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Abstract

This project presents a review of the work originally pioneered by E. Witten on topological quantum

field theories and how mirror symmetry arises in them. A discussion of differential geometry leads into a

rigorous, in depth look at what topological quantum field theories are. Both the mathematical and physical

sides are discussed. The second half of this project reviews how the N = (2, 2) supersymmetry nonlinear

σ-model is topological in nature and its connection to mirror symmetry.
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Chapter 1

Introduction

We are all familiar with the sentiment that physics is the product of mathematics. It is hardly

ever heard the other way around, that mathematics is the product of physics. As we will see, the statement

actually can be swapped; mathematical questions can be answered by physical methods and techniques.

Let us motivated this further.

1.1 Setting the Stage

One of the main focuses of mathematics is the classification and categorization of all the different

types of spaces. This could be anything from classifying and categorizing all different groups to manifolds

to algebras. We see the same thing in physics, with talk of symmetries or dualities. If we drop a ball at

position A is it the same as dropping a ball at position B? What if we wait five minutes then drop the ball

again at position A, will the ball fall the same way? These questions may feel trivial but underneath there

is a more fundamental question, which of course extends to more complicated problems. Either math or

physics, it does not matter, what is invariant? is always the question asked.

The spaces that will be relevant for us are topological spaces1. So, let us ask the question, what

are the invariants of topological spaces? As we will soon see, two topological spaces are the same if one

can be continuously transformed into the other and back again (continuously). So, we might think of

objects in a less rigid way. Perhaps they are made of playdough. In this manner topological spaces can be

classified by how many holes it has: its genus. A sphere has no holes where a torus has one hole, so there

is no way to continuously (without cutting, tearing, etc.) transform a sphere into a torus or vice versa. Of

course there is also the famous story of the coffee cup and the doughnut, which are both genus 1 so they

are topologically equivalent.

1This is actually quite broad, as we will see, so, more specifically differentiable manifolds, but we will talk of topological

spaces for now.
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The story of genus is probably quite familiar. There is, however, a different way to classify spaces

that may be a less familiar story. It is done by finding the intersections of two closed curves over the space.

Let us go back to the example of the sphere and the torus. Consider two closed curves on the sphere (say

two rubber bands on a ball), these curves can be continuously altered such that they never intersect (just

pull the rubber bands away from each other). So the sphere’s intersection number is trivial. On the torus

this is not the case. We have the following situation illustrated below.

As we can see from the above picture there is no way to continuously deform the cyan or red path such

that they no longer intersect. So, the intersection number on the torus is one (the paths intersect once).

So, how exactly can we study math through physics? This is done by formulating a topological

quantum field theory. These theories are incredibly powerful and provide a bridge between the worlds of

math and physics. When we say topological we mean that the theory is somehow global in nature. That

is it does not depend on local structure2 (Think back to the above example about spaces being made of

playdough). So, given a space in which a QFT can be defined, the space can be warped and changed (in a

continuous manner) without affecting the results of the theory. This should be reflected in the outputs of

the theory (the correlation functions), which it is. Because the theory was topological to begin with the

correlators will calculate topological invariants. As we will discover, the appropriate topological quantum

field theory will compute intersection numbers on the target space. Thus, spaces can be classified and

categorized (provided they support a TQFT) as mathematicians do, but by calculating physical quantities

(the correlators).

1.2 What Lies Ahead

In this thesis, we journey to a discussion of the topological σ-model and mirror symmetry. We

cannot begin our discussion there, however. A mathematical foundation must first be laid. We will do

this in two parts: differential geometry and topological quantum field theory. Our discussion of differential

geometry will be one guided by our destination of Calabi-Yau manifolds. This means working from real

geometry to complex, then to Kähler, and finally to Calabi-Yau. Calabi-Yau manifolds are actually a class

of manifolds and they fit into the hierarchy as illustrated in the graphic below3 (which more or less provides

2Of course we will make this much more precise in the coming discussion but it serves as a conceptual baseline for now.
3This is to say that Calabi-Yau’s are a subset of Kähler manifolds which in turn is a subset of complex manifolds, in turn

a subset of real manifolds.

4



our road map for Chapter 2).

Real

Complex

Kähler Calabi-
Yau

From Calabi-Yau manifolds, in Chapter 3, we will shift our focus to discussing topological quantum field

theories and the rich mathematical structure behind them. The key here is connecting the mathematics

and physics; to transition from manifolds to field theory. After seeing the inner cogs of TQFTs, we will

work to construct one of our own which will comprise the rest of this work. In Chapter 4, we give a

refresher on supersymmetry, specifically N = (2, 2) supersymmetry, which gives rise to the non-linear σ-

model (nlσm). So, we work to show the nlσm is a TQFT in Chapter 5 and its relation to mirror symmetry.

Finally, we end with a few closing remarks about the constructed TQFT and provide some direction in

which this work could be taken. Without further ado, let us dive in head first into differential geometry.
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Chapter 2

Differential Geometry and Calabi-Yau

Manifolds

Our aim for this chapter is to have an understand Calabi-Yau (CY) manifolds and set up mirror

symmetry. Why CY manifolds, why are they important? Considering superstrings in M-theory, we find

that the universe must be ten dimensional. Of course we only observe four of these so what do we do with

the extra six, where did they go? We go about this problem in a very interesting way. By decomposing

the ten dimensional space into a product of a four dimensional space and a six dimensional space, the

six dimensional space can be made tiny, curled up, or compactified. Then, supersymmetry constraints

imposed by M-theory force the compactified space to be of a very special type. It must be Calabi-Yau.

To begin our study of CY manifolds we will refresh some ideas from differential geometry and

expand upon them starting with constructing a differentiable manifold. We will do this through the

language of topology and bundles. The construction of manifolds and bundles from topology follows the

lectures by F. Schuller [1], and the presentation of complex geometry follows B. Greene’s TASI lectures [2],

and Nakahara’s book [3] quite closley. The section on Calabi-Yau manifolds follows [4, 5]. Some additional

points come from [6–8].

2.1 Building Manifolds from a Metric and Bundles

The ideas of topology and metrics gives us an idea of what it means to be close, connected,

compact, and continuous which will provide insight into the spaces we want to study. We understand

manifolds as topological spaces1 that are somehow like Rn, which will make this precise momentarily. We

can build up to a manifold starting from a very general idea, that is: a metric space. Given a metric space

we can induce a topology on that space and with a little more structure we are on our way to a manifold.

1The reader is assumed to be familiar with what a topological space is, and can check appendix A for a refresher.
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This induced topology is called the metric topology and allows us to construct geometries relevant for

physics.

Definition 2.1. A set M is a metric space if there is an operation with the set, d : M ×M → R where

(x, y) 7→ d(x, y) (usually called a distance function or measure) such that ∀x, y, z ∈M :

MS0. the function is necessarily nonzero d(x, y) ≥ 0,

MS1. d(x, y) = 0 ⇐⇒ x = y,

MS2. it is symmetric d(x, y) = d(y, x), and

MS3. the operation satisfies a triangle inequality d(x, y) ≤ d(x, z) + d(z, y).

Then (M,d) is a metric space with metric d.

In defining a metric space we now have a notion of distance on a set. Let us get a better feel for this and

how this induces a topology through the following example.

Example 2.1. Let x, y, z ∈ X = C (we write z = a + ib, a, b ∈ R) with metric d : X ×X → R
via d(x, y) = |x − y| where |z| =

√
zz̄ =

√
a2 + b2. We note that the square of a real number is

never negative and then confirm this is a metric space:

MS1) d(x, x) = |(a+ ib)− (a+ ib)| = 0, Now if the measure is zero: 0 = |x− y| =⇒
(x− y)(x− y) = 0, then x− y = 0 =⇒ x = y,

MS2) d(x, y) = |x− y| = | − 1| · |y − x| = d(y, x), and we have

MS3) d(x, y) = |x− y| = |x+ z − z − y| ≤ |x− z|+ |z − y|.

Now that we have (C, d) is a metric space let us see what this means about a topology on C.
The topology is induced by the metric through neighborhoods called ‘epsilon balls’: Bϵ

p = {q ∈
C : for ϵ > 0 |q − p| < ϵ}, then the metric topology is Bϵ

x ∈ T ⇐⇒ ∀y ∈ Bϵ
x ∃ ϵ′ > 0 s.t.

Bϵ′
y ⊆ Bϵ

x. It helps to see this with a picture.

C
Bϵ
x

Bϵ′
y

x

y
• •
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We’ve drawn just one y ∈ Bϵ
x to make the drawing clear but we must draw these epsilon balls for

every other point in Bϵ
x. It is important to note we are free to change ϵ′ to make it fit inside Bϵ

x.

If an epsilon ball around x ∈ C satisfies this picture for all points in the ball then it is allowed in

the topology T of C.
Let’s check it is a topological space:

T1) The emptyset trivially enters the topology as it has no elements and is a

subset of itself. If we fix an ϵ > 0 then the union of all balls satisfying the

requirement to be in the topology will necessarily be all of C and so C ∈ T .

T2) If we take n <∞ balls and look at their intersection, I = Bϵ
1 ∩ · · · ∩Bϵ

n, each

Bϵ
i contains an B

ϵ′
i let Bmin =min1≤i≤n(B

ϵ′
i ) then Bmin ⊂ I and hence I ∈ T .

T3) Let U =
⋃
i∈CB

ϵ
i , take B

ϵ
1 it has Bϵ′ inside it as Bϵ

1 ∈ T =⇒ Bϵ′ ⊂ U and

hence U ∈ T .

Thus (C, T ) is a topological space with the metric topology induced by its metric d.

So we understand now that given a metric space (M,d) we not only have to metric structure but also

the metric topology, Td, and so (M,d, Td) becomes a topological space as well. We note that every metric

space is a Hausdorff2 topological space.

Example 2.2. Take a look back at Example 2.1, this topological space is Hausdorff as we are

free to pick epsilon such that Bx ∩By = ∅.

We’re nearly ready to define what a manifold is but need a little more structure on our Hausdorff

topological space. As we are familiar with compactness3, we know a manifold does not need to be compact

but it must satisfy a looser condition that of paracompactness. To understand paracompactness we need

to refine the covering of the space in a special way.

Definition 2.2. Let (X, T ) be a topological space with cover, C. A refinement of C is a cover V s.t.

∀ W ∈ V ∃ D ∈ C s.t. W ⊆ D. V is called a refinement of C. The refinement V is open if V ∈ T and is

locally finite if ∀ p ∈ X ∃ a neighborhood, Up, of p s.t. {U ∩ Up|U ∈ V } has a finite number of elements

(finite set).

Definition 2.3. A topological space, (A,O), is paracompact if every cover has a locally finite refinement.

Note that every compact space is paracompact as a sub-cover is a refinement of the original cover.

With these ideas in place we are now ready to shift our focus to manifolds, we start with more

definitions.
2See Definition A.2.
3See Definition A.5.
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Definition 2.4. A paracompact Hausdorff topological space (X, T ) is a d-dimensional topological manifold

if ∀ p ∈ X ∃ a neighborhood of p, U(p) ∈ T and a homeomorphism h : U(p) → Rd.

This is close to the definition we are familiar with but not quite the same. We do not have a differentiable

structure yet. Before adding this structure we give an account of bundles.

Definition 2.5. A bundle of a topological manifold is the collection (E, π,M). Where E is the total space

(a topological manifold), M is the base space (a topological manifold), π is a continuous surjection, π :

E → M called the projection. Let p ∈ M then the fiber, F at p is preimπ({p})4. A bundle may also be

denoted as E
π−→M .

M

π

p
q

r

Fp
Fq

Fr
E

r̃

π(r̃)

Figure 2.1: A bundle with base spaceM , total space the collection of all the fibers E, fibers (Fp, Fq, Fr) over

each point in M , and projection map π : E →M . Note that the fibers here have arbitrary representation

as a line or curve but are not necessarily a line; they can be any object such as a point, a line, a manifold,

a vector space, etc.

Definition 2.6. Let (E, π,M) a bundle and F a topological manifold. If ∀p ∈ M preimπ({p}) ∼= F then

E
π−→ M is a fiber-bundle with ‘typical fiber’ F . If the fiber-bundle of a topological manifold is one

dimensional it may be referred to as a line-bundle.

Example 2.3. The C-line bundle over M is a fiber bundle E
π−→M with typical fiber C.

Definition 2.7. A section (of a bundle (E, π,M)) is a map σ :M → E s.t. π ◦ σ =idM where idM is the

identity map on M .

M

E

π

p q r

F F F

r̃
π(r̃) σ(r)

σ

Figure 2.2: A fiber bundle, E
π→ M , with section, σ. Again the lines are just a representation however

this time it is important that they are all ‘lines’.

4Denoted Fp.
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Definition 2.8. We say a fiber-bundle, with fiber F and base space M , is trivial if the fiber-bundle over

M (that is the total space E) is isomorphic to the product bundle: E ∼= M × F .

Example 2.4. Let M and F be topological manifolds with m ∈ M , f ∈ F . We can consider

then the product manifold as the total space E = M × F , and therefore a trivial bundle, with

a projection π : M × F → M where it maps (m, f) 7→ m. If we took M = S1 and F = R the

cylinder would be a trivial bundle as E = S1 ×R. As another example we could take the Möbius

strip as the total space E with M = S1 the circle where preimπ({p}) = [−1, 1] is a bundle. The

Möbius bundle is not a trivial bundle.

Trivial line bundle over circle
with no twist: cylinder

line bundle over circle
with one twist (möbius strip)

Example 2.5. In the special case where we have a product (trivial) bundle: E = M × F (M,F

topological manifolds with projection π1) and an arbitrary map s :M → F , we can take a section

σ : M → M × F s.t. p 7→ (p, s(p)). Take M = R3 over which a Hilbert space is defined, then

referring back to example 2.3, in which the C-line bundle is trivial, the wavefunction is just a

section of the trivial C-line bundle, R3 × C π−→ R3 [1, 3].

Sections are really only defined locally, that is over some open set U ∈ T of M . If it is possible

to extend the local section over the whole manifold then we obtain a global section. This can be done if

the fiber-bundle is trivial, which makes trivial bundles nice to work with.

2.2 Differentiable Manifolds and Bundles

Now in order to get to Calabi-Yau manifolds we need to have some differentiable structure, that

is we need to be able to talk about derivatives on the manifold. This leads us into the subject of differential

geometry. With the foundation of a topological manifold we can now specify what is meant by differentiable

manifold.

Definition 2.9. (M, T ) is a d-dimensional differentiable manifold if:

M1. (M, T ) is a topological manifold,

M2. the set
{
U(p) ∈ T

}
covers M , that is M =

⋃
p∈M U(P ), and
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M3. if U(p), U(q) ∈ T such that U(p)∩U(q) ̸= ∅, the corresponding homeomorphisms, hp, hq

can be composed forming a map ψpq = hp ◦ h−1
q : hq

(
U(p) ∩ U(q)

)
→ hp

(
U(p) ∩ U(q)

)
that is infinitely differentiable (smooth or C∞).

We call the ψpq transition functions. If these are satisfied then we say M is a real manifold.

With smooth manifolds in hand we are finally ready to talk about a very special type of bundle.

Definition 2.10. A vector-bundle is a fiber-bundle where the typical fiber is a vector space. This naturally

extends to tensors as well.

Vector bundles are incredibly fundamental objects. We wont go into detail here but one can discuss

principal bundles and then their associated bundles grossly important in gauge theories and they show up

everywhere [1, 9]. Note that every vector space has a dual and so for any vector-bundle we consider over

a manifold, we also have the dual vector bundle we can illustrate this through these examples of vector

bundles.

Example 2.6. The tangent-bundle of a manifold is the disjoint union of all the tangent spaces:

TM =
∐
p∈M

TpM

π : TM →M

X 7→ p

where X ∈ TpM (the fiber of p in total space TM). Since the total space E = TM is a vector

space we also have the dual vector space E∗ = T ∗M over a manifold M . We can then construct

the cotangent-bundle via E = T ∗M , M , and π : T ∗
M → M where a w ∈ T ∗

pM , π : w 7→ p. Here

T ∗M is the set of linear maps from TM → R, so T ∗
pM ≡ Hom(TpM,R).

2.2.1 Metric, Connection, and Curvature

We are familiar with the ideas of a Riemann metric, covariant derivative, connection and curva-

ture but we can rephrase them in terms of bundles and sections. As we mentioned before a metric space

induces a topological space, well it turns out that the metric, d of the metric space, induces the Riemann

metric, g of the manifold [10]. For brevity, we give the definitions of these ideas phrased in terms of

bundles.

Definition 2.11. Let (T ∗M ⊗s T
∗M,π,M) be the symmetric product cotangent bundle. A metric, g, on

M is a global section of T ∗M ⊗s T
∗M . Written in coordinates this is

g = gabdx
a ⊗ dxb. (2.1)
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Writing the metric in this way makes clear gab = gba, and the metric is said to be defined on the bundle.

A connection gives a notion of what it means to be parallel transported on a fiber bundle. This allows us

to identify or connect fibers. It is specified through a covariant derivative.

Definition 2.12. Let (E, π,M) be a bundle with total space, E, base space, M , a differentiable manifold,

and projection π. The space of smooth sections of the bundle is denoted Γ(E). A covariant derivative is

a smooth linear map

∇ : Γ(E) → Γ(T ∗M ⊗ E) s.t.

∇(fs) = df ⊗ s+ f∇s,
(2.2)

where f is a smooth function on M (lives in T ∗M)5 and s is a smooth section on the total space E.

If total space, E, is a collection of vector spaces over M and therefore a vector (fiber) bundle (the tangent

bundle for example), then a smooth section on E would be a vector field over the manifold, we write

Xµ ∂
∂xµ

∈ Γ(TM). Likewise, a smooth function on M is also a section, f ∈ Γ(M), a covector field (forms)

over a smooth manifold also gives a smooth section, a one-form w ∈ Γ(T ∗M) (Of the cotangent bundle).

Take p copies of the cotangent bundle to obtain the space of p-forms,
∧p T ∗M , which is also a bundle over

M . If β is a p-form, β ∈ Γ
(∧p T ∗M

)
.

The covariant derivative differentiates sections of a bundle along tangent directions to the base

manifold, M . The connection is then specified by parallel sections being trivial under the covariant

derivative. It is said to be a connection on a bundle.

Definition 2.13. Let ∇ : va 7→ ∂iv
a + (Ai)

a
bv
b, then the connection is (Ai)

a
b. It is a linear map6 valued

one form.

We can write the covariant derivative in nice shorthand as D = d + A. Now we know holonomy

as the study of tangent vectors being parallel transported around a closed curve on a manifold. When

the vector comes back rotated with was fundamentally do to some curvature of the manifold and thus we

get curvature from holonomy. That is curvature is the measure of parallel transporting a vector around a

closed loop on M.

Definition 2.14. Given a tangent bundle over a smooth manifold the curvature of the manifold is a linear

map

R : Γ(TM) → Γ(TM)

R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ]

(2.3)

We can think of this map as putting in two vectors and then outputting an infinitesimal rotation. We can

shorthand this like the curvature as R = dA+ A ∧ A.
5A 0-form.
6Usually called an endomorphism valued one form.
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Given a bundle that we can define curvature map on with a connection defined over the total

space, we can probe the topology of the bundle through the Chern classes.

Definition 2.15. Let (E, π,M) be a differential complex vector bundle, M , differentiable manifold, with

curvature two-form R = dA+A∧A, the curvature of connection A on total space E. The total Chern class

of E, c(E) is

c(E) = det
(
1 +

i

2π
R
)

= 1 +
i

2π
Tr(R)− 1

4π2
Tr(F ∧ F − 2(Tr(R))2) + . . .

= c0(E) + c1(E) + c2(E) + · · · ∈ H0 ⊕H2 ⊕H4 ⊕ . . .

where ci>k(E) = 0 and ci(E) ∈ H2i(M) k is the dimension of the total space and H2i is the 2ith De Rahm

cohomology group. The Chern class of the tangent bundle is also referred to as the Chern class of the

manifold itself.

