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In this report, the recent developments towards understanding black hole dynamics and

resolving the black hole information paradox through the lens of the AdS/CFT correspondence

are reviewed. The origin of the paradox from consideration of black hole evaporation and infor-

mation is presented. The main tenets of the AdS/CFT correspondence are reviewed, motivated

by the origins of the duality from string theory, and by scalar dynamics in AdS spacetime.

Applying the holographic principle of the AdS/CFT duality to translate a non-gravitational

quantum theory to a gravity theory in one higher dimension, the entanglement entropy of the

Hawking radiation of an evaporating black hole is calculated to show whether the unitary Page

curve is followed. Finally, recent insight into the evolution of quantum extremal surfaces is used

to test whether a black hole-radiation system in AdS2 obeys unitarity.
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Chapter 1

Introduction

For decades, efforts have been made to understand the dynamics of the beginning of the Universe

where the effects of quantum gravity (QG) are important. QG effects come into play when

considering QFTs at short-length scales of the order of the Plank length, lp. It is currently

unknown how to quantise gravity using standard perturbative methods.

Progress in the last few years has been made by considering a similar physical process:

the dynamics of black holes (BHs). BHs contain a singularity within the event horizon that

requires QG to describe. However, as BHs are embedded within the universe, they can be

studied by an exterior observer at large distances from the center. This allows a semi-classical

approximation of QG to be used, where quantum (matter) fields propagate on the classical

background geometry.

Black holes were previously thought to possess, through classical arguments, zero tempera-

ture (as no particles are able to escape the event horizon) and, by the no hair theorem [1], zero

entropy. However, in 1974, Berkenstein argued that if a BH’s entropy was zero, then the second

law of thermodynamics,

δS ≥ 0, (1.1)

would be violated as an arbitrary amount of matter could fall into the black hole and decrease

the overall entropy of the Universe as seen by an outside observer. To resolve this, a generalised

entropy composed of the entropy of the two regions, the interior of the black hole and the

exterior Universe, was proposed, Sgen = Sext + SBH , as well as a generalised second law of

thermodynamics for black holes,

δSgen = δ (Sext + SBH) ≥ 0, (1.2)

where Sext has contributions from the matter, gravitons outside the BH and vacuum contri-

butions from quantum fields. Later in 1974, Hawking used the semi-classical approximation

to quantum gravity to show that BHs radiate particles, called Hawking radiation, due to the

instability of the QFT vacuum coupled to the classical black hole background geometry. Heuris-

tically, this Hawking radiation is formed by entangled particle-antiparticle pairs close to the BH

event horizon, one of which escapes to infinity and one which crosses the event horizon and

falls into the black hole interior. The radiation emitted by black holes as measured by an ob-

server at infinity has been shown to follow the black-body spectrum corresponding to a finite

1



2 CHAPTER 1. INTRODUCTION

temperature. Hence, black holes are thermal objects with a temperature called the Hawking

temperature [2], TH ,

TH =
ℏκ
2π
, (1.3)

and an entropy proportional to the area of the BH event horizon, called the Berkenstein-Hawking

(B-H) entropy, SB−H ,

SB−H =
Area

4ℏGN
, (1.4)

where GN is Newton’s constant. This was the first realisation of the holographic principle,

relating the degrees of freedom of a region in d dimensions to its boundary in one lower dimen-

sion. Berkenstein also later proposed an entropy bound for arbitrary regions of spacetime that

precisely saturates the B-H entropy of a black hole (1.4) [3]. This bound places a maximum

limit on the amount of entropy that a region can contain as the area of the region’s boundary

in Planck units,

Sbound ≤ Area

4l2p
. (1.5)

The bound prevents an arbitrarily large amount of information accumulating in a finite region,

which would require an infinite amount of energy.

Inspired by the Berkenstein bound (1.5), ‘t Hooft [4] and Susskind [5] developed the holo-

graphic principle, a conjecture that a theory of QG in d dimensions is physically equivalent, or

dual, to a non-gravitational QFT living on the boundary of the space in one lower dimension.

In section 2, the AdS/CFT correspondence will be developed as a concrete example of the holo-

graphic principle, proposed by Maldacena in 1997 [6]. A result of this correspondence states

that black holes in Anti-de Sitter (AdS) spacetime are dual to non-gravitational quantum sys-

tems (with boundary conditions). As the dual quantum theory manifestly obeys unitarity, the

AdS/CFT correspondence provides evidence for (AdS) black holes obeying unitarity. Hence, ex-

tending to any spactime geometry, the holographic principle implies BHs in general are unitary

and conserve (quantum) information and entropy.

In 1976, Hawking proposed, in a landmark paper, the presence of an apparent paradox

involving the quantum information associated to a system with a black hole, known as the black

hole information loss paradox [7]. The paradox is a consequence of black hole evaporation: as

a black hole of mass M emits radiation, its mass will reduce until a time tevap ∼M3, at which

point the black hole will evaporate, leaving behind only the emitted thermal radiation. During

the evaporation, the Berkenstein-Hawking entropy associated with the black hole’s area (1.4)

will decrease as the mass and event horizon area shrink, SBH → 0 as t → tevap. Conversely,

the entanglement entropy of the radiation escaping to r → ∞, Srad = −TrBH (ρradlog (ρrad))
1,

increases monotonically with time as the black hole emits radiation, following the “Hawking

curve”. This process violates information conservation and unitarity: in general, the final

entropy of emitted radiation can be larger than the initial B-H entropy, Si
B−H < Sf

rad. Hence,

1TrBH traces out the BH degrees of freedom, and ρrad is the density matrix for the radiation.
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the total entropy (a measure of the disorder of a system) increases over time – the Universe

appears to lose information during black hole formation and evaporation, violating unitarity

and the second law of thermodynamics.

Furthermore, black hole evaporation implies that the entanglement, or von Neumann, en-

tropy2 associated to the Hawking radiation isn’t conserved, violating unitarity. The time at

which the two entropies coincide, SB−H = Srad, is called the Page time, denoted tPage. The

fields comprising the Hawking radiation form a pure state with their partner particles in the

BH interior. The entanglement entropy of the two-particle system is initially zero. Before tPage,

when SB−H > Srad, the degrees of freedom of the particles contained in the interior of the BH

can be completely described by the BH degrees of freedom ∝ AreaBH , such that the interior and

exterior particles remain in a pure, entangled state. However, after tPage, when SB−H < Srad,

the BH area doesn’t contain enough degrees of freedom to describe the particles in the interior.

Hence, after tPage, the radiation-BH system can no longer be fully entangled, with the pure

state reducing to a mixed state with non-zero entanglement entropy.

On general grounds, it was later argued that unitarity of the radiation-BH system can be

enforced if, instead of the entropy of radiation following the Hawking curve, it follows the

Page curve: increasing monotonically up until the Page time, and then decreasing to zero

as t → tevap [8, 9]. However, lacking a full theory of QG to describe the precise state of the

radiation-BH system, determining the entropy of the system is difficult. Furthermore, for several

years, it was unclear how to formulate the system such that its evolution obeys the Page curve,

and whether, in fact, BHs evolve unitarily (Hawking famously denounced this). The proposal of

the AdS/CFT correspondence in 1997, as well as providing concrete evidence for BH unitarity,

provided a means to calculate the unitary evolution of the radiation-BH system.

The AdS/CFT correspondence states that a theory of QG in a (d+1)-dimensional spacetime

asymptotic to AdS space is dual to a conformal field theory (CFT) in d dimensions. In 2006,

Ryu and Takayanagi (RT) used the AdS/CFT correspondence to calculate the entanglement

entropy of a CFT in (d + 1)-dimensions (coupled to a gravity theory) via. the area of d-dim.

minimal extremal surfaces in (asymptotically) AdSd+2 bulk spacetime [10]. Using the AdS/CFT

correspondence makes calculating the generalised entropy Sgen of the BH-radiation system far

easier, as it translates the problem of calculating entropy into a geometrical problem where

the entropy corresponds to an extremised and minimised surface. The RT prescription has

since been extended to covariant theories [11], and to the formulation of quantum extremal

surfaces (QESs) on which the entanglement entropy of an evaporating black hole over time is

calculated [12–14]. Recent work has shown that in order to recreate the Page curve of unitary

black hole evolution, a second, non-trivial QES must be considered after the Page time, when

the state of the system transitions from pure to mixed. Before the Page time, the QES is

trivial, with the entanglement region of the BH covering all of the interior region. At later

times, the QES transitions to a non-trivial surface located close to the event horizon, with the

phase transition occurring at the Page time. This excludes most of the BH interior from the

BH entanglement wedge at later times, such that the entanglement entropy associated with the

wedge shrinks to zero as the BH evaporates.

This prescription has been applied to determine the evolution of Hawking radiation for a

black hole in a toy model 2d JT gravity theory with holographic matter coupled to a non-

gravitational bath [15]. Translating the 2-dimensional gravity theory to its dual 3-dimensional

description, the quantum extremal surfaces reduce to those found in the (covariant general-

2A concept that will be defined in Section 2.4
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isation of the) RT prescription, and reproduces the unitary evolution of Hawking radiation

predicted by the Page curve. This result rests on the inclusion of an “island” contribution to

the full minimal surface over which the entanglement entropy is calculated, which reduces the

entropy at late times by “purifying” the entangled modes contained in the island entanglement

wedge in the BH interior with those contained in the exterior region.

As such, the aim of this dissertation is to show how key developments in recent years has

lead towards resolving the Hawking information paradox.

In section 2, we will discuss the origin of BH entropy, the BH laws of thermodynamics and mo-

tivate the description of black holes as quantum systems. We will then define the entanglement

entropy of quantum systems, and use this to describe the information paradox and the unitary

Page curve.

In section 3, the AdS/CFT correspondence will be reviewed. By considering the case of coinci-

dent D3-branes in string theory, the AdS/CFT correspondence will be motivated through the

prototypical example of N = 4 SYM ↔ AdS5 × S5. After defining CFTs and AdS space and

discussing (scalar) dynamics in AdS, the AdS/CFT correspondence will be stated with the links

between physical observables in the dual theories. Finally, we will describe how the holographic

principle is a generalisation of the AdS/CFT correspondence, taking the entropy of black holes

in AdS3 as an example.

In section 4, the AdS/CFT correspondence will be applied to the calculation of entanglement

entropy via. the Ryu-Takayanagi prescription, and used to define a generalised entropy in

gravitational systems. Then, following recent work in [13, 14, 16], we will use the holographic

principle to obtain the Page curve and resolve the black hole information paradox. Finally, in

section 5, we will consider the toy model of a black hole coupled to a non-gravitational bath in

simplified 2d JT gravity as a concrete example of the RT/HRT prescription producing unitary

Hawking radiation evolution.



Chapter 2

Hawking radiation and black hole

information

2.1 Hawking radiation

In classical General Relativity (GR), BHs have zero temperature and entropy, as no particles

or radiation is able to pass from the interior, through the event horizon, to the exterior of a

BH. However, when considering a classical gravity geometry coupled to a QFT, with quantum

fields propagating on the classical background, i.e. the semi-classical gravity approximation, it

was shown by Hawking in 1974 that BHs do possess a finite temperature, called the Hawking

temperature (1.3) [2]. The Hawking temperature is a consequence of Hawking radiation emitted

from the black hole region, which is required by the Unruh effect and the equivalence principle

of relativity.

The Unruh effect is a kinematic prediction for a QFT, where an accelerated frame observes

a thermal bath whilst an inertial observer doesn’t. Heuristically, close to the BH event horizon,

a local observer must accelerate to counter strong gravitational forces and prevent falling in.

This accelerating observer will observe a thermal bath of particles that come out of the locally

accelerating horizon, and then fall freely back in. Local thermal equilibrium and the equivalence

principle requires the consistent extension of the thermal bath to a distance r → ∞ from the

BH. Hence, a finite temperature can be observed by an observer at large distance from the BH

due to some of the emitted particles not being reabsorbed and forming Hawking radiation.

The result for the Hawking temperature (1.3) can be derived explicitly following [16]: considering

Schwarzschild spacetime with metric,

ds2 = −
(
1− rs

r

)
dt2 +

dr2

1− rs
r

+ r2dΩ2
2. (2.1)

Taking a change of coordinates, t→ 4Mτ and r → 2M + ρ2

8M , and fixing the angular directions,

the metric (2.1) expanded around the event horizon r = 2M for ρ << 2M becomes,

ds2 ≈ −ρ2dτ2 + dρ2. (2.2)

5
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The metric above is in Rindler coordinates for an accelerated observer with local acceleration

a = 1/ρ. Physically, an observer close to the event horizon must have a constant acceleration to

remain at a fixed distance from the event horizon, in order to counter the strong gravitational

attraction. For ρ → 0, a = 1/ρ → ∞, an infinite acceleration is required to escape the BH at

the event horizon.

Performing another change of coordinates, taking (ρ, τ) → (x0, x1) and applying the chain

rule, the metric (2.2) reduces to Minkowski locally,

ds2 ≈ −
(
dx0

)2
+
(
dx1

)2
. (2.3)

Hence, a local observer falling into the BH observers flat space locally, with the geometry

extending smoothly past the event horizon at r = 2M . This contrasts the observations made by

an exterior observer at r >> 2M , for which no signals can reach from within the BH interior.

Applying the equivalence principle, non-inertial, free-falling observers described by (2.2) are

equivalently described by an accelerated observer in Minkowski space (2.3) (see Fig. 2.1). For

ρ fixed, an observer is following a uniformly accelerated geodesic in Minkowski space.

Figure 2.1: (a) Penrose diagram for matter collapsing into a black hole; (b) ”zoomed-in” near-horizon

region in x0, x1 coordinates, showing a uniformly accelerated observer at a = ρ−1. [16]

The Unruh effect states that for an accelerating frame observing a QFT, the fields are excited

at a local temperature, which for an observer at a fixed distance close to the horizon is given

by,

T =
a

4π
=

1

πρ
=

1

4π
√

2Mr
(
1− 2M

r

) . (2.4)
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Extending this to observers at large distance r >> 2M from the event horizon, gravita-

tional redshift of the temperature by a factor
√
g00 takes place such that there exists a thermal

background everywhere, with local temperature T (r′) at distance r′ [17],

T (r′) =
1

4π
√
2Mr

(
1− 2M

r

)
√

1− 2M
r

1− 2M
r′

=
1

4π
√

2Mr
(
1− 2M

r′

) . (2.5)

For r′ → ∞, r′ >> 2M ,

T (∞) = TH =
1

4π
√
2Mr

≃ 1

8πM
, (2.6)

where we have used Planck units throughout, and taken r ≃ 2M to go from the second to third

equality. Hence, a field theory defined on a BH background is a thermal state with temperature

at large distance from the event horizon given by the Hawking temperature, TH .

2.2 Black hole thermodynamics and entropy bound

Using the first law of BH thermodynamics and the Hawking temperature of the field theory

in a BH geometry, the Berkenstein-Hawking entropy, which acts as a minimum bound for the

entropy contained within a region, can be calculated.

In 1973, the laws of BH thermodynamics were published by Bardeen, Carter and Hawking

[18], which extended the existing classical thermodynamic laws to black holes. The first law of

thermodynamics is a statement of conservation of energy with respect to a change in mass M ,

charge Q and angular momentum J of a BH and governs the response of the area of a rotating

BH to a change in these three quantities,

dM =
1

8π
κdA+ΩHdJ +ΦHdQ, (2.7)

where ΩH is the angular velocity of the BH and ΦH is a constant of the BH. This is in analogy

with the classical first law of thermodynamics,

dE = TdS +
∑
i

µiNi. (2.8)

Applying the Hawking temperature (1.3) to the first law of thermodynamics (2.8), and noting

that the internal energy of a black hole is determined by its mass, E = Mbh, and the horizon

area is A = 4πr2s = 4π (2M)2, then

dS =
dQ

T
= 8πMdQ, (2.9)

and performing integration on both sides and setting the integration constant to zero by the

initial condition of a BH of S = 0 for r = 0,
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SBH = πr2s =
Area

4
= SB−H . (2.10)

This is the Berkenstein-Hawking entropy formula, with SB−H an upper bound that places a

maximum on the amount of information contained within an arbitrary region of space. Hence,

the entropy of a black hole maximally saturates the information content within its region of

spacetime.

The Berkenstein-Hawking entropy was the first realisation of the holographic principle,

where the physical description of a gravity theory is encoded onto the bounding surface of

the region.

2.3 Black hole as a quantum system

Whilst we now have an expression for the entropy of a black hole (2.10), dependent only on

the area of the horizon, this quantity lacks a physical meaning: how can the entropy (and the

associated classical statistical degrees of freedom) be interpreted?

One interpretation of black hole entropy and information is to view the interior of the black

hole as a quantum system. Namely, as seen by an outside observer, BHs can be viewed as a

quantum system with A
4GN

number of degrees of freedom evolving unitarily, with a “cut-off”

surface separating the quantum system from the exterior defined within a Planck length of

the event horizon and defining the black hole region. This has been coined the central dogma

of black hole quantum information, inspired from its use in molecular biology where genetic

information can be viewed increasingly abstractly as DNA, then RNA and finally proteins [16].

Notably, Hawking strongly opposed this hypothesis.

The central dogma hypothesis is supported by the counting of microstates of supersymmetric

extremal BHs in string theory [19]. By counting the degeneracy of BPS soliton bound states,

the entropy reproduces the area formula (2.10) plus corrections.

Furthermore, a consequence of the AdS/CFT correspondence (introduced in Chp. 3) is that,

in all known cases, BHs in a gravity theory region are related to solutions of QFTs at finite

temperature on the boundary of the region. Hence, as QFTs are unitary, this supports the claim

that black holes are unitary and have no loss of information. Also, the thermal radiation of a

blackbody (which is unitary) isn’t equal to the Hawking radiation of BHs, implying Hawking

radiation isn’t unitary. Hence, the AdS/CFT correspondence implies that BH thermal radiation

is Hawking radiation with corrections.

