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Chapter 1

Introduction

1.1 Motivation and Structure of the Disserta-
tion

In modern physics, General Relativity is a widely accepted theory that describes
gravitation. Einstein’s equation describes the relationship between the matter
and the geometry of the space-time that encloses the matter source. This equa-
tion directly predicts the existence of gravitational waves. By measuring the
properties of the emitting gravitational waves, we can retrieve the data of the
gravitating sources. This information is crucial for us to understand the nature
of massive astrophysical objects, e.g. neutron stars and black holes.
In recent decades, large gravitational wave detectors such as LIGO and VIRGO
[10] [18] [16] are constructed to test the non-linear aspect of General Relativity
and to measure the parameters of the sources [6], among which compact binary
systems made of black holes or neutron stars are among the most promising
ones. It is, therefore, crucial to theoretically derive not only the dynamics of
the coalescing compact two objects but also the expressions of the gravitational
radiation fields. The latter one will be used to compute the properties of the
radiation generated by a coalescing compact binary system [1]. However, due
to the highly non-linear aspect of Einstein’s equation, it is hard to directly find
a theoretical solution for a certain given gravitating source, e.g. a compact
binary system. Therefore, it is natural to linearize Einstein’s equation by ex-
panding the equation to an appropriate order of c−1. This process is called
post-Newtonian expansion, which makes Einstein’s equation theoretically solv-
able at certain post-Newtonian corrections. Although, nowadays, higher post-
Newtonian corrections are needed to retrieve data with high accuracy [21] [11]
[22], in this dissertation, we only consider the second post-Newtonian (2PN)
corrections (corresponds to the order c−4), which will demonstrate a similar
approach and provide a reference when one calculates higher-order corrections.
This dissertation will be mainly divided into two chapters. In Chapter 3, we
focus on the effective one-body approach that reduces the dynamics of com-
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pact binary objects to the dynamics of an effective one object by a canonical
transformation. In this chapter, we start from deriving the general two bodies’
Lagrangian that is derived from-Einstein Infeld-Hoffmann equations. We then
work in the center-of-mass frame and compute the Hamiltonian corresponding to
the compact two-body system, from which we use the Hamilton-Jacobi approach
to derive the real action. At the same time, we construct some effective metric,
from which we derive the effective action from the Hamilton-Jacobi equation,
with some undetermined coefficients, which can be evaluated by matching the
real action to the effective action. Finally, we discuss the dynamics that arise
from the effective metric and derive the canonical transformation that links the
effective problem to the real problem.
In Chapter 4, we compute the gravitational radiation field corresponding to the
2PN correction. We start from introducing the irreducible Cartesian tensors,
which are representations of the SO(3) rotation Lie group. We then find the
solution for Einstein’s vacuum equation in the exterior zone of the source by
using the Multipolar-Post-Minkowskian expansion [7] [23]. We also compute
the solution for Einstein’s equation in the interior zone and express the solution
in terms of the stress-energy tensor. By comparing the two solutions in their
common zone of validity, we obtain a set of matching equations, which are used
to deal with the cubic order of non-linearality of Einstein’s equation at 2PN
correction. Finally, from the matching equations, we derive the expressions for
the source moments up to an appropriate order of correction. Previous work has
been done in calculating the slowly moving isolated system at 1.5PN correction
[14] [5].

1.2 Introduction to the Relevant Math

In Chapter 3, we will implement the Hamilton-Jacobi mechanism in dealing
with the effective one-body problem. This mechanism is useful in finding the
conserved quantities of a particular system. Once the Hamiltonian of the sys-
tem is given, the Hamilton-Jacobi equation can be reduced to a set of first-order
differential equations, each of which corresponds to a conserved quantity of the
system. One can then express the resulting action in terms of these conserved
quantities by solving the differential equations iteratively. The formal mathe-
matical introduction of the Hamilton-Jacobi mechanism can be found in Section
2.3.
In Chapter 4, we compute Einstein’s equation in the harmonic coordinate. We
introduce some field hµν which is the deviation of the metric gµν from the
Minkowski metric. Einstein’s equation is then reduced to an equation of the
field hµν together with the harmonic coordinate condition, i.e. ∂µh

µν = 0. This
new equation is linear at the order O(h), but becomes nonlinear at higher or-
ders. Details of deriving the equation can be found in Section 2.3. Another
mathematical tool we will use in this Chapter is the symmetric trace-free (STF)
tensors. Equivalent to the spherical harmonics Ylm, the STF tensor with l
indices generates a 2l+ 1 dimensional vector space that corresponds to the vec-
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tor space constructed by the irreducible representation of SO(3) rotation group
[12]. Previous work by Campbell, Macek, and Morgan [9] has demonstrated
the approach of solving electromagnetism and linearized gravity by spherical
harmonics. Thorn [23] provided the mathematical construction that links the
spherical harmonics and the STF tensors. In this dissertation, we will use the
STF tensors to perform the multipole decomposition of the fields. Detail of
the STF tensors can be found in Section 4.1 and the decomposition formula is
proved in Appendix A.
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Chapter 2

Preliminaries

Spacetime indices (0, 1, 2, 3) are denoted by Greek indices while space indices
(1, 2, 3) are denoted by Latin indices. Our signature is (−1, 1, 1, 1).

2.1 Motion in Schwarzschild Space-time

Let us first review the motion of a test particle in a Schwarzschild spacetime.
In polar coordinate, the geometry can be described by the following metric

ds2 = −(1− 2M

r
)dt2 +

1

1− 2M
r

dr2 + r2dθ2 + r2sin2θdφ2 (2.1)

This expression can describe a spherically symmetric space-time affinely parametrized
by a parameter λ outside a star of mass M [19]. In Schwarzschild coordinate,
r = 2M is the coordinate singularity, while the curvature singularity is at r = 0.
In the following calculation, we only consider the case where r > 2M . Since the
metric gµν does not explicitly depend on t and φ, it admits two Killing vectors

k = ∂t (2.2a)

m = ∂φ (2.2b)

From the Killing vectors, we can construct the conserved quantities

Q = Vµ
dxµ

dλ
(2.3)

where Vµ is the corresponding Killing vector and dQ/dλ = 0. Substituting Eq.
(2.2) into Eq. (2.3), we obtain two conserved quantities which are identified as
the energy and the angular momentum respectively

E = −gttkt
dt

dλ
= (1− 2M

r
)
dt

dλ
(2.4a)

J = gφφm
φ dφ

dλ
= r2sin2θ

dφ

dλ
(2.4b)
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The minus sign in Eq. (2.4a) is to ensure the energy is positive.
Now, let us consider the motion of a test particle with rest mass m in the
Schwarzschild spacetime. We assume that the motion is solely in equatorial
plane, i.e. θ = π

2 and dθ
dλ = 0. We construct the four-momentum of the particle

Pµ = ( dtdλ ,
dr
dλ ,

dθ
dλ ,

dφ
dλ ), which, by using Eq. (2.4), can also be written as

Pµ = (
E

1− 2M
r

,
dr

dλ
, 0,

J

r2
) (2.5)

The mass shell condition in General Relativity reads

gµνP
µP ν +m2 = 0 (2.6)

Inserting Eq. (2.5) into Eq. (2.6) yields

− E2

1− 2M
r

+ (
dr

dλ
)2

1

1− 2M
r

+
J2

r2
+m2 = 0 (2.7)

Multiplying the equation by 1− 2M
r and rearranging the terms, we have

(
dr

dλ
)2 = E2 − (1− 2M

r
)(
J2

r2
+m2) (2.8)

The test particle moves along a timelike geodesic, on which mλ = τ . Therefore,
it is natural to define the new variables e ≡ E

m and j ≡ J
m . Eq. (2.8) then can

be written as

(
dr

dτ
)2 = e2 − V 2

eff (2.9)

where we have defined the effective potential Veff

V 2
eff = (1− 2M

r
)(
j2

r2
+ 1) (2.10)

The test particle follows a circular motion, i.e. r is a constant, when Veff reaches

its minimum value. Expanding out the equation
dVeff

dr

∣∣∣
r0

= 0 and defining a

new variable u = 1
r yields

1

2V
(2Mu2(1 + j2u2)− 2j2u3(1− 2Mu)) = 0 (2.11)

The stable circular orbit corresponds to the solution

u0 =
1

6M
(1−

√
1− 12M2

j2
) (2.12)

The other root u1 = 1
6M (1 +

√
1− 12M2

j2 ) gives a smaller r, which represents

an unstable orbit. Since r is a constant along the circular orbit, dr
dτ

∣∣∣
r0

= 0.

Therefore, the energy per unit mass is equal to the effective potential

e =
√

(1− 2Mu0)(j2u20 + 1) (2.13)
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The angular velocity ω0 is defined as

ω0 =
dφ

dt

∣∣∣
r0

= (1− 2Mu0)u20
j

e
(2.14)

Finally, simplifying both Eq. (2.13) and Eq. (2.14) using Eq. (2.12), we obtain

e = (1− 2Mu0)j

√
u0
M

(2.15a)

ω0 =
√
Mu30 (2.15b)

For consistency, we define the scaled variables: û0 := Mu0, ĵ := j
M , and ω̂0 :=

Mω0. In this notation, we conclude

û0 =
1

6
(1−

√
1− 12

ĵ2
) (2.16a)

e = (1− 2û0)ĵ
√
û0 (2.16b)

ω̂0 =
√
û30 (2.16c)

Now, let us consider again Eq. (2.10). It is worth discussing the monotonicity
of the effective potential. For dVeff/dr to be positive for all r, we require
d2Veff/dr

2 = 0. We obtain the innermost stable circular orbit (ISCO) for the

Schwarzschild metric, where û0 = 1
6 and ĵ = 2

√
3. Therefore, to ensure the

effective potential to have a local minimum, we require

ĵ ≥ 2
√

3 (2.17)

For particles with angular momentum below this value, they will fall inside the
event horizon.

2.2 Hamilton-Jacobi Equation and Its Solution

Let us now review the Hamilton-Jacobi description of a particle’s motion [17].
Consider a Lagrangian L(x, ẋ, t) and its corresponding action

S(x, t) =

∫ tf

ti

L(x, ẋ, t)dt (2.18)

where ti and tf are the initial and final time respectively. From the Lagrangian,
we can construct the Hamiltonian H(x,π, t)

H(x,π, t) = πẋ− L(x, ẋ, t) (2.19)

where π is the conjugate momentum, i.e. π = ∂L
∂ẋ . From Eq. (2.18), we have

L(x, ẋ, t) =
∂S

∂x

∂x

∂t
+
∂S

∂t
(2.20)
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Therefore, we obtain the Hamilton-Jacobi equation (referred as HJE in the
following context)

∂S

∂t
= −(

∂S

∂x

∂x

∂t
− L(x, ẋ, t)) = −H(x,

∂S

∂x
, t) (2.21)

A general HJE can be highly non-linear. However, if the Hamiltonian is ex-
plicitly independent on time, the resulting action can be separated into two
parts

S(x, t) = −Et+ Ŝ(x) (2.22)

where E is a constant of motion. Inserting this equation into the HJE gives

H(x,
∂Ŝ

∂x
) = E (2.23)

We can further partition the action if we assume the Hamiltonian can be written
in the form

H(x,
∂Ŝ

∂x
) =H(φi(xi,

∂Ŝ

∂xi
), x1, x2, ..., xi−1, xi+1, ..., xn,

∂Ŝ

∂x1
,
∂Ŝ

∂x2
, ...,

∂Ŝ

∂xi−1
,
∂Ŝ

∂xi+1
, ...,

∂Ŝ

∂xn
)

(2.24)

where the dependence of the variable xi is absorbed into a function φi. The
action is then once more partitioned

S(x, t) = −Et+ Ŝi(xi) + Ŝ(2)(x1, x2, ...xi−1, xi+1, ..., xn) (2.25)

HJE Eq. (2.25) then reads

E =H(φi(xi,
dŜi
dxi

), x1, x2, ..., xi−1, xi+1, ..., xn,

∂Ŝ(2)

∂x1
,
∂Ŝ(2)

∂x2
, ...,

∂Ŝ(2)

∂xi−1
,
∂Ŝ(2)

∂xi+1
, ...,

∂Ŝ(2)

∂xn
)

(2.26)

Since the function φi only depends on xi but not on other variables, we imme-
diately see that it must be a constant, denoting as Φi. The partitioned action
Ŝi then obeys a simple differential equation

φi(xi,
dŜi
dxi

) = Φi (2.27)

We similarly assume that xj and ∂Ŝ(2)

∂xj
appear together as a function φj(xj ,

∂Ŝ(2)

∂xj
, φi)

in the Hamiltonian. Applying the above discussion gives us a differential equa-
tion with respect to xj

φj(xj ,
dŜj

(2)

dxj
,Φi) = Φj (2.28)
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This process is iterated until we find the differential equations for all the vari-
ables. It is worth noticing that, through the Hamilton-Jacobi formalism, we can
easily identify the constants of motion, i.e. Φi and E.
Now consider the Hamiltonian in Newtonian Gravity [19]. The particle’s posi-
tions and momenta are denoted as r and p respectively. The Hamiltonian can
be written as

H(r,p) =
p2

2
+ V (r) (2.29)

In polar coordinate,

p2 = p2r +
p2θ
r2

+
p2φ

r2sin2θ
(2.30)

V (r) = −M
r

(2.31)

The HJE reads

− ∂S

∂t
=

1

2
((
∂S

∂r
)2 +

1

r2
(
∂S

∂θ
)2 +

1

r2sin2θ
(
∂S

∂φ
))2 − M

r
(2.32)

Writing the action as

S = Sr(r) + Sθ(θ) + Sφ(φ)− Et (2.33)

and inserting into Eq. (2.32) yields three separated differential equations

(
dSφ
dφ

)2 = Φφ (2.34)

(
dSθ
dθ

)2 +
1

sin2θ
Φφ = Φθ (2.35)

1

2
(
dSr
dr

)2 − M

r
+

1

2r2
Φθ = E (2.36)

where Φφ, Φθ, and E are three constants of motion, which we can identify as the
angular momentum in the φ direction, the angular momentum in the θ direction,
and the total energy of the motion, respectively. Solving these equations, we
can obtain the general expression for the action

S =

∫ √
2E +

2M

r
− 1

r2
Φθdr+

∫ √
Φθ −

1

sin2θ
Φφdθ+

√
Φφφ−Et+C (2.37)

where C is the integrating constant.

2.3 Einstein’s Equation in Harmonic Coordinate

In harmonic coordinate, we linearly expand the metric gµν around the Minkowski
metric ηµν [4]

hµν =
√
−ggµν − ηµν (2.38)
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where g is the determinant of the metric gµν , and hµν is assumed to be a
small field deviation from the Minkowski metric, which, in our convention, is
diag(−1, 1, 1, 1). Since gµν is the inverse of gµν , the determinant of gµν is 1

g .

From Eq. (2.38), we deduce

det(ηµν + hµν) = det(
√
−ggµν) = g (2.39)

Taylor-expanding Eq. (2.39) yields

g = −1 +
∂g

∂gµν

∣∣∣
g=η

hµν +
1

2
hµνhρσ

∂2g

∂gµν∂gρσ

∣∣∣
g=η

+O(h3) (2.40)

Evaluating each term in Eq. (2.40), we have

− g = 1 + h+
1

2
h2 − 1

2
hµρhµρ +O(h3) (2.41)

where we have denoted h = hµµ = ηµνh
µν .

From Eq. (2.38) and Eq. (2.41), up to the first order in h, we can derive

ηµν + hµν = (1 +
1

2
h)gµν +O(h2) (2.42)

Therefore, after rearranging, we obtain

gµν = ηµν + hµν − 1

2
ηµνh+O(h2) (2.43a)

gµν = ηµν − hµν +
1

2
ηµνh+O(h2) (2.43b)

The deviation of gµν takes a relative minus sign because gµν is the inverse of
gµν . The Christoffel symbol is defined as

Γρµν =
1

2
gρλ(∂µgλν + ∂νgλµ − ∂λgµν) (2.44)

Inserting Eq. (2.43) into Eq. (2.44) yields

Γρµν = −1

2
(∂µh

ρ
ν + ∂νh

ρ
µ − ∂ρhµν

− 1

2
ηρληλν∂µh−

1

2
ηρληλµ∂νh+

1

2
ηρληµν∂λh) +O(h2)

(2.45)

The harmonic coordinate condition reads

gµνΓρµν = 0 (2.46)

Now consider
∂ρh

µν = ∂ρ(
√
−ggµν) (2.47)

Recall that
∇ρ(
√
−g) = ∂ρ

√
−g −

√
−gΓααρ = 0 (2.48)
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Therefore, one can rewrite Eq. (2.47) as

∂ρh
µν = ∇ρ(

√
−ggµν) + gµν

√
−gΓααρ − gαµΓναρ

√
−g − gανΓµαρ

√
−g (2.49)

After contracting the indices µ and ρ, we easily notice that the first term and
the third term on the right hand side of Eq. (2.49) become zero, while the
second term cancels against the fourth term. Therefore, we deduce

∂µh
µν = 0 (2.50)

under the harmonic coordinate condition. Now we can use Eq. (2.44) to calcu-
late the Riemann curvature tensor, which, to the first order of h, can be denoted
as

Rρσµν = ∂µΓρσν − (µ←→ ν) +O(h2) (2.51)

where (µ ←→ ν) is the term with µ and ν indices exchanged compared to the
first term on the right hand side of Eq. (2.51). Using Eq. (2.45), one can check

Rρσµν =− 1

2
(∂µ∂σh

ρ
ν − ∂µ∂ρhσν − ∂ν∂σhρµ + ∂ν∂

ρhσµ)

+
1

4
(ηρληλν∂µ∂σh− ηρληλµ∂ν∂σh− ηρλησν∂µ∂λh+ ηρλησµ∂ν∂λh) +O(h2)

(2.52)
where terms that are symmetric in µ and ν cancel. Contracting indices ρ and
µ, we find the Ricci tensor

Rσν =
1

2
∂ρ∂

ρhσν −
1

4
ησν∂ρ∂

ρh+O(h2) (2.53)

