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Abstract

The quantum cosmology is a study of quantum theory of the universe. This
is especially important when we try to understand the initial state and early
stage of our universe. In this dissertation, we introduce the basic concept of the
quantum cosmology. Two most important approaches to the boundary value
problem are discussed. The relation between these two approaches and their
relation to the Chern-Simons state are explored. Then we introduce some new
development in this field. Among them, the idea of torsion and theory with
torsion is discussed in most details. Several new models with torsion both in
classical and quantum cosmology are explored.
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Chapter 1

Introduction

1.1 Classical to quantum cosmology

The Einstein’s theory of general relativity gives prediction of our universe to an
outstanding precision. Together with the FRW metric constitutes the classical
model of cosmology. However, this classical model does have its limitation,
and it becomes obvious when we’re trying to determine the initial state of the
universe. Hence, a quantum approach of cosmology is needed. The quantum
model of gravity is also very interesting from a particle physics perspective,
as gravity is the only fundamental forces that have not yet been successfully
quantized. Cosmology could provide a perfect and perhaps only laboratory for
quantum gravity.

So what does a good quantum cosmology model need? It should give a
wavefunction that describes the whole universe and this wavefunction need to
be interpreted to give actual physical predictions. The prediction made should
agree with the classical general relativity in the classical scale. It is worth
mention here that the classical general relativity is assumed to be torsion free.

Early attempts to quantize gravity can date back to 1930s where Rosenfeld
tried to apply quantum theory into gravitational field [2]. First milestone of
this subject is the Wheeler-Dewitt equation.

To derive Wheeler-Dewitt equation, one has to discuss the following La-
grangian:

L “

ż

αγ1{2pKijK
ij ´K2 `p3q Rqd3x (1.1)

where Kij is the second fundamental form. This is the classical Lagrangian
that is related to the dynamics of gravity. It should be noted that due to the
fact that gravity does not vanish outside an arbitrary large distance other than
in Minkowski spacetime, the second derivative in the Lagrangian affects the
energy. The energy term is given by:

E8 “

ż

8

αγ1{2γijpγik,j ´ γij,kqdS
k (1.2)
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This term is known as the canonical energy and this energy term makes gravity
very hard to quantize.

One could now represent the metric in the form of

gµν “

ˆ

´α2 ` βkβ
k βj

βi γij

˙

(1.3)

Then one can write momenta conjugate to α, β, γ as:

π “
δL

δα,0
“ 0 (1.4)

πi “
δL

δβi,0
“ 0 (1.5)

πij “
δL

δγij,0
“ ´γ1{2pKij ´ γijKq (1.6)

Note as equation 1.4 and 1.5 hold for all time, Bπ
Bx0 and Bπi

Bx0 must be 0. Therefore,
we have

H “ 0 (1.7)

and
X i “ 0 (1.8)

This means that in a Ricci-flat universe, both intrinsic and extrinsic curvature
vanish. Until this point, one have not yet quantise the gravity. Now one need
to change the Poisson brackets to commutators and gives:

πΨ “ 0 (1.9)

πiΨ “ 0 (1.10)

H Ψ “ 0 (1.11)

χiΨ “ 0 (1.12)

Then one can conclude that:

HΨ “ 0, Ψ:H “ 0 (1.13)

This is known as Wheeler-DeWitt equation. Explicitly one have

HΨ “ r´Gijkl
δ

δij

δ

δkl
´ h1{2p3R´ 2Ωq `HmattersΨ “ 0 (1.14)

with

Gijkl “
1

2
h´1{2philhjl ` hilhjk ´ hijhlkq (1.15)

One should note that the physical laws are not changed with the coordinate
system. Hence, the theory should be the same for any coordinate system. How-
ever, this is not easy to prove in the case of quantum gravity.[3] One way to
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achieve the invariance under coordinate transformation is through momentum
constraint:

HiΨ “ 2iDj
δΨ

δhij
`Hmatter

i Ψ “ 0 (1.16)

If the configurations only differ by a coordinate transformations in the three
surface, the wave function will be the same. If one change the coordinate by
xi Ñ xi ´ ξi, one have:

Ψrxi ´ ξis “ Ψrxis `

ż

d3xDpiξjq
δΨ

δhij
(1.17)

The change in Ψ then can be written as:

δΨ “ ´

ż

d3xξjDip
δΨ

δhij
q “

1

2i

ż

d3xξiH
1Ψ (1.18)

Therefore, one can see that any wavefunction that obeys the momentum con-
straint will be invariant under coordinate transformation.

Theoretically, Ψ contains all the information about one universe. However,
it is not easy to actually interpret and subsequently obtain information from
the wave-function. Mathematically, Wheeler-DeWitt equation is a second or-
der hyperbolic functional differential equation. Just like any other differential
equations, one need boundary condition or initial condition to determine the
explicit solution. Unlike other system, however, the boundary condition of a
universe can cause confusion, as we assume that nothing is outside the universe
and before universe.

Just like quantum field theory, path integral is a different approach towards
this issue other than canonical quantization. One can write the wave function
as:

Ψ “
ÿ

M

ż

DgµνDΦe´I (1.19)

The problem is the manifold of which it sums over is very hard to define in
practice. One should note that more complicated model are allowed here. The
one given here are only the simplest one. Explicitly one have:

Ψ “

ż

DNµ

ż

DhijΦδr 9N
µ ´ χµs∇χ expp´Irgµν ,Φsq (1.20)

where ∇χ is the Faddeev-Popov determinant. It can be shown that only if the
path integral is constructed invariant can it fit the Wheeler-DeWitt equation.
That is to say that this formulation will also be invariant under diffeomorphism.

The theoretical space where everything we discuss in is called superspace.
However, as superspace has infinite dimensions, it is very hard to analyse. In
classical cosmology, the trick to deal with this is to use the property of our
universe i.e. it is homogeneous and isotropic at large scale. Due to that reason,
one can first find a homogeneous and isotropic metric and then study the sur-
rounding perturbation. The same trick can be used in quantum case, one can
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reduce the degree of freedom to a finite number and suspend the matter fields.
This is call minisuperspace. An example is given as follows: consider a four
metric:

ds2 “ gµνdx
µdxν “ ´pN2 ´NiN

iqdt2 ` 2Nidx
idt` hijdx

idxj (1.21)

Now one can take this metric to be homogeneous thus N “ Nptq, and set N i

to be 0. Then one has:

ds2 “ ´N2ptqdt2 ` hijpx, tqdx
idxj (1.22)

Note here the three metric is homogeneous and described by finite number of
functions of t. Some examples are

1)Roberston-Wakler metric:

hijpx, tqdx
idxj “ a2ptqdr2 ` b2dΩ2

2 (1.23)

2)Bianchi-type metrics:

hijpx, tqdx
idxj “ a2ptqpeβqijσ

iσj (1.24)

where σi is the basis of one forms. However, there is still some difficulties that is
special to quantum theory. When we are setting everything we do not want to 0,
it violates the uncertainty principle. Thus, strictly speaking the minisuperspace
model is not an approximation of the full theory but as a toy model that only
shows part of the full theory that one want to study.

Now, let us go back to the metric that we are discussing. The Einstein action
is :

Srhij , N,N
is “

m2
p

16π

ż

dtd3xNh1{2rKijK
ij ´ k2 `3 R´ 2Λs (1.25)

Constrain it to minisuperspace gives:

Srqαptq, Nptqs “

ż 1

0

dtN r
1

2N2
fαβpqq 9q

α 9qβ ´ Upqqs (1.26)

This is not the only way to get the minisuperspace model. Another option
is to consider a metric that is not homogeneous but is of strict types.

1.2 Path Integral

Another way to obtain the wavefunction is through path integral. One should
note that the action is invariant under the transformation:

δηq
α “ ηptqtqα, Hu, δηpα “ ηptqtpα, Hu, δηN “ 9ηptq (1.27)

The change in action is then:

δS “ rηptqppα
BH

Bpα
´Hqs10 (1.28)
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Hence, as long as ηp0q “ 0 “ ηp1q, the action will be unchanged under the
transformation. This invariance can be broken by setting:

G ” 9N ´ χppα, q
α, Nq “ 0 (1.29)

where χ is a any function.
The path integral is then:

Ψpqα
2

q “

ż

DpαDq
αDNδrGs∆Ge

iSrp,q,Ns (1.30)

where ∆G is the Faddeev-Popov measure. The path integral is independent
of G because of the Faddeev-Popov measure. The boundary conditions are
qαp1q “ qα

2

at t=1 with pα and N free. Now let us consider the gauge 9N “ 0.
One have ∆G “ constant and subsequently:

Ψpqα
2

q “

ż

dN

ż

DpαDq
αeiS (1.31)

One advantage of using this formula is that one can evaluate the wavefunction
directly with it. First one need to rotate to Euclidean space-time with τ “ it.
Hence, one have:

Ψpqα
2

q “

ż

dN

ż

Dqα expp´Irqαpτq, N sq (1.32)

with

Irqαpτq, N s “

ż 1

0

dτN r
1

2N2
fαβpqq 9q

α 9qβ ` Upqqs (1.33)

One can call the Irqαpτq, N s as minisuperspace Euclidean action. The gravita-
tion part of this action is indefinite. Hence, the kinetic term is indefinite and
the potential

ş

2Λ ´3 R is not positive definite. Here we use the lowest order
semi-classical approximation. It is similar to WKB approximation in Wheeler-
DeWitt equation.

Now one can see providing that one is careful, the classical solution can be
the full solution to the theory. The lowest order semi-classical approximation
to the wave function is the lowest order wavefunction to the full theory.

The Wheeler-DeWitt equation is associated with a conserved current:

J “
i

2
p´Ψ∇Ψ˚ `Ψ˚∇Ψq (1.34)

One have:
∇ ¨ J “ 0 (1.35)

Similar to Klein-Gorden equation, the Wheeler-DeWitt equation can exert neg-
ative probabilities. One way to fix this is to use:

dP “ |Ψ|2dV (1.36)
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as the measure. However, this measure cause another problem, that is, it causes
confusion of the nature of time in quantum mechanics when trying to interpret
the result.

As mentioned at the very beginning, the prediction of quantum cosmology
must agree with classical cosmology in the classical regime. However, one might
ask when one can regard a quantum system as classical. The common require-
ments are:

1) The wavefunction must peak at one or more classical result.
2) The wavefunction interference should be very small.
Such requirements are not only for quantum cosmology but also for other

quantum mechanical systems too. In many other quantum mechanical system,
one can achieve this by construct the coherent states. This is not very easy in
quantum cosmology. The analogue wavefunction is:

Ψpqαq “ eiφpq
α
q expp´f2pqαqq (1.37)

where fpqαq “ 0. This function can only work at very simple case. It does not
arise very naturally and boundary conditions are needed. One should note if a
wavefunction can predict the classical solution, they usually peaked about an
entire history and provide a notion of time. In the above case, the notion of time
is provided by the affine parameter. In this sense, the notion of space-time are
only derived concepts. The most common wavefunction in quantum cosmology
are WKB wavefunction. Moreover, those which corresponds to classical space-
time are oscillatory wavefunction. The reason is that wave-functions which
can be regarded as predictions need to be peaked at certain configurations of
coordinate and momenta so that one can derive the classical solution from that
peak. Exponential function will not give a peak around certain configuration.
One example of possible wave-functions is the Wigner function. It can be proven
that a wavefunction with form e´I will indicate there is no relation between
momenta and coordinates and those with form eiS gives:

pα “
BS

Bqα
(1.38)

This equation is equivalent to the first integral of the equations of motion and
thus corresponds to a group of classical solutions. One should note that S is a
solution to the Hamilton-Jacobi equation.

