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Abstract

Hot interacting quantum fields can be described by Hydrodynamics. In this review the overview

of using kinetic theory and holography to expand on the hydrodynamics of the system is

explored. It is explained that the region of applicability is larger than what was assumed and

that is due to the possibility to track the fluid for longer as the result of fluid/gravity. Finally

radii of convergences for the sound and sheer mode were calculated. It was shown that they

converge around , ω = i
2
in the small coupling limit for sheer viscosity and it was also shown that

analytically extending from the hydrodynamics principal sheets gives the non hydrodynamics

modes.
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Chapter 1

Introduction

1.1 Motivation and Objectives

In recent years, activity surrounding the modelling different quantum systems has been cap-

turing more attention. One of the models that has been proposed to tackle to complexity of

physics at heavy ion collision is Hydrodynamics. Hydrodynamics are usually constructed using

conservation of energy or stress energy tensor. Using these equations we can limit the d.o.f of

the system to describe various systems. It is a highly useful tool when it comes to describing

plasma and fermionic ultra cold gas. Recent activity in RHIC (Relativistic Heavy Ion Col-

lider) shows that elliptic flows serve as a great model for heavy nucleon-nucleon collison and

hydrodynamics can be very useful to describe the system in certain temperature regimes when

hydrodynamics modes exist. For years, physicist have been trying to describe very complicated

real time strongly correlated systems in quantum mechanics, which are almost close to impos-

sible to study using lattice correlators. It turns out that their dynamics actually matches the

systems that are described by hydrodynamics with gradient expansions. They are also a great

tool to describe kinetic theory which are models, that use Boltzmann distribution to describe

the concept of quasi particles. Using these models it has been possible to generalise to other

non conformal strongly correlated systems and do calculations in heavy ion collision. Therefore

it has become more vital than ever to find out the points when one could achieve hydrodynam-
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2 Chapter 1. Introduction

ics physics. To this point, the fluid gravity proved to be very useful. Through gauge/gravity

correspondence one can establish a connection between hydrodynamics and gravity and fluid

gravity correspondence has proven to be a very important tool for studying nearly perfect flu-

ids with higher order diffusive coefficients. What has been really impressive is that the region

where hydrodynamics seems to be applicable in terms of the temperature of the QCD plasma

seems larger than what is should be. Using fluid gravity correspondence one can analytically

continue the description to regions where the hydrodynamization might have naively failed. It

can also expand the description through non conformal fluids which are a better description

of what is occurring at RHIC and CERN. The question to ask then, is at what points are the

descriptions valid. This review wishes to explore the regimes of the existence of hydrodynamic

expansion, their convergence regimes and theories that are possibly described by it to give a

holistic overview of the applications of hydrodynamics in quantum field theory and relativistic

and non relativistic quantum collisions.

During the review the order of the topics covered will be the following. In the chapters 2.1 and

2.2 basic principles of fluid dynamics such as the Navier stokes equations and the conservation

of the momentum and energy will be covered in both the relativistic and the non relativistic

limit. Following that the introduction of CFT hydrodynamics is explained following by a brief

description of the world of CFTs and their correlation functions is presented in 2.3.1. As the

aim of the paper is to probe different limits of hydrodynamics a description of the kinetic theory

is provided as an alternative to weak coupling limits of quantum field theory.

Continuing upon that, the string theory background of gauge/gravity duality will be explained

and finally gauge gravity duality and fluid gravity duality will be explored and the regions of

hydrodynamics convergence will be analysed.



Chapter 2

Background Theory

2.1 Non relativistic Hydrodynamics

The governing conservation equation in non relativistic hydrodynamics is the Navier Stokes

equation for the conservation of energy and momentum.

The variables that describe the flow of a viscous liquid are the pressure, temperature and shear

and bulk viscosity. As pressure can be described by the temperature field, the overall dynamical

fields to describe the non relativistic dynamics of fluids would be the temperature and velocity

fields. To be able to describe the equations, it is best to introduce a material derivative which

measures the time rate of change of F as seen by an observer moving with the fluid at position

x[1].