Einstein tensor is denoted as

Gµν := Rµν −
1

2
gµνg

ρσRρσ (2.54)

which obeys Einstein’s field equation

Gµν =
8πG

c4
Tµν (2.55)

where we have neglected the cosmological constant. Inserting Eq. (2.53) into
Eq. (2.55), to the first order of h, we have

∂ρ∂
ρhµν =

16πG

c4
Tµν (2.56)

However, once considering the higher-order terms which we neglected in the
previous calculations, one finds

∂ρ∂
ρhµν = −16πG

c4
gTµν + Λµν(h) (2.57)

where Λµν(h) is expressed by Eq. (1.4) to Eq. (1.6) in [4].
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Chapter 3

Effective One-Body

3.1 Lagrangian and Equations of Motion

Newtonian motions of multiple point-mass particles in a curved spacetime can
be described by the Einstein-Infeld-Hoffmann equations [15] (denoted as the EIH
equations in the following context). In our case, we only consider the motions
of two particles in the ADM coordinate. The notation is the following: m1 and
m2 are the two particles’ masses; x1 and x2 their positions; v1 and v2 their
velocities; a1 and a2 their accelerations. We consider the terms up to c−4 in
the following calculation. The EIH equation for the first particle is

d2x1

dt2
=− Gm2n

r2

+
1

c2
Gm2n

r2
[−v21 − 2v22 + 4(v1 · v2) +

3

2
(n · v2)2 + 4

Gm2

r
+
Gm1

r
]

+
1

c2
Gm2

r2
(4v1 · n− 3v2 · n)(v1 − v2)

+
1

2c2
Gm2

r2
n[(x1 − x2)a2] +

7

2c2
Gm2

r
a2 +O(c−4)

(3.1)
where we have defined

r = |x1 − x2| (3.2)

n =
x1 − x2

r
(3.3)

In order to eliminate the acceleration dependence in Eq. (3.1), we apply the
EIH equation for the second particle and expand a2 to the terms up to the order
c0

a2 =
Gm1n

r2
+O(c−2) (3.4)
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Insertion of Eq. (3.4) into Eq. (3.1) gives

d2x1

dt2
=− Gm2n

r2

+
1

c2
Gm2n

r2
[−v21 − 2v22 + 4(v1 · v2) +

3

2
(n · v2)2 + 4

Gm2

r
+ 5

Gm1

r
]

+
1

c2
Gm2

r2
(4v1 · n− 3v2 · n)(v1 − v2) +O(c−4)

(3.5)
where we have used n · n = 1.
A general Lagrangian for two particles relativistic motion is described in [13]

L(x1,x2,v1,v2) =
1

2
m1v

2
1 +

1

2
m2v

2
2 +

Gm1m2

r
+

1

c2
{1

8
m1v

4
1 +

1

8
m2v

2
2

+
Gm1m2

r
[
3

2
v21 +

3

2
v22 −

7

2
(v1 · v2)− 1

2
(n · v1)(n · v2)

− 1

2

Gm1

r
− 1

2

Gm1

r
]}+O(c−4)

(3.6)
Now let us prove that the equations of motion that are described by the La-
grangian in Eq. (3.6) coincide with the EIH equation in Eq. (3.5). Since the
Lagrangian does not depend on accelerations nor higher derivative terms, the
equation of motion is described by the Euler-Lagrange equations

∂L

∂x1
− d

dt

∂L

∂v1
= 0 (3.7)

In order to write the equation of motion explicitly, it is useful to evaluate the
following expressions

∂

∂x1

1

r
= − 1

r2
n (3.8a)

∂

∂x1
(n · u) =

1

r
[u− (n · u)n] (3.8b)

where u is an arbitrary vector and

d

dt

1

r
= v1

∂

∂x1

1

r
+ v2

∂

∂x2

1

r
= − 1

r2
(n · v1 − n · v2) (3.9a)

d

dt
n =

∂

∂x1
(n · v1) +

∂

∂x2
(n · v2) =

1

r
{v1 − v2 − [(n · v1)− (n · v2)]n}

(3.9b)
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From Eq. (3.8), we find

∂L

∂x1
=− Gm1m2

r2
n+

1

c2
Gm1m2

r2
n[−3

2
v21 −

3

2
v22 +

7

2
(v1 · v2)

+
1

2
(n · v1)(n · v2) +

Gm1

r
+
Gm2

r
]

− 1

2c2
Gm1m2

r2
{[v1 − (n · v1)n](n · v2) + [v2 − (n · v2)n](n · v1)}

+O(c−4)
(3.10)

Similarly, from Eq. (3.9), we deduce

d

dt

∂L

∂v1
=m1a1 +

1

c2
m1[(v1 · a1)v1 +

1

2
v21a1]

− 1

c2
Gm1m2

r2
(n · v1 − n · v2)[3v1 −

7

2
v2 −

1

2
(n · v2)n]

+
1

c2
Gm1m2

r
{3a1 −

7

2
a2 −

1

2
(n · a2)n

− 1

2r
[(v1 · v2)n− v22n+ (n · v2)v1 − (n · v2)v2

− 2(n · v1)(n · v2)n+ 2(n · v2)2n]}
+O(c−4)

(3.11)

Again, Eq. (3.1) and Eq. (3.4) are used to eliminate the acceleration dependence
in Eq. (3.11). Insertion of Eq. (3.10) and Eq. (3.11) into the Euler-Lagrange
equation Eq. (3.7) gives

d2x1

dt2
+
Gm2n

r2
− 1

c2
Gm2

r2
[−v21n− 2v22n+ 4(v1 · v2)n+

3

2
(n · v2)2n

+ 4
Gm2n

r
+ 5

Gm1n

r
+ (4v1 · n− 3v2 · n)(v1 − v2)] +O(c−4) = 0

(3.12)
Eq. (3.12) is identical to Eq. (3.5). Therefore, the particles motion described
by the EIH equations are encoded in a general Lagrangian expressed by Eq.
(3.6). Higher-order terms in the general Lagrangian are expressed as Eq. (2.2c)
in [13]. The Lagrangian for two particles relativistic motion, up to the order

15



c−4, is

L(x1,x2,v1,v2) =
1

2
m1v

2
1 +

1

2
m2v

2
2 +

Gm1m2

r

+
1

c2
{1

8
m1v

4
1 +

1

8
m2v

2
2 +

Gm1m2

r
[
3

2
v21 +

3

2
v22

− 7

2
(v1 · v2)− 1

2
(n · v1)(n · v2)− 1

2

Gm1

r
− 1

2

Gm1

r
]}

+
1

c4
{− 1

16
m1v

6
1 −

1

16
m2v

6
2 +

Gm1m2

r
[−5

8
v41 −

5

8
v42

+
11

8
v21v

2
2 +

1

4
(v1 · v2)2 − 5

8
v21(n · v2)2 − 5

8
v22(n · v1)2

+
3

2
(v1 · v2)(n · v1)(n · v2) +

3

8
(n · v1)2(n · v2)2]

+
G2m1m2

r2
[−1

4
(19m1 + 10m2)v21 −

1

4
(10m1 + 19m2)v22

+
1

4
(m1 +m2)(27v1 · v2 + 6(n · v1)(n · v2))]

+
G3m1m2

4r3
(m2

1 +m2
2 + 5m1m2)}+O(c−6)

(3.13)

3.2 Hamiltonian and Action

From Eq. (3.13), we perform the Legendre transformation to find the Hamil-
tonian of the two-particles system, denoted as Ĥ. The conjugate momentum
of two particles are denoted as P1 and P2 respectively, i.e. P1 = ∂L

∂v1
and

P2 = ∂L
∂v2

. We will work in the center-of-mass frame where P1 = −P2 = P . It
is therefore convenient to define the following quantities

M := m1 +m2 (3.14)

µ :=
m1m2

M
(3.15)

ν :=
m1m2

M2
(3.16)

and the following reduced variables

p :=
P

µ
(3.17)

H :=
Ĥ

µ
(3.18)

q :=
r

GM
(3.19)
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The Hamiltonian can then be expressed as

H =
1

2
p2 − 1

q
+

1

c2
{1

8
(3ν − 1)p4 − 1

2q
[(3 + ν)p2 + ν(n · p)2] +

1

2q2
}

+
1

c4
{ 1

16
(5ν2 − 5ν + 1)p6

+
1

8q
[(−3ν2 − 20ν + 5)p4 − 2ν2p2(n · p)2 − 3ν2(n · p)4]

+
1

2q2
[(8ν + 5)p2 + 3ν(n · p)2]− 1

4q3
(3ν + 1)}+O(c−6)

(3.20)

We now consider the Hamilton-Jacobi approach and assume the motion solely in
the equatorial plane. The conjugate momentum p can be expressed in spherical
coordinate

p = pq êr +
1

q2
pφêφ (3.21)

where we have used θ = π
2 . In spherical coordinate, the normal vector reduces

to
n = êr (3.22)

As discussed in Section 2.2, we can partition the action

S = Sq(q) + Sφ(φ)− Et̂ (3.23)

where t̂ is the reduced time, i.e. t̂ = t
GM . By inserting Eq. (3.20) and Eq.

(3.23) into Eq. (2.23), We then deduce

dSφ(φ)

dφ
= j (3.24)

where j is the conserved reduced angular momentum and

(
dSq(q)

dq
)2 = K(q, E, j) (3.25)

The function K obeys

E =
1

2
(K +

j2

q2
)− 1

q
+

1

c2
{1

8
(3ν − 1)(K +

j2

q2
)2

− 1

2q
[(3 + ν)(K +

j2

q2
) + νK] +

1

2q2
}+

1

c4
{ 1

16
(5ν2 − 5ν + 1)(K +

j2

q2
)3

+
1

8q
[(−3ν2 − 20ν + 5)(K +

j2

q2
)2 − 2ν2(K +

j2

q2
)K − 3ν2K2]

+
1

2q2
[(8ν + 5)(K +

j2

q2
) + 3νK]− 1

4q3
(3ν + 1)}+O(c−6)

(3.26)
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where we have used

n · dS
dq

=
√
K (3.27a)

(
dS

dq
)2 = K +

j2

q2
(3.27b)

To explicitly find a solution, we expand the function K up to the order c−4

K(q, E, j) =

5∑
i=0

2∑
j=0

Aijq
−ic−2j +O(c−6) (3.28)

Elements of the matrix Aij can be determined by substituting Eq. (3.28) into
Eq. (3.26) and rearranging terms according to the order of q. For example,
collection of terms with q0 gives

E =
1

2
A00 +

1

2c2
A01 +

1

2c4
A02 +

1

8c2
(3ν − 1)(A2

00 + 2A00A01)

+
1

16c4
(5ν2 − 5ν + 1)A3

00 +O(c−6)

(3.29)

By eliminating the terms of c−2 and c−4, one can check

A00 = 2E (3.30)

A01 = (1− 3ν)E2 (3.31)

A02 = (4ν2 − ν)E3 (3.32)

Using the same procedure, we can explicitly determine all the elements of the
matrix Aij .

Aij =


2E (−3ν + 1)E2 (4ν2 − ν)E3

2 2(−ν + 4)E 2(ν2 − 2ν + 2)E2

−j2 ν + 6 15E
0 −j2ν (2− Ej2)ν2 + ( 5

2 − Ej
2)ν + 17

2
0 0 −3j2ν2 − j2ν
0 0 3

4j
4ν2

 (3.33)

It is then useful to define

Ai =

2∑
j=0

Aijc
−2j (3.34)

Since Ai0 = 0 for i > 2, it is clear that, when c−1 tends to 0, Ai 6= 0 only
if i ≤ 2. Under this condition, one can then check that, among 5 roots of
K(q, E, j), three of them tend to infinity while the other two remain non-zero
and finite. We then denote these two roots as qmin and qmax. In this notation,
we can solve Eq. (3.25)

Sq(q) =

∫
dq(A0 +

A1

q
+
A2

q2
+
A3

q3
+
A4

q4
+
A5

q5
)

1
2 (3.35)
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The reduced action is defined as

Sred =
1

π

∫ qmax

qmin

dq(A0 +
A1

q
+
A2

q2
+
A3

q3
+
A4

q4
+
A5

q5
)

1
2 (3.36)

This integral is explicitly evaluated in [13], such that

Sred =
A1

2
√
−A0

−
√
−A2{1−

1

4

1

A2
2

[A1A3 +A0A4]

+
3

16

1

A3
2

[A2
1A4 +A0A

2
3 + 2A0A1A5]

− 5

64

1

A4
2

[3A2
1A

2
3 + 2A3

1A5]}+O(c−6)

(3.37)

Recall, for ε whose absolute value is small compared to an arbitrary finite value
x, up to the order ε2,

(x+ ε)k = xk[1 + k
ε

x
+

1

2
k(k − 1)(

ε

x
)2] +O(ε3) (3.38)

Use Eq. (3.33), Eq. (3.34), and Eq. (3.38), we can explicitly evaluate each term
in Eq. (3.37) up to and including the order of c−4

1

2
A1(−A0)−

1
2 =

1√
−2E

[1 +
E

c2
(−1

4
ν +

15

4
) +

E2

c4
(

3

32
ν2 +

15

16
ν +

35

32
)]

(3.39a)

−
√
−A2 = −j +

1

c2
ν + 6

2j
+

1

c4
[
15E

2j
+

(ν + 6)2

8j3
] (3.39b)

1

4
(−A2)−

3
2 [A1A3 +A0A4] = − 1

c2
ν

2j
− 1

c4
[
3E

j
(
1

2
ν2 + ν) +

1

4j3
(−ν2 + 13ν − 17)]

(3.39c)

3

16
(−A2)−

5
2 [A2

1A4 +A0A
2
3 + 2A0A1A5] =

3

16

1

c4
[− 4

j3
(3ν2 + ν) +

8

j
Eν2]

(3.39d)

5

64
(−A2)−

7
2 [3A2

1A
2
3 + 2A3

1A5] =
15

8

1

j3c4
ν2 (3.39e)

Inserting Eq. (3.39) into Eq. (3.37), we obtain

Sred =− j +
1√
−2E

+
1

c2
[
3

j
−
√
−E

2
(
15

4
− ν

4
)]

+
1

c4
[
E

j
(
15

2
− 3ν) +

1

j3
(
35

4
− 5

2
ν) +

√
−E

3

2
(

3

32
ν2 +

15

16
ν +

35

32
)]

(3.40)
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3.3 Effective Metric

Eq. (3.40) is the reduced radial action obtained from the Newtonian expansion
of a two-body Lagrangian. In this section, we aim to encode the motion de-
scribed by Eq. (3.40) in a single effective metric. The effective variables are
represented by adding˜to their representations in ADM coordinate. We assume
that the coordinates, i.e. the positions and the conjugated momenta, in the ef-
fective problem are linked to the coordinates in the real problem by a canonical
transformation. Detail of this canonical transformation can be found in Section
3.5. The metric g̃µν can be written as [8],

ds̃2 = −M(R̃)c2dt̃2 +N(R̃)dR̃2 + L(R̃)R̃2(dθ̃2 + θ̃2dφ̃2) (3.41)

where we can expand the R̃-dependent functions M , N , and L

M(R̃) = 1 +
GM0a1

c2R̃
+
G2M2

0 a2

c4R̃2
+
G3M3

0 a3

c6R̃3
+O(c−8) (3.42a)

N(R̃) = 1 +
GM0b1

c2R̃
+
G2M2

0 b2

c4R̃2
+O(c−6) (3.42b)

L(R̃) = 1 +
GM0c1

c2R̃
+
G2M2

0 c2

c4R̃2
+O(c−6) (3.42c)

By analogy to the Schwarzschild metric describe in Eq. (2.1), we naturally
define the mass scale M0 such that

a1 = −2 (3.43)

We also define m0 to be the mass of the effective particle. In these notations,
the motion of the effective particle can be described as

g̃µν p̃
µp̃ν +m2

0c
2 = 0 (3.44)

where p̃µ is the conjugate momentum of the effective particle. Similarly, we
assume the motion of the effective particle is purely in the equatorial plane,
where θ̃ = π

2 . We then apply the Hamilton-Jacobi approach and partition the
effective action as

S̃ = S̃R + S̃φ − Ẽtott̃ (3.45)

where Ẽtot is the total energy of the effective particle

Ẽtot = Ẽ0 +m0c
2 (3.46)

Applying the same method in Section 3.2, The Hamilton-Jacobi equations are

dS̃φ
dφ

= J̃ (3.47)

dS̃R

dR̃
=

√
K̃(R̃, Ẽtot, J̃) (3.48)
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− Ẽ2
tot

Mc2
+

J̃2

LR̃2
+

1

N
K̃ +m2

0c
2 = 0 (3.49)

To simplify our calculation, we define the following scaled variables

j̃ =
J̃

GM0m0
(3.50)

Ẽ =
Ẽ0

m0
(3.51)

Ẽ =
Ẽtot
m0

(3.52)

r̃ =
R̃

GM0
(3.53)

In the following calculations, we work in the Schwarzschild coordinate where
L(r̃) = 1. We can then obtain an expression for K̃ by inserting Eq. (3.42) into
Eq. (3.49)

K̃(r̃, Ẽ, j̃) =

5∑
i=0

2∑
j=0

Ãij r̃
−ic−2j (3.54)

where in the matrix notation

Ãij = m2
0



2Ẽ Ẽ2 0

−a1 2Ẽ(b1 − a1) Ẽ2(b1 − a1)

−j̃2 (a21 − a2 − a1b1) 2Ẽ(b2 + a21 − a2 − a1b1)

0 −b1j̃2 2a1a2 − a31 − a3 + b1a
2
1 − b1a2 − a1b2

0 0 −b2j̃2
0 0 0


(3.55)

Similarly, we define

Ãi =

2∑
j=0

Ãijc
−2j (3.56)

The scaled reduced effective action is therefore defined as

S̃red =
1

m0π

∫ r̃max

r̃min

√
K̃(r̃, Ẽtot, j̃) (3.57)

where, with the similar discussion in Section 3.2, r̃min and r̃max are two roots
which are non-zero and finite when 1

c goes to zero. One can directly calculate
this integral by using Eq. (3.37). Detail calculation gives the explicit expression
for each term in Eq. (3.37)

1

2
Ã1(−Ã0)−

1
2 =

m0√
−2Ẽ

[−1

2
a1 + (b1 −

7

8
a1)