Now let us explicitly verify this using a one-dimensional case. Let us consider
a generating function G0

p “
BG0

Bq
, q̃ “

BG0

Bp̃
(1.39)

Then a transformation can be defined as:

Ψ̃pp̃q “

ż

dqeiGpq,p̃qΨpqq (1.40)

One should note that G is defined as:

G0pq, p̃q “ qp̃` Spqq (1.41)
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where

p̃ “ p´
BS

Bq
, q̃ “ q (1.42)

and Ψ is defined as:
Ψpqq “ eiS (1.43)

Combining these equations, one can see that wavefunction has the form:

Ψ̃pp̃q “ δpp̃q `Opp̃2q (1.44)

Therefore it peaked at a configuration just as one needed.
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Chapter 2

Basic formulation of
Quantum Cosmology

Now we shall consider Lagrangian L “ l´2
p R` 1

2 pBµφq
2´V pφq. This is originally

considered in Vilenkin’s paper [4]. The wave function is then determined by the
three-metric hijand the scalar fields φ. In a close universe the wave function
would obey:

Hiψ “ 0, (2.1)

H0ψ “ 0, (2.2)

where

Hi “ 2iDj
δ

δhij
´ ihijφ,j

δ

δφ
, (2.3)

H0 “ ´l´2
p ∇2 ` h

1
2 r´l´2p3q

p R`
1

2
hijφ,iφ,j ` V s ” ´l

´2
p p∇2 ´ Uq (2.4)

∇2 “ Gijkl
δ

δhij

δ

δhkl
` γij

δ

δhij
`

1

2
l´2
p h´1{2 δ

2

δφ2
(2.5)

These were given by the paper mentioned above [4]. Using equation 2.4 and
equation 2.5, the Wheeler-DeWitt equation can be given in an analogous form
to Klein-Gordon equation:

p∇2 ´ Uqψ “ 0 (2.6)

2.1 General Behaviour of the solutions

One can now compare equation 2.6 with a one-dimensional equation

r
d2

dx2
` UpxqsΨpxq “ 0 (2.7)

In the one-dimensional case, one can see that the wavefunction is oscillatory in
the region U ! 0. The case in 2.6 is more complicated.
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One can divide the variables into two sets. One time-like variable and a set
of space-like variables. Equation 2.6 then can be written as:

r
B2

Bq02 ´
B2

Bq2
` Upq0,qqsΨpqq “ 0 (2.8)

Assuming one has a space-like surface U in the mini-superspace, one can
perform a rotation in a local region so that the surface depends only on time-
like coordinate. One can then separate the variables and use the result in the
one-dimensional case. Similar technique can be used to a time-like surface.

Path integral can also be used to analyse the general behaviour of wavefunc-
tion. The wavefunction has the form e´Icl in the saddle-point approximation.
One need to solve Einstein equation to obtain Icl. If the solution is real, the
function will be exponential and if it is imaginary, the wavefunction will be
oscillatory. The latter case is more common.

Now we should solve the Wheeler-DeWitt equation more explicitly. We now
use the equation in the following form:

r´
1

2m2
p

∇2 `m2
pUpqqsΨpqq “ 0 (2.9)

One would often use the Wheeler-DeWitt equation with the path integral. The
solution one should look for is in the from of:

Ψpqq “ Cpqqe´m
2
pIpqq `Opm´2

p q (2.10)

where I and C are complex. One can therefore obtain:

´
1

2
p∇Iq2 ` Upqq “ 0 (2.11)

2∇I ¨∇C ` C∇2I “ 0 (2.12)

where ∇ is the co-variant derivative. Writing I in the form of I “ IRpqq´ iSpqq,
we have:

´
1

2
p∇IRq2 `

1

2
p∇Sq2 ` Upqq “ 0 (2.13)

∇IR ¨∇S “ 0 (2.14)

In order for the wavefunction to correspond to the classical space-time S has to
be a solution of Hamilton-Jacobi equation:

1

2
p∇Sq2 ` Upqq “ 0 (2.15)

S is generally not appearing in wavefunction 2.10. If:

|∇S| " |∇IR| (2.16)
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S will be an approximate solution to equation 2.15. And the wavefunction will
be in the form of eiS . Momenta will be in the form of:

pα “ m2
p

BS

Bqα
(2.17)

Now we can differentiate equation 2.15 with respect to qγ and obtain:

1

2
fαβ,γ

BS

Bqα
BS

Bqβ
` fαβ

BS

Bqα
B2S

BqβBqγ
`
BU

Bqγ
“ 0 (2.18)

Hence, one can define a vector:

d

ds
“ fαβ

BS

Bqα
B

Bqβ
(2.19)

Now one can write equation 2.18 as :

dpγ
ds

`
1

2m2
p

fαβ,γ pαpβ `m
2
p

BU

Bqγ
“ 0 (2.20)

Now one can see that the wavefunction corresponds to a set of classical equa-
tions.

The solution to equation 2.17 depends on n parameters, but the solution
to original equation depends on 2n-1 parameters. By imposing the boundary
conditions, one can have one specific solution.

Let us choose a classical beginning. One can write the function 2.16 and
2.12 as

∇ ¨ p|C|2∇Sq “ 0 (2.21)

Combining this with 2.14, one have:

∇ ¨ pexpp´2m2
pIRq|C|

2∇Sq “ 0 (2.22)

One can easily rewrite this as:
∇ ¨ J “ 0 (2.23)

where
J “ expp´2m2

pIRq|C|
2∇S (2.24)

is the current.
One should note that equation 2.24 is just a special case of Wheeler-DeWitt

current:

J “
i

2
pΨ˚∇Ψ´Ψ∇Ψ˚q (2.25)

It can be shown that the current as a probability measure can only be used in
WKB solution.

Consider a classical trajectory with tangent vector ∇S about which the
wavefunction is peaked. It will intersect a surface Σ1 at B X Σ1 and then
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intersect with another surface Σ2 at B X Σ2. The volume swept out is V. One
may write:

0 “

ż

V

dV∇ ¨ J “
ż

BV

J ¨ dA (2.26)

and
ż

BXΣ1

J ¨ dA “

ż

BXΣ2

J ¨ dA (2.27)

Hence, one can see that the trajectories across a hypersurface does not depend
on the hyperspace. Then one can use the quantity:

dP “ J ¨ dΣ (2.28)

as a conserved probability measure.
Now one need to consider the negative probability issue. Just like quantum

field theory, one have to choose a proper surface Σ. More specifically, one has
to choose a surface of constant q0. Hence, in the surface the conformal part of
three metric does not change. If the sign of the time-like part is negative, it
corresponds to the universe that expands and then re-collapses. In that case the
line will intersect a surface twice. For any other case the sign will be positive.
The surfaces at which the trajectories only intersects once can be found by
inspection.

One simple example would be the surface of constant S. This breaks down
near the surface Upqq “ 0. But apart from this, the surface is valid. Hence, one
can construct a good probability measure from the current.

One should note that the probability measure is only regional. Thus, the
equation

ż

Σ

J ¨ dA “ 1 (2.29)

does not hold here barring special boundary conditions. It is a good conditional
probability given by:

P ps0|s1q “

ş

s0
J ¨ dA

ş

s1
J ¨ dA

(2.30)

As mentioned several times above, a boundary condition is needed. There
are mainly two approaches here.

2.2 Quantum tunnelling approach

In quantum tunnelling approach[24][4][5], one can obtain the wave function by
integrating between a vanishing 3-geometry and (h,φ).[31][32][27]

ψph, φq “

ż ph,φq

H

rdgsrdφseiS (2.31)

One approach that might solve the divergence issue is suggested by Linde [14].
The action is obtained by rotating the contour to t Ñ `iπ. However, this
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approach cannot solve the divergence issue of the model that involves matter
field.

Another approach is suggested by Halliwell and Hartle [15] where a con-
tour that is not purely Lorentzian or Euclidean is chosen. The issue with this
approach is no particular contour is obviously the preferred one.

The physical picture of quantum tunnelling approach is the universe nucle-
ates in a de-Sitter space and evolves in an inflationary scenario. In this case,
the nucleation is a non-singular event. However, this does not mean that singu-
larities cannot develop in the future. Also, the singularity of a three geometry
does not mean that there is a singularity in the four geometry. Hence, we can
divide the boundary of superspaces into two categories. The first one is the
boundary where its singularities are due to slicing of the four geometries and
the rest of the boundaries as the second category. We call the first category
non-singular boundary of super-space and the second category as the singular
boundary of super-space. One should note that only outgoing mode are allowed
in ψ at singular boundaries. This is called tunnelling boundary condition.

Ingoing and outgoing modes are analogous to the positive and negative fre-
quency modes. The direction towards boundary are defined as time direction.
Hence, we can write

ψ “
ÿ

n

Cne
iSn (2.32)

where Sn obeys Hamilton-Jacobi equation

p∇Snq2 ` U “ 0 (2.33)

In addition to the tunnelling condition, we have another condition called
regularity condition:

|ψ| ă 8 (2.34)

To illustrate one approach to solve the problem, one can first consider a
simpler case. To start with, one need to make the following three assumptions.:

First, the bubble from which the true vacuum bubbles nucleate from is in-
finitely thin. Second, the tunnelling action is very large hence the bubble can
be treated as a sphere, and thirdly the gravitation from the false vacuum are
ignored.

The Lagrangian of minisuperspace model is:

L “ ´4πσ 9R2q1{2 `
4π

3
εR3 (2.35)

where σ is the wall tension and ε is the energy density difference. One can see
that the following relation is valid:

pR “ 4πσR2 9Rp1´ 9R2q12{3 (2.36)

and

H “ rp2
R ` p4πσR

2q2s1{2 ´
4π

3
εR3 (2.37)
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As the nucleation process cannot change the energy, one have H “ 0 and there-
fore:

p2
R ` UpRq “ 0 (2.38)

and
UpRq “ p4πσR2q2p1´R2{R2

0q (2.39)

where R0 “
3σ
ε . The equation of motion is subsequently

R2 9R2 “ R2 “ R2
0. (2.40)

with solution:

R “
b

t2 `R2
0 (2.41)

The metric of the world sheet is then:

ds2 “ p1´ 9Rq
2
qdt2 ´R2ptqdΩ2 (2.42)

One can change this metric into de-Sitter metric by change of variable:

τ “ R0sinh
´1pt{R0q (2.43)

The metric is then:
ds2 “ dτ2 ´R2pτqdΩ2 (2.44)

with
Rpτq “ R0coshpτ{R0q. (2.45)

The bubble wall is essentially a 2-dimensional expanding inflationary universe
created at τ “ 0.

Now one can promote these equations into quantum equations:

Hψ “ 0 (2.46)

and if |RpRψ| " |ψ|
r´B2

R ` UpRqsψ “ 0 (2.47)

One now need to determine the boundary condition for this universe. The WKB
solution for equation 2.47 is

ψ˘pRq “ ppRq´1{2 expp˘i

ż R

R0

ppR1qdR1 ¯ iπ{4q (2.48)

where
ppRq “ r´UpRqs1{2 (2.49)

ψ` and ψ´ describes a universe that is expanding and contracting respectively.
However, only expanding bubble can be present.

