3r4 f ′ht
t
′+

4ikr4hx
r f ′−2r4 f ′hx

x
′−12r3hy

y f ′−2r4hy
y f ′′+2k2ht

t+
m2hx

x −m2hy
y +12r2hy

y −2ikmδφ1)+2iωhr
t f ′+

2r2 f 3(−2rhr
r
′−6hr

r + r2ht
t
′′+4rht

t
′−2ikr2hx

r
′−8ikrhx

r+
r2hx

x
′′+4rhx

x
′+6hy

y)+2ω f (ωhr
r −2ihr

t
′+2khx

t +ωhx
x))= 0, (104)

−2mr4hx
r f ′+2r4 f ′δφ1

′+2r3 f
(−mrhx

r
′−4mhx

r +4δφ1
′+ rδφ1

′′)+
2ω(ωδφ1 − imhx

t)
f

+ ikmhr
r + ikmht

t − ikmhx
x + ikmhy

y −2k2δφ1 = 0, (105)

where the index are raised by the background metric, and are given in the orders

of tt, tr, tx, rr, rx, xx, yy components of the equations of motion for the metric

perturbations, followed by the equation of motion for the scalar field perturba-

tion.
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For convenience, we refer the reader to the equations from (A1) to (A8) in the

appendix A of [10]. We have checked by explicit calculations that the linearised

Einstein and scalar field equations of motion with equations (A.1), (A.2), ...,(A.8):

Eq.(A.1)∝EOM for φI , (106)

Eq.(A.2)∝EOMxx −EOMyy, (107)

Eq.(A.3)∝EOMtx, (108)

Eq.(A.4)∝EOMtr, (109)

Eq.(A.5)∝EOMrx, (110)

Eq.(A.6)∝EOMrr, (111)

Eq.(A.7)∝EOMtt, (112)

Eq.(A.8)∝EOMxx +EOMyy. (113)

In the context of linearized gravity, the perturbation fields behave like gauge

fields under the coordinates transformation xµ −→ xµ+ξµ:

hµν −→ hµν+∇µξν+∇νξµ, (114)

δφ1 −→ δφ1 +mξi. (115)

In the following we shall use this freedom of coordinates transformations to

eliminate the non-dynamic metric components from the linearised field equa-

tions.

3.5 Deriving the gauge invariant fields and their EOMs

There are only two independent degrees of freedom in the longitudinal sector

and the redundancy of the field equations can be eliminated by using the com-

binations of the fields which are gauge invariant [10]. In this project, I calcu-

lated the gauge transformation of the perturbation fields in longitudinal sector
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explicitly as

ht
t −→ ht

t + 2ξr

r
−2iωξt + ξr f ′

f
, (116)

hr
r −→ hr

r − 2ξr

r
− ξr f ′

f
+2ξr ′, (117)

hx
x −→ hx

x + 2ξr

r
+2ikξx, (118)

hy
y −→ hy

y + 2ξr

r
, (119)

hx
t −→ hx

t − ik f ξt − iωξx, (120)

hx
r −→ hx

r + ikξr

r4 f
+ξx′, (121)

hr
t −→ hr

t − iωξr − r4 f 2ξt′, (122)

δφ1 −→ δφ1 +mξx. (123)

By eliminating the terms ξr, ξt, ξx, f and their derivatives, we obtain the gauge

invariant fields:

h1 = ht
t − 2ωhx

t

kf
−hy

y − 2iω2δφ1

kmf
− rhy

y f ′

2 f
, (124)

h2 = hr
r + (rhy

y f ′)/(2 f )− rhy
y
′, (125)

h3 = hx
x −hy

y − (2ikδφ1)/m, (126)

h4 = hx
r − (ikhy

y)/(2r3 f )−δφ′
1/m, (127)

h5 = hr
t +1/2irωhy

y − (ir4 f hy
y f ′)/(4ω)+ (ir5hy

y f ′2)/(4ω)+ (ir4 f 2ht′
t)/(2ω),

− (ir4 f 2hy′
y)/(2ω)− (ir5 f f ′hy′

y)/(4ω)− (ir5 f hy
y f ")/(4ω). (128)