Ẽ

c2
+ (

1

4
b1 −

19

64
a1)

Ẽ2

c4
] (3.58)
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−
√
−Ã2 =−m0j̃ +

1

c2
m0

2j̃
(a21 − a2 − a1b1)

+
1

c4
[
Ẽm0

j̃
(b2 + a21 − a2 − a1b1) +

1

8

m0

j̃3
(a21 − a2 − a1b1)2]

(3.59)

1

4
(−Ã2)−

3
2 [Ã1Ã3 + Ã0Ã4] =

m0

c2j̃

1

4
a1b1 +

Ẽm0

c4j̃
(
1

2
a1b1 −

1

2
b21 −

1

2
b2)

+
m0

c4j̃3
(
1

8
a31b1 −

1

8
a1b1a2 −

3

8
a21b

2
1 −

1

2
a21a2

+
1

4
a41 +

1

4
a1a3 +

1

4
a21b2)

(3.60)

3

16
(−Ã2)−

5
2 [Ã2

1Ã4 + Ã0Ã
2
3 + 2Ã0Ã1Ã5] =

3

8

Ẽm0

j̃c4
b21 −

3

16

m0

j̃3c4
a21b2 (3.61)

5

64
(−Ã2)−

7
2 [3Ã2

1Ã
2
3 + 2Ã3

1Ã5] =
15

64

m0

j̃3c4
a21b

2
1 (3.62)

Therefore, we obtain

S̃red =− j̃ − 1

2
a1

1√
−2Ẽ

+
1

c2
[
1

j̃
(
1

2
a21 −

1

2
a2 −

1

4
a1b1) +

√
− Ẽ

2
(
7

8
a1 − b1)]

+
1

c4
[

√
− Ẽ

3

2
(
1

4
b1 −

19

64
a1) +

Ẽ

j̃
(a21 −

1

2
a1b1 − a2 −

1

8
b21 +

1

2
b2)]

+
1

j̃3c4
(
3

8
a41 −

3

4
a21a2 +

1

4
a1a3 +

1

8
a22 −

1

8
a31b1 +

1

8
a1a2b1 −

1

64
a21b

2
1 +

1

16
a21b2)

(3.63)
Canonical transformation ensures that the action of the effective problem is
unchanged from the action of the real problem. Eq. (3.63) has the same form as
Eq. (3.40). However, before we can determine the explicit values of coefficients
ai and bi, we must know the relations between the effective quantities, i.e. M0,
m0, j̃ and Ẽ, and the real quantities, i.e. M , µ, j and E. One can check that if
we require all the effective quantities equal to their corresponding real ones, e.g.
M0 = M , m0 = µ, j̃ = j, and Ẽ = E, by comparing Eq. (3.63) to Eq. (3.40),
we obtain 5 independent equations with only 4 unknowns (recall a1 = 2). No
solution is found in this case. Therefore, there is at least one effective quantity
that differs from its corresponding real quantity. There are several approaches
which give different assumptions about their relations. However, in the following
discussion, we will assume

M0 = M (3.64a)

m0 = µ (3.64b)

j̃ = j (3.64c)

Ẽ = E(1 + c1
E

c2
+ c2

E2

c4
) +O(c−6) (3.64d)
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where c1 and c2 are two unknown coefficients to be determined. Now, we insert
Eq. (3.64) into Eq. (3.63) and obtain

S̃red =− j − 1

2
a1

1√
−2E

+
1

c2
[
1

j
(
1

2
a21 −

1

2
a2 −

1

4
a1b1) +

√
−E

2
(
7

8
a1 − b1 −

1

4
a1c1)]

+
1

c4

√
−E

3

2
(− 7

16
a1c1 +

1

2
b1c1 −

3

16
a1c

2
1 +

1

4
b1 −

19

64
a1 +

1

4
c2)

+
1

c4
E

j
(a21 −

1

2
a1b1 − a2 −

1

8
b21 +

1

2
b2)

+
1

c4j3
(
3

8
a41 −

3

4
a21a2 +

1

4
a1a3 +

1

8
a22 −

1

8
a31b1 +

1

8
a1a2b1 −

1

64
a21b

2
1 +

1

16
a21b2)

(3.65)
We aim to find the values of ai, bi, and ci, such that the reduced effective radial
action is equal to the real action. Comparing Eq. (3.65) to Eq. (3.40), we
obtain a set of equations

1

2
a21 −

1

2
a2 −

1

4
a1b1 =3 (3.66a)

7

8
a1 − b1 −

1

4
a1c1 = −15

4
+
ν

4
(3.66b)

− 7

16
a1c1 +

1

2
b1c1 −

3

16
a1c

2
1 +

1

4
b1 −

19

64
a1 +

1

4
c2 =

3

32
ν2 +

15

16
ν +

35

32
(3.66c)

a21 −
1

2
a1b1 − a2 −

1

8
b21 +

1

2
b2 =

15

2
− 3ν (3.66d)

3

8
a41 −

3

4
a21a2 +

1

4
a1a3 +

1

8
a22 −

1

8
a31b1 +

1

8
a1a2b1−

1

64
a21b

2
1 +

1

16
a21b2 =

35

4
− 5

2
ν

(3.66e)

Now, since a1 is known (a1 = 2), we have 5 equations and 6 unknowns. We can
therefore fix the value of b1 without affecting the physics. By analogy to the
Schwarzschild metric described in Eq. (2.1), b1 is chosen to be 2. Eq. (3.66)
then gives a unique solution

(a1, a2, a3) = (−2, 0, 2ν) (3.67)

(b1, b2) = (2, 4− 6ν) (3.68)

(c1, c2) = (
ν

2
, 0) (3.69)

We therefore conclude

ds̃2 =− (1− 2GM

c2R̃
+

2G3M3ν

c6R̃3
+O(c−8))c2dt̃2

+ (1 +
2GM

c2R̃
+

(4− 6ν)G2M2

c4R̃2
+O(c−6))dR̃2

+ R̃2(dθ̃2 + θ̃2dφ̃2)

(3.70)
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and

Ẽ = E(1 +
ν

2

E

c2
) +O(c−6) (3.71)

Inserting Eq. (3.46) into Eq. (3.71), we have

Ẽ
c2

= 1 +
E

c2
+

1

c4
νE2

2
+O(c−6) (3.72)

3.4 Dynamics

In order to discuss the dynamics of the effective one body system, by analogy
to the Schwarzschild metric, we write the metric described in Eq. (3.70) in the
following form

ds̃2 = −M(R̃)c2dt̃2 +
P (R̃)

M(R̃)
dR̃2 + R̃2(dθ̃2 + θ̃2dφ̃2) (3.73)

where
P (R̃) = M(R̃)N(R̃)

= 1− 6νG2M2

c4R̃2
+O(c−6)

(3.74)

To simplify the calculation, we define

ũ :=
GM

c2R̃
(3.75)

h̃ := cj̃ (3.76)

The function M(R̃) reaches zero when

2νũ3 − 2ũ+ 1 = 0 (3.77)

From the definition of ν, we have

0 ≤ ν ≤ 1

4
(3.78)

If we require ν = 0, Eq. (3.77) yields a single solution R̃ = 2GM
c2 , which is the

event horizon of the Schwarzschild metric. However, if ν 6= 0, Eq. (3.77) admits
three real roots, among which two are positive. In the following discussion, we
only consider the root R̃0 that tends to 2GM

c2 when ν tends to zero. The other
positive root is not physical, since it tends to infinity when ν tends to zero.
In order to obtain the radial effective potential, we recall, from Eq. (3.47)-(3.49),
the Hamiltonian can be written as

H̃2 = m2
0c

4[M(R̃) +
M(R̃)J̃2

m2
0c

2R̃2
+

M(R̃)

m2
0c

2N(R̃)
(
dS̃r

dR̃
)2] (3.79)
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The effective radial potential can be directly read as

Ṽeff = M(R̃) +
M(R̃)J̃2

m2
0c

2R̃2
(3.80)

In terms of the notation we defined, Eq. (3.80) can be simplified

Ṽeff = 2νh̃2ũ5 + 2(ν − h̃2)ũ3 + h̃2ũ2 − 2ũ+ 1 (3.81)

To calculate the ISCO of the effective one body metric, we require
dṼeff

dũ = 0

and
d2Ṽeff

dũ2 = 0. This condition yields two equations

5νh̃2ũ4 + 3(ν − h̃2)ũ2 + h̃2ũ− 1 = 0 (3.82a)

20νh̃2ũ3 + 6(ν − h̃2)ũ+ h̃2 = 0 (3.82b)

which can be further simplified

30ν2ũ5−20νũ3 − 3νũ3 + 6ũ− 1 = 0 (3.83a)

h̃ =

√
−3νũ2 + 1

5νũ4 − 3ũ2 + ũ
(3.83b)

From Eq. (3.83), one can check that, if ν = 0, ũ|ν=0 = 1
6 and h̃

∣∣∣
ν=0

= 2
√

3. This

is exactly the result we obtained from calculating the ISCO for the Schwarzschild
metric. For general values of ν, one can numerically calculate the value of ũ
from Eq. (3.83a).

3.5 Canonical Transformation

In this section, we aim to map the coordinates and momenta in the real problem
(ADM coordinate) to that in the effective problem. We denote the positions
and momenta in the real problem as Qi and Pi and the positions and momenta
in the effective problem as Q̃i and P̃i, where the index i = 1, 2, 3. In spherical
coordinate, we have Q̃1 = Q̃ sin θ̃ cos φ̃, Q̃2 = Q̃ sin θ̃ sin φ̃, and Q̃3 = Q̃ cos θ̃.
We can calculate the momentum in the spherical coordinate by using

P̃i =
∂S̃

∂Q̃i
= P̃R

∂Q̃

∂Q̃i
+ P̃θ

∂θ̃

∂Q̃i
+ P̃φ

∂φ̃

∂Q̃i
(3.84)

When θ̃ = π
2 , we obtain

P̃1 = P̃R
Q̃1

Q̃
− P̃φ

Q̃2

(Q̃)2
(3.85)

P̃2 = P̃R
Q̃2

Q̃
+ P̃φ

Q̃1

(Q̃)2
(3.86)
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P̃3 = 0 (3.87)

One can check that the Hamilton Jacobi equation in Eq. (3.49) can be written
as

H̃0 = m0c
2

√√√√M(Q̃)(
P̃ 2
R

N(Q̃)m2
0c

2
+

P̃ 2
φ

Q̃2m2
0c

2
+ 1) (3.88)

Eq. (3.88) can be simplified

H̃0 = m0c
2

√
M(Q̃)(

(ñ · P̃ )2

N(Q̃)m2
0c

2
+
P̃ 2 − (ñ · P̃ )2

m2
0c

2
+ 1) (3.89)

where we have used the following properties

P̃ · Q̃ = P̃RQ̃ (3.90a)

P̃ 2 − (ñ · P̃ )2 =
P̃ 2
φ

Q̃2
(3.90b)

ñ =
Q̃

Q̃
(3.90c)

Again, to simply the following calculation, we define the following scaled vari-
ables

q̃ =
Q̃

GM0
(3.91)

p̃ =
P̃

m0
(3.92)

H̃ =
H̃0

m0
(3.93)

We can therefore express Eq. (3.89) with the scaled variables

H̃ = c2

√
M(q̃)(

(ñ · p̃)2

N(q̃)c2
+
p̃2 − (ñ · p̃)2

c2
+ 1) (3.94)

Since, the reduced action and the angular momentum are identical in the real
and effective problem, e.g. S̃red = Sred and j̃ = j, the Hamilton’s equations are
preserved. We can define a canonical transformation such that

pidq
i − p̃idq̃i = dg(q, q̃) (3.95)

where g(q, q̃) is the generating function. Introducing a new generating function
G(q, p̃) = p̃iq̃

i + g(q, q̃), we obtain

pidq
i + q̃idp̃i = dG(q, p̃) (3.96)
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We can then expand the new generating function

G(q, p̃) = p̃iq
i +GPN (q, p̃) (3.97)

where

GPN (q, p̃) =
1

c2
G1(q, p̃) +

1

c4
G2(q, p̃) (3.98)

One should be aware that GPN (q, p̃) is of order c−2. By dividing Eq. (3.96) by
dqi and dp̃i respectively, we yield

p̃i = pi −
∂GPN (q, p̃)

∂qi
(3.99a)

q̃i = qi +
∂GPN (q, p̃)

∂p̃i
(3.99b)

To the order of c−4, we expand Kqi(q, p̃) = ∂GPN (q,p̃)
∂qi

Kqi(q, p̃) = Kqi(q, p)−Kqj(q, p)
∂Kqi(q, p)

∂pj
+O(c−6) (3.100)

Inserting Eq. (3.100) into Eq. (3.99a) yields

p̃i = pi −
∂GPN (q, p)

∂qi
+
∂GPN (q, p)

∂qj
∂2GPN (q, p)

∂pj∂qi
+O(c−6) (3.101)

Similarly, we expand K̃i
p(q, p̃) = ∂GPN (q,p̃)

∂p̃i
and obtain

q̃i = qi +
∂GPN (q, p)

∂pi
− ∂GPN (q, p)

∂qj
∂2GPN (q, p)

∂pi∂pj
+O(c−6) (3.102)

We can further reduce Eq. (3.101) and Eq. (3.102) using Eq. (33.98) and obtain

p̃i = pi −
1

c2
∂G1(q, p)

∂qi
+

1

c4
(
∂G1(q, p)

∂qj
∂2G1(q, p)

∂pj∂qi
− ∂G2(q, p)

∂qi
) +O(c−6)

(3.103a)

q̃i = qi +
1

c2
∂G1(q, p)

∂pi
− 1

c4
(
∂G1(q, p)

∂qj
∂2G1(q, p)

∂pi∂pj
− ∂G2(q, p)

∂pi
) +O(c−6)

(3.103b)

Let us recall that the reduced real Hamiltonian is related to the reduced effective
Hamiltonian by Eq. (3.72)

H̃

c2
= 1 +

1

c2
H +

1

c4
νH2

2
+O(c−6) (3.104)
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The reduced real Hamiltonian is explicitly expressed in Eq. (3.20). To deal with
the square root in the reduced effective metric H̃, it is convenient to square both
side of Eq. (3.104). We therefore have

M(q̃)(
(ñ · p̃)2

N(q̃)c2
+
p̃2 − (ñ · p̃)2

c2
+ 1) = 1 +

1

c2
R2 +

1

c4
R4 +

1

c6
R6 +O(c−8)

(3.105)
where

R2 = p2 − 2

q
(3.106)

R4 = νp4 − (4 + 2ν)
p2

q
− ν (n · p)2

q
+ (2 + ν)

1

q2
(3.107)

R6 =
1

8
p6(8ν2 − 2ν) +

1

4

p4

q
(−8ν2 − 33ν) +

1

2

p2

q
(n · p)2(−2ν2 − ν)

+
1

4

(n · p)4

q
(−3ν2) +

1

2

p2

q2
(2ν2 + 28ν + 17)

+
(n · p)2

q2
(ν2 + 4ν) +

1

2

1

q3
(−7ν − 3)

(3.108)

In the following calculations, we will denote G1 := G1(q, p) and G2 := G2(q, p)
for the sake of simplicity. Since the coordinates and momenta indices are all
spatial, we are therefore allowed to define uivi = uivi = uiv

i = u · v and
u2i = uiujδ

ij = u2, where u and v are some arbitrary functions of q and p, i.e.
u = u(q,p) and v = v(q,p). To simplify the left hand side of Eq. (3.105), it is
useful to check

q̃ =q{1 +
1

c2
ni

q

∂G1

∂pi

+
1

2c4
[
2ni

q

∂G2

∂pi
+

1

q2
(
∂G1

∂pi
)2 − 2ni

q

∂G1

∂qj
∂2G1

∂pi∂pj
− ninj

q2
∂G1

∂pi

∂G1

∂pj
]}

(3.109)

M(q̃) =1− 1

c2
2

q
+

1

c4
2ni

q2
∂G1

∂pi

+
1

c6
[
2ni

q2
∂G2

∂pi
+

1

q3
(
∂G1

∂pi
)2 − 2ni

q2
∂G1

∂qj
∂2G1

∂pi∂pj
− 3

ninj

q3
∂G1

∂pi

∂G1

∂pj
+

2ν

q3
]

+O(c−8)
(3.110)

1

N(q̃)
= 1− 2

c2q
+

1

c4
(
6ν

q2
+

2ni

q2
∂G1

∂pi
) +O(c−6) (3.111)

We then have

M(q̃)(
(ñ · p̃)2

N(q̃)c2
+
p̃2 − (ñ · p̃)2

c2
+1) = 1+

1

c2
L2+

1

c4
L4+

1

c6
L6+O(c−8) (3.112)

28



where

L2 = p2 − 2

q
(3.113)

L4 =
2ni

q2
∂G1

∂pi
− 2pi

∂G1

∂qi
− 2

q
p2 − 2(p · n)2

q
(3.114)

L6 =
2ni

q2
∂G2

∂pi
− 2pi

∂G2

∂qi
− 2ni

q2
∂G1

∂qj
∂2G1

∂pi∂pj
+ 2pi

∂G1

∂qj
∂2G1

∂pj∂qi

+
1

q3
(
∂G1

∂pi
)2 − 3

ninj

q3
∂G1

∂pi

∂G1

∂pj
+ (

∂G1

∂qi
)2

+ (−4(n · p)pi
q2

+
6(n · p)2ni

q2
+

2p2ni

q2
)
∂G1

∂pi

+ (
4(n · p)ni

q
+

4pi
q

)
∂G1

∂qi
+

2ν

q3
+

6ν + 4

q2
(n · p)2

(3.115)

We choose the ansatz such that

G1 = (α1p
2 + α2

1

q
)(p · q) (3.116)

we therefore have

∂G1

∂pi
= α1q

ip2 + 2α1p
i(p · q) + α2n

i (3.117a)

∂G1

∂qi
= α1pip

2 + α2
pi
q
− α2

ni
q

(n · p) (3.117b)

and

∂2G1

∂pi∂pj
= 2α1(piqj + pjqi + δij(p · q)) (3.118a)