Similarly, in classical forbidden region, one have:

ψ̃˘ “ |pR|
´1{2 expp˘

ż R0

R

|ppRq|dR (2.50)
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The probability distribution is then:

|
ψpR0q

ψp0q
|2 „ expp´2

ż R0

|ppRq|dRq “ expp´σπ2R3
0{2q (2.51)

Now one need to interpret this result. It seems confusing that there is only one
universe, yet one has obtained the result of a probability distribution. And it
seems that this wavefunction is not observable to someone who live within that
universe.

However, an observer inside the universe can still get some useful infor-
mation. For all the bubbles that can nucleate, the observer is likely to find
themselves inside a typical universe i.e. universe that is near the maxima of the
probability distribution.

Also, one should note the bubble is not exactly spherical and the shape of the
bubble can be calculated from the wavefunction. The perturbations of the shape
of the bubble can be seen as excitation of the field Φ with mass M2 “ ´3R2.
Such prediction can be tested by the observer.

An external observer can calculate:

ψ “

ż

rdxµeiSs. (2.52)

so that they can obtain the amplitude of a given configuration.
An internal observer would treat ξ0 as the time coordinate. One would

expect that perturbation to grow rapidly at small length scales and if allowed,
the bubble wall would cross itself, thus generate a daughter universe. Moreover,
the observer may find that the universe is not 2-d at all at small enough scales.
We, human observer, may experience similar situation in our own universe at
Plank scale. Now we will detour into Hartle-Hawking approach, more realistic
model describing our own universe will be introduced later.

2.3 Hartle-Hawking Approach

Another possible solution is No-Boundary solution. There are some new de-
velopment in this field but here we will only discuss the fundamental theory
[25][26][28][29][30]. The Hartle-Hawking wave function is defined using path
integral:

ψH “

ż

rdgµνsrdφsexpr´SEpgµν , φqs (2.53)

The integral is taking over all compact Euclidean histories ends in this config-
uration. All the histories between nothing and this configuration is a compact
4-geometry. One important point to note that the gravitational part of this is
unbounded below hence the integral is divergent. If one tries to define the path
integral for gravity action:

Irgs “
1

16πG

ż

M

Rp´gq1{2d4x`
1

8πG

ż

BM

rKsp´hq1{2d3x (2.54)
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one will encounter some issues. Namely, if one does a Wick rotation, one will
get the following Euclidean action:

Îrgs “
´1

16πG

ż

Rpgq1{2d4x´
1

8πG

ż

rKsphq1{2d3x (2.55)

. This action is not positive semi-definite. If one does a conformal transforma-
tion g̃ab “ Ω2gab, one will get:

Îrg̃s “
´1

16πG

ż

M

Ω2R` 6Ω,aΩ,apgq1{2d4x´
1

8πG

ż

BM

rΩ2Ksphq1{2d4x (2.56)

. One can see that Î can be negative for a suitable conformal factor. It is
also easy to see from a physics point of view. As the existence of black hole
implies the canonical ensemble is not well-defined. Thus, the integral cannot be
convergent.[11][12]

It is not clear whether this is actually physically meaningful. However, we
can use this path integral to partially solve the boundary condition issue for
Wheeler-DeWitt equation.[4]

Attempts have been made to fix divergence issue. [10] One can introduce a
conformally invariant scalar wave operator on the space of all positive definite
metrics:∆ “ ´ ˝ ` 1

6R.Let tλn, φnu be the eigenvalue and eigenfunction of this
operator under the following boundary condition:

∆φn “ λnφn (2.57)

and
φn “ 0 (2.58)

Equation 2.57 and 2.58 are known as Dirichlet boundary condition. One should
note that tλn, φnu change smoothly under the conformal transformation and 0
eigenvalue are invariant under conformal transformation. This means that the
eigenvalue will not change signs because of the conformal transformation. Now
let assume that Ω “ 1` y where y is zero one the boundary. One then have:

Îrg̃s “ Îrgs ´
1

16πG

ż

py∆y ` 2Ryqpgq1{2d4x (2.59)

One can then divide this into two terms:

Î1 “ Irgs `
1

16πG

ż

R∆´1Rpgq1{2d4x (2.60)

Î2 “ ´
1

16πG

ż

z∆zpgq1{2d4x, (2.61)

where z “ y´∆´1R One can consider a conformal transformation g1ab “ ω2gab.

Îrgs “ Î1rg1s if one choose ω “ 1 on the boundary. One can assume that Î ě 0
for all asymptotically Euclidean positive definite metrics. This is called positive
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action conjecture. The dominant part of the path integral is near the minimum
of I on H . This means one can approximate Î as:

Îrgs “ Îrg.s ` I2rg0, φs (2.62)

where

I2rg0, φs “
1

32πG

ż

φabAabcdφ
cdpg0q

1{2d4x (2.63)

gab “ gab0 ` φab (2.64)

Aabcd “
1

4
gcd∇a∇b ´

1

4
gac∇d∇b `

1

8
pgacgbd ` gabgcdq∇e∇e `

1

2
Radgbc

´
1

4
Rabgcd `

1

16
Radgbc ´

1

8
Rgacgbd ` paØ bq ` pcØ dq ` paØ b, cØ dq.

(2.65)
The path integral is then

Z “ expp´Îrg0sq

ż

Drφs expp´Î2rg0, φsq (2.66)

Now one can decompose the metric perturbation in terms of the eigenfunctions

φab “
ÿ

n

anφ
ab
n (2.67)

where φn is the eigenfunction. Now we could take Dpφq “ Πnµdan{p32πGq1{2

and then get:

logZ “ ´Îrg0s ´
1

2
logdetpµ´2Aq (2.68)

detA “
ź

n

µn (2.69)

Because the action is invariant under the following gauge transformation, A has
many 0 eigenvalues.

xa Ñ xa ` εξa

gab Ñ gab ` 2εξ
(2.70)

In order to eliminate this, one can choose to only integrate over in-equivalent
φab. One can add a term to achieve this:

Îg “
1

32πG

ż

φabBabcdφ
cdpg0q

1{2d4x (2.71)

The gauge one could choose is harmonic gauge i.e.

Babcd “
1

4
gbd∇a∇c ´

1

8
gcd∇a∇b ´

1

8
gab∇c∇d `

1

16
gabgcd∇e∇e

paØ bq ` pcØ dq ` paØ b, cØ dq.
(2.72)
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One should note that the eigenvalues of operator B is contained det(A+B).
Furthermore, one can divide by det(B) in order to nullify them, where

detpBq “ detpCq2|V . (2.73)

. Here V is the space of the complete set of the vector fields that is 0 on the
boundary. Also, here we have

Cabξ
b “ ´g0adpξ

d;b
;b `R

d
bξ
b. (2.74)

Then one have

logZ “ ´Îrg0s ´
1

2
log detpµ´2pA`Bqq ` log detpµ´2Cq (2.75)

One cannot just apply the zeta function technique here. One can see the fol-
lowing relationship:

A`B “ ´
1

16
∇a∇a `G (2.76)

One can call the second term operator F. This operator is positive definite and
in order for the integral to converge, one should take the contour of imaginary
axis. As this operator only acts on trace-free part of the wavefunction, one can
define another operator which acts on the trace part:

Gabcd “
1

8
pgacgbd ` gbcgadq∇e∇e `

1

4
pRacbd `Radbcq (2.77)

This operator then can only integrate along the real axis. This however will
introduce a factor of p`iqn into Z. Let P be the operator that projects on
eigenfunctions with non-positive eigenvalues of G, One can define G̃ “ G ´ P
and zeta function:

ζps, Lq “
ÿ

n

λ´sn pLq. (2.78)

Hence one can calculate the path integral:

logZ “ ´Îrg0s `
1

2
ζ 1p0, F q `

1

2
ζ 1p0, G̃q

` ζ 1p0, Cq ´
1

2

ÿ

i

logλi

`
1

2
logpµ2qpζp0, F q ` ζp0, G̃q ` n´ 2ζp0, Cqq

`
1

2
inπ

(2.79)

Then one can use the result from Gilkey [13]:

ζp0, F q “
1

2880π2

ż

RabcdR
abcdpg

1{2
0 d4x

ζp0, G̃q ` n “
21

320π2

ż

RabcdR
abcdpg0q

1{2d4x,

ζp0, Cq “
´11

2880π2

ż

RabcdR
abcdpg0q

1{2d4x

(2.80)
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On can assume that the normalization factor is independent of the background
metric.

log Z̃ “ logZ ` p1´ kqÎg0 `
1

2
log kpζp0, F q ` ζp0, G̃q ` n´ ζp0, Cqq. (2.81)

This means that Z is very small for k ! 1. If one define

Tab “ ´2pg0q
´1{2 δ logZ

δgab0

(2.82)

one have:

T aa “
53

720π2
RabcdR

abcd (2.83)

One can also find the Euler number for the compact space of the solutions of
the vacuum Einstein equation.

χ “
1

32π2

ż

RabcdR
abcdpg0q

1{2d4x (2.84)

However, one should note that this method of fixing is only partly successful.

2.4 Minisuperspace Wave Functions

2.4.1 de Sitter space

There are several differences between the two approaches above. Let us consider
action:

S “

ż

d4x
?
´gpl´2

P R´ ρvq (2.85)

where ρv is a constant vacuum energy, and we assume cosmological principle is
valid:

ds2 “ σ2rN2ptqdt2 ´ a2ptqdΩ2
3s (2.86)

Thus the Lagrangian of this model is:

L “
1

2
N rap1´

9a2

N2
´ Λa3s (2.87)

and the momentum conjugate to a is:

pa “
´a 9a

N
(2.88)

Therefore, one can express the Lagrangian as

L “ pa 9a´NH (2.89)

where

H “ ´
1

2
p
p2
a

a
` a´ Λa3q (2.90)
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This model has only one degree of freedom the scale factor a. The equation of
motion is

9a2 ` 1´ Λa2 “ 0 (2.91)

Hence the solution is:
aptq “ H´1coshpHtq (2.92)

where

H “
4

3
Gρ1{2

v

From here we can write out the Wheeler-DeWitt equation for ψpaq:

pa´p
B

Ba
ap
B

Ba
´ Upaqqψ “ 0 (2.93)

The solution for this equation are:

ψ
p1q
˘ paq “ expp˘i

ż a

H´1

ppa1qda1 ¯
iπ

4
q (2.94)

ψ
p2q
˘ paq “ expp˘

ż H´1

a

|ppa1q|da1q (2.95)

Solution 2.94 is WKB solution i.e. solution with boundary condition that
Upaq ď 0. Solution 2.95 is the underbarrier solution where the boundary con-
dition is a ď H´1.

We can write the tunnelling solution using these two solutions.

ψT pa ą H´1q “ ψ
p1q
´ paq (2.96)

ψT pa ă H´1q “ ψ
p2q
` paq ´

i

2
ψ
p2q
´ paq (2.97)

and for the special case where a “ H´1, we have:

ψT pH
´1q{ψT p0q “ expp´

ż H´1

0

|ppa1q|da1 “ expp´
3

16G2ρv
q (2.98)

One should note that the sign of N in equation 2.88 is purely conventional. One
could choose the opposite sign without significant change to the formulation
other than a time reversal transformation ψ´ ą ψ˚. Physically, this means
that time coordinate is entirely arbitrary in General Relativity. However, once
we choose one convention to follow, the wavefunction is unique.

Here one should note [16] one theory proposed by Strominger. The theory
state that the boundary condition on ψ should be at small a instead of large
a, as this process is at very small scale. And the large scale prediction can be
solved without specifying the form of the boundary condition. Hence, one have
the following solution for the theory:

ψpa ă H´1q “ ψ̃ ´ paq

ψpa ą H´1q “ ψ`paq ` ψ´paq
(2.99)
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The argument is not perfect as there are many examples where small scale event
are governed by large scale or even infinity-away boundary conditions.