The top Chern class is the cycle associated to a generic section so the top Chern class represents the

intersection of a generic section with the zero section [9]. Chern classes are also a measure of how close

the bundle is to being trivial or not [4].

We will not need the following until much later (Chapter 5), but here is a good a place as any for

introductions. One may wish to rewrite the Chern class as a series. This can be done through the Chern

character.

Definition 2.16. Let (E, π,M) be as in definition 2.15, with the dimension of E = n. If ∃ xi s.t.

c(E) =
∏n

i=1(1 + xi) then the Chern Character has just been defined as ch(E) =
∑

i e
xi . This can be

expanded as

ch(E) = n+ c1(E) +
1

2
(c21(E)− 2c2(E)) + · · · . (2.4)

This naturally leads the Todd Class.

Definition 2.17. Again taking the same assumptions from 2.15 and 2.16, the Todd Class of the total

space, E, is given by,

td(E) =
n∏
i=1

xi
1− e−xi

= 1 +
1

2
c1(E) +

1

12
(c21(E) + c2(E)) + · · · . (2.5)

Now, given both the Chern character and the Todd Class of a bundle we can actually find the bundles’ Euler

character due to Grothendieck, Riemann, and Roch. One of the many Euler character formulas is given by

[9], for some bundle (E, π,M) and defined cohomology group Hk(E), χ(E) = Σk(−1)kdim(Hk(E)). The

Grothendieck-Riemann-Roch formula computes then,

χ(E) =
∑
k

(−1)kdim(Hk(E)) =

∫
M

ch(E) ∧ td(M). (2.6)

13



Equation 2.6 does not have much relevance to us right now, but will come Chapter 5. We will see this

appear when we are ready to discuss the results of topological quantum field theory.

Having taken a closer look at differential geometry we are now ready to look at complex geometry.

Strictly real differentiable manifolds have many nice properties, but not nearly enough to be considered

for a compactified theory. We need to refine our search further, starting with complex manifolds.

2.3 Complex Geometry: Kähler and Calabi-Yau

Real manifolds are nice but the work we will do is based upon complex geometry as Kähler and

Calabi-Yau manifolds are complex.

Definition 2.18. M is an n-dimensional complex manifold if M is a differentiable manifold, the homeo-

morphisms hp : U(p) → Cn, and the transition functions are holomorphic7.

Example 2.7. Some examples of complex manifolds are S2 and T 2. Here we illustrate the

complex nature of S2 through the stereographic projection.

To see that S2 is a complex manifold, start with the familiar stereographic projection

of the real manifold S2 embedding (↪→) in R3 mapping to R2, such that the real plane bisects

the 2-sphere at the equator and the north pole located at N = ⟨0, 0, 1⟩ and south pole located at

S = ⟨0, 0,−1⟩. We define the north pole chart as the (invertible) mapa πN :
(

x
1−z ,

y
1−z

)
7→ (a, b),

where a, b ∈ R2, x, y, z ∈ S2 ↪→ R3. Likewise the south pole chart is πS :
(

x
1+z

, −y
1+z

)
7→ (c, d)

where c, d ∈ R2, and we know in this real case the transition functions are differentiable.

Now make the manifold complex by complexifying R2 in the usual way. On the north

pole chart we have u = a+ ib, ū = a− ib, v = c+ id, and v̄ = c− id, u, ū, v, v̄ ∈ C. Then, since
a, b, c, d defined coordinates on S2 so must u, ū, v, and v̄. Now to check the transition function

are holomorphic we write try to find v = v(u, ū). Begin by noticing

u

ū
=
x+ iy

x− iy
=
v̄

v

=⇒ v =
ū

u
v̄ =

x− iy

x+ iy

x+ iy

1 + z
=

x2 + y2

(x+ iy)(1 + z)
.

Now since u, v and there conjugates live on the sphere we know their modulus must be unitary,

7See Definition A.6.
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|u| = |v| = 1, as well as |u|
|v| = 1.

1 = |u| = x+ iy

1− z

x− iy

1− z
=⇒ (1− z)2 = x2 + y2

= |v| = x+ iy

1 + z

x− iy

1 + z
=⇒ (1 + z)2 = x2 + y2

=⇒ (1− z)2

(1 + z)2
= 1.

Therefore, returning to building the transition function,

v =
x2 + y2

(x+ iy)(1 + z)
=

(1− z)2

(x+ iy)(1 + z)
=

1

u
.

Thus the transition function v = v(u, ū) is holomorphic, as ∂v
∂ū

= 0, and S2 is a complex manifold.

aFor a reminder of how this is derived consult example A.3.

Definition 2.18 presupposes a lot of structure to make a manifold complex. A motivating question

then is when does a real manifold become a complex manifold. We can actually build a complex manifold

from a real one much the same way we build complex numbers from real numbers. This construction

follows that of [3].

2.3.1 Complex Tangent Bundle and Almost C-Structure

Just as complexification of R2 into C is done by taking x, y ∈ R and making z = x+iy ∈ C, we can
complexify the tangent bundle, TM → TMC, in a similar way. That is if we take V⃗ , W⃗ ∈ TpM we squish

them together to obtain Z⃗ = V⃗ + iW⃗ ∈ TpM
C = TpM ⊗ C. Then, just as for TM , TMC =

∐
p∈M TpM

C.

At this stage it is hard to see much of a reason for this but by installing a complex structure on M the

benefits become clear.

Definition 2.19. Let M be a d-dimensional differentiable manifold with d even. The almost C-structure
is a map J : TMC → TMC s.t. J2 = −ITpM . We say (M,J) is an almost complex manifold.

This almost complex structure does something wonderful, it decomposes the tangent bundle into

holomorphic and antiholomorphic tangent spaces. This decomposition becomes evident through inspection

of the eigenvalues of J ; they are ±i. The complexified tangent space decomposes into two disjoint subspaces

corresponding to the eigenvalues: TpM
C = TpM ⊗ C = T 1,0︸︷︷︸

+i

⊕ T 0,1︸︷︷︸
−i

. We say vector fields Z ∈ T 1,0 (those

with eigenvalue +i) are holomorphic and those Z̄ ∈ T 0,1 (with eigenvalue −i) are anti-holomorphic8. It is

8We’ve shorthand denoted T 1,0 (T 0,1) = TM1,0 (TM0,1), and holomorphic vectors live in T 1,0
p (anti-holomorphic in T 0,1

p ).
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natural then to define a projection operator to project onto either subspace of TpM
C:

P+ : TMC → T 1,0

P− : TMC → T 0,1

P± =
1

2
(I ∓ iJ).

(2.7)

We define this in such a way that ∀ Z ∈ TMC, P+Z ∈ T 1,0, P−Z ∈ T 0,1, P±P∓ = 0 as one can check.

We want our manifolds to be complex not just almost complex. In order to get to a complex manifold we

need the almost C-structure to be integrable.

Definition 2.20. If (M,J) is an almost complex manifold s.t. the lie bracket of any two holomorphic

vector fields is again a holomorphic vector field, [T 1,0, T 1,0] ⊂ T 1,0, then J is integrable.

That is to say the complex structure is preserved along the manifold. This leads us to a complex manifold

through the Nijenhuis tensor.

Definition 2.21. Let (M,J) be an almost complex manifold. The Nijenhuis tensor is a map

N : TM × TM → TM

N(X, Y ) = [X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]
(2.8)

If the Nijenhuis tensor vanishes then the almost complex structure is integrable. It also means that the

almost complex manifold becomes a complex manifold. This is due to a theorem by Newlander and

Nirenburg.

Theorem 2.1 (Newlander-Nirenburg). Let (M,J) be an almost complex manifold. M is a complex man-

ifold if and only if the J is integrable.

Proposition 2.1. If the almost complex structure is constant it is integrable and the Nijenhuis tensor

vanishes.

Solution. Let X, Y ∈ T 1,0, then we can write X = P+Z, Y = P+Z̃ ∀ Z, Z̃ ∈ TM . Then

[X, Y ] = [P+Z,P+Z̃]

= P+P+[Z, Z̃] + P+[Z,P+]Z̃ + [P+,P+]ZZ̃ + P+[P+, Z̃]Z

= P+
(
[Z, Z̃] + [Z,P+]Z̃ + [P+, Z̃]Z

)
∈ T 1,0.

Thus constant J is integrable, and a similar calculation shows

N(X, Y ) = [X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

= [X, Y ]− [X, Y ] + J [J, Y ]X − [X, Y ] + J [X, J ]Y + [X, Y ]− J [J, Y ]X − J [X, J ]Y

= 0,

the Nijenhuis tensor vanishes.
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Thus, we can build a complex manifold from a real one with an appropriate integrable al-

most complex structure. On a complex manifold the coordinates {z1, . . . , zn} ∈ C and the holomor-

phic tangent space is given by T 1,0 = SpanC{ ∂
∂z1
, · · · , ∂

∂zn
}, and the antiholomorphic tangent space is

T 0,1 = SpanC{ ∂
∂z̄1
, · · · , ∂

∂z̄n
}. In summary, a 2d-dimensional real differentiable manifold with integrable

almost complex structure is a complex manifold.

2.3.2 Differential Forms: From De Rahm to Dolbeault Cohomology

If J is integrable, making M complex, complex coordinates can be prescribed to the manifold.

Then just as vector fields over the complex manifold decomposed into holomorphic and anti-holomorphic

vectors, we should expect forms over the manifold to decompose into holomorphic and anti-holomorphic

as well. We denote Ωp(M) as the space of p-forms fields on9 M (also denoted
∧p T ∗). The space of (p, q)-

form fields over M is denoted Ωp,q(M) where elements have p holomorphic indices and q anti-holomorphic

indices. The decomposition is then:

Ωk(M) =
⊕
p+q=k

Ωp,q(M).

From this the space of (p, q)-forms is the conjugation of the space of (q, p)-forms Ωp,q(M) = Ωq,p(M).

For example the space of 2-forms at x ∈ M decomposes as Ω2
x(M) = Ω2,0

x (M) ⊕ Ω1,1
x (M) ⊕ Ω0,2

x (M). A

(p, q)-form on M is denoted

α = αµ1···µpν̄1···ν̄q(z, z̄)dz
µ1 ∧ · · · ∧ dzµp ∧ dz̄ν̄1 ∧ · · · ∧ dz̄ν̄q . (2.9)

The exterior derivative for real manifolds decomposes as the space on which it acts decomposes.

If α ∈
∧p T ∗ that is α is a (p = q + r)-form,

d :

p∧
T ∗ →

p+1∧
T ∗

d : α 7→ dα,

(2.10)

where

dα =
∂

∂zρ
[
αµ1···µpν̄1···ν̄q(z, z̄)

]
dzρ ∧ dzµ1 ∧ · · · ∧ dzµp ∧ dz̄ν̄1 ∧ · · · ∧ dz̄ν̄q

+ (−1)p
∂

∂z̄σ̄
[
αµ1···µpν̄1···ν̄q(z, z̄)

]
dzµ1 ∧ · · · ∧ dzµp ∧ dz̄σ̄ ∧ dz̄ν̄1 ∧ · · · ∧ dz̄ν̄q .

(2.11)

Equation 2.11 makes clear the decomposition of d as:

d = dzµ ∧ ∂

∂zµ
+ dz̄ν̄ ∧ ∂

∂z̄ν̄

= ∂ + ∂̄

9We assume M is complex now.
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where we have just defined ∂ ≡ holomorphic exterior derivative and ∂̄ ≡ anti-holomorphic exterior derivative,

where

∂ : Ωp,q → Ωp+1,q,

∂̄ : Ωp,q → Ωp,q+1.
(2.12)

The decomposition and maps to higher forms over M is,

Ω0: Ω0,0

Ω1: Ω1,0 ⊕ Ω0,1

Ω2: Ω2,0 ⊕ Ω1,1 ⊕ Ω0,2

∂̄∂
d

Just as d2 = 0, it is natural to ask the same for ∂ and ∂̄.

Proposition 2.2. The following operators are nilpotent: ∂, ∂̄, and (∂∂̄ + ∂̄∂).

Solution. We show that ∂2 = ∂∂̄ + ∂̄∂ = ∂̄2 = 0 using that d2 = 0. First note that partial derivatives

commute, but we have the anti-symmetric product in forms so ∂2 = 0 = ∂̄2. Therefore, 0 = d2 =

(∂2 + ∂∂̄ + ∂̄∂ + ∂̄2) = (∂∂̄ + ∂̄∂). Thus the operators are nilpotent and we have that {∂, ∂̄} = 0.

Originally the nilpotency of the exterior derivative allowed us to define the De Rahm cohomology

as forms which were closed but not exact. However, now that it decomposes, two new differential oper-

ators exist and proposition 2.2 means and they each define new cohomology groups called the Dolbeaut

cohomology.

Definition 2.22. Let α ∈ Ωp,q(M), the Dolbeaut cohomology groups are defined as

Hp,q
∂ (M) =

{
α | ∂α = 0

}{
α = ∂β | β ∈ Ωp−1,q

} ,
Hp,q

∂̄
(M) =

{
α | ∂̄α = 0

}{
α = ∂̄β | β ∈ Ωp,q−1

} . (2.13)

We will use the anti-holomorphic Dolbeaut cohomology group. The dim(Hp,q(M)) = hp,q, and they are

named the Hodge numbers.

Recall that on real manifolds with a metric, the exterior derivative has an adjoint, d†, defined as

(on a Lorentzian manifold)

d† : Ωr → Ωr−1,

d† = (−1)mr+m ∗ d ∗ .
(2.14)
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Where we use the Hodge star operator on an r-form, β, as

∗β =

√
|g|

r!(m− r)!
βµ1···µrg

µ1ν1 · · · gµrνrϵν1···νmdxνr+1 ∧ · · · ∧ dxνm .

Which leads to a Laplacian operator, ∆ = {d, d†}. Furthermore, we remember, on a compact Riemannian

manifold any form can be decomposed uniquely, via the Hodge decomposition, to the sum of exact, coexact,

and harmonic pieces. The key idea being that the harmonic term is a unique representative of the Hp(M)

cohomology group. It comes as no surprise by now that on a complex manifold the Hodge decomposition

decomposes further as both d and d† split. Since we make this discussion in terms of Hp,q

∂̄
(M), a (p, q)-form

on M

Theorem 2.2 (Hodge). Let M be a complex manifold with α ∈ Ωp,q(M). Then α can be uniquely written

as

αp,q = ∂̄βp,q−1 + ∂̄†γp,q+1 + α̃p,q. (2.15)

Where ∆∂̄α̃
p,q = 0, an antiholomorphic harmonic form.

On a complex manifold the Laplacian is

∆ = {d, d†} = {(∂ + ∂̄), (∂† + ∂̄†)}

= {∂, ∂†}+�����:0{∂, ∂̄†}+�����:0{∂̄, ∂†}+ {∂̄, ∂̄†}
= ∆∂ +∆∂̄,

(2.16)

as holomorphic and antiholomorphic do not mix. Already the structure of a complex manifold has done a

lot of nice work for us. As we will see, if we restrict to a special subset of complex manifolds, those that

are Kähler, they become a natural space on which to study elementary physics.

Before moving onto Kähler manifolds let us shift our focus back to bundles for a moment. Now

that we have a little more familiarity with complex manifolds we can talk about a special bundle that will

be important for later.

Definition 2.23. The holomorphic vector bundle, E
π→M , is a fiber-bundle where the base space, M , is

a complex manifold, the total space, E, has a complex structure, typical fiber is Ck, the projection, π, is

a holomorphic map, and there is a biholomorphic10 section.

Note the biholomorphic section makes a trivialization of the bundle for open subsets of M .

Example 2.8. The trivial vector bundle E ∼= M × Ck over M is a holomorphic vector bundle.

Since the complexified tangent spaces admits complex structure, TMC, T ∗MC, are holomorphic

vector bundles. Recall the space of forms, Ωp(M) defines a bundle over M , when the space

decomposes, only the bundles with no anit-holomorphic indices are holomorphic vector bundles,

e.g. Ωr,0 is a holomorphic vector bundle.

10See definition A.7.
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Later on we will want to consider holomorphic top forms, these are sections of the Ωm,0(M) bundle on

m-dimensional complex manifold M . We give this bundle a special name when the fibers bundle becomes

a line bundle [7].

Definition 2.24. Let (E, π,M) be a holomorphic line-bundle (typical fiber is C1 instead of arbitrary k),

the canonical bundle is KM =
∧m,0 T ∗ over M .

2.3.3 Kähler Manifolds

With complex manifolds in hand, we are ready to sift through and find which manifolds will lead

to Calabi-Yau manifolds. Enter Kähler manifolds. These are special manifolds in which the metric plays

nicely with the complex structure and give rise to a special form.

Definition 2.25. A metric g is a hermitian metric if it preserves the complex structure:

g(Jx, Jy) = g(x, y), ∀ x, y ∈ TM (2.17)

If g is hermitain, (M, g, J) is a hermitain manifold.

Proposition 2.3. Any complex manifold (M, g, J) admits a hermitain metric and is therefore also a

hermitain manifold.

Solution. Let g(x, y) be a metric on M . Then, define g̃(x, y) = 1
2
(g(x, y) + g(Jx, Jy)), and consider

g̃(Jx, Jy) =
1

2
(g(Jx, Jy) + (−1)2g(x, y)) = g̃(x, y). (2.18)

Therefore, the complex manifold admits a hermitain metric and is also a hermitain manifold [3].

Proposition 2.4. If g is a hermitian metric, the strictly holomorphic and strictly anti-holomorphic pieces

of the metric vanish, gij = gīj̄ = 0.

Solution.

g(x, y) = g(Jx, Jy) = J2g(x, y) = −g(x, y) =⇒ gij = 0

g(x̄, ȳ) = g(Jx̄, Jȳ) = J2g(x̄, ȳ) = −g(x̄, ȳ) =⇒ gīj̄ = 0.

Also observe that real g implies gīj̄ = gij, gīj = gij̄. This means that the metric can be written as

gµν̄dz
µ ⊗ dz̄ν̄ + gν̄µdz̄

ν̄ ⊗ dzµ. (2.19)

What about considering J on only one vector? In doing so a new form is defined, the Kähler

form.
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Definition 2.26. The Kähler form, ω, of a hermitian manifold is ω(x, y) = g(x, Jy).

Proposition 2.5. The Kähler form, ω, lives in
∧1,1 T ∗.

Solution. We know that g ∈ T ∗M⊗sT
∗M . If something were to make this antisymmetric it would become

a 2-form. In a sense the Kähler form does this, so by showing ω is antisymmetric we have turned g in the

symmetric cotangent space to living in the antisymmetric cotangent space, that is
∧2 and asM is complex

we know the space of 2-forms decomposes. We can then read off holomorphic and anti-holomorphic indices.

ω(x, y) = g(x, Jy) = g(Jx, J2y) = g(Jx,−y) = g(−y, Jx) = −g(y, Jx) = −ω(y, x),
=⇒ ω = gµν̄Jdz

µ ⊗ dz̄ν̄ + gν̄µJdz̄
ν̄ ⊗ dzµ

= igµν̄dz
µ ⊗ dz̄ν̄ − igν̄µdz̄

ν̄ ⊗ dzµ

= igµν̄dz
µ ∧ dz̄ν̄ ∈ Ω1,1(M).

(2.20)

Definition 2.27. A Kähler manifold, (M, g, ω), is a complex manifold, M , with hermitian metric, g, and

closed Kähler form, dω = 0.

A few observations about Kähler manifolds.

1. On an n-dimensional Kähler manifold a holomorphic vector will be parallel transported around a

closed loop and remain holomorphic and without changing its length. This means its holonomy is

U(d), d ≤ n [3].