∂2G1

∂qi∂pj
= α1(δjip

2 + 2pip
j) +

α2

q
(δji − nin

j) (3.118b)

Inserting Eq. (3.117) into (3.114) and equating L4 = R4, we have

α1 − α2 = −1− ν (3.119a)

2α1 + α2 = 1− ν

2
(3.119b)

−2α1 = ν (3.119c)

2α2 = 2 + ν (3.119d)

Eq. (3.119) yields a single solution

α1 = −ν
2

(3.120a)

α2 = 1 +
ν

2
(3.120b)
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Once we deduce the explicit expression for G1, we can insert Eq. (3.117) and
Eq. (3.118) into Eq. (3.115)

L6 =
2ni

q2
∂G2

∂pi
− 2pi

∂G2

∂qi

+
7ν2

4
p6 + (−4ν2 − 8ν)

p4

q
+ (−1

2
ν2 + 4ν)

p2

q
(n · p)2 + (−3ν2 − 6ν)

(n · p)4

q

+ (
11

4
ν2 + 10ν + 9)

p2

q2
+ (

1

4
ν2 + 4ν − 1)

(n · p)2

q2
+ (−1

2
ν2 − 2)

1

q3

(3.121)
Similarly, we choose the ansatz for G2

G2 = (β1p
4 + β2

p2

q
+ β3

(n · p)2

q
+ β4

1

q2
)(p · q) (3.122)

and evaluate the following

∂G2

∂pi
= β1(p4qi + 4pip2(p · q)) + β2(p2ni + 2(n · p)pi) + 3β3(n · p)2ni + β4

ni

q
(3.123)

∂G2

∂qi
=β1p

4pi + β2(
p2

q
pi −

p2(n · p)

q
ni)

+ β3(3
(n · p)2

q
pi − 3

(n · p)3

q
ni) + β4(

pi
q2
− 2

(n · p)

q2
ni)

(3.124)

Inserting Eq. (3.123) and Eq. (3.124) into Eq. (3.121) and equating L6 = R6,
we have

−β1 = −ν
8

(3ν + 1) (3.125a)

β1 − β2 =
ν

8
(8ν − 1) (3.125b)

3β3 =
3ν

8
(3ν + 8) (3.125c)

β4 =
1

4
(ν2 − 7ν + 1) (3.125d)

4β1 + β2 − 3β3 = −ν
4

(ν + 9) (3.125e)

β2 − β4 =
1

8
(−7ν2 + 16ν − 2) (3.125f)

2β2 + 3β3 + 2β4 =
1

8
(3ν2 + 4) (3.125g)
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From Eq. (3.125), we have a unique solution

β1 =
ν

8
(3ν + 1) (3.126a)

β2 =
ν

8
(−5ν + 2) (3.126b)

β3 =
ν

8
(3ν + 8) (3.126c)

β4 =
1

4
(ν2 − 7ν + 1) (3.126d)

Once the explicit expressions of G1 and G2 are found, one can easily deduce the
canonical transformation between the effective coordinates and the real coordi-
nates using Eq. (3.103)

p̃i = pi −
1

c2
(α1pip

2 + α2
pi
q
− α2

ni
q

(n · p)) +
1

c4
[(3α2

1 − β1)pip
4

+ (4α1α2 − β2)
p2pi
q

+ (−2α1α2 + β2)
p2(n · p)ni

q
+ (−2α1α2 − 3β3)

(n · p)2pi
q

+ 3β3
(n · p)3ni

q
+ (α2

2 − β4)
pi
q2

+ (−α2
2 + 2β4)

(n · p)ni
q2

] +O(c−6)

(3.127)

q̃i = qi +
1

c2
(α1q

ip2 + 2α1p
i(p · q) + α2n

i)− 1

c4
[(2α2

1 − β1)p4qi

+ (4α2
1 − 4β1)(p · q)p2pi + (2α1α2 − β2)p2ni + (2α1α2 − 2β2)(n · p)pi

+ (−4α1α2 − 3β3)(n · p)2ni − β4
ni

q
] +O(c−6)

(3.128)
where αi and βi are expressed in Eq. (3.120) and Eq. (3.126) respectively.
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Chapter 4

2PN Approximation of an
Isolated Gravitating Source

4.1 Symmetric Trace-Free Tensors

In this section, we introduce the notation used by Blanchet and Damour [2].
Latin letters denote the spatial indices, while Greek letters denote the spacetime
indices. The Minkowski metric is denoted by ηµν = diag(−1, 1, 1, 1) and the
Cartesian metric is denoted by δij = diag(1, 1, 1). The Levi-Civita tensor is
εijk. A tensor which includes a Cartesian multi-index is denoted by an upper-
case Latin index, i.e. UL = Ui1i2...il , UiL = Uii1i2...il . We also introduce xL =∏l
n=1 x

in and ∂L = ∂i1∂i2 . . . ∂il . For simplicity, we introduce UiV
i = UiVi =

3∑
i=1

UiVi and Uii = U ji δij = U11 +U22 +U33. For a positive integer k, we denote

k! =
k∏

n=1
n and k!! = k(k − 2) . . . 2 or 1. We shall also denote 0! = 0!! = 1. The

symmetric part of a Cartesian tensor is denoted by U(L) := 1
l!

∑
a
Uia1

ia2
...ial

.

The symmetric trace-free (STF) part of a Cartesian tensor UL is denoted by
ÛL ≡ U〈L〉 ≡ STFL(UL), which can be explicitly expressed by [20],

U〈L〉 =

[ 12 l]∑
n=0

alnδ(i1i2 . . . δi2n−1i2nSi2n+1...il)p1p1...pnpn (4.1)

where [ 12 l] denotes the integer part of 1
2 l, i.e. [ 52 ] = 2 and

SL = U(L) (4.2)

aln =
(−1)nl!(2l − 2n− 1)!!

(l − 2n)!(2l − 1)!!(2n)!!
(4.3)

We also need to introduce the notation to exclude certain indices from the action
of taking STF part of a tensor, i.e. U〈i1...im|pq|im+1...il〉 = STFL{Ui1...impqim+1...il}.
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Equivalent to the spherical harmonics, each STF tensor represents an irreducible
representation of the rotation Lie group SO(3). From Eq. (4.1), we can decom-
pose the product of a rank 1 tensor and a STF tensor of rank l [2],

UiV̂L = Â
(+1)
iL +

l

l + 1
εai〈ilÂ

(0)
L−1〉a +

2l − 1

2l + 1
δi〈ilÂ

(−1)
L−1〉 (4.4)

where

Â
(+1)
iL = U〈il V̂iL−1〉 (4.5a)

Â
(0)
L−1a = UpV̂q〈L−1εa〉pq (4.5b)

Â
(−1)
L−1 = UpV̂pL−1 (4.5c)

Detail proof of Eq. (4.4) is given in Appendix A. Similarly, we can also de-
compose the product of a rank 2 symmetric tensor and a STF tensor of rank l
[12],

Uij V̂L = B
(+2)
ijL + STFijSTFL(εaiilB

(+1)
L−1ja

+ δiilB
(0)
L−1j + εaiil−1

δjilB
(−1)
L−2a + δiil−1

δjilB
(−2)
L−2 ) + δijCL

(4.6)

where

B
(+2)
ijL = Û〈ij V̂L〉 (4.7a)

B
(+1)
L−1ja =

2l

l + 2
Ûp〈j V̂|q|L−1εa〉pq (4.7b)

B
(0)
L−1j =

6l(2l − 1)

(l + 1)(2l + 3)
Ûp〈j V̂L−1〉p (4.7c)

B
(−1)
L−2a =

2(l − 1)(2l − 1)

(l + 1)(2l + 1)
ÛrpV̂qr〈L−2εa〉pq (4.7d)

B
(−2)
L−2 =

2l − 3

2l + 1
ÛpqV̂pqL−1 (4.7e)

C
(0)
L =

1

3
UppV̂L (4.7f)

Eq. (4.4) and Eq. (4.6) can be interpreted by a well known result that, given any
two irreducible representations of SO(3) of weights p and q respectively R(p) and
R(q), their tensor product can be decomposed into irreducible representations
of SO(3) such that

R(p) ⊗R(q) =

p+q⊕
i=|p−q|

R(i) (4.8)

4.2 Multipole Expansion and Linearized Grav-
ity

Let us consider a compacted supported source J(x, t) which is defined inside the
region |x| < r0, such that J(x, t) = 0 for |x| > r0. We can therefore define the
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interior zone [4], Di = (x, t)/|x| < ri, where ri satisfies r0 < ri �∞. Similarly,
we define the exterior zone De = (x, t)/|x| > re, where r0 < re < ri. We assume
the weak gravitation in the exterior zone such that Tµν is approximately zero.
The retarded potential which satisfies the equation �V = −4πJ can be written
as [3]

V (x, t) =

∫
d3y

|x− y|
J(y, t− |x− y|

c
) (4.9)

In the region |x| > r0, by denoting r ≡ |x|, this potential admits a multipole
expansion

V (M)(x, t) =

∞∑
l=0

(−1)l

l!
∂L[

1

r
VL(t− r

c
)] (4.10)

where the subscript (M) denotes the multipole expansion and

VL(t) =

∫
d3yŷL

∫ 1

−1
daδl(a)J(y, t+ a

|y|
c

) (4.11)

δl(a) =
(2l + 1)!!

2l+1l!
(1− a2)l (4.12)

Now, let us consider the deviation of the metric hµν which satisfies Eq. (2.38).
From Section 2.3, we obtain

�hµν = −16πG

c4
gTµν + Λµν(h) (4.13)

We can expand Λµν [4]

Λµν = Nµν(h2) +Mµν(h3) +O(h4) (4.14)

where

Nµν(h2) = −hαβ∂α∂βhµν +
1

2
∂µhαβ∂νh

αβ − 1

4
∂µh∂νh− 2∂(µh|αβ|∂

αhβν)

+ ∂βh
α
µ(∂βhνα + ∂αh

β
ν ) + ηµν(−1

4
∂ρhαβ∂

ρhαβ +
1

8
∂αh∂

αh+
1

2
∂αhβρ∂

βhαρ)

(4.15)
Mµν(h3) = −hαβ(∂µhαρ∂νh

ρ
β + ∂ρhαµ∂

rhohβν − ∂αhρµ∂βhρν)

+ hµν(−1

4
∂ρhαβ∂

ρhαβ +
1

8
∂αh∂

αh+
1

2
∂αhβρ∂

βhαρ)

+
1

2
hαβ∂(µh|αβ|∂ν)h+ 2hαβ∂ρhα(µ∂ν)h

ρ
β + hα(µ∂ν)hβρ∂αh

βρ

− 2hα(µ∂|β|hν)ρ∂αh
βρ − 1

2
hα(µ∂ν)h∂αh

+ ηµν(
1

8
hαβ∂αh∂βh−

1

4
hαβ∂ρhαβ∂

ρh− 1

4
hρσ∂ρhαβ∂σh

αβ

− 1

2
hρσ∂αhρβ∂

βhασ +
1

2
hρσ∂αh

β
ρ∂

αhσβ)

(4.16)
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We now consider Einstein’s equation in the exterior zone. We can further expand
the field in the external zone hµν , such that

hµν =

∞∑
k=1

Gkhµν(k) (4.17)

This expansion is called Multipolar-post-Minkowskian (MPM) expansion [2].
The first coefficient hµν(1) is called ’linearized field’. Inserting Eq. (4.17) into Eq.

(4.13) gives

�hµν(1) =
16πG

c4
Tµν (4.18)

Since in the exterior zone, Tµν is assumed to be negligible. We therefore obtain

�hµν(1) = 0 (4.19)

Inserting Eq. (4.17) into Eq. (2.50) yields the harmonic condition for hµν(1)

∂µh
µν
(1) = 0 (4.20)

Now, we need to impose three other constraints on the deviation of the metric for
completeness. First, we assume that each term of the MPM expansion admits
a finite multipolar expansion

hµν(i) =

n∑
l=0

hµν(i)Ln̂
L (4.21)

Expansion in Eq. (4.20) is explained in [23]. Second, we assume that the
deviation of the metric is constant in some past such that

∂th
µν
(1) = 0 (4.22)

for all t < −T , where −T is some time in the past. Finally, we assume that the
metric gµν is asymptotically Minkowskian at infinity for all time t < −T , i.e.

lim
r→∞

hµν(1) = 0 (4.23)

In the following context, we shall solve Eq. (4.19) and Eq. (4.20) under the
three constraints Eq. (4.21), Eq. (4.22), and Eq. (4.23), which follows the
process described in [2]. We prove some useful formulas in Appendix B. Recall
that �f(r) = 1

r2 ∂r(r
2∂rf(r)) − 1

c2 ∂
2
t . Inserting Eq. (4.21) into Eq. (4.19) and

using Eq. (B.2), we obtain

(− 1

c2
∂2t + ∂2r +

2

r
∂r −

l(l + 1)

r2
)hµν(1)L = 0 (4.24)

Now we change the variables, i.e.

u = t+
r

c
(4.25a)

v = t− r

c
(4.25b)
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such that

∂2t = ∂2u + 2∂u∂v + ∂2v (4.26a)

∂2r =
1

c2
(∂2u − 2∂u∂v + ∂2v) (4.26b)

Inserting Eq. (4.26) into Eq. (4.24), we obtain

(−∂u∂v +
∂u − ∂v
u− v

− l(l + 1)

(u− v)2
)hµν(1)L = 0 (4.27)

Now, we define a new function

jµν(1)L :=
1

(u− v)l
hµν(1)L (4.28)

One can easily see that

(∂u − ∂v)hµν(1)L = −2l(v − u)l−1jµν(1)L + (v − u)l(∂u − ∂v)jµν(1)L (4.29a)

∂u∂vh
µν
(1)L = (v − u)l∂u∂vj

µν
(1)L + l(v − u)l−1(∂u − ∂v)jµν(1)L − l(l − 1)(v − u)l−2jµν(1)L

(4.29b)

Inserting Eq. (4.29) into Eq. (4.27) gives

[(u− v)∂u∂v + (l + 1)(∂v − ∂u)]jµν(1)L = 0 (4.30)

Eq. (4.30) is a particular case of Euler-Poisson-Darboux equation. Let’s define
the operator Em,n := (u− v)∂u∂v +m∂v − n∂u. Eq. (4.30) can be rewritten as

El+1,l+1(jµν(1)L) = 0 (4.31)

We now differentiate Eq. (4.29) by u and v, respectively, and obtain

∂uEl,l(j
µν
(1)L) = El+1,l(∂uj

µν
(1)L) (4.32a)

∂vEl,l(j
µν
(1)L) = El,l+1(∂vj

µν
(1)L) (4.32b)

From Eq. (4.32), we notice that, if jµν(1)L is a solution for El,l(j
µν
(1)L) = 0, then

∂2n

∂n
u∂

n
v
jµν(1)L is a solution for El+n,l+n(jµν(1)L) = 0. Therefore, to find a solution for

Eq. (4.31), it is sufficient to find a solution for

E1,1(jµν(1)L(1,1)) = 0 (4.33)

A general solution for Eq. (4.33) can be described as

jµν(1)L(1,1) = a
PµνL (u) +QµνL (v)

u− v
(4.34)
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where a is an arbitrary constant and PµνL (u) and QµνL (u) are two arbitrary
functions. The solution for Eq. (4.31) is

jµν(1)L(l+1,l+1) = a
∂2l

∂lu∂lv

PµνL (u) +QµνL (v)

u− v
(4.35)

Using Eq. (4.28), we, therefore, find a general solution for Eq. (4.27)

hµν(1)L = a(u− v)l
∂2l

∂lu∂lv

PµνL (u) +QµνL (v)

u− v
(4.36)

Recall that Leibniz formula, i.e. ∂n

∂nx (f(x)g(x)) =
n∑
i=0

n!
i!(n−i)!

∂i

∂ixf(x) ∂n−i

∂n−ixg(x).

We obtain

∂2l

∂lu∂lv
(PµνL (u)(u− v)−1) =

l∑
i=0

l!(2l − i)!
i!(l − i)!

(−1)l−i(u− v)−(2l−i+1) ∂
i

∂iu
PµνL (u)

(4.37a)

∂2l

∂lu∂lv
(QµνL (v)(u− v)−1) =

l∑
i=0

l!(2l − i)!
i!(l − i)!

(−1)l(u− v)−(2l−i+1) ∂
i

∂iv
QµνL (v)

(4.37b)

Inserting Eq. (4.37) into Eq. (4.36) gives

hµν(1)L = a(−1)l
l∑
i=0

l!(2l − i)!
i!(l − i)!