By contrast, the Hartle-Hawking solution [17] are:

ψHpa ă H´1q “ ψ
p2q
´ paq (2.100)

and
ψHpa ą H´1q “ ψ

p1q
` paq ` ψ

p1q
´ paq (2.101)

Interestingly, as one can see these are essentially the same with quantum tun-
nelling approach with Strominger’s proposal. Physically, this describes a ex-
panding and then contracting universe and in region a ă H´1, ψH is exponen-
tially suppressed.

Now, we shall discuss another method of obtaining wavefunction i.e. by
analytical continuation.

One can consider this Lagrangian with ρv ă 0. It is easy to see that the
classical equation of motion has no solutions. However, quantum fluctuations
still exist. Thus, the wave function will be peaked at very small scales.

To perform an analytic continuation, one need an exact solution. Setting
γ “ 1 and boundary condition to be

ψpaÑ8q “ 0 (2.102)

one obtain the solution as:
ψpaq “ Aipzq, (2.103)

where
z “ p´2Λq´2{3p1´ Λa2q (2.104)

Using asymptotic approximation, one can show that at large a :

ψpaq9a´1{2 expr´p´Λq1{2a3{3s (2.105)

In order to analytically continue the solution to positive Λ, one has to substitute
p´2Λq´2{3 with p´2Λq´2{3 expp¯2πi{3q. With the relation:

2e˘πi{3Aipze¯2πi{3q “ Aipzq ˘ iBipzq (2.106)

one obtain:
ψpAq “ Aipz̃q `Bipz̃q, (2.107)

with
z̃ “ paΛq´2{3p1´ Λa2q (2.108)

2.4.2 Scalar Field

Scalar field theory is more realistic than de Sitter space. The Lagrangian of
scalar field theory is

S “ d4x
?
´grl´1

P R`
1

2
pBµrφq

2 ´ V prφqs (2.109)
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The scalar field is homogeneous and isotropic. For simplicity reasons, dimen-
sionless quantities are introduced:

φ “ p4πG{3q1{2rφ,

V “ p4G{3q2 rV

We subsequently can write the Wheeler-DeWitt equation:

p
B2

Ba2
`
p

a

B

Ba
´

1

a2

B2

Bφ2
´ Upa, φqqψ “ 0 (2.110)

where
Upa, φq “ a2r1´ a2V pφqs (2.111)

The minisuperspace is 0 ă a ă 8,´8 ă φ ă 8. The nonsingular boundary
is the line a=0 with —φ| ă 8 and the singular boundary is boundary with at
least one variable being 8.

Similar to the de Sitter space, we can write out Hamilton-Jacobi equation
2.33 in the form:

ˆ

BSn
α

˙2

´

ˆ

BSn
φ

˙2

` U “ 0 (2.112)

where new variable α “ lna is introduced.
The potential Upa, φq goes to zero if a is small. andψ takes form of:

ψ “
ÿ

k

ψk “
ÿ

k

eikpa¯φq (2.113)

ψk with k ą 0 gives the model of universe which collapsing to a singularity
and those with k ă 0 describes universe expanding out of singularity. The
tunnelling boundary condition means that ψk can only exist if k ą 0. Note if a
approaches to 0, the wave function will approach a constant. Only regions near
these points i.e. early stage of universe have significant quantum effect. Other
part of mini-superspace can be represented by classical model.

Now let us consider the solution of equation 2.110. We assume the following
conditions for V pφq :

|V ´1dV {dφ| ! 1 (2.114)

and
|V | ! 1 (2.115)

When condition 2.115 is violated, the effect of quantum gravity becomes signif-
icant and we cannot use semiclassical solution to represent the physical effect.

As ψ is also a slow varying function of φ. This means we can rewrite equation
2.110 in the form

p
B2

Ba2
`
p

a

B

Ba
´ Upa, φqqψ “ 0 (2.116)

This makes the problem identical to one dimensional minisuperspace model
studied in de-Sitter case. There are two part of minisuperspace pa, φq, U ă
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0andU ą 0, which are corresponding to classically forbidden region and clas-
sically allowed region. In classically allowed region, ψ is oscillatory and in
classically forbidden region ψ is exponential. Note that p does not affect the
semi-classical probability. Hence, with the choice of p=-1 we can solve equation
2.116 exactly. Introducing new variable z “ ´p2V q´2{3p1´ a2V and we have

ˆ

B2

Bz2
` z

˙

ψ “ 0 (2.117)

As only an outgoing wave can exist in the classically allowed region, the
tunnelling wave function can be solve from condition 2.114:

ψT “
Aip´zq ` iBip´zq

Aip´z0q ` iBip´z0q
(2.118)

where z0 “ zpa “ 0q “ ´p2V q´2{3. For V pφq ă 0, z and z0 are complex. In
order that the function can be continuous at V(φ)=0, we set:

V pφq “ e´iπ|V pφq|,

´z “ e2πi{3|z|

´z0 “ e2π{3|z0|

(2.119)

We can re-write the solution to

ψT “
Aip|z|q

Aip|z0|q
(2.120)

for V pφq ă 0 as the Airy function has the relation:

Aipe2πi{3zq ` iBipe2πi{3zq “ 2eπi{3Aipzq (2.121)

Note that this wave function is real.
In the range a2V ą 1, z and z0 are both large, but z is positive and z0 is

negative. Then we can write the solution in classical allowed region as

ψT “ eiπ{4pa2V ´ 1q´1{4exp

ˆ

´
1` ipa2V ´ 1q3{2

3V

˙

pa2V ą 1q (2.122)

and in classical forbidden region as

ψT “ p1´ a
2V q´1{4exp

ˆ

p1´ a2V q3{2 ´ 1

3V

˙

pa2V ă 1q (2.123)

For Hartle-Hawking wave function, we find:

ψH “
Aip´zq

Aip´z0
(2.124)
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using the requirement of it being exponentially growing function if a in classically
forbidden range. We can obtain WKB approximations for ψH in classically
allowed range:

ψH “ 2pa2V ´ 1q´1{4expp
1

3V
qcosp

pa2V ´ 1q3{2q

3V
´
π

4
q (2.125)

and in classically forbidden range

ψH “ p1´ a
2V q´1{4expp

1´ p1´ a2V q3{2

3V
q (2.126)

Using relation 2.121, and change a to eiπ{2a, we have:

ψH “ ψT pV´ ą eiπ{2V, a´ ą eiπ{2aq (2.127)

This relation shows the possibility that two wavefunction is related by an ana-
lytic continuation.

2.5 Physical Predictions

The purpose of introducing quantum effect into cosmology is trying to determine
the initial state of the universe as the latter evolution of the universe can be
determined using classical model.

For the tunnelling approach, we can write out the conserved current:

ja “
i

2
a2pψ˚Baψ ´ ψBaψ

˚q

jφ “ ´
i

2
ap´2pψ˚Bφψ ´ ψBφψ

˚q

(2.128)

Here, ja is the probability density for φ at a specific value of a. The classical
model can be expressed as:

a « V ´1{2coshpV 1{2tq, φ « const (2.129)

We can then define the probability density ρpa, φq. The corresponding den-
sity of ψT is

ρT pa, φq “ CT expp´
2

3V pφq
(2.130)

We can then determine the normalization constant to be

C´1
T “

ż

rV pφqą0s

dφexpp´
2

3V pφq
q (2.131)

The integral will not be normalizable if none of the following three conditions
are satisfied:

iqV pφq ă 0 as φÑ 0

iiqV pφq goes to 0 faster than
2

3
lnpφq

iiiqφ is cyclic variable with finite range 0 ă φ ă φ0 and

both 0 and φ0 are identified
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If we use the no boundary approach, [18] the current will be zero and the
wave-function will be real. The wavefunction can be written as:

ψH “ pa
2V ´ 1q´1{4 expp1{3V q expp´

ipa2V ´ 1q3{2

3V
`
iπ

4
q ` c.c. (2.132)

The second term is not very useful in this case as it represents time-reversal of
universes that are contracting. Then we can find out the probability distribution
using the first term:

ρHpa, φq “ CH expp
2

3V
q (2.133)

with the normalization factor:

C´1
H “

ż

rV pφqą0s

dφ expp
2

3V pφq
(2.134)

It is easy to see that if we want this integral to be well-defined, Vφ cannot be
0 at any point. This can be achieved in two cases. Either φ does not have an
infinite range or V pφq is positive-defined.

The model where Hartle-Hawking wave function gives the prediction of in-
flating universe is the one with V pφq unbounded below.

It should be noted that these theories only gives probability distribution
of the initial state of universes. However, the only experimental data we can
acquire is our universe. Hence, our best assumption is that our universe is a
typical universe i.e. is near the maximum of the probability distribution. The
other possible situation is that the most probable universe is not suitable for
life. Then our best guess is that our universe is the most probable universe that
can generate life. Hence, one can argue that inflation is somehow essential to
provide isotropy and homogeneity which are necessary for life. However, this
does not provide the full explanation as it will predict a much smaller inflation
than what we observe today.

2.6 Perturbative theory

We shall now consider perturbative theory for quantum tunnelling approach.
Let us assume the potential is bounded from above. Hence ψ is at its maximum
when V pφq is at its maximum. Now, we shall consider the theory near its
maximum. We can write:

V pφq “ H2 ´ µ2φ2 `Opφ3q (2.135)

We can write the small perturbation around φ “ 0 in spherical harmonic form:

φpxq “ p2π2q1{2
ÿ

n,l,m

fnlmptqQ
n
lmpx

iq (2.136)

where n=1,2,3... ;l=0,1,2,3...n-1; m=-l.....,l; just like the atomic quantum num-
ber.
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Then, the Wheeler-DeWitt equation can be written in form of:

«

a2 B
2

Ba2
` pa

B

Ba
´ a4p1´H2a2q ´

ÿ

n

ˆ

B2

Bf2
n

´ pn2 ´ 1qa4f2
n ` µ

2a6f2
n

˙

ff

ψ “ 0

(2.137)
First, we write the wave-function in the form of

ψ “ eiS (2.138)

with

S “ S0 `
1

2

ÿ

n

Snpaqf
2
n `Opf

3
nq (2.139)

Hence, we can write the Wheeler-Dewitt equation as:

S120 ` a
2p1´H2ar2sq “ 0 (2.140)

a2S10S
1
n ´ S

1
n ´ pn

2 ´ 1qa4 ` µ2a6 “ 0 (2.141)

where S1 “ BS
Ba . One should note that equation 2.140 is just the equation for

one-dimensional semi-classical de-Sitter space. One solution for a ą H´1 is:

S0paq “ ´
1

3H2
pH2a2 ´ 1q3{2 (2.142)

Now we substitute V pφq “ H2 ´ µ2f2
1 into equation 2.123.

S1paq “
2iµ2

3H4
`

µ2

3H4
pH2a2 ´ 1q1{2pH2a2 ` 2q (2.143)

We now note the relation:

S10 “ ´
a 9a

Npaq
(2.144)

which gives the conformal time:

a “ pHcostq´1 (2.145)

where we choose N(a)=a. Now we shall discuss about equation 2.141. One can
linearize this equation with

Snptq “ a2 9vn{vn (2.146)

. This gives
:vn ` 2p 9a{aq 9vn ` pn

2 ´ 1qvn “ 0 (2.147)

The general solution is a superposition of two modes

vp1qn pyq “ py ´ 1qpn´1q{2py ` 1q´pn`1q{2p1` y{nq (2.148)

and
vp2qn pyq “ py ` 1qpn´1q{2py ´ 1q´pn`1q{2p1´ y{nq (2.149)
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The first mode represents a de-Sitter invariant vacuum state for graviton. The
only case to have a de Sitter-invariant state is a massive scalar field. Hence,
the prediction made by quantum cosmology is as good as a de Sitter-invariant
vacuum.