2.4 Entanglement entropy

In order to quantify the information and entropy of the radiation-BH system, it is necessary to

define the entanglement, or fine-grained, entropy of a quantum system.

In quantum mechanics (QM), a quantum state is described by a vector ϕ in the Hilbert

space H. A central object in QM is the density operator (or matrix) ρ, defined for a pure state

as ρ = |ψ⟩⟨ψ|. The density operator is Hermitian (ρ = ρ†) and positive definite (|ρ|2 ≥ 0). The

expectation value of an operator Ô is expressed as,
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⟨ψ|Ô|ψ⟩ = Tr(Ôρ). (2.11)

For a pure state, it follows that Tr(ρ) = ⟨ψ|ψ⟩ = 1 and Tr(ρ2) = ⟨ψ|ψ⟩2 = 1. A mixed state,

i.e. where the state can be expressed as |ψ⟩ =
∑

i

√
pi|ψi⟩ for pi ≥ 0 and |ψi⟩ an orthonormal

basis, has a density operator ρ =
∑

i pi|ψi⟩⟨ψi|. It follows that Trρ =
∑

i pi = 1 as for the pure

state, but, from [20,21],

Trρ2 =
∑
i

(pi (pi − 1) + 1) =
∑
i

(pi(pi − 1) + 1) < 1. (2.12)

Dividing a quantum system into two subsystems, A and B, the density matrix ρ lives on the

Hilbert space H = HA+HB [22]. Restricting an observer’s access to only one of the subsystems,

i.e. HA, the reduced density matrix is given as the trace over the complementary, i.e. HB, space

of the total density matrix,

ρA = TrHB
ρ, (2.13)

as measured by an observer in subsystem A. Then, using the von-Neumman entropy,

SvN = −Tr(ρ) (2.14)

The entanglement, or fine-grained, entropy for a subsystem A with reduced density matrix ρA,

is defined as,

SA = −TrHA
[ρAlnρA] (2.15)

Physically, the entanglement entropy is a measure of how much a given quantum system is

quantum mechanically entangled, or how much (quantum) information is omitted through the

exclusion of a region of the space.

In the example of a pure state ϕ on a Hilbert space split into 2 sub-spaces, H = HA +HB,

the total entanglement entropy of the system is zero,

Stot = SA∪B = −TrHA∪B
[ρ]

= −TrHA∪B

[
|Ψ⟩⟨Ψ|

∞∑
n=1

cn(|Ψ⟩⟨Ψ| − 1)n
]

= −⟨Ψ|Ψ⟩⟨Ψ|
∞∑
n=1

cn(|Ψ⟩⟨Ψ| − 1)n|Ψ⟩

=

∞∑
n=1

cn⟨Ψ|(|Ψ⟩| − 1)|Ψ⟩ = 0,

(2.16)

whilst each subsystem considered individually (with the complementary subsystem hidden from

view) has non-zero entanglement entropy. This can be seen explicitly for a bipartite (2 subsys-

tem) quantum system, where we consider a mixed Bell state,
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|ψ⟩AB =
1

2
(|0, 1⟩+ |1, 0⟩). (2.17)

The corresponding density matrix has the form,

ρ = |ψ⟩AB⟨ψ|AB =
1

2
(|0, 1⟩+ |1, 0⟩)(⟨0, 1|+ ⟨1, 0|)

=
1

2

(
(|0⟩⟨0|)A(|0⟩⟨0|)B + (|0⟨1|)A(|0⟩⟨1|)B + ...

...+ (|1⟩⟨0|)A(|1⟩⟨0|)B + (|1⟩⟨1|)A(|1⟩⟨1|)B
)
,

(2.18)

which means that tracing out the total density matrix with respect to sub-system B will give,

ρA = TrBρ =
1

2

(
(|0A⟨0|)A + (|1⟩A⟨1|)A

)
≡ 1

2
1A (2.19)

This gives an entanglement entropy of,

SA = ln(2) ̸= 0 (2.20)

The Bell state (2.17) is the maximally mixed, maximally entangled state of this quantum

system, with (2.20) the highest deviation that a state can obtain from a pure state with S = 0.

More generally, maximally-mixed states have an entanglement entropy S = ln(N), where N is

the dimensionality of the Hilbert space. Hence, the entanglement entropy measures the degree

of divergence of a quantum system from the pure state, and corresponds to the amount of

information lost by assuming that the subsystem B is not visible.

The entanglement (von Neumann) entropy has several important properties:

1. 0 ≤ S(ρ) ≤ ln(N), where the lower bound is for a pure state with no entanglement, and

the upper bound is for a maximally mixed state with maximal entanglement;

2. For a pure state, the density matrix is idempotent, ρ = ρ2;

3. S(ρ) is invariant under unitary time evolution, obeying unitary: S(ρ) → S(U †ρU) = S(ρ)

for ρ(0) → ρ(t) = U †(t)ρ(0)U(t). This means, a pure (mixed) state will remain pure

(mixed);

4. For a pure state at zero temperature with ρ, then SA = SB: the entanglement entropy of

the observed region is the same as the complementary region. Hence, the entanglement

entropy is not an extensive property, independent of the system scale (this property does

not hold for finite temperature systems);

5. Strong subadditivity (SSA): for 3 subsystems, H = HA +HB +HC , with any (mixed or

pure) total density matrix ρtot,

SA+B+C + SB ≤ SA+B = SB+C and SA + SC ≤ SA+B + SB+C . (2.21)

6. Entanglement entropy can be defined for quantum fields on a surface, σ, at a fixed time

through the corresponding density matrix ρΣ, S(Σ) ≡ S(ρΣ). As a consequence of uni-

tarity, this quantity is the same for any Cauchy surface (at any time) that possesses the

same causal diamond (see 2.2).
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Figure 2.2: Casual diamond shared by Cauchy surfaces Σ and Σ̃. SvN is the same on both slices.

Adapted from [16].

There also exists a second definition of the entropy associated to a quantum system: the

coarse-grained, or thermodynamic, entropy. Considering a subset of macroscopic (simple) ob-

servables Oi, with ⟨Oi⟩ = Tr(ρOi) for density matrix ρ, vary a different density matrix ρ̃ to

consider all possible matrices that produce the same observable expectation values,

⟨Oi⟩ = Tr(ρOi) = Tr(ρ̃Oi) = ⟨Õi⟩, (2.22)

for all Oi. Then, of the set of possible entries for ρ̃, the one that produces the maximum value

of the corresponding entanglement entropy defines the course-grained entropy, Sc,

Sc = maxρ̃
(
− Tr(ρ̃logρ̃)

)
(2.23)

Hence, the coarse-grained, or thermodynamic, entropy is computed by maximising the fine-

grained entropy over all possible states described by ρ̃ that satisfy the condition (2.22). From

its definition, the coarse-grained entropy satisfies,

SvN ≤ Sc, (2.24)

such that the Sc acts as as an upper bound on the number of degrees of freedom in the system,

and the amount of entanglement that states can have. Also, the coarse-grained entropy satisfies

the second law of thermodynamics, δSc ≥ 0.

2.5 The information paradox

Having introduced the entropies describing the information of a quantum system, the informa-

tion paradox, formulated by Hawking in 1976 [2], can be fully introduced.
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The thermal properties of black holes arise from the splitting of a vacuum state near the

event horizon into 2 entangled particles, one of which falls into the BH and the other which

escapes to infinity and becomes Hawking radiation [16]. If the vacuum state in the QFT is a pure

state initially, the splitting of the particles creates 2 mixed states, which are entangled at short

distances and possess finite entanglement entropy (entangled degrees of freedom) individually.

Also, from the central dogma, the BH can be viewed as a quantum system with a finite number

of degrees of freedom. Hence, the BH and Hawking radiation are each subsystems of a bipartite

quantum system, pure when combined, but mixed when one subsystem is considered in isolation.

The BH will emit Hawking radiation as it evaporates, with the entanglement degrees of

freedom of the infalling (outgoing) particles contained within the BH interior (exterior). As

Hawking radiation continues to be emitted, the entangled degrees of freedom corresponding to

the particles in the interior (entangled with those escaping to infinity) become a larger share

of the total degrees of freedom contained within the BH region. Also, as the BH shrinks via.

Hawking radiation, the coarse-grained (thermodynamic) entropy of the BH corresponding to

the Berkenstein-Hawking entropy (1.3) reduces proportional to the area of the horizon.

At early times, the (entanglement) entropy of Hawking radiation, Srad, is low, whilst the

thermodynamic (Berkenstein-Hawking) entropy of the BH, SBH , remains high. However, as

the BH evaporates, SBH falls whilst Srad continues to rise (see Fig. 2.3). At a finite time, the

Page time tPage, Srad
will exceed SBH , such that the BH no longer contains enough degrees

of freedom in the interior to remain entangled to the emitted radiation. Also, the degrees

of freedom contained within the BH region will exceed the maximum amount allowed by the

Berkenstein bound (1.4). Hence, following the Hawking curve proposed in [2], the BH-radiation

system transitions from a pure state initially to a mixed state at late times t > tPage, violating

unitarity and subsequently the central dogma.

Figure 2.3: Evolution of entropy for: the Hawking curve (red), thermodynamic BH entropy (blue),

and the Page curve (dashed green). [23]

Physically, this means that as the BH evaporates, information is lost from the BH-radiation

system when the BH vanishes. This is illustrated by the “baby universe” description of the evap-

orating black hole (Fig. 2.4), where the branching off of an interior “baby universe” (containing

a singularity) from the exterior spacetime means that unitarity is violated as modes in the baby

universe can’t evolve past the singularity. This highlights that although the information of the

infalling particles is no longer observed by an observer outside of the black hole region, it is still
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present in the system and the particles in the interior and exterior remain entangled. However,

after the BH evaporates and vanishes at late times, the information in the BH interior is lost,

and the system transitions from a pure to mixed state, violating unitarity.

Figure 2.4: (a) Penrose diagram for an evaporating black hole, with pairs of entangled modes split

between the interior and exterior of the BH; (b) the equivalent ”baby universe” picture of the black

hole evaporation, where the BH interior is represented by the smaller branched universe containing

the singularity. [16]

However, this is just one aspect of the information paradox involving BH entropy. Other

important elements include:

1. The full Schwarzschild solution containing a black hole (Fig. 2.5(a)) has 2 exterior regions

(I and II) and 2 interior regions (III and IV). Hence, hoes does the Berkenstein-Hawking

entropy arise and what does it physically correspond to?

2. “Bags of gold” paradox, formulated by Wheeler [24], shows that some classical geometries

exist that look like a black hole from an asymptotic region, but can have arbitrarily large

entropy past the “throat” larger than the area of the horizon (Fig. 2.5(b)). This violates

the B-H entropy and central dogma, where the entropy of a BH region is proportional to

its area.

The former was resolved by Maldacena and Susskind [26] through the ER=EPR conjecture,

which states that 2 BHs connected by a wormhole (or Einstein-Rosen bridge) in the interior

is equivalent to 2 entangled particles (or Einstein-Podolsky-Rosen pair) contained within each

BH. Therefore, through the ER=EPR conjecture, the 2 BHs and wormhole system form a pure

state with zero entropy. However, taking each BH separately creates mixed states with finite

entropy due to loss of information of the entangled particles.

The “bags of gold” paradox is another violation of the central dogma that is also caused

by the Hawking curve of radiation entropy, and is resolved in a similar way. Assuming that

the central dogma is true, the resolution of this paradox requires the entanglement entropy of

emitted radiation to follow the Page curve (green dashed line in Fig. 2.3) as opposed to the

Hawking curve (red line): increasing monotonically up to tPage, and then decreasing to track



14 CHAPTER 2. HAWKING RADIATION AND BLACK HOLE INFORMATION

Figure 2.5: (a) the Penrose diagram for the full Schwarzschild solution, with exterior regions I, II

and interior regions III and IV [25]; (b) classical geometry with the area of the“neck” independent of

the number of degrees of freedom contained in the interior: giving the “bags of gold” paradox [16].

SBH such that all radiation degrees of freedom remain entangled with the BH interior degrees

of freedom.

The Page curve was first calculated by Don Page in 1993 [8] using semi-classical gravity and

based on simple properties of the entanglement entropy, but is also valid for the BH area A→ 0

as t→ tevap, where the radius of the BH is of the order of the Planck length [9].

Although the Page curve has been successfully determined, a lack of physical motivation and

interpretation has persisted for four decades, with a full theory of QG previously thought to be

required to shed light on the origins of the Page curve and unitarity of BHs through study of the

BH interior close to the singularity. With the discovery of the AdS/CFT correspondence in the

late ‘90s, the proposal of a holographic entanglement entropy using the holographic principle has

lead to, in addition to development of quantum extremal surfaces, the reproduction of the Page

curve in black hole systems and a step towards resolving the black hole information paradox.



Chapter 3

AdS/CFT correspondence

In this section, the key developments and dictionary of the AdS/CFT, or gauge-gravity, duality

will be reviewed. It emerged from the world sheet duality in string theory and the observation

of the duality between D-branes and black branes in string theory.

In the search for a theory of quantum gravity (QG), string theory has emerged as a consistent

and desirable candidate in the last 30 years. The central premise of string theory is that the

point-like particles of QFTs are replaced by extended objects called strings which oscillate at

different “frequencies”, subject to boundary conditions, to recreate the full spectrum of particles

observed at low energies.

A glimpse of how the AdS/CFT correspondence emerges from studying string theory can

already be seen through the original motivation for its development: to offer an explanation

for the large number of hadrons and mesons being experimentally discovered in the 1960’s.

The original goal was to describe this spectrum of particles, and although it was partially

successful at predicting the spin–mass relation m2 ≈ TJ2 + const. for light hadrons (modelling

the hadrons as a rotating relativistic string with mass, angular momentum and tension), it was

soon superseded by the discovery of quarks and the development of QCD.

QCD is a gauge theory with gauge group SU(3) (N = 3 colours), which at low energies

becomes strongly coupled such that perturbative calculations become difficult. ‘t Hooft [27]

developed a method to simplify the calculation when N → ∞. The idea was to perform an

expansion in 1/N when N is large to get the exact spectrum, then do a 1/N = 1/3 expansion.

As string theory gives the correct relation between mass and angular momentum, it is expected

that N = 3 and N → ∞ are similar – hence, the large N limit connects string theories with

gauge theories. This is true generally: different gauge theories will correspond to different

types of string theory. As string theory is a valid description of QG, this analysis motivates

a more general duality between theories of QG and gauge theories in the large N limit. The

most famous example of this is N = 4 Super Yangs-Mills gauge theory dual to Type IIB string

theory in AdS5 × S5.

3.1 Black branes/D-branes duality

The AdS/CFT correspondence emerged from the study of p-branes in string theory, and in

particular the observation that D-branes are equivalent to black p-branes, which are classical

solutions to supergravity (SUGRA) at the low-energy limit of string theory (α′ → 0).

15
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In perturbative string theory, Dp-branes are (p+ 1)-dimensional hypersurfaces upon which

p-branes can end (see Fig. 3.2). The massless modes of the open string describe the oscillations

of the brane, gauge fields living on the brane, and fermionic partners [28]. A Dp-brane can be

charged by a (p+ 1)-form gauge potential, A(p+1), in extension of a 0-brane (particle) charged

under a 1-form gauge potential (the electromagnetic potential Aµ), with an associated (p+ 2)-

dim. field strength tensor F(p+2). Introducing N coincident Dp-branes, open strings will have

N2 possible endpoints and a flux of the F(p+2) field strength between branes will contribute to

the stress-energy tensor, inducing a curved geometry.

The N coincident Dp-branes are low-energy, SUGRA solutions that resemble those of ex-

tremal, charged black holes in ordinary general relativity generalised to black branes in p spatial

dimensions. As an observer approaches the black p-brane event horizon, energy is redshifted

(as measured by an observer at ∞) due to large gravitational potential and becomes very small.

Low-energy, classical SUGRA is valid when the curvature of the extremal p-brane geometry

(characterised by the radius of the event horizon r+) is much smaller than the string scale, such

that quantum effects can be neglected: r+ ∝ Lgeom >> ls.

Alternatively, the extremal p-brane can be reformulated in terms of D-branes using the

worldsheet duality. In string theory, the worldsheet duality states that a worldsheet with

boundaries on a D-brane can be thought of as either a closed string or open string scatter-

ing process depending on the boundary conditions chosen [28, 29]. Regardless, the scattering

amplitudes for either open or closed strings are the same, forming a duality between open and

closed string scattering amplitudes. For example, a cylindrical worldsheet stretched between 2

D-brane worldvolumes can be represented by 2 different but equivalent processes (Fig. 3.1):

either (a) a closed string (red) emitted by one of the branes and absorbed by the other; or (b)

two open strings (blue), bounded by the two branes, propagating around the worldvolume in a

1-loop vacuum diagram [30,31].

Figure 3.1: Open-closed string (worldsheet) duality. Inspired by [30].

Due to the worldsheet duality, the D-brane can be a source of closed strings as well as a

hypersurface for open strings (see Fig. 3.2)). In particular, for N coincident Dp-branes, the R-R

charges carried by each individual D-brane sum to produce a (p+1)-form charge of N units on
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the (p+1)-dimensional D-brane hypersurfaces [32]. In the low-energy regime, the dynamics on

the N coincident Dp-branes reduces to a gauge theory (with conformal invariance) in general.

Figure 3.2: The D-brane as: (a) an endpoint for open strings; (b) a source of closed strings. [28]

As the Dp-brane description involves the string worldsheet, it will be well-described in string

perturbation theory where the effective loop expansion for N coincident D-branes is in the weak

limit, λ ∝ gsN << 1.