2. The Kähler form is not ∂̄-exact so ω ∈ H1,1

∂̄
(M), this is the Kähler class.

3. Equation 2.16 becomes ∆ = 2∆∂, as ∆∂ = ∆∂̄ on a Kähler manifold.

4. dω = 0 =⇒ (∂ + ∂̄)ω = 0 =⇒ ∂ω = 0, and ∂̄ω = 0.

Observation number 3 means that the cohomology group of (r, s)-forms is related to the coho-

mology group of (s, r)-forms through conjugation. So for a Kähler manifold hr,s = hs,r. It also tells us

that the dimension of the pth-De Rahm cohomology group is related to the dimension of the Dolbeaut

cohomology group (the Hodge numbers) as, dim(Hp(M)) =
∑

r+s=p h
r,s. Then, because the space of forms

decomposes on a complex manifold and we have the Hodge dual space, we can organize the space of all

forms in a diamond (as shown below for a dimC(M) = 3).

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3
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At this point the diamond is not much more than a pretty picture. However, there is much to discovered

here if Kähler M satisfies enough special requirements.

Observation number 4, enforces nice conditions on the hermitian metric g. We derived differential

conditions on g through this as

0 = dω = i∂[λgµ]ν̄dz
λ ∧ dzµ ∧ dz̄ν̄ − i∂[λ̄gν̄]µdz

µ ∧ dz̄λ̄ ∧ dz̄ν̄

so, ∂[λgµ]ν̄ = 0 and ∂[λ̄gν̄]µ = 0,

=⇒ ∂λgµν̄ = ∂µgλν̄ ∂λ̄gµν̄ = ∂ν̄gµλ̄.

(2.21)

Equation 2.21 means that the metric can be written as any function which satisfies these conditions.

Definition 2.28. The Kähler potential, K, is a function for which gµν̄ = ∂µ∂ν̄K.

This of course means then the Kähler form can be rewritten as ωµν̄ = i∂µ∂ν̄K.

Taking the Levi-Civita connection onM with a hermitian metric means that many of the Christof-

fel symbols vanish as we only have mixed holomorphic and anti holomorphic indices on g. The nonzero

components are

Γijk =
1

2
gil̄(∂jgl̄k + ∂kgl̄j −�

��*0
∂l̄gjk) = gil̄∂jgkl̄

Γīj̄k̄ =
1

2
gīl(∂j̄glk̄ + ∂k̄gj̄l −�

��*0
∂lgj̄k̄) = gīl∂jglk̄.

(2.22)

This means that the Riemann tensor for a Kähler manifold as greatly reduces. The only components which

survive are Rρ̄
σ̄µν̄ = ∂µΓ

ρ̄
ν̄σ̄, so

Rρσ̄µν̄ = gρλ̄R
λ̄
σ̄µν̄ = gρλ̄∂µΓ

λ̄
ν̄σ̄, (2.23)

and of course we have nonzero components corresponding to conjugation, and anti-symmetric/symmetric

indices swapping. The Ricci tensor is then

Rµν̄ = Rρ
ρµν̄ = −∂ν̄Γρµρ = −∂ν̄(gρλ̄∂µgρλ̄) (2.24)

Having a Kähler manifold means there is much structure to work with. It is a natural space

for physics because of this structure as we will see. However, when it comes to compactifying our 10

dimensional theory, it is a necessary requirement that some supersymmetries are persevered. Kähler

manifolds, although nice, are not quite good enough to preserve the supersymmetry. We need a special

subset of Kähler manifolds, those that are Calabi-Yau.

2.3.4 Calabi-Yau Manifolds

We have finally made it to Calabi-Yau manifolds, these spaces are the most natural for string

theory as they come out as eligible spaces after compactification. Without further ado, we define Calabi-

Yau:
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Definition 2.29. A Calabi-Yau manifold is a compact Kähler manifold that has vanishing first Chern

class, c1(M) = 0.

Introducing Chern classes into the discussion brings in a bounty of information about CY manifolds, that

make them so special. Firstly, we have a a theorem by Yau.

Theorem 2.3 (Yau). Let M be a Kähler manifold with Kähler form, ω. If M has vanishing first Chern

class, c1(M) = 0, then ∃! a Ricci flat metric, g, and hence a unique Kähler class.

Two immediate corollaries can be made. First, as CY manifolds are a subset of theorem 2.3’s assumptions

(those that are compact), every CY manifold is Ricci flat. Second, since Ricci flat metrics are (trivial)

solutions to Einstein’s vacuum equations, Calabi-Yau manifolds are solutions to Gµν = 0 [6]. Of course

flatness is nice because it is easy to work with, but it can be increasingly difficult to write an explicit Ricci

flat metric. Yau’s theorem goes a long way in helping us find flat metrics by telling us to look at the Chern

classes.

Before discussing more of the physics behind Calabi-Yau manifolds, we discuss another very

important property, holonomy.

Theorem 2.4. An n-dimensional Calabi-Yau manifold has SU(d) holonomy, d ≤ n.

Proof. (sketch)

A CY is Kähler so we know that Hol(CYn) ⊂ U(n) so we just need to show that for any h ∈ Hol(CYn),

det(h) = 1. As we know the holonomy is fundamentally related to the curvature as the curvature map

spits out an infinitesimal rotation. So for Xµ ∈ T 1,0,

Xµ 7→Xµ
(
δνµ +Rν

µσλ̄ϵ
σ δ̄λ̄

)
= Xµh ν

µ

=⇒ det(h ν
µ ) = det(e

Rν
µσλ̄

ϵσ δ̄λ̄
) = det(δνµ +Rν

µσλ̄ϵ
σ δ̄λ̄)

= 1 + Tr(Rν
µσλ̄ϵ

σ δ̄λ̄) + . . . = 1 + δνµR
ν
µσλ̄ϵ

σ δ̄λ̄ + . . .

= 1 +Rµ

µσλ̄
ϵσ δ̄λ̄ + . . . = 1 +Rσλ̄ϵ

σ δ̄λ̄ + . . .

= 1

(2.25)

Thus, CY manifolds have holonomy, h ∈ SU(d).

So Calabi-Yau’s have SU(d) holonomy but we do not want the holonomy to be contained in SU(d), d < n,

we want it to fill out all of SU(n). The reason is that a proper subgroup of SU(n) will not allow chiral

fermions, but our universe is chiral so it must fill out all of SU(n) [8].

Let us see what else is so unique about Calabi-Yau manifolds and why they appear naturally. As

discussed in [8], a superstring M4 ×M6 background must have an unbroken N = 1 supersymmetry in the

M4 part which has maximal symmetry. This means that if a we have superspace translations generated by

some spinor, (grassman odd) ε, then 0 = δε[bosonic field] = [fermionic field]. For this to be true, variations
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of the fermionic fields must vanish. We can see the consequences of this by inspection of the 10-dimensional

supergravity multiplet which includes a spin-3
2
field, ψ, a spin-1

2
field, λ, a scalar field, φ, and a 2-form

potential BMN . The field strength associated to B is labeled H. When M10 decomposes to M4 ×M6 the

fields in the theory will also decompose. For example our spin-3
2
field becomes11 ψM = ψµ ⊗ ψm. This

means we can look at the superspace variations on each space separately. Taking a look at the variation

of ψ we can make some comments about the background.

δεψµ = ∇µε+

√
2

32
e2φ

(
γµγ5 ⊗H

)
ε, (2.26a)

δεψm = ∇mε+

√
2

32
e2φ

(
γmH − 12Hm

)
ε, (2.26b)

where H = Hρσδγ
ρσδ, and Hm = Hmqrγ

qr. Forcing equation 2.26a to vanish, combined with δελ = 0 tells

us that ε is killed by the field strength, Hε = 0. So, equation 2.26b reduces to

∇̃mε = (∇m − βHm)ε, (2.27)

with β = 3
8

√
2e2ϕ. Setting this to zero, for nontrivial translation, tells us that for ε(10) = ε(4) ⊗ ε(6), and

preservation of supersymmetry in M4, ε(6) must be covariantly constant [6]. These constraints, and others,

force M6 to be a Kähler, Ricci flat manifold with SU(3) holonomy12. Of course this is none other than our

favorite Calabi-Yau manifold, and so, M6
∼= CY3.

We turn our attention now to the Hodge diamond of a Calabi-Yau. There is so much structure

in these spaces that new symmetries appear. We can see this in Hodge diamond of CY manifolds. Just as

we defined a special form on for Kähler manifolds we can do so for CY manifolds. We say the Calabi-Yau

form, Ω ∈
∧n,0 T ∗, is a holomorphic top form on CYn. We actually gain more from the CY form using the

fact that Calabi-Yau manifolds have trivial canonical bundle [7]. We have then, Km
∼=

∧n,0 T ∗ ∼= CY3×C.
Observe that the CY form, Ω ∈ Km, it is holomorphic, forms are also sections which are defined over

an open subset of the domain, and that CY manifolds are connected means we can apply the maximum

modulus principle applies here13. This tells us that the CY form, Ω, is really constant i.e. nowhere

vanishing. Trivially then Ω is harmonic and therefore defines the equivalence class in the De Rahm

cohomology group, [Ω] ∈ H3,0(CY3). Where Ω ∼ fΩ with f is a holomorphic function and therefore also

constant by the maximum modulus principle. Thus Ω is unique up to constant rescaling. From this we

have h3,0 = 1, and by Hodge duality we also get h0,3 = 1 [4, 5]. Because the canonical bundle is trivial

such a form can always be found. We can now define the form:

Definition 2.30. The Calabi-Yau form, Ω ∈
∧n,0 T ∗, is a nowhere vanishing holomorphic top form on

CYn.

Furthermore, if we take any α ∈ H0,p there is a unique β ∈ H0,n−p, on CYn, such that∫
M

α ∧ β ∧ Ω = 1. (2.28)

11We follow notation from [8] where capital Latin letters for 10 dimensional space, Greek letters for the 4 dimensional

space and lowercase Latin letters for the 6 dimensional space.
12For all the specific details consult [8].
13See theorem A.1 for a reminder of the principle.
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Hence, the closed top (3, 3)-form in 2.28 is not exact and therefore we have a duality between H0,p and

H0,n−p. This implies a new Hodge number relation: h0,p = h0,n−p. Of course we can then conjugate the

space and we have hp,0 = hn−p [4, 5]. So, we see that the Hodge duality for De Rahm cohomology on a real

manifold gives a ‘decomposition’ to a Hodge-like duality14 for holomorphic and anti-holomorphic forms on

a Calabi-Yau. This special feature of CY manifolds is known as holomorphic duality and is guaranteed

by the existence and uniqueness of the CY form.

We can go even further to reduce the Hodge numbers using a theorem due to Bochner and

considering how forms transform under the holonomy the SU(n) holonomy of Calabi-Yau’s.

Theorem 2.5 (Bochner). Any harmonic s-form, ω, can be written as

F (ω) = R n
m ωnr2···rsω

mr2···rs +
1

2
(s− 1)R n q

m p ωnqr3···rsω
mpr3···rs . (2.29)

If F (ω) ≥ 0, then ∇ω = 0.

That is to say that the s-form ω transforms trivially under holonomy (given F ≥ 0). If we take a 1-form on

a CY, then F (ω) = 0 as CY is Ricci flat, and hence ∇ω = 0. However, forms on a Calabi-Yau transform

either the fundamentally representation or dual to the fundamental representation of the SU(n) holonomy

of CY. This can only be true if the space of 1-forms on CY is empty, h1 = 0 [4, 5]. Of course then, by

the consequences of Observation number 3 of a Kähler manifold, h0,1 = 0 = h1,0, as the dimension is

nonnegative.

So, we have the top and (Hodge dual) bottom of the Hodge diamond are 1’s, as the space is

connected. The right corner and (conjugate) left corner are also 1, due to definition 2.30. The remaining

perimeter Hodge numbers are killed by theorem 2.5, conjugation, and holomorphic duality just leaving a

nontrivial interior. However, our wonderful CY manifolds unsurprisingly relate these numbers with all the

same dualities. The Hodge diamond (for a CY3) is drawn below.

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

Hodge dual

Conjugation

Mirror symmetry

We have redrawn the Hodge diamond this time highlighting the symmetries15. We do not have

this extra dashed axis of symmetry yet, but is worth saying a few words about now. It turns out that

for every CYd there is a mirror CY ′
d in which h1,1 on CYd is equal to hd−1,1 on CY ′

d [2, 4, 5]. Once we

talk about field theories, we will see the isomorphism set up between H1,1(CY3) and H
2,1(CY ′

3) that gives

mirror symmetry.
14We still have Hodge duality on CY.
15This graphic was inspired by [4].
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Chapter 3

Topological Quantum Field Theory

When discussing quantum field theories (QFTs), it is taken for granted that the QFT is defined

over a fixed space-time (usually Minkowski) and not much thought is given past this. However, picking a

background in which the QFT exists can and will greatly affect predictions of the theory. It is possible,

however, to consider QFTs that only depend on the generic global structure of the space on which they are

defined (that is the topology) rather than the specific local structure (the metric of the specific manifold).

These are the distinguished topological quantum field theories (TQFTs). Discussion of which will provide

us with the tools necessary for mirror symmetry and topological strings.

In order to formalize TQFTs, we must start with the wide, wonderful, world of categories. Then

we discuss TQFT from axioms which will give us a deep understanding for the last section of cohomological

field theories (CoFT). This chapter follows M. Atiyah [11], for the axioms, and then closely follows [6] for

the discussion of CoFTs.

3.1 Categories

Categories may feel like a big, scary monster but they are crucial to understanding what a TQFT

truly is. Our aim here is not to become categorical experts but really to gain familiarity with that monster;

break down that wall of mysticism, making clear that the monster is really our friend. Our discussion of

categories is heavily motivated through hands-on examples.

Defining a category is not so straight forward as we first need to understand its constituents.

These are things called objects and morphisms. We give a ‘definition’ of what a mathematical object is,

but it only becomes clear through the following examples.

Definition 3.1. A (mathematical) object is a specific element of a type of structure.

This may be confusing, so we shall clarify what this means through the following examples.
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Example 3.1. Consider sets. The set S = {dog, cat, fish} is an specific set and therefore a

mathematical object. Further examples of objects that are sets are R,C, E = {2n | n ∈ N}. Now
consider groups. The set of integers under addition, (Z,+) forms a group, (Z,+) is then an object.

Further examples include (R,+), (R− {0}, ·), and (SU(2),×) where × is matrix multiplication.

The list goes on.

Definition 3.2. A morphism is a structure-preserving map between two objects of the same type.

Example 3.2. Let A and B be sets, if f : A → B then f is a morphism. Let G,H be groups

then a homomorphism h : G → H is a morphism. Let V, W be vector spaces a linear operator

A : V → W is a morphism.

Consider a map ρ, from the group (Z,+ (mod 2)) to the group (Z,+ (mod 3)), such

that ρ(0) = 0, ρ(1) = 1. This map is not a morphism as, ρ(1 + 1 (mod 2)) = ρ(0) = 0 but

ρ(1) + ρ(1) (mod 3) = 2, i.e. it is not a homomorphism.

Definition 3.3. A category, C, is a mathematical structure that satisfies the following axioms.

C0) There is a collection of objects X, Y, Z · · · that make up the objects of C, denoted

obj(C) and we say X ∈ obj(C). There is also a collection of morphisms, f, g, h · · ·
between objects, denoted mor(C), with f ∈ mor(C). Note that ∀ X ∈ obj(C) ∃ an

identity morphism, IX : X → X, the ‘do nothing’ map.

C1) Composition of morphisms. There is a bilinear operation from the morphisms of C

to the morphisms of C, ◦ : mor(C) × mor(C) → mor(C), such that for morphisms

f : X → Y , g : Y → Z, and h : Z → W ,

C2) the composition is associative:

(h ◦ g) ◦ f = h ◦ (g ◦ f), and

C3) there is an identity composition. That is ∀ f ∈ mor(C)

IY ◦ f = f = f ◦ IX

Remark. Every object in a category has an identity map just like how every set has the empty set as a

subset. We get these identity morphisms on objects for free, as they are the do nothing map. Furthermore

even though the definition of the identity morphism map did not explicitly require it to be the do nothing

map, axiom (C3) does require it.
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Example 3.3. Consider A set of numbers, Nu = {1, 2, 3}, a set of fruit, Fr = {apple, banana, raspberry},
a set of meals,Me = {apple sauce, smoothie, jam}, and finally a set of pets, Pe = {dog, cat, fish}.
Let us also say that for each set, Nu, Fr, Me, Pe, we have an identity map on each which maps

every element of ever set to itself: denoted INu, IFr, IMe, IPe respectively. Now define the

functions f : Nu → Fr such that f(1) = apple, f(2) = banana, f(3) = raspberry, a list of

groceries to get from the store, g : Fr → Me such that g(apple) = apple sauce, g(banana) =

smoothie, g(raspberry) = jam, meals to make with your new groceries, and h : Me → Pe such

that h(apple sauce) = dog, h(smoothie) = cat, and h(jam) = fish, the meals for each of your

pets. Let us check this is a category of sets.

C0) We have a collection of four sets: numbers, fruit, meals, and pets which are

our objects. We also have relations between them; morphisms f, g, and h as

the domains and codomains are of the same type (sets).

C1) Because f : Nu → Fr, g : Fr → Me, and h : Me → Pe, we can compose

them in the usual way to get the maps such as j = g ◦ f : Nu → Me, such

that

C2) it’s associative. Which we can check explicitly:

(h ◦ g) ◦ f(1) = (h ◦ g)(apple) = dog = h(apple sauce) = h ◦ (g ◦ f)(1),
(h ◦ g) ◦ f(2) = (h ◦ g)(banana) = cat = h(smoothie) = h ◦ (g ◦ f)(2),
(h ◦ g) ◦ f(3) = (h ◦ g)(raspberry) = fish = h(jam) = h ◦ (g ◦ f)(3).

C3) There are identity morphisms. We have these by construction, they trivially

satisfy

IFr ◦ f = f = f ◦ INu,
IMe ◦ g = g = g ◦ IFr,
IPe ◦ h = h = h ◦ IMe.

Hence, all the category axioms are satisfied and we have our very first category. The category of

chores. In set theory the focus on is on the objects themselves. Notice here the emphasis is on

the relations (morphisms) between the objects (sets).

Example 3.4. Consider the group (G,+). The group operation induce morphisms through

conjugation. For each g′ ∈ G then we have conjugation map as h : G→ G such that g 7→ h+ g+

h−1 ∀ g ∈ G and for each h ∈ G. Recall morphisms are structure persevering. These conjugation

28



maps are homomorphisms as h(g1+g2) = h+g1+g2+h
−1 = h+g1+h

−1+h+g2+h
−1 = h(g1)+h(g2)

(they inherit the structure directly from G). We have e ∈ G and hence e : G→ G is the identity

morphism. We can compose these maps as h′′◦h′(g) = h′′(h′+g+h′−1) = h′′+h′+g+h′−1+h′′−1 =

(h′′ + h′)(g), and note the composition gets the associative property directly from the fact it is a

group. Thus, we have a category with a single object G.

We have not explicitly considered any the opposite conjugation with h−1 ∈ G, if we do

then we get inverse morphisms. Directly following the composition of morphisms property from

above we see, h ◦ h−1(g) = (h + h−1)(g) = e(g) = g ∀ g, h, h−1 ∈ G. Since the homomorphisms

are invertible we have isomorphisms. This defines a groupoid.

Example 3.5. Some further examples of categories (also found in [12]) include: abelian groups

with homomorphisms, vector spaces with linear maps, and topological spaces with continuous

maps.

Having a category is great but, as with most everything, the real power lies in relating multiple

categories. Short of spoiling the punchline, this is the magic of TQFTs. We relate categories by a special

types of functions called functors.