The material derivative is then formulated as

DF

DT
=
∂F

∂t
+ vj

∂F

∂xj
(2.1)

Using the material derivative above, it is possible to describe the fluid starting with the overall

conservation equation for the ρV . ρ denoting mass density and V the volume. As the mass of

the fluid remains unchanged, We can write the overall conservation of mass as [2]

3



4 Chapter 2. Background Theory

D(ρV )
Dt=0

And using

divv = lim
V→0

1

V

∮
S
v.dS

(2.2)

Leading to the equations of continuity listed as

1

ρ

Dρ

Dt
+ divv = 0

(2.3)

∂ρ

∂t
+ div(ρ v) = 0

(2.4)

∂ρ

∂t
+

∂

∂xj
(ρvj) = 0

(2.5)
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As explained in the introduction, the aim of hydrodynamics is to construct certain limitation to

the dynamic and by solving the dynamics with regards to the restriction one can eventually be

able to describe the fluid. It is therefore imperative to describe the particle momentum as it has

a direct correlation to the velocity field that is to explored, as one of the descriptive variables

of the fluid. For the momentum conservation one has to consider the effect of normally applied

pressure p on the boundary surface S and the conservation equation is related to rate of the

change of the momenutum of the fluid particle subjected to the applied pressure.[1] Here it

is necessary to introduce viscous stress tensor σ which is the traction pressure normal to the

surface. Using these elements one can describe the rate of change of momentum as

ρV
Dvi
Dt

=
∮

(−pδij + σij)njdS+ V FiS (2.6)

Which using Gauss’s theorem can be turned into

ρ
Dvi
Dt

= − ∂p

∂xi
+
∂σij
∂xj

+ Fi (2.7)

Where F is the applied force.

Viscous stress tensor is effectively related to the relative motion of the particles with respect to

each other and their diffusion. Denoting the difference of the velocity between different particles

as δv and expanding in first order one can represent the velocity gradient as anti symmetric

and symmetric sectors. Anti symmetric part relates to a rigid body rotation at angular velocity

1
2
ω with 3 independent quantities ω = ∇ × v [2]. The symmetric module is called the rate of

strain tensor and corresponds to the other distortions can be written as the sum of elements.

As the relative motion of the particles next to each other has to be rotation invariant due to

Galilean transformations, whilst studying the relative motion the solid body rotation drops out

and the first order of the viscous stress tensor must be just from the straining part of it. Then
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in order to introduce the viscosity terms the symmetric tensor is split into two terms.

eij = (eij −
1

3
ekkδij) +

1

3
ekkδij (2.8)

This way the first term corresponds to the amount of straining motion while the total volume is

unchanged, and the second term corresponds to an increase in volume completely homogeneous

in all directions.

Then the shear and bulk coefficients correspond to the amount each of the straining motion,

such that the viscous tensor coefficients respectively with symbols η and ζ are defined as

σij = 2η(eij −
1

3
ekkδij) + η′

1

3
ekkδij (2.9)

Up to first order variations then the momentum relation previously defined would provide the

Navier Stokes equation.

ρ
Dv

Dt
= −∇p+ η∇2v+ (η′ +

1

3
η)∇divv+ F (2.10)

with p being the pressure density.

Using the thermodynamics in terms of densities, i.e

de = Tds− pdV (2.11)

One can recover the energy equation

ρT
Ds

Dt
= 2η(eij −

1

3
ekkδij)

2 + η′(divv)2 + div(κ∇T ) (2.12)

Using the Hydrodynamics set up before, It is possible to define partition functions corresponding

to the average behaviour of the fluid. The partition functions would essentially become the
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dynamical tool that is necessary to describe the system.

Partition functions of the sound modes and the diffusive modes are calculated to be at [3]

Svv
ij (ω, k) = ⟨δvTi δvTj ⟩ω,k =

2T

ρ
(δij − k̂ik̂j)

νk2

ω2 + ν2k4

(2.13)

ν = η/ρ the kinematic viscosity.

Pressure correlation function gives the sound modes

Spp(ω, k) = ⟨δpδp⟩ω,k = 4ρTc3s
γc2sk

2 + γT (ω
2 − c2sk

2

(ω2 − c2sk
2)

2
+ 4γ2c2sω

2
(2.14)

where cs is the speed of sound and γ is the inverse sound attenuation length.

There are two contributions to it based on the change of fields, one from viscosity and one from

thermal conductivity.

Hence the region of validity of the hydrodynamics can be observed using the correlation func-

tions. The highest contribution is given at the region where ω ∼ csk >> k2η/ρ.