By expressing ht
t, hr

r, hx
x, hx

r, hr
t in terms of the gauge invariant variables,

and substitute for them into the equations of motion, we have the equations of
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motion for the gauge invariant fields

4(k2 −m2 +6r2)h2 +2m2h3 + (−2ikm2r+12ikr3 +20ikr3 f )h4+
(8r3 f h2

′+m2r−6r3 −10r3 f )h3
′+8ikr4 f h4

′−4r4 f h3"= 0, (129)

ω(r(−m2 +6r2)ωh3 +4ik2h5)+2k2r4 f 2h1
′+

2r3ω2 f (4h2 −3h3 +2ikrh4 −2rh3
′)= 0, (130)

−2kω2h2 + f (−8ir3ω2h4 +kr(−m2 +6r2)h1
′−2ir4ω2h4

′)+2ikωh5
′+

kr3 f 2(−2h1
′+ rh1")= 0, (131)

4ω(rωh3 −4ih5)+2r4 f 2(−2ikh4 +h3
′)− r f (4k2h1 −4h2

(
m2 −6r2)+m2rh3

′−
6r3h3

′+2m2h3 −2ikm2rh4 +12ikr3h4 +m2rh3
′−6r3h3

′)= 0, (132)

2r3 f 2(−krh1
′+3kh1 +kh2 −2im2rh4)+ r f (kh1(m2 −6r2)−kh2(m2 −6r2)+

4ir3ω2h4)+4ikωh5 = 0, (133)

−2i(m2 −6r2)ωh5 + r3 f 2(−4k2h1 −4(k2 +6r2)h2 −2m2h3 +4ikm2rh4 −24ikr3h4

+18m2hy
y −108r2hy

y +36r3hy
y f ′+m2rh2

′−6r3h2
′−2m2rh3

′+12r3h3
′)

+4r2ω f (rωh2 + rωh3 − i(3h5 +2rh5
′))

+2r5 f 3(−4ikrh4 +54hy
y + r(−h2

′+2h3
′−4ikrh4

′+2rh3"))= 0, (134)

ikmh1 + ikmh2 − ikmh3 −8mr3 f h4 −2mr4 f ′h4 −2mr4 f h4
′ = 0. (135)

We observed that h1 and h3 are dynamical fields (i.e. the second derivative of h1

and h4 appear in the equations of motion (129), (131), and (134). By canceling

the non-dynamical fields h2, h4, h5 and their derivatives, we have two dynamical

equations for h1 and h3. The coupled dynamical equation is rather lengthy and

will not be reproduced here, while the decoupled one for h3 is simple:

−(k2 +m2)h3 +ω2h3/ f + (−(m2r)/2+3r3 + r3 f )h′
3 + r4 f h3"= 0 (136)

One find that it is convenient to use the combination of the gauge invariant vari-
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ables h1, h2, h3, h4, h5, which is given by [10]:

ψ|| = r
m2 +k2

[
m(hx

x −hy
y)−2ikδφ1

]
− 2r4 f

m(k2 + r3 f ′)

[
hx′

x +hy′
y −

2
r

hr
r −2ikhx

r − k2 + r3 f ′

r3 f
hy

y

]
. (137)

By substituting the fields hx
x, hy

y, hr
r, hx

r in terms of h1, h2, h3, h4, h5 into the

expression for ψ||, we find that

ψ|| = mrh3

k2 +m2 + 2r3 f (2h2 +2ikrh4 − rh′
3)

m(k2 + r3 f ′)
. (138)

It is clear that the linear combination of gauge invariant fields ψ|| is also gauge

invariant. We have checked that the field ψ|| obey the equation of motion [10]:

d
dr

[r2 fψ′
||]+

(
ω2 −k2 f

r2 f
+V (r)

)
ψ|| = 0 (139)

where

V (r)=− 3r0(m2 −2r2
0)