(−1)i ∂
i

∂iuP
µν
L (u) + ∂i

∂ivQ
µν
L (v)

rl−i+1
(
c

2
)l−i+1 (4.38)

Since PµνL and QµνL are arbitrary function, we can fix a value for a without
changing the physics. After careful comparison between Eq. (4.38) and Eq.
(B.4), one can check that, if we choose a = 2

l!cl+1 , Eq. (4.38) admits the same
form as Eq. (B.4). We can therefore rewrite Eq. (4.37)

n̂Lhµν(1)L = ∂̂L[
PµνL (t+ r

c ) +QµνL (t− r
c )

r
] (4.39)

We now prove that we are free to change PµνL (t+ r
c ) to PµνL (t− r

c ) in Eq. (4.38).
Applying the constraint Eq. (4.22) to Eq. (4.39), we obtain

∂̂L[
∂tP

µν
L (t+ r

c ) + ∂tQ
µν
L (t− r

c )

r
] = 0 (4.40)

for any time t before −T . From Eq. (B.1), we notice that ∂̂L is proportional to
∂l

∂(r2)l
. Therefore, the solution for ∂̂LF (r) = 0 must have the form

F (r) =

l−1∑
i=0

air
2i+1 (4.41)
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where ai is some arbitrary constants. We can then write

∂tP
µν
L (t+

r

c
) + ∂tQ

µν
L (t− r

c
) =

2l∑
i=1

ai[(t+
r

c
)i − (t− r

c
)i] (4.42)

We can integrate Eq. (4.42) with respect to t+ r
c and t− r

c and obtain

PµνL (t+
r

c
) =

2l+1∑
i=1

ai(t+
r

c
)i + cp (4.43a)

QµνL (t− r

c
) = −

2l+1∑
i=1

ai(t−
r

c
)i + cq (4.43b)

where we have redefined ai, such that ai := ai−1

i . One can easily check that

∂̂Lr
k = 0 (4.44)

for positive even integer k less than 2l. Using Eq. (4.44), we can insert Eq.
(4.43) into Eq. (4.39) and obtain

n̂Lhµν(1)L = ∂̂L[− 2

c2l+1
a2l+1r

2l +
cp + cq
r

] (4.45)

We then apply constraint Eq. (4.23) to Eq. (4.45) and easily find

a2l+1 = 0 (4.46)

From Eq. (4.44), one can easily check

∂̂L(
(t+ r

c )i

r
) = ∂̂L(

(t− r
c )i

r
) (4.47)

for positive integer i less and equal to 2l. Therefore, since Eq. (4.46), we have

∂̂LP
µν
L (t+

r

c
) = ∂̂LP

µν
L (t− r

c
) (4.48)

We can then naturally define UµνL (t− r
c ) := PµνL (t− r

c )+QµνL (t− r
c ) and rewrite

Eq. (4.21) by applying Eq. (4.39)

hµν(1) =
∑
l

∂̂L(
UµνL (t− r

c )

r
) (4.49)

Since ∂̂L is STF in L, we can replace UµνL in Eq. (4.49) by Uµν〈L〉 and replace ∂̂L

by ∂L. By using Eq. (4.4), we can decompose U0i
〈L〉, such that

U0
i〈L〉 = Â

(+1)
iL +

l

l + 1
εai〈ilÂ

(0)
L−1〉a +

2l − 1

2l + 1
δi〈ilÂ

(−1)
L−1〉 (4.50)

38



where

Â
(+1)
iL = U0

〈iL〉 (4.51a)

Â
(0)
L−1a = U0

pq〈L−1εa〉pq (4.51b)

Â
(−1)
L−1 = U0

ppL−1 (4.51c)

Inserting Eq. (4.50) into Eq. (4.49), we have

h0i(1) =
∑
l≥1

∂L−1(
1

r
Â

(+1)
iL−1) +

∑
l≥1

∂L(
l

l + 1
εai(ilÂ

(0)
L−1)a +

1

l + 1
εaibÂ

(0)
ab(L−2δil−1il))

+
∑
l≥1

∂L(
2l − 1

2l + 1
δi(ilÂ

(−1)
L−1)) +

∑
l≥2

∂L(
2l − 1

2l + 1

2al1
l
Â

(−1)
i(L−2δil−1il))

(4.52)

From Eq. (4.52), one should notice that εaibÂ
(0)
abL−2 is zero, since Â

(0)
L is totally

symmetric with respect to all its indices. Also, since ∂L is totally symmetric
with respect to its indices, we can ignore the symmetrizing operations in the
terms, i.e. ∂LU(L) = ∂LUL. Using Eq. (4.3) to compute al1, we obtain

h0i(1) =
∑
l≥0

∂iL(
2l + 1

2l + 3

1

r
Â

(−1)
L ) +

∑
l≥1

∂L−1(
1

r
Â

(+1)
iL−1 −

l

2l + 3
4(

1

r
Â

(−1)
iL−1))

+
∑
l≥1

εiba∂bL−1(
l

l + 1

1

r
Â

(0)
L−1a)

(4.53)

One can then check 4( 1
r Â

(−1)
iL−1) = 1

c2
1
r

¨̂
A

(−1)
iL−1, where f̈(x) := ∂2xf(x). We can

thus further simplify Eq. (4.53)

h0i(1) =
∑
l≥0

∂iL(r−1BL)+
∑
l≥1

∂L−1(r−1CiL−1)+
∑
l≥1

εiba∂bL−1(r−1DL−1a) (4.54)

where

BL =
2l + 1

2l + 3
Â

(−1)
L (4.55a)

CiL−1 = Â
(+1)
iL−1 −

l

(2l + 3)c2
¨̂
A

(−1)
iL−1 (4.55b)

DL−1a =
l

l + 1
Â

(0)
L−1a (4.55c)

Similarly, one can insert Eq. (4.6) into Eq. (4.49) and obtain

hij(1) =
∑
l≥0

[∂ijL(r−1EL) + δij∂L(r−1FL)]

+
∑
l≥1

[∂L−1(i(r
−1Gj)L−1) + εab(i∂j)aL−1(r−1HbL−1)]

+
∑
l≥2

[∂L−2(r−1IijL−2) + ∂aL−2(r−1εab(iJj)bL−2)]

(4.56)

39



where E,F,G,H, I and J are functions of B(+2), B(+1), B(0), B(−1), B(−2) and

C
(0)
L . For completeness, we define

AL := U00
L (4.57)

such that
h00(1) =

∑
l≥0

∂L(r−1AL) (4.58)

Now, we apply the harmonic condition Eq. (4.20) to Eq. (4.54), Eq. (4.56), and
Eq. (4.58), which will impose constraints on functions A to J . For example,
the time component of Eq. (4.20) reads

1

c
∂0h

00
(1) + ∂ih

0i
(1) = 0 (4.59)

Inserting Eq. (4.54) and Eq. (4.58) into Eq. (4.59), we obtain∑
l≥0

∂L(r−1ȦL) +
∑
l≥0

∂L4(r−1BL) +
∑
l≥1

∂iL−1(r−1CiL−1) = 0 (4.60)

where we have used ∂i∂aεiba = 0. Using the identity of the Laplace operator,
one can easily check

CL +
1

c
ȦL +

1

c2
B̈L = 0 (4.61)

We now define A
(n)
L := 1

cn
∂n

∂tnAL. One should be careful that indices (n) which
represent higher derivatives is distinct from indices (±n) in Eq. (4.50) which
label different irreducible representations of the rotation Lie group. Therefore,
we can rewrite Eq. (4.61)

CL +A
(1)
L +B

(2)
L = 0 (4.62)

Similarly, using the spatial component of Eq. (4.20),

1

c
∂0h

j0
(1) + ∂ih

ji
(1) = 0 (4.63)

We obtain the following constraints

GL + 2B
(1)
L + 2E

(2)
L + 2FL = 0 (4.64a)

IL −A(2)
L − 2B

(3)
L − E

(4)
L − F

(2)
L = 0 (4.64b)

JL + 2D
(1)
L +H

(2)
L = 0 (4.64c)

For future convenience, we now redefine the functions, such that

ML := AL + 2B
(1)
L + E

(2)
L + FL :=

(−1)l+14

c2l!
M̃L (4.65a)

SL := −DL −
1

2
H

(1)
L :=

(−1)l+14l

c3(l + 1)!
S̃L (4.65b)
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and

ΓL := BL +
1

2
E

(1)
L (4.66a)

ΘL :=
1

2
EL (4.66b)

ΦL := −B(1)
L − E

(2)
L − FL (4.66c)

ΨL :=
1

2
HL (4.66d)

In terms of the new functions, from Eq. (4.58), Eq. (4.54), and Eq. (4.56), we
obtain

h00(1) =
−4

c2

∑
l≥0

(−1)l

l!
∂L(r−1M̃L) +

∑
l≥0

∂L(r−1(−Γ
(1)
L + Θ

(2)
L + ΦL)) (4.67)

h0i(1) =
4

c3

∑
l≥1

(−1)l

l!
∂L−1(r−1M̃

(1)
iL−1) +

4

c3

∑
l≥1

(−1)ll

(l + 1)!
εiab∂aL−1(r−1S̃bL−1)

+
∑
l≥0

∂iL(r−1(ΓL −Θ
(1)
L ))−

∑
l≥1

[∂L−1(r−1Φ
(1)
iL−1) + εiab∂aL−1(r−1Ψ

(1)
bL−1)]

(4.68)

hij(1) =
−4

c4

∑
l≥2

(−1)l

l!
∂L−2(r−1M̃

(2)
ijL−2)− 8

c4

∑
l≥2

(−1)ll

(l + 1)!
∂aL−2(εab(iS̃

(1)
j)bL−2)

+
∑
l≥0

[2∂ijL(r−1ΘL)− δij∂L(r−1(Γ
(1)
L + Θ

(2)
L + ΦL))]

+ 2
∑
l≥1

[∂L−1(i(r
−1Φj)L−1) + εab(i∂j)aL−1(r−1ΨbL−1)]

(4.69)
where we have used the inverse of Eq. (4.65) and Eq. (4.66) and also the
constraints Eq. (4.62) and Eq. (4.64). Now, one can check that Eq. (4.67) to
Eq. (4.69) can be rewritten as

hµν(1) = hµν(1)can(M̃, S̃) +Kµν(Γ,Θ,Φ,Ψ) (4.70)

Using r−1Θ
(2)
L = 4(r−1ΘL), we can rewrite Kµν(Γ,Θ,Φ,Ψ)

K00 = −1

c
∂0
∑
l≥0

∂L(r−1ΓL)+∂i[
∑
l≥0

∂iL(r−1ΘL)+
∑
l≥1

∂L−1(r−1ΦiL−1)] (4.71)

K0i =− 1

c
∂0[
∑
l≥0

∂iL(r−1ΘL) +
∑
l≥1

(∂L−1(r−1)ΦiL−1 + εiab∂aL−1(r−1ΨbL−1))]

+ ∂i
∑
l≥0

∂L(r−1ΓL)

(4.72)
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Kij = −δij 1

c
∂0
∑
l≥0

∂L(r−1ΓL)− δij∂k(
∑
l≥0

∂kL(r−1ΘL) +
∑
l≥1

∂L−1ΦL−1k)

+ ∂(i[
∑
l≥0

∂j)L(r−1ΘL) +
∑
l≥1

(∂L−1(r−1Φj)L−1) + εj)ab∂aL−1(r−1ΨbL−1))]

(4.73)
We can therefore write Kµν in the form

Kµν = ∂(µkν) − ηµν∂ρkρ (4.74)

where
k0 =

∑
l≥0

∂L(r−1ΓL) (4.75)

ki =
∑
l≥0

∂iL(r−1ΘL) +
∑
l≥1

(∂L−1(r−1)ΦiL−1 + εiab∂aL−1(r−1ΨbL−1)) (4.76)

Therefore, Eq. (4.70) is canonical transformation of hµν(1) used in [23]. Now, we

obtain an expression for the canonical linearized field hµν(1) in the exterior zone
De.

h00(1)can =
−4

c2

∑
l≥0

(−1)l

l!
∂L(r−1M̃L) (4.77)

h0i(1)can =
4

c3

∑
l≥1

(−1)l

l!
∂L−1(r−1M̃

(1)
iL−1) +

4

c3

∑
l≥1

(−1)ll

(l + 1)!
εiab∂aL−1(r−1S̃bL−1)

(4.78)

hij(1)can =
−4

c4

∑
l≥2

(−1)l

l!
∂L−2(r−1M̃

(2)
ijL−2)− 8

c4

∑
l≥2

(−1)ll

(l + 1)!
∂aL−2(εab(iS̃

(1)
j)bL−2)

(4.79)
where M̃L and S̃L are sets of totally arbitrary functions. We identify the func-
tions M̃L as the mass multipole moments and the functions S̃L the current
multipole moments [23]. In the following discussion, we will drop the tilde on
both functions for convenience.

4.3 Solution of Einstein’s Equation in the Inte-
rior Zone

In this section, we solve Einstein’s equation in the interior zoneDi. We introduce
a notation for small order terms in the post-Newtonian expansion [4]. If a totally
symmetric tensor Tµ1µ2···µl obeys

Tµ1µ2···µl = O(p0, p1, · · · , pl) (4.80)

we mean the following
T i1···im0···0 = O(c−m) (4.81)
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For example, Gµν = O(a, b, c) is equivalent to, G00 = O(c−a), G0i = O(c−b),
and Gij = O(c−c). Now we define the following quantities from the stress-energy
tensor Tµν

σ =
T 00 + T ii

c2
(4.82a)

σi =
T 0i

c
(4.82b)

σij = T ij (4.82c)

We also define the related retarded potential, such that

�V = −4πGσ (4.83a)

�Vi = −4πGσi (4.83b)

�Wij = −4πGσij + (
1

2
δij∂kV ∂kV − ∂iV ∂jV ) (4.83c)

Using Eq. (4.9), we obtain

V (x, t) = G

∫
d3y

σ(y, t− |x−y|c )

|x− y|
(4.84a)

Vi(x, t) = G

∫
d3y

σi(y, t− |x−y|c )

|x− y|
(4.84b)

Wij(x, t) = G

∫
d3y

(σij + 1
4πG (∂iV ∂jV − 1

2δij∂kV ∂kV ))(y, t− |x−y|c )

|x− y|
(4.84c)

In the following context, we assume that σ, σi, and σij are of order c0. From
Eq. (4.13), one can easily check that hµν is of order O(2, 3, 4). Recall that the
stress-energy tensor obeys the conservation law

∇µTµν = 0 (4.85)

where ∇ is the covariant derivative operator, such that,

∇µTµν = ∂µT
µν + T ρνΓµρµ + TµρΓνρµ (4.86)

First, we consider the ’0’ component of Eq. (4.85), e.g. ν = 0. We, therefore,
obtain

∂µT
µ0 + T ρ0Γµρµ + TµρΓ0

ρµ = 0 (4.87)

Rewriting Eq. (4.87), we have

∂tσ + ∂iσi +
1

c
(T 00Γµ0µ + T i0Γµiµ + T 00Γ0

00 + T 0iΓ0
0i + T ijΓ0

ij) = 0 (4.88)

One should notice that, from Eq. (2.45), Γρµν is of order O(2). Therefore,

terms with T i0 and T ij must have order smaller or equal to O(2). We can then
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compute Γµ0µ by using Eq. (2.45)

Γµ0µ =
1

2c
∂th (4.89)

which is of order O(3). Thus, inserting Eq. (4.89) into Eq. (4.88), we obtain

∂tσ + ∂iσi = O(2) (4.90)

Second, we consider the ’i’ component of Eq. (4.85) and obtain

∂iσ + ∂jσij + T 00Γi00 + T 0jΓi0j = O(2) (4.91)

where we have ignored all the terms whose order is smaller or equal to O(2) by
the same reason as before. From Eq. (2.45), we have

Γi00 =
1

4
∂i(h00 +

∑
j

hjj) (4.92a)

Γij0 =
1

2
(∂ihj0 − ∂jhi0) (4.92b)

From Eq. (4.92b), we immediately see that the term T 0jΓi0j is of order O(2).
Inserting Eq. (4.92a) into Eq. (4.13), we obtain, at lowest order,

�(h00 +
∑
j

hjj) =
16πG

c2
σ (4.93)

Comparing Eq. (4.93) with Eq. (4.83a), we obtain, at lowest order,

Γi00 = − 1

c2
∂iV (4.94)

Inserting Eq. (4.94) into Eq. (4.91) gives

∂iσ + ∂jσij = σ∂iV +O(2) (4.95)

In order to replace σ, σi, and σij in Eq. (4.90) and Eq. (4.95) by corresponding
retarded potentials, one can check

∂jWij = G

∫
d3y

(∂jσij + 1
4πG (∂iV 4V ))(y, t− |x−y|c )

|x− y|
(4.96)

By using 4V = �V +O(2), one can check that Eq. (4.95) can be written as

∂iVi + ∂jWij = O(2) (4.97)

For consistency, we also rewrite Eq, (4.90) in terms of the retarded potentials

∂tV + ∂iVi = O(2) (4.98)
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Now, let us consider Einstein’s equation (Eq. (4.13) to Eq. (4.16)) in the
interior zone. From Eq. (4.13) and Eq. (4.93), we have h00 = − 4V

c2 + O(2),
h0i = O(3), and hij = O(4). Inserting these relations into Eq. (4.13), we can
obtain Einstein’s equation at order O(6, 5, 6). For example, the ’00’ component
of Eq. (4.13) reads

�h00 =
16πG

c4
(1 + h)T 00 +N00(h2) +O(6) (4.99)

Using the fact that hµν = O(2, 3, 4), we can simply Eq. (4.15), such that

N00(h2) = ∂ih
00∂ih00 +

1

4
∂ih00∂

ih00 − 1

8
∂ih∂

ih+O(6) (4.100)

One can then explicitly compute N00(h2) using Eq. (4.100).

N00(h2) = −14

c4
∂iV ∂iV (4.101)

Inserting Eq. (4.101) into Eq. (4.99), we yield

�h00 =
16πG

c4
(1 +

4V

c2
)T 00 − 14

c4
∂iV ∂iV +O(6) (4.102)

Using the same method, we obtain

�hi0 =
16πG

c4
T i0 +O(5) (4.103)

�hij =
16πG

c4
T ij +

4

c4
(∂iV ∂jV −

1

2
δij∂kV ∂kV ) +O(6) (4.104)

From Eq. (4.83b) and Eq. (4.83c), we can easily see

hi0 = − 4

c3
Vi +O(5) (4.105)

hij = − 4

c4
Wij +O(6) (4.106)

However, to solve Eq. (4.102), one can check

�(W − 2V 2) = −4πGT ii − 7

2
∂iV ∂iV +

16πG

c2
V T 00 +O(2) (4.107)

where we have used �V 2 = 2∂iV ∂iV + 2V�V + O(2) and W ≡ Wii. We can
solve Eq. (4.102)

h00 = − 4

c2
V +

4

c4
(W − 2V 2) +O(6) (4.108)

Using Eq. (4.105), Eq. (4.106), and Eq. (4.108), we can iterate the above
process again to find Einstein’s equation at order O(8, 7, 8). Using h = ηµνh

µν ,
we obtain

h =
4

c2
V − 8

c4
(W − V 2) (4.109)
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From Eq. (2.41), we find

− g = 1 +
4

c2
V − 8

c4
(W − V 2) +O(6) (4.110)

One should notice that the term 1
2h

2 cancels with the term 1
2hµρh

µρ at order
O(4). Inserting Eq. (4.105), Eq. (4.106), Eq. (4.108), and Eq. (4.109) into Eq.
(4.14), we have

Λ00 =− 14

c4
∂iV ∂iV +

2

c6
[−8V ∂2t V − 16Vi∂t∂iV + 5(∂tV )2 + 4∂iVj∂iVj

+ 12∂iVj∂jVi + 8∂tVi∂iV − 28V ∂iV ∂iV − 8Wij∂i∂jV + 16∂iV ∂iW ] +O(8)
(4.111)

Λ0i =
4

c5
(4∂jV ∂iVj − 4∂jV ∂jVi + 3∂iV ∂tV ) +O(7) (4.112)

Λij =
2

c4
(2∂iV ∂jV − δij∂kV ∂kV )

+
2

c6
[−8(∂iVk∂jVk + ∂kVi∂kVj) + 16∂(iV ∂tVj) + 16∂(iVk∂kVj)

− δij(3(∂tV )2 + 8∂kV ∂tVk − 4∂kVl(∂kVl − ∂lVk))] +O(8)

(4.113)

Therefore, we obtain Einstein’s equation at order O(8, 7, 8)

�hµν = −16πG

c4
ḡTµν + Λ̄µν +O(8, 7, 8) (4.114)

where ḡ and λ̄µν are functions of the retarded potentials V , Vi, and Wij and
obey

g = ḡ +O(6) (4.115a)

Λµν = Λ̄µν +O(8, 7, 8) (4.115b)

Solution of Eq. (4.114) can be written as

hµν = −G
∫
d3y

1

|x− y|
(

4

c4
ḡTµν+

1

4πG
Λ̄µν)(y, t−|x− y|

c
)+O(8, 7, 8) (4.116)

In the following context, for convenience, we rewrite the solution as

hµν = �−1R (−16πG

c4
ḡTµν + Λ̄µν) +O(8, 7, 8) (4.117)

where the subscript R represents the name ’retarded’.

