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Abstract

We consider the effects of higher order curvature corrections to Gen-

eral Relativity, focusing on those produce by the inclusion of terms

of order R4
αβγδ, with regards to the speed of propagating gravita-

tional waves in Schwarzschild spacetime.

Focusing on the presence of superluminal speeds in odd modes, we

consider whether any time advanced produced is not in violation of

causality due to its unresolvable nature at the scale of the EFT, as

well as checking for self consistency, and observing that any propa-

gating modes remain luminal at the Event Horizon of a Black Hole.
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Notation and Conventions

The following conventions shall be used throughout this work unless otherwise stated:

The signature of 4-dimensional spacetime is taken to be {-,+,+,+}.

Units are defined such that the speed of light in a vacuum is given by c = 1.

The reduced Planck mass is defined as M2
pl =

1
8πG

.

We use standard Einstein summation convention for repeated indices.

Partial differentiation is indicated by ∂
∂xµ = ∂µ, and covariant differentiation given by ∇µ.
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1 Introduction

The recent successes and progress of Gravitational Wave (GW) astronomy, via the LIGO-

Virgo collaborations Refs.[1-4], have clearly opened up new pathways to understanding

compact objects, General Relativity (GR), and cosmology as a whole.

The ability to observe interactions at high energies and curvatures provides a previously

unavailable laboratory to test fundamental physics, and our current Standard Model, in

exotic and otherwise unattainable environments within the confines of our solar system.

Namely, any unknown process or large numbers of new particles generated may impact

the dynamics of the system in question, for example a binary black hole merger, leaving

an observable imprint on the Gravitational Waves sent to us.

While these kinds of energetic conditions may seem most suited to searches for these

finger prints to provide a foundation to explore beyond SM physics, and indeed in the

search for light particles that only couple weakly to the standard model like Axions, it

is equally useful in providing a greater understanding of GR, the latter being our main

interest.

Within the classical regime of GR, with minimal coupling to matter, behaviour is gov-

erned by the Einstein-Hilbert action. Due to its form, any modifications stemming from

background curvature will induce the Lagrangian relating to tensor fluctuations of the

form

L = (ḣ)2 − (∇h)2 −m2
effh

2, (1)

where the modifications have resulted in the presence of an effective mass term, meff .

This however does not cause the waves to deviate from luminal speeds, as the sound
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speed, cs, is determined by

L = (ḣ)2 − c2s(∇h)2 −m2
effh

2. (2)

Since the modifications induce no kinetic or gradient terms, they have no impact on the

sound speed of the wave, and hence the effective mass does not manifest itself as an actual

mass.

This is an inherent property of GR due to the second order nature of the action, and

as such any deviations of GW speeds must result from higher order corrections to the

Einstein-Hilbert action, [5].

General Relativity in and of itself is, however, an effective theory, and as such is open

to corrections in low and high energy regimes. Extensions to this in the context of Ef-

fective Field Theory will primarily take the form of introducing new massive particles,

necessarily at an energy scale that have yet to be explored. Furthermore, at low energies,

the effects of massive particles above the energy scale of interest result in the inclusion of

new higher order terms constructed from the Riemann Curvature tensor. This follows by

the process of integrating out the massive particles that cannot exist at this energy, with

these higher order terms suppressed by a mass scale beyond which we expect the theory

to lose validity.

It is the latter of these that we concern ourselves with, in particular we consider the effects

of these higher order curvature corrections on the speed of GWs in the Low Energy EFT

of Gravity.

The basic framework of how we use Effective Field Theory to provide a modification
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to our current knowledge, and hopefully produce new physics, is that we attempt to make

the most general extension to the existing theory within the regime of interest. This may

appear to be a rather large task, with the obvious benefit being that we are not required to

fully specify our new action and from there compute measurable differences in underlying

physics.

However this method is not without a guiding philosophy, namely we must respect sym-

metries or principles that readily reveal themselves within current experiment, and ensure

that measurable modifications, or new particles, are outside of the domain in which they

should have already been observed.

An important element in maintaining this balance, and remaining at energy level at which

our EFT would be valid, is the introduction of an energy scale or cutoff, in this instance

we choose Λ. This defines what is meant by low energies, and at energy scales below Λ

we construct our theory such that extensions are perturbative, and hence under control.

With this in mind, it is reasonable to wonder whether there is any new physics to be

tested at low energies, as surely any low energy effects should be visible in tests made

within our solar system. This, however, neglects to acknowledge General Relativity’s

unique dependence on space-time curvature independent of the energies being considered,

with observable curvature scales resulting from black hole mergers being on the order of

inverse kilometres, as compared to the 10−8km−1 scales typically found on earth and in

the solar system.

A key attribute in understanding GR is the manner in which spacetime geometry ef-

fects the propagation of particles through it and the effect it has on the causal structure.

A well understood example of this is the Shapiro Time Delay, the time delay induced by
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propagation through a curved background space-time, [6]. However, in using an EFT we

necessarily must consider the further effects of using a modified form of GR, giving us

and effective time delay of the form

∆T = ∆Tg +∆TEFT , (3)

where ∆Tg is the time delay generated by standard propagation through curved back-

ground spacetime, and ∆TEFT is the time delay generated by the EFT corrections. This

has typically been used as a test for whether a choice of EFT is causal, as if ∆TEFT is

negative then there will be a time advance, and hence superluminal travel.

This however may be too strict of a constraint, as it pays no mind to whether, within the

context of the EFT, ∆TEFT is large enough to be resolvable, and is hence relevant on the

length scales that the EFT is sensitive to.

More specifically for spherically symmetric asymptotically flat spacetimes, we may make

use of a generalised form of the Eisenbud-Wigner scattering time delay, as in Ref.[16], and

moreover may specify this to specific fixed choices of angular momentum due to spherical

symmetry, providing a time delay ∆Tl.

The paper shall be organised as follows: In Section 2, we consider the possible forms

of our EFT, and decide on the specific construction to analyse. In Section 3, we find

the effects modifications made by the EFT have on the equations of motion, and hence

on the form of the metric that solves them. In Section 4, we introduce the metric per-

turbations, and consider the equations of motion generated by the odd modes, as well

as finding the governing master equations for the degrees of freedom for a modified and

unmodified Schwarzschild metric, and from these deriving the sound speed of the propa-
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gating degrees of freedom. In Section 5, we discuss superluminal propagation in a wider

context and consider how the problem of causality was solved in the context of QED. In

Section 6, we consider the effective metric as seen by low energy gravitational waves, and

compare the event horizons experienced with the modified Schwarzschild metric derived

in Section 3. In Section 7, we discuss the validity of the theory, and check whether any

time advances generated may be mitigated by being unresolvable by the EFT. We end

with a summary and discussion in Section 8. Appendix A contains the exact equations

of motion generated by the odd modes, and the exact Master Equation produced.
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2 The Construction of the Effective Field Theory

We now move on to discuss in further detail the precise form that our EFT will take, and

the overall manner in which it is constructed. This will involve considering the associated

shortcomings and properties that arise in the wider literature, and reviewing why a given

choice may be ignored.

It is well established that the form of classical GR does not reflect nature, and indeed one

would at the very least expect 1-loop interactions of already well understood phenomena

to induce alterations to the form of Gravity.

On the level of GR however there is only a single term that we could consider including

in our EFT by diffeomorphism invariance, this is of course the standard Einstein-Hilbert

term,

LGR =
√
−gM2

pl

R

2
, (4)

where g = det(gµν) for a metric gµν , Mpl is the Planck mass, and R is the Ricci Scalar.