2r3[2k2r+m2(2r−3r0)+6r3
0]2

[4k4r2 +m4(−4r2 +6rr0 −3r2
0)+

12m2r0(r3 − rr2
0 + r3

0)−12r3
0(2r3 + r3

0)]. (140)

Another convenient choice for the gauge invariant field in [15] is considered, and

is given by

ψ1 = r2 f
(k2 + r3 f ′)2

d
dr

[r4 f (hx
x
′+hy

y
′−2ikhx

r −2
hr

r

r
− k2 + r3 f ′

r3 f
hy

y)

− mr(k2 + r3 f ′)
2(k2 +m2)(m(hxx −hy y)−2ikφ1)

]. (141)

ψ1 obeys a simpler equation of motion compared to ψ||:

d
dr

[
r2 f (k2 + r3 f ′)3

ω2(k2 + r3 f ′)−k2(k2 +m2) f
ψ1

′
]
+ (k2 + r3 f ′)2

r2 f
ψ1 = 0. (142)
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We observe that ψ1 can be expressed in terms of ψ||:

ψ1 = r2 f
k2 + r3 f ′

d
dr

(
−m

2
(k2 + r3 f ′)ψ||

)
. (143)

In the next section we will discuss how to derive the decoupled equation of mo-

tion for ψ1 and ψ||.

3.6 Method of deriving the equations of motion

The derivation is based on the dynamical equations for the gauge invariant fields

h1 h2, h3, h4 and h5. By eliminating additional variables of h2, h4, h5, we can

get one dynamical equation for h3 only and a coupled dynamical equation for h1

and h3, equation given in (136).

We find that we can express the gauge invariant variables ψ|| and ψ1 in terms

of h2, h4 and h3, as shown in equation (137). We constructed a new variable in

terms of the ψ1 called dψ1:

dψ1 ≡ d
dr

(
(k2 + r3 f ′)2(k2 +m2)

kr2 f
ψ1

)
(144)

and then we find it include h′
2 and h′

4 explicitly. Hence we would like to find the

h′
2 and h′

4 in terms of h2 and h4 by massaging equations (A1), (A2) and (A7),

then substitute h′
2 and h′

4 back into the above new variable. Finally, we get ex-

pressions for ψ||, ψ1 and dψ1 in terms of h2 and h4 without their derivatives.

Hence we get 3 variables ψ||, ψ1 and dψ1, which include two unwanted h2 and

h4. We can eliminate h2 and h4 by three equations including h2 and h4, ψ||, ψ1

and dψ1, finally we get a decoupled differential equation for ψ||:

Cψ||ψ||+Cψ||′ψ||′+Cψ||′′ψ||′′ = 0, (145)
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where the coefficients are

Cψ|| =2r2 f (r3 f ′(k2(6r2 −5m2)−6k4 −108m2r2 +7m4 +12r2ω2 +396r4)+
2r6 f ′2(k2 +4m2 −48r2)+12r9 f ′3 +4k2(−15m2r2 +m4 +3r2ω2 +54r4)+
k4(66r2 −7m2)+4k6 −6r2(m2 −6r2)2)− (2k2 −m2 +6r2)(r3 f ′+k2)×
(2r3(m2 −6r2) f ′−12m2r2 +m4 +4r2(9r2 +ω2))+
12r4 f 2(−r3 f ′(k2 −6m2 +96r2)+16r6 f ′2 +k2(m2 −18r2)−5k4−
18m2r2 +m4 +120r4)+72r6 f 3(8r3 f ′+m2 −22r2)+576r8 f 4, (146)

Cψ||′ =−2r3 f (24r4 f 2(4r3 f ′−k2 +m2 −12r2)−2r2 f (r3 f ′(8k2 −7m2 +66r2)−
6r6 f ′2 −k2(m2 −6r2)+2k4 +12r2(m2 −6r2))+
(m2 −6r2)(−2k2 +m2 −6r2)(r3 f ′+k2)+144r6 f 3), (147)

Cψ||" =4r6 f 2(6r2 f −2k2 +m2 −6r2)(r3 f ′+k2), (148)

which coincides with the dynamical equation for ψ|| in the appendix A of [10].