In classically-forbidden range, we have:

S0paq “ ˘
i

3
p1´H2a2q3{2 (2.150)

For Hartle-Hawking wave function [8], we first need to perturb the Friedmann
model. We write the three metric in Friedmann model as

hij “ a2pωij ` εijq (2.151)

where εij is the perturbation. We can write the Hamiltonian as:

H “ N0pH|0 `
ÿ

n

Hn
|2 `

ÿ

n

gnH
n
|1q `

ÿ

n

pkSnH
n
1 ` j

V
n H

n
1q (2.152)

where the number denotes the orders of perturbation. Together with zero energy
Schrodinger equation, we have an infinite-dimensional second-order differential
equation:

˜

H|0 `
ÿ

n

pSHn
|2 `

V Hn
|2 `

T Hn
|2q

¸

ψ “ 0 (2.153)

The solution has the form:

Ψ “ RepΨ0pa, φq
ź

n

Ψpnqq “ RepCeiS (2.154)

where S is a rapidly varying function. Substituting equation 2.154 into equation
2.153, we obtain:

´
∇2

2Ψ0

2Ψ0
´
ÿ

n

∇2
2Ψpnq

2Ψpnq
´

ÿ

n,m

p∇2
2Ψpnqqp∇2

2Ψpmqq

2ΨpnqΨpmq

´
∇2Ψ0

Ψ0
¨ p
ÿ

n

∇2Ψpnq

Ψpnq
q `

ÿ

n

Hn
|2Ψ

Ψ
` e´3αV pα, φq “ 0

(2.155)

In order for the ansatz solution to be valid, we must have

∇2Ψ

Ψ
¨∇2Ψpnq `

1

2
∇2

2Ψpnq “
Hn
|2Ψ

Ψ
Ψpnq (2.156)

and

p´
1

2
∇2

2 ` e
´3αV `

1

2
p
ÿ

n

∇2
2Ψpnq

2Ψpnq
q ¨ p

ÿ

n

∇2
2Ψpnq

2Ψpnq
qψ0 “ 0 (2.157)

The first two terms of equation 2.157 can be seen as the Wheeler-Dewitt equation
and the last term as the perturbations.
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Chapter 3

Further Development

3.1 Beyond Minisuperspace

Now consider Wheeler-DeWitt equation in form 2.6. One should note that
∇2 is the superspace Laplacian, Gijkl is the superspace metric and U is the
superpotential. The metric can be written as:

hij “ e2αh̃ij (3.1)

Then one have:
ż

d3xNh1{2r´Rp3q `
1

2
hijφ,iφ,j9 exppαq (3.2)

and
ż

d3xNh1{2V pφq9 expp3αq (3.3)

Now one can represent the scalar field as:

φpxq “ p2π2q1{2
ÿ

n

fnQnpxq (3.4)

Then the superspace Laplacian is :

∇2 “ e´3αp
B2

Bα2
´
ÿ

n

B2

Bf2
n

(3.5)

Hence the solution is :

ψpα, fnq “ exppikαα` i
ÿ

n

knfnq (3.6)

One should note that:
k2
α ´

ÿ

n

k2
n “ 0 (3.7)
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Boundary condition is the tunnelling wave function includes only out-going
modes.

Not all metric and matter fields can be included in the superspace. The
limitation of these fields is essentially the boundary of superspace. If all three
terms in the superspace metric can integratable, the metric-fields configuration
should be included. The superpotential is then divergent yet finite everywhere.
Writing the wavefunction as:

ψpc, qq “
ÿ

N

eiSN pcqχN pc, qq. (3.8)

where SN is the Hamilton Jacobi function. The classical path is pi “ ´ BS
Bci

.
The superspace here involves many configurations, including some matter fields
that are not differentiable. Examples are scalar fields with discontinuous deriva-
tives. This agrees with the path integral approach where differentiability are
not required for the path integral.

Now we shall discuss the topology change since the very natural of creat-
ing universe is change of topology. The first thing we should note is that the
Wheeler-Dewitt equation is defined on a fixed topology RˆΣ. The superspace
hence only include one topology. One can expand the superspace into including
all possible topologies. And one can divide the superspace into different sectors.
The topology change is then the transition from one topology sector to another.

The creation of the universe is then the transition from null topology to the
sector with a universe of S3. Similar to the instanton solution of path integral,
One can expect the topology change to be represented by a smooth Euclidean
manifold interpolating between the initial and the final sector. [39][40]

Now let us define the following mathematical concept: a smooth function
fpxq on a manifold is called a Morse function if

i)fpxq P r0, 1s
ii)fpxq “ 0 iffx P Σ1

iii)fpxq “ 1 iffx P Σ2

iv) all point x0 where Bµfpx0q, obeys detrBµBνfpx0qs and are in the interior
of the manifold. Morse function are well-defined in any situation.

Now one can slice the manifold into surfaces of constant f. The level-plane
will have a smooth geometry barring the slice with critical points. The function
near the critical point can be written as:

fpxq “
d
ÿ

i“1

aix
2
i (3.9)

For d ě 3 one has a singularity of the form

R9r´2 (3.10)

where:
r2 “

ÿ

x2
i (3.11)
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one should note the topology that is the creation of the universe is actually
very special, as there is no initial configuration. The boundary of the superspace
are either regular or singular. The regular boundary refers to those which can
be obtained by slice of manifold. These boundaries correspond to the transition
between different topological sectors. The idea of this is the probability flux
should be conserved between sector transition. However, the out-going wave
boundary condition are corresponds to the singular part of the boundary. The
whole picture is the probability flux is injected by the creation of the universe
and then flow between different topological sector.

Vilenkin state that he do not believe that picture is the general case, as
the topology transition are not required to exist between configurations at the
boundary of topological sectors. The start point or the end point can be in the
interior of the sectors. This implies that the Wheeler-Dewitt equation has to be
modified to accommodate the topological change. One possible modification is
adding an operator δ̃ into the Hamitonian

S “

ż

rdhsψ˚Hψ `

ż

rdhsrdh1sψ˚phqδ̃ph, h1qψph1q (3.12)

Varying :

HψN phq `
ÿ

ż

rdh1sδ̃NN 1ph, h
1qψN 1ph

1q “ 0 (3.13)

one can obtain the Wheeler-Dewitt equation. The singular part of the boundary
contains configuration with superpotenial goes to infinity and the null part of
boundary where α goes to negative infinity. The outgoing wave would carry
probability flux:

JN “ ipψ˚N∇ψN ´ ψN∇ψ˚N q (3.14)

The flux flowing into and out-of the regular boundary is the transitions
between different sectors. In this case the wavefunction is equivalent to the
wavefunction defined by the path integral formulation.

Another approach to quantum cosmology is third quantization. One can
promote the ψ to be a quantum operator. Topology change that we have dis-
cussed above is then the self-interacting ψ. This view is good for one dimensional
universe. However, things get more complicated for higher dimensional situa-
tion. Therefore, it is still unclear whether this approach provides any additional
insight comparing the approach that we have just discussed.

3.2 Equivalence of two formulations

The Chern-Simons state 3.15, also known as the Kodama state, is not purely
imaginary and hence criticized for its non-normalizability.

ψpAq “ N expp´
3

2l2pΛ
YCSq (3.15)
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We can derive this state using the Einstein-Cartan formulation. The action is
given by 3.16.

S “ 3κVc

ż

dtp2a2 9b` 2Napb2 ` k ´
Λ

3
a2qq (3.16)

Here κ “ 1
16πGN

and a is the expansion factor Vcis the co-moving volume of the
region under study.

Using the knowledge from them classical physics, we can write out the Pois-
son bracket from this action. Hence, we can quantize it and write out the
commutation relationship. 3.17

rb̂, â2s “
il2P
2Vc

(3.17)

Hence we can give the form of the two operator explicitly.

â2 “ ´
il2P
2Vc

d

db
(3.18)

b̂ “
il2P
2Vc

d

da2
(3.19)

Hence we can write the two version of Hamiltonian constraint equation. The so-
lution to those equations are just the Chern-Simons state and Hartle and Hawk-
ing and the Vilenkin or tunnelling wave functions depending on the boundary
conditions. The Chern-Simons state can be seen as the Fourier transform of the
Hartle-Hawking and Vilenkin wave function 3.20

ψa2pa
2q “

3Vc
l2p

ż

db
?

2π
e
´i 3Vc

l2p
a2b
ψbpbq (3.20)

As previous mentioned, Hartle-Hawking and Vilenkin wave function just differ
by the boundary conditions, this means they integrate over different path of b
if we treat them as the Fourier transform of the Chern-Simons state.

One can write the Vilenkin solution as:

ψv9Aip´zq ` iBip´zq (3.21)

and Hartle-Hawking as:
ψH9Aip´zq (3.22)

Airy function can represent as an integration:

φpzq “
1

2π

ż

eip
t3

3 `ztqdt (3.23)

The integration contour must start and finish as complex infinity within the
following 3 regions:

S1 : 1 ă argptq ă
π

3
;

S2 :
2π

3
ă argptq ă π;

S3 :
5π

3
ă argptq ă

7π

3
;

(3.24)
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The Hartle-Hawking wave function start at S2 and ends at S1 and the Vilenkin
wave function start at S3 and ends at S1. [6]

If one can accept an extended sense of convergence, it is possible to let the
regions defined in equation 3.24 to be non-strict. Then one need to include delta
function when try to normalize CS state.

We need to note some special case. First, if b is real, the only possible
wavefunction dual to CS state are the Hartle-Hawking wavefunction. In this case
the contour of integration in equation 3.23 is taken at the real line. However, if
we decide to use the strict convergence condition i.e. exclude the delta-function,
we can shift the contour:

bÑ b` iη (3.25)

and take the limit where η goes to 0.
The Vilenkin wavefunction is different, as it requires the contour over real b

not over the negative part of the axis. This is because the Vilenkin wavefunction
can only have the outgoing mode. However, the contour that starts at 0 and
then goes over the positive part of the axis is also not acceptable. This contour
will give out a wavefunction that solves:

ψ2 ` zψ “
1

π
(3.26)

instead of the Airy/WdW equation.
Hence, the Vilenkin wavefunction requires the imaginary part of b. Alter-

native way to achieve the same result may be found. If one use the stationary
approximation to equation 3.23, the WKB approximation can be recovered. We
can write the integral as eiS and write:

ψa2pa
2q9

ż

db

2π
expr

9iVc
Λl2P

p
b3

3
` kb´

Λba2

3
qs (3.27)

so that:
BS

Bt
9
BS

Bb
9H “ b2 ` k ´

Λa2

3
(3.28)

Hence the stationary points of S are the solutions to Hamiltonian constraint:

b˘ “ ˘

c

Λa2

3
´ k (3.29)

Using Taylor expansion, one have:

S˘ “ ´
2

3
t3˘ ` t˘pt´ t˘q

2 (3.30)

This is the WKB solutions. More specifically, this is the HH wavefunction if
we include both S` and S´, and this is the Vilenkin wavefunction if only S` is
included.