Definition 3.4. Let C, D be categories. Let X, Y, Z ∈ obj(C) and f : X → Y, g : Y → Z be morphisms,

f, g ∈ mor(C). A functor, F , is a map between categories, F : C → D such that

F1) objects are associated to objects, that is F : X 7→ F (X) ∈ obj(D),

F2) morphisms are associated to morphisms, that is F : f 7→ F (f) ∈ mor(D),

F3) each identity morphism in C is mapped to its corresponding identity morphisms in D,

that is ∀ X ∈ obj(C), F : IX 7→ F
(
IF (X)

)
, and

F4) composition of morphisms is preserved, that is F (g◦f) = F (g)◦F (f) ∀ f, g ∈ mor(C).

The big idea is that we can map from one mathematical structure to another while maintaining the

structure of each. Here are a few examples to help clarify.

Example 3.6. If C is a category we have the identity functor, F : C → C such that ∀ X ∈
obj(C) F (X) = X, F (IX) = IX , and ∀ f ∈ mor(C), F (f) = f . Trivially we have F (g ◦ f) =
g ◦ f = F (g) ◦ F (f).

A slightly more exciting example: take the category of abelian groups, aGroups and

the category of sets, Sets. We can define a functor F : aGroups → Sets by taking groups to

the set over which they are defined. For example (Z,+ (mod 2)), (Z,+ (mod 4)) gets sent to

Z2
∼= {0, 1} and Z4

∼= {0, 1, 2, 3} respectively. A homomorphism that sends 0 and 1 in Z2 to 0

and 2 in Z4 gets sent to those maps (forgetting about the modulo addition). This is an example
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of a forgetful functor, as we lost the structure that makes it a group and only have the sets and

maps between them. [12].

Now that we have a feel for categories it is time to shift our focus to the categories necessary

for TQFT. First, the category of Hilbert (vector) spaces, Hilb. Of course this should come as no surprise

and we want to do quantum field theory at some point. A new category we need is the category of

(n+1)-dimensional cobordisms, nCob. First, of course, the definition of an (n+1)-dimensional cobordism.

Definition 3.5. Let W1, W2 be n-dimensional manifolds. A cobordism is a compact (n+ 1)-dimensional

manifold, M , such that the boundary is the disjoint union of the two n-dimensional manifolds, ∂M =

W1

∐
W2. We say W1 and W2 are cobordant if there exists a cobordism between them. If M is also

oriented then it is an oriented cobordism1.

One way to think about cobordisms is that they are ‘maps’ between two manifolds of the same dimension

living in one higher dimension. Again we give several examples to make concrete the abstract defini-

tions.

Example 3.7. The natural first image that comes to mind is a cylinder. Two circles, S1, are

cobordant by the surface of the cylinder, M . Of course these are 1 dimensional manifolds with

a 2 dimensional connecting manifold; nothing is stopping us from going down (or up, although

harder to draw) in dimension. Points P, Q here are cobordant because we can connect them with

a directeda line, N = PQ.

S1

S1
M

• N •P Q

Just to be crystal clear, M is a cobordism, ∂M = S1
∐
S1, N is also a cobordism, ∂N = P

∐
Q.

These cobordisms are trivial because W1
∼= W2, and M ∼= W1× I, where I is some closed interval

[13]. Note that the cobordism, N , above is equivalent to the following cobordism:

• •P Q

aDirected because it is an oriented cobordism.

The previous example was a cobordism between two identical manifolds. Naturally, the definition does not

require this and we can consider cobordisms between different manifolds.

1We will only consider this case save for example 3.8
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Example 3.8. As another example we can consider a cobordism connected different spaces (still

n-dimensional manifolds). We draw a cobordisms, M , between manifold of circle(s), W1, and

different manifold (again of circles), W2. Implicit in this are cobordisms between a manifold and

the trivial manifold (the emptyset). Of course, M , does not have to be something simple like a

cylinder it can be a manifold of any genus g.

W1 :

W2 :

M :

S1

S1 ⊔ S1

∅

S1

S1

S1 ⊔ S1 ⊔ S1 ⊔ S1 ⊔ S1

Talking about cobordisms is awesome because it gives us a new way to think about particle interactions.

Rather than strictly thinking about the mathematical objects and shapes we can consider physical exam-

ples.

Example 3.9. The path of a particle with boundary conditions, x(0) = a, x(t) = b, defines a

0-dimensional cobordism between the boundary states. Extending this to interactions, Feynman

diagrams are cobordisms (in momentum space) between (initial) particles of momentum p⃗1, p⃗2,

and (final) particles of momentum q⃗1, q⃗2.

p⃗1 q⃗1

p⃗2 q⃗2

Here the cobordism, M , is the quantum processes/propagation of particles freely propagating

to interaction, virtual particle exchange, and free propagation from W1 = {p⃗1} ∪ {p⃗2} to W2 =

{q⃗1} ∪ {q⃗2}, which make up the boundary ∂M = {p⃗1} ∪ {p⃗2} ∪ {q⃗1} ∪ {q⃗2}.

Example 3.9 brings up another important point. The above picture is just a single interaction,

there are infinitely many other paths the particles could take and infinitely many other diagrams due to all

of the quantum processes. Considering all the possible cobordisms and therefore a possible paths particles

can take leads to the path integral approach to QFT. Moreover, this is just a 0-dimensional cobordism, and

we can consider higher dimensional cases. If we take 1-dimensions for example we have string propagation,

both open and closed. Cobordism M in example 3.7 is exactly this: A string propagating freely. The first

cobordism in example 3.8 is the aptly named pair of pants string interaction.

One final point before moving forward. Back at the start of the section we said there was a

category of cobordisms, nCob. Now that we understand what a cobordism is let us verify we have a

category.
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Proposition 3.1. A collection of n-dimensional oriented manifolds and oriented (n + 1)-dimensional

cobordisms forms a category, nCob.

Solution. (sketch) Here we demonstrate the elements necessary for the category, rather than rigorously

prove it is one.

C0) Our objects are n-dimensional oriented manifolds. This means for everyW ∈ obj(nCob)

we have a W̄ the same manifold but with opposite orientation. Then our morphisms

are (n + 1)-dimensional compact oriented manifold. Note that ∀ W ∈ obj(nCob) ∃ a

cobordism, M : W → W, s.t. M ∼= W × I.

C1) LetW1 andW2 be cobordant throughM, ∂M = W1

∐
W2 andW2 andW3 be cobordant

through N, ∂N = W2

∐
W3. Through the orientation we can compose the cobordisms,

N ◦M : W1 → W3 since ∂(N ◦M) = W1

∐
W3, so N ◦M is a cobordism. For example,

◦

N M

=

N ◦M

The orientation (arrows) tell us how to compose cobordisms.

C2) It is associative. Thinking about the morphisms like legos, the orientation of each tells

us how we can attach them, i.e only outgoing boundaries to incoming boundaries.

C3) The identity composition is the ability to tack-on a cylinder anywhere, as long as the

cobordism N has at least one outgoing or one incoming boundary. Since the cylinder

is the identity cobordism (morphism), we can arbitrarily grow or shrink the interval,

I. So, if N : W1 → W2, then (W2 × I) ◦N = N = N ◦ (W1 × I).

So we have a category of cobordisms, nCob [13, 14].

An important point to stress here is the orientation. It was necessary to make nCob a category and it

tells us how to put cobordisms together. It also tells us how we can take them apart. It is possible to

decompose cobordisms. Without loss of generality we can do the opposite of composition shown in (C1)

above to break spaces apart.

We took the scenic route, but we are ready for topological quantum field theory. We have the

necessary tools in hand to dissect TQFTs and learn the inner workings of the theory.
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3.2 Topological Field Theory

As we discussed at the start of the chapter, the case and point of TQFTs are that they just

depend on the topology not the local structure. However, we need a way to communicate the mathematical,

topological properties with the physical. We do this by relating the structure of the Hilbert space of the

quantum theory to the topological structure of n-dimensional cobordisms2.

Definition 3.6. Let Σ be an n-dimensional, oriented, closed manifold (with opposite oriented manifold

Σ∗), and M a (n + 1)-dimensional cobordism, ∂M = Σ1 ⊔ Σ2. Further, Let Λ be a ring, over which is a

quantum theory; a Hilbert space, H. A topological quantum field theory is a functor, Z, from the category

of n-dimensional cobordisms to the category of Hilbert vector spaces, Z : nCob→ Hilb

TQFT0) Z is a functor so the functor axioms must be satisfied. Namely, each n-dimensional

manifold, Σ, is associated to a Hilbert space, Z(Σ) = H, and cobordisms are associated

to linear maps, Z(M) ∈ Hom(Z(Σ1), Z(Σ2)) i.e. Z(M) : Z(Σ1) → Z(Σ2), equivalently

Z(M) : H1 → H2.

such that the following axioms are satisfied.

TQFT1) Z is involutory, by which we mean the opposite oriented manifold is mapped to the

dual Hilbert space associated to the original oriented manifold, Z(Σ∗) = Z(Σ)∗. If

Z(Σ) = H then Z(Σ∗) = H∗ the dual Hilbert space.

TQFT2) We say Z is multiplicative, Z(Σ1 ⊔ Σ2) = Z(Σ1) ⊗ Z(Σ2), meaning multiple disjoint

manifolds are associated to a tensor product Hilbert space, H1 ⊗H2.

TQFT3) The empty manifold, Σ = ∅, is associated to the ring which the theory is defined over,

Z(∅) = Λ.

TQFT4) Lastly, we require the identity cobordism to associate to the identity of the Hilbert

space, Z(Σ× I) = IZ(Σ).

Following from3 [11, 13, 15].

As a minimum requirement Λ, must be a ring. We will take Λ = C with the additional structure of a

field over which we have a Hilbert space. This means our maps to or from empty sets correspond to

maps to or from C. So, the TQFT functor sets up an equivalence between space(-time) manifolds and

Hilbert spaces of a quantum theory. To help illustrate what the TQFT functor does we give the following

examples.

2For a reminder of a ring structure and a field structure see definitions A.8 and A.9.
3There is a slight abuse of notation in the definition with I, however, it should be contextually clear whether we are

discussing the interval, I, with identity cobordisms or the identity operator on the Hilbert space, IZ(Σ×I) ∈ Hom(Σ,Σ).
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Example 3.10. First, let us consider the trivial case of the identity cobordism (the cylinder). The

incoming and outgoing boundaries are the same Hilbert space, H, and the cobordism between

them (Σ× I) is the identity operator, I. A state, |α⟩ ∈ H is sent to I|α⟩. We can also consider

arbitrary transformation from a Hilbert space, H, to the transformed Hilbert space, H′ = ÕH.

Or a map from one Hilbert space, H1 to a totally different Hilbert space H2, through operation

O.

H

H

I

|α⟩

I|α⟩

H

Õ

H′

H1

H2O

Following the lectures of [15], we can further dissect these axioms. We interpret the n-dimensional boundary

manifolds as spaces of a quantum theory, a Hilbert space and the (n+ 1)-dimensional cobordisms (space-

time manifolds) are simply the evolution operators as. For example, taking the second cobordism in

example 3.10, M ∼= Õ corresponds to a map Z(M) : H → H′. Moreover, if the cobordism, M , is a closed

manifold, we think of it as the correlation function. Let us piece this together.

First, the closed space-time manifolds are associated to complex numbers as they are maps from

∅ → ∅ which through the TQFT corresponds to C → C. That is Z(M) : C → C, which will be the path

integral: Z(M) =
∫
e−S[φ]Dφ, for some field φ onM . Then, we take boundary states, (with an orientation)

|M⟩ ∈ H, to be cobordisms from the empty set to an n-dimensional manifold4, Z(M) : C → H. Just as we

have the map from the field (empty manifold) to the Hilbert vector space (space manifold), we can have

a map in the opposite direction through the dual space, Z(M∗) : H∗ → C. By our TQFT axioms, this

opposite boundary state is the same manifold but with opposite orientation, M∗ ∼= ⟨M |.

◦ =

H∗ H

M∗ M M̃

Z(M̃) = ⟨M |M⟩ (3.1)

Figure 3.1: Demonstrates how the composition of cobordisms of a closed manifold correspond to calcu-

lating expectation values. Where the ‘cap’ manifold corresponds to a boundary state, and M̃ is the total

cobordism; the sphere.

4As in example 3.8.
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Equation 3.1 is none other than the correlation function.

Z(M̃) : C → C

Z(M̃) = ⟨M∗M⟩ =
∫
H
M∗Me−S[φ]Dφ

(3.2)

The TQFT composition properties allow for manifolds (space-times) to be ‘cut’ and ‘glued’ together

through these boundary states. We will discuss this further in the next section.

The math language of TQFTs has is strong; it told us how to think about quantum field theories

in terms of manifolds. It also implies that the dynamics of QFT occur through the manifold topology

changes. Transitioning to the physical language, our intuition tells us the dynamics due to topological

properties is equivalent to a theory independent of a metric put on the space. However, the metrics are

not completely removed from the story. As was alluded earlier, particles’ worldsheets are cobordisms to

which quantum theories are assigned via a TQFT functor5. The particles still must travel in some target

space and we cannot avoid the dependence on the local structure here. Through the TQFT, however, we

gain the ability investigate only the global structure (the topology of the worldsheet) [6]. So, equation 3.2,

which was a result of the topology of the cobordism, should be independent of any metric on it. Then, we

can recast the definition of a TQFT.

Definition 3.7. Let (M, g) be a smooth d-dimensional manifold with metric g. Let (Σ, hab) be a smooth

2-dimensional manifold with metric hab be a worldsheet embedded in M . Furthermore suppose we have

a QFT defined over M with observables, Oi, so we have ⟨Oi · · · On⟩M . We define the theory to be a

topological quantum field theory if
δ

δhab

〈
Oi · · · On

〉
M

= 0, (3.3)

that is the correlator is independent of worldsheet metric.

There is some ambiguity in how to achieve this. For example one could try to explicitly build a

theory by integrating over all worldsheet metrics h. However, as quantum gravity as not been figured out

yet, this is quite difficult [6]. So, we will try a different method, first pioneered by E. Witten, cohomological

field theories (CoFT) [16].

3.3 Cohomological Field Theories

As we know from Chapter 2, a the exterior derivative is a nilpotent operator6 which gives rise

to cohomology. In our field theories we do not have an exterior derivative yet, but if we had a nilpotent

operator like the exterior derivative we could draw an analogy between the two and create a cohomology in

the quantum theory. Our guiding questions for this section: How far does the analogy go? What insights

are gained?

5For point particles: 0Cob, for strings: 1Cob to which most examples have been drawn.
6A nilpotent operator, O, satisfies On = 0. In most all physical examples n = 2.
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Example 3.11. We are already familiar with such operators from supersymmetry: grassman

operators, the generator of superspace translations, Q, or a fermionic field, ψ.

With these ideas in mind, we now state what it means for a field theory to be cohomological, following

from [6].

Definition 3.8. A cohomological field theory (also known as a TQFT of Witten type) is a quantum theory

in which the following axioms are satisfied.

CoFT1) There is a nilpotent symmetry generator, Q2 = 0.

CoFT2) The physical observables, Oi, are Q-closed, that is [Q,Oi} = 0, and are independent of

worldsheet metric, δ
δh
Oi = 0 ∀ i.

CoFT3) The vacuum state of the theory is symmetric, ∃ |0⟩ s.t. Q|0⟩ = Q†|0⟩ = 0.

CoFT4) Finally, the energy-momentum tensor is Q-exact, i.e. Tαβ = δS
δhαβ = {Q,Gαβ}, for some

operator Gαβ.

Of course the actual commutation relation will depend upon whether or not V obeys bosonic or fermionic

statistics, but we use the anticommunitator for simplicity.

This lays the groundwork for interesting physics to come. In defining the cohomolgical field

theory we have drawn an analogy between the exterior derivative, d, and a symmetry generator, Q. First,

however, we should verify that these theories are indeed topological.

Proposition 3.2. A cohomological field theory is a topological field theory.

Solution. Suppose we have all the requirements for a cohomological field theory as defined above. Then

consider

δ

δh
⟨Oi · · · On⟩ =

δ

δh

∫
Oi · · · One

i
ℏS[φ]Dφ

=
i

ℏ

∫
Oi · · · On

δS

δh
e

i
ℏS[φ]Dφ

=
i

ℏ

∫
Oi · · · On{Q,G}e

i
ℏS[φ]Dφ

=
i

ℏ
⟨Oi · · · On{Q,G}⟩

= (−1)n
i

ℏ
⟨QOi · · · OnG⟩+

i

ℏ
⟨Oi · · · OnGQ⟩

= 0

(3.4)

Thus, the correlator is independent of the worldsheet metric and the cohomolgical theory is a topological

one [6].
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We do not need to start by finding a Q-exact Tαβ, which may be very difficult to do. If given a Q-exact

lagrangian, we can guarantee the theory will have a Q-exact energy-momentum tensor.

Proposition 3.3. If we start with aQ-exact lagrangian, L = {Q, V }, then the theory will be cohomological

and therefore topological.

Solution.

T =
δS

δh
=

δ

δh

∫
{Q, V }

=

∫ (
Q
∂V

∂h
+
∂V

∂h
Q

)
=

{
Q,

∫
∂V

∂h

}
.

Thus, a Q-exact lagrangian gives rise to a Q-exact stress energy momentum tensor which implies the

correlator is independent of the metric given the observables are metric independent.

Quite trivially then, we also have,

Corollary. If the action S is Q-exact, the theory is topological.

There is a lot of power behind CoFTs. One reason being, path integrals (and so too correlators),

which correspond to closed manifolds can be calculated exactly. In order to show this, consider a Q-exact

lagrangian, but with an additional parameter, t altering the potential, L = {Q, tV }. Then the action is

S = {Q, t
∫
V }. Consider now the variation of the closed manifold (path integral) corresponding to this

action,

d

dt

∫
e−{Q,tV }DX = −

∫
{Q, V }e−{Q,tV }DX

= ⟨QV + VQ⟩ = 0,

(3.5)

as our operator kills the vacuum. Since the physical operators are t independent,

d

dt
⟨O1 · · · On⟩ = ⟨O1 · · · On{Q, V }⟩ = 0. (3.6)

We can then evaluate in the limit where t → ∞. We only get contributions from terms which minimize

the potential, V , i.e. classical solutions and our path integral becomes finite dimensional
( ∫

DX →
∫
dx

)
.

Which implies we can evaluate path integrals exactly.

Further pushing the analogy between CoFTs and d-cohomology, we derive the so called decent

equations. In d-cohomology we start with some scalar function, a 0-form, and take derivatives to obtain

p-forms on M . Can we do the same in the CoFT? Yes, we can.

Proposition 3.4. Cohomological Field Theories on an m-dimensional manifold, M , admit physical p-

forms, (p ≤ m).
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Solution. To start, we first observe that the conserved quantities are:

H =

∫
T00d

mx =

{
Q,

∫
G00d

mx

}
, (3.7a)

Pα =

∫
Tα0d

mx =

{
Q,

∫
Gα0d

mx

}
. (3.7b)

That is to say they are Q-exact. Consider then the momentum density7, Pα = {Q,Gα0}, and a scalar

observable (Q-closed) of the theory O(0).

By taking an exterior derivative of a p-form we get a (p + 1)-form. So, we should try to take a

derivative (physically this corresponds to looking at the commutator of the momentum density operator)

of the scalar operator and see what happens.

d

dxα
O(0) = i

[
Pα,O(0)

]
= i[{Q,Gα},O(0)]

= i[(QGα +GαQ),O(0)]

= i[QGα,O(0)] + i[GαQ,O(0)]

= iQ[Gα,O(0)}+ i������:0
{Q,O(0)}Gα + iGα������:0

{Q,O(0)}+ i[Gα,O(0)}Q
= QO(1)

α ±O(1)
α Q

= [Q,O(1)
α }.