Written in equations (139) and (140) above with r0 = 1.

To get the equation of motion for ψ1, analog to what we have done for ψ1, we

construct a new variable called d2ψ1:

d2ψ1 = d
dr

[
r3 f 2 d

dr

(
(k2 +m2)(k2 + r3 f ′)2

kr2 f
ψ1

)]
(149)

We can express ψ1, dψ1, d2ψ1 in terms of h2, and h4 only, and then eliminate h2

and h4 to get the equation of motion for ψ1 which coincide with equation (142).

3.7 Numerical Method for finding the dispersion relation
on the boundary

In this section, we will illustrate how to find the dispersion relation using the

numerical method. First, we apply the conventional coordinates transformation
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for the equation of motion (142) multiplied by a factor F(r),where

F(r)≡ f (r)
(
r3 f ′(r)+k2)2 (

k2 f (r)
(
k2 +m2)−ω2 (

r3 f ′(r)+k2))2

r2 . (150)

and the coordinates transformation are

r = 1
u

, r ∈ (r0,∞)→ u ∈ (0,
1

r0)
) (151)

We then get the new equation of motion with respect to the new coordinate u:

Cψ1(u)ψ1(u)+Cψ1′(u)ψ1
′(u)+Cψ1′′(u)ψ1

′′(u)= 0, (152)

where

Cψ1(u) =
1
4

(k2 (
k2 +m2)(m2u2(r0u−1)−2r3

0u3 +2
)−

ω2 (
2k2 +m2(2−3r0u)+6r3

0u
)
)2 (153)

Cψ1(u)′ =
1
8

(uω2(−1
2

m2u2(r0u−1)+ r3
0u3 −1)(m2(2−3r0u)+6r3

0u)×

(2k2 +m2(2−3r0u)+6r3
0u)2 −6r0ω

2(m2 −2r2
0)(−1

2
m2u2(r0u−1)+

r3
0u3 −1)(m2(u2 − r0u3)+2r3

0u3 −2)(2k2 +m2(2−3r0u)+6r3
0u)−

9k2r0(k2 +m2)(m2 −2r2
0)(−1

2
m2u2(r0u−1)+ r3

0u3 −1)(m2u2(r0u−1)

−2r3
0u3 +2)2) (154)

Cψ1′′(u) =
1
8

(ω2(−1
2

m2u2(r0u−1)+ r3
0u3 −1)(m2(u2 − r0u3)+2r3

0u3 −2)(2k2+

m2(2−3r0u)+6r3
0u)2 +k2(k2 +m2)(−1

2
m2u2(r0u−1)+ r3

0u3 −1)×
(m2u2(r0u−1)−2r3

0u3 +2)2(2k2 +m2(2−3r0u)+6r3
0u)) (155)

We have checked that this equation coincides with equation (142). We then sub-

stitute for the ansatz

ψ1(u)= (u−1)−
iω

4πT(m)ψhor(u), (156)
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satisfying the ingoing boundary conditions near the horizon into the above equa-

tion of motion (152), where ψhor(u) is a field dependent of u, T(m)= r0(3− m2

2r02 )/(4π)

is the thermal temperature of the field theory [13][14]. It is worth noting that

the reason for exclude the outgoing wave boundary conditions near the horizon is

that classically the horizon does not radiate. [16] And then we get the equation

of motion for ψhor(u). It is convenient to set r0 = 1 so that the equation of motion

for ψhor is given by

Cψhorψhor +Cψhor ′ψhor
′+Cψhor"ψhor"= 0 (157)

where the coefficients are

Cψhor =− iω3(m2(u−1)u2 −2u3 +2)2(2k2 +m2(2−3u)+6u)(2k2(m2 −2iω−6)+
m2(6iu(ω+4i)−4iω+36)+m4(3u−4)+12(−6+u(3− iω)))+
i(m2 −6)(u−1)uω3(m2(3u−2)−6u)(m2(u−1)u2 −2u3 +2)×
(2k2 +m2(2−3u)+6u)2 +2(m2 −6)2(u−1)2(k2(k2 +m2)×
(m2(u−1)u2 −2u3 +2)−ω2(2k2 +m2(2−3u)+6u))2+
ik2ω(k2 +m2)(m2(u−1)u2 −2u3 +2)3(2k2(m2 −2iω−6)+
m2(6iu(ω+8i)−4iω+60)+m4(6u−7)+12(−9+u(6− iω))), (158)