Hence, from the worldsheet duality, there exist two descriptions of the low-energy regime

of N coincident D-branes: the near-horizon geometry of a black p-brane for strong effective

coupling (λ >> 1); and a conformal gauge theory (or SUSY CFT) at strong coupling (ggauge >>

1) and weak effective coupling (λ << 1).

This highlights one of the main powers of the AdS/CFT correspondence: although gauge

theories at strong coupling are difficult to evaluate exactly, there exists a dual gravity theory

at weak effective coupling where calculations of physical quantities can be performed. The

example of N parallel D3-branes provides a concrete realisation of the above gauge-gravity

duality sketch, and is the prototypical example explored in Maldacena’s original paper that

proposed the AdS/CFT conjecture as a novel approach to computing large N gauge theories [6].

3.1.1 Worked example: N coincident D3-branes ↔ black extremal p = 3-
brane

First, consider the simple example of a charged extremal black hole in 4 dimensions with a

metric and the 2-form field strength Fµν (p = 1). An extremal (M = |Q|) Reissner-Nordstrom
(charged but non-rotating, J = 0) BH has the near horizon geometry of AdS2 × S2 for r →M

(for event horizon at r± = M). Rewriting the RN metric in isotropic coordinates, r = ρ +M ,

with M2−Q2

4ρ = 0 as M2 −Q2 = 0,

ds2 =
−ρ2

(ρ+M)2
dt2 +

(ρ+M)2

ρ2
(
dρ2 + ρ2dΩ2

)
. (3.1)
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Now, defining r ≡ M(1 + λ) ⇔ ρ ≡ 2λ, near the horizon r → M , λ → 0, the metric (3.1)

becomes,

ds2 =
−λ2

(1 + λ)2
dt2 +

M2(1 + λ)2

λ2
dλ2 +M2(1 + λ)2dΩ2)

→ (−λ2dt2 +M2dλ
2

λ2
)︸ ︷︷ ︸

AdS2

+M2dΩ2︸ ︷︷ ︸
S2

,
(3.2)

where it can be seen that (3.2) describes an AdS2 × S2 geometry in the near-horizon limit.

AdS2 is two-dimensional Anti de Sitter (AdS) space, embedding a hyperboloid of radius R into

R2,1.1 This can be shown diagrammatically by “zooming-in” on the near-horizon region of the

extremal RN Penrose diagram to produce the Penrose diagram of AdS2 (see Fig. 3.3).

Asymptotically, for ρ→ ∞, r → ∞, (3.1) tends to asymptotically flat Minkowski space. In

the asymptotically flat region, the field strength tensor F = dA becomes,

F = dA =
Q

r2
dr ∧ dt

=
Q

M2(1 + λ)2
dλ ∧ dt

=
1

M(1 + λ)2
dλ ∧ dt

→ dλ ∧ dt,

(3.3)

where we have usedM = |Q| in the third line, and have taken the asymptotic limit r → ∞, λ→
∞ in the final line. Hence, in the asymptotic region for a 4d extremal Reissner-Nordstrom black

hole, the EM field strength is constant.

Extending the above case to 10-dimensions with a Type-II SUSY string theory, we can

similarly solve the equation of motion (EoM) in the near-horizon limit to determine the near-

horizon geometry. For the d = 10 case with general p, there will be both electric and magnetic

fields w.r.t. the R-R charges A(p+1), due to electrically charged Dp-branes and magnetically

charged D(6− p)-branes, electrically charged under the dual potential,

dA7−p = ⋆dAp+1

⇒ F8−p = ⋆Fp+2,
(3.4)

with the corresponding (p+2)-form field strength Fp+2 = d(Ap+1). To find a black hole solution,

start with the (low-energy) effective action in the string frame,

S =
1

(2π)7l8p

∫
d10x

√
−g

(
e−2ϕ(R+ 4(∇ϕ)2)− 2

(8− p)!
F 2
p+2

)
, (3.5)

1More precisely, AdS2 is the pull-back of R2,1 metric onto the two-dimensional surface of a hyperboloid,

t2 + ω2 − x2 = L2.
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Figure 3.3: Penrose diagrams for an extremal Reissner-Norstrom black hole (left) and AdS2 space

(right) [32]. The AdS2 is a “zoomed-in” version of the full RN solution, corresponding to the

near-horizon region denoted by the dashed blue line. The shaded green region in the RN diagram

corresponds to the area covered by the Poincare chart in the AdS2 space, with the RN BH horizon at

r = r+ corresponding to the null surface denoting the horizon of the Poincare chart. The boundaries

of the near-horizon region form the 2 conformal boundaries for the AdS2 space. Note that angular

coordinates have been suppressed in both diagrams, meaning that each point represents a 2-sphere.

where ls is the string length, Fp+2 is the (p+2)-dimensional field strength, Fp+2 = dAp+1. Now,

consider the p = 3 case with the self-duality constraint (from (3.4)),

F5 = ⋆F5. (3.6)

The Dirac quantisation condition is applied to the R-R charges by considering a solution

with Euclidean symmetry ISO(p) in p dimensions,

ds2 = ds210−p + eα
p∑

i=1

dxidxi, (3.7)

so that the electric source for Ap+1 is quantised to have charge N . Assuming that the ds210−p

metric is spherically symmetric in (10−p) dimensions and, placing the R-R source at the origin,

we have that,
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∫
S8−p

⋆Fp+2 = N. (3.8)

For p = 3 and with the self-duality constraint (3.4), (3.8) gives the usual form of the Dirac

quantisation condition,

∫
S5

F5 = N. (3.9)

Hence, N appears on the gravity side of the duality as the flux of the 5-form R-R field strength

on the 5-sphere.

Using the Euclidean symmetry ISO(p), the search for a black hole solution can be reduced

to finding a spherically symmetric charged black hole solution in (10 − p)-dimensions [33–35].

In the string frame, the resulting metric for p = 3 is,

ds2 = − f+(ρ)√
f−(ρ)

dt2 +
√
f−(ρ)

p∑
i=1

dxidxi +
f−(ρ)

− 1
2
− 5−p

7−p

f+(ρ)
dρ2 + r2f−(ρ)

1
2
− 5−p

7−p , dΩ2
8−p (3.10)

where

f(ρ) = 1−
(r
ρ

)7−p
. (3.11)

The mass and R-R charge N are related to the radii r± (for p = 3),

M ∝
(
5r4+ − r4−

)
, N ∝ (r+r−)

2. (3.12)

In the Einstein frame metric, there exists an event horizon at r = r+, and a curvature

singularity at r = r− for p ≤ 6. Hence, where r+ > r−, the solution (3.10) describes a black

hole with curvature singularity at r−. For r+ < r−, there is a timelike naked singularity which

can be neglected via. Penrose’s singularity theorem. For r+ = r− ≡ R, we have an extremal

p-brane solution.

As the mass (per unit volume) M is a function of r+ and r− (3.12), the cloaked singularity

condition places a bound on the radii and M ,

r+ ≥ r− ⇒ M ≥ N

(2π)3gsl
p+1
s

, (3.13)

where gs is the string coupling constant. The lower bounds of r+ and M correspond to an

extremal p-brane, and the strictly greater than to a non-extremal black p-brane (with event

horizon at r+ > r−).

Taking r4 → r4 – R4, at the extremal limit R = r+ = r−, the solution (3.10) gives,

ds2 = f−
1
2 (−dt2 + dx21 + dx22 + dx23) + f

1
2 (dr2 + r2dΩ2

5), (3.14)
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with f = 1 + R4

r4
and R4 ≡ 4sα

′2N . Note that as gtt is non-constant, an observer approaching

the horizon at r → 0 with energy Ep is increasingly redshifted w.r.t. to the energy as seen by

an observer at infinity, E, by a factor,

E = f−
1
4Ep. (3.15)

Hence, the near-horizon geometry is a low-energy region as seen by an observer at infinity.

For the horizon at r = 0, in the near-horizon region where r << R, f ≈ R4

r4
such that the

geometry (3.10) becomes,

ds2 =
r2

R2
(−dt2 + dx21 + dx22 + dx23) +R2dr

2

r2
+R2dΩ2

5, (3.16)

which is the geometry of AdS5 × S5.2 This is valid for an extremal p-brane in the classical

supergravity limit, where the curvature of the AdS5 and S5 geometry, R, is large compared to

the string scale, ls,

R4

l4s
<
R4

l4p
<< 1. (3.17)

Using the expression for the radius (3.12), the region of validity for the near-horizon geometry

is,

R4

l4s
∝ gsN ∝ g2YMN >> 1. (3.18)

Next, we can consider the D-brane description of the extremal p-brane as N coincident D3-

branes on which open string perturbations end. In the low energy regime (for energies smaller

than the scale 1/ls), the effective theory is N = 4 U(N) SYM on the (3+1)-dimensional D-

branes [36, 37]. This description of the low energy D3-branes is valid when the effective loop

expansion parameter gsN is small such that the perturbative expansion can be trusted,

g2YMN ∝ gsN ∝ R4

l4s
<< 1. (3.19)

Hence, from the worldsheet duality, we have been able to find two different theories describ-

ing N parallel D3-branes at the low-energy limit which can be naturally identified. This leads

to the conjecture that: N = 4 U(N) SYM theory in (3 + 1) dimensions is dual to Type IIB

string theory in AdS5 × S5 [6]. The first evidence of this duality came from the calculation of

low energy graviton absorption cross sections [38–40]. This example also highlights the utility of

the conjecture. As the two sides of the duality are valid in completely distinct regimes yet give

the same results, calculations involving CFTs at strong coupling (which are difficult to evaluate)

can instead be re-expressed in terms of a classical SUGRA calculation at weak coupling (which

is easier to calculate), and vice versa.

This is the most famous example of the more general conjecture that any (super-)string

theory on a AdS×n-sphere near horizon geometry is dual to a super-CFT worldvolume theory

on the branes, which will be explored further in the next section.

2This will become apparent in section 3.2.1, where the geometry of AdS space is reviewed.
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3.2 The AdS/CFT duality

Following the discussion taken in the original proposal of the AdS/CFT duality by Maldacena

[6] in the previous section, the conjecture can now be stated more formally: certain CFTs

in d-dimensional space are dual (or physically equivalent) to certain theories of (quantum)

gravity living in asymptotic AdS space in at least one higher dimension. The most established

example of the duality is for N coincident D3-branes, for Type-IIB supergravity on AdS5 × S5

is dual to N = 4 d = (3, 1) U(N) SYM theory. More generally, it has been proposed that

the AdS/CFT correspondence is a specific example of a more general gauge-gravity duality:

a QFT in d-dimensions is dual to a theory of QG in a (d + 1)-dimensional space (with d-

dim. asymptotic boundary) [41]. This is in agreement with proposals pre-dating Maldacena’s

paper [4, 5] that suggested that theories of QG obey the holographic principle: physics in a

region can be described by a theory at the boundary. The holographic principle follows from

the Berkenstein bound (1.5) that places a maximum on the amount of entropy within a region.

As discussed later in section 3.5, the AdS/CFT correspondence offers a concrete example of the

holographic principle.

The power of the AdS/CFT correspondence comes from its ability to re-package a theory’s

degrees of freedom in order to more easily solve it. The duality has lead to rigorous definitions

of theories of quantum gravity (QG) through solving the gauge field theory side, and similarly,

strongly-coupled CFTs can be described and solved in terms of their corresponding semi-classical

supergravity theories.

The AdS/CFT duality remains a conjecture because examples have so far only been found

in the limit where quantum gravity (string theory) reduces to classical supergravity i.e. where

the gravity side has gsN ∝ λ >> 1 and N → ∞ (see Fig. 3.4). A stronger test would be to

prove the correspondence for finite gsN , N → ∞, in the regime of perturbative string theory.

A complete proof would involve checking that both sides of the duality are equal in general,

solving both strongly coupled quantum gauge field theories and full M-theory, when N is finite

instead of large, and gsN is finite (full M-theory).

Before exploring the full properties and consequences of the AdS/CFT duality, it is first

necessary to review the main features of AdS spaces and CFTs.

3.2.1 Anti-de Sitter spaces

Anti-de Sitter (AdS) spaces are the negative cosmological constant, maximally symmetric so-

lutions of the (vacuum) Einstein equations. Geometrically, a (d + 1)-dim. AdS space embeds

as a hyperboloid, radius R, in (2, d)-dimensional Minkowski space. In other words, a (d + 1)-

dimensional AdS space is the intrinsic geometry of the pull-back of the 2-time Minkowski metric

(the embedding space),

ds2 =

d∑
i=1

dX2
i − du2 − dv2, (3.20)

onto the surface of the (d+ 1)-dim. hyperboloid in Minkowski space, radius R,

d∑
i=1

X2
i − u2 − v2 = −R2. (3.21)
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Figure 3.4: The different coupling regimes of field theory and string/M- theory, and different itera-

tions of the AdS/CFT duality linking them [5].

As the geodesics of constant Xi give closed timelike curves (CTCs) generated by the Killing

vectors of u and v time coordinates, for a dynamical spacetime, want to “unwrap” these to

recover the universal cover of AdS space. First, we take a change of variables on the surface of

the hyperboloid to global coordinates, (u, v,Xi) → (t, ρ,Ωi),

u = R coshρ sinτ

v = R coshρ cosτ

Xi = R sinhρ Ωi,

(3.22)

where Ωi (for i = 1, ..., d−1) parameterises the unit sphere in (d−2) dimensions with
∑

iΩ
2
i = 1.

The CTCs correspond to rotations of τ ∈ [0, 2π]. Then, the unwrapping of AdS to recover the

universal cover is done by taking τ ∈ R.

Then, the (universal cover of the) AdSd+1 metric (3.20) in global coordinates (3.22) is,

ds2 = R2
(
−cosh2ρ dτ2 + dρ2 + sinh2ρ dΩ2

d−1

)
. (3.23)

This is a global chart that covers the entire AdSd+1 space, and hence is called the “global

AdS” metric. By performing another change of variables,

r = Rsinh(ρ) , t = Rτ, (3.24)
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the global AdS metric can be rewritten in a simpler and more manipulatable form for later

discussion of black hole entropy in AdS (in analogy to (3.14)),

ds2 = −fdt2 + dr2

f
+ r2dΩ(d−1), (3.25)

where f = r2

R2 +1. Some features of AdS space can now be discussed. The isometries of AdSd+1

are associated to the Killing vectors that generate the symmetries in the theory. For a generalised

vector containing the u, v and Xi cords of the metric (3.20) onto the hyperboloid (3.21), the

invariance of this line element is satisfied by transformations belonging to the SO(2, d) symmetry

group. Hence, the isometries of a (d+1)-dimensional AdS space live in the SO(2, d) symmetry

group.

From (3.25), can sketch the asymptotic behaviour of AdS space at small and large r. For

r << 1, AdS space tends to flat Minkowski space (in spherical cords). For r >> 1, AdS deviates

from flat space as the g00 component and spherical metric tend to ∞ as r → ∞. For a massive

particle, the behaviour of g00 = −f acts as a harmonic potential, V ∼
√
−g00 ≈ R + R

2 r,

preventing a massive particle from going out to r → ∞.

By conformally compactifying the AdS space, the asymptotic behaviour can be analysed

and illustrated in a “Penrose”-like diagram representation. In general, a metric g defined on a

manifold M with asymptotically divergent behaviour can be written as,

ds2 =
1

Ω̃2
g̃µνdx

µdxν , (3.26)

where g̃µν is a regular metric within the asymptotic region, and Ω̃ is a defining function which

goes to 0 “linearly” (such that dΩ̃ ̸= 0). Then, taking a Weyl transformation, g → g̃ = Ω2g,

the new space (M, g̃) is conformally compactified by including the set of points where Ω̃ → 0.

For (3.23), in the asymptotic limit ρ→ ∞,

ds2 → R2
(
e2ρ(−dτ2 + dΩ2) + dρ2

)
. (3.27)

Defining eρ = 1/z, such that in the limit ρ→ ∞, z → 0, the conformally compactified AdS

metric takes the form,

ds2 =
R2

z2
(−dτ2 + dz2 + dΩ2

d−1), (3.28)

where points at infinity, ρ→ ∞, are now included on the boundary of the space at finite affine

parameter, z = 0. Fig. 3.5 displays the geometry of the conformally compactified AdSd+1 space

on a cylinder, with each point representing a Sd−1 sphere and with the boundary geometry

that of the Einstein static universe, R × Sd−1 (a stationary sphere). For null geodesics, it will

take finite time to travel to the boundary at finite affine parameter and reflect back inwards.

Assuming reflective boundary conditions that allows radiation to bounce off the boundary in-

stead of escaping to infinity, the geometry of AdS space acts like a box. The boundary is purely

time-like, with massive particles taking an infinite time to reach it due to the harmonic-like

nature of the potential at large distance from the centre.
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Figure 3.5: (a) Penrose diagram for conformally compactified AdSd+1, with a conformal boundary

at z = 0 with geometry Sd−1 for a given time slice; (b) paths taken by massive (solid line) and

massless (dashed) particles in the AdSd+1 bulk. [42]

In later discussions of conformal field theories “living” on the boundary of AdS spaces, it will

be useful to consider a local patch of the global AdS space, called the Poincare chart. Taking

a coordinate transformation of (3.20) (u, v,Xi) → (t, z, xi),

u =
z

2

(
1 +

1

z2
(R2 +

d−1∑
i=1

xi − t)
)
,

Xi =
Rxi

z
,

Xd =
z

2

(
1− 1

z2
(R2 −

d−1∑
i=1

xi + t)
)
,

v =
Rt

z

(3.29)

such that the metric becomes,

ds2 =
R2

z2
(−dt2 + dz2 +

d−1∑
i=1

dx2i ). (3.30)

This describes a (d+ 1)-dimensional Minkowski spacetime (see Fig. 3.6), with (3.30) reducing

to a boundary metric describing d-dim. Minkowski at the conformal boundary z → 0,

ds2 = −dt2 +
d−1∑
i=1

dx2i . (3.31)



26 CHAPTER 3. ADS/CFT CORRESPONDENCE

(a) (b)

Figure 3.6: (a) the Penrose diagram for the Poincare chart, with the conformal boundary at z = 0

and Cauchy “horizons” associated null surfaces at z → ∞ bounding the patch; (b) the local Poincare

patch embedded in the global AdS Penrose diagram, with the red null ”leaves” corresponding to the

horizon at z → ∞. Adapted from [43].