(3.8)

Where we have introduced a new operator, O(1), by saying the fermionic operator, Gα, does not (anti-

)commute trivially with O(0), [
Gα,O(0)

}
= −iO(1)

α . (3.9)

For simplicity in writing, we will take O(i) to be fermionic. We see this new operator, O(1)
α , is a 1-form,

and that the derivative of the scalar observable is Q-exact. One way to view this result is by the physicists

trick of separating the derivative. We have

d

dxα
O(0) = {Q,O(1)

α }

“ =⇒ dO(0) = {Q,O(1)
α }dxα ”,

(3.10)

to which we define O(1) = O(1)
α dxα. We have then dO(0) = {Q,O(1)}.

Now, we need to show that O(1) is physical. That is, we need to show O(1) is Q-closed. In order

to do so, consider a closed curve, γ ⊂M .{
Q,

∫
γ

O(1)

}
=

∫
γ

{Q,O(1)} =

∫
γ

dO(0) =

∫
∂γ

O(0)

︸ ︷︷ ︸
by Stoke’s theorem

= 0. (3.11)

7We take Gα to be fermionic.
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Where ∂γ = 0 since γ is closed. Consequently, the new operator, O(1), is Q-closed and therefore8 physical.

So, we started from a 0-form and went to a 1-form; repeating this process we obtain all p-forms

over M . These are the so called decent equations:

{Q,O(0)} = 0, (3.12a)

{Q,O(1)} = dO(0), (3.12b)

{Q,O(2)} = dO(1),

...
(3.12c)

{Q,O(m)} = dO(m−1), and finally, (3.12d)

dO(m) = 0. (3.12e)

This solution follows [6] closely with a few more details.

Proposition 3.4 really drives home the connection between manifold cohomology and this new

field theory cohomology. We are finding they are the same thing. To this end, the symmetry generator, Q,

acts as (becomes) the exterior derivative operator, and the physical observables are the differential forms.

Naturally, an equivalence class of observable can be made:

Oa ∼ Ob ⇐⇒ Oa −Ob = [Q,Λ}. (3.13)

Of course, equation 3.13 is the exact same equivalence class used to define the cohomology groups of a

manifold. It should come as no surprise that this equivalence translates to the correlators.

Proposition 3.5. If O ∼ O′, then ⟨O1 · · · O · · · On⟩ = ⟨O1 · · · O′ · · · On⟩.

Solution. Let O ∼ O′, then O = O′ + [Q,Λ} =⇒

⟨O1 · · · O · · · On⟩ = ⟨O1 · · · (O′ + [Q,Λ}) · · · On⟩
= ⟨O1 · · · O′ · · · On⟩+ ⟨O1 · · · On[Q,Λ}⟩
= ⟨O1 · · · O′ · · · On⟩,

(3.14)

as Q annihilates the vacuum, independent of Λ’s spin-statistics ({ , } or [ , ]).

3.3.1 Cobordisms and Cohomological Field Theory

We have discussed at length topological field theories on a manifold and how this gives rise to a

cohomology. Let us not forget how crucial cobordisms are to the story. The composition of cobordisms

gives us a way to ‘cut’ (and ‘glue’) manifolds. This is done by a clever insertion of the identity operator.

8It also will not depend on the metric as O(0) did not.
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Recall from quantummechanics, I =
∑

x∈H |x⟩⟨x|. This implies I =
∑

x,y |x⟩⟨x|y⟩⟨y| =
∑

x,y |x⟩δxy⟨y|,
if states, x, y form an orthonormal basis of H. Now, if the basis in not known to be orthonormal, we

can instead replace δxy with some ηxy. Where we can think of this η as measuring the difference from the

states being orthonormal.

Back to the matter at hand, we can use this to ‘cut’ closed manifolds in two ways. The first way

is to cut the manifold such that the genus is preserved. When, a manifold is cut open, a boundary appears.

The original manifold was closed an so should the resulting manifold after any cutting. So, the price to

be paid is capping off the now open boundaries. Just one cannot be chosen though, all possible boundary

states must be considered, and η accounts for the difference in the caps. So, given a closed manifold (some

n-point correlation function) of some genus g, the cutting process is,

⟨O1 · · · On⟩g =
∑
a,b

⟨O1 · · · OiOa⟩g1ηab⟨ObOi+1 · · · On⟩g2 . (3.15)

Where the sum is written explicitly for clarity. The manifold gets split into two manifolds each of lower

genus g1 and g2 such that g1 + g2 = g. The operators Oa, Ob correspond to |x⟩, ⟨y| respectively. To help

illustrate this, consider the following examples.

Example 3.12. The first cutting process demonstrated with the sphere as with figure 3.1. The

sphere is a composition of two cobordisms. The first from C to some H and then from that H
back to C. By cutting the manifold open we have to put caps on the now exposed boundary

states, then sum over all possible boundary states.

Q
ηab

∑
a,bCapCut

Of course the space-time manifold corresponds to operators, but we’ve omitted writing any above to

help with conceptual understanding. In the case of the sphere, each hemisphere corresponded to a single

operator. Given any arbitrary closed manifold, we can think of the operators as be ‘insertion points’ on

the manifold. At the very least as a representation of as the area around the insertion point being the

section of the cobordism in the decomposition corresponding the the labeled operator.
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Example 3.13. Now, consider the case of g = 2 from equation 3.15.

O1
•

O2•

•
•

• On
• =

O1
•
•

•

Oi•
Oa Ob

•Oi+1

•
On

•
∑

a,b ηab

⟨O1 · · · On⟩2 =
∑
a,b

⟨O1 · · · OiOa⟩1ηab⟨ObOi+1 · · · On⟩1. (3.16)

We now make a few observations about equation 3.15. First, the most a correlator can be reduced

is to a product of 2-point functions. Since9,

⟨O1O2⟩ = ⟨O1Oa⟩ηab⟨ObO2⟩. (3.17)

So, the 2-point correlation function gives rise to this η. One way to view ηab is as a ‘metric like’ operator;

one that raises and lowers indices, enforcing contraction between Oa and Ob. The 3-point functions are

quite special. This is because we can decompose any n-point correlator in terms of products of the 3-point

function, but also they determine the structure constants of the ring of operators. For now, we label,

cabc = ⟨OaObOc⟩0, (3.18)

and by equation 3.17 we have,

OaOb = c c
ab Oc. (3.19)

Before we show that n-point correlation functions decompose into products of 3-point functions, there is

one more topological changing action we can take.

The second way in which a manifold can be cut is buy cutting to a hole, in which case the genus

is lowered by one. Another way to think about this process is by pinching a manifold at one of the holes

and then drawing it off to infinity [6]. This process is done in a similar way to equation 3.15,

⟨O1 · · · On⟩g = (−1)Fηab
∑
a,b

⟨OaObO1 · · · On⟩g−1 (3.20)

where

F =

0 Oa, Ob Bosonic (commute)

1 Oa, Ob Fermionic (anticommute)

Again the sum is written explicitly for clarity. The following examples are to help demonstrate this new

cutting procedure.

9This is pictorial shown in example 3.12
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Example 3.14. This example illustrates the second possible way to cut a manifold; Cutting as a

pinch and pull. The process for reducing a manifold’s genus by one as described by [6]. Thinking

of the delta function, if we say the ‘area’ of the hole must remain constant, in the limit as the

manifold is stretched to infinity, the hole must collapse in one direction and expand out to infinity

in the other. The whole becomes a ‘line’ in the manifold which we say is indistinguishable from

the rest of the manifolda.

Pinch & Pull Limit to ∞

aLike aligning two tables so flush the crack is not noticeable.

Example 3.15. The second cutting process, equation 3.20, demonstrated on a torus, g = 1. The

process is very similar to equation 3.15 and example 3.13, where once the cut is made boundary

states must be overlaid and account for the difference between them.

Q =
∑

a,bηab

Oa

Ob

As was mentioned earlier, the 3-point function is special because any n-point correlator decom-

poses into products of the 3-point correlator. Let us now proof it.

Proposition 3.6. All n-point correlation functions on a manifold of some genus, g, can be reduced to

products of 3-point functions on the sphere.

Solution. Case 1): We start on the sphere, g = 0. Base case

⟨O1O2O3O4⟩0 = ⟨O1O2Oa⟩g1ηab⟨ObO3O4⟩g2 ,
0 = g1 + g2,

=⇒ g1 = −g2,

(3.21)

but every g ≥ 0, so g1 = 0 = g2. Assume true for n, that is,

⟨O1 · · · On⟩0 = ⟨O1O2Oa⟩0ηab⟨ObO3Oc⟩0ηcd · · · ηx
′y′⟨Oy′On−1On⟩0. (3.22)
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Now consider the n+ 1 case,

⟨O1 · · · OnOn+1⟩0 = ⟨
n operators︷ ︸︸ ︷

O1 · · · On−1Oa⟩0ηab⟨ObOnOn+1⟩0
= ⟨O1O2Oa′⟩0ηa

′b′ · · · ηx′y′⟨Oy′On−1Oa⟩0ηab⟨ObOnOn+1⟩0,
(3.23)

by the induction assumption. Hence, the n-point correlator on a sphere can be decomposed into a product

of 3-point correlators.

Case 2): The 3-point function of a general manifold, g ̸= 0. Our base case is g = 1.

⟨O1O2O3⟩1 = (−1)Fηab⟨OaObOc⟩0ηcd⟨OdO1Oe⟩0ηef⟨OfO2O3⟩0, (3.24)

by equation 3.22. Inducting on g, using equation 3.22, we assume,

⟨O1O2O3⟩g = (−1)F ·g

g times︷ ︸︸ ︷
ηab · · · ηxy⟨OaOb · · · OxOyO1O2O3⟩0

= (−1)F ·gηab · · · ηxy⟨OaObOα⟩0ηαβ · · · ηψω⟨OωO2O3⟩0.
(3.25)

Now consider,

⟨O1O2O3⟩g+1 = (−1)Fηa
′b′⟨Oa′Ob′O1O2O3⟩g

= (−1)Fηa
′b′⟨Oa′Ob′Oα′⟩g1ηα

′β′⟨Oβ′O1Oγ′⟩g2ηγ
′δ′⟨Oδ′O2O3⟩g3

= (−1)F ·(g1+g2+g3)(−1)Fηab · · · ηxyηa′b′⟨Oa′Ob′Oα⟩0ηαβ · · · ηψω⟨OωOb′Oα′⟩0ηα
′β′

× ηãb̃ · · · ηx̃ỹ⟨OãOb̃Oα̃⟩0ηα̃β̃ · · · ηψ̃ω̃⟨Oω̃O1Oγ′⟩0ηγ
′δ′

× ηAB · · · ηXY ⟨OAOBOℵ⟩0ηℵℶ · · · ηℸג⟨OגO2O3⟩0

(3.26)

by extensive use of the induction assumption. Hence, the 3-point correlator on any closed manifold can be

written as a product of 3-point functions on the sphere.

At this point we have that any n-point function on the sphere reduces to a product of 3-point

functions, and that the 3-point function on any closed manifold becomes a product of 3-point functions on

the sphere. We now must induct on n for a surface of any genus g.

Case 3): Any correlator on any closed manifold. The base case of n = 3 is done in equation 3.25 in case

(2). So, our induction assumption is,

⟨O1 · · · On⟩g = (−1)F ·gηab · · · ηxy⟨OaOb · · · OxOyO1 · · · On⟩0
= (−1)F ·gηab · · · ηxy⟨OaObOα′⟩0ηα

′β′ · · · ηψ′ω′⟨Oω′On−1On⟩0.
(3.27)

In order to obtain the desired result, putting the results of case (1) and (2) together we have,

⟨O1 · · · OnOn+1⟩g = ⟨O1 · · · On−1Oa′⟩g1ηa
′b′⟨Ob′OnOn+1⟩g2

= (−1)F ·g1ηab · · · ηxy⟨OaObOα′⟩0ηα
′β′ · · · ηψ′ω′⟨Oω′On−1Oa′⟩0ηa

′b′

× (−1)F ·g2ηAB · · · ηXY ⟨OAOBOΓ⟩0ηΓ∆ · · · ηΨΩ⟨OΩOn−1On⟩0.

(3.28)

Therefore, any n-point correlation function on any closed manifold can be reduced to calculating 3-point

functions on the sphere.
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In conclusion, topological field theories have been introduced rigorously by an axiomatic approach,

and the physical interpretation of them, introduced by Witten [16] as cohomological field theory, has been

investigated at length. In turn, our journey through CoFTs has laid the groundwork for our continued

investigation of mirror symmetry and on to topological string theories, where we will see the consequence

of these theories pan out.
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Chapter 4

N = (2, 2) Supersymmetry

Having viewed cohomological field theories in all their glory, we now want to see where they show

up. That is we want to find a theory in which we can show it is cohomological and therefore topological.

We will do so with the N = (2, 2) supersymmetric theory. This is a special theory because it gives rise to

mirror symmetry through its topological nature (Chapter 5).

We begin with a quick refresher on supersymmetry through describing the N = (2, 2) supersym-

metry algebra. The main sources for this chapter are [6, 9].

4.1 The Supersymmetry Algebra and Chiral Fields

Let us turn our focus now to string worldsheet manifolds, with complex coordinates z, z̄ (we

note the derivatives then as ∂+ for ∂z and ∂− for ∂z̄). On the worldsheet there are time translations,

space translations, and Lorentz rotations. Each generated by the Hamiltonian, momentum operator, and

Lorentz Noether charge, H, P, and M respectively. Together H, P, M make up the Poincaré Algebra.

H = −i(∂+ − ∂−) [M,H] = −2P

P = −i(∂+ + ∂−) [M,P ] = −2H

M = 2z∂+ − 2z̄∂− [H,P ] = 0

(4.1)

However, fermions should also be in the picture and so we must expand the Poincaré algebra.

This means there should be other possible translations corresponding to fermionic degrees of freedom. So,

we arrive at superspace which consists of1 two bosonic coordinates, and four fermionic coordinates,

z, z̄, θ+, θ−, θ̄+, θ̄−

[z, z̄] = 0{
θα, θβ

}
=

{
θ̄α, θ̄β

}
=

{
θα, θ̄β

}
= 0.

(4.2)

1In the N = (2, 2) case.
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The indices α, β note the chirality and take on the values of ±, and is the charge under Lorentz transfor-

mations2.

Remark. By extending the space, integrals include superspace variables as well. We remind ourselves of

Berezin integration. The fermionic nature of the variables implies that integration over them is equivalent

to differentiation. ∫
cθdθ = c =

∂

∂θ
[cθ]

∫
c dθ = 0 =

∂

∂θ
[c], (4.3)

for some constant c. Another way to think about Berezin integration is that it picks out the components

corresponding to the measure. For example,
∫
f(θ, θ̄)dθ̄, picks out the terms in f with θ̄. Finally, we

denote the integral over superspace by∫
[ ]d2zd4θ ≡

∫
[ ]dzdz̄dθ+dθ−dθ̄+dθ̄−.

Just as translations in the bosonic coordinates was generated by some symmetry so are transla-

tions in the fermionic coordinates. The possible generators and supersymmetric derivatives are

Q± =
∂

∂θ±
+ iθ̄+∂± D± =

∂

∂θ±
− iθ̄±∂±

Q̄± = − ∂

∂θ̄±
− iθ±∂± D̄± = − ∂

∂θ̄±
+ iθ±∂±.

(4.4)

Note that these generators are fermionic and satisfy the following anti-commutation relations.

{Q±, Q̄±} = −2i∂± (4.5a)

{D±, D̄±} = 2i∂± (4.5b)

{Q±, D±} = {Q±, D̄±} = 0, (4.5c)

and the other two have been omitted as they are just the conjugation of the last line in equation 4.5c.

We can define fields on superspace in the following way.

Definition 4.1. A field over superspace, known as a superfield, is a field F(z, z̄, θ+, θ−, θ̄+, θ̄−) is obtained

by performing superspace translations on a field φ(z, z̄),

F(z, z̄, θ+, θ−, θ̄+, θ̄−) = φ+ θ+φ+ + θ−φ− + θ̄+φ+̄ + θ̄−φ−̄

+ θ+θ−φ+− + θ+θ̄+φ++̄ + θ+θ̄−φ+−̄ + θ−θ̄+φ−+̄ + θ−θ̄−φ−−̄ + θ̄+θ̄−φ+̄−̄

+ θ+θ−θ̄+φ+−+̄ + θ+θ−θ̄−φ+−−̄ + θ̄+θ̄−θ+φ+̄−̄+ + θ̄+θ̄−θ−φ+̄−̄−

+ θ+θ−θ̄+θ̄−φ+−+̄−̄.

(4.6)

The expansion is finite due to the fermionic nature of the superspace variables.

The full 16 term superfield is a lot to work with and actually possesses an N = (4, 4) supersymmetry. In

order to simplify this theory we introduce chiral and anti-chiral superfields.

2More will be discussed about this in the section 4.3.
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Definition 4.2. A chiral superfield, Φ, is a superfield such that both,

D̄±Φ = D±Φ̄ = 0, (4.7)

are satisfied. The chiral constraint greatly reduces the general superfield, F to become

Φ = φ− iθ+θ̄+∂+φ− iθ−θ̄−∂−φ− θ+θ−θ̄−θ̄+∂+∂−φ+ θ+ψ+

− iθ+θ−θ̄−∂−ψ+ + θ−ψ− − iθ−θ+θ̄+∂+ψ− + θ+θ−F.
(4.8)

This superfield consists of a scalar boson, φ, a spin-1
2
, Weyl fermion, ψ, and a spin-1 boson, F .

An anti-chiral superfield is given by the conjugation of a chiral superfield,

D±Φ = D̄±Φ̄ = 0. (4.9)

Again both equations must be satisfied to be anti-chiral.

Together the chiral, anti-chiral constraints on F reduce the supersymmetry to N = (2, 2) as a Q trans-

formed chiral superfield is still chiral.

D̄±ε
±Q±Φ = ε±Q±D̄±Φ = 0, (4.10)

Note that because ε± is some fermionic parameter, the factor ε±Q± is bosonic. The same is true for Q̄.

4.2 Nonlinear σ-Model

Recall that the symmetry is on a string worldsheet. By asking the worldsheet to have this

N = (2, 2) supersymmetry, the string target space is forced to have much structure. Specifically, the

target space must be Kähler. Showing this is a tedious exercise in using the chain and Leibniz rule for

grassman numbers. We only include a few pieces of the calculation for brevity. The original article by B.

Zumino ([17]) is very instructive, we follow [6, 9, 17], [18, 19] also serve as useful references.

We, suggestively, write a function of n chiral superfields as3 K
(
Φi, Φ̄ī

)
. Terms involving K over

superspace are automatically invariant under supersymmetry transformations. The reason being that the

Berezin integral picks out the highest component. Then, only the ∂± term of a Q (or Q̄) transformation

survives which is a total derivative.

LD =

∫
Kd4θ = F̃ (z, z̄) ⊂ K

(
Φi, Φ̄ī

)
=⇒ δQLD =

∫
ε±Q±Kd

4θ

∝ ∂±F̃ (z, z̄)

(4.11)

3
(
i ∈ {1, · · · , n}

)
.
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for some epsilon superspace shift, and we have omitted the integration over z, z̄ for clarity of the Berezin

integral. Such terms in the Lagrangian are known as D-terms. Since D-terms are invariant, they should

appear in the Lagrangian.

Now, the D-term action amounts to performing superspace derivatives on the function K. We

do not immediately have this from the action, but we want to use the chiral nature of the fields to our

advantage. To demonstrate this we give the following example.

Example 4.1. ∫
f(θ+)dθ+d2z =

∫
∂

∂θ+
[f ]d2z

=

∫
(D+ + iθ̄+∂+)fd

2z

(4.12)

Note that the second term is a total derivative so we effectively term the integral into a superspace

derivative.

Before moving on the determining the lagrangian we note the following derivatives needed in the calculation.