Cψhor ′ =4(3− m2

2
)(u−1)(−1

2
m2(u−1)u2 +u3 −1)(−2ω2(−m2(u−1)u2 +2u3 −2)(2k2+

m2(2−3u)+6u)(−3
2

(m2 −6)(m2 −2)(u−1)+ iω(2k2 +m2(2−3u)+6u))−2k2×

(k2 +m2)(m2(u−1)u2 −2u3 +2)2(−9
4

(m2 −6)(m2 −2)(u−1)+ iω(2k2 +m2(2−

3u)+6u))+ (3− m2

2
)(u−1)uω2(m2(2−3u)+6u)(2k2 +m2(2−3u)+6u)2),

(159)

Cψhor" =(m2 −6)2(u−1)2(−1
2

m2(u−1)u2 +u3 −1)(−2k2 +m2(3u−2)−6u)(−ω2(−m2×
(u−1)u2 +2u3 −2)(2k2 +m2(2−3u)+6u)−k2(k2 +m2)(m2(u−1)u2 −2u3 +2)2).

(160)
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We can have a near horizon expansion of ψhor:

ψhor = Cψ0 + (u−1)Cψ1 + (u−1)2Cψ2 +O ((u−1)2), (161)

where Cψ0, Cψ1 and Cψ2 are expansion factors. To find the boundary condition,

we first substitute this near horizon expansion into its equation of motion (157).

We can normalise this equation by setting Cψ0 = 1. To make the expansion solve

the equation, we expect that the coefficient for coefficient at any order of (u−1)

must vanish, and finally we get the expression for Cψ1:

Cψ1 =− 2i
(m2 −6)2ω(2k2 −m2 +6)(m2 +4iω−6)

(k2(4m4(ω2 −6iω+27)+

4im2(4ω3 +9iω2 +18ω+54i)+2im6(ω+9i)+m8 +24ω2(3−2iω))+
k4(m2 −6)2(m2 +2iω−6)−2(m2 −6)ω2(m2(−33+4iω)+4m4 +6(9−2iω)))

(162)

In the process of calculating Cψ1, we find that it is enough to expand ψhor up to

the first order of (r−1) to find the coefficient Cψ1. If more accurate expansion ap-

proximation is expected, we need to expand ψhor up to more higher order terms.

3.7.1 Boundary conditions

We expect that the ψhor behaves the same as the near horizon expansion on the

boundary. First we define the boundary field as

ψbdy(u)= Cψ0 + (u−1)Cψ1 , (163)

where Cψ0 and Cψ1 are coefficients independent of u. In practice, we then set the

boundary conditions

ψbdy(u = 1−ε)−ψhor(u = 1−ε)= 0, (164)

ψbdy
′(u = 1−ε)−ψhor

′(u = 1−ε)= 0, (165)

where ε is an infinitely small number. Practically, we set ε= 5×10−3.
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Given equation of motion (157), and the boundary conditions (164) and (165), we

can solve for the field ψhor(u) with parameters ω and k numerically using the

build-in function NDsovle command in Mathematica. The dispersion relation

can be found numerically by imposing the Dirichlet boundary conditions [16]:

ψhor(0)(ω,k)= 0. (166)

It was observed in [17] and [18] that for both (2+1) and higher dimensional black

holes, to make the quasinormal frequencies match with the singularities of the

retarded Green function in a field theory dual to corresponding gravity theory,

we need to impose the Dirichlet boundary conditions.