This provides the well known Einstein’s Field Equations in a vacuum,

Gµν = Rµν −
1

2
gµνR = 0 (5)

for a Ricci Tensor Rµν .

As stated, the process with which we construct our higher order extensions from this

foundation hinges on setting an upper limit on the energy our system can exist in using

a cutoff, Λ, integrating out any particles with masses higher than this cutoff.

In our case we seek to ensure that no massive particles are present, by setting this cutoff

below the mass of the lightest known particle. This cutoff also serves the purpose of

11



restraining higher order terms that we may introduce, preventing their effects from being

comparable to those seen in unmodified GR.

Quadratic Curvature Corrections

Having seen that the allowable linear curvature terms are already embodied by GR, we

now must move on to consider possible terms stemming from the next lowest order in

curvature.

At the level of quadratic, or dimension 4, terms there is again only a single unique choice,

RαβµνR
αβµν . (6)

However, this may be rewritten to provide terms of a form following that in Ref.[7]

LD4 =
√
−g(cR2R2 + cW 2W 2 + cGBR

2
GB), (7)

where W 2 = WαβµνW
αβµν for Weyl tensor Wαβµν , and RGB = RαβµνR

αβµν−4RµνR
µν+R2

is the Gauss-Bonnet term.

In four dimensions however, the Gauss-Bonnet term happens to be the Euler density,

which is topological and as such will be ignored. Hence we may rephrase our expression

as

LD4 =
√
−g(c1R

2 + c2RµνR
µν), (8)

where c1 = cR2 − 2
3
cW 2 , and c2 = 2cW 2 .

Clearly in a Ricci flat vacuum, such as with Schwarzschild, it is not possible for this to

give first order corrections to the theory as all first order terms vanish trivially.
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Cubic Curvature Corrections

Having ruled out dimension 4 terms, we now move on to consider dimension 6, or cubic

curvature, terms. Again following Ref.[7], the corrections to GR are

LD6 =

√
−g

Λ2
(d1R2R + d2Rµν2R

µν + d3R
3 + d4RR2

µν

+d5RRαβµνR
αβµν + d6R

3
µν + d7R

µνRαβRαβµν

+d8R
µνRµαβγR

αβγ
ν + d9R

αβ
µν R γδ

αβ R µν
γδ

+d10RµανβR
αγβδR µ ν

γ δ ).

(9)

This is the first higher curvature extension to GR that we introduce which produces first

order corrections in Ricci flat space-times, however it is not without avowed problems.

The arguments laid out in Ref.[8] are highlighted as sources of dissonance between this

particular construction and its validity in parts of the literature, for example see Refs.[9],

[10], and [11].

In Ref.[8], it was argued that the low energy effective theory induced superluminal speeds

and time advances, and as such allegedly fails to be a causal theory.

In that context, in order to mitigate this in the UV completion, causality would require an

infinite tower of higher spin particles coupled to standard model fields with gravitational

strength, an effect that surely should have already been observed. However, we must

proceed with caution so as to not rule out valid low energy theories.

We start by considering the appearance of an infinite tower of higher spin particles as

a resolution to the effects in the UV completion of the theory. From the perspective of

our low energy EFT, these higher spin particles will simply take the form of more, higher

order, corrections to the theory, and as such be suppressed by larger and larger amounts,
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making their effects questionable at this level.

Moreover, within the low energy EFT context, the manifestation of these superluminal

speeds would still be a symptom of causality breaking over large distances even if the

problem is corrected as we move into the high energy regime.

We are therefore left to consider possible resolutions to time advances that occur, in-

deed we choose to take a more subtle approach as to why these apparently causality

violating theories may still remain salvageable.

By introducing a cutoff, we have in essence also introduced a minimum length scale that

our theory concerns itself with. That is distances, and time scales, much smaller than

those attributed to any Gravitational Waves in our theory should be unresolvable.

As such we don’t necessarily require that these waves cannot stray into superluminal

speeds, but merely that if they do they must (1) be suppressed in such a way that any

advance may not be integrated over an arbitrarily long time to become macroscopically,

or indeed infinitely, large, and (2) that any advance made is much smaller than the scale

that the theory is sensitive to, that is we expect a time advance to be causal if

∆T ≪ ω−1, (10)

for a gravitational wave of frequency ω.

In spite of this, it is for the aforementioned difficulties that the cubic order terms are

currently ignored in favour of quartic order terms as the same issues with regards to UV

completion are not a concern at this order.

However, as we will see, the possibility of superluminal speeds still very much exists for
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dimension 8 terms, for example in Ref.[12] this was used to limit the possible values of

coefficients in the EFT. But, as stated, the goal of an EFT is to provide the most general

extension to the theory, and as such we must be very careful not to exclude certain aspects

of a theory too quickly, or naively ignore something appearing contradictory at first that

may be reconciled when placed in the context of other elements of the theory.

With these concepts in mind, we follow these previous parts of the literature, leaning on

the side of caution, and in the comfort of knowing that the behaviour of GW speeds and

causality have been reasonably well explored at this order.

Therefore, we move on to consider the next lowest order in consistent higher curvature

corrections and treat their cubic counterparts as an unphysical choice that may be ignored.

This is done in essence to check the behaviour of this order, and see if the superluminal

speeds it may generate are permissible within the context of an unresolvable time advance.

Quartic Curvature Corrections

Having ruled out, or chosen to ignore for our own purposes, all of the previously mentioned

EFT corrections we are now left with quartic curvature, or dimension 8 corrections, of

the form

LD8 =
√
−gM2

pl(
c1
Λ6

C2 +
c2
Λ6

CC̃ +
c3
Λ6

C̃2), (11)

where C = RαβγδR
αβγδ, C̃ = RαβγδR̃

αβγδ, and R̃αβγδ = ϵαβµνR
µνγδ. As mentioned, this

order of correction does not share the issues of UV completion with the cubic curvature

terms, but can nevertheless produce superluminal gravitational wave modes.

In the name of consistency and providing a clear path to comparison, we define our

Lagrangian in a similar fashion to Refs.[9],[10], and [11],

2
√
−gM2

pl(R +
c1
Λ6

C2 +
c2
Λ6

CC̃ +
c3
Λ6

C̃2). (12)
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This has the further benefit of allowing us to ignore the presence of Mpl when writing our

equations of motion, as this is simply a overall constant factor.

From this we proceed to calculate the equations of motion, by taking the variation with

respect to the metric, gµν , providing

Rµν −
1

2
gµνR = −gµν

2
(
c1
Λ6

C2 +
c2
Λ6

C̃2 +
c3
Λ6

CC̃)

+
c1
Λ6

(4R αβγ
µ RναβγC + 8∇α∇β(RµανβC))

+
c2
Λ6

(2R αβγ
µ R̃ναβγC + 2R αβγ

µ RναβγC̃

+4∇α∇β(RµανβC̃) + 4∇α∇β(R̃µανβC))

c3
Λ6

(4R αβγ
µ R̃ναβγC̃ + 8∇α∇β(R̃µανβC̃)).

(13)

Notably, terms associated with c2 and c3 do not modify the background solution.