D̄±K
(
Φi, Φ̄ī

)
=

(
− ∂

∂θ̄±
+ iθ±∂±

)
K
(
Φi, Φ̄ī

)
= −∂K

∂Φi

∂Φi

∂θ̄±
− ∂K

∂Φ̄ī

∂Φ̄ī

∂θ̄±
+ iθ±

(
∂K

∂Φi
∂±Φ

i +
∂K

∂Φ̄ī
∂±Φ̄

ī

)
=
∂K

∂Φi

(
− ∂Φi

∂θ̄±
+ iθ±∂±Φ

i

)
+
∂K

∂Φ̄ī

(
− ∂Φ̄ī

∂θ̄±
+ iθ±∂±Φ̄

ī

)
=
∂K

∂Φi
D̄±Φ

i +
∂K

∂Φ̄ī
D̄±Φ̄

ī

=
∂K

∂Φ̄ī
D̄±Φ̄

ī.

(4.13)

Where getting to the last line we have used the fact that Φi is chiral to eliminate the first term. Likewise

for the derivative’s conjugate,

D±K
(
Φi, Φ̄ī

)
=

(
∂

∂θ±
− iθ̄±∂±

)
K
(
Φi, Φ̄ī

)
=
∂K

∂Φi

∂Φi

∂θ±
+
∂K

∂Φ̄ī

∂Φ̄ī

∂θ±
− iθ̄±

(
∂K

∂Φi
∂±Φ

i +
∂K

∂Φ̄ī
∂±Φ̄

ī

)
=
∂K

∂Φi
D±Φ

i.

(4.14)

Recall from Chapter 2, that if the partial derivatives of a function4 K(Ai, Āj̄) exist, then we

can obtain a Kähler metric, gij̄ = ∂2K
∂Ai∂Āj̄ . Naturally, a connection and curvature tensor can be defined

4A real function.
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(equations 2.22, 2.23). The action over all superspace reduces as

SD =

∫
K
(
Φi, Φ̄ī

)
d4θd2z,

=

∫
D+D−D̄+D̄−K

(
Φi, Φ̄ī

)
d2z.

(4.15)

and we arrive at the Lagrangian

L =− gij̄∂
αφi∂αφ̄

j̄ − 2igij̄ψ̄
j̄
−D+ψ

i
− − 2igij̄ψ̄

j̄
+D−ψ

i
+ −Rij̄kl̄ψ

i
+ψ

k
−ψ̄

j̄
+ψ̄

l̄
−

+ gij̄F
iF̄ j̄ − gij̄F

iΓj̄
k̄l̄
ψ̄k̄−ψ̄

j̄
+ − gij̄Γ

i
jkψ

j
+ψ

k
−F̄

j̄ + gij̄Γ
i
jkψ

j
+ψ

k
−Γ

j̄

k̄l̄
ψ̄k̄−ψ̄

j̄
+,

(4.16)

where we have introduced a covariant derivative,

D± = ∂± + Γijk∂±φ
j. (4.17)

Note that the field F has no kinetic term and so is not dynamic, they are auxiliary fields and a

we can integrate them out by,

0 =
∂L
∂F̄ j̄

= gij̄
(
F i − Γijkψ

j
+ψ

k
−
)
,

=⇒ F i = Γijkψ
j
+ψ

k
−,

(4.18a)

0 =
∂L
∂F i

= gij̄
(
F̄ j̄ − Γīj̄k̄ψ̄

j̄
+ψ̄

k̄
−
)
,

=⇒ F̄ j̄ = Γj̄
k̄l̄
ψ̄k̄−ψ̄

l̄
+.

(4.18b)

The Lagrangian simplifies nicely into,

L = −gij̄∂αφi∂αφ̄j̄ − 2igij̄ψ̄
j̄
−D+ψ

i
− − 2igij̄ψ̄

j̄
+D−ψ

i
+ −Rij̄kl̄ψ

i
+ψ

k
−ψ̄

j̄
+ψ̄

l̄
−. (4.19)

This is known as the non-linear σ-model (nlσm). We can see the fields of the string worldsheet propagate

in a target space with metric, gij̄, a covariant derivative dependent on the connection, Γijk, and a curvature

tensor, Rij̄kl̄, all of which correspond to a Kähler manifold. The target space of an N = (2, 2) superstring

theory is Kähler.

In the nlσm the scalar field, φ, on the worldsheet, Σ, takes on the role of the coordinates on

the target space manifold, M . Thus, an embedding map of the string worldsheet into the target space

φ : Σ ↪→ M . Consequently, fermions on the worldsheet, ψ, ψ̄ are spinor vector fields over the target space

given by the pullback of the tangent bundle, φ∗TM [9].

ψ± ∈ Γ(φ∗(T (1,0))⊗ S±), (4.20a)

ψ̄± ∈ Γ(φ∗(T (0,1))⊗ S±). (4.20b)

This is neatly summarized in the following table.
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Interpretation of Fields

Field Σ M

φ, φ̄ C∞-function coordinate

ψ+ (0,1)-fermion TM (1,0)

ψ− (1,0)-fermion TM (1,0)

ψ̄+ (0,1)-fermion TM (0,1)

ψ̄− (1,0)-fermion TM (0,1)

4.3 R-symmetry

Now, we want to understand how the supersymmetry algebra fits in with the Poincaré algebra,

specifically the Lorentz rotations. So, let us focus now on the Lorentz subgroup of Poincaré. The operators

H,P are unaffected by the extension to superspace but the Lorentz generator gets additional terms,

M = 2z∂+ − 2z̄∂− + θ+
∂

∂θ+
− θ−

∂

∂θ−
+ θ̄+

∂

∂θ̄+
− θ̄−

∂

∂θ̄−
. (4.21)

As the worldsheet is two dimensional the Lorentz rotation group is just SO(2) ∼= U(1), and so a charge, q,

can be assigned for each Lorentz rotation. This means in the 2d theory, under a Lorentz transformation

in which, z 7→ eiqz which means then

θ± 7→ e±i
q
2 θ±, θ̄± 7→ e±i

q
2 θ̄±. (4.22)

The extra factor of 1
2
is reflective of the fermionic nature of the variables. Then, in relation to the Poincaré

algebra, the supersymmetric generators satisfy,

[M,Q±] = ∓Q± (4.23a)

[M,D±] = ∓D±, (4.23b)

conjugation of equations 4.23a and 4.23b gives the rest.

Along with being supersymmetric, the action obtained from equation 4.19 may possesses other

symmetries as well. Namely there is a U(1)V vector symmetry and a U(1)A axial symmetry. The symmetry

means the action is invariant under the passive coordinate transformations

U(1)V : θ
± 7→ e−iαθ± =⇒ θ̄± 7→ eiαθ̄±, and (4.24a)

U(1)A: θ
± 7→ e∓iβθ± =⇒ θ̄± 7→ e±iβ θ̄±. (4.24b)

A chiral superfield will be invariant under the U(1)V rotation if the component fields’ rotation charges are

φ : qV = 0, (4.25a)

ψ± : qV = −1, and (4.25b)

F : qV = 2. (4.25c)
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So, the chiral superfields transforms under U(1)V as

Φi(z, θ±, θ̄±) 7→ eiαq
i
V Φi(z, e−iαθ±, eiαθ̄±). (4.26)

Then Φi will also be invariant under the U(1)A if the component fields rotation charges are

φ , F : qA = 0, (4.27a)

ψ+ : qA = 1, and (4.27b)

ψ− : qA = −1. (4.27c)

In which case the Φi transforms in a similar way as before

Φi(z, θ±, θ̄±) 7→ eiβq
i
AΦi(z, e∓iβθ±, e±iβ θ̄±). (4.28)

Together U(1)V × U(1)A is the R-symmetry group. The R-symmetries are generated by

FV = −θ+ ∂

∂θ+
− θ−

∂

∂θ−
+ θ̄+

∂

∂θ̄+
+ θ̄−

∂

∂θ̄−
, (4.29a)

FA = −θ+ ∂

∂θ+
+ θ−

∂

∂θ−
+ θ̄+

∂

∂θ̄+
− θ̄−

∂

∂θ̄−
. (4.29b)

In relation to the supersymmetry algebra we have,

[FV , Q±] = Q± [FA, Q±] = ±Q±

[FV , Q̄±] = −Q̄± [FA, Q̄±] = ∓Q̄±.
(4.30)

4.4 Vanishing Anomolies

Whenever we have a symmetry in the classical theory we must be cautious during the transition

to the quantum theory. Symmetries in the classical theory that do not make it to the quantum theory are

anomalous. So, let us check if the R-symmetries are anomalous for the path integral built from the nlσm

lagrangian 4.19. The partition function will look like∫
e−SDφiDψi+Dψ

i
−Dφ̄

īDψ̄ī+Dψ̄
ī
− =

∫
exp

(∫
gij̄∂

αφi∂αφ̄
j̄ + 2igij̄ψ̄

j̄
−D+ψ

i
− + 2igij̄ψ̄

j̄
+D−ψ

i
+

+Rij̄kl̄ψ
i
+ψ

k
−ψ̄

j̄
+ψ̄

l̄
−d

2z

)
DφiDψi+Dψ

i
−Dφ̄

īDψ̄ī+Dψ̄
ī
−.

(4.31)

For the symmetries to survive, we need the measure to be invariant. Right away we have that the integrals

over both Dφ and Dφ̄ are invariant as they have zero charge in both the vector and axial symmetries.

Moreover, F is of no concern here as we have already eliminated it from the path integral by putting it
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on-shell. So, what about the ψi and ψ̄ī? In order to determine if their measure is invariant, first recall

that the following path integral over a field, χ, with some operator, O, reduces as,∫
eχOχDχ =

∫
exp(χ,Oχ)Dχ

=
√
det(O) =

∞∏
i=1

√
λi.

(4.32)

Where the λi are the eigenvalues of the operator O. Now, since all the ψ (and the conjugates) are fermionic

we have to pay attention to any zero modes. This is demonstrated in the following example.

Example 4.2. We begin by rewriting the path integral in the following way,∫
[ ]Dχ ≡

∏
i

∫
[ ]dχi, (4.33)

for some field χ. Consider some action S[χ, ψ], including a term such as igij̄χOψ for some operator

O. Where ψ is fermionic and ψ0 is a 0 mode of O. For simplicity let us say it is the only zero

mode. Then the partition function becomes

Z =

∫
e−S[χ,ψ]DχDψ =

∏
i

∫
e−(···+igij̄χOψ+... )dψiDχ =

∫ ∏
i ̸=0

∫
e−Sdψ0dψiDχ = 0. (4.34)

Because the Berezin integral zero modes kill the entire path integral which is bad. In order to solve this

problem we remove the zero modes by hand. The procedure to do so is referred to as absorption of zero

modes [6]. First, to demonstrate how this works consider the following example.

Example 4.3. Taking the same problem as example 4.2, but this time consider the correlator,

⟨ψ⟩ =
∫
ψe−SDχDψ =

∏
i

∫
χie

−(···+igij̄χOψ+... )dψiDχ =

∫
ψ0

∏
i ̸=0

∫
e−Sdψ0dψiDχ ̸= 0. (4.35)

Hence, inserting the zero modes in the correlator will preserve the path integral from vanishing.

Ok, so how do we know how many zero modes there are in order to add them all to the correlator?

This is answered by the operator’s index. Functions, f , that are sent to 0 by an operator, O, live in the

kernel of the operator, f ∈ ker(O). The number of fields sent to 0 is then the dimension of the kernel.

There is a caveat to the zero modes however. The operator in question here is the covariant derivative,

D± = ∂±+Γijk∂±ϕ
j, which depends on background fields, namely the Kähler metric. Because the operators

D± have background field dependence, the eigenvalues will vary and therefore so will the number of zero

modes. However, by considering the operator’s adjoint, D†
±, which has corresponding zero modes, the

difference between zero eigenvalues of D and D† will remain constant:

k± = dim(ker(D∓))− dim(ker(D†
∓)). (4.36)
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The integers k+ and k− are the operators’ (D− and D+ respectively) index. The two indexes are related

as k− = −k+ via conjugation [6].

As was just mentioned, because k± is only dependent on background field parameters, it is

independent of the string worldsheet embedding in the target space. That is to say it is a topological

invariant. This leads to the very useful result by Atiyah and Singer.

Theorem 4.1 (Atiyah-Singer Index Theorem). Given a string embedding φ : Σ ↪→ M , the index of an

operator can be found by it’s first Chern class c1(M) by

k− =

∫
φ(Σ)

c1(M). (4.37)

So, assuming k− > 0, giving us k zero modes, we can add them in the path integral by the

absorption of zero modes procedure.

⟨gi1j̄1ψ
i1
− ψ̄

j̄1
+ · · · gik j̄kψ

ik
− ψ̄

j̄k
+ ⟩ =

∫
gi1j̄1ψ

i1
− ψ̄

j̄1
+ · · · gik j̄kψ

ik
− ψ̄

j̄k
+ e

−
∫
Ld2zDφiDψi+Dψ

i
−Dφ̄

īDψ̄ī+Dψ̄
ī
−, (4.38)

and now we check how the R-symmetries behave. The correlation function is invariant under an α U(1)V

rotation as,

⟨gi1j̄1ψ
i1
− ψ̄

j̄1
+ · · · gik j̄kψ

ik
− ψ̄

j̄k
+ ⟩ U(1)V7−−−→⟨gi1j̄1e

iαψi1−e
−iαψ̄j̄1+ · · · gik j̄ke

iαψik− e
−iαψ̄j̄k+ ⟩

= ⟨gi1j̄1ψ
i1
− ψ̄

j̄1
+ · · · gik j̄kψ

ik
− ψ̄

j̄k
+ ⟩.

(4.39)

However, under a U(1)A rotation, β, the correlation function becomes

⟨gi1j̄1ψ
i1
− ψ̄

j̄1
+ · · · gik j̄kψ

ik
− ψ̄

j̄k
+ ⟩ U(1)A7−−−→⟨gij̄e−iβψi1−e−iβψ̄

j̄1
+ · · ·+ gik j̄ke

−iβψik− e
−iβψ̄j̄k+ ⟩

= e−2ikβ⟨gi1j̄1ψ
i1
− ψ̄

j̄1
+ · · · gik j̄kψ

ik
− ψ̄

j̄k
+ ⟩.

(4.40)

In order for the U(1)A symmetry and therefore the U(1)V ×U(1)A R-symmetry group to be preserved in the

quantum theory (i.e. not anomalous) k± = 0 by inspection of equation 4.40. As a consequence, the target

space must have vanishing first Chern class, by the Atiyah-Singer index theorem. This is really wonderful

because we have seen vanishing c1(M) before, specifically for Calabi-Yau manifolds. So, if the target space

of our string embedding is not just Kähler, as it was for free in the nlσm, but rather Calabi-Yau, we have

vanishing anomalies!

In summary, the luxury of N = (2, 2) supersymmetry on the string worldsheet means the string

target space is Kähler. The lowest component field, φ, can be viewed as coordinates in the target space

providing the string embedding. The spinor fields ψ± (and their conjugates) take on the role of vector

fields in the tangent and cotangent bundles. We find that the target space will be Calabi-Yau if the Axial

R-symmetry anomaly vanishes. Remember CY manifolds have mirror pairs and if we restrict ourselves to

CY manifolds we will find a correspondence between theories on mirror pairs. In order to see this we must

twist the theory.
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Chapter 5

Twisting the Nonlinear σ Model

We are finally ready to see how the N = (2, 2) supersymmetric theory leads to a cohomological

theory. We saw from the previous chapter a nilpotent operator which is the first important step. The Q±,

Q̄± alone will not be enough for a topological theory. However, taking a special combination of the four

will lead to two different cohomological theories called the A and B model through a topological twist.

This chapter follows [6, 9] closely.

5.1 Twisting

A priori we have four nilpotent operators, Q±, Q̄± as possible contenders for a cohomological

theory. Remember, however, we need our physical observables to be closed under the nilpotent operator.

Notice from equations 4.1 and 4.5a, we can build H and P from Q anti-commutators.

H =
1

2
({Q+, Q̄+} − {Q−, Q̄−}), (5.1a)

P =
1

2
({Q+, Q̄+}+ {Q−, Q̄−}). (5.1b)

However, we also have,

{Q̄+ +Q−, Q+ − Q̄−} = {Q̄+, Q+} − {Q̄+, Q̄−}+ {Q−, Q+} − {Q−, Q̄−}
= −2i∂+ + 2i∂−

= 2H,

(5.2)

and the same can be done for P using (Q+ +Q−). Also taking the combination Q̄+ + Q̄− we have,

{Q̄+ +Q−, Q+ − Q̄−} = 2H = {Q̄+ + Q̄−, Q+ − Q̄−}, (5.3a)

{Q̄+ +Q−, Q+ + Q̄−} = 2P = {Q̄+ + Q̄−, Q+ +Q−}. (5.3b)
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In constructing H and P from (Q̄++Q−) and (Q̄++ Q̄−) we may have found a way in which they

can be ‘Q-exact’. This of course would imply they are ‘Q-closed’, which is exactly what we need of our

observables in a cohomological theory. There is one caveat that we must address before moving forward.

Recall in the nlσm, the target space could have arbitrary curvature but there was a hidden

assumption that the worldsheet was flat; that it had a flat metric. Normally this would be fine, but our

goal is to show the correlators of this theory are independent of any worldsheet metric. This amounts to

asking the supersymmetric variation to act in the following way, δΦi = ϵ+Q+Φ
i. Originally, a superspace

variation would transform the component fields as

δφi = ϵ+ψ
i
− − ϵ−ψ

i
+, (5.4a)

δφ̄ī = −ϵ̄+ψ̄ī− + ϵ̄−ψ̄
ī
+, (5.4b)

δψi+ = 2iϵ̄−∂+φ
i + ϵ+Γ

i
jkψ

j
+ψ

k
− (5.4c)

δψ̄ī+ = −2iϵ−∂+φ̄
ī + ϵ̄+Γ

ī
j̄k̄ψ̄

k̄
−ψ̄

j̄
+ (5.4d)

δψi− = −2iϵ̄+∂−φ
i + ϵ−Γ

i
jkψ

j
+ψ

k
− (5.4e)

δψ̄ī− = 2iϵ+∂−φ̄
ī + ϵ̄−Γ

ī
j̄k̄ψ̄

j̄
−ψ̄

k̄
+. (5.4f)

We are saying we want ϵQ to be some scalar parameter, while keeping Q2 = 0. That is to say we want some

of the fermion operators, Q±, Q̄±, and their ϵ parameters, to become scalars on Σ. For the parameters, ϵ±

(and their conjugates) to be a scalars we need

∇(on Σ)ϵ =
∂

∂x
ϵ = 0. (5.5)

In making this true, we are twisting the bundle the operators live in.

Recall from example 2.4, that bundles can twist over the base space. This twisting can be thought

of as a measure of obstruction from being the trivial bundle. In the case of the string worldsheet, the trivial

bundle is Σ × C. The fields’ spin is determined by its U(1) Lorentz charge, qM , which can be viewed as

the fields spin over a manifold and will correspond to a twisted bundle.

Example 5.1. Scalar fields, such as φ in equation 4.19, have qM = 0 and therefore φ lives in the

trivial worldsheet bundle Σ×C. However, the ψ± and ψ̄± fields in equation 4.19 are spinor fields

and take on values from S±; not the trivial bundle.

So the act of twisting somehow alters the Lorentz U(1) symmetry of the worldsheet. By picking

a global U(1)R symmetry and combine it with Lorentz symmetry, U(1)M , we have

U(1)twist ⊂ U(1)M × U(1)R, (5.6)

such that some of Q±, Q̄± have charge 0. Now, this new U(1) twisted symmetry means

∇ϵ −→ Dϵ =
∂

∂x
ϵ+ Γϵ+ Aϵ, (5.7)
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where Γ is the spin-connection. Then, enforce by hand A = −Γ, so ∇ϵ = 0. Now that we have ∂
∂x
ϵ = 0,

we know ϵ is constant and without loss of generality we can pick ϵ = 1.