In practice, we do this by using the FindRoot command in Mathematica, by eval-

uating the value of ψhor at u → 0, that is,

ψhor(0.0001)(ω,k)= 0. (167)
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4 Results and Discussion

In this section, we represent the numerical results for the choice of small m
T , in

particular at m
T = 1

100 , where the result is shown in Fig. 1 and compared with the

analytic relation (90) and its approximation 92. We also present the numerical

results for the choice of large m
T , in particular at m

T = 100, where the result is

shown in Fig. (2).

The upper diagram of Fig. 1 shows that the imaginary part of ω behaves like

quadratic function with respect to k for small k for the choice of m
T = 1

100 . The

numerical results from the gravity side is well-fitted to the analytic dispersion

relation (90) and its approximation dispersion relation (92) for the k range from

0 to 0.5. By comparison, the lower diagram of Fig. 1 shows that the real part of

ω is proportional to k for small k range from 0 to 0.5. It is also well-fitted to the

analytic dispersion relation (90) and its approximation dispersion relation (92) in

the same range of k. This is what we expect that hydrodynamic modes behaves

like a sound modes in the limit of small k and small m
T . We also observed that

beyond the range of small k, the difference between the numerical results and

the analytical results increase rapidly as the k increases.

The upper diagram of fig. 2 shows that the imaginary part of ω behaves like

quadratic function with respect to k for small k for the choice of m
T = 100, and

the lower diagram of fig. 1 shows that the real part of ω vanished at the range of

k from 0 to 0.7. These numrical result from the gravity side is well-fitted to what

we expect in equation (94), that is, for the large m/T and small k approximation,

the quasinormal frequency is purely imaginary and is proportional to k2. This

means that such quasinormal modes are heavily damped. Furthermore, for the

large k, we observe a bifurcation point both in the upper and lower diagrams.

This implies that hydrodynamics breaks down at this point and is no longer a

valid approximation beyond the bifurcation point.
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Figure 1: These plots show the dispersion relation ω(k) of the hydrodynamic
modes for m/T = 0.01. The upper panel is for the imaginary part of ω. The lower
panel is for the real part of ω. The blues dots are the numerical result. The
dashed rainbow line are hydrodynamic approximation (90). The solid blue line
are hydrodynamic approximation (92) for small k and small m/T.
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Figure 2: These plots show the dispersion relation ω(k) of the hydrodynamic
modes for m/T = 100. The upper panel is for the imaginary part of ω. The lower
panel is for the real part of ω. The blues dots are the numerical result. Some
points missing in the upper panel and some strange points in the lower panel
are the fake root picked by FindRoot command in Mathematica.
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5 Conclusion

In this project, we review the background of relativistic hydrodynamics and the

quasinormal modes for linearized hydrodynamics, deriving the dispersion rela-

tion of non-dissipative and dissipative hydrodynamics. On the gravity side, we

review the basic knowledge of axion model, deriving the corresponding Einstein

equation in the Lagrangian formalism, then introduce linearized gravity to de-

rive the dispersion relation of quasinormal modes of the axion model. We spend

some effort in the derivation of gauge invariant fields and their equations of mo-

tion. We also illustrate how to find the dispersion relation on the gravity side

numerically. At last, we show the numerical results of dispersion relation for the

choice of m
T = 1/100 and m

T = 100. We observe that in the case of m
T = 1

100 , the

quasinormal modes are sound-like for small k, whereas in the case of m
T = 100,

the quasinormal modes are heavily damped. Such observations agree with the

analysis on the hydrodynamics side.

Because of lack of time, the numerical results are not complete. For the further

work, we can first take time to optimize the Mathematica program used to find

the numerical results so that we can discard the strange points and find the

missing points in and Fig. 2. Then, we can do machinery calculations to check

the dispersion relation for the different choice of m
T .

References
[1] Juan Maldacena. In: International Journal of Theoretical Physics 38.4

(1999), pp. 1113–1133. ISSN: 0020-7748. DOI: 10.1023/a:1026654312961.

URL: http://dx.doi.org/10.1023/A:1026654312961.

[2] Sean A Hartnoll. ‘Lectures on holographic methods for condensed matter

physics’. In: Classical and Quantum Gravity 26.22 (2009), p. 224002.