Now we need to discuss the implication of this mathematical equivalence.
First, one must note the Chern-Simons wavefunction defined for b P D1 “ R
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and for b P D2 “ p´i8, 0q Y p0,8q, as the function itself does not specify a
quantum state. We must specify a contour in order to do so. Secondly, one
must also note that the Cherin-Simons state and Hartle-Hawkings and Vilenkin
state are just same quantum state in different representation. One can easily
write these in the quantum form:

ψV pa
2q “ xa2|ψV y (3.31)

ψCSpb; b P D2q “ xb|ψV y (3.32)

In Ashtekar formulation, we require EaI to be real or hermitian and the anti-
self dual to be complex conjugate to the self dual connection. This then implies
that a2 and b must be real. Thus it rejects the Vilenkin function. However, if
we change the interpretation of the condition, the conclusion may be changed.
It is worth mention here that both Hartle-Hawking and Vilenkin wavefunction
can live in classically forbidden region.

Reversely, this requirement only says that a2 has to be real. It does not
require it to be positive.

The Chern-Simons theory has been criticised for its non-normalizability. But
has we have already established, this will not be the case for Euclidean formula-
tion. It is possible to imitate the MSS treatment. First, we propose a modified
state:

ψCS “ N 1 expp´
3i

l2pΛ
=YCSq (3.33)

The state is normalised as a plane wave across all space. That is to say a delta
function normalisation with real b.

The prediction one can make is that b will distribute uniformly over the
real line. One can use the momentum cut-off method here. This is the same
as the distribution of a2 implied by Hartle-Hawing wavefunction. In the a2

representation, we can write:

ż 8

´8

dzψ˚HHpz ` xqψHHpz ` yq “ δpx´ yq (3.34)

We may think that the Vilenkin state in b space predicts that b will be
distributed uniformly over the real line. The prediction is:

PV p=bq “
1

2π
expr

18Vc
Λl2p

p
=b3

3
´ k=bqs (3.35)

This means that P is peak at b=-i and the decrease exponentially. However,
one would find several problems if one tries to map this into a2 space.

Tunnelling state is suggested to be non-zero for a ą 0. In this case the state
will solve a modified WdW equation. Vilenkin state then will be a different
wavefunction:

ψV1
“ pa2q “ xa2|ψV1

y “ ψV pa
2qθpa2q (3.36)
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One should note this wavefunction’s dual is no longer a Chern-Simons wave-
function. In order for the relation to hold, one must modify the tunnelling state
again:

ψV2
pbq “ xa2|ψV2

y “ ψV pbqθpbq (3.37)

and then one can get the tunnelling wavefunction in a2 space:

ψV2pa
2q “ xa2|ψV 2y9Aiq ´ zq ` iGip´zq (3.38)

This state only have outgoing mode, just like Vilenkin proposal. The wavefunc-
tion is defined over a contour that obeys the reality condition. The integral over
the imaginary axis has form:

φIM pzq “
i

π

ż 0

´8

ep
t3

3 ´ztqdt “ iHip´zq (3.39)

3.3 Application to Other Cases

Until now we have assumed a homogeneous universe, which is the case at large
scale. However, the homogeneity is broken at small scale. [33]Classically, we at-
tribute this to a small perturbation δρ{ρ « 10´4.However, this is not explained
in the big bang model. Physicist used to contribute this to the boundary condi-
tions. However, a new solution is possible, i.e. this is due to the pre-inflationary
quantum fluctuation and then amplified by the inflation. One should note that
the quantum fluctuation calculated depends on the vacuum state one choose.
However, there is no clear choice here. Hence, we need to discuss this in super-
space model.

Before actually going into the cosmology case, we can first revisit the quan-
tum field theory in curved space time. Let us consider the model of which
:

Sm “ ´
1

2

ż

d4x
?
´grpBΨq2 `m2Ψ2s (3.40)

One can quantise this by using:

p˝´m2qukpx, tq “ 0 (3.41)

where uk is the mode functions. The field operator is then:

Ψ̃px, tq “
ÿ

k

pâkuk ` â
:

ku
˚
kq (3.42)

The vacuum state is then given by:

âk|0y “ 0 (3.43)

Unlike in Minkowski space, there is no unique choice of vacuum state. A func-
tional Schrodinger picture can be used. First one need to break the action down
to a (3+1) form.

Sm “
1

2

ż

d3xdtNh
1
2 r

9Ψ2

N2
´ hijBiΨBjΨ`m

2Ψ2s (3.44)
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The Hamiltonian is then:

Hm “
1

2

ż

d3xNh
1
2 rh´1π2

Ψ ` h
ijBiΨBjΨ`m

2Ψ2s (3.45)

The quantum state is represent by a wave functional instead of a function. The
functional is governed by the Schrodinger equation:

i
BΨm

Bt
“ HmΨm (3.46)

where the momentum operator is:

πΦpxq Ñ ´i
δ

δΦpxq
(3.47)

The Heinsenburgh and Shcrodinger picture stated are related as they are in
normal quantum field theory, namely:

|ΨSptqy “ expp´i

ż t

dt1Hmpt
1qq|ΨHy (3.48)

The wavefuntional is defined as:

|ΨSy “

ż

DΦpxq|ΦyΨSrΦpxqs (3.49)

Then the choice of vacuum state before becomes the choice of solution to the
functional equation.

It is then can be shown the solution is:

Ψpq,Φq “ Cpqqeim
2
pS0pqqψ̃pq,Φq (3.50)

Hence the Wheeler-DeWitt equation reduce to the normal quantum field theory.
Now we will examine how to pick out the vacuum state for the quantum

cosmology. As physicist are interested in inflation, vacuum state in de-Sitter
space is of particular importance. The vacuum state here is known as the
Euclidean vacuum.

There is one vacuum that is invariant under the Poincare group and thus
holds the same for all observers in Minkowski space. And such vacuum is unique
up to a trivial Bogoliubov transformation. The de-Sitter version of Poincare
group is known as the de Sitter group.

The symmetric two-point function is defined as:

Gλpx, yq “ xλ|pΦpxqΦpyq ` ΦpyqΦpxq|λy. (3.51)

A de-Sitter invariant state is such a state that the two-point function depends on
the geodesic distance between x and y and is independent of x and y otherwise.
Hence, the following holds:

Gλpx, yq “ fλpµq (3.52)
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Unlike the situation in Minkowski space, there are more than one de-Sitter
invariant vacuum. However, one can identify a one-parameter family of de-
Sitter vacuum.

Let x̄ be the point that is antipodal to the point x at the de-Sitter space.
Then one can find two poles in fλ i.e. the one where x is at the light-cone of y
and the one where y is on the light-cone of x̄.

Another equivalent way to obtain the Euclidean vacuum is through a par-
ticular choice of mode functions. First one can write the field operator in forms
of mode functions:

Φ̂px, tq “
ÿ

nlm

punlmpx, tqânlm ` u ˚nlm px, tqâ
:

nlm (3.53)

Then the vacuum state is defined by:

ânlm|0y “ 0 (3.54)

Now onw need to choose the mode functions:

unlmpx, tq “ ynptqQ
n
lmpxq (3.55)

where Q is the harmonics and y obeys:

:yn ` 3
9a

a
9yn ` p

n2 ´ 1

a2
`m2qyn “ 0 (3.56)

The normalization is done through the Wroskian condition:

yn 9y ˚n ´y ˚n 9yn “
i

a3
(3.57)

The vacuum is then defined as the ynptq being regular on the Euclidean section.
Euclidean section is obtained by changing tÑ ´ipτ ´ π

2H .
Now one should regard the mode to be perturbations on a homogeneous and

isotropic background. The Hartle-Hawking wave-function is given by:

ΨNBpã, Ψ̃q “

ż

DgµνDΨ expp´Igrgµνs ´ Imrgµν ,Φsq (3.58)

Around saddle-point one have:

ΨNBpã, Φ̃q « expp´Igrg̃µνsq

ż

DΦ expp´Imrḡµν ,Φsq (3.59)

where ḡ is the metric near the saddle point. Whether g is real or complex
depends on whether aH is smaller or larger than 1. If aH ă 1, the metric gives
a four sphere with a three sphere of radius a.

The matter wave functional is given by the following formula:

ψrã, Φ̃s “

ż

DΦ expp´Imrḡµsnu,Φsq (3.60)
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One can expand the scalar field using three-sphere harmonics:

Φpx, τq “
ÿ

nlm

fnlmpτqQ
n
lmpxq (3.61)

The Euclidean action is then written as:

Imrapτq,Φs “
1

2

ÿ

nlm

ż 1

0

dτNa3r
1

N2
p
dfnlm
dτ

2

` p
n2 ´ 1

a2
`m2qf2

nlms (3.62)

The field equation is then:

d2fnlm
dτ2

`
3

a

da

dτ

dfnlm
dτ

´N2p
n2 ´ 1

a2
`m2qfnlm “ 0 (3.63)

There two constrains for the background a(0)=0 and a(1)=ã. More explicitly
one can write:

apτq ´
1

H
sinpNHτq, N “

1

H
p
π

2
´ cos´1pãHqq (3.64)

We can write the solution in terms of hypergeometric functions. The solutions
are regular except for region near τ “ 0. In the region where τ “ 0, one have:

apτq „ Nτ (3.65)

and it can be shown that the solutions will be like τ´n´1 or τn´1. However,
one can still pick out a regular case in this region by imposing:

fnlmp0q “ 0, for n “ 2, 3, 4... (3.66)

and
dfnlm
dτ

p0“0 for n “ 1 (3.67)

Another condition will also be satisfied:

fnlmp1q “ f̃nlm (3.68)

One may write:
ψrã, Φ̃pxqs “

ź

nlm

ψnlmpã, f̃nlmq (3.69)

Then one can write:

ψpã, f̃nlmq “

ż

Dfnlme
´Inlm (3.70)

As Inlm is quadratic here, equation 3.70 yield an expression:

ψpã, f̃nlmq “ Anlmpãq expp´Īnlmpã, f̃nlmqq (3.71)

where Ĩ is the action to the field equation with boundary condition 3.66, 3.67
and 3.68. One can denote this solution as gn and then have:

Inlmpã, f̃nlmq “
1

2
ra3pτqgnpτq

dgnpτq

dτ
s10 “

1

2
ã3f̃2

nlmr
1

gn

dgn
dτ
sτ“1 (3.72)
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The matter wavefunction in Hartle-Hawking theory is therefore:

ψnlmpã, f̃nlmq “ Anlmpãq expp
1

2
ã3f̃2

nlmr
1

gn

dgn
dτ
sτ“1q (3.73)

We should note that it involves 9gn
gn

. In order to prove that this wave functional is
a Euclidean vacuum state, one need to determine what the vacuum state looks
like in this picture. First we promote fnlm to be an operator:

f̂nlmptq “ ynptqânlm ` y ˚nlm ptqâ
:

nlm (3.74)

The momentum operator is then:

π̂nlmptq “ a3 9̂gnlm “ a3 9ynptqânlm ` a
3 9y˚nptqâ

:

nlm (3.75)

One can write these in reverse form:

â:nlm “ ´iy
˚
npa

3 9y˚n
y˚n

f̂nlm ´ π̂nlmq (3.76)

Thus the vacuum state would obey:

pa3 9y˚n
y˚n

f̂nlm ` i
B

Bfnlm
qψnlmpfnlmq “ 0 (3.77)

We can solve this equation and obtain:

ψnlm “ expp
i

2
a3 9y˚n
y˚n

f2
nlmq (3.78)

This is thus the vacuum in the functional Schrodinger picture. We can therefor
write:

ψnlm “ expp´
1

2
a3 1

y˚n

dy˚n
dτ

f2
nlmq (3.79)

Hence, we have proven that the solution is indeed a vacuum state. And yn and
y˚n is regular one the Euclidean section.