Observe that the R-symmetry was not specified, this means we can choose either the vector or

axial U(1)R symmetry. Twisting with the vector symmetry is the A-model and twisting with the axial is

the B-model. We start with the A-model before taking a look at the B-model.

5.2 The A-model

Take U(1)R to be U(1)V in equation 5.6. The twisted Lorentz generator, MA, is defined to be

MA =M − FV , (5.8)

so the new charge, qMA
∈ U(1)twist, is given by,

qMA
= qM − qV . (5.9)

Then, we note the commutation relations of the twisted Lorentz generator, MA with the supercharges.

[MA, Q+] = −2Q+ (5.10a)

[MA, Q−] = 0 (5.10b)

[MA, Q̄+] = 0 (5.10c)

[MA, Q̄−] = 2Q̄− (5.10d)

So, we pick the A-twisted operator as

QA = Q̄+ +Q−. (5.11)

Proposition 5.1. The A-twisted supercharge, QA is nilpotent.

Solution. This is simple enough to see as,

Q2
A = (Q̄+ +Q−)(Q̄+ +Q−)

= Q̄2
+ + Q̄+Q− +Q−Q̄+ +Q2

−

= {Q̄+, Q−} = 0.

(5.12)

Hence, QA is nilpotent.

Now, taking a look back at equation 5.3a-f, we see that the Hamiltonian and momentum operators are

actually QA-exact.

Proposition 5.2. The Hamiltonian, H, and momentum, P , are QA-exact and therefore QA-closed.
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Solution. It is clear to see H is QA-exact by a simple rewriting of equation 5.3a,

H =
1

2
{Q̄+ +Q−, Q+ − Q̄−},

=
1

2
{QA, Q+ − Q̄−}.

(5.13)

Being exact implies closed as,

QAH = {QA, H}

=
1

2
{QA, {QA, Q+ − Q̄−}}

= −1

2
({Q+ − Q̄−, {QA, QA}}+ {QA, {Q+ − Q̄−, QA})

= −{QA, H} = −QAH.

(5.14)

Which of course can only be true if the expression is identically zero. Hence, {QA, H} = 0 and then H is

QA-closed. Where we have used the Jacobi identity in getting to the second to last line in equation 5.13.

The same is true of P . Following the same exact steps we have,

P =
1

2
{Q̄+ +Q−, Q+ + Q̄−}

=
1

2
{QA, Q+ + Q̄−}

=⇒ QAP = {QA, P}

=
1

2
{QA, {QA, Q+ + Q̄−}}

= −1

2
({Q+ + Q̄−, {QA, QA}}+ {QA, {Q+ + Q̄−, QA})

= −{QA, P} = −QAP.

(5.15)

Again, we must have then {QA, P} = 0 and so P is QA-closed as well.

Propositions 5.1 and 5.2 give us a first taste of a cohomological theory. By defining QA we have

a potential operator for which we can set up a cohomology. First, however, the fields of the nlσm have

new charges after the twist summarized in the following table.

A Twisted Field U(1) Charges

Field qV qM qMA

φ 0 0 0

ψi+ -1 -1 -2

ψi− -1 1 0

ψ̄ī+ 1 -1 0

ψ̄ī− 1 1 2
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Removing the Lorentz charge untwists the bundles, but now the other bundles have an extra

twist. The fields now live in the following bundles.

ψi+ ∈ S+ ⊗ φ∗(T (1,0)
)

(5.16a)

ψi− 7→ χi ∈ φ∗(T (1,0)
)

(5.16b)

ψ̄ī+ 7→ χ̄ī ∈ φ∗(T (0,1)
)

(5.16c)

ψ̄ī− ∈ S− ⊗ φ∗(T (0,1)
)

(5.16d)

Where we have renamed the untwisted1 ψ fields to help distinguish them as new scalar fields. It is important

to note that we have not changed the fields statistics only its Lorentz representation. The component fields’

transformations from equation 5.4a-f reduce under a QA transformation, with ϵ+ = ϵ̄− = 1, as

δφi = χi, (5.17a)

δφ̄ī = χ̄ī, (5.17b)

δψi+ = 2i∂+φ
i + Γijkψ

j
+χ

k (5.17c)

δχ̄ī = 0 (5.17d)

δχi = 0 (5.17e)

δψ̄ī− = 2i∂−φ̄
ī + Γīj̄k̄ψ̄

j̄
−χ̄

k̄. (5.17f)

Proposition 5.3. The A-Model is a topological theory.

Solution. In order to show the theory is topological we will take the route of setting up a cohomological

field theory. Proposition 5.1 satisfies axiom (CoFT1) and proposition 5.13 may lead us to think that axiom

(CoFT2) is also satisfied. We have only shown that two observables are QA-closed and to satisfy (CoFT2)

we need to show all observable are closed under QA. A priori we have no way to account for all the other

observables2 let alone finding a symmetric ground state and trying to find a QA-exact energy-momentum

tensor. We can circumvent these potential issues by considering the Lagrangian.

Rewriting the nlσm (equation 4.19) with the newly twisted fields gives us,

LA−twist = −gij̄∂αφi∂αφ̄j̄ − 2igij̄ψ̄
j̄
−D+χ

i − 2igij̄χ̄
j̄D−ψ

i
+ −Rij̄kl̄ψ

i
+χ

kχ̄j̄ψ̄ l̄−. (5.18)

However, under the integral of the action we can do some integration by parts (assuming the fields die off

at infinity) and come to the conclusion

LA−twist = −2

(
gij̄∂+φ

i∂−φ̄
j̄ + gij̄∂−φ

i∂+φ̄
j̄ + igij̄ψ̄

j̄
−D+χ

i + igij̄ψ
i
+D−χ̄

j̄ +
1

2
Rij̄kl̄ψ

i
+χ

kχ̄j̄ψ̄ l̄−

)
. (5.19)

In this form, the lagrangian is not very useful. However, using the field variations, equations 5.17a-f, and

a specific potential function [20],

V = gij̄(ψ
i
+∂−φ

j + ∂+φ̄
īψj−) (5.20)

1The fields who now have trivial Lorentz charge were in a twisted bundle but no live in the trivial bundle and so we say

untwisted.
2We actually will be able to give an account of the general physical observable, but we reserve that for the next section.

58



we find the lagrangian can be written as

LA−twist = −it{QA, V }+ 2tgij̄(∂+φ
i∂−φ̄

j̄ − ∂−φ
i∂+φ̄

j̄). (5.21)

We have added a coupling constant, t, and recognize the second term as the Kähler form pulled back to

the string worldsheet, φ∗(ω). Equation 5.21, is what we want to see, almost. Our aim is to be able to

employ proposition 3.3, which we cannot do until we understand the second term in equation 5.21. Let us

inspect this term in the action, that is,

Sω = t

∫
Σ

φ∗(ω) = t

∫
φ(Σ)

ω. (5.22)

Equation 5.22 only depends on the homology class of the string embedding, φ(Σ). Let β ∈ H2(M), we can

then denote the integral over the embedding as β · ( ), so equation 5.22 becomes,

Sω = tβ · ω. (5.23)

In the path integral, then, we just get an extra factor of e−tβ·ω, which of course is independent of the

worldsheet metric.

So, the Lagrangian, LA−twist, is QA-exact plus a term we understand to be (worldsheet) metric

independent, giving an action,

SA−twist = −it

{
QA,

∫
V

}
+ tβ · ω, (5.24)

and by proposition 3.3, the A-twisted nlσm is cohomological field theory. Naturally, by proposition 3.2, it

is therefore a topological field theory.

This is wonderful, we have now unlocked the door to access all the tools the topological theory

provides us. Let us take a peek and see what we can glean from our newfound CoFT. Notionally, we will

refer to the strictly QA-exact pieces of LA−twist and SA−twist as LA and SA respectively.

5.2.1 Correlation Functions in the A-Model

Now we really pull on the connection between the field theory and the differential geometry. To

investigate the correlation functions we need to give an account of the physical operators, i.e. operators O
such that {QA,O} = 0. We start with the identification rule that

χi ↔ dφi ≡ dzi, χ̄ī ↔ dφ̄ī ≡ dz̄ ī. (5.25)

Recalling that δO = [QA,O}, we can rephrase equations 5.17a-f,

[QA, φ
i] = −χi, (5.26a)

[QA, φ̄
ī] = −χ̄ī, (5.26b)

{QA, χ
i} = 0, (5.26c)

{QA, χ̄
ī} = 0. (5.26d)
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So, given some physical operator, Oα, we have

[QA,Oα} = −Odα, (5.27)

that is QA takes on the role of the exterior derivative (the De Rahm cohomology operator). We can read

off then Q̄+ ↔ ∂̄, and Q− ↔ ∂, the Dolbeaut cohomology operators. It is clear then how we can construct

a general physical operator, we have the (p, q)-form,

Oα = αi1···ipj̄1···j̄q(φ)χ
i1 · · ·χipχ̄j̄1 · · · χ̄j̄q . (5.28)

Any factors with the ψ fields (1-forms) or derivatives of φ and χ means tacking on worldsheet metrics in

order to soak up the ± indices. Given that we need metric independence, we cannot include these factors.

Taking a generic correlation function with our physical operators as given by equation 5.28 we

consider,

⟨O1 · · · On⟩ =
∫

O1 · · · One
−SA−twistDφDφ̄DχDχ̄Dψ+Dψ̄−

= e−tβ·ω
∫

O1 · · · One
−SADφDφ̄DχDχ̄Dψ+Dψ̄−.

(5.29)

Remember the field φ provides the worldsheet embedding, φ : Σ ↪→ M , and by having φ in the path

integral we are then considering all possible string embeddings into the Kähler target space. Recall further

that the embedding was only dependent on the homology class, φ∗[Σ] = β ∈ H2(M) so the correlator

becomes a sum over the possible β ∈ H2(M) [9],

⟨O1 · · · On⟩ =
∑

β∈H2(M)

⟨O1 · · · On⟩β

=
∑
β

∫
β

O1 · · · One
−SA−twistDφDφ̄DχDχ̄Dψ+Dψ̄−.

(5.30)

Moreover, the path integral should be invariant under a QA transformation. By inspection of the trans-

formation properties in equations 5.17a-f, we find δS = 0 if

∂−φ
i = 0, and ∂+φ̄

ī = 0. (5.31)

Which of course we recognize as the statement that φ is a holomorphic function. This naturally translates

to the string embedding; we are looking at holomorphic string embeddings, φ ∈ Hol(Σ,M). Where

Hol(Σ,M) = {φ : Σ ↪→ M | ∂−φ = 0}. Let us denote the space of holomorphic string embeddings of

degree β as

MΣ(M,β) =
{
φ ∈ Hol(Σ,M) | φ∗[Σ] = β

}
, (5.32)

where we recall β is also the dimension of the cycle as the embedded string. Equation 5.32 is also referred

to as the moduli space of holomorphic maps. We also note that the requirement of equation 5.31 means

the potential, V , (equation 5.20) vanishes.
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Example 5.2. From equation 5.32, if β = 0 we are talking about worldsheet embeddings as

0-dimensional cycles, i.e. points. This means we are associating points of the target space to

worldsheets and the moduli space of maps is just the target space itself, MΣ(M, 0) =M .

Selecting β = 1 means embedding worldsheets as 1-dimensional loops in the target space

as in example A.6. This is probably the most intuitive picture of the embeddings as the dimension

is low enough to actually draw out. Picking β = 2 means we are looking at 2-cycles and so on

and so forth for higher degrees β.

One more note on the moduli space. Assuming the moduli space, 5.32, is a smooth manifold we can

consider the tangent bundle. In regards to the problem at hand, the tangent bundle being the pullback of

the tangent bundle of M to Σ, φ∗(TM). We can understand a little bit more about this space using the

Grothendieck-Riemann-Roch formula 2.6 to determine that

dim(H0(φ∗(TM)))− dim(H1(φ∗(TM))) =

∫
Σ

ch(φ∗(TM))td(Σ)

= m(1− g),

(5.33)

where m is the dimension of M and g is the genus of Σ.

Now, we already knew M was a Kähler target space because we are working with the nlσm, but

let us restrict ourselves further. Let us put on the further assumption that M is truly Calabi-Yau. This

lovely assumption guarantees that the axial R-symmetry will no longer be anomalous by removing the ψ

zero modes. By removing the ψ zero modes we are left over with some number, k, of χ zero modes as from

equation 4.36. The number of χ zero modes, k, corresponds exactly with the tangent space of MΣ(M,β),

and by extension with the dimension of the moduli space itself [20]. From equation 5.33 then we have,

k = m(1− g) = dim
(
MΣ(M,β)

)
. (5.34)

So, we have found that there are k = m(1 − g) different possible ways of holomorphically embedding the

string as a β-cycle. So, our path integral over φ is a finite integral.

The above discussion of the moduli space means that the integral in the correlation function in

equation 5.30 really becomes an integral over the moduli space,

⟨O1 · · · On⟩β =

∫
MΣ(M,β)

O1 · · · One
−SADφDφ̄DχDχ̄Dψ+Dψ̄−. (5.35)

Of course O1 · · · On must be a top form of the moduli space. That is, equation 5.35 tells us that the sum

of the degrees from all the Oi must be k as from equation 5.34.

Now, to each p-form Oi we have an associated (m− p)-cycle, Ai, its Poincaré dual3, in M . Then

integrals over the forms is interpreted geometrically to be a simple count of the overlap of the cycles

accounting for orientation.

3See equation A.3.
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Example 5.3. We can count how many times the cycles A1 and A2 intersect (with sign) by∫
M
α1 ∧ α2 =

∫
A1
α2 = (−1)pq

∫
A2
α1 where α1 ∈ Hp and α2 ∈ Hq, and A1, A2 are the associated

Poincaré dual cycles. In the integral over the manifold M we only get contributions from where

δ(A1) overlaps δ(A2) i.e. from A1 ∩ A2. An associated picture is given below in the case where

M ∼= T 2 and A1, A2 are two 1-cycles.

M

A1

A2

< <

=

This picture demonstrates the fact that the two cyan cycles are in the same homology class as we

account for orientation of the cycles leading to the fact that the intersection number of the cyan

cycle with red cycle is one.

In this delta function representation we only get nonzero results whenever the Oi hit the corresponding Ii

cycle. So, the integral is counting the embeddings where φ(xi) ∈ Ai. For our convenience we define this

to be N :

N(β,A1, · · · , An) ≡ (the number of φ ∈ MΣ(M,β) such that φ(xi) ∈ Ai ∀ i). (5.36)

So, our general correlation function

⟨O1 · · · On⟩ =
∑
β

e−tβ·ωN(β,A1, · · · , An). (5.37)

Hence, the correlators of the A-twisted model are providing a weighted counting of intersections on the

target space weighted by the target space’s Kähler form, ω!

Example 5.4. Consider the case from example 5.2, where β = 0 and we the embedded worldsheet

is genus 0, a sphere. The moduli space is the same dimension as the target space,M , and actually

is isomorphic to M . So, our general correlator, ⟨O1 · · · On⟩, must be an m-form, assuming M is

m-dimensional. So the path integral becomes an integral over the target space M and we have

(using the wedge notation to emphasize the form nature of the O’s),

⟨O1 · · · On⟩ =
∫
M

O1 ∧ · · · ∧ On = c(A1 ∩ · · · ∩ An), (5.38)

for some c ∈ R.

The above example demonstrates, in the rather trivial case with β = g = 0, the topological theory is just

calculating classical intersection numbers. This gives us the physical intuition to interpret equation 5.37
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as quantum corrections to intersection numbers! We given another example of a worldsheet of genus 1

below.

Example 5.5. Let us consider the case where the worldsheet is a genus 1, a torus. We can

think of this as the first quantum correction to equation 5.38. From equation 5.34, we see the

dimension of the moduli space, MΣ(M,β), is 0. We note that a zero dimensional space is one

that is composed of isolated points. In this circumstance the points can be counted (think of the

natural numbers versus the real numbers which are countably infinite and uncountably infinite

respectively). The correlator here then is just the weighted count of the holomorphic curves in

the torus.

Another example this time with an embedded string to give us a mental picture.

Example 5.6. Consider some arbitrary manifold M , here we take M to be some genus 1 object.

Further consider two physical operators, O1 and O2, with their associated cycles, A1 and A2 in

M . At some given time we may have the string embedding as pictured.

A1

M

•

•

A2

φ(x2)

φ(x1)

If the embedded string (path in cyan) connects the two cycles in this manner there will be

a nonzero contribution in the path integral. However, as we recall the topological theory is

independent of the parameter t. So, we may consider taking the limit t→ ∞. In which case the

weighting of our count, the e−tβ·ω prefactor, goes to zero, leading to a vanishing result. We see

this in the illustration above, the cycles A1 and A2 actually do not intersect, even though our

TQFT says they are. As the string propagates in the t → ∞ limit the contribution will vanish

leading to the expected null result.
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It vanishes unless we are in the case of example 5.5, β = 0. Where now, we only

get contributions from cycles with 0 volume. That is, we only get contributions from constant

embeddings φ : S2 → xi ∈ M . So, we see φ(xi) = xi ∈ Ai ∀i. Implying our correlation function

is the traditional intersection number, ⟨O1(x
1) . . .Ok(x

k)⟩t→∞ = #(A1 ∩ A2 ∩ · · · ∩ Ak).

Our A-twisted TQFT provides a new geometric invariant for CYn which is a stringy generalization of

intersection number. Let us see how the B-twist compares.

5.3 The B-model

Following the previous section, but this time we chose the axial R-symmetry instead. A brief note

about choosing the A or B model should be made here. The vector R-symmetry is never anomalous and

our target space would be some general Kähler manifold4. The axial R-symmetry is anomalous, however,

and in order to have the symmetry survive in our quantum theory the target space needs to be Calabi-

Yau. Just to reiterate, picking the A-model means working on a Kähler target space, whereas picking the

B-model means working on a Calabi-Yau target space. Now, the new twisted Lorentz generator is,

MB =M − FA, (5.39)

and so our B-twisted Lorentz charge, qMB
, is

qMB
= qM − qA. (5.40)

Then the B-twisted Lorentz generator satisfies the following commutation relations.

[MB, Q+] = −2Q+ (5.41a)

[MB, Q−] = 2Q− (5.41b)

[MB, Q̄+] = 0 (5.41c)

[MB, Q̄−] = 0 (5.41d)

and so we pick the operator to be

QB = Q̄+ + Q̄−. (5.42)

Just as before we verify it is nilpotent.

Proposition 5.4. The new B-twisted operator, QB, is nilpotent.

4We actually choose to work on a Calabi-Yau to help simplify things. One could just as well worked in the general Kähler

space, but an alternate course of action needs to be taken in order to account for zero modes in the correlation functions.
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Solution. Again, this is straight forward to compute,

Q2
B = Q̄2

+ + Q̄2
− + {Q̄+, Q̄−}

= 0.
(5.43)

Hence QB is nilpotent.

From equation 5.3a we can also see the Hamiltonian and momentum operators are also QB-exact

and therefore QB-closed.

Again we summarize the fields twisted and untwisted fields for the B-twist in the following table.

B Twisted Field U(1) Charges

Field qA qM qMB

φ 0 0 0

ψi+ -1 -1 -2

ψi− 1 1 2

ψ̄ī+ 1 -1 0

ψ̄ī− -1 1 0

The bundles in which these fields live is as follows.

ψi+ ∈ S+ ⊗ φ∗(T (1,0)
)

ψi− ∈ S− ⊗ φ∗(T (1,0)
)

ψ̄ī+ ∈ φ∗(T (0,1)
)

ψ̄ī− ∈ φ∗(T (0,1)
)
.