Considering only c1 terms, one should have,

Rµν −
1

2
gµνR =

c1
Λ6

(4R αβγ
µ RναβγC + 8∇α∇β(RµανβC)− gµν

2
(C2)) (14)

This may still seem different from the equations of motion found in the aforementioned

literature, however if we note that in a Ricci flat spacetime

(4Rcde
a Rbcde − gabC) = 0, (15)

we recover the equations of motion of the same form found in Ref.[10]

Rµν −
1

2
gµνR =

c1
Λ6

(8∇α∇β(RµανβC) +
gµν
2

(C2)). (16)
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In other parts of the literature these equations have been constrained by requiring 0 < ci

in order to preserve causality by preventing superluminal speeds, however in the vein of

similar arguments we have made we shall pay no mind to this particular constraint and

instead look at the theory through the lens of whether resolvable time advances are made.

Having now considered the construction of our EFT, we are finally in a place to confidently

continue on in analysing the behaviour it induces in Gravitational Waves propagating

within it.
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3 The Modified Schwarzschild Metric

Our higher curvature extensions to the Lagrangian, and hence to the equations of motion,

will necessarily lead to modifications to the metric that solves them. This can possibly

have consequences on the precise causal structure of our theory, as well as direct effects

on Gravitational wave propagation.

As we are concerned with the static, spherically symmetric spacetime around a black hole,

it is rational that we start with an ansatz in the vein of the Schwarzschild metric, with

corrections to first order in ϵ, a small dimensionless variable defined as

ϵ =
1

Λ6M6
, ϵi = ciϵ, (17)

where we again remind the reader that we will be ignoring the effects of c2 and c3.

We therefore start with the Schwarzschild ansatz

ds2 = −ftdt
2 +

1

fr
dr2 + C(r)r2(dθ2 + sin2(θ)dϕ2) (18)

where,

ft = (1− rs
r
)− ϵ1A(r)

fr = (1− rs
r
) + ϵ1B(r),

(19)

and we take rs = 2M to be the standard Schwarzschild radius, for a black hole of mass

M .

This may then be substituted into our Lagrangian, which may then be varied with respect

to A(r), B(r), and C(r), or alternately gµν itself, to provide equations that may be used

to specify our unknown variables.
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At first it may seem somewhat alarming as our equations cannot be solved in their current

state if we expand in full. However, if we notice that the terms in our equations of motion

resulting from the higher order curvature corrections are small by construction we may

therefore only need expand these higher order terms to order zero in ϵ. That is, we may

treat the Lagrangian to be

2
√
−gM2

pl(R + (
c1
Λ6

C2 +
c2
Λ6

CC̃ +
c3
Λ6

C̃2)|gµν(ϵ=0)). (20)

A further simplification may be made by recognising that we still have the freedom to

choose a gauge in which we impose C(r) = 1, however care must be taken so as to not lose

information that could be gleaned by the equations produced via variation with respect

to C(r) by applying this gauge prematurely.

The equations generated by variation of our unknown functions in our metric, followed

by enforcing the gauge C(r) = 1 are:

EA = 0

EB = 0

EC =
c1

2Λ6r10(r − rs)2
sin(θ)(Λ6r10(2r − rs)rsA

+Λ6r10(2r − rs)rsB + (r − rs)(Λ
6r11(2r − 3rs)A

′

+Λ6r11(−2r + rs)B
′ + 2(r − rs)(−288(36r − 41rs)r

3
s + Λ6r12A′′))).

(21)
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This is clearly insufficient to specify the forms of A(r) and B(r), as the equations stemming

from variation with respect to A and B vanish trivially.

Accordingly we are required to take the equations of motion from our arsenal in order

discern any further information. This too may seem somewhat of a daunting task, however

we have more tools that may be used to simplify this procedure.

Notably, we are only interested in terms at order ϵ exactly, with order zero solutions

simply being Einstein’s Equations evaluated in a Schwarzschild vacuum,

Gµν = 0. (22)

Hence, again identifying that our higher curvature corrections are small by construction,

the relevant equation of motion is effectively of the form

Eµν = Gµν − (
c1
Λ6

(4R αβγ
µ RναβγC + 8∇α∇β(RµανβC)− gµν

2
(C2))|gµν(ϵ=0)) = 0, (23)

from which we select

E0,0 = −ϵ1(r − rs)
8r3s(−720r + 737rs) +B′r11

r13
= 0, (24)

and

E1,1 =
ϵ1

r11(r − rs)
(8(216r − 121rs)r

3
s + r11A′) = 0. (25)

E0,0 solves for,

B =
−1152rrs3 + 1072rs4 + r9a1

r10
(26)
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where we are free to select a1 = 0. And using E1,1 we may then solve for

A =
256r3s
r9

− 176r4s
r10

+ b1 −
b1rs
r

, (27)

where we may then set b1 = 0 for simplicity.

We are then provided with our modified Schwarzschild metric,

ds2 = −(1− rs
r
+ ϵ1(−2

(rs
r

)9

+
11

8

(rs
r

)10

))dt2

+(1− rs
r
+ ϵ1(−9

(rs
r

)9

+
67

8

(rs
r

)10

))−1dr2

+r2(dθ2 + sin2(θ)dϕ2).

(28)

With our new metric, specified to first order in ϵ, in hand, it is clear that the higher

dimensional operators introduced will result in deviations from the event horizon radius

that we are accustomed to in Schwarzschild. Furthermore, due to the nature of our EFT,

physical singularities must not form within regions in which the theory is valid, the horizon

being such a location for macroscopic black holes. It ensues that a modified horizon radius,

rH , must be defined, for which, to eliminate the prospect of physical singularities forming,

we require ft and fr to vanish concurrently and at the same location,

ft(rH) = fr(rH) = 0.

This need only be satisfied to first order in ϵ, as we treat any higher order terms as

negligible. By setting ft(rH) = 0, we find that

rH = rs − ϵ1
5

8
rs, (29)
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which also fortunately satisfies fr(rH) = 0, whereby we see that the inclusion of higher

order terms has resulted in a different horizon radius to that of Schwarzschild and we have

thankfully managed to avoid any physical singularities in the region where our theory

should be valid.
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4 The Perturbed Equations of Motion

4.1 Metric Perturbations

The heart and soul of Gravitational Wave propagation equations is understanding the

behaviour of spacetime under perturbations about the background metric. Namely we

start by defining our perturbed metric

ḡµν = gµν + εhµν , (30)

where ε is a small dimensionless parameter distinct from ϵ, and in the spirit of our previous

derivations, we only consider perturbations to first order in ε, and where gµν is defined in

Section 3.

Furthermore, we employ boundary conditions consistent with our background metric,

namely that this perturbed spacetime is asymptotically flat,

lim
r→∞

hµν = 0. (31)

Where we use the notation that,

hµν ≡ gµαgνβhαβ, (32)

and the perturbation has the following properties,

(gαβ + εhαβ)(g
βγ − εhβγ) = δγα, (33)
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and hence

ḡµν = gµν − εhµν . (34)

4.2 The Master Equation

We are now in a position to analyse perturbations on our newly found background met-

ric, and hence find the equations of motion governing gravitational wave propagation.

In this light, we employ techniques used in Ref.[13] for analysing perturbations about a

Schwarzschild background.

We are free to start by decomposing the metric perturbation into its odd and even com-

ponents, that is hµν = ho
µν + he

µν , dependant on how they are effected by parity transfor-

mations, (θ, ϕ) → (π − θ, π + ϕ). Furthermore, due to the spherical symmetry present in

the background, terms of different parity and degree, l, are not free to mix, where l is the

angular momentum eigenvalue associated with the state.