This chart is particularly useful for considering CFTs in d-dim. Minkowski space due to the

symmetries of the space. The Poincare chart manifests the Poincare subgroup of SO(2, d)

explicitly,

Poincaré: z → z, xµ → Λµ
νx

ν − aµ. (3.32)

The AdS boundary is also invariant under dilations,

Dilation: z → λz, xµ → λxµ. (3.33)

These symmetry transformations, in addition to ”special conformal” transformations, form

the conformal group in d dimensions, which means that isometries of AdSd+1 on the d-dim.

conformal boundary (which maps points on the boundary → boundary) are equivalent to con-

formal symmetries in d dimensions. Hence, we can say that a CFT on Minkowski space in d

dimensions “lives on” the conformal boundary (z = 0) of an asymptotically AdS space (AdS

on the boundary, z = 0) in (d + 1) dimensions. This is the central relation of the AdS/CFT

correspondence, and will be motivated further in section 3.4.

3.2.2 Conformal Field Theories

Conformal field theories (CFTs) are quantum field theories (QFTs) which are invariant under

transformations belonging to the conformal group, isomorphic to SO(2, d). The conformal group
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is a larger group than the Poincare group, which also contains scale transformations (dilations)

and, for d > 2, special conformal transformations,

xµ → xµ + aµx2

1 + 2x · a+ a2x2
. (3.34)

More abstractly, the conformal group is the set of transformations that preserve angles, but not

necessarily lengths, in Minkowski space [21]. Scale invariance implies that CFTs are marginal,

where the couplings are dimensionless, and the theory is valid for all energy/length scales.

The generators, Pµ and Mµν , that form the Poincare algebra are of the usual form, with

their actions on functions and fields given by,

Pµf = iµf,

Mµνf = i(xµν − xνµ)f,

[Pµ,Φ] = iµϕ,

[Mµν ,Φ] = [i(xµν − xνµ) + ϵµν ]Φ.

(3.35)

The scale symmetry xµ → λxµ extends the Poincare algebra to include an additional scale

generator D, with an action on functions and fields given by,

Df = ixµµf,

[D,Φ] = i(xµ∂µ +∆)Φ,
(3.36)

where the second line implies that, infinitesimally, fields Φ(x) transform as Φ(x) → λ∆Φ(λx) =

Φ(x). ∆ is the (classical) mass, or engineering, dimension characterising the rescaling properties

of operators under dilations. When taking classical field theories to QFTs, the mass dimension

is promoted to the conformal dimension, and is real and positive for unitary CFTs.

The simplest example of a CFT is for a massless scalar field ϕ in (3+1)-dimensions, with

dimensionless coupling α,

S(ϕ) = −1

2

∫
d4x

√
−ggµν∂µϕ∂νϕ+ αϕ4. (3.37)

The action is invariant under scaling of the form,

xµ → xµ,

ϕ(x) → λ−1ϕ(x).
(3.38)

Although the theory is scale invariant classically, when quantising the field theory, the

introduction of a regulator at a length scale to deal with UV divergences may break the scale

invariance of the action. This follows from an additional anomalous dimension added to the

classical engineering dimension, ∆ → ∆+ γ. In the case above, directly quantising the action

(3.37) leads to Yang Mills theory in 4 dimensions, which is not scale invariant. Hence, the
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natural extension to quantum field theory for ϕ4 theory is maximally supersymmetric N=4

SYM theory, which posseses enough symmetry to remain invariant under scale transformations.

Furthermore, the scaling symmetry (x, t, z) → λ(x, t, z) in AdS space correspond to dila-

tions on the boundary, such that the AdS boundary theory must be scale invariant (i.e. no

dimensionful parameters). As all known cases of scale invariant theories are also conformally

invariant, this further motivates the theory living on the boundary of asymptotic AdS to be a

CFT.

Using the conformal dimension, a special class of operators belonging to the CFT can be

defined: primary operators. These operators transform simply under conformal transformations,

and under dilations, transform as,

O(x) → λ−∆O(x). (3.39)

A special property of primary operators is that time-ordered correlation functions involving

them take a simple form. This is allows physical quantities such as scattering amplitudes to be

defined easily. From Poincare invariance alone, the form of the 2-point correlation function for

2 operators at positions x and y is,

⟨Ω|TO(x)O(y)|Ω⟩ = f(|x− y|). (3.40)

Once the full conformal invariance is applied, the correlator becomes further constrained by the

additional symmetry and takes the form,

⟨Ω|TO(x)O(y)|Ω⟩ =
( 1

−t2 + |x− y|2 + iϵ

)∆
. (3.41)

Similarly, for 2 different operators Oi and Oj with conformal dimensions ∆i and ∆j respec-

tively, the 2 point correlation function is constrained as,

⟨Oi(xi)Oj(xj)⟩ =
in

Z

δ

δJ(xj)

δ

δJ(xi)
Z(J)|J=0, (3.42)

where J is the source for the operator O, and Z is the generating function associated with the

CFT.

Finally, an important general property of CFTs is the state-operator correspondence. For

any CFT, regardless of there being a gravity dual, there exists a map between (eigen)states on

a cylinder R× Sd−1 and operators on the flat plane Rd. Starting with the R× Sd−1 cylindrical

boundary metric for AdSd+1 (upon which the CFTs dual to the quantum gravity in the bulk

live),

ds2 = −dτ2 + dΩ2
d−1. (3.43)

Taking a Wick rotation to the Euclidean plane (Euclidean analytic continuation), τE ≡ iτ , the

boundary metric becomes,

ds2 = dτ2E + dΩ2
d−1. (3.44)
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Then this Euclidean cylinder can be mapped to a flat Euclidean plane via. the change of

variables r = eτE ⇔ τE = lnr, with the Euclidean metric (3.44) becoming that of Rd,

ds2 → d(lnr)2 + dΩ2
d−1 =

1

r2
[dr2 + r2dΩ2

d−1] ≃ dr2 + r2dΩ2
d−1, (3.45)

where CFTs are invariant under conformal transformations such that the divergent factor in

the metric can be removed via. a Weyl rescaling.

Hence, this relation maps states of the CFT living on R × Sd−1 cylinder to (primary)

operators inserted at different values of r from the origin of the flat Euclidean plane Rd, see

Fig. 3.7.

Figure 3.7: State-operator correspondence [44]. A state at time tE = −∞ on the cylinder will be

mapped to an operator at r = 0 on the Euclidean plane, whilst a state at time tE corresponds to an

operator inserted at r on the plane.

3.3 Scalar field dynamics in AdS

Finally, before providing the fully-fledged AdS/CFT dictionary relating the two sides of the

duality, the relation of certain observables in AdS space to the dual CFT’s results can be

illustrated through consideration of dynamics of fields in AdS [45]. The simplest example is of

a massive scalar field with EoM,

∆2ϕ = m2ϕ. (3.46)

Considering the Poincare chart of AdSd, the scalar field has an action,
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S = −1

2

∫
ddx

√
g
(
gab∂aϕ∂bϕ+m2ϕ2

)
. (3.47)

The goal is to compute the path integral of the scalar field theory with fixed boundary

conditions at the Cauchy horizon, z → ∞. The scalar field ϕ can be Fourier decomposed into

a sum of modes as,

ϕ(x, z) =

∫
ddkeik·xfk(z)ak. (3.48)

Focussing on a single mode, we can take a Fourier space basis for a general solution as ϕ(x) =

eikf(z), which has translation symmetry along the (conformal) boundary directions. By filling

in (3.48) into the EoM (3.46), can determine the behaviour of the function f(z),

f ′′(z)−
(d− 1

z

)
f ′(z)−

(
k2 +

m2R2

z2

)
f(z) = 0. (3.49)

The solution of this differential equation are Bessel functions,

f(z) = az
d
2h(kz)

= az
d
2Kν(kz) + bz

d
2 Iν(kz),

(3.50)

where ν2 = R2m2 + d2

4 , k =
√
kµkµ, and a, b are integration constants.

Near the conformal boundary, z ∼ 0, expanding f(z) in powers of z gives 2 independent

solutions: one that goes like f(z) ∼ z∆, and the other that goes like f(z) ∼ zd−∆. Hence, (3.50)

can be split into 2 parts,

f(z) = azd−∆(1 + ...)︸ ︷︷ ︸
leading

+ b̃z∆(1 + ...)︸ ︷︷ ︸
sub-leading

, (3.51)

where b̃ = b̃(a, b) and the ... denote higher-order contributions. ∆ obeys ∆(∆ − d) = R2m2,

with a bound placed on ∆ that follows from the BF bound on the mass squared, R2m2
BF = −d2

4 .

The mBF bound combined with the physical requirement that m2 > 0 leads to a bound on the

mass dimensions, ∆ ≥ d
2 .

In AdS space, the ∆ function is the energy of the fields, ω = ∆, whilst on the CFT side, ∆ is

the scaling dimension for operators. Due to the harmonic-like potential in AdS space discussed

previously, the fields are localised near the centre of AdS for non-zero mass, with large mass

(mL >> 1) corresponding to a sharply localised field ϕ around the centre of AdS at r = 0.

In order to completely describe the function f(z), and hence the scalar fields at the boundary,

the constants a and b need to fixed through boundary conditions. At the Cauchy horizon,

z → ∞, we require that b = 0 – this B.C. prevents any incoming radiation or matter from

outside the Poincare wedge to enter through the null surface. Note that outgoing radiation is

still allowed to escape via. the Cauchy horizon.

Fixing b = 0 at z → ∞, f(z) (3.51) reduces to,
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f(z → ∞) → azd−∆(1 + ...). (3.52)

Going back to real space, the scalar field is similarly expanded in terms of 2 independent

solutions, with leading coefficient ϕ0 and sub-leading coefficient ϕd in the expansion of ϕ(x, z)

in powers of z,

ϕ(x, z) = ϕ0(x)z
d−∆ + ϕ2(x)z

d−δ+2 + ...︸ ︷︷ ︸
leading

+ϕd(x)z
∆ + ...︸ ︷︷ ︸

sub-leading

, (3.53)

where ϕn = ∂nϕ0. Approaching the conformal boundary, z → 0, the leading part of f(z) is the

b-component expansion, which, with b = 0, means f(z) → 0 at the boundary. Hence, the two

functions ϕ0 and ϕd become related,

ϕd(x) ∼ ϕ0(x) ∼
∫
ddy

1

|x− y|2∆
ϕ0(y), (3.54)

where the x and y cords are the boundary coordinates that appear in the boundary metric for

the Poincare chart at z = 0,

ds2 =
R2

z2
(
ηµνdx

µdxν
)
. (3.55)

The action (3.47) can now be rewritten to include the boundary contributions of the space,

S =
1

2

∫
M
ddxdz

√
|g|ϕ(∇2ϕ−m2ϕ)− 1

2

∫
∂M

dSAϕ∂Aϕ, (3.56)

where M denotes the region of AdS covered by the Poincare chart, and ∂M denotes the

conformal boundary and null surfaces (Cauchy horizons) that bound the region. As the b =

0 B.C. ensures no contributions to the action from the null surface “boundaries”, only the

conformal boundary at z = 0 contributes to the boundary term.

On-shell, the first term in the action (3.56) vanishes, and the action is reduced to,

S → Son−shell = −1

2

∫
∂M

dSAϕ∂Aϕ. (3.57)

In the limit z → 0, the field expansion (3.53) means the action (3.57) becomes,

lim
z→0

Son−shell = −1

2
lim
z→0

∫
∂M

dSAϕ∂Aϕ,

= −1

2
lim
z→0

∫
ddx

(R
z

)d−1
ϕ∂zϕ,

= −1

2
lim
z→0

∫
ddx Rd−1

(
[(d−∆)ϕ20z

d−2∆ + ...]︸ ︷︷ ︸
divergent

+ [d ϕ0(x)ϕd(x)z
0 + ...]︸ ︷︷ ︸

finite

)
.

(3.58)
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From this expression, it can be seen that ϕ0 is like fixing the value of the field at the boundary

z = 0, and ϕd is like the normal derivative of ϕ0. Hence, the second boundary condition for the

region M can be imposed on the conformal boundary z = 0 by setting the field at the boundary

to tend to the leading component of the field expansion,

ϕ(x, z)|z=ϵ = ϕ0(x)ϵ
(d−∆), (3.59)

with ϵ→ 0 as z → 0.

As ∆ ≥ d/2, all the leading terms in Son−shell (3.58) up to the z0 term have divergence

of order O(1/z) as z → 0. This is resolved by a process called holographic renormalisation, in

analogy to ordinary renormalisation in QFTs. In order to cancel the divergences, a regulator

cutoff at z = ϵ is introduced that excludes the conformal boundary from the integration over

the Poincare chart region M. Then, additional boundary terms are introduced to the action,

that are functionals of the scalar field and induced metric on the regulated surface Mϵ, which

act as “counter-terms” to cancel the finite number of divergent terms, contained within Sc.t..

Finally, the regulated action and counter-terms are combined and the limit ϵ → 0 is taken to

produce the renormalised on-shell action,

Srenorm
on−shell = lim

ϵ→0

[
Son−shell + Sc.t.

]
|ϕ(x,ϵ)=ϕ0(x)ϵd−∆ . (3.60)

The divergences in Son−shell are absorbed by the counter-term action Sc.t., and taking into

account the boundary conditions ϕ0 ∼ ϕd (3.54) and (3.59), the finite, renormalised action takes

the form,

Srenorm
on−shell ∼

∫
ddxϕ0(x)ϕd(x)

∼
∫
ddx

∫
ddy

ϕ0(x)ϕ0(y)

|x− y|2∆
,

(3.61)

up to a constant coefficient. Hence, specifying the B.C. J(x) at the conformal boundary, the

scalar action can be completely determined.

3.4 AdS/CFT dictionary

We are now able to state the AdS/CFT correspondence precisely as:

A d-dim. CFT on R × Sd−1 is dual to a theory of quantum gravity living in

asymptotically AdSd+1 ×M spacetime, where M is a non-trivial, compact man-

ifold.

An alternative statement is that a CFT in d dimensions lives on the (conformal) boundary

of an asymptotically AdS space containing (quantum) gravity. As CFTs are comparatively

well-understood, the duality allows theories of quantum gravity to be formulated.
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An asymptotically AdS space is one where the spacetime tends to AdS at the boundary r →
∞, z → 0. Hence, the interior of the asymptotic AdS space contains non-trivial pertubations

of the spacetime due to matter or radiation in general. The gravity theory contained within

the asymptotically AdS space is called the “bulk”, and the CFT lives on the “boundary” of the

asymptotic AdS space.

This conjecture, although thought to hold in general for quantum gravity, has only been

shown to exist for specific CFTs in the semi-classical gravity limit (see Fig. 3.4) [6,41]. For the

conjecture to be proven, it would need to be shown for a full quantum theory of gravity, which

currently remains beyond our grasp.

The key consequence of the AdS/CFT correspondence is that every observable quantity in

the bulk theory will have a dual in the boundary theory, and vice versa. This allows a powerful

“AdS/CFT dictionary” to be built relating the physical quantities on both sides.

Following section (3.3), the AdS/CFT correspondence states that fields in the bulk gravity

theory with energy ω = ∆ are dual to a primary operator O on Rd in the boundary theory,

with scaling dimension ∆. This relation uses the state-operator map (Fig. 3.7) to take states

of the CFT on the cylindrical metric (3.43) to operators inserted on the Euclidean plane Rd.

From section (3.3), the scalar field ϕ with mass squared m2 and energy ω = ∆ is dual to scalar

operator Φ with scaling dimension ∆. Furthermore, the boundary condition on the asymptotic

AdS space at z → 0, J(x) ≡ ϕ0(x) (with mass dimension (d−∆)) is dual to a source J(x) for

the operator O in the CFT, with dimension (d−∆).

By taking the generating functionals for the bulk and boundary theories, it is seen that they

are equal,

Zgrav(J(x)) = ZCFT (J(x)) =

∫
D[grav]eiSgrav + B.C.s, (3.62)

where the integral is performed over all gravity fields. J(x) = ϕ0 is the boundary condition for

the scalar field on the gravity theory side, but J(x) is the source for the operator O on the CFT

side.

This allows physical quantities such as correlation functions to be directly compared. Explicitly,

the 2-pt. correlation function for a scalar field with source J on the bulk can be computed and

compared to the result obtained from the dual CFT (3.41).

Taking the semi-classical limit of the gravity theory, the generating function can be approx-

imated using a classical, saddle point expansion,

Zgrav(J(x)) = ZCFT (J(x)) = ⟨e
∫
ddxϕ0(x)O(x)⟩

≃ eiS
renorm
on−shell(ϕ0=J).

(3.63)

Using (3.42), we can calculate the 2-pt. function from the general expression,

⟨Φ(x)Φ(y)⟩ = − 1

ZCFT

∂2

∂J(x)∂J(y)
ZCFT [J ]|J=0

= − 1

ZCFT

∂2

∂ϕ0(x)∂ϕ0(y)
Zgrav[ϕ0]|ϕ0=0

(3.64)
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Filling in for Srenorm
on−shell (3.61) into (3.64), we obtain,

⟨Φ(x)Φ(y)⟩ = c

|x− y|2∆
(3.65)

which is precisely the CFT result (3.41) for the dual operators O and source J . Hence, to

calculate all correlation functions in a strongly-coupled CFT in general, all that needs to be

known is the dual gravitational generating functional in the semiclassical limit.