4.4 Solution of Einstein’s Equation in the Exte-
rior Zone

In this section, we extend the discussion in Section 4.2 and compute the canon-
ical external field hµνcan(x) up to the order O(7, 7, 7) in the exterior zone De.
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In Section 4.2, one can see that the canonical linearized field hµν(1)can(x) can be

written in an expression that only depends on two sets of functions ML and SL.
Now, we introduce the potentials in the exterior zone Ṽ , Ṽi, and Ṽij , such that

Ṽ = G
∑
l≥0

(−1)l

l!
∂L(r−1ML) (4.118a)

Ṽi = −G[
∑
l≥1

(−1)l

l!
∂L−1(r−1M

(1)
iL−1) +

∑
l≥1

(−1)ll

(l + 1)!
εiab∂aL−1(r−1SbL−1)]

(4.118b)

Ṽij = G[
∑
l≥2

(−1)l

l!
∂L−2(r−1M

(2)
ijL−2) +

∑
l≥2

(−1)ll

(l + 1)!
∂aL−2(εab(iS

(1)
j)bL−2)]

(4.118c)

From Eq. (4.77), Eq. (4.78), and Eq. (4.79), one can easily check h00(1)can =

− 4
Gc2 Ṽ , h0i(1)can = − 4

Gc3 Ṽi, and hij(1)can = − 4
Gc4 Ṽij . Using Einstein’s vacuum

equation (Eq. (4.13) with Tµν = 0), we can compute the higher-order coefficient
in the MPM expansion Eq. (4.17) by

�hµν(k) = Λµν(k)(h) (4.119)

where the non-linear term Λµν(k) obeys

Λµν(k) =
∑
i+j=k

Nµν(h(i)can, h(j)can) +
∑

a+b+c=k

Mµν(h(a)can, h(b)can, h(c)can)

(4.120)
To obtain a solution for Eq. (4.119), we introduce a notation in [4], such that

hµν(k) = FPz=0�
−1
R [rzΛµν(k)(h)] + cµν(k) (4.121)

where z is a complex number and cµν(k) is an arbitrary function that obeys

�cµν(k) = 0 (4.122)

For a function f , the function g(z) = �−1R (rzf) admits a Laurent expansion,
i.e. g(z) =

∑
alz

l. Then we define

FPz=0�
−1
R (rzf) = a0 (4.123)

Formal definition and detail discussion of this notation can be found in [2]. We
will see the convenience of introducing this notation in the following computa-
tion. Now, we will assume that cµν(2) = O(7, 7, 7) and cµν(3) = O(8, 7, 8), which

are proved in detail in Appendix A of [4]. Using the iteration equation Eq.
(4.119) and Eq. (4.120) and recalling hµν(1) = O(2, 3, 4), one can check that the
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coefficient hµν(4) will be smaller or equal to the order O(8, 8, 8). Therefore, the

canonical external field hµνcan can be written as

hµνcan(xcan) = Ghµν(1)can(xcan)+FPz=0�
−1
R [rz(G2Λµν(2)(h)+G3Λµν(3)(h))]+O(7, 7, 7)

(4.124)
where the term O(7, 7, 7) comes from the term cµν(2) in Eq. (4.121). We can now

explicitly compute the coefficient hµν(2)can in terms of the external potentials by

inserting the expression for the linearized field hµν(1)can into the non-linear term

Λµν(2)can. This is exactly the identical calculation in Section 4.3. We obtain

h00can = − 4

c2
Ṽ +

4

c2
(W̃ − 2Ṽ 2) +O(6) (4.125a)

h0ican = − 4

c3
Ṽi +O(5) (4.125b)

hijcan = − 4

c4
W̃ij +O(6) (4.125c)

where

W̃ij = Ṽij − FPz=0�
−1
R [rz(∂iṼ ∂j Ṽ −

1

2
δij∂kṼ ∂kṼ )] (4.126)

Eq. (4.125) admits the identical form to Eq. (4.105), Eq. (4.106), and Eq.
(4.108). Therefore, we can directly apply the calculation in Section 4.2 to the
case of exterior zone. By analogy to Eq. (4.117), we obtain the solution for the
canonical external field

hµνcan(xcan) = Ghµν(1)can(xcan) + FPz=0�
−1
R [rzΛ̄µν(Ṽ , Ṽi, W̃ij)] +O(7, 7, 7)

(4.127)
where Λ̄µν(Ṽ , Ṽi, W̃ij) admits the exact same form as Λ̄µν(V, Vi,Wij)

4.5 The Matching Equations

In previous sections, we introduced the solutions to Einstein’s equation in the
exterior zone De and in the interior zone Di. In this section, we aim to find the
matching equations that link between the two solutions in the overlapping zone
Dm = {(x, t)|re < |x| < ri}.
Now, let us consider a canonical transformation, i.e.

xµcan = xµ + φµ (4.128)

We assume that φµ is of order O(3, 4). From the transformation law of the
metric, we can write

det(
∂xαcan
∂xβ

)(ηµν + hµνcan(xcan)) =
∂xµcan
∂xρ

∂xνcan
∂xσ

(ηρσ + hρσ(x)) (4.129)
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We can then expand the determinant

det(
∂xαcan
∂xβ

) = 1 + ∂αφ
α +O(φ2) (4.130)

Taking the derivative of xµ on both sides of Eq. (4.129) gives

∂µ[(1+∂αφ
α)(ηµν+hµνcan(x)+φρ∂ρh

µν
can(x))] = ∂µ[(δµρ+∂ρφ

µ)(δνσ+∂σφ
ν)(ηρσ+hρσ(x))]

(4.131)
where we have used hµνcan(xcan) = hµνcan(x) +φρ∂ρh

µν
can(x). Now, expanding both

sides of Eq. (4.131), we obtain

ηµν + hµνcan(x) + φρ∂ρh
µν
can(x) + ηµν∂ρφ

ρ + hµνcan(x)∂ρφ
ρ

= ηµν + hµν(x) + ∂µφν + ∂νφµ + hρν(x)∂ρφ
µ + hρµ(x)∂ρφ

ν

+ ηρσ∂ρφ
µ∂σφ

ν +O(8, 7, 8)
(4.132)

After some rearrangement, one can check

hµνcan(x) = hµν(x) + ∂µφν + ∂νφµ − ηµν∂ρφρ

+ hρν(x)∂ρφ
µ + hρµ(x)∂ρφ

ν − φρ∂ρhµνcan(x)− hµνcan(x)∂ρφ
ρ + ηρσ∂ρφ

µ∂σφ
ν

+O(8, 7, 8)
(4.133)

One should, however, be aware that terms which contain both h and φ in Eq,
(4.133) are smaller or equal to O(6). This is simply because the ’0’ component
of the derivative ∂ρ contains another factor of 1

c . Therefore, the transformation
law Eq. (4.129) reduces to

hµνcan(x) = hµν(x) + ∂µφν + ∂νφµ − ηµν∂ρφρ +O(6, 7, 8) (4.134)

Recall hµν(x) obeys the harmonic condition, i.e. ∂µh
µν(x) = 0. Inserting Eq.

(4.134) into Eq. (4.131), we obtain

�φρ + hµν(x)∂µ∂νφ
ρ = 0 (4.135)

It is also useful to compute the ’00’ component of the transformation law Eq.
(4.119) to the next order O(8). Inserting Eq. (4.124) into Eq. (4.123), we obtain

h00can(x) = h00(x) + 2∂0φ0 + ∂ρφ
ρ + 2hρ0(x)∂ρφ

0

− φρ∂ρh00(x)− h00(x)∂ρφ
ρ + ∂iφ

0∂iφ
0 +O(8)

(4.136)

We therefore write Eq. (4.134) as

hµνcan(x) = hµν(x) + Φµν + Σµν +O(8, 7, 8) (4.137)

where
Φµν = ∂µφν + ∂νφµ − ηµν∂ρφρ (4.138)
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and

Σ00 = 2hρ0(x)∂ρφ
0 − φρ∂ρh00(x)− h00(x)∂ρφ

ρ + ∂iφ
0∂iφ

0 (4.139a)

Σ0i = 0 (4.139b)

Σij = 0 (4.139c)

Now we can match the exterior potentials to the interior potentials by inserting
Eq. (4.105), Eq. (4.106), Eq. (4.108), and Eq. (4.125) into Eq. (4.137). We
therefore obtain a set of matching equations

−Ṽ +
1

c2
(W̃ − 2Ṽ 2) = −V +

1

c2
(W − 2V 2)− c

2
∂tφ

0 +
c2

4
∂ρφ

ρ +O(4)

(4.140a)

−Ṽi = −Vi −
c2

4
∂tφ

i +
c3

4
∂iφ

0 +O(2) (4.140b)

−W̃ij = −Wij +
c4

4
(∂iφj + ∂jφi − δij∂ρφρ) +O(2) (4.140c)

From Eq. (4.140c), one can easily check

W̃ = W +
c4

4
∂iφi +

3c3

4
∂tφ

0 (4.141)

Inserting Eq. (4.141) into Eq. (4.140a), we obtain

Ṽ = V + c∂tφ
0 +O(4) (4.142)

From Eq. (4.140b), we obtain

Ṽi = Vi −
c3

4
∂iφ

0 +O(2) (4.143)

where we have used φi = O(4). We can then use Eq. (4.10) to expand interior
potential V and Vi. This procedure is to ensure both external potentials and
interior potentials to have the same mathematical expression. Therefore, we
write

V (M) = G

∞∑
l=0

(−1)l

l!
∂L[

1

r
VL(t− r

c
)] (4.144a)

V
(M)
i = G

∞∑
l=0

(−1)l

l!
∂L[

1

r
ViL(t− r

c
)] (4.144b)

where

VL(t) =

∫
d3yŷL

∫ 1

−1
daδl(a)σ(y, t+ a

|y|
c

) (4.145a)

ViL(t) =

∫
d3yŷL

∫ 1

−1
daδl(a)σi(y, t+ a

|y|
c

) (4.145b)
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We have matched the exterior potentials Ṽ and Ṽi to the corresponding interior
potentials V and Vi in the previous discussion. Now we need to match the
exterior potential Ṽij to the interior potential Wij . Inserting Eq. (4.126) into
Eq. (4.140c), we obtain

Ṽij = Wij+FPz=0�
−1
R [rz(∂iṼ ∂j Ṽ−

1

2
δij∂kṼ ∂kṼ )]−c

4

4
(∂iφj+∂jφi−δij∂ρφρ)+O(2)

(4.146)
Since �Wij = −4πGσij − ∂iV ∂jV + 1

2δij∂kV ∂kV , we can write

Ṽij = �−1R (−4πGσij − ∂iV ∂jV +
1

2
δij∂kV ∂kV )

+ FPz=0�
−1
R [rz(∂iṼ ∂j Ṽ −

1

2
δij∂kṼ ∂kṼ )]− c4

4
(∂iφj + ∂jφi − δij∂ρφρ) +O(2)

(4.147)
Since Ṽ = V (M)+O(2), we can replace the exterior potential Ṽ by the multipole
expansion of its corresponding interior potential V . Thus, we can rewrite Eq.
(4.147)

Ṽij = �−1R (−4πGσij)− (Zij −
1

2
δijZkk)− c4

4
(∂iφj + ∂jφi − δij∂ρφρ) +O(2)

(4.148)
where we have defined

Zij := �−1R (∂iV ∂jV )− FPz=0�
−1
R [rz(∂iV

(M)∂jV
(M))] (4.149)

Since the first term in Eq. (4.149) is regular at r = 0, we can write Eq. (4.149)
in the following form

Zij = FPz=0�
−1
R [rz(∂iV ∂jV − ∂iV (M)∂jV

(M))] (4.150)

The convenience of writing Zij in this form is that now we can multipole expand
Zij , such that

Z
(M)
ij =

∞∑
l=0

(−1)l

l!
∂L[

1

r
ZijL(t− r

c
)] (4.151)

where

ZijL = − 1

4π
FPz=0

∫
d3y|y|z ŷL

∫ 1

−1
daδl(a)(∂iV ∂jV−∂iV (M)∂jV

(M))(y, t+a
|y|
c

)

(4.152)
From Eq. (4.144a) and Eq. (4.145a), one can compute that the multipole
expansion of V has the form

V (M) =
∑

n̂Kr
−mf(t+ (a− 1)

|y|
c

) (4.153)
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where K is some multi-index, m is an integer, and f is some function. One can
then insert Eq. (4.153) into the integral Eq. (4.152) and obtain

FPz=0

∫
d3y|y|z ŷL

∫ 1

−1
daδl(a)(∂iV

(M)∂jV
(M))(y, t+ a

|y|
c

)

=
∑

n̂K′g(t)FPz=0

∫ ∞
0

d|y||y|z+n
(4.154)

Let us define

I1 =

∫ ∞
X

d|y||y|z+n (4.155a)

I2 =

∫ X

0

d|y||y|z+n (4.155b)

For I1, we choose the complex number z, such that Re(z) +n+ 1 < 0. One can
check that

I1 =
1

z + n+ 1
|X|z+n+1 (4.156)

Similarly, for I2, we choose the complex number z, such that Re(z) +n+ 1 > 0.
We then obtain

I2 = − 1

z + n+ 1
|X|z+n+1 (4.157)

Therefore, at z = 0, by analytic continuation, we obtain

FPz=0

∫ ∞
0

d|y||y|z+n = 0 (4.158)

From Eq. (4.152), we then have

ZijL = FPz=0

∫
d3y|y|z ŷL

∫ 1

−1
daδl(a)(∂iV ∂jV )(y, t+ a

|y|
c

) (4.159)

Inserting Eq. (4.151) into Eq. (4.148), we obtain

Ṽij = G

∞∑
l=0

(−1)l

l!
∂L[

1

r
WijL(t− r

c
)]− c

4

4
(∂iφj +∂jφi− δij∂ρφρ)+O(2) (4.160)

where

WijL(t) = FPz=0

∫
d3y|y|z ŷL

∫ 1

−1
daδl(a)[σij+

1

4πG
(∂iV ∂jV−

1

2
∂kV ∂kV )](y, t+a

|y|
c

)

(4.161)
and

W̃ij = W
(M)
ij − c4

4
(∂iφj + ∂jφi − δij∂ρφρ) +O(2) (4.162)
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where

W
(M)
ij = G

∞∑
l=0

(−1)l

l!
∂L[

1

r
WijL(t− r

c
)]

− FPz=0�
−1
R [rz(∂iV

(M)∂jV
(M) − 1

2
δij∂kV

(M)∂kV
(M))]

(4.163)

We have related all the exterior potentials, i.e. Ṽ , Ṽi, and W̃ij , to the multipole

expansion of the interior potentials, i.e. V (M), V
(M)
i , and W

(M)
ij in Eq. (4.142),

Eq. (4.143), and Eq. (4.162), respectively. We have also obtained the solution
for Einstein’s equation in the interior zone Di (Eq. (4.117)) and in the exterior
zone De (Eq. (4.127)). We have also explicitly computed the form of the non-
linear term Λ̄µν in Eq. (4.111), Eq. (4.112), and Eq. (4.113). Inserting Eq.
(4.142), Eq. (4.143), and Eq. (4.162) into Eq. (4.111), we obtain

Λ̄00(Ṽ , Ṽi, W̃ij) = Λ̄00(V (M), V
(M)
i ,W

(M)
ij )− 28

c3
∂i∂tφ

0∂iV
(M)

+
2

c6
[4c3∂iφ

0∂t∂iV
(M) + 12(−c

3

2
∂i∂jφ

0∂jV
(M)
i +

c6

16
∂i∂jφ

0∂i∂jφ
0)

+ 4(−c
3

2
∂i∂jφ

0∂iV
(M)
j +

c6

16
∂i∂jφ

0∂i∂jφ
0)− 2c3∂iV

(M)∂i∂tφ
0

+ 2c4(∂iφj + ∂jφi − δij(
1

c
∂tφ

0 + ∂kφk))∂i∂jV
(M)

− 4c4∂iV
(M)(−∂i∂kφk −

3

c
∂i∂tφ

0)] +O(8)

(4.164)
Rearranging the terms in Eq. (4.164) and using �V (M) = 4V (M) + O(2), we
have

Λ̄00(Ṽ , Ṽi, W̃ij) = Λ̄00(V (M), V
(M)
i ,W

(M)
ij )− 8

c3
∂i∂tφ

0∂iV
(M)

+
8

c3
∂iφ

0∂i∂tV
(M) − 16

c3
∂iV

(M)
j ∂i∂jφ

0

+ 2∂i∂jφ
0∂i∂jφ

0 +
8

c2
∂iφj∂i∂jV

(M)

+
8

c2
∂iV

(M)∂i∂jφj +O(8)