[3] Markus Greiner and Simon Fölling. ‘Optical lattices’. In: Nature 453.7196

(2008), pp. 736–738.

[4] Martin Ammon and Johanna Erdmenger. Gauge/gravity duality: Founda-

tions and applications. Cambridge University Press, 2015.

37

https://doi.org/10.1023/a:1026654312961
http://dx.doi.org/10.1023/A:1026654312961


[5] DEREK A. TEANEY. ‘VISCOUS HYDRODYNAMICS AND THE QUARK

GLUON PLASMA’. In: Quark-Gluon Plasma 4 (Feb. 2010), pp. 207–266.

DOI: 10.1142/9789814293297_0004. URL: http://dx.doi.org/10.1142/

9789814293297_0004.

[6] Steven Weinberg. Gravitation and Cosmology: Principles and Applications

of the General Theory of Relativity. New York: John Wiley and Sons, 1972.

ISBN: 978-0-471-92567-5, 978-0-471-92567-5.

[7] J. L. Synge and H. S. Ruse. ‘On the concept of gravitational force and Gauss’s

theorem in general relativity’. In: Proceedings of the Edinburgh Mathemat-

ical Society 5.2 (1937), pp. 93–102. DOI: 10.1017/S0013091500008348.

[8] Pavel Kovtun. ‘Lectures on hydrodynamic fluctuations in relativistic theor-

ies’. In: Journal of Physics A: Mathematical and Theoretical 45.47 (2012),

p. 473001.

[9] Sydney Chapman and Thomas George Cowling. The mathematical theory

of non-uniform gases: an account of the kinetic theory of viscosity, thermal

conduction and diffusion in gases. Cambridge university press, 1990.

[10] Richard A Davison and Blaise Goutéraux. ‘Momentum dissipation and ef-

fective theories of coherent and incoherent transport’. In: Journal of High

Energy Physics 2015.1 (2015), p. 39.

[11] Sean M. Carroll. Spacetime and Geometry: An Introduction to General Re-

lativity. Cambridge University Press, 2019. DOI: 10.1017/9781108770385.

[12] Sumanta Chakraborty. ‘Boundary Terms of the Einstein–Hilbert Action’.

In: Fundamental Theories of Physics (2017), pp. 43–59. ISSN: 2365-6425.

DOI: 10.1007/978-3-319-51700-1_5. URL: http://dx.doi.org/10.

1007/978-3-319-51700-1_5.

[13] Tomás Andrade and Benjamin Withers. ‘A simple holographic model of

momentum relaxation’. In: Journal of High Energy Physics 2014.5 (May

2014). ISSN: 1029-8479. DOI: 10.1007/jhep05(2014)101. URL: http:

//dx.doi.org/10.1007/JHEP05(2014)101.

[14] Yannis Bardoux, Marco M. Caldarelli and Christos Charmousis. ‘Shaping

black holes with free fields’. In: Journal of High Energy Physics 2012.5

38

https://doi.org/10.1142/9789814293297_0004
http://dx.doi.org/10.1142/9789814293297_0004
http://dx.doi.org/10.1142/9789814293297_0004
https://doi.org/10.1017/S0013091500008348
https://doi.org/10.1017/9781108770385
https://doi.org/10.1007/978-3-319-51700-1_5
http://dx.doi.org/10.1007/978-3-319-51700-1_5
http://dx.doi.org/10.1007/978-3-319-51700-1_5
https://doi.org/10.1007/jhep05(2014)101
http://dx.doi.org/10.1007/JHEP05(2014)101
http://dx.doi.org/10.1007/JHEP05(2014)101


(May 2012). ISSN: 1029-8479. DOI: 10.1007/jhep05(2012)054. URL: http:

//dx.doi.org/10.1007/JHEP05(2012)054.

[15] Mike Blake et al. ‘Many-body chaos and energy dynamics in holography’.

In: Journal of High Energy Physics 2018.10 (Oct. 2018). ISSN: 1029-8479.

DOI: 10.1007/jhep10(2018)035. URL: http://dx.doi.org/10.1007/

JHEP10(2018)035.