Another example of the duality is how the isometries of the AdS ×Sn space are isomorphic

to the symmetries of the corresponding CFT on the boundary. Returning to the example of

maximally supersymmetric N = 4 SUSY U(N) gauge theory in 4 dimensions dual to a Type

IIB string theory in AdS5 × S5 (section 3.1.1), the duality can be shown heuristically through

a symmetry analysis [6, 28, 41]. The gauge theory contains a global SU(4) R-symmetry that

maps the 4 fermions and 6 scalar fields in the Lagrangian onto each other. Also, SUSY SU(N)

in d = 4, N = 4, is conformally invariant such that its coupling doesn’t run, g ̸= g(E) 3. Hence,

it contains a 4-dim. conformal symmetry with group SO(2, 4). The isometries of SO(2, 4) live

naturally in 5-dim. AdS space, AdS5. As SUSY string theory naturally lives in 10 dimensions

to ensure conformal invariance, there must be 5 additional dimensions. The global R-symmetry

SU(4) ≃ SO(6) implies that the remaining dimensions can be added by a 5-sphere, S5. Hence,

it is motivated that N = 4 SYM theory is dual to a ten-dim. string theory on AdS5 ×S5. This

holds in general, with a general AdSd+1/CFTd sharing the same SO(2, d) isometry on both

sides.

Lastly, and most importantly for addressing the black hole information paradox, the AdS/CFT

duality states that the conformal boundary encodes the same amount of degrees of freedom as

the bulk theory in AdS space. As the number of degrees of freedom are encoded by the entropy

of a system, the entropy on both sides of the duality are equal. The relation of holography and

entropy will be outlined in the next section, with a generalised formula for the entropy of black

holes introduced in section 2.

3.5 Holography and entropy

As introduced in the section above, the AdS/CFT correspondence is a specialised case of the

more general gauge-gravity duality [41] which states that; any QFT in d-dim is dual to a theory

of QG in (d+1)-dimensions with an asymptotic boundary in d-dim. (plus boundary conditions).

Prior to the development of AdS/CFT, it had been suggested by ‘t Hooft [4] and Susskind [5]

that theories of QG should exhibit holography: the physics of a theory in a region is equivalently

described by a theory on the boundary, with no more than one degree of freedom per Planck

area. This was motivated, and first realised, by the Berkenstein-Hawking entropy (1.4) for

black hole entropy, with the degrees of freedom solely dependent on the area of the event

horizon. Berkenstein first formulated the holographic principle in terms of a minimum entropy

bound, stating that the minimum entropy of some region is given by the area of the region in

Planck units [3]. Otherwise, a finite region of spacetime could contain an arbitrary amount of

information, and hence, infinite energy.

3Although scale invariance of a theory doesn’t imply conformal invariance in general, it holds for all known

cases.
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At first glance, the foundational premise of the AdS/CFT correspondence raises questions:

how can a (d+ 1)-dim. bulk theory be related to a d-dim. boundary theory? Naively, it would

appear that there are more degrees of freedom in the bulk theory than the boundary theory

due to the additional dimension. However, by calculating the entropy on both sides of the

correspondence as a function of each theories’ effective temperature following [41], we will see

that the result is the same, up to a constant coefficient.

First, for the CFT, introduce an effective temperature T for the gas of particles contained

on the boundary. If a theory has only massless fields with no scale dimensions, then the entropy

scales as S ∼ Vd−1T
d−1. Then, as scalar invariance nearly always implies conformal invariance,

and for the effective temperature T >> R,

SCFT ∼ cT d−1, (3.66)

where R is the radius of curvature of Sd−1, and c is a constant dependent on the number of

fields in the theory.

For the bulk theory, the particles in the AdS region can be modelled as a gas of massless

gravitons that mediate the gravitational interactions, with the entropy scaling as Sgrav ∼ VdT
d.

Considering a finite region with r ∼ 1, we get a lower bound on the entropy, Sgrav > T d, as

other fields have been excluded.

Hence, for large enough T , the entropy of the CFT on the boundary, (3.66), will exceed

the lower bound on the entropy of the gravitons in AdS, SCFT < Sgrav. Hence, we have an

apparent contradiction of the AdS/CFT correspondence as the two values for the entropy are

incompatible in general.

However, this contradiction is easily resolved by noting that, as the bulk theory contains

gravity, the formation of BHs must be accounted for which will give a lower bound on the

entropy in the AdS space. BHs in AdS take the form [46–48],

ds2AdSd+1
= R2

[
−
(
r2 + 1− rd+r

d−2
)
dτ2 +

dr2(
r2 + 1− rd+

rd−2

) + r2dΩ2
d−1

]
, (3.67)

where the event horizon is at r+, with r
d
+ = 2gm, and g is a constant proportional to Newton’s

constant in units of the AdS radius of curvature, g ∼ Gd
N+1

Rd−1 . We define the radius that the gas

of gravitons extends as rz ∼ T , and the mass of the graviton gas as m ∼ T d+1. Then rewriting

the AdS black hole metric (3.67) in terms of f = r2 + 1– 2gm
rd−2 , for large r >> 1, f → r2– 2gm

rd−2 .

For the Schwarzschild radius, rs, defined for f = 0, it is then seen that,

rds ∼ gm ∼ gT d+1. (3.68)

Hence, rs > rz for large enough temperatures, T > 1/g. Hence, the earlier entropy calcula-

tion of Sgrav isn’t valid in the limit of large temperature as the gas of gravitons would condense

into a black hole, with Schwarzschild radius rs. Hence, in the large T limit, for rs > rz, need

to consider the black hole entropy as opposed to the gas of gravitons which, in analogy to the

B-H entropy (1.4) takes the form,
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Sbulk ∼ rd−1
s

g
. (3.69)

The Hawking temperature for large black holes T ∼ rs can also be generalised, such that the

entropy for the AdS bulk is given by,

Sbulk ∼ T d−1

g
. (3.70)

This is consistent with the entropy calculated for the CFT at the boundary (3.66), fulfilling

the AdS/CFT correspondence. Enforcing equality of the two sides of the duality gives a relation

for the constant c,

c ∼ 1

g
∼ Rd−1

G
(d+1)
N

. (3.71)

Hence, the AdS/CFT correspondence connects the entropy of black holes in the AdS bulk

(that dominate at high energies) with the entropy of a thermal CFT on the boundary. Several

important implications follow from this connection. Firstly, this provides evidence that the

AdS/CFT correspondence realises the holographic principle, with the degrees of freedom of

the bulk internal space described by the entropy of the AdS region equivalent to an ordinary

thermal gas in a CFT. Also, as the BH dynamics is dual to an ordinary thermal state in a

unitary CFT, this shows that BHs are consistent with quantum mechanics and unitarity.



Chapter 4

Holographic Entanglement Entropy

and the Page Curve

Having introduced the AdS/CFT correspondence as a realisation of the general holographic

principle for theories of QG in spacetime, and demonstrated that the entropy of a black hole in

AdS space matches that of the dual CFT living in one lower dimension, it is natural to attempt

to apply AdS/CFT to the calculation of black hole entropy evolution introduced in Chapter 2.

Previously, the entropy of a region of space containing a BH was given by a generalised

entropy made up of the entropy of the BH region, SB−H , and the entropy of the quantum fields

outside of the BH, Soutside,

Sgen =
Area

4GN
+ Soutside, (4.1)

where Sgen is the coarse-grained entropy and obeys the generalised second law of thermody-

namics (1.1), which states that Sgen is non-decreasing with time.

In the semi-classical limit of quantum gravity, where the spacetime is reduced to quantum

fields living on a classical (GR) curved geometry, the generalised entropy formula (4.1) can

be made more precise by taking into account the contribution of the quantum fields explicitly

through the fine-grained entropy, SvN ,

Sgen =
Area

4GN
+ SvN + ... (4.2)

where ... denotes additional counter-terms at higher order, O(ℏ). (4.2) is correct to leading

order in GN , and Sgen again obeys the second law of thermodynamics.

In order to describe the dynamics of the black hole and fully analyse the information paradox,

we also need to formulate the fine-grained entropy for the black hole. However, as the fine-

grained entropy requires knowledge of the interior of the black hole in order to define the

density matrix, and hence must take into account quantum gravity effects present close to the

singularity, it is not yet known how to calculate the fine-grained entropy directly using (2.15).

However, in 2006, Ryu and Takayanagi [10] developed a method in which the AdS/CFT cor-

respondence is utilised to translate the calculation of the fine-grained entropy on the boundary

of the black hole to a dual bulk theory in one higher dimension, in which the entropy is coined

the holographic entanglement entropy (HEE).

37
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4.1 Holographic Entanglement Entropy

Inspired by the microscopic derivation of the Berkenstein-Hawking entropy using string theory

on BPS black holes, which recovers AdS/CFT in the near-horizon limit of the geometry, Ryu

and Takayanagi sought to extend the correspondence of coarse-grained entropy in AdS/CFT to

entanglement entropy. In light of the AdS/CFT correspondence and earlier work [49, 50], they

proposed an entanglement entropy duality in 2006 [10]. This is stated as:

The entanglement entropy of a subsystem A, SA, in a CFT on R1,d (or R × Sd)

with a d-dimensional boundary ∂A ∈ Rd (or Sd) is given by an area law,

SA =
Area(γA)

4G
(d+2)
N

, (4.3)

where γA is a d-dim. (co-dimension 2) static, minimal area surface in AdSd+2

with associated d-dimensional boundary ∂A = ∂γA and γA ∼ A (homologous);

and G
(d+2)
N is Newton’s constant in a (d+ 2)-dimensional gravity theory.

This area law is called the RT formula, and SA is commonly called the holographic entan-

glement entropy as it manifests the holographic principle.

The RT formula takes a form similar to the B-H entropy, with γA acting as a “holographic

screen” for an observer in A, blocking all subsystems complementary to A in the same way the

event horizon for a black hole blocks the interior for an outside observer. This similarity formed

original motivation for the holographic entanglement entropy formula. As the RT formula takes

into account quantum corrections, it can be viewed as a generalisation of the black hole entropy

given by the Berkenstein-Hawking formula, with the B-H formula recovered in the presence of

an event horizon i.e. AdS Schwarzschild black hole solutions [51].

Furthermore, the intuitive interpretation of the entanglement entropy SA, which “smears

out” region B, as the entropy for an observer in A unable to access B informed the proposal

of (4.3). In AdS space, the inaccessibility of the observer to region B corresponds to a region

of the bulk space AdSd+2 hidden by a “horizon” given by a surface γA. In analogy with the

B-H formula, the holographic formula places an entropy bound on the region contained by the

surface proportional to its area [52,53]. Hence, by minismising the surface γA, SA saturates the

entropy bound [4,5, 52,53].

The RT formula exhibits the key properties of entanglement entropy, namely SA = SB, where B

is the complementary subsystem to A, as γA is shared by both regions; and SSA (2.21), where

for 3 regions A, B and C: (a) SA∪B + SB∪C ≥ SA∪B∪C + SB; and (b) SA + SC ≤ SA + SB. The

first condition of strong subadditivity can be proven geometrically [22]: in the bulk theory, the

minimal surfaces γA∪B and γB∪C bound an area equal to that contained by the (non-minimal)

surfaces γ′A∪B∪C and γ′B, see Fig. 4.1(a). However, by considering the alternative surfaces

γA∪B∪C and γB, the area contained by γ′A∪B∪C and γ′B is minimised. As the area of minimal

surfaces of a region are proportional to the region’s entanglement entropy through the RT

formula,
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Area(γA∪B) +Area(γB∪C) = Area(γ′A∪B∪C) +Area(γ′B) ≥ Area(γA∪B∪C) +Area(γB)

⇒ SA∪B + SB∪C ≥ SA∪B∪C + SB
(4.4)

where the second line follows by dividing through by G
(d+2)
N . A similar process can be performed

for the second relation of SSA (see Fig. 4.1(b)).

Figure 4.1: Digaram showing a holographic proof of the strong subadditivity conditions of entangle-

ment entropy for each relation (a) (upper) and (b) (lower). The diagrams are simplified by projecting

the AdSd+2 space onto a two-dim. plane. [51]

The RT formula can be proven heuristically through a technique called the replica trick. The

replica trick is a method to calculate the entanglement entropy in QFTs using a new type of

entropy that takes the form of a path integral over n sheets,

S
(n)
A =

1

1− n
logTrA(ρ

n
A). (4.5)

This is called the Re’nyi entropy. ρA is the reduced density matrix for the subsystem A and

n is analytically continued from Z+ → R+. In the limit of n→ 1, the Renyi entropy reduces to

the entanglement entropy,

SA = lim
n→1

S
(n)
A = lim

n→1

TrA(ρA)
n − 1

1− n

= − ∂

∂n
TrA(ρA)

n

= − ∂

∂n
log

(
TrA(ρA)

n
)
|n=1.

(4.6)
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Hence, in order to calculate the entanglement entropy of a QFT, we have to evaluate Tr(ρnA)

[51]. This can be done by using a path integral formalism to compute ρA, then taking a

functional integral over the n-sheeted Riemannian surface to compute the Renyi entropy.

The subsystem A is defined at a constant (Euclidean) time slice tE = 0 in flat Euclidean

coordinates (tE , Rd−1) as a finite interval in the (d − 1) spatial coordinates x ∈ [u, v], which

is represented as a “cut” in the path integral representation of the reduced density matrix (see

Fig. 4.2(a)). For a scalar field ϕ(x) of the QFT in the region A, we impose boundary conditions,

ϕA(x)|t=0± = ϕ±(x), (4.7)

for boundaries tE = ±0 of the branch cut, such that the result of the path integral is projected

onto definite field values ϕ±. The ground state wave functional Ψ(ϕ±, t) = ⟨ϕ±(x), ϕ(t)⟩ is

defined by the path integral from tE = −∞ to tE = 0,

Ψ(ϕ0(x)) =

∫ ϕ(tE=0,x)=ϕ0(x)

tE=−∞
Dϕe−S(ϕ). (4.8)

This leads to the reduced density matrix of the region A (with boundary conditions ϕ±),

[ρA]ϕ± = [TrB(|Ψ⟩⟨Ψ|)]ϕ± = Ψ(ϕ+)Ψ̄(ϕ−), where the complex conjugate Ψ̄ is obtained by path

integrating from tE = ∞ to tE = 0. Integrating ϕ on x ∈ B with the condition ϕ±(x) = ϕ∓(x),

[ρA]ϕ± =
1

Z1

∫ tE=∞

te=−∞
Dϕe−S(ϕ)

∏
x∈A

δ(ϕ(0+, x)− ϕ+(x)) · δ(ϕ(0−, x)− ϕ−(x)), (4.9)

where Z1 is the vacuum partition function on the d-dimensional Euclidean geometry, necessary

to normalise ρA such that Tr(ρA) = 1. To calculate Tr(ρA)
n, the path integral in (4.9) is

extended to n copies,

TrA(ρA)
n = [ρA]ϕ1± [ρA]ϕ2± ...[ρA]ϕn± . (4.10)

This can be viewed in the path-integral formalism as gluing each of the lower boundaries of

the ith copy to the upper boundaries of the (i+ 1)th-copy, ϕi(x) = ϕ(i+1)(x) for (i = 1, 2, ..., n),

and integrating ϕi over the n-sheeted Reimann surface, Rn (see Fig. 4.2(b)). This Rn space

has a deficit angle δ = 2π(1 − n) on the surface ∂A. Hence, TrA(ρA)
n is given by the path

integral over the n-sheeted Reimann surface,

TrA(ρA)
n = (Z1)

−n

∫
(tE ,x)∈Rn

Dϕe−S(ϕ) ≡ Zn

(Z1)n
, (4.11)

where Zn is the partition function on the n-sheeted Reimann surface.

Calculating the entanglement entropy analytically from (4.5) is possible at low dimensions,

and has been performed for 2-dimensional CFTs to recover the expected entanglement en-

tropy [54–57]. However, analytical calculations of SA quickly become complicated for higher

dimensions, although numerical analysis is possible for certain cases [57,58].
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Figure 4.2: (a) the path integral representation of [ρA]ϕ± , with boundary conditions ϕ+ and ϕ− on

the cut defined within region A; (b) The n-sheeted Riemann surface Rn over which the ϕi’s are

integrated over. [51]

The calculation of S
(n)
A is simplified by considering the AdS/CFT dictionary relation for the

partition functions on either side of the duality, Zn = ZCFT = Z
(n)
AdS = e−iSgrav , where the final

equality follows from the semi-classical gravity limit. In order to define the partition function

on the AdSd+1 bulk space, a (d + 1)-dimensional back-reacted geometry Sn is needed, found

by solving the Einstein equation with a negative cosmological constant such that the metric

approaches the n-sheeted space Rn at the boundary z → 0 [51]. In general this is technically

complicated, so to simplify, a natural assumption can be taken that the back-reacted geometry

Sn is given by an n-sheeted AdSd+1, with the deficit angle δ localised on a co-dimension 2

surface γA [59]. This leads to the Ricci scalar in the bulk, R = 4π(1 − n)δ(γA) + R(0), where

R(0) is the Ricci scalar of the pure AdSd+1 gravity theory (no matter fields) and δ(γA) is a delta

function localised around γA, such that δ(γA) = ∞ for x ∈ γA and is zero otherwise. Filling the

Ricci scalar into the supergravity action (with corrections to the bulk Einstein-Hilbert action

cancelling in 4.11),

logZ
(n)
AdS = SAdS = − 1

16πG
(d+2)
N

∫
M
dxd+2√g(R+ Λ) + ...