(4.165)

Similarly, one can simply check that

Λ̄0i(Ṽ , Ṽi, W̃ij) = Λ̄0i(V (M), V
(M)
i ,W

(M)
ij ) +O(7) (4.166a)

Λ̄ij(Ṽ , Ṽi, W̃ij) = Λ̄ij(V (M), V
(M)
i ,W

(M)
ij ) +O(8) (4.166b)

Now we claim, using Eq. (4.165) and Eq. (4.166),

Λ̄µν(Ṽ , Ṽi, W̃ij) = Λ̄µν(V (M), V
(M)
i ,W

(M)
ij ) + �Σ′µν +O(8, 7, 8) (4.167)
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where

Σ′00 = − 4

c3
(V (M)∂tφ

0 − ∂tV (M)φ0 − c∂iV (M)φi − cV (M)∂iφi)−
8

c3
V

(M)
i ∂iφ

0 + ∂iφ
0∂iφ

0

(4.168a)

Σ′0i = 0 (4.168b)

Σ′ij = 0 (4.168c)

To prove Eq. (4.167), one can easily check, for two functions f and g,

�(fg) = (�f)g + f(�g) + 2∂jf∂jg +O(2) (4.169)

However, one should notice that �V (M) = 0 and �V (M)
i = 0, since the multipole

expansion is evaluated outside the source. From Eq. (4.135), one can easily
see that �φµ = O(7, 8). Therefore, one can check that �Σµν gives the exact
expression in Eq. (4.165). One can also check that Σ′µν defined in Eq. (4.168)
is the same as Σµν that we have defined in Eq. (4.139). In the overlapping zone
Dm, we have the canonical field hµνcan(x) relates to the internal field hµν(x) by
Eq. (4.137). Inserting Eq. (4.167) into Eq. (4.127) and comparing with Eq.
(4.117), we have

Ghµν(1)can(x) = �−1R (−16πG

c4
ḡTµν + Λ̄µν(V, Vi,Wij))

− FPz=0�
−1
R [rzΛ̄µν(V (M), V

(M)
i ,W

(M)
ij )] + Φµν +O(7, 7, 7)

(4.170)
where we have defined Φµν in Eq. (4.138). Since the first term on the right
hand side of Eq. (4.170) is regular at r = 0, we can rewrite Eq. (4.170) as

Ghµν(1)can(x) = FPz=0�
−1
R [rz(−16πG

c4
ḡTµν + Λ̄µν(V, Vi,Wij)

− Λ̄µν(V (M), V
(M)
i ,W

(M)
ij ))] + Φµν +O(7, 7, 7)

(4.171)

One should recall that, as we discussed in Section 4.2, the linearized field hµν(1)can
is a function of two set of functions ML and SL. We can multipole expand Eq.
(4.171), such that,

Ghµν(1)can[M,S] = −4G

c4

∞∑
l=0

(−1)l

l!
∂L[

1

r
PµνL (t− r

c
)] + Φµν +O(7, 7, 7) (4.172)

where

PµνL (t) = FPz=0

∫
d3y|y|z

∫ 1

−1
daŷLδl(a)(pµν

− c4

16πG
Λ̄µν(V (M), V

(M)
i ,W

(M)
ij )))(y, t+ a

|y|
c

)

(4.173)

The new source pµν is defined as

pµν(V, Vi,Wij) = −ḡ(V,W )Tµν +
c4

16πG
Λ̄µν(V, Vi,Wij) (4.174)
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As we have discussed in Eq. (4.152), the integral of Λ̄µν(V (M), V
(M)
i ,W

(M)
ij ) is

proportional to
∑
n̂Kg(t)FPz=0

∫∞
0
d|y||y|z+n, and, therefore, vanishes due to

analytic continuation. We then have

PµνL (t) = FPz=0

∫
d3y|y|z

∫ 1

−1
daŷLδl(a)pµν(y, t+ a

|y|
c

) (4.175)

Eq. (4.172) is an equation that relates the two set of functions ML and SL to
the internal potentials V , Vi, and Wij . One should be aware that

∂µp
µν = O(3, 4) (4.176)

4.6 Relation Between Source Moments and In-
terior Potentials

In this section, we will explicitly write the multipole moments of the source
in terms of the interior potentials. The process of solving Eq. (4.175) is very
similar to the process of finding Einstein’s equation in the exterior zone, which
we discussed in detail in Section 4.2. It is also thoroughly discussed in [12].
First, we define

Pµν =
4G

c4

∞∑
l=0

(−1)l

l!
∂L[

1

r
PµνL (t− r

c
)] (4.177)

and

QL(t) = FPz=0

∫
d3y|y|z

∫ 1

−1
daŷLδl(a)p00(y, t+ a

|y|
c

) (4.178a)

KiL(t) = FPz=0

∫
d3y|y|z

∫ 1

−1
daŷLδl(a)p0i(y, t+ a

|y|
c

) (4.178b)

LijL(t) = FPz=0

∫
d3y|y|z

∫ 1

−1
daŷLδl(a)pij(y, t+ a

|y|
c

) (4.178c)

We can then decompose KiL and LijL into irreducible representations of the
rotation Lie group. This process is done in Section 4.2. We write the result as
below [12]. Using Eq. (4.4) and Eq. (4.5), we have

KiL = K
(+1)
iL +

l

l + 1
εai〈ilK

(0)
L−1〉a +

2l − 1

2l + 1
δi〈ilK

(−1)
L−1〉 (4.179)

where

K
(+1)
L+1 (t) = FPz=0

∫
d3y|y|z

∫ 1

−1
daδl(a)ŷ〈Lpil+1〉0(y, t+ a

|y|
c

) (4.180a)

K
(0)
L (t) = FPz=0

∫
d3y|y|z

∫ 1

−1
daδl(a)εab〈il ŷL−1〉bp

0a(y, t+ a
|y|
c

) (4.180b)

K
(−1)
L−1 (t) = FPz=0

∫
d3y|y|z

∫ 1

−1
daδl(a)ŷL−1ap

0a(y, t+ a
|y|
c

) (4.180c)
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Similarly, from Eq. (4.6) and Eq. (4.7), we have

LijL = L
(+2)
ijL + STFijSTFL(

2l

l + 2
εaiilL

(+1)
L−1ja

+
6l(2l − 1)

(l + 1)(2l + 3)
δiilL

(0)
L−1j +

2(l − 1)(2l − 1)

(l + 1)(2l + 1)
εaiil−1

δjilL
(−1)
L−2a

+
2l − 3

2l + 1
δiil−1

δjilL
(−2)
L−2 ) + δijL̄L

(4.181)
where

L
(+2)
L+2 (t) = FPz=0

∫
d3y|y|z

∫ 1

−1
daδl(a)ŷ〈Lp̂il+1il+2〉(y, t+ a

|y|
c

) (4.182a)

L
(+1)
L+1 (t) = FPz=0

∫
d3y|y|z

∫ 1

−1
daδl(a)εab〈il+1

ŷL−1|b|p̂il〉a(y, t+ a
|y|
c

)

(4.182b)

L
(0)
L (t) = FPz=0

∫
d3y|y|z

∫ 1

−1
daδl(a)ŷa〈L−1p̂il〉a(y, t+ a

|y|
c

) (4.182c)

L
(−1)
L−1 (t) = FPz=0

∫
d3y|y|z

∫ 1

−1
daδl(a)εab〈il−1

ŷL−2〉bcp̂ca(y, t+ a
|y|
c

)

(4.182d)

L
(−2)
L−2 (t) = FPz=0

∫
d3y|y|z

∫ 1

−1
daδl(a)ŷabL−2p̂ab(y, t+ a

|y|
c

) (4.182e)

L̄L(t) =
1

3
FPz=0

∫
d3y|y|z

∫ 1

−1
daδl(a)ŷLpaa(y, t+ a

|y|
c

) (4.182f)

One should recall that we have defined p̂ij = p〈ij〉. With the decomposition of
KiL(t) and LijL in Eq. (4.179) and Eq. (4.181) respectively, one can decompose
Pµν and write Eq. (4.177) in the following form

P00 =
∑
l≥0

∂L(r−1AL) (4.183)

P0i =
∑
l≥0

∂iL(r−1BL) +
∑
l≥1

∂L−1(r−1CiL−1) +
∑
l≥1

εiba∂bL−1(r−1DL−1a)

(4.184)

Pij =
∑
l≥0

[∂ijL(r−1EL) + δij∂L(r−1FL)]

+
∑
l≥1

[∂L−1(i(r
−1Gj)L−1) + εab(i∂j)aL−1(r−1HbL−1)]

+
∑
l≥2

[∂L−2(r−1IijL−2) + ∂aL−2(r−1εab(iJj)bL−2)]

(4.185)
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One can immediately see that

AL =
4G

c4
(−1)l

l!
QL (4.186)

We have calculated the functions BL, CL, and DL in Eq. (4.55). However, due

to the factor (−1)l
l! in Eq. (4.177), one should be careful about the coefficient in

front of each term. We have

BL = −4G

c4
(−1)l

l!

2l + 1

(l + 1)(2l + 3)
K

(−1)
L (4.187a)

CL =
4G

c4
(−1)l

(l − 1)!
[−K(+1)

L +
1

(l + 1)(2l + 3)c2
K̈

(−1)
L ] (4.187b)

DL =
4G

c4
(−1)ll

(l + 1)!
K

(0)
L (4.187c)

Using the same method, we can compute the terms in Pij [12]

EL =
4G

c4
(−1)l

(l + 2)!

2l + 1

2l + 5
L
(−2)
L (4.188a)

FL =
4G

c4
(−1)l

l!
[L̄L −

2l(2l − 1)

(l + 1)(2l + 3)
L
(0)
L −

2l + 1

(l + 1)(l + 2)(2l + 3)(2l + 5)c2
L̈
(−2)
L ]

(4.188b)

GL =
4G

c4
(−1)l

l!
[

6l(2l − 1)

(l + 1)(2l + 3)
L
(0)
L −

2l(2l + 1)

(l + 1)(l + 2)(2l + 3)(2l + 5)c2
L̈
(−2)
L ]

(4.188c)

HL =− 4G

c4
(−1)l

l!

2l(2l + 1)

(l + 1)2(l + 2)(2l + 3)
L
(−1)
L (4.188d)

IL =
4G

c4
(−1)l

l!
[l(l − 1)L

(+2)
L − 6l(l − 1)

(l + 1)(2l + 3)c2
L
(0)
L

+
l(l − 1)

(l + 1)(l + 2)(2l + 3)(2l + 5)c4
d4

dt4
L
(−2)
L ]

(4.188e)

JL =
4G

c4
(−1)l

l!
[−2l(l − 1)

l + 1
L
(+1)
L +

2l(l − 1)(2l + 1)

(l + 1)(l + 2)(2l + 1)(2l + 3)c2
L̈
(−1)
L ]

(4.188f)

Following the process in Section 4.2, we have to determine the constraints on
functions AL to JL using the conservation law of the stress-energy tensor. One
should recall the new source pµν obeys Eq. (4.176), i.e. ∂µp

µν = O(3, 4). Let’s
compute

d

cdt
P 0µ
L (t) =

d

cdt
[FPz=0

∫
d3y|y|z

∫ 1

−1
daŷLδl(a)p0µ(y, t+ a

|y|
c

)] (4.189)
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Inserting Eq. (4.176) into Eq. (4.189), we have

d

cdt
P 0µ
L (t) = −FPz=0

∫
d3y|y|z

∫ 1

−1
daŷLδl(a)∂ip

iµ(y, t+ a
|y|
c

) +O(3, 4)

(4.190)
One should be careful that

d

dyi
piµ = ∂ip

iµ +
a

c
ni
d

dt
piµ (4.191)

where we have used d|y|
dyi = ni. Inserting Eq. (4.191) into Eq. (4.190), we obtain

d

cdt
P 0µ
L (t) =− FPz=0

∫
d3y|y|z

∫ 1

−1
daŷLδl(a)

d

dyi
piµ(y, t+ a

|y|
c

)

+ FPz=0

∫
d3y|y|z

∫ 1

−1
daniŷLδl(a)a

d

dt
piµ(y, t+ a

|y|
c

) +O(3, 4)

(4.192)
Now, we notice that

d

da
δa+1(a) = −(2l + 3)δl(a)a (4.193)

Therefore, for the first term on the right hand side of Eq. (4.192), we can
integrate by parts with regard to yi and, for the second term on the right hand
side of Eq. (4.192), we can integrate by parts with respect to a. We, thus, yield

d

cdt
P 0µ
L (t) = FPz=0

∫
d3y

d

dyi
(|y|z ŷL)

∫ 1

−1
daδl(a)piµ(y, t+ a

|y|
c

)

+
1

2l + 3
FPz=0

∫
d3y|y|z

∫ 1

−1
daniŷLδl+1(a)

d

da
[
d

cdt
piµ(y, t+ a

|y|
c

)]

+O(3, 4)
(4.194)

We can explicitly compute the derivatives inside the integral. We have

d

dyi
(|y|ŷL) = zŷL|y|z−1ni + |y|z

l∑
m=1

δi〈im ŷL/m〉 (4.195)

and
d

da

d

cdt
piµ(y, t+ a

|y|
c

) = |y|( d

cdt
)2piµ(y, t+ a

|y|
c

) (4.196)
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where we have used c
|y|

d
dap

iµ(y, t + a |y|c ) = d
dtp

iµ(y, t + a |y|c ) in Eq. (4.196).

Inserting Eq. (4.195) and Eq. (4.194) into Eq. (4.194) gives

d

cdt
P 0µ
L (t) = FPz=0[z

∫
d3yŷLyi|y|z−2

∫ 1

−1
daδl(a)piµ(y, t+ a

|y|
c

)]

+ lFPz=0

∫
d3y|y|z

∫ 1

−1
daδl(a)ŷ〈L−1p

µ
il〉(y, t+ a

|y|
c

)

+
1

2l + 3
FPz=0

∫
d3y|y|z

∫ 1

−1
dayiŷLδl+1(a)(

d

cdt
)2piµ(y, t+ a

|y|
c

)

+O(3, 4)
(4.197)

Using the definition of PµνL in Eq. (4.175), we can rewrite Eq. (4.197)

d

cdt
P 0µ
L (t) = lSTFLP

µil
L−1 +

1

2l + 3
(
d

cdt
)2P iµiL

+ FPz=0[z

∫
d3yŷLyi|y|z−2

∫ 1

−1
daδl(a)piµ(y, t+ a

|y|
c

)] +O(3, 4)

(4.198)
Now we will assume

FPz=0[z

∫
d3yŷLyi|y|z−2

∫ 1

−1
daδl(a)piµ(y, t+ a

|y|
c

)] = 0 (4.199)

This arises from the fact that [4]

FPz=0[

∫
d3yŷL|y|z+a0(|y| − |x1|)a1 · · · (|y| − |xn|)an ] = 0 (4.200)

for any integers a0, · · · , an that obey
∑n
i=0 ai is even. Full proof of this lemma

can be found in [4]. Therefore, Eq. (4.198) reduces to

d

cdt
P 0µ
L (t) = lSTFLP

µil
L−1 +

1

2l + 3
(
d

cdt
)2P iµiL +O(3, 4) (4.201)

Let us recalculate the constraints arise from Eq. (4.62) and Eq. (4.64). In this
case

CL +
1

c
Q̇L +

1

c2
B̈L =

4G

c4
(−1)l

l!
(−lK(+1)

L − 1

(2l + 3)c2
K̈

(−1)
L +

1

c
Q̇L) (4.202)

Inserting Eq. (4.178a), Eq. (4.180a), and Eq. (4.180c) into Eq. (4.202) gives

CL +
1

c
Q̇L +

1

c2
B̈L =

4G

c4
(−1)l

l!
[FPz=0

∫
d3y|y|z ŷL

∫ 1

−1
daδl(a)

d

cdt
p00(y, t+ a

|y|
c

)

− lFPz=0

∫
d3y|y|z ŷL

∫ 1

−1
daδl(a)ŷ〈L−1p

0
il〉(y, t+ a

|y|
c

)

− 1

2l + 3
FPz=0

∫
d3y|y|z

∫ 1

−1
daŷLyaδl+1(a)(

d

cdt
)2p0a(y, t+ a

|y|
c

)]

(4.203)
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One can easily check that Eq. (4.203) is exactly the ’0’ component of Eq.
(4.201). Therefore, we have

CL +Q
(1)
L + B̈

(2)
L = O(7) (4.204)

Using the ’i’ component of Eq. (4.201), we obtain

GL + 2B
(1)
L + 2E

(2)
L + 2FL = O(8) (4.205a)

IL −A(2)
L − 2B

(3)
L − E

(4)
L − F

(2)
L = O(8) (4.205b)

JL + 2D
(1)
L +H

(2)
L = O(8) (4.205c)

Similar to what we have done in Section 4.2, we define the following new vari-
ables

IL(t) :=
(−1)lc2l!

4
(AL + 2B

(1)
L + E

(2)
L + FL) (4.206a)

JL(t) :=
(−1)lc3(l + 1)!