Additionally, we are not forced to consider spherical harmonics for some arbitrary m, as

for specified angular momentum eigenvalue l and wave number k we are led to the same

radial equation. As such, it is most convenient to select m = 0 as this will dramatically

simplify our calculations by removing ϕ dependence from the modes.
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Working in the Regge-Wheeler gauge [13], the odd perturbations are given by

ho
µν = e−iωt



0 0 0 h0

0 0 0 h1

0 0 0 0

h0 h1 0 0


sin(θ)Y ′

l (θ), (35)

and even perturbations given by

he
µν = e−iωt



ftH0 H1 0 0

H1 H2/fr 0 0

0 0 r2K 0

0 0 0 r2 sin2(θ)K


sin(θ)Y ′

l (θ), (36)

where Yl(θ) = Yl0(θ) are the spherical harmonics for m = 0, for which l is their degree,

and the prime indicates differentiation with respect to θ. We note that the perturbation

mode functions are h0 and h1 in the case of odd modes, and H0, H1, H2, and K are the

functions associated with even modes. It is important to stress that these functions do

not represent individual degrees of freedom, and indeed that GR only has the capacity

for 2 independent degrees of freedom, with a single being granted for each mode.

Despite our attempts at simplification, there is still a great deal of work involved in

extracting information on GW propagation from these perturbations. Namely the odd

modes will result in three distinct equations, and the even modes will produce seven.

Therefore our perturbed equations of motion must be massaged in such a way that we

are left with a single equation describing propagation for each mode.
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To accomplish this we must use the perturbed equations of motion, which may be found

in Appendix A, in conjunction with the Regge-Wheeler and Zerilli equations to deter-

mine a master equation for our theory, as well as the governing master variable, Ψo/e.

These master variables represent the true odd (o) and even (e) degrees of freedom in the

propagating gravitational wave, and the other perturbation mode functions are uniquely

determined in terms of their respective master variable.

For simplicity, we shall focus on those generated by the odd mode only, and hence forgo

the further use of the odd/even superscript, knowing implicitly we are discussing the odd

mode, as in the current context the odd and even modes are fully decoupled.

In the same vein as with our metric corrections, we must start by finding our master

variable and equation in the context of GR before finding corrections stemming from or-

der ϵ terms.

Moreover, one might expect that the inclusion of leading order corrections of the quar-

tic curvature modifications would lead to higher derivative equations of motion, as these

terms have the capacity to provide fourth order derivative terms. This is all the more

reason that we require these lower order equations to temper these terms, using the pre-

scription laid out in Ref.[5], to ensure that the master equation remains second order.

For completeness we shall do this process in full for unmodified Schwarzschild metric,

recognising that this method will also apply to the modified case.

We start by assuming that the master variable for Schwarzschild takes the form

ΨGR = fGR(r)h1, (37)
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as in Eq.(A.3) we see that h0 is related to h1 by a first order PDE and hence both are

fully determined in terms of ΨGR by simply setting it as proportional to one of the two.

The form of fGR(r) may then be determined by requiring Ψ satisfy the Regge-Wheeler

and Zerilli equations, given in GR by

d2ΨGR

dr2∗
+ (ω2

0 − (1− rs
r
)VGR)ΨGR = 0, (38)

where more generally the tortoise coordinate r∗ is defined by dr
dr∗

=
√

ft(r)fr(r), however

in the case of unmodified Schwarzschild this is simply

dr

dr∗
= 1− rs

r
,

and

VGR =
J

r2
− 3rs

r3
, (39)

where J = l(l + 1).

In isolation this is clearly insufficient to derive fGR(r), therefore we must call on the equa-

tions of motion for the unmodified metric found in Appendix A.1.

We start by eliminating h0 from our equations by solving Eq.(A.3), providing the form of

h0 in terms of our other variables,

h0 =
i(2M − r)

ωr3
(−2MfGRΨGR + 2MrΨGRf

′
GR − r2Ψf ′

GR + 2MrfGRΨ
′
GR − r2fGRΨ

′
GR),

(40)

for which primes indicate differentiation with respect to r.

Substituting this into Eq.(A.2), the equation may be rearranged to the form of Eq.(38),

27



whereby we may solve for fGR(r) by matching the coefficients, rephrasing Eq.(A.2) such

that the coefficient of Ψ′′
GR is

(1− 2M

r
)2. (41)

Once this is done, fGR(r) may be then found by matching the coefficients of Ψ′
GR to those

specified in Eq.(38) providing us with

2(2M − r)((−5M + r)fGR + (2M − r)rf ′
GR) = 2Mr3fGR(1−

2M

r
), (42)

which may then be solved to yield

fGR(r) =
c(r − rs)

r2
, (43)

for an arbitrary choice of constant c, which we set c = i
ω
for simplification purposes.

Furthermore, we also glean the form of Ψ′′
GR and Ψ

(3)
GR in Eq.(A.8) and Eq.(A.9) respec-

tively. These relations have the benefit of allowing us to eliminate any terms containing

third order derivatives or higher that would otherwise add unphysical degrees of freedom

to our system.

With the master equation and variable known for the case of GR we are free to use

this to find the prescription for our Low-Energy modification to GR defined by the metric

in Eq.(28).

In the case of modifications made by our EFT, as we now know the form the master

variable takes for Schwarzschild one can expect that any corrections to this will be of

order ϵ.

We therefore anticipate the master variable associated with these corrections to be of the
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form

Ψ =
i
√
ftfr
rω

(1− ϵ1f(r))h1, (44)

where as previously stated

ft = (1− rs
r
+ ϵ1(−2

(rs
r

)9

+
11

8

(rs
r

)10

))

and

fr = (1− rs
r
+ ϵ1(−9

(rs
r

)9

+
67

8

(rs
r

)10

)).

One would also expect that these order ϵmodifications should propagate into the expected

form of the master equation itself, modifying Eq.(38), and indeed it is now recast as

d2Ψ

dr2∗
+

ω2

c2s
Ψ−

√
ftfr(VGR + ϵ1V )Ψ = 0. (45)

Analogously to the above, substituting our master variable into Eq.(A.12), we find that

h0 = −(2M − r)(rΨ′ +Ψ)

r
− 128M8ϵ

r10

(
r(231M2 − 239Mr + 63r2)Ψ′

+(2661M2 − 2462Mr + 567r2)Ψ
)
.

(46)

From here, we may substitute the above into Eq.(A.15), which may then be rearranged

to provide the form of the full master equation, Eq.(A.16).

Using this we may once again solve for f(r) by comparing the coefficients of Ψ′, from

where we find that

29



1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

r

rH

Δ
c

Figure 1: Deviation of low energy speed from unity. The deviation vanishes at the modified
horizon radius, as well as asymptotically, r → ∞. The maximum deviation occurs at a
distance r = 9

8
rH . Whether this deviation is superluminal or subluminal depends entirely

on the sign of c1, with negative corresponding to faster than light, and vice versa.

f(r) =
1152M8(13M − 7r)

r9
. (47)

With this in hand we may now read off the sound speed,

c2s = 1− ϵ1∆c,

∆c =
63(r − rs)r

8
s

r9
.

(48)

The deviations from unity may be seen in Figure 1, where we note that the sound speed

approaches unity for r → rH as well as for r → ∞.

The latter of these is relatively self explanatory, as our spacetime is asymptotically flat
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one would expect the sound speed to approach that of Minkowski, that is luminal. The

former is more subtle and relates to the Horizon Theorem stated in Ref.[14], that will

be discussed in further detail in the next section and Section 6, and how this relates

to ensuring our theory is consistent and free of singularities in regions that are valid.