=
4π(1− n)Area(γA)

16πGd+1
N

− 1

16πGd+1
N

∫
dd+1x

√
−g(R(0) + Λ) + ...,

(4.12)

where M is the time-slice of the bulk AdSd+1 spacetime, and the last equality follows from

the AdS/CFT duality. Then, using (4.6), and substituting the expression for log(Zn) =
(1−n)Area(γA)

16πGd+1
N

into (4.6),
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SA = − ∂

∂n
log

(
TrA(ρA)

n
)
|n=1 = − ∂

∂n

[
(1− n)Area(γA)

4Gd+2
N

]∣∣∣∣
n=1

=
Area(γA)

4Gd+2
N

. (4.13)

Thus, we have reproduced the holographic RT formula for entanglement entropy, (4.3). Note

that this derivation relies on the assumption of the back-reacted geometry Sn, which has been

shown for AdS3 but not higher dimensional AdS/CFT [51].

4.2 Calculating entanglement entropy from the RT formula

The holographic RT formula can now be applied to CFTs for which their holographic dual is

known. One of the simplest examples of the correspondence is AdS3/CFT2 [6], where entangle-

ment entropy can be calculated following [10].

4.2.1 Entanglement entropy of CFT2: Zero Temperature

In global coordinates, the metric for AdS3 in global coordinates is,

ds2 = R2
(
−cosh2(ρ)dτ2 + dρ2 + sinh2(ρ)dθ2

)
, (4.14)

which is divergent at the conformal boundary ρ = ∞. In order to regulate physical quantities, a

cut-off ρ ≤ ρ0 is introduced to restrict the space. The introduction of the AdS cut-off is related

to the dimensionless UV cut-off of the dual CFT, δ−1 = L
a ∼ eρ0 , where a is the lattice spacing

(short-distance/UV cutoff) and L is the total length of the system. As discussed in section 3.4,

a two-dimensional CFT lives at the (regularised) boundary of the AdS3 space at ρ = ρ0, with

the boundary geometry described by coordinates (τ, θ) and hence taking the form of a cylinder,

R× S1, see Fig. 4.3.

Using the metric (4.14) for a fixed time slice (dτ = 0) with the cut-off constraint ρ ≤ ρ0,

the length of the geodesic can be determined as,

∫
ds =

∫
dλ = λ∗, (4.15)

where LAdS is defined by,

cosh(λ∗/R) = 1 + 2sinh2ρ0 sin
2

(
πl

LAdS

)
. (4.16)

For a large UV cutoff, a << 1, eρ0 >> 1,

Area(γA) = R log

(
e2ρ0sin2

(
πl

LAdS

))
(4.17)

Hence, the entanglement entropy given by the holographic formula (4.6) can be found in the

cut-off limit as,
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SA =
R

4G
(3)
N

log

(
e2ρsin2

(
πl

LAdS

))
=
c

3
log

(
eρsin

(
πl

LAdS

))
. (4.18)

Taking eρ0 ∼ L/a, this is the same form as the known 2d CFT result [55, 60], including

coefficients once the central charge, c = 3RAdS/2G
(3)
N [61], is recalled,

SA =
c

3

(
L

πa
sin

(
πl

L

))
. (4.19)

Figure 4.3: (a) Penrose diagram of AdS3 space, with region B bounded by the conformal boundary

and the minimal surface γA; (b) γA acting as a holographic screen for an observer in region A. [10]

The same analysis can also be performed using Poincare coordinates of AdS, defined by the

metric,

ds2 =
L2

z2
(−dt2 + dx2 + dz2) (4.20)

As before, a UV cut-off z ∼ ϵ is imposed. In this case, the (conformal) boundary metric at

z ∼ ϵ describes a 2-dim. Minkowski spacetime, topologically R1,1. Taking a time-slice at the

boundary, the region A can be defined by a line element of length l, A = {r, r ∈ (−l/2,+l/2)}.
In this case, it follows from the boundary metric that the minimal geodesic line γA is a half

circle in the rz-plane, (r, z) = l/2(cos(ϕ), sin(ϕ)) for ϵ ≤ ϕ ≤ π− ϵ, where ϵ ∼ 2a/l << 1 is the

UV cutoff. As before, the area of the one-dimensional geodesic is its length LγA ,

LγA = 2R

∫ π/2

ϵ

dϕ

sinϕ
= −2Rlog

(
ϵ

2

)
= 2R log

(
l

a

)
. (4.21)

This leads to the entanglement entropy SA obtained from (4.3),

SA =
LγA

4G
(3)
N

=
c

3
log

(
l

a

)
. (4.22)



44 CHAPTER 4. HOLOGRAPHIC ENTANGLEMENT ENTROPY AND PAGE CURVE

This reproduces the expected small l limit of (4.19), corresponding to the region of AdS covered

by the Poincare chart.

4.2.2 Entanglement entropy of CFT2: Finite Temperature

The entanglement entropy can also be considered in CFT2/AdS3 for finite temperature, T =

1/β ̸= 0. Assuming the size of the system, characterised by its spatial length L, is infinite (such

that β/L << 1), at high temperatures, T >> 1, the gravity dual of the two-dimensional CFT

is the Euclidean BTZ black hole [62], with metric given in global coordinates (τ, ρ, ϕ) as,

ds2 = (r2 − r2+)dτ
2 +

R2

r2 − r2+
dr2 + r2dϕ2. (4.23)

The Euclidean time is compactified to ensure a smooth geometry, τ ∼ τ + 2
r+

, where r = r+
denotes the event horizon of the black hole. Also, periodicity of ϕ is imposed, ϕ ∼ ϕ + 2π.

Taking the boundary limit r → ∞, the boundary CFT and the asymptotically AdS geometry

of the metric (4.23) are found to be related through,

β

L
=

R

r+
<< 1. (4.24)

The subsystem A is defined as the region 0 ≤ ϕ ≤ 2πl/L at the boundary of the bulk.

Extending the RT formula (4.3) to include minimal surfaces in asymptotically AdS spaces, the

geodesic length of the minimal surface γA connecting the points on the boundary at ϕ = 0,

2πl/L gives the area of the minimal surface as before. The geodesic line can be found by

recalling that the Euclidean BTZ black hole at temperature TBTZ is equivalent to thermal

AdS3 at temperature TBTZ via. a modular transformation in the CFT [63]. By taking a change

of coordinates in the metric (4.23),

r = r+cosh(ρ), τ =
R

r+
θ, ϕ =

R

r+
t, (4.25)

the Euclidean BTZ black holes metric goes to the Euclidean Poincare coordinates metric. From

this new form of the metric, the geodesic distance can be found in the same way as the 2 prior

cases, with the length of the geodesic given by,

cosh

(
λ∗
R

)
= 1 + 2cosh2ρ0 sinh

2

(
πl

β

)
, (4.26)

where the UV cut-off is of the form eρ0 ∼ β/a. Finally, from the holographic formula (4.3), the

entanglement entropy for an observer in region A reproduces the known CFT result [54],

SA =
c

3
· log

(
β

πa
sinh

(
πl

β

))
. (4.27)

Note that as a consequence of the finite temperature of the system, the entanglement entropy

of subsystem A is not always equal to that of subsystem B, SA ̸= SB. This is expected from the

properties of entanglement entropy, as states with finite temperature are mixed. This can be
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understood geometrically from how the minimal surfaces of each of the regions evolves as the

size of A, l, changes (see Fig. 4.4(a)). When A is small, the geodesic line is almost the same as

for ordinary, zero temperature AdS3. As the size of A increases, a turning point of the geodesic

line approaches and covers part of the horizon. At this point, γA and γB are no longer equal,

and hence SA ̸= SB in the presence of a horizon (see Fig. 4.4(b)). This is the origin behind the

thermal behaviour of entropy when l/β >> 1.

Figure 4.4: (a) minimal surfaces γA for different sizes of A in the BTZ BH system;(b) γA and γB
wrap different parts of the BH horizon. [58]

Furthermore, the single interval covered by A can be extended to a subsystem consisting of

multiple disconnected intervals,

A = {x|x ∈ [r1, s1] ∪ [r2, s2] ∪ ... ∪ [rN , sN ]}. (4.28)

Then, each interval will have an individual minimal surface, with the total entanglement

entropy calculated over of all of these contributions,

SA = min

(
c

3

∑
i,j

log
|si − rj |

ϵ

)
. (4.29)

4.3 The Hubeny-Rangamani-Takayanagi formula

The holographic RT formula for entanglement entropy (4.3) explored in the previous section

provides a simple, geometric way to calculate the entanglement entropy in static spacetimes

with no time evolution. The symmetry under time translations of the AdS spacetime studied

by RT is due to the selection of a preferred Cauchy slice whose geodesics lack time dependence.

However, for a dynamical quantum system, i.e. black hole evaporation, we want to consider

how the entropy evolves in time. Hence, for dynamical, covariant situations, an extension of

the existing definition of the holographic dual of the entanglement entropy is needed, involving

a fully covariant generalisation of the minimal surface and the RT formula.

In 2007, Hubeny, Rangamani and Takayanagi (HRT) proposed a generalisation to the RT

formula [11]: the entanglement entropy for a region on the CFT boundary of an asymptotically
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AdS space is determined by the area of a co-dimension two surface in the bulk, where the surface

is now defined on a covariant Cauchy surface rather than a constant time slice.

The definition for the covariant surface defining the entanglement entropy in dynamic space-

times can be motivated by first considering a näıve generalisation of the minimal surface given in

the RT prescription. First, consider a time-dependent version of the AdS/CFT correspondence

where the region A on the boundary CFT is in a time-evolving state on a fixed background ∂M,

such that the bulk geometry M has explicit time-dependence [11]. As the boundary geometry

is non-dynamical, a foliation in equal time-slices, ∂M = ∂Nt × Rt, can be chosen. Choosing

a region At ∈ ∂Nt living on a given time-slice at time t, the entanglement entropy can be

calculated using the path integral formulation in section (4.1).

In order to generalise the holographic formula (4.3) to dynamic spacetimes, we need to

consider how the entropy can be calculated in the bulk theory. The key issue is how to define the

generalisation of the minimal surface to covariant situations. In static spacetimes, the minimal

surfaces used to calculate the entanglement entropy are typically associated with Euclidean,

rather than Lorentzian, geometries. Minimal surfaces in Lorentzian spacetimes are difficult to

define as the area can be made arbitrarily small by compressing a spacelike surface in the time

direction, leading to indefinite metric signatures. This issue was dealt with in the above static

spacetime examples by restricting the system to a constant time slice. However, in a dynamic

Lorentzian setting, equal-time foliation on the boundary ∂M doesn’t automatically lead to a

canonical (naturally symmetric) foliation of the bulk M.

Assuming that a natural foliation of M has been selected, the entanglement entropy can

be computed by extending the time-slices ∂Nt from ∂M to a preferred spacelike slice Nt of

M. As the metric on Nt is spacelike, the “minimal surface” is well-defined. Then, applying

the holographic principle, a minimal surface S ∈ N can be found that satisfies ∂S|∂M = ∂A.

Hence, we need to search for a covariantly-defined spacelike slice of the bulk Nt upon which to

define a minimal surface in the dynamic bulk theory, which is “anchored” at ∂Nt and which

reduces to a constant time-slice for a static bulk.

Although it is expected that there is no preferred time-slicing of M, asymptotically AdS

spacetimes permit a nature foliation by zero mean curvature slices, which are slices with vanish-

ing trace of extrinsic curvature [11]. Physically, these are maximal area spacelike slices through

M, anchored at ∂N , and denoted by Σt. These maximal-area slices are well defined, as the

slices have co-dimension 1 to the bulk theory, which means no “crumpling” of the surface in

spatial directions can take place as the slices extend over all spatial directions. Also, the area of

the slices, which are naively divergent due to the infinitely asymptotic AdS space, are regulated

in the UV limit.

Hence, the Σt slices allow the construction of minimal area surfaces anchored at ∂At. From

this the entanglement entropy for the region A can be calculated by: finding a maximal slice

in the bulk agreeing with the spacelike foliation of ∂M; and then finding a minimal surface X

living on the maximal slice. Finally, the HRT proposal for the entanglement entropy SA of a

system A living on the CFTd is given by,

SA = min

(
Area(Xext)

4Gd+1
N

)
, (4.30)

where Xext is a co-dimension 2 extremal (with zero null geodesic expansion) surface in the bulk

M. X satisfies the 3 conditions for being dual to the entanglement entropy of A: (1) covariantly
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well-defined; (2) anchored by ∂A, ∂X|∂M = ∂A; and (3) reduces to the minimal surface when

the spacetime is static.

4.4 A generalised gravitational entanglement entropy formula

We are now in a position to apply the RT/HRT prescription to define a generalised entanglement

entropy for a gravitational system which will lead to the unitary Page curve when applied to

evaporating black holes and Hawking radiation.

Using the holographic principle, the generalised entanglement entropy for a gravitational

system containing quantum corrections can be refined from the section introduction (4.2) such

that in a semi-classical setting, to order O(ℏ0) in the bulk,

SR =
⟨A(X)⟩
4GNℏ

+ Sbulk(X) + counter-terms = Sgen(X), (4.31)

where X is the codimension 2 extremal surface in the bulk found through the HRT prescription

above, SR is the entanglement entropy of the region R on the boundary CFT, and Sbulk is the

bulk entanglement entropy across the surface X. This was proposed for static spacetimes, and

valid only to leading order in quantum corrections, by Faulkner, Lewkowycz and Maldacena

(FLM) [64]. This has been proved to order O(ℏ0) by considering quantum corrections to the

Euclidean gravitational path integral [65].

The FLM result was further generalised by Engelhardt and Wall (EW) in 2015 [12] to dy-

namic spacetimes and higher order quantum corrections through the introduction of a quantum

extremal surfaces (QES). The idea is that in the EW prescription, the area Area(X) should be

extremised with respect to the entire generalised entropy (4.31) (including the quantum correc-

tions), as opposed to only the area being extremised following the RT/HRT prescription, with

the quantum correction term added after, as proposed by FLM. The EW approach gives rise

to QESs that are defined such that their area extremises the whole generalised entropy (4.31).

Hence, the generalised entanglement entropy of the region A on the CFT boundary, correct to

any order in O(ℏ), is expressed as,

SA = minXA

{
extX

[
A(X)

4GNℏ
+ SvN (ΣX)

]}
, (4.32)

where XA is the co-dimension two quantum extremal surface in the bulk which extremises the

generalised entropy, with ∂XA = ∂A and XA ∼ A; ΣX is the region bounded by XA and the

cut-off surface separating the regions in the bulk (i.e. the boundary separating the black hole

region and the radiation region in a BH-radiation system); and SvN (ΣX) is the von-Neumann

entropy of the quantum fields on the ΣX surface. The extremisation of the generalised entropy

Sgen = Area(XA)/4GN + SvN (ΣX) is performed by starting with an extremal surface outside

the BH and bringing it in past the event horizon to minimise Sgen.

4.5 Computing the entropy of a black hole

By assuming the central dogma to formulate a black hole system as a quantum system with

the number of degrees of freedom proportional to the region’s area, it is natural to apply the
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entanglement entropy formula (4.31) to the BH-radiation system described in section 1. In this

case, the entropy (4.32) is that measured by an observer in the exterior of the black hole region,

who is only able to access the Hawking radiation degrees of freedom. As such, the surface ΣX

can be understood in the BH-radiation system as the region spanning the surface X and the

black hole region boundary, close to the event horizon. Hence, the formula (4.32) can be applied

to the BH-radiation system to compute how the entropy evolves under black hole evaporation,

and determine whether the entropy follows the unitary Page curve [16]. In this section, we will

follow the method taken in the review [16] alongside the original papers [13,14].

Consider a unitary process that forms a BH in a pure state. After the BH forms, at early

times before any Hawking radiation is emitted, no extremal surfaces are found by deforming X

inwards, such that the entropy is minimised for a trivial surface at the centre r = 0 (see Fig.

4.5 (left)). This means that the area term in the generalised entropy vanishes and, as the BH

remains in a pure state, the entanglement entropy SvN is zero. Hence, the total entanglement

entropy of the initial BH system (prior to entanglement) is zero. Ignoring the effects of Hawking

radiation, this result is invariant under time evolution, in contrast to the B-H entropy which

goes from zero initially to 4πr2s once the black hole forms. This highlights the nature of the

B-H entropy as a bound on the entropy within an arbitrary region of spacetime, rather than

the entropy followed by physical (unitary) processes.

Once the BH starts emitting Hawking radiation and evaporating, SvN becomes finite as the

BH transitions from a pure state to mixed with the emission and entanglement of radiation

modes with degrees of freedom in the BH interior. As the black hole evaporates, SvN continues

to increase in line with the entropy of the emitted Hawking radiation due to increased interior

degrees of freedom. If the trivial extremal surface is maintained over the BH evaporation, the

entropy of the BH SBH = SvN can obtain an arbitrary entropy that exceeds the Berkenstein

bound as for the coarse-grained entropy, violating unitarity and the central dogma (see Fig. 4.5

(right)).

Figure 4.5: For trivial X, the entanglement entropy Sgen (green) calculated over the vanishing surface

(left) increases monotonically due to the accumulation of entangled modes in the BH interior, whilst

the thermodynamic entropy (dashed) declines as the BH evaporates (right). [16]

However, as Hawking radiation is emitted and the entanglement entropy rises, a new, non-

trivial extremal surface emerges that replaces the trivial surface at r = 0 to minimise the

entropy of the BH (see Fig. 4.6 (left)). As entangled degrees of freedom in the interior begin

to build up, the trivial extremal surface shifts to one close to the event horizon of the black
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hole. This means that some of the entangled modes within the interior no longer live within

the region ΣX bounded by the new non-trivial surface and the cut-off surface of the BH region.