I can be shown that the Vilenkin approach can also pick out the same vacuum
state.
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Chapter 4

Cosmology with Torsion

4.1 Classical theory with Torsion

4.1.1 Early Universe

As stated before, the normal general relativity are formulated as a torsion-free
theory. However, as we have fermionic particles in our universe and we have
not yet include in the standard theory of general relativity, it seems that one
should consider the effect of spin to the manifold. Thus, it seems plausible to
introduce torsion into the theory and explain some of the phenomenon that we
observe.[41][42][43][44][45][46] One example would be using to torsion to explain
the cosmic inflation [20].

Cosmic inflation are the reason why today’s universe is homogeneous and
isotropic. However, there is no explanation why such rapid expansion exist.
One proposal is to introduce intrinsic angular momentum of matter and explain
the homogeneity without the inflation. Such a theory is called Einstein-Cartan-
Kibble-Sciama theory of gravity.

In this theory the restriction of non-torsion is removed. Torsion tensor is
added to the theory and is treated like a dynamical variable. We define the
energy-momentum tensor as:

σii ´Θj
i {
a

´detgmn. (4.1)

and the spin tensor of matter as:

skij “ σkij{
a

´detgnm (4.2)

And we can vary the total action with metric and obtain:

´
1

2
Rgik `Rik “ κσki (4.3)

Also, if we vary the action with respect to torsion, we can obtain:

Sjik ´ S
l
ilgjk ` S

l
klgji “ ´

1

2
κsijk (4.4)
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The equation 4.3 gives the relationship between the curvature and tensor σ and
the equation 4.4 gives relationship between the torsion and spin tensor.

One can define a symmetric tensor:

Tik “ σik ´
1

2
p∇j ´ 2Sljlqps

j
ik ´ s

j
k i ` s

j
ik (4.5)

Combine above relationships together, one have:

Gik “ κT ik `
1

2
κ2psijj s

kl
l ´ s

ij
l s

kl
j ´ s

ijlskjl `
1

2
sjliskjl

`
1

4
gikp2sljms

jm
l ´ 2sljls

jm
m ` sjlmsjlmqq

(4.6)

One should note if spin vanishes, this equation will reduce to normal Einstein
equation.

Now we need to consider the quarks and leptons. At macroscopic scale, these
particles can be described by spin fluid model. The canonical energy momentum
tensor is:

σij “ cΠiuj ´ ppgij ´ uiujq (4.7)

The spin tensor is:
skij “ siju

k, siju
j “ 0 (4.8)

The theory including spin fluid gives:

Gij “ κpε´
1

4
κs2quiuj ´ κpp´

1

4
κs2qpgij ´ uiujq

´
1

2
κpδlk ` uku

lq∇lps
kiuj ` skjuiq

(4.9)

As we know the universe we observe can be described by Friedman-Lemaitre-
Robertson-Walker metric:

ds2 “ c2dt2 ´
a2ptq

p1` kr2{4q2
pdr2 ` r2dθ2 ` r2sin2θdφ2q (4.10)

We can combine this with equation 4.9 and obtain:

9a2 ` 1 “
1

3
κpε´

1

4
κs2qa2 (4.11)

9a2 ` 2a:a` 1 “ ´κpp´
1

4
κs2qa2 (4.12)

and the conservation law:

d

dt
ppε´ κs2{4qa3q ` pp´ κs2{4q

d

dt
pa3q “ 0 (4.13)

The conservation law is the equivalent of second Friedman equation.
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The average density of particle is given by :

dn

n
“

dε

ε` p
(4.14)

where ε is the energy density.
Let us assume that the fluid obeys the barotropic equation:

p “ ωε (4.15)

Then the spin density for the fluid will be:

s2 “
1

8
p~cnq2 (4.16)

and subsequently:
ε9a´3p1`wq (4.17)

The total energy density caused by the spin density is given by:

εS “ ´
1

4
κs29a´6 (4.18)

It is apparently independent of w. Thus, εS decouples from ε.
These particles has energy larger than rest energy at the very early universe.

Thus, the relativistic effect must be considered. As we know, the mist common
particles at the time was background photons and neutrinos. Thus, we have
ε « εR « εγ ` εν . Hence, we can write the first Friedman equation as:

H2 `
c2

a2
“

1

3
κpε` εSqc

2 (4.19)

The total density parameter can be written as:

Ωpâq “
κc2

3H2
pε` εSq (4.20)

and it will obey:
a|H|

a

Ωpâ´ 1 “ c (4.21)

If we combine these equations together, we have:

|H| “ H0pΩRâ
´4 ` ΩS â

´6q
1
2 (4.22)

where:
ΩR “

εr
εS
, ΩS “ εS{εc (4.23)

Hence we can write the total density parameter as a function of â:

Ωpâq “ 1`
pΩ´ 1qâ4

ΩRâ2 ` ΩS
(4.24)
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Now we can show the torsion can prevent the singularity. When the expan-
sion started, we have â “ âm where:

âm “

c

´
ΩS
ΩR

“ 3.1ˆ 10´33 (4.25)

When the universe contract with H ă 0, we have:

´
Ω

3{2
R

ΩS
t “ fpxq “

x

2

a

x2 ´ 1`
1

2
ln |x`

a

x2 ´ 1| (4.26)

When x " 1, we have the usual radiation-dominated universe. In usual general
relativity, we set ΩS “ 0 and will have flatness problem. This is solved by
introduce cosmic inflation. In the ECKS gravity, we have a ΩS ă 0. Hence,
Ωpâq will be infinite at âm and be at its minimum at

?
2âm:

Ωp
?

2âmq “ 1´
4ΩSpΩ´ 1q

Ω2
R

“ 1` 8.9ˆ 10´64 (4.27)

This way the universe seems to expand and rapidly reduce Ω to the level we
observe today. The time taken is :

t “ ´
ΩS

Ω
3{2
R H0

fp
?

2q “ 5.3ˆ 10´46s (4.28)

In this model, the universe only expand
?

2 of its size, and it is naturally caused
by a small negative torsion. In cosmic inflationary model, we have to introduce
a 2026 scale inflation.

We also have the relation:

9a “
1

a

Ωpâq ´ 1
. (4.29)

We can calculate the velocity of the point that is antipodal to the origin:

va “ πc 9a (4.30)

and find its maximum which is 1.1ˆ 1032c. The velocity increase from 0 to this
value just when the universe expands to

?
2âm. As the universe expand further,

the velocity will decrease. This has important implication i.e. if the universe is
casually connected before the expansion, it will remain connected afterwards.
Thus, the horizon problem is solved by introduce a small negative torsion.

Now we can discuss another recently developed model involving torsion. [22]
[19] Again we will consider the Einstein equation but with torsion:

Rµν ´
1

2
Rgµν “ κTµν (4.31)

We can write the energy momentum tensor in terms of torsion by using Cartan
field equation:

Sανµ “ ´
1

4
κp2sµνα ` gναsµ ´ gαµsνq. (4.32)
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The Friedmann equation is:

p
9a

a
q2 “

8πG

3
ρ´

k

a2
´ 4φ2 ´ 4p

9a

a
qφ (4.33)

:a

a
“ ´

4πG

3
pρ` 3pq ´ 2 9φ´ 2p

9a

a
qφ (4.34)

For the barotropic matter, we have:

9ρ` 3p1` ωqHρ` 2p1` 3ωqφρ “ 0 (4.35)

We can define a deceleration parameter to help us understand the effect of
torsion:

q “
4πG

3H2
pρ` 3oq ` 2

9φ

H2
` 2

φ

H
(4.36)

Now we have several choices for the torsion function. But the choice with
the best property is:

φptq “ ´αHptqp
ρmptq

ρ0c
qn (4.37)

This case means the torsion is from the spin of ordinary matter. In this case we
have a clear solution to equation 4.35:

ρmpaq “ ρ0c
31{n

2α` 3C1pa{a0q
3nq1{nq

(4.38)

In this case, the Friedmann equation will explicitly be:

H2 “
8πG

3
ρm ´

k

a2
` 4αH2p

ρm
ρ0c
qn ´ 4α2H2p

ρm
ρ0c
q2n (4.39)

The most general and realistic case is however:

φptq “ ´αH0p
H0

Hptq
qmp

ρmptq

ρ0c
qn (4.40)

Now we choose a special case where k=0 and write the Friedmann equation as:

H2 “
8πG

3
ρm ` 4αHm`1

0 H´m`1p
ρm
ρ0c
qn ´ 4α2Hm`1

0 H´m`1p
ρm
ρ0c
q2n (4.41)

We can derive the following equation from the Friedmann equation:

Ωm “ p1`
2φ0

H0
q2 “ p1´ 2αΩnmq

2 (4.42)

Now let us assume that m “ n « 1 and k “ 0. Therefore, we obtain:

Hptq2 “
1

3
κρptq ´ 4φ2 ´ 4Hptqφptq (4.43)
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and

φptq “ ´αH0p
H0

Hptq
qp
ρmptq

ρ0c
q (4.44)

One can see that φptq is very attached to constants. Combining equation 4.43
and 4.44, we have:

H2
0

ρ0
“ r

κ

3p1´ 2αq2
s (4.45)

Hence we can define a more general form of φ:

φptq “ ´α
κ

3p1´ 2αq2
ρptq

Hptq
(4.46)

The energy of the torsion will dominate the early universe as the dark matter
are not yet fully formed. Just as mentioned before, this will cause a inflationary
phase. Assuming 9ρ „ 0., we have:

ρ « ρ0r
3

2

p1` ω

αp1` 3ωq

H2

H2
0

s (4.47)

We can assume that the Hubble radius is constant before and after the inflation
and find the relation: ;

α “
3

2

p1` ωq

p1` 3ωq
(4.48)

This is the constraint on α and ω. We can now use the condition for the initial
matter density:

ρ0 “
2αH2

0

κ

p1` 3ωq

p1` ωq
p1´ 2αq2 (4.49)

The solution for a(t) at the inflationary era is then:

aptq “ aie
βt (4.50)

where:
β “ p

κ

3

ρ0

p1´ 2αq2
q1{2 (4.51)

Now we can consider the classical result of the scale factor. Using equation
4.46 and the continuity equation, we can have:

9ρ` 3p1` ωqγρ3{2 ´
2α

γρi
p1` 3ωqρ3{2 “ 0 (4.52)

The solution will be:

ρ “
4ρi

pβipt´ tiq
?
ρi ` 2q2

(4.53)

We know that H “ γ
?
ρ. Hence, the solution for scale factor is:

aptq “
ai
2
p2` βi

?
ρipt´ tiqq

2
3p1`ωq´2αp1`3ωq (4.54)
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The solution to matter density is:

ρptq “ ρip
aptq

ai

3p1`ωq´2αp1`3ωq

(4.55)

Now we will try to work out the linearized Einstein equation in Poisson
gauge. The perturbed metric we will use is:

ds2 “ ´a2pηqp1´ 2Φqdη ` a2pηqrp1` 2Ψqδij ` 2tijsdx
idxj (4.56)

where Φ Ψ are the Bardeen potentials.
From this metric one can show that if one set H “ Φ “ 0, one can obtain

the normal Newtonian limit.If we exclude torsion’s contribution to the tensor
perturbations, we have:

t2ij ` 2Ht1ij ´∆tij “ ´16πGa2δT ijpT q (4.57)

Using the linearized Einstein equation, we have the equation:

Ψ2 ´ c2s∆Ψ` 3p1´ c2sqβΨ1 `Ψpβ2p1` 3c2sq ` 2β1q “ 4πGa2δS (4.58)

If we assume Ψ “ upη, xiqfpηq, we can write:

u2 ´ c2s∆u´ up
θ2

θ
`Gq “ S (4.59)

A special case is the adiabatic perturbation where we have:

u2 ´ c2s∆u´ up
θ2

θ
`Gq “ 0 (4.60)

There are two solutions to this equation, one at the long-wavelength limit
and another at the short wavelength limit.