Furthermore it is clear that the choice of c1 < 0 will inevitably result in superluminal

sound speeds.
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5 Comments on Superluminal Propagation

It is at this point that we choose to address the elephant in the room. That is, as it stands

we are discussing deviations from a speed of unity due to direct coupling to space-time

curvature, and have not immediately struck down the notion of speeds deviating from

unity in such a way that would lead to superluminal sound speeds, however small they

may be.

As mentioned it is due to this exact behaviour that constraints were placed on coefficients

on dimension 8 corrections in Ref.[12], and furthermore is one of the reasons that dimen-

sion 6 corrections were ignored in Ref.[9]. Up to this point however we have argued that

superluminality is not necessarily the death knell of a theory if it is sufficiently restrained.

Questions that may immediately come to mind in this instance are, what effect will these

deviations have on the causal structure of our space-time, and will these deviations stand

in stark contrast with the principles used to obtain them.

It is therefore possibly best to tackle this conundrum in a somewhat roundabout fashion,

and drawing on similar effects previously studied in QED in the analogous circumstance

of photon propagation in some background gravitational field considered in Ref.[15]. In

this paper it was noted that corrections to the Einstein-Maxwell field equations induced

tidal forces that would alter the behaviour of photon propagation, namely it was noted

that superluminal photon speeds could be produced by these, and indeed it was argued

that this behaviour was non-controversial and did not violate causality.

A reasonable concern is that superluminal propagation would quite readily set up a para-

doxical situation in which information is sent backwards in time. Namely, if there is an

observer who sees a secondary event happen before the initial one, we are left with a set
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up in which a path exists along which a return signal can be sent and received before

the original signal has been emitted. This is as faster-than-light motion would imply that

information is no longer constrained by the usual light cone, and hence may travel in a

space-like fashion.

In the context of Ref.[15], the apparent paradox appeared to solve itself with the fortu-

nate detail that superluminal travel in one direction was met with subluminal travel in the

other, such that a returning signal could only arrive at its destination after the emission

of the original.

A secondary but no less important concern is that of how this behaviour lines up with a

foundational concept in Relativity, the Equivalence Principle. The key to understanding

this relationship is in clarifying what the Equivalence Principle represents, and how it

displays itself within General Relativity.

We therefore split the Equivalence Principle into its component parts, namely that, (1)

for each point in space-time there exists a frame which is locally Minkowski,and (2) the

laws of physics in all Local Inertial Frames (LIFs) are equivalent, and reduce to their

Special Relativistic form at the origin of these LIFs.

The former effectively seeks to determining the behaviour of particles in a system where

curvature is ignored, and amounts to the fundamental requirement that the space-time

of General Relativity is Riemannian, or Pseudo-Riemannian. This requirement does not

stand in contrast with any modifications we have made, as when curvature terms are

ignored, we do indeed recover Minkowski space-time.

The latter is necessarily violated by the construction of our theory, as the presence of

local higher order curvature terms will necessarily result in the inequivalence of LIFs, in

which laws do not necessarily reduce to their Special Relativistic form. In this instance,
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the latter requirement only stands as a stronger constraint on our theory, there to exclude

any direct curvature coupling, and hence is not necessarily fundamental to the Equiva-

lence Principle as a whole.

A final issue worth highlighting is whether any superluminal propagation would result

in a macroscopic, observable, time advance, or whether the level of deviation from lumi-

nal speeds is restrained in such a way that any advance made is never resolvable within

the scales that the EFT is sensitive to, and indeed that no matter what timescale is inte-

grated over any advance remains unresolvable.

It is with these convictions in mind, as well as the aim of an EFT to provide the most

general, reasonable, extension to an existing theory, that we press on to consider whether

it is sensible to rule out the superluminal effects of these low energy theories due to

macroscopic causality violations that may occur.
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6 The Effective Metric of Low Frequency GWs

In order to understand the causal structure associated with GW propagation, we must

extract the Effective Metric, Zµν , experienced by the Gravitational Waves at low energies.

This is distinct from the background metric seen by other fields including those seen by

high energy Gravitational Waves.

We may obtain this by considering a scalar, Φ, propagating on this effective background,

and demanding it satisfy

ZµνD
µDνΦ + UΦ = 0 (49)

For some effective potential U , where Dµ is the covariant derivative with respect to Zµν ,

and where we further note that, in the coordinate system we work in,

Zµν =



−Zt 0 0 0

0 Z−1
r 0 0

0 0 r2ZΩ 0

0 0 0 r2 sin2(θ)ZΩ


. (50)

Substituting Φ = e−iωtΨYl(θ)/r
2 into Eq.(49) provides

Ψ′′ +
((ZrZt)

′

2ZrZt

+
Z ′

Ω

ZΩ

)
Ψ′ +

( ω2

ZtZr

− J

r2ZΩZr

+
U

r2Zr

)
Ψ = 0. (51)

This clearly may be compared with our previous master equation, rephrased in the form

Ψ′′ +
(ftfr)

′

2ftfr
Ψ′ +

( ω2

c2sftfr
− J

r2
√
ftfr

+ V
)
Ψ = 0. (52)
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Matching the coefficients, we may simply read off that

(ftfr)
′

2ftfr
=

(ZrZt)
′

2ZrZt

+
Z ′

Ω

ZΩ

,

c2sftfr = ZtZr and,√
ftfr = ZΩZr.

(53)

One may then find that

Zt = Zr =
√

ftfr(1−
1

2
ϵ1∆c),

and ZΩ = 1 +
1

2
ϵ1∆c

(54)

which to leading order gives,

Zt = Zr = 1− rs
r
+ (1− rs

r
)ϵ
128(213M10 − 230M9r + 63M8r2)

(2M − r)r9
,

ZΩ = 1 + (1− rs
r
)ϵ
128(213M10 − 230M9r + 63M8r2)

(2M − r)r9
.

(55)

Now we have found the effective metric experienced by the low energy Gravitons, it is

important that we compare this to the experience felt by photons on the background

metric.

An obvious choice for comparison would be that of the Event Horizon seen in each scheme.

We therefore check the horizon radius seen by GWs, where we see that Zt = Zr = O(ϵ2),

and ZΩ = 1+O(ϵ2), for r = rH , just as with our modified Schwarzschild metric. Similarly,

as r → rH we find that ∆c → 0, meaning that the radial speed of the GWs is luminal on

the shared Event Horizon, despite the fact that at every point near the black hole their

speed, and therefore causal structures, differ.

This very neatly links to work done in Ref.[14] in the context of the EFT of QED below

the electron mass, and the effect of space-time curvature on photon propagation speeds.
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In this a Horizon Theorem was derived which shows that the effect of higher order, sup-

pressed modifications to the theory have vanishing effects at the Event Horizon, forcing

the speed of photons to be luminal. As an aside, this trick was also used to argue that in

de Sitter space, as each observer has their own cosmological Event Horizon and by exten-

sion each point in space must be on the cosmological horizon of some observer, luminal

speeds of photons must indeed then be enforced everywhere in space.

A similar theorem exists in the context of Gravity in Ref.[17], however due to both the

increased complexity due to the presence of higher order equations of motion in consid-

ering EFTs of Gravity, and the fact that GR is inexorably coupled to any and all matter

fields, this makes it tricky to consider anything other than a pure vacuum background.

In the setting of this EFT one need not go to these great lengths to check for consistency

of the location of the horizon, we may instead attempt to show the necessity of this re-

quirement by considering a situation in which our two metrics disagree on the location of

the Black Hole horizon, reminding ourselves that our EFT should indeed still be valid at

the Event Horizon.