This is equivalent to “purifying” some of the interior modes by no longer considering them

in isolation as mixed states contributing to the entanglement entropy. Hence, although the

area term in the generalised entropy increases for the non-trivial surface, this is countered by a

decrease in the von-Neumann entropy, such that the extremal surface X is switched from the

trivial to non-trivial surface. Following the formation of the non-trivial surface at a scrambling

time ts = rslogSB−H , the area term in the generalised entropy dominates due to X being

located close to the event. Hence, at late times after t ∼ ts, the generalised entropy follows

the evolution of the thermodynamic entropy of the BH, saturating the Berkenstein bound and

decreasing proportional to the area of the BH horizon (see Fig. 4.6 (right)).

Figure 4.6: For non-trivial X forming a non-vanishing surface after the scrambling time, the en-

tanglement entropy Sgen decreases (right) as the black hole evaporates and the surface evolves

(left). [16]

Hence, by applying the entanglement entropy formula (4.32) and maxi-minimisation pro-

cedure, the fine-grained entropy of the BH will follow an increasing phase initially due to the

vanishing extremal surface, and then a decreasing phase due to a non-vanishing surface (see

Fig. 4.7). The time of the transition between extremal surfaces is called, suggestively, the Page

time and takes the form of the Page curve (Fig. 2.3) required from unitary BH evaporation.

Therefore, the BH entanglement, or fine-grained, entropy follows the unitarity Page curve.

4.6 Entropy of Hawking radiation

Whilst we have now confirmed that the evolution of a black hole follows the unitarity Page curve,

this doesn’t directly address the black hole information paradox. The entropy measured by an

outside observer is that of the Hawking radiation, hence, in order to resolve the information

paradox, we need to verify independently that the entropy of Hawking radiation also follows

the Page curve [16].

First, in order to apply the generalised entropy formula to the radiation modes, the region

Σrad is defined between the cut-off surface and asymptotic infinity (see Fug. 4.8). As radiation

is emitted into the radiation region (complementary to the black hole region and bounded

by the cut-off surface) as the black hole evaporates, the entanglement entropy SvN (Σrad) will
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Figure 4.7: The Page curve (black) for the black hole entropy: the surface switches from vanishing

to non-vanishing at the Page time (left), which corresponds to a transition from the increasing

(green) to decreasing (orange) contributions at a maximum at the Page time (right). [16]

increase. Next, we need to consider the extremal surface that will minimise the entanglement

entropy of the radiation. Namely, referring to the general formula (4.31) that follows from the

HRT prescription, how should the region ΣXA
be defined? It is found that the entropy for the

radiation can be minimised by splitting ΣXA
into disconnected regions, as a generalisation of

the connected regions so far considered.

However, by considering ΣXA
as disconnected, the area of the boundary is increased leading

to an increased entanglement entropy. This increase in entropy can be countered in a similar

way as for the black hole entropy – include more pairs of entangled modes in order to purify the

system and decrease SvN (ΣX). The radiation entropy, Srad, can be decreased by considering 2

regions, the radiation region Σrad and a new ”island” region ΣIsland defined between the center

of the black hole and the surface X, in the same Cauchy slice at time t (see Fig. 4.8). For

late times, the inclusion of the island region decreases the generalised entropy, forming a new

minimal extremal surface Σrad ∪ ΣIsland.

Note that the regions Σrad and ΣIsland over which the entropy of radiation is determined is

the exact complement of the corresponding region for black holes for all times. This could be

predicted as the total system was initially formed from a pure state, so the entropy of the black

hole region and its complement are the same through the property of entanglement entropy and

sum to zero when the regions are combined.

Hence, for the radiation, the full generalised entanglement entropy is given by the “island

formula”,

Srad = minX

{
extX

[Area(X)

4GN
+ SvN [Σrad ∪ Σisland]

]}
. (4.33)

The island formula is implemented in the same way as before: the right hand-side is extrem-

ised with respect to the position of X, and then minimised with respect to all possible extremal

surfaces and choices of islands.

Initially, there are no island contributions, such that the surface X is vanishing (X = ø) and

the only contribution to Srad is the fine-grained entropy SvN (Σrad). Σrad is the complement of
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Figure 4.8: Penrose diagram showing an ”island” contribution to the entanglement entropy of

Hawking radiation from the region ΣIsland within the BH, as well as the exterior contribution over

ΣRad and area term from the non-trivial surface X. [16]

the BH region ΣX at early times, which covers the entire interior of the black hole region. As

the radiation is emitted, SvN (Σrad) increases (see Fig. 4.9 (right)).

Figure 4.9: The evolution of the radiation entanglement entropy in the absence of an island contribu-

tion. Entropy calculated over ΣRad increases monotonically (green) as the black hole evaporates. [16]

At later times, the island region Σisland emerges close to the event horizon as the complement

to the non-vanishing surface for the BH entropy in the black hole region (see Fig. 4.10 (left)).

As the non-trivial surface for the black hole appears at the scrambling time ts = rslog(SBH),

the island forms after time O(ts). For late times and non-trivial surface X, the area term in

(4.33) dominates over the entanglement entropy SvN of the interior-radiation modes, such that

the entropy of the Hawking radiation follows the thermodynamic BH entropy proportional to

the area of the horizon and saturates the Berkenstein bound (see Fig. 4.10 (right)).
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Figure 4.10: After a scrambling time, the island region (blue) forms in the interior. The entanglement

entropy (orange) calculated over the union of ΣIsland and ΣRad decreases over time, following the

thermodynamic BH entropy (right). [16]

Hence, the entanglement entropy of the Hawking radiation is the minimum of the 2 con-

tributions, with the transition occurring at the Page time tPage. This results in the entropy

following the Page curve: Hawking radiation emitted in black hole evaporation evolves unitarily

(Fig. 4.11).

Figure 4.11: The Page curve (black) for Hawking radiation: minimising the two contributions, with

and without the island region, leads to an increasing initial phase (green), maximum at the Page

time, and a decreasing later phase (orange), as was found for the BH entanglement entropy. [16]

Also, we can see that the BH and Hawking radiation follow the same curve, having the same

entropy for all stages of black hole evaporation. This is as expected, as forming the initial BH

from a pure state, it is expected that SBH = Srad form the properties of entanglement entropy.

This is a result of the same surface X present in both systems and a matter state which is pure

on the whole Cauchy slice having entropy S = SvN (ΣX) - SvN (Σrad ∪ Σisland) = 0.
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An outstanding question of the information paradox is: why it is possible to simplify a QG

calculation in this way, so as to only depend on a semi-classical gravity approximation for input

without knowledge of the BH interior? The result of the Page curve emerges from gravita-

tional path integrals. The holographic analogy to non-gravitational entropy calculated using

the replica trick in the RT/HRT prescriptions is the calculation of the gravitational entangle-

ment entropy directly using gravitational path integrals in AdS/CFT [65]. The gravitational

path integral justifies the switch from trivial to non-trivial QESs which produces unitary evo-

lution. Outstanding elements of the information paradox concern what precisely the entropy

calculated through the gravitational path integral and QES corresponds to, and how the en-

tanglement entropy of the radiation can be calculated directly from the entanglement entropy

formula (2.15).

4.7 Entanglement wedge of the black hole and radiation

Through the calculation of the entanglement entropy for the Hawking radiation and black hole

via. QESs in the previous sections, it is seen that the entropy has an explicit dependence on

the geometry of the black hole interior. However, it is unclear how the entanglement entropy

that follows from the central dogma is related to the degrees of freedom in the BH interior,

and how the dependence of degrees of freedom on regions of the BH-radiation system change

as the system evolves. The key to understanding this relationship between degrees of freedom

and regions of dependence lies with the entanglement wedge: the causal domain of dependence

(causal diamond) of the extremal surface used to calculate the entanglement entropy [16]. The

causal diamond is defined by using past and future (null) light cones extended from the extremal

surface to form a region containing all causally-connected points that can be determined by the

boundary conditions on the extremal surface (see Fig. 2.2). In the case of disconnected extremal

surfaces for the radiation sub-system at late times, the entanglement wedge will be disconnected.

Hence, the degrees of freedom described by the entanglement entropy for the BH and radia-

tion depend only on a region of the interior bounded by the extremal surface for each time slice

(time dependent). This means that knowing the entanglement entropy for each sub-system, the

causal domain of dependence of the interior geometry between the cut-off and extremal surface

for the black hole, and complementary region for the emitted radiation, is known.

As the extremal surfaces are time dependent, the entanglement wedges of the BH and

radiation degrees of freedom also evolve in time. In particular, three stages of the black hole’s

evaporation can be considered in more detail.

At initial stages, where t < tPage, the extremal surface X is located at r = 0, such that the

black hole region ΣX stretches from across the interior to the cut-off surface outside the horizon,

with the BH entanglement wedge (green) covering a large portion of the interior’s spacetime,

see Fig. 4.12(a). Complementary to this, the region Σrad over which the radiation is considered

goes from the cut-off surface to r → ∞, with the radiation entanglement wedge (blue) covering

a part of the spacetime outside the cut-off.

For later time after the Page time, t > tPage, and before the black hole evaporates at tevap,

the shift to the non-trivial QES creates a smaller region over which the black hole entanglement

entropy is calculated, such that the entanglement wedge covers a smaller path of the spacetime

on either side of the horizon (see Fig. 4.12(b)). For the radiation, the entanglement wedge now

extends to the interior of the black hole, through an “island” causal diamond of the Σisland
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region, as well as the exterior. This means that for the interval tPage < t < tevap, interior states

living in the island part of the entanglement wedge contribute to the radiation entanglement

entropy.

Finally, when the black hole evaporates and vanishes for t > tevap, the radiation entangle-

ment wedge covers the entire black hole “interior”, with all degrees of freedom of the initial

black hole state encoded in the Hawking radiation modes.

Figure 4.12: The evolution of the entanglement wedge for the radiation (blue) and the BH interior

(green) modes: (a) at early times, the BH wedge occupies most of the interior to a point past the

event horizon, and the raidation wedge occupies the exterior region; (b) after the Page time, the

island region forms, constituting a part of the radiation entanglement wedge, with the BH wedge

occupying a smaller region of the interior; and (c) at times after the black hole has evaporated, the

radiation wedge occupies all of the interior and the exterior. [16]

The introduction of the entanglement wedge also helps resolve an earlier form of the informa-

tion paradox in section 2.5: the “Bag of gold” geometry introduced by Wheeler [24]. Although

it is possible to create classical geometry which resemble BHs from outside a “horizon” but have

arbitrarily large entropy within (violating the central dogma and unitarity), the entanglement

wedge will only cover part of the interior when the entropy in the interior exceeds the area

of the horizon. This ensures that the “BH” entanglement entropy doesn’t violate the central

dogma. These classical geometries take the form of the Fig. 4.12(b) above.



Chapter 5

Gravity with holographic matter

In the following, we will seek to demonstrate a concrete example using the holographic tech-

niques of the RT/HRT prescription to determine whether a black hole-radiation system is uni-

tary, i.e. evolving according to the Page curve.

As discussed above, a simple argument to arrive at unitary evolution for Hawking radiation

is to first compute the black hole entanglement entropy using the RT/HRT procedure to find

the QES and compute the entropy on them. Then, considering an initially pure BH-radiation

system, SBH = Srad, and as the SBH follows the Page curve, then the radiation is unitary.

However, in order to prove that the radiation is unitary directly, it is necessary to show

that the QESs for the radiation modes coincide with the QESs for the black hole modes, as

discussed in [14]. This is most easily shown for an evaporating BH with holographic matter, so

that the machinery of the AdS/CFT correspondence can be employed to compute the entropy

holographically. The example explored in the following sub-sections is a two dimensional gravity-

matter theory coupled to a two-dimensional (holographic) CFT for which a simple dual gravity

theory exists in one higher dimension, following the procedure laid out by Almheiri, Mahajan,

Maldacena and Zhao in 2019 [15]. It is expected that the results arising from the d = 2 case

generalise to higher dimensions.

5.1 Two-dimensional gravity with holographic matter coupled

to CFT2

In two dimensions, a general classical gravity theory described by the Einstein-Hilbert term,

IE−H =

∫
ddx

√
−gR(2), (5.1)

where R(2) is the Ricci curvature scalar for a two dimensional spacetime. This term is purely

topological, and doesn’t contain any local dynamics, with the contribution to the entropy of the

system a constant. However, for our discussion, we are interested in a dynamical, interacting

spacetime.

The simplest dynamical spacetime in two dimensions is formed by coupling classical gravity

to a dilaton field ϕ, described by the general action,

55



56 CHAPTER 5. GRAVITY WITH HOLOGRAPHIC MATTER

Igrav[g
(2)
µν , ϕ] =

1

16πG
(2)
N

∫
M
d2x

√
−gϕR(2) + U(ϕ), (5.2)

where G
(2)
N is Newton’s constant in two dimensions and g

(2)
µν is the two-dimensional fixed metric

which the gravity theory lives on. The pure Einstein-Hilbert term (5.1) has been absorbed by

a shift in ϕ. This 2d dilaton gravity theory is equivalent to the Jackiw–Teitelboim (JT) gravity

model, which describes the evaporation of near-extremal black holes [66,67].

In order to model black hole dynamics, matter needs to be added to the gravity theory.

Adding holographic matter described by CFT2 with matter field χ and action ICFT [g
(2)
µν , χ], the

total action of the theory becomes,

I[g(2)µν , ϕ, χ] = Igrav[g
(2)
µν , ϕ] + ICFT [g

(2)
µν , χ]. (5.3)

The condition of holography means that there exists a dual three-dimensional gravity theory

in (asymptotically) AdS3 space to CFT2, where the matter fields χ live on the two-dimensional

conformal boundary. From the AdS/CFT dictionary, the metric for the three-dimensional dual

theory, g
(3)
µν , has the boundary condition,

g
(3)
ij |∂M =

1

ϵ2
g
(2)
ij , (5.4)

where i, j denote the boundary indices, g
(2)
ij is the fixed background metric of the CFT2, ∂M

denotes the conformal boundary of the asymptotically AdS3 space, and ϵ acts as a short-distance

(UV) cut-off. Furthermore, the curvature scalar for the 3-dimensional gravity at the boundary,

R
AdS

(3)
3

|∂M, is dual to the 2 dimensional stress-energy tensor for the CFT2.

To justify the semi-classical limit in the two-dimensional theory, and the large radius of

curvature of the dual theory in three-dimensions, it is required that the central charge c of the

CFT2 satisfies,

1 << c <<
ϕ

4G
(2)
N

. (5.5)

Also, to have an Einstein (weakly coupled) dual gravity theory, the CFT2 must be strongly-

coupled (see Fig. 3.4).

In order to apply the RT/HRT prescription to describe the QESs of this coupled gravity-

matter system, the three-dimensional dual to the full theory described by the action (5.3) is

needed. Starting with the geometry g
(3)
µν and the boundary metric g

(2)
ij , the dilaton scalar ϕ is

added to the boundary ∂M of the AdS3 space (with the associated action (5.2)), and ϕ and g
(2)
ij

are integrated over. This gives a three-dimensional bulk metric which looks locally like AdS3,

with a non-conformal boundary, upon which the dilaton gravity action (5.2) lives, at a finite

distance in the space.

This procedure differs from the AdS/CFT correspondence, as the fixed boundary metric g
(2)
ij

is also integrated over. This results in a geometry which is the same as that of the Randall-

Sundrum (RS) model, an alternative to dimensional compactification in string theory [68]. In
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the RS model, the dynamical boundary brane (when considering higher dimensions) is called

the Planck brane. Hence, the CFT2 with rigid metric g
(2)
ij coupled to two-dimensional dilaton

gravity theory (described by (5.3), see Fig. 5.1 (left)) has a 3-dimensional geometry description

where the matter CFT2 is replaced by the 3-dimensional dual and the dilaton-gravity action

lives on the two-dimensional Planck brane (Fig. 5.1 (right)).

Figure 5.1: The left diagram shows a 2d dilaton-gravity theory coupled to a holographic matter

CFT2 (composed of matter fields χ), containing the full action (5.3). The right diagram shows the

3d geometry with AdS3 bulk dual to the matter CFT2, where the dilaton-gravity action (5.2) lives

on a dynamic Planck brane. [15]

5.1.1 Embedding of the Planck brane in AdS3

Having identified the action (5.2) living on the Planck brane, the location of the Planck brane,

i.e. how the two-dimensional surface is embedded in AdS3, can be determined for use in

the RT/HRT minimisation procedure later. The embedding of the Planck brane in the 3-

dimensional bulk is computed by using the two-dimensional metric and stress tensor profile

that follows from the solutions of the full action (5.3). Considering the two-dimensional gravity-

matter theory living in an asymptotically AdS2 geometry, the metric and stress-energy tensor

can be expressed as,

ds2 = − dy+dy−

(y+ − y−)2
= −e2ρ(y)dy+dy−, (5.6)

and

Ty+y+(y
+) and Ty−y−(y

−), (5.7)

having applied a change of coordinates t = y+−y−

2 , z = y++y−

2 to (3.30). The stress-energy

tensor of the CFT2 (5.7) is measured in the flat metric ds2 = −dy+dy−. In general, the

full stress tensor is related to the curvature of the three-dimensional gravity geometry, which

follows from corrections due to the derivatives of ρ(y) forming a conformal anomaly related to

the non-vanishing Ricci scalar.
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Performing the coordinate transformation ω+(y+), ω−(y−) such that the stress-energy tensor

vanishes (locally), under a general diffeomorphism the stress-energy tensor will transform as,

(dω
dy

)2
Tω±ω± = Ty±y± +

c

24π
{ω±(y), y±}, (5.8)

where {ω(y), y} = ω′′

ω′ − 3
2

(
ω′′

ω′

)2
is the Schwarzian derivative. Then, taking a Weyl transformation

of the metric (5.6) to a flat metric, the ω± coordinates ensure that the stress tensor vanishes,

ds2 = −dω+dω− , Tω+ω+ = Tω−ω− = 0. (5.9)

Hence, (5.6) and (5.7) are related to a vacuum solution on flat space, (5.9), through a coor-

dinate transformation and diffeomorphism. The location of the Planck brane can be determined

in ω± coordinates in the following way [69]. The vacuum of the holographic CFT2 has a dual

gravity theory in the bulk of pure AdS3, described by,

ds2 =
−dω+dω− + dz2ω

z2ω
, (5.10)

which reduces to a flat space geometry with vanishing Tω±ω± for a surface of constant zω. Hence,

recalling (5.9), we can equate the near-geometry of the Planck brane to the metric (5.10). Then,

the boundary condition on the three-dimensional boundary metric (5.4) can be applied to relate

the metric of the two-dimensional gravity (5.6) to the AdS metric (5.10) for zω = constant,

−dω
+dω−

z2ω
=

1

ϵ2
e2ρ(y)dy+dy−. (5.11)

Solving this leads to the Planck brane location at,

zω = ϵe−ρ(y)

√
dω+

dy+
dω−

dy−
. (5.12)

Hence, once the geometry of the two-dimensional geometry of (5.9) is known, the embedding

of the two-dimensional geometry into the three-dimensional geometry follows easily. This result

can be checked by starting from the stress tensor in terms of the extrinsic curvature to recover

the form found in (5.7).