In the long-wavelength limit, equation 4.60 will take the form:

u2 ´ up
θ2

θ
`Gq “ 0 (4.61)

Here G is the contribution from the torsion.
Let ucan be a solution of canonical Mukhanov-Sasaki equation. We can

assume the solution to the equation 4.61 is u “ ucanh. Hence, we have:

h2 ` 2p
u2can
ucan

qh1 ´Gh “ 0 (4.62)

Using equation 4.46, we can see that G is a small term. Thus, we have:

h “ 1`

ż

1

ucan
r

ż

Gu2
candηsdη (4.63)

Therefore one can find the equation for ψ is

Ψ “ Ψcanhe
2
ş

φdη (4.64)
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Using this equation, one can write out the power spectrum:

Ps9k
ns´1 (4.65)

One can also find equation to determine the index:

ns ´ 1 “
d lnPs
d ln k

(4.66)

One can solve this equation and obtain:

ns “ 1´ 3p1`
p

ρ
qcan ´

8α2

3´ 6α
(4.67)

Now we can fix the value of α between -0.157 and 0.12 and get:

0.92 ď ns ď 0.97 (4.68)

In short wavelength limit, similar method is used. First we can write out
equation 4.60 in this limit:

u2 ` k2u “ 0 (4.69)

The solution is:
Ψ “ Ψcane

´2
ş

φdη (4.70)

Then we can find the equation to determine the spectral index:

ns “ 1´ 3p1`
p

ρ
qcan ´

8α2

3´ 6α
(4.71)

It is clear that in both case the contribution of torsion to the spectral index is
the same.

Another data worth noting is the tensor to scalar ratio. This remains un-
changed due to the small torsion contribution:

r “ 2
pT
Rs

ă 0.11 (4.72)

It is worth mention that this model has no reheating era after the inflation.
Therefore, the transition between the inflation and matter dominant era need
more careful analysis. One way to do this is introduced in paper [50].

4.1.2 Late Universe

We have now discussed how torsion model behave in the early universe. Tor-
sion model also has impact to late cosmology and can be used to explain dark
energy[23]. From the Friedmann equation with torsion, we can define a new
variable known as the deceleration parameter:

q “ ´1´
9H

H2
“

1

2
t
p1` 3ωqρ` 12p 9φ` φH

ρ´ 12φpφ`Hq
u (4.73)
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Again here we assumed barotropic equation of state p “ ωρ. The decelera-
tion parameter will be smaller or equal to 1 as long as:

ω ď ´1´
4

ρ
r 9φ´ φp2φ`Hqs. (4.74)

The universe with q=-1 is the universe with a constant cosmological constant
and universes with q ă ´1 is known as phantom cosmology.

Now we can introduce a normalised Hubble parameter:

Epzq “

p1` zq3p1`ωq{2

d

Ωρp0q expr6p
1

3
` ωq

ż z

0

φpzq

p1` zqH0Epzq
dzs ´ 2

φpzq

H0

(4.75)

The first torsion field we will consider is φ “ λH, where λ can be obtained
from the observational data. The Hubble parameter in this scenario is:

Epzq “

a

Ωρp0q

p1` 2λ
p1` zq

1
2 r3p1`ωq`6λp 13`ωqs (4.76)

and the scale factor in this universe is:

aptq “ a0r
p1` 2λq2

Ωρp0qH2
0

s´1{∆pts ´ tq
2{∆ (4.77)

where ∆ :“ 3p1` ωq ` 6λp1{3` ωq and

ts “ t0 ´
2

∆

d

p1` 2λq2

Ωρp0qH2
0

(4.78)

One need to note that scale factor will diverge if ∆ ă 0 and t “ ts. One should
also note the normalized Hubble parameter will be divergent in this case. No
singularity will occur in the case where ∆ ą 0.

The second torsion field is given by the following equation:

φpzq

Hpzq
“ ´αp

ρpZq

3H2
0

qn (4.79)

We can now define an effective parameter:

ωeff “
2

3

φ

H
` ωp1`

2φ

H
q (4.80)

Hence the conservation equation can be written as:

9ρ` 3Hρp1` ωeff q “ 0 (4.81)

Let us compare this model with ΛCDM model. The effective interval will lie
between -0.5 and 0 if we set ω to be 0. Hence, the torsion term cannot simulate
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the ΛCDM model. Also, this model can be used to explain dark energy. We
can write:

ωeff “ ´
1

3
r1`

b

Ωρp0qs (4.82)

Using the data from the density parameter, we have ´0.522 ă ωeff ă ´0.518.
In this case, the torsion will behave like dark energy.

Thermodynamic behaviour of the universe in this model is also an interesting
topic. If we differentiate both sides of the first law of thermodynamics with
respect to time, we have:

T

V

dS

dt
“ 4φρ (4.83)

Here we used the relation:

dV

v
“ 3Hp1`

2φ

H
qdt (4.84)

and the continuity equation.
One should note the relation S “ constant does not hold even in adiabatic

case as we have an extra torsion term here. The Gibbs equation can be written
as:

nTdS “ ´pρ` pq
dn

n
` dρ (4.85)

If one take the time derivative of this equation, one can obtain:

nT
dS

dt
“ ´pρ` pq

9n

n
` 9ρ “ 4φρ (4.86)

From the equation 4.85, we can define the temperature:

9T “
BT

Bn
9n`

BT

Bρ
9ρ (4.87)

A more general form of temperature can be written as:

T pzq “T0 expr´4

ż

ρφ

Hpzq

BT

Bρ

dz

p1` zq

` 3ω

ż

p1`
2φ

Hpzq
q

dz

p1` zq
s

(4.88)

In the case where φ “ λH, this can be simplified:

T pzq “ T0p1` zq
α expr´4λ

ż

ρp
BT

Bρ

dz

p1` Zq
s (4.89)

where α “ 3ωp1` 2λq.
One can see that this temperature will always be positive. Hence, we have:

TS “ p1` ωqρV (4.90)
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In the phantom regime we have TS ă 0 thus implies a negative entropy. Just like
normal cosmology, this problem cam be solved by introduce chemical potential:

µ “
4φρ

nv
p
N ´ 1

N
q (4.91)

In order for the second law of thermodynamics to hold, one must have:

4φ

ν

N ´ 1

N
ą ´|1` ω| (4.92)

Let us go back to the scenario defined by φ “ λH. The internal energy here
can be found using Misner-Sharper term U “ ρV . However, this expression of
energy is not compatible with the thermodynamics described before. Therefore,
a more general energy term needs to be found. A simple way to do this is Komar
energy which is defined by:

Uk “ p3p` ρqV (4.93)

With the definition of pressure, we can write out the following equation:

dp

dρ
`

2

3

p

ρ
`

1

2
“ 0 (4.94)

The solution to this equation is:

ppρq “ ρp
c1
ρ5{3

´
3

10
q (4.95)

where c1 is an arbitrary constant.
Combined with continuity equation, one can obtain the Hubble parameter:

H2paq “
ρpaq

3p1` 2λq2
(4.96)

One can also study the entropy in this case. The equation to determine the
entropy is:

T

V

dS

dt
“ 4φρ` 3r 9p` 3Hpp1`

2φ

H
qs (4.97)

It is worth mentioning there are also some development on the experiment
front.[48][49]

4.2 Quantum Theory with Torsion

Now that we have seen how torsion can be useful in the classical cosmology, we
can step into the quantum regime. First we need to determine the potential
caused by torsion. [21] Let us a four vector:

nµ “ p
1
?

2
pψ˚1 ψ˚2 qσµ

ˆ

ψ1

ψ2

˙

(4.98)
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where:
ψ1 “ pcosθ{2qe

iφ{2 (4.99)

and
ψ2 “ psinθ{2qe

´iφ{2 (4.100)

One can construct the topological current as:

Jµ “ p
1

24π2
qεµνλσTrrpg

´1Bνgqpg´1Bλgqpg´1Bσgqs (4.101)

Therefore one can find out the invariant charge:

QP “
1

16π2

ż

d4xBµJ
µ (4.102)

One can prove the action of torsion can be written as:

ST “
M2
p

2

ż

J2
µJ

2
µd

4x (4.103)

Using the relation:
jµp2q “ εµνλσBνfλσ (4.104)

one can rewrite the action as:

ST “

ż

d4x
a

´gp4q
m2

2
φ2 (4.105)

By inspection one can find the potential is:

VT pφq “ ´
m2

2
φ2 (4.106)

Following the step of the Vilenkin’s paper, one can find the WKB solution
of this theory are:

ψT “ p
1´ a2V ´ c2

1´ c2
q´1{4 expp

p1´ c2 ´ a2V q3{2 ´ p1´ c2q3{2

3V
q (4.107)

and

ψT “ eiπ{4p
´1` a2V ` c2

1´ c2
q´1{4 expp´

p1´ c2q3{2 ` ipa2V ´ 1` c2q3{2

3V
q

(4.108)
for classical allowed and classical forbidden region respectively where c is the
torsion field. Further study is needed for quantum cosmology with torsion.
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Chapter 5

Conclusion

In this dissertation we have explored the subject of quantum cosmology. In the
first chapter, Wheeler-DeWitt equation is introduced and two ways of quantis-
ing the cosmology is discussed. In the second chapter, we have explored the
basic formulation of quantum cosmology and discuss the problem of boundary
condition. Two important approaches has been discussed in detail: quantum
tunnelling approach first introduced by Vilenkin and ’no-boundary’ approach
first developed by Hartle and Hawking. We have compared them in two different
models and discussed their physical predictions and perturbative theory.

In the third chapter, we have discussed some further development of quan-
tum cosmology. Theory in superspace is discussed. We have seen that the
two approaches to the boundary problem can be seen as one. This is recently
discussed by Magueijo.

In forth chapter, we have discussed the implication of torsion in cosmology.
Some recent studies have been introduced in both classical and quantum cos-
mology. In the classical regime, we have discussed the implication of torsion to
the early universe. Specifically, We have used the torsion to model the cosmic
inflation. Two different cases were discussed. Case one is φptq “ ´αHptqpρmρ q

n

and case two is φptq “ H0p
H0

Hptq q
mp

ρmptq
ρ0c

qn. Case two was studies in more de-

tails. Both long-wavelength and short-wavelength limit were studies. The fact
that there is no reheating phase is mentioned. We also discussed late cosmology
model with torsion and see how it can be used to explain dark energy. The ther-
modynamics of cosmology with torsion is discussed, and we have discussed the
need for an extra torsion term. On the other hand, certain unusual behaviour
caused by torsion term is introduced. The concept of energy was extended to
Kormar energy. In quantum regime, we have derived the potential caused by
torsion and gives the WKB solution for tunnelling approach. However, this is
still an active area of research and there remain many questions of quantum
cosmology with torsion yet to be discussed and studied.
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