We start by allowing our modified metric to see a horizon at r = rH , and essentially

consider our metric to have a form such that it is essentially that of Schwarzschild but

where we have insisted rs → rH . Using a similar approach with the effective metric seen

by our Gravitational Waves, we assume they experience a slightly different horizon at

r = r̄H = rH + ϵδrH , effectively setting rs → r̄H , meaning that our effective metric will

be perfectly non-singular at r = rH .

With these in hand we are free to construct a scalar invariant from functions of gµν and

Zµν . DefiningWαβγδ to be the Weyl tensor associated with our modified metric, and Wαβγδ
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to be that associated with the effective metric viewed by GWs, we may then construct a

scalar invariant, ξ, from the two. Up to first order in ϵ this takes the form

ξ = WαβγδW
αβγδ =

12r2H
r6

+
10δrHϵ

r5(r − rH)
− 9δrHr

2
Hϵ

r6(r − rH)
. (56)

This clearly leaves us in a situation in which we have a scalar invariant that is singular

at the horizon at the order of our corrections, meaning that our ϵ order modifications

have resulted in a physical singularity in a region in which the EFT should remain valid,

and therefore not produce these kinds of effects. The only remaining course of action is

to enforce rH = r̄H , such that all of our particles agree on the location of the horizon,

removing this issue.
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7 Validity of the EFT

We now move on to consider the bounds within which this EFT remains valid, and hence

when we can believe any aforementioned results, done following the method laid out in

Ref.[16].

The most obvious first bound to note is that any corrections to propagation equations

must remain perturbative.

Due to the spacetime of interest being Ricci flat, these corrections will be governed by

the Weyl tensor. Hence we must construct an invariant from the Weyl tensor to extract

any information about the corrections that is independent of field redefinitions one might

make.

For an on-shell wave vector kµ satisfying k2 ≈ 0, the highest order tensor we can can con-

struct from k that is linear in curvature is Wµνγδk
µkνkγkδ, however due to the symmetries

of the Weyl tensor this is zero. Therefore the next highest order tensor we may construct

is

Aµν = Wµγνδk
γkδ (57)

where by the aforementioned symmetries we find Aµνk
ν = Aνµk

ν = Aν
ν = 0. We expect

all scalar local operators to be suppressed by the cutoff scale, including Aα
α and Aα

βA
β
α.

Hence one would expect at the very least that

Tr[An] ≪ Λ4n. (58)

Considering a transverse wave vector kµ = (−ω, 0, 0,±ωr1/2 sin(θ)/
√

1− rs/r) we have
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the bound,

ω2 ≪ Λ2 r
3

rs
(1− rs

r
). (59)

However, using a radial travelling wave vector of the form kµ = (−ω,± ω
1−rs/r

, 0, 0) we

then have

Aαβdx
αdxβ = −rs

r3
ω2(dt∓ dr

1− rs/r
)2 (60)

and therefore Aαβ ∝ kαkβ, which satisfies the constraint in Eq.(58) trivially.

This compels us to consider the impact of higher derivative bounds such as,

Aαβkµ∇µAαβ ≪ Λ8, (61)

((kν∇ν)
pAαβ)((kµ∇µ)

pAαβ) ≪ Λ8+4p, (62)

and

(kµ∇µ)
p(WαβγδWαβγδ) ≪ Λ8+2p. (63)

Considering the last two relations, we may take the limit p → ∞, effectively providing

(kµ∇µ) ≪ Λ2, which may be rephrased as

ω ≪ Λ2r, (64)

if we assume our waves have a significant radial component for which (kµ∇µ) ∼ ω∂r

selects the radial dependence of background geometry.

This is clearly a stronger constraint than Eq.(59), and provides us a good basis to move

on and check the validity of radial propagation of odd modes.
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7.1 Radial Time Advance

This section considers the time advance generated by considering a photon and GW

produced at a radius r0 and projected radially to infinity. We define ∆Tadv as the amount

of time by which the gravitational wave is advanced ahead of the photon. This provides

a simple test for superluminality, and by which we can determine whether the advance

made is resolvable before moving on to more complicated forms.

This time advance is given by

∆Tadv =

∫ ∞

r0

dr
( 1

1− 2M/r
− 1

cs(1− 2M/r)

)
≈

∫ ∞

r0

dr
∆c

2(1− 2M/r)

= 9ϵ1
r8s
r70

=
576c1r

2
s

r70Λ
6

.

(65)

Using this notion of resolvability, we only require that any effects of superluminal propa-

gation are unnoticeable on the energy scales that the EFT concerns itself with, as these

unresolvable scales will be outside of the regime of validity that we a priori required our

theory to be bound within. As such we for any time advance to be non-secular we at the

very least require

∆Tadv ≪ ω−1, (66)

as this cannot be resolved by the gravitational waves by construction.

By reconsidering the form of Eq.(64), we can see that

r2s
r70

≪ Λ2ω−1 r
2
s

r60
, (67)
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by which we then find

∆Tadv ∼
r2s

r70Λ
6
≪ ω−1 r2s

Λ4r60
≪ ω−1, (68)

as clearly r2s
Λ4r60

< 1. Therefore in this simple case, we see that the time advance made is

sufficiently restrained to be unresolvable, and as such we argue it is valid with respect to

causality.
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7.2 Eisenbud-Wigner Time Delay

We now calculate corrections to the time delay in a more general context, that is we

consider the corrections the EFT may have to the Shapiro Time Delay Ref.[6], modifica-

tions to propagation effected by the curvature of background spacetime. We do this by

considering a generalisation to the Eisenbud-Wigner scattering time delay considered in

Ref.[16]. This time delay is induced by considering the effect of scattering our Gravita-

tional Waves on the background spacetime curvature, and measuring the impact of our

EFT on the standard gravitational time delay.

We start by reconsidering the form of our master equation as

d2Ψ

dr2∗
= −WΨ, (69)

where r∗ is again the tortoise coordinate defined as dr∗ =
dr√
ftfr

, and

W = ω2 − UGR − ϵ1U, (70)

for which U is the potential associated with the higher order corrections. For a master

equation of the form above, the phase shift is defined as,

δl(ω) =

∫ ∞

r∗t

dr∗(
√
W − ω)− ωr∗t +

π

2
(l +

1

2
) (71)

where rt is the turning point, and hence point of closest approach, in this scattering

process. This turning point is defined by ω2 − UGR(rt) = 0, hence for this process to be

valid we necessarily require that ω2 < UGR(rmax), where rmax is the value of r maximising
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UGR(r). Anything outside of this limit provides an undefined bound in the integral.

One can find that UGR(rmax) is given by

UGR(rmax) = −16J3(−9 + J −
√
81− 42J + 9J2)(−3 + 3J +

√
81− 42J + 9J2)

(9 + 3J +
√
81− 42J + 9J2)4rg2

(72)

Following the procedure in Ref.[16] the time delay is given by,

∆Tl = 2
dδl
dω

= 2

∫ ∞

r∗t

dr∗

(2ω − ϵ1
∂U
∂ω

2
√
W

)
− 2r∗t, (73)

and therefore the corrections on ∆Tl are given by

∆TEFT
l = 2

dδl
dω

= 2

∫ ∞

rt+δrt

dr
1

f + δf

( 2ω − ϵ1
∂U
∂ω

2
√
ω2 − UGR − ϵ1U

)
− 2

∫ ∞

rt

dr
1

f

( ω√
ω2 − UGR

)
,

(74)

where f = 1− rs
r
, and ϵiδf =

√
ftfr − f +O(ϵ2).