Following this, the computation of the RT/HRT surfaces is simple in the (zω, ω
±) coordi-

nates.1

5.2 Two-dimensional black hole coupled to a holographic bath

Considering a black hole in the two-dimensional geometry described by (5.3), we now attach

an external (holographic) CFT2 “bath” of constant zero temperature such that radiation can

1Note that the state of the CFT is encoded in more complex geometry deeper in the interior, upon which the

area of the embedded RT/HRT surfaces will depend on.
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be exchanged between the gravity-matter theory (black hole) and the bath. As the black

hole evaporates, the Hawking radiation emitted will accumulate in the bath, in analogy with

the radiation region in the BH-radiation system discussed in section 2.5. As before, the two-

dimensional geometry is taken to be asymptotic to AdS2. For simplicity, a toy model of the

dilaton-gravity theory is considered where ϕ >> 1, so that the effects of backreactions may be

neglected and matter lives on a fixed, non-dynamical background.

As the bath is described by the same CFT as the matter sector, ICFT , of the full black hole

action (5.3), the coupling of the bath and matter CFTs in the two-dimensional theory amounts

to joining them at their boundaries such that they can exchange stress energy freely. Defining

the coordinate σy = y+−y−

2 , points in the bath and asymptotic AdS2 systems are given by

positive and negative values of σy respectively, with the boundary of the black hole and bath

at σy = 0 (see Fig. 5.2 (left)).

Also, making use of the equivalence between the two-dimensional dilaton-gravity coupled

to the holographic matter CFT and the three-dimensional geometry on the dual AdS space

(see Fig. 5.1), the coupling of the two-dimensional gravity-matter theory to the bath can be

described in the dual AdS space, where the rigid bath CFT2 lives on the conformal boundary

of AdS3 and is joined to the dynamic Planck brane at σy = 0 (see Fig. 5.2 (centre)).

A third, QM description of the black hole-bath system also exists: as the matter CFT2 lives

in (asymptotically) AdS2 space, the gravity-matter system can be holographically translated

to its dual CFT1, which is simply QM with additional symmetry constraints. Hence, the two-

dimensional black hole-bath system is realised as a dual QM system living at σy = 0 coupled

to the bath CFT2 on the half-line σy > 0 (see Fig. 5.2 (right)). This can also be viewed from

the point of view of the central dogma, with the black hole in AdS2 space equivalent to a QM

system with Area/4GN degrees of freedom. Hence, there are three equivalent descriptions of

the gravity-matter theory coupled to a holographic bath, displayed in Fig. 5.2.

5.3 The entanglement entropy of the 2-dimensional theory

We are now in a position to compute the entanglement entropy of the two-dim. gravity-matter

theory by extremising the generalised entropy as described in section 4.4.

First, as prescribed by EW [12], a generalised entropy needs to be constructed in analogy

to (4.31),

Sgen(y) =
ϕ(y)

4G
(2)
N

+ S2d-bulk(Iy), (5.13)

where the coordinate y is a point in the bulk of the two-dimensional theory; and Iy is the

interval between y and the conformal boundary of the AdS2 space, to which the gravity +

matter theory is asymptotic to (or equivalently ϕ << 1 to ensure the gravity + matter theory

is weakly coupled). S2d-bulk(Iy) is the bulk entanglement entropy of the interval Iy, which

contains (dominant) contributions from the bulk matter fields χ as well as (sub-dominant)

quantum fluctuations from the boundary fields, ϕ and g
(2)
ij . Comparing (4.31) and (5.13), in

two-dimensions ϕ(y) = Area(2) as the area of a Ricci scalar point is the coefficient of the

curvature term. These surfaces and the quantities on them are shown in Fig. 5.3.
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Figure 5.2: The 3 alternative descriptions of the gravity-matter theory coupled to a bath (left to

right): 2d dilaton-gravity plus matter CFT2 coupled to a CFT2 bath; 3d gravity theory, with the

holographic CFT2 of the matter and bath replaced with the dual theory; and a fully QM description,

where the 2d gravity-matter theory (in asymptotic AdS2) is replaced by its QM dual at the boundary

of the bath. The 3d gravity description has a dynamical Planck brane, in addition to the conformal

boundary. [15]

Figure 5.3: (a) The area and bulk contributions to the entropy Sgen(y) in the 2d gravity theory,

(5.13); (b) transforming to the dual 3d theory, S2d−bulk can be computed using the extremal surface

Σy through the 3d RT/HRT formula (5.14). [15]

Now, following EW [12], (5.13) is extremised over all possible points of y, and then the

minimum over all these extremums with points (y+e , y
−
e ) chosen to obtain the QES. As the

matter fields χ of the CFT2 dominate in S2d−bulk, this contribution to the total entanglement

entropy can be computed by considering the dual theory to the holographic CFT2 and computing

the entropy over the minimal/extremal surfaces of this 3-dim. dual theory via. the RT/HRT

prescription [10, 11]. The extremal surface Σy, bounded by y and the endpoint of the Planck
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brane is an interval in this case (see Fig. 5.3 (b)). Hence, applying the HRT prescription

(section 4.3), the generalised entropy (5.13) is approximated as,

Sgen(y) =
ϕ

4G
(2)
N

+ S2dbulk(Iy)

≈ ϕ

4G
(2)
N

+
Area(3)(Σy)

4G
(3)
N

,

(5.14)

where we the ≈ comes from neglecting the subdominant contributions from quantum fluctua-

tions of the boundary fields, and dropping the sub-leading 3d bulk entanglement entropy.

Now, extremising the generalised entropy (5.13) in two dimensions can be translated into

extremisng the usual RT/HRT surfaces in the dual three-dimensional theory with endpoints

on a dynamical Planck brane. As before for the extremisation of (4.31) for the BH-radiation

system, extremising Σy involves the area contribution Area(Σy) along the interval (y+e , y
−
e ) in

the Planck brane, as well as a contribution from the dilaton ϕ at the dynamic boundary. As

such, at leading order, the extremization of QESs reduces to following the RT/HRT prescription

in three dimensions [16].

5.4 Entanglement wedges for an evaporating JT black hole

Having applied the RT/HRT prescription to JT gravity, the entanglement entropy can be de-

termined by extremization of (5.14) via. the method above. Using the known results of JT

gravity [13], the evolution of the QESs and entanglement wedges for a black holes in JT gravity

evaporating into non-gravitational bath can be reviewed.

5.4.1 Early times

Initially, consider a low temperature black hole decoupled from a non-gravitational bath, where

the bath and black hole matter CFTs have holographic duals consisting of two disconnected

geometries in AdS3. The holographic dual AdS3 of the Cardy boundary condition imposed

in the 2d CFTs [70] is called the Cardy brane, located at σω = (ω+ − ω−)/2 = ±0 on the

boundary between the Planck brane and conformal boundary, and descending into the 3d bulk

from σω = 0 (see Fig. 5.4).

At t = 0, the BH and bath become coupled over an interval ∆t. The impulse of energy

transmitted between the systems during the coupling is inversely proportional to the coupling

interval, E ∼ c
∆t , such that an instantaneous coupling corresponds to an infinite pulse of energy,

E → ∞ as ∆t→ 0. Hence, the coupling is carried out over a finite interval.

For a BH with initial temperature Ti following the energy pulse at coupling, the BH tem-

perature declines as Hawking radiation is emitted into the bath, following the relation,

T (t) ∼ Tie
−κ

2
t, (5.15)

where κ is proportional to a constant c.
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Figure 5.4: The initial decoupled bath (right) and black hole (left) system in the 3d dual theory,

with the conformal B.C.s. in the 2d description producing Cardy branes anchored at σω = ±0 on

the conformal boundary in the 3d dual theory. [15]

Initially, the BH entanglement wedge occupies all of the black hole region up to a bound

close to the event horizon prior to coupling (Fig. 5.5(a)). This is analogous to the trivial QES

at early times for the Page curve of the BH-radiation system in section 4.7. Similarly, the

radiation entanglement wedge occupies almost all of the bath region.

After coupling at t = 0, the 3d geometry becomes Lorentzian, with the Cardy brane shifting

away from the conformal boundary into the three-dim. bulk. For later times before the Page

time, 0 < t < tPage, the Cardy brane continues to fall further into the bulk whilst the entan-

glement wedges and topology of the three-dim. theory remain the same (Fig. 5.5(b), (c)). The

increasing distance between the conformal boundary and Cardy brane leads to a growing en-

tanglement entropy, which physically corresponds to the accumulation of pairs of entanglement

modes separated between the BH and bath.

This entropy is equal to the entropy of the Hawking radiation entering the bath, and evolves

according to,

SBH(t) ∼ Srad(t) =
πc

6

∫ t

0
dt′ T (t′)

= 2Si
B−H(1− e−

κ
2
t),

(5.16)

where T (t′) is the temperature at time t′ (which evolves according (5.15)), Si
B−H is the initial

(coarse-grained) Berkenstein-Hawking entropy following the coupling, and c is a constant. As

the temperature of the BH declines over time, SBH(t) ∼ Srad(t) (5.16) increases until it saturates

twice the initial coarse-grained entropy of the BH (with the factor of 2 in (5.16) due to Hawking

radiation not being adiabatic [9, 14]).
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Figure 5.5: The evolution of the Cardy brane and entanglement wedges of the black hole (pink)

and bath (blue): at t = 0, the Cardy brane shifts away from the conformal boundary, falling deeper

into the bulk as time progresses. At late times, t > tPage, the entanglement wedges shift due to a

transition in the extremal surfaces. [15]

5.4.2 Late times

At late times, for t > tPage, a new BH QES forms [13,14]. In the QM description of the BH-bath

system, the QES is defined as the interval σω ∈ [0, σ0], where σ0 is a small extension of the

surface into the CFT bath. This means that all the degrees of freedom at the CFT boundary are

encompassed, corresponding to the data from the asymptotically AdS2 gravity-matter theory

in the dual two-dimensional description (see Fig. 5.6 (right)).

As for the BH-radiation system in section 4.7, the new QES is located close to the horizon

of the BH, on the interior side at a point (y+e , y
−
e ). In the two-dim. gravity description, the

location of the QES can be defined by a past-directed light ray that reaches the AdS2 boundary

at a scrambling time before the entropy is evaluated at time t,

y+e = t− 1

2πT (t)
log

(
SB−H(T (t))–S0

c

)
+. . . , (5.17)

where S0 is the extremal entropy of the BH before coupling, and SB−H(T ) is the B-H entropy

for a BH at temperature T, with S0 << SB−H . Hence, the BH entanglement entropy at late

times is calculated over the RT/HRT surface in the interval [ye, σ0] at time t. In the three-

dimensional case, the entanglement wedge of the black hole is then the causal domain of this

interval (see Fig. 5.5(c) and Fig. 5.6(b)).

Then, the non-trivial extremal surface leads to an extropy for the BH,

SBH(t) = SB−H(T (t)) +O(log(S0)), (5.18)

where the log terms are subdominant as SB−H >> S0. As the BH evaporates and the temper-

ature decreases, the BH entropy (5.18) decreases for late times t > tPage.

Similarly, the entanglement wedge for radiation can be considered at late time. Up until

the Page time, tPage, the entanglement entropy of the bath increases as the distance between

the Cardy brane and conformal boundary increases (as for the black hole), see Fig. 5.5 (left,

centre). At later times, t > tPage, the entropy of the state in the bath CFT is computed outside



64 CHAPTER 5. GRAVITY WITH HOLOGRAPHIC MATTER

Figure 5.6: At late times, the entanglement wedge for the black hole (pink) is determined by the

RT/HRT surface Σy in the 3d dual theory (middle panel). In the 2d geometry (left), the entropy is

calculated over an interval [ye, σ0]. In the QM picture, this interval reduces to the σ0 upper bound

in the bath containing the degrees of freedom of the dual QM theory. [15]

(to the right of) the point σ0 in a finite interval [σ0, σIR], where σIR > tevap is large enough

to contain all the Hawking radiation in the bath (see Fig. 5.7 (right)). This creates another

contribution to the RT/HRT surface, bounding the radiation entanglement wedge in the bath

between the σIR endpoint and the Cardy brane (see Fig. 5.7 (centre)). The entropy this surface

contributes is relatively small, S ∼ c
6 logσIR << Si

B−H . Naively, from this picture, it seems

that the entanglement entropy continues to grow past the Page time, as initially calculated by

Hawking [2].

However, applying insight from [14,16], as the BH entanglement wedge only covers a portion

of the BH interior, it can be predicted that the radiation entanglement wedge must cover

the remaining interior region. This is not immediately apparent from the two-dim. gravity

description: the bath region [σ0, σIR] and the BH interior are disconnected, forming an “island”

region inside the BH (see Fig. 5.7 (left)).

However, translating this into the three-dimensional dual gravity theory, the interior and

exterior regions are connected through the additional dimension in the bulk (see Fig. 5.7 (cen-

tre)). This provides a physical realisation of the resolution of the ER=EPR paradox proposed

by Maldacena and Susskind [26], with entangled modes connected via. the “bridge” between

the BH “island” and CFT bath “mainland”, formed by the extra dimension. Although this is

described for the d = 2 case, it is expected that this extra-dimension connection extends to any

BH coupled to holographic matter with d > 2. Finally, to accurately describe the evolution of

the radiation entanglement wedge, we also need to take into account the dependence on the

initial state of the system. The initial state has an entropy S0, and therefore additional part of

the total RT/HRT surface, associated to the original horizon of the low temperature BH (see

Fig. 5.7 (left, centre)).

Hence, it follows that, up to IR corrections and additional boundary contributions dependent

on the initial state of the system, the RT/HRT surface for the radiation is the same as that for

the BH, with the radiation entanglement wedge complement to the black hole’s, as is expected

for a pure initial state.
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The complete RT/HRT extremal surface for the radiation entanglement wedge is made up

of 3 parts (Fig. 5.7): the surface located at the original horizon; the extremal surface between

σ0 in the bath and the Planck brane; and the surface in the bath between σIR and the Cardy

brane.

Figure 5.7: The entanglement wedge for radiation (blue) at late times, including the IR and original

BH horizon contributions to the RT/HRT surface and entanglement entropy, as well as the surface

shared with the BH. [15]

5.5 The Page curve

Now that the extremal surfaces and entanglement wedges have been described, the evolution of

the Hawking radiation can be described. At initial times, the entropy obeys (5.16), increasing to

a maximum at the Page time (defined as the time at which (5.16) and (5.18) are equal). At the

Page time, the extremal surface shifts according to the minimisation condition of the RT/HRT

procedure. Hence, after tPage, the entropy of the radiation declines according to (5.18). This

produces the transition in Fig. 5.8 that takes the form of the Page curve described generally in

section 2.5.

In conclusion, for a 2d JT gravity + matter theory coupled to a (zero temperature) CFT

bath, the Hawking radiation emitted by an evaporating black hole has been shown to evolve

unitarily according to the Page curve, with the maximum entropy within the Berkenstein bound,

Si
B−H .
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Figure 5.8: A diagram showing the Page curve (black) for the 2d JT BH coupled to a holographic

bath system: at the Page time, the minimisation procedure enforces the transition from the early-

time surface (blue dashed) to the late-time surface (yellow dashed). κ is a constant proportional to

c ∝ 2d effective gravitational coupling. [15]



Chapter 6

Conclusion

In summary, the AdS/CFT correspondence has been applied to calculate the entanglement

entropy of Hawking radiation for an evaporating black hole in 2d JT gravity coupled to a

holographic bath. From the evolution of the radiation’s entanglement wedge, and notably the

inclusion of the “island” region, the Page curve for unitary evolution has been recovered. This

result has recently been extended to a thermal holographic bath [71], and a gravity-matter

theory living in an asymptotically flat background [72]. As this 2-dimensional case is believed

to be generalisable, this result should also hold for higher dimensional black holes, providing

evidence that black holes are unitary and preserve information in a system more generally.

Current work has been done on directly showing the Page curve for higher-dimensional black

holes, inspired by the method taken for the 2d dilaton toy model [73].

Although this provides an answer to one aspect of the black hole information paradox, it

has also raised several new questions. Namely, what precisely does the entropy arising from

the gravitational path integral and QES correspond to, and how can this entropy be directly

calculated from the defining equation for entanglement entropy? Recent work to answer these

questions have focussed on justifying the use of the QES in the entropy calculation [74,75].
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