(5.44)

In the A-model we conveniently had scalar (1,0)- and (0,1)-forms which lead nicely to the form-physical

operator association in equation 5.25. Notice here, however, we have two scalars would be identified as

(0,1)-forms. We will see the consequence of this in a moment, first we note the field variations as before.

Wishing to write the variations in the most simplified fashion, we choose to make a relabeling of

the scalar fields,

ηī = −
(
ψ̄ī+ + ψ̄ī−

)
,

θi = gij̄
(
ψ̄j̄+ − ψ̄j̄−

)
.

(5.45)

The component field variations in the B-model are given by equation 5.4a with ϵ+ = ϵ− = 0 (and setting
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ϵ̄+ = ϵ̄− = 1 for simplicity) we have,

δφi = 0, (5.46a)

δφ̄ī = ηī, (5.46b)

δθi = 0, (5.46c)

δη ī = 0 (5.46d)

δψi− = −2i∂−φ
i, (5.46e)

δψi+ = 2i∂+φ
i (5.46f)

Proposition 5.5. The B-model is a topological quantum field theory.

Solution. Just as before we are seeking a way in which we can write the lagrangian in a QB-exact way and

then employ proposition 3.3. We start by rewriting the nlσm lagrangian in terms of our twisted fields,

LB−twist = gij̄∂
αφi∂αφ̄

j̄ + igij̄η
j̄
(
D−ψ

i
+ +D+ψ

i
−
)
+ iθi

(
D−ψ

i
+ −D+ψ

i
−
)
+

1

2
R l
ij̄k ψ

i
+ψ

k
−η

j̄θl. (5.47)

Again, we need to find a potential function. For the B-model we take,

V = gij̄
(
ψi+∂−φ̄

j̄ + ψi−∂+φ̄
j̄
)
. (5.48)

So, the B-twisted lagrangian becomes (adding in the coupling constant −t),

LB−twist = −it{QB, V } − t

(
iθi

(
D−ψ

i
+ −D+ψ

i
−
)
+

1

2
R l
ij̄k ψ

i
+ψ

k
−η

j̄θl

)
. (5.49)

This is great! The first term is exactly as we need and the second term is anti-symmetric in ± indices

implying it is a (1,1)-form which when integrated over will be independent of the worldsheet metric [6].

Therefore, the B-model is cohomological and therefore topological.

5.3.1 Correlation Functions in the B-Model

Following in the same manner as the A-model, we make the identification

ηī ↔ dφ̄ī ≡ dz̄ ī, θi ↔
∂

∂φi
≡ ∂

∂zi
. (5.50)

rewriting the field variations we have,

[QB, φ
i] = 0 (5.51a)

[QB, φ̄
ī] = ηī (5.51b)

{QB, θi} = 0 (5.51c)

{QB, η
ī} = 0. (5.51d)
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So we write a general physical operator in the B-model as,

Oβ = β
j1···jq

ī1···̄ip (φ, φ̄)ηī1 · · · ηīpθj1 · · · θjq , (5.52)

which is not quite a p-form, but rather a p-form that also lives in the
∧q T (1,0) bundle. There are a few

observations to be made here.

1. Saying Oβ is a p-form is slightly misleading in this case as in reality it is p anti-holomorphic indices.

In this way we recognize the B-twisted operator, QB, with the Dolbeault operator,

[QB,Oβ} = O∂̄β. (5.53)

So the QB-cohomology is identified as the ∂̄-cohomology.

2. We see a key distinction between the A- and B-model come alive in how they depend on the target

space. The decent equations of the B-model tell us there is a dependence on the target space’s

complex structure. We did not have that anywhere in the A-model5.

Just as before, we should take the action to be QB-invariant. This forces

∂±φ
i = 0, ∂±φ̄

ī = 0 (5.54)

to all be true. This is to say that φ is a constant map; a constant worldsheet embedding! As in the

A-model, the constant embeddings mean the moduli space is really just the target space, M , itself. The

path integral then appears to be an integral over the target space (again say dimension m) of a (0, p)-form

that also happens to live in the qth power holomorphic tangent bundle,
∧q T (1,0). Well that is not good,

and if we want to fix this issue we need to do so in a strictly topological way. That is, we want to preserve

the topological nature of our theory but still be able to compute correlation functions. Following the

prescription of [6] and [9], the only way we can solve this is by absorbing the holomorphic indices with

the Calabi-Yau form, Ω, then tacking on another Calabi-Yau form to give us a (m,m)-form to properly

integrate6. In components we map,

β j1···jm
ī1···̄im 7→ β j1···jm

ī1···̄im Ωj1···jmΩk1···km . (5.55)

So, the correlation functions of the B-model are just integrals of forms over the target space.

⟨Oβ1 · · · Oβn⟩ =
∫

Oβ1 · · · Oβne
−SB−twistDφDφ̄DηDθ

=

∫
M

⟨(Oβ1 ∧ · · · ∧ Oβn),Ω⟩ ∧ Ω

(5.56)

where ⟨A,B⟩ denotes index contraction of A and B.

5Recall the A-model led to a dependence on the target space’s Kähler form.
6Remember we can only integrate over top forms so we should only consider correlators in which the product of O’s is a

(0,m)-form. Vanishing anomalies requires that the holomorphic indices sum to m as well
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5.4 Mirror symmetry

Notice in equation 5.3a that Q− and Q̄− can be exchanged and the anti-commutator still holds.

Equations 5.11 and 5.42 are also interchanged, and if we also swap qA and qV , we still have the N = (2, 2)

supersymmetry with the same A and B twisted models. Say we had two N = (2, 2) supersymmetric

quantum field theories7 (labeled (i) and (ii)), if there is an isomorphism between them in which Q
(i)
− 7→ Q̄

(ii)
−

and q
(i)
A 7→ q

(ii)
V , then then theory (i) is mirror to theory (ii) [9].

We can take a step back and look at the broader context in which these theories were defined. We

put the nlσm on a Calabi-Yau target space. Remember, way back in section 2.3.4, Calabi-Yau manifolds

come in mirror pairs. So, installing a topological theory on a CYm means we have done something to its

mirror, CY ′
m as well. What this means is that the A-model on CYm corresponds to the B-model on its

mirror CY ′
m. This is truly amazing. What was a tricky computation in finding the intersection numbers

in the A-model by integrating over the moduli space has now become a straight forward integral over the

Calabi-Yau in the B-model on its mirror pair [6, 9]!

CYm CY ′
m

A-model

B-model

A′-model

B′-model

Mirror
Symmetry

Q− ↔ Q̄−
qA ↔ qV

We have come a long way. Starting from the N = (2, 2) supersymmetric non-linear sigma model

on the string worldsheet, we have found, naturally leads to mirror symmetry of Calabi-Yau manifolds.

Whats more, we found, this theory gives a way in which we can calculate geometric (topological) invariants

on target spaces using quantum field theory.

7Meaning no anomalies, see section 4.4.
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Chapter 6

Final Remarks

Having concluded the main results of this project, we move on to make several final remarks. The

aim of this chapter is not to discover new results, but rather to summarize the findings of the previous

chapters.

We have truly come a very long way from our journeys start. From our deep dive into differential

geometry, we discovered the Calabi-Yau’s hiding right under our noses while getting our first glimpse

of mirror symmetry. Then on to a lengthy discussion of topological quantum field theories, laying the

groundwork for future results. Then, we want to see one of these TQFTs in action, so we introduced the

nlσm. In this model we find the symmetry on the worldsheet means Kähler target space, and by canceling

R-symmetry anomalies the target space becomes CYm. We also find in this topological theory, geometric

invariants, that is intersection number, are calculated in the A-model. By accessing the mirror symmetry

of the Calabi-Yau target space, the A- and B-models are related on the mirror pair. Before ending, we

give a final remark on the worldsheet embeddings in the A-model.

6.1 Tying up Loose Ends

There is a subtlety we have waited to mention about our worldsheet embeddings in the A-model.

Recall from equation 5.34 the dimension of the moduli space of holomorphic maps was dependent on the

worldsheet genus as m(1−g). Well, as may have already been guessed there is an issue if g > 1. If g ≤ 1 we

are in the situations described at length in the previous chapter. Finding g > 1 means a negative dimension

for the moduli space, which can be interpreted as a statement about the lack of holomorphic worldsheet

embeddings. The lack of holomorphic maps at higher genus can be remedied, however, by transitioning

from the traditional field theory to string theory. By including worldsheet geometries in our topological

models higher order genus surfaces can be included. This is done most easily on a certain target spaces.

Recall back to Chapter 2, to a lengthy discussion about how compactification of the extra six
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dimensions in string theory leads us naturally to Calabi-Yau manifolds, specifically CY3. We just cannot

seem to get enough of them as CY3 appears yet again in the topological string theory. Without going

through all the details, anomaly cancellation occurs when the Calabi-Yau target space is specifically (you

guessed it) CY3 [6]. Meaning that on CY3 correlation functions at any genus is non-vanishing.

By transitioning to string theory, one will find that on the Calabi-Yau target space, the type IIA

and IIB string theories correspond to the A- and B-models respectively1 [9]. So, through mirror symmetry

the type IIA string theory on CYm corresponds to the type IIB theory on its mirror partner CY ′
m.

6.2 If You Give a Mouse a Cookie

Our journey through topological quantum field theories and mirror symmetry has only truly

begun. We have simply laid the framework for topological string theory and real calculations to be done.

The natural next step, as briefly discussed above, is to formally turn the TQFT into topological string

theory. From here, one may be led to study the topological nature of D-branes, matrix models, and even

black holes [6, 9].

The soul focus of this work was on the A- and B-twist of the non-linear sigma model. Of course

there are other twistable theories out there. To name one, there are Landau-Ginzburg models which arise

by considering holomorphic superpotential functions. Compared to our case where the theory arose from

D-terms in the lagrangian. The procedure for arriving at the topological nlσm here will not change in

looking at different models, although end results will vary.

On the mathematical side, we have done something incredibly exciting. We have turned the

tables; finding geometric invariants can now be done through the tools and techniques of quantum field

theory. Rather than the usual scenario in which physics is done by the tools of mathematics, mathematics

can now be done by the tools of physics! Of course the spaces in question have to be able to support a

quantum field theory which is a lot to ask. Nonetheless, this still provides a magnificent bridge between

the worlds of math and physics.

1This is how the A- and B-models were named.
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Appendix A

Preliminaries

A.1 Topology

Definition A.1. A topology over a set X with another set T , where T is a collection of subsets, U ⊆ X

({Ui|Ui ⊆ X}) s.t.

T1. T has the empty set and the whole set X: ∅ ∈ T and X ∈ T ,

T2. A finite intersection of elements of T is also in T :
⋂n
i=1 Ui ⊂ T , and

T3. an arbitrary collection of elements of T is also in T :
⋃
i Ui ⊂ T

X together with T makes X a topological space, (X, T ). The Ui are called open sets and if x ∈ Ux ⊂ T
then Ux is a neighborhood of x ∈ X.

Example A.1. LetX = {dog, cat, goldfish} and the topology T overX be T = {∅, {cat, goldfish}, X}.
Then we check topology axioms:

T1) By inspection ∅, X ∈ T ,

T2) As this set only has three elements we can easily verify all possible intersections (and unions).

Any intersection with the empty set is also empty (which is an element of the topology), so

we just need to check: {cat, goldfish} ∩X = {cat, goldfish} ∈ T , and

T2) Any union containing X will be X (as other elements of T are subsets of X) and then

∅ ∪ {cat, goldfish} = {cat, goldfish} ∈ T .
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Thus the set X with set T forms a topological space (X, T ) with topology T over X.

Definition A.2. A topological space, (M,A) is said to be Hausdorff if for every two distinct points,

p, q ∈M, ∃ open neighborhoods Up, Uq ∈ A s.t. Up ∩ Uq = ∅ (Up and Uq are said to be disjoint).

The definition of a Hausdorff topological space makes concrete the very familiar idea that two

points are separated or far off this is a fundamental idea for everything we deal with in our universe.

It is worth noting that a Hausdorff space means limits of sequences are unique and compact subsets

of a Hausdorff space are also closed, another big result. There is a lovely picture to demonstrate this

definition:

Example A.2. Referring back to example A.1, the topological space (X, T ) is not Hausdorff. To

see this, if we take the elements dog and cat, can you find an open set that contains dog and an

open set that contains cat such that the open sets are disjoint?

One of the key ideas about topology is understanding whether two topological spaces are the same or not.

We can determine two spaces as the same if one can be continuously transformed into the other and back

again.

Definition A.3. Let (X, T ) and (Y,O) be two topological spaces with U ∈ T and V ∈ O, and f : X → Y .

If preimf ({O}) = U ∈ T for some U ∈ T then f is continuous. If f is a bijection between X and Y it has

an inverse. If f−1 is also continuous then f is a homeomorphism.

This is making precise the idea of being able to change one space into another, like the coffee cup

into the doughnut and back again. In the way if the two spaces have a homeomorphism between them

they are really the same space.

A refresher of compactness. In our everyday language we say things are compact meaning the

object is ‘dense’ or ‘small’ this carries over to the rigorous math definition in the loose sense that we want

to have a notion of small or large. We now make this definition precise.

Definition A.4. A (open) cover of a topological space (X, T ), is collection of open sets, Uα of T such

that X ⊆
⋃
α∈C Uα where C ⊆ T .

Definition A.5. A topological space X is compact if for every cover, C, of X ∃ a finite sub-cover, S ⊂ C

of X (that covers X).

Example A.3. Here we remind the reader of how the stereographic projection of the 2-sphere to

R2 is derived. Start by defining two charts: πN : S2 → R2 and πS : S2 → R2 where N is the north

pole chart in which a line is drawn from the north pole, Np = ⟨0, 0, 1⟩ ∈ S2, of the sphere to any

(all) points in R2. Where the line drawn from the north pole intersects the 2-sphere is the point

on the sphere that corresponds to the point where the line intersects the real plane. Likewise for

the south pole chart with Sp = ⟨0, 0,−1⟩ ∈ S2. Then define the line between the north pole (and
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south pole) and the intersection point on the sphere as

L = λ
(
⟨0, 0, 1⟩ − ⟨x, y, z⟩

)
− ⟨0, 0, 1⟩

= ⟨−λx,−λy, λ− λz − 1⟩,

where we multiply by lambda to extend the line so it hits the real plane. When the line hits the

plane, we have, for a, b ∈ R,

−λx = a, −λy = b, λ− λz − 1 = 0,

Intersect plane when λ =
1

1− z
,

so a =
−x
1− z

, b =
−y
1− z

,

and we have πN : ⟨x, y, z⟩ 7→
〈 −x
1− z

,
−y
1− z

〉
∈ R2

for the north pole chart. Likewise for the south pole chart (with c, d ∈ R) but this time λ = 1
1+z

and then

c =
x

1 + z
, d =

y

1 + z
,

and we have πS : ⟨x, y, z⟩ 7→
〈 x

1 + z
,

y

1 + z

〉
∈ R2.

A.2 Complex Analysis

Definition A.6. A function f : Cn → Cn is holomorphic if df
dz̄i

= 0 ∀i ∈ {1, . . . , n}1. f may also be called

analytic.

That is to say f is holomorphic if it does not depend on the conjugate variable z̄.

Definition A.7. Let f :M → N be a holomorphic map. If ∃ f−1 : N →M such that f−1 is holomorphic

then f is a biholomorphic function.

Theorem A.1 (Maximum Modulus). Let f(z) be a holomorphic function in some subset D bounded by

some contour C of the complex plane. If |f(z)| ≤M on C, then |f(z)| < M on D unless f(z) is constant.

following from[21].

1This is equivalent to saying f satisfies the Cauchy-Riemann equations
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A.3 Rings and Fields

Definition A.8. A set R with two binary operations (♣,♡), (R,♣,♡) is a ring if (R,♣) is an abelian

group,

R1) ∃ e ∈ R s.t. ∀ r ∈ R e♣r = r♣e = r (identity),

R2) ∀ r ∈ R ∃ s ∈ R s.t. r♣s = e = s♣r (inverse)2,

R3) ∀ r, s, t ∈ R (r♣s)♣t = r♣(s♣t) (associative), and

R4) ∀ r, s ∈ R r♣s = s♣r (abelian),

furthermore (R,♡) is a monoid,

R5) ∃ ẽ ∈ R s.t. ∀r ∈ R ẽ♡r = r♡ẽ = r (identity), and

R6) ∀ p, q, r ∈ R (p♡q)♡r = p♡(q♡r) (associative),

and Lastly there is a distributive property,

R7) ∀ p, q, r ∈ R p♡(q♣r) = p♡q♣p♡r (left distributive), and

R8) ∀ p, q, r ∈ R (q♣r)♡p = q♡p♣r♡p (right distributive).

Of course there is also the zeroth axiom in which the ring is closed under both operations. We say ♣ is an

‘additive’ operation (addition) and ♡ is a ‘multiplicative’ operation (multiplication).

If the ring R commutes under the multiplication then we call it a commutative ring.

Definition A.9. A field, (F,+, ·), is a commutative ring (a · b = b · a) with the additional property that

∀ a ∈ F ∃ b ∈ F, b ̸= 0, s.t. a · b = ẽ = b · a.

Here ẽ the identity under · is different from e the identity under +.

This is to say a field is a commutative ring in which all nonzero elements of a field have a multiplicative

inverse. A Field allows us to define what subtraction and division mean.

2s can also written as −r
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Example A.4. Z,C,R, under standard everyday addition and multiplication.

Definition A.10. Let k be a field. The ring of polynomials, k[x], (under addition and multiplication) is

k[x] =
{
f =

∑d
i=1 aix

i | ai ∈ k
}
.

The ring of polynomials in n variables is

k[x1, . . . , xn] =
{
f =

∑d
i1,··· ,in ai1,...,inx

i1 · · ·xin | ai1,...,in ∈ k
}
.

Example A.5. Take f = (R,+, ·) and let polynomial ring R[x] ⊃ S = {x2 − 4, x3 − x, 5}.

A.4 Homology and Cohomology

Homology gives a rigorous way to find and discuss holes in a manifold so as to distinguish the

manifolds. In much the same way as we define cohomology, we can define homology with some nilpotent

operation. To start we first need to consider p-dimensional paths on manifolds.

Definition A.11. Let S be an p-dimensional submanifold of m-dimensional M . We call S a p-chain if it

lives in a vector space of other p-dimensional submanifolds on M . If the boundary of the p-chain, S, is

zero, ∂S = 0, then S is a p-cycle.

Note that the boundary is one dimension less, so the boundary map, ∂ maps p-chains to (p− 1)-chains. Of

course, the boundary of the boundary is 0, ∂V = 0, if V is already a boundary, V = ∂W . Also, p-cycles

are given an orientation.

Definition A.12. The p-dimensional submanifold S is a p-boundary if S is already a boundary of some

(p+ 1)-chain, T . That is S = ∂T .

Example A.6. Some p-cycles, a and b, on the sphere with p = 1.

S2

a

b
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The cycles in the above example tell us that the sphere encloses a 2-dimensional hole.

Just as with cohomology we can set up an equivalence of p-cycles. That is two p-cycles are in

the same equivalence class if they differ by a p-boundary. Then the Homology group is the set of all the

equivalence classes or simply all those p-cycles that are not p-boundaries,

Hp(M) =
{S|∂S = 0}
{S|S = ∂T}

. (A.1)

Homology is naturally dual to cohomology by integrating p-forms over p-cycles.∫
S

α = r ∈ R ∀ S ∈ Hp(M), α ∈ Hp(M) (A.2)

Poincaré Duality: Every De Rahm cohomology class α ∈ HP is dual to some homology class A ∈ Hm−p

defined via: ∫
M

α ∧ β =

∫
A

β ∀ β ∈ Hm−p. (A.3)

To which we interpret this as a delta-like function. That is to say we only get contributions from the

overlap of α and β. The duality between the homology and cohomology is such that picking any β ∈ HpM

uniquely determines a S ∈ HpM and vice versa.
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