For convenience, and to avoid divergence at the turning point, we define,

A =
1

f

ω√
ω2 − UGR

, (75)

as well as,

δA = ϵ1
1

f

ω√
ω2 − UGR

( U

2(ω2 − UGR)
− 1

2ω

∂U

∂ω
− δf

f

)
(76)
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Figure 2: Results of numerical integration from produced from Eq.(77) for corrections of
the EFT on the time delay, where we have considered the case of c1 < 0. We know that
superluminal propagation occurs if ∆TEFT

l is negative, and indeed this becomes resolvable
on the condition that −ω∆TEFT

l > 1. In order to prevent resolvable superluminal prop-
agation for ω2 < UGR(rmax) = Umax, we see that we approximately require |ϵ1| < 10−3.

and hence the integral is,

∆TEFT
l = −2

∫ ∞

rt

drA
(δA

A ′

)′
. (77)

Unfortunately, ∆TEFT
l does not have an analytic solutions, therefore we have no choice

but to analyse this numerically. The results of this for a number of different choices of l

may be found in Figure 2.

Necessarily we will have superluminal propagation if time delay corrections are negative.

However, this is only problematic if the time advance is resolvable, that is, we have secular
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superluminality if,

−ω∆TEFT
l > 1 (78)

From Figure 2 we see that our requirement for unresolvable superluminality for these

choices of l is |ϵ1| < 10−3, where we specify that c1 < 0.

From this we observe that from the perspective of our arguments of permitting time

advances, so long as they cannot be resolved by the theory, that an EFT of this form is

reasonable based on the information explored.
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8 Summary and Discussion

In this paper we have considered the effects of EFTs of gravity containing higher or-

der curvature corrections, and investigated the effects of these on Gravitational Wave

propagation as compared to standard GR. Namely, we have focussed on issues regarding

superluminal GW speeds, and how this relates to whether the theory can be considered

causal.

We started by considering, in Section 2, the rationale behind the construction of an EFT

of gravity containing corrections in the form of higher order curvature terms constructed

from the Riemann tensor in Ricci flat spherically symmetric spacetime. In this way, we

noted that despite the issues of superluminality, and the appearance of an infinite tower of

higher spin particles in the UV completion of the theory, terms associated with dimension

6 corrections had merit at the order of low energy EFTs of gravity and the superluminality

could be overlooked if it can be considered unresolvable by the theory.

In spite of this, we pressed on to consider the effect of dimension 8 terms, the next choice

after cubic curvature terms are ruled out. This was done to serve our own purposes of

testing whether these terms may also have the capacity of unresolvable superluminality,

and hence extend the range of theories that may be considered valid despite apparent

issues with causality.

We then moved on, in Section 3, to consider the effects these quartic curvature terms

may have on the form of the Schwarzschild metric, and what modifications that may

result on the spacetime around Black Holes, for which the corrected metric was found to

be Eq.(28). Furthermore these metric corrections induced an altered horizon radius,rH

given in Eq.(29), where it was found that ft(rH) and fr(rH) vanished at the same point
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in space and time thus protecting us from any singularities that may have been produced

in the domain of validity of our perturbative corrections.

Next we examined the effects of tensor fluctuations on our altered metric in Section 4,

from which the equations produced may be found in Appendix A. We started by stating

the odd an even modes, Eqs.(35) and (36), before narrowing our scope to the odd modes

only, due to the ease with which the relevant equations may be generated. From this

we considered the master variable, a function containing the information pertaining to

the single odd degree of freedom from which all the odd perturbation functions may be

determined uniquely, as well as the master equation governing the behaviour of this.

Starting with the standard unmodified Schwarzschild metric we found the master variable

to be of the form in Eq.(43), from a master equation recast from Eq.(A.7) to be like that

of Eq.(38). We then moved on to consider the effects produced by our order ϵ corrections,

with a altered form of the Schwarzschild master equation as in Eq.(45). Corrections to

the master variable were found to be as in Eq.47, with a modified sound speed given by

Eq.48, where we noted that the speed became luminal at the event horizon, rH , as well

as at asymptotic infinity, r → ∞, as can be seen in Figure 1.

In Section 5, we discussed the justification for considering superluminal speeds by con-

templating them in the context of QED, as in Refs.[14] and [15] , and how the apparent

paradoxes that may occur could be circumvented, as well as how these things contrast

foundational principles in General Relativity.
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Having explored the above, we pressed on to examine the metric as seen by the Gravita-

tional Waves on this modified background in Section 6. We did this by considering a scalar

field, Φ, propagating under the effective metric governed by Eq.(49), where it was seen that

the metric itself would have the structure given in Eq.(50). Defining Φ = e−iωtΨYl(θ)/r
2,

we constructed a master equation, Eq.(51), that may be compared to that produced by

the modified Schwarzschild metric, Eq.(52). Subsequently we were able to specify the

effective metric to first order in ϵ as in Eq.55. From this we were in a position to check

that the event horizon radius, rH , was consistent for both metrics, and indeed went on to

show using Eq.(56), to first order in ϵ, that this was necessary for physical singularities

to not form within regions that the EFT should be valid.

Finally, in Section 7, we considered the regime of validity of the EFT, and what is there-

fore required for any time advances to not be resolvable in the theory. We started by

constructing invariants from the Weyl tensor and an on-shell wave vector, finding that for

radial propagating modes that the strongest constraint is set by Eq.(64).

This was then used to check whether the time advance of radially propagating Gravita-

tional Waves over light was resolvable, requiring that we satisfy Eq.(66), from which we

found in this instance that the time advance was sufficiently restrained to be considered

unresolvable. Next we moved on to analyse the theory more generally by seeing the time

advances generated by Eq.(77) stemming from a generalisation of the Eisenbud-Wigner

scattering time delay [16]. From this we integrated numerically to generate Figure 2,

which provides a basis for constraints on the form of ϵ1 such that any time advances

remain unresolvable to our theory, seeing that we require |ϵ1| < 10−3.

The work done in this paper may be extended primarily by studying the behaviour of
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the even modes, as these will likely set further constraints on the possible values of ϵ1,

as well as by considering how the effects of keeping c2 and c3 manifest themselves in the

behaviour already studied.
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A The Perturbed Equations of Motion

In this Appendix we outline the exact form of the equations generated by metric pertur-

bations on the equations of motion

Rµν −
1

2
gµνR =

c1
Λ6

(8∇α∇β(RµανβC) +
gµν
2

(C2)), (A.1)

both on a Schwarzschild and Modified Schwarzschild background metric, used in the

derivation of the master equations and master variable.

A.1 Unmodified Perturbation Equations

We start by considering first order perturbations of our equations of motion for which

metric corrections due to the modifications to GR in our Lagrangian are ignored.

This has the utility that these lower order equations of motion may be used to simplify

higher order ones resulting from considering the equations governing the full modified the-

ory, thus removing unphysical states that would otherwise prevent solutions from forming.

The distinct non-trivial unmodified odd equations of motion are defined as follows:

Eo03 =
(−4M + Jr)h0

2r3
+

iω(2M − r)(2h1 + rh′
1))

2r2
− 1

2
(1 +

2M

r
)h′′

0 = 0 (A.2)

Eo13 =
−iωh0

2(M − r)
+

(2(−2 + J)M + r(2− J + r2ω2))h1

2(2M − r)r2
− irωh′

0

4M − 2r
= 0 (A.3)
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Eo23 =
irωh0

4M − 2r
+

−2Mh1 + (2M − r)rh′
1

2r2
= 0 (A.4)

where J = l(l + 1).