4l
(−DL −

1

2
H

(1)
L ) (4.206b)

and

γL(t) := BL +
1

2
E

(1)
L (4.207a)

θL(t) :=
1

2
EL (4.207b)

φL(t) := −B(1)
L − E

(2)
L − FL (4.207c)

ψL(t) :=
1

2
HL (4.207d)

Therefore, we obtain (see Eq. (4.70) to Eq. (4.79))

Pµν = Pµνcan +Kµν(γ, θ, φ, ψ) (4.208)

where Pµνcan has the same form as Eq. (4.77) to Eq. (4.79) with M̃L and S̃L
replaced by IL and JL respectively and Kµν has the same form as Eq. (4.74)-
Eq. (4.76). One should also note that the O(7) and O(8) terms in Eq. (4.204)
and Eq. (4.205) can be absorbed into the O(7, 7, 7) term in Eq. (4.172). Now,
we choose the gauge, such that Φµν = Kµν + O(0, 7, 8), we can rewrite Eq.
(4.172)

Ghµν(1)can[M,S] = hµν(1)can[I,J ] +O(7, 7, 7) (4.209)

One can immediately see

GML(t) = IL(t) +O(4) (4.210a)

GSL(t) = JL(t) +O(4) (4.210b)
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From the definition of IL(t) and JL(t) in Eq. (4.206), we can write

IL(t) =
1

c2
FPz=0

∫
d3y|y|z

∫ 1

−1
da[δl(a)ŷL(p00 + pii)

− 4(2l + 1)

(l + 1)(2l + 3)
δl+1(a)ŷiL

∂

c∂t
p0i

+
2(2l + 1)

(l + 1)(l + 2)(2l + 5)
δl+2(a)ŷijL(

∂

c∂t
)2pij ](y, t+ a

|y|
c

)

(4.211a)

JL(t) =
1

c
FPz=0

∫
d3y|y|z

∫ 1

−1
da[δl(a)εab〈il ŷL−1〉p

0b

− 2l + 1

(l + 2)(2l + 3)
δl+1(a)εab〈il ŷL−1〉ac

∂

c∂t
pbc](y, t+ a

|y|
c

)

(4.211b)
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Chapter 5

Conclusion

This dissertation provides a general review of the dynamics of a compact two-
body system and derives explicit expressions of the multipole moments in terms
of the stress-energy tensor of a gravitating source at 2PN correction. In dis-
cussing the dynamics, we have transferred the motion of a two-body system into
the motion of an effective one-body system, by the means of canonical trans-
formation. By matching the effective action S̃ to the real action S, we have
obtained an effective metric ds̃2, which is a deformation of the Schwarzschild
metric with mass M = m1 +m2. From this metric, we have derived expressions
of the radius and the angular momentum of the effective particle moving in the
ISCO of this metric. Finally, for completeness, we have computed the explicit
canonical transformation that matches the real problem to the effective prob-
lem at 2PN correction. This effective one-body approach illustrates a way to
reduce the complicated relativistic two-body problem to a rather simple effec-
tive one-body problem at 2PN correction. However, further work can be done
to extend this approach to higher-order correction. Furthermore, this approach
may also be extended by adding the electromagnetic interaction and the spin
to the two-body system.
We have then discussed the fields and the related potentials of a gravitating
source. We have defined the field hµν and have computed Einstein’s equation
in the harmonic coordinate. Together with the harmonic condition, we have
derived the solution for Einstein’s equation in both interior and exterior zones.
The solutions are represented by the multipole expansion and are decomposed
into the irreducible representations of the SO(3) rotation group. We have iden-
tified the two sets of functions ML and SL to be the mass multipole moments
and the current multipole moments respectively. By matching the solutions of
Einstein’s equation in the overlapping zone, we have expressed the multipole
moments in terms of the stress-energy tensor of the gravitating source. These
expressions are mathematically well defined. They are significant in deducing
the explicit gravitational waveform of a given source and computing the energy
associated. Further work has been done in applying these expressions to the
inspiralling compact binaries [1].
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Appendix A

Decomposition of the
Product of Representations

In this appendix, we give a proof of Eq. (4.4), copied as below

UiV̂L = Â
(+1)
iL +

l

l + 1
εai〈ilÂ

(0)
L−1〉a +

2l − 1

2l + 1
δi〈ilÂ

(−1)
L−1〉 (A.1)

where

Â
(+1)
iL = U〈il V̂iL−1〉 (A.2a)

Â
(0)
L−1a = UpV̂q〈L−1εa〉pq (A.2b)

Â
(−1)
L−1 = UpV̂pL−1 (A.2c)

In order to write the following derivation conveniently, we introduce a notation
for indices, where, for a positive integer m ≤ l, UL/im=Ui1...im−1im+1...il

and, for

distinct positive integers m,n ≤ l,

UL/(imin) =

{
Ui1...im−1im+1...in−1in+1...il if m < n

Ui1...in−1in+1...im−1im+1...il if m > n
(A.3)

For a STF tensor V̂L, we notice that if the tensor has repeated indices, it must
be zero, i.e.

V̂bbL−2 = 0 (A.4)

This is simply because we have removed all the traces of the tensor, therefore,
any trace of a STF tensor must be zero.

We can then evaluate each of the term in Eq. (A.1) by Eq. (4.1). For Â
(+1)
iL ,

we have
Â

(+1)
iL = U(il V̂iL−1) + al+1

1 δ(i1iK
(+1)
i2...il)bb

(A.5)

where
K

(+1)
i2...ilbb

= U(bV̂bi2...il) :=
∑

all permutations

Uia1
V̂ia2 ...ial+1

(A.6)
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However, from Eq. (A.4), we notice that among all (l + 1)! permutations,
only 2(l − 1)! ones are non-zero. We also notice that, since V̂L is symmetric,
V̂L = V̂ia1

...ial
. Therefore, we obtain

K
(+1)
i2...ilbb

=
2

l + 1
UbV̂bi2...il (A.7)

Now we consider the last term in Eq. (A.5). One should be careful with the
position of the i index. Since V̂L is totally symmetric, once the indices in Kro-
necker Delta are chosen, there will be 2(l− 1)! numerically identical expressions

of K
(+1)
ia1

...ial−1
bb. Therefore, we can write the last term in Eq. (A.5) as

al+1
1 δ(i1iK

(+1)
i2...il)bb

=

l∑
m=1

2

l + 1

2(l − 1)!

(l + 1)!
al+1
1 δiimUbV̂bL/im

+

l∑
c=1

∑
d6=c

2

l + 1

(l − 1)!

(l + 1)!
al+1
1 δicidUbV̂biL/(icid)

(A.8)

There is an extra factor of 2 in the first expression on the RHS of Eq. (A.8)
because δiim = δimi. However, in the second term, we already include both δicid
and δidic through the double sum. Similar discussion applies for the first term
on the RHS of Eq. (A.5). We then have

U(il V̂iL−1) =
1

l + 1
UiV̂L +

l∑
m=1

1

l + 1
Uim V̂iL/im (A.9)

For the second term on the right hand side of Eq. (A.1), we firstly consider

Â
(0)
L−1a. From Eq. (4.1), we have

Â
(0)
L−1a = UpV̂q(L−1εa)pq + al1Upδ(ail−1

K
(0)
L−2)bbp (A.10)

where

K
(0)
L−2bbp = V̂q(L−2bεb)pq =

2

l
V̂L−2bqεbpq (A.11)

The extra factor of 2
l in the last term of Eq. (A.11) comes from 2(l−2)! non-zero

permutations among l! permutations, where we have applied the same discussion
as what we do in Eq. (A.7). Inserting Eq. (A.11) into Eq. (A.10) yields

Â
(0)
L−1a =

1

l
UpV̂qL−1εapq +

1

l

l−1∑
m=1

UpεimpqV̂aqL−1/im

+
4

l2(l − 1)
al1Up

l−1∑
m=1

δaim V̂L−1/imbqεbqp

+
4

l2(l − 1)
al1Up

l−1∑
c=1

∑
d6=c

δicid V̂L−1/(icid)abqεbpq

(A.12)
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One can easily check that the last two terms in Eq. (A.12) is zero, because εbpq
is totally anti-symmetric but V̂L−1/imbq and V̂L−1/(icid)abq is symmetric with
respect to indices b and q. Inserting Eq. (A.12) into the second term on the
RHS of Eq. (A.1) yields

l

l + 1
εai〈ilÂ

(0)
L−1〉a = I1 + I2 (A.13)

where

I1 =
1

l + 1
εai〈il V̂L−1〉qUpεapq (A.14a)

I2 =
1

l + 1

l−1∑
m=1

εai〈ilεim|pq|V̂L−1/im〉aqUp (A.14b)

Using Eq. (4.1) and the discussion used in Eq. (A.7), we obtain

I1 =
1

l + 1
εai(il V̂L−1)qUpεapq +

1

l + 1

2

l
al1εaibεapqδ(ilil−1

V̂L−2)qbUp (A.15)

When expanding I2, we will obtain a term which contains εai(bεb|pq|V̂L−2)qa.

One can easily notice that either εaibεim|pq|V̂L−2/imbqa or εaiimεb|pq|V̂L−2/imbqa
are zero due to the properties of Levi-Civita tensor. Therefore, we obtain

εai(bεb|pq|V̂L−2)qa =
2

l(l − 1)
εaibεb|pq|V̂L−2qa (A.16)

From Eq. (A.16), we have

I2 =

l−1∑
m=1

1

l + 1
εai(ilεil−1|pq|V̂L−2)aqUp

+

l−1∑
m=1

1

l + 1

2

l(l − 1)
al1εaibεbpqδ(ilil−1

V̂L−2)qaUp

(A.17)

We notice that the dummy index m disappears in Eq. (A.17), therefore, we can
simplify Eq. (A.17)

I2 =
l − 1

l + 1
εai(ilεil−1|pq|V̂L−2)aqUp +

1

l + 1

2

l
al1εaibεbpqδ(ilil−1

V̂L−2)qaUp (A.18)

By switching the indices a and b in the last term in Eq. (A.15), one can easily
see that the last term in Eq. (A.15) cancels with the last term in Eq. (A.18).
We can now simplify Eq, (A.13)

l

l + 1
εai〈ilÂ

(0)
L−1〉a =

1

l + 1
εai(ilVL−1)qUpεapq +

l − 1

l + 1
εai(ilεil−1|pq|V̂L−2)aqUp

(A.19)

65



We can further expand Eq. (A.19)

l

l + 1
εai〈ilÂ

(0)
L−1〉a =

1

(l + 1)l

l∑
m=1

εapqεaiim V̂L/imqUp

+
l − 1

l + 1

1

l(l − 1)

l∑
c=1

∑
d6=c

εaiicεpqid V̂L/(icid)aqUp

(A.20)

Recall the epsilon-delta identities, where εaijεapq = 2!δi[pδ
j
q] and εaijεbpq =

3!δa[bδ
i
pδ
j
q]. Therefore, we obtain

l

l + 1
εai〈ilÂ

(0)
L−1〉a =

1

l + 1
UiV̂L −

1

(l + 1)l

l∑
m=1

Uim V̂iL/im

+
1

(l + 1)l

l∑
c=1

∑
d6=c

[UiV̂L − Uic V̂iL/ic

+ δicid V̂ipL/(icid)Up − δiid V̂L/idUp]

(A.21)

Further simplifying Eq. (A.21) gives

l

l + 1
εai〈ilÂ

(0)
L−1〉a =

l

l + 1
UiV̂L −

1

l + 1

l∑
m=1

Uim V̂iL/im

+
1

(l + 1)l

l∑
c=1

∑
d6=c

δicid V̂ipL/(icid)Up −
l − 1

(l + 1)l

l∑
c=1

δiic V̂L/icUp

(A.22)

Now let us consider the last term in Eq. (A.1). From Eq. (A.2), it can be
written as

2l − 1

2l + 1
δi〈ilÂ

(−1)
L−1〉 =

2l − 1

2l + 1
δi〈il V̂L−1〉pUp (A.23)

Using Eq. (4.1), we obtain

2l − 1

2l + 1
δi〈ilÂ

(−1)
L−1〉 =

2l − 1

2l + 1
Upδi(il V̂L−1)p +

2l − 1

2l + 1

2

l
al1δibδ(ilil−1

V̂L−2)apUp

(A.24)
Further expanding Eq. (A.24) gives

2l − 1

2l + 1
δi〈ilÂ

(−1)
L−1〉 =

2l − 1

2l + 1

1

l

l∑
m=1

Upδiim V̂L/imp

+
2(2l − 1)

(2l + 1)l

1

l(l − 1)
al1

l∑
c=1

∑
d6=c

δicid V̂L/(icid)pUp

(A.25)
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We then insert Eq. (A.8), Eq. (A.9), Eq. (A.22), and Eq. (A.25) into Eq. (A.1)
and obtain

UiV̂L =UiV̂L

+ [
4

(l + 1)2l
al+1
1 − l − 1

(l + 1)l
+

2l − 1

(2l + 1)l
]

l∑
m=1

Upδiim V̂L/imp

+ [
2

(l + 1)2l
al+1
1 +

1

(l + 1)l
+

2(2l − 1)

(2l + 1)l2(l − 1)
al1]

l∑
c=1

∑
d6=c

δicid V̂L/(icid)pUp

(A.26)
From Eq. (4.3), for any integer p > 1, we can evaluate

ap1 =
−p(p− 1)

2(2p− 1)
(A.27)

Inserting Eq. (A.27) into Eq. (A.26), one can easily check

4

(l + 1)2l
al+1
1 − l − 1

(l + 1)l
+

2l − 1

(2l + 1)l
= 0 (A.28a)

2

(l + 1)2l
al+1
1 +

1

(l + 1)l
+

2(2l − 1)

(2l + 1)l2(l − 1)
al1 = 0 (A.28b)

Therefore, we have proved Eq. (A.1).
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Appendix B

Some Useful Equations and
Their Proofs

We here introduce a set of equations that are useful in finding the general
multipole expansion solution for the vacuum Einstein’s equation.

∂̂Lg(r) = n̂L(2r)l
∂l

∂(r2)l
g(r) (B.1)

4n̂L = −l(l + 1)r−2n̂L (B.2)

∂̂Lr
−k = (−1)l

(k + 2l − 2)!!

(k − 2)!!
(r−(k+l)n̂L) (B.3)

∂̂L(
G(t− r)

r
) = (−1)ln̂L

l∑
n=0

(l + n)!

2nn!(l − n)!

G(l−n)(t− r)
rn+1

(B.4)

where, in this appendix, G(n)(x) = dn

dxnG(x), We now give detail proofs to Eq.
(B.1) to Eq. (B.4).
To prove Eq. (B.1), one should notice that the function g(r) solely depends on
r and, therefore, use ∂img(r) = ∂imr∂rg(r). The left hand side of Eq. (B.1)
then becomes

∂̂Lg(r) = STFL[(

l∏
m=1

nim∂r)g(r)] (B.5)

where we have used ∂imr = nim . Now, one can easily check that Eq. (B.5) can
be further simplified

∂̂Lg(r) = x̂L(
1

r
∂r)

lg(r) (B.6)
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which is identical to Eq. (B.1).
In order to prove Eq. (B.2), one should notice that

∂snim =
1

r
(δims − nimns) (B.7a)

∂sns =
2

r
(B.7b)

We then rewrite the Laplace operator as 4 = ∂s∂s. Using Eq. (B.7a), one can
expand the left hand side of Eq. (B.2)

4n̂L = STFL[∂s(

l∑
m=0

1

r
δimsnL/m −

l

r
nsnL)] (B.8)

which can be further expanded

4n̂L = STFL[

l∑
m=0

(∂s
1

r
)nL/mδims +

l∑
m=0

∑
n 6=m

1

r
δims(∂snin)nL/(mn)

− (∂s
1

r
)lnsnL −

2l

r2
nL −

l

r
ns(∂snL)]

(B.9)

One should note that the second term on the right hand side of Eq. (B.9) gives

a term of 1
r2

∑l
m=0

∑
n 6=m δimsδinsnL/(mn), which is clearly zero since m and

n are distinct. Simplifying Eq. (B.9) using Eq. (B.7) gives exactly the same
equation as expressed in Eq. (B.2).
To prove Eq. (B.3), one can use Eq. (B.6) and let g(r) = r−k. Therefore, one
can directly find

∂̂Lr
−k = rln̂L(

1

r
∂r)

lr−k (B.10)

We therefore obtain

∂̂Lr
−k = (−1)l

(k + 2l − 2)!!

(k − 2)!!
(r−(k+l)n̂L) (B.11)

Finally, we use induction to prove Eq. (B.4). Using Eq. (B.6), one can find

∂̂L(
G(t− r)

r
) = n̂Lr

l(
1

r
∂r)

l(
G(t− r)

r
) (B.12)

Therefore, proving Eq. (B.4) is equivalent to proving

(
1

r
∂r)

l(
G(t− r)

r
) = (−1)l

l∑
n=0

(l + n)!

2nn!(l − n)!

G(l−n)(t− r)
rn+l+1

(B.13)

Now, we use induction to prove Eq. (B.13). One can easily see

(
1

r
∂r)(

G(t− r)
r

) = −1

r
(
G(1)(t− r)

r
+
G(t− r)

r2
) (B.14)
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Now, assuming Eq. (B.13) to be correct, we need to prove

(
1

r
∂r)

(l+1)(
G(t− r)

r
) = (−1)(l+1)

l+1∑
n=0

(l + n+ 1)!

2nn!(l − n+ 1)!

G(l−n+1)(t− r)
rn+l+2

(B.15)

The left hand side of Eq. (B.15) can be rewritten as

(
1

r
∂r)

(l+1)(
G(t− r)

r
) = −(

1

r
∂r)

l[
1

r
K(t− r)] (B.16)

where we have defined K(t− r) := −∂r(G(t−r)
r ). One can now apply Eq. (B.4)

to Eq. (B.16) and obtain

(
1

r
∂r)

(l+1)(
G(t− r)

r
) = (−1)(l+1)

l∑
n=0

(l + n)!

2nn!(l − n)!

K(l−n)(t− r)
rn+l+1

(B.17)

Recall that Leibniz formula gives (UV )(j) =
∑j
i=0

j!
i!(j−i)!U

(i)V (j−i). Applying

Leibniz formula to K(l−n)(t− r), we obtain

K(l−n)(t− r) =

l−n+1∑
i=0

(l − n+ 1)!

i!
G(i)(t− r)rn+i−l−2 (B.18)

Inserting Eq. (B.18) into Eq. (B.17) gives

(
1

r
∂r)

(l+1)(
G(t− r)

r
) = (−1)l+1

l∑
n=0

l−n+1∑
i=0

(l + n)!(l − n+ 1)

i!2nn!
G(i)(t− r)r−2l+i−3

(B.19)
By carefully analyzing Eq. (B.19), one can find that the coefficient for term

G(l−n+1)(t− r)r−l−n−2 is (−1)l 1
(l−n+1)!

∑n
k=0

(l+k)!(l−k+1)
2kk!

. Recall that

n∑
k=0

(l + k)!(l − k + 1)2n−k
n!

k!
= (l + n+ 1)! (B.20)

Therefore, the coefficient for G(l−n+1)(t − r)r−l−n−2 is (−1)l+1 (l+n+1)!
2nn!(l−n+1)! ,

which agrees with Eq. (B.4).
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