[16] Pavel K. Kovtun and Andrei O. Starinets. ‘Quasinormal modes and holo-

graphy’. In: Physical Review D 72.8 (Oct. 2005). ISSN: 1550-2368. DOI:

10.1103/physrevd.72.086009. URL: http://dx.doi.org/10.1103/

PhysRevD.72.086009.

[17] Danny Birmingham, Ivo Sachs and Sergey N. Solodukhin. ‘Conformal

Field Theory Interpretation of Black Hole Quasinormal Modes’. In: Phys-

ical Review Letters 88.15 (Mar. 2002). ISSN: 1079-7114. DOI: 10.1103/

physrevlett . 88 . 151301. URL: http : / / dx . doi . org / 10 . 1103 /

PhysRevLett.88.151301.

[18] Dam T Son and Andrei O Starinets. ‘Minkowski-space correlators in Ad-

S/CFT correspondence: recipe and applications’. In: Journal of High En-

ergy Physics 2002.09 (Sept. 2002), pp. 042–042. ISSN: 1029-8479. DOI: 10.

1088/1126-6708/2002/09/042. URL: http://dx.doi.org/10.1088/1126-

6708/2002/09/042.

[19] Matteo Baggioli et al. ‘Holographic axion model: A simple gravitational

tool for quantum matter’. In: Science China Physics, Mechanics and As-

tronomy 64.7 (June 2021). ISSN: 1869-1927. DOI: 10.1007/s11433-021-

1681-8. URL: http://dx.doi.org/10.1007/s11433-021-1681-8.

[20] Christopher P Herzog. ‘The Hydrodynamics of M-Theory’. In: Journal of

High Energy Physics 2002.12 (Dec. 2002), pp. 026–026. ISSN: 1029-8479.

DOI: 10.1088/1126-6708/2002/12/026. URL: http://dx.doi.org/10.

1088/1126-6708/2002/12/026.

39

https://doi.org/10.1007/jhep05(2012)054
http://dx.doi.org/10.1007/JHEP05(2012)054
http://dx.doi.org/10.1007/JHEP05(2012)054
https://doi.org/10.1007/jhep10(2018)035
http://dx.doi.org/10.1007/JHEP10(2018)035
http://dx.doi.org/10.1007/JHEP10(2018)035
https://doi.org/10.1103/physrevd.72.086009
http://dx.doi.org/10.1103/PhysRevD.72.086009
http://dx.doi.org/10.1103/PhysRevD.72.086009
https://doi.org/10.1103/physrevlett.88.151301
https://doi.org/10.1103/physrevlett.88.151301
http://dx.doi.org/10.1103/PhysRevLett.88.151301
http://dx.doi.org/10.1103/PhysRevLett.88.151301
https://doi.org/10.1088/1126-6708/2002/09/042
https://doi.org/10.1088/1126-6708/2002/09/042
http://dx.doi.org/10.1088/1126-6708/2002/09/042
http://dx.doi.org/10.1088/1126-6708/2002/09/042
https://doi.org/10.1007/s11433-021-1681-8
https://doi.org/10.1007/s11433-021-1681-8
http://dx.doi.org/10.1007/s11433-021-1681-8
https://doi.org/10.1088/1126-6708/2002/12/026
http://dx.doi.org/10.1088/1126-6708/2002/12/026
http://dx.doi.org/10.1088/1126-6708/2002/12/026

	Introduction
	Hydrodynamics
	Degrees of Freedom for Hydrodynamics system
	Constitutive relations
	Dispersion relations of hydrodynamic modes
	Correlation Functions
	Hydrodynamics with dissipation

	Axion Model
	Einstein Field Equations
	Maximally symmetric Anti-de Sitter spacetime
	The Axion model and the Equation of Motions
	Linearized Gravity and the equations of motion for the Axion model
	Deriving the gauge invariant fields and their EOMs 
	Method of deriving the equations of motion
	Numerical Method for finding the dispersion relation on the boundary
	Boundary conditions


	Results and Discussion
	Conclusion