Substituting h0 and h1 in terms of our master variable ΨGR as found in Section 3, that is,

h1 =
ωr

i(1− 2M/r)
ΨGR (A.5)

and

h0 = −(2M − r)(ΨGR + rΨGR)

r
, (A.6)

the remaining non-trivial equations of motion become,

Eo03 =
1

2r3(−2M + r)

(
(J(−2M + r)2 + (8M − 3r)r3ω2)ΨGR

+(2M − r)((−16M2 + 2(4 + J)Mr − Jr2 + r4ω2)Ψ′
GR

+(2M − r)r((2M − 3r)(Ψ′′
GR) + (2M − r)rΨ

(3)
GR))

)
= 0,

(A.7)

and

Eo13 =
iω

2r(−2M + r)2
((−12M2 + 2(3 + J)Mr − Jr2 + r4ω2)ΨGR

+(2M − r)r(−2MΨ′
GR + (2M − r)rΨ′′

GR)) = 0.

(A.8)

The latter of which may obviously be used to determine Ψ′′
GR in terms of lower order

variables,

Ψ′′
GR =

(12M2 − 2(3 + J)Mr + r2(J − r2ω2))ΨGR[r] + 2M(2M − r)rΨ′
GR)

r2(−2M + r)2
, (A.9)

52



which then may be used to find that

Ψ
(3)
GR =

1

r3(−2M + r)3
(2(12M3 − 24M2r − Jr3 +Mr2(9 + 2J + 3r2ω2))ΨGR

−(2M − r)r(12M2 − 2(1 + J)Mr + r2(J − r2ω2))Ψ′
GR).

(A.10)

A.2 Modified Perturbation Equations

Having extracted information from our theory in the influence of the unmodified Schwarzschild

metric, we are now in a position to consider the modified perturbation equations to first

order in epsilon.

The distinct non-trivial odd perturbation equations generated before the introduction of

a master variable are as follows:

E03 = (
−4M + Jr

2r3
− 128M8(77M2 + 18(−2 + J)Mr − 9Jr2)ϵ1

r12
)h0

+(
i(2M − r)ω

r2
+

128iM8(275M2 − 243Mr + 54r2)ϵ1ω

r11
)h1

−1152M8(22M2 − 27Mr + 8r2)ϵ1
r11

h′
0

+(
i(2M − r)ω

2r
+

64IM8(473M2 − 486Mr + 126r2)ϵ1ω

r10
)h′

1

+(−1

2
(1− 2M

r
) +

64M8(473M2 − 486Mr + 126r2)ϵ1
r10

)h′′
0 = 0

(A.11)

53



E13 = (
iω

2M − r
+

128iM9(47M − 26r)ϵ1ω

r9(−2M + r)2
)h0

+
(2(−2 + J)M + r(2− J + r2ω2)

2(2M − r)r2

− 64M8ϵ1
r11(−2M + r)2

(144(−2 + J)M3 − 18(−2 + J)r3

+M2r(432− 216J − 47r2ω2)

+2Mr2(−108 + 54J + 13r2ω2))
)
h1

+(− irω

4M − 2r
− 64iM9(47M − 26r)ϵ1ω

r8(−2M + r)2
)h′

0 = 0

(A.12)

E23 = (
irω

4M − 2r
+

64IM9(47M − 26r)ϵ1ω

r8(−2M + r)2
)h0

+(−M

r2
+

128M9(101M − 54r)ϵ1
r11

)h1

+(−1

2
(1− 2M

r
) +

64M8(473M2 − 486Mr + 126r2)ϵ1
r10

)h′
1 = 0

(A.13)

with the ansatz master variable of the form

Ψ =
i
√
ftfr
rω

(1− ϵ1f(r))h1, (A.14)

for which

ft = (1− rs
r
+ ϵ1(−2

(rs
r

)9

+
11

8

(rs
r

)10

))

and

fr = (1− rs
r
+ ϵ1(−9

(rs
r

)9

+
67

8

(rs
r

)10

)).

One might wonder at this point, why we were so interested in the perturbation equations
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defined by the unmodified metric and master variable. The key to this may be found in

the fact that we are only interested in solutions that are continuously connected to those

in the unmodified scheme. That is if we wished for ϵ → 0, we would expect our theory to

oblige us by providing the solutions of its unmodified state, furthermore, clearly taking

ϵ1 = 0 we are left with Ψ = ΨGR.

This is very convenient as it means that when considering terms of order ϵ in the equations

of motion we will be able to assume that Ψ = ΨGR as we regard terms of order ϵ2 and

higher as negligible. We will therefore have the capacity to apply constraints provided by

the GR equations of motion to these terms in order to simplify the process.

Notably, the presence of h′′
0 in Eq(A.10) likely guarantees the presence of a term of order

Ψ(3) as Eq(A.12) implies that h0 is linearly related to Ψ′. Furthermore, we note that even

at the level of the equations for an unmodified metric Ψ(3) terms were present, and we

only dealt with them by using another equation to rephrase them in terms of lower order

components.

In this instance we have a final trick up our sleeve. It is unreasonable at this level for

perturbations to result in new degrees of freedom within the regime of validity of the

EFT, and hence these too should be removed using the results of lower order equations

within the regime of GR.

After implementing the above, the remaining non trivial equations become,

− 64iM8ϵ1ω

(2M − r)3r10

(
(124956M4 + 2(−116529 + 545J)M3r

+18r4(324− 8J + 7r2ω2)

−2Mr3(25173− 423J + 230r2ω2) +M2r2(162654− 1661J + 426r2ω2))Ψ

+2Mr(−702M3 + 1093M2r − 569Mr2 + 99r3)Ψ′
)
= 0,

(A.15)
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and

− 64iM8ϵ1ω

(2M − r)3r10

(
(124956M4 + 2(−116529 + 545J)M3r

+18r4(324− 8J + 7r2ω2)

−2Mr3(25173− 423J + 230r2ω2) +M2r2(162654− 1661J + 426r2ω2))Ψ

+2Mr(−702M3 + 1093M2r − 569Mr2 + 99r3)Ψ′
)

+
iω

2(−2M + r)2

(
(2(3 + J)M − (12M2)/r − Jr + r3ω2)Ψ

+(2M − r)(−2MΨ′ + (2M − r)rΨ′′)
)
= 0

(A.16)

where the second of these can be rearranged into the form of the master equation,

1

r13

(
− 12M2r9 + 2(3 + J)Mr10 − Jr11

−7937280M11ϵ1 − 128(−85026 + 623J)M10rϵ1 + r13ω2

+2304M8r3ϵ1(324− 8J + 7r2ω2)− 1792M9r2ϵ1(2763− 43J + 18r2ω2)
)
Ψ

+
1

r12
(2M(−2Mr9 + r10 + 54912M10ϵ1 − 53120M9rϵ1 + 12672M8r2ϵ)Ψ′)

+
1

r11
((−2M + r)(−2Mr9 + r10 + 9984M10ϵ1 − 5632M9rϵ1)Ψ

′′ = 0.

(A.17)

As with GR in Section 4, one may now compare terms present to those expected in the

Eq.(45), finding that,

Ψ =
i
√
ftfr
rω

(1− ϵ1
1152M8(13M − 7r)

r9
)h1. (A.18)
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