2.2 Relativistic Hydrodynamics

Relativistic hydrodynamics is the relativistic extension of the previous section. In order for the

hydrodynamics to be applicable on the prescription of the previous section when curvature is

introduced, velocity fields are introduced. The starting point of the relativistic hydrodynamics

will be the fluid stress energy tensor. The continuation relations from the previous part will

take the form [4]
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∇µT
µ = 0 (2.15)

The least complex of the types of fluid described in the relativistic hydrodynamics is the perfect

fluid.

Perfect fluids are assumed to have isotropic pressure and for that reason they are simply defined

by their stress energy tensor taking the form [4]

T = (ρ+ p)uµuν + pgµν

(2.16)

To study the dissipation in different cases one can introduce a split of longitudinal and transverse

velocity using projectors

∆∥
µν = uµuν∆µν=uµuν(2.17)

Then the conservation equations assuming flat space split into to entropy conservation

∆µ(su
µ) (2.18)

Where s is the entropy density.

The transverse conservation equation is the relativistic Euler equation showing the inertia of

the relativistic fluid being governed by ϵ+ P [5]

Duµ = − 1

ϵ+ P
∆µν∂

νP (2.19)
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Then there comes the concept of near fluidity , as the perfect fluid described only has matter

in terms of the pressure density for nearly perfect fluid there would be added perturbations

to stress energy tensor. In nearly perfect fluidity the concept of dissipation along longitudinal

and transverse modes becomes important. However There is a distinct problem when it comes

to introducing the perturbation terms. As there is 4 degrees of freedom coming to the choice

of 4-velocity there is a liberty of a choice being made as the choice of frame would affect how

the next order equations would look like.[5] A very widely used choice of frame is the Landau

frame which leaves the dissipation corrections to the energy momentum tensor left in the same

form as the non relativistic case discussed above. The landau frame imposes that in the local

rest frame the stress tensor has the form

T 00 = ϵT 0i = 0 (2.20)

Now it is possible to talk about the perturbative variation δT . The first order viscous correction

is defined in terms of sheer and bulk viscosity as discussed above along with the viscous stress

tensor now defined relativistically as

σµν = ∆µα (2.21)

Using this and the fact that we are in the Landau frame, the first perturbative correction will

yield, [6]

δT ab
(1) = −ησab − ζθP ab (2.22)

As ubδT
ab
(1) = 0, In the landau frame, using the Euler relation and Gibbs-Duhem, along with the

equations of the motion, and using the fact that our first order corrections to the hydrodynamics

are divergence free we are left with a divergence term, this sets restriction on the values of the

shear and bulk viscosity to be divergence free.

As the first order terms lead to a diverging theory, it is necessary to include the second order
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for it to be renormalisable. [3]

The second order corrections are [6]

δ(2)T µν = ητII[
⟨Dσµν⟩ +

1

3
σµν(∂ · u)] + λ1σ

⟨µ
λ σ

ν⟩λ + λ2σ
⟨µ
λ Ων⟩λ + λ1Ω

⟨µ
λ Ων⟩λ (2.23)

Vorticity Ωµν is written as

Ωµν =
1

2
δµαδνβ(∂αuβ − ∂βuα) (2.24)

Which is the transverse projection of the antisymmetric changes in the velocity field.

Each of the coefficients can be determined using the various approaches discussed in this paper

for different orders of coupling.

A subgroup of the equations explained above apply to conformal fluids. In the next chapter

it is shown what restrictions conformal invariance implies for the hydrodynamic description of

itself.

2.2.1 Conformal Fluid

Conformal fluid has certain restrictions as a result of conformal invariance. Firstly and the most

obvious is that the stress tensor is needed to be traceless. It also requires the bulk viscosity

to be zero, due to the symmetry restrictions of conformal invariance which will be discussed

below. [7]

To study the hydrodynamic structure of a conformally invariant fluid one has to impose the

conformal invariance of the metric on to the manifold. This is achieved through the weyl

connection. Which transports the tensors in a conformally covariant fashion. [5]

The Weyl connection is defined through the covariant derivative as
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∇Weyl
a γbc = 2ωAaγbc (2.25)

Hence the Weyl covariant derivative which preserves the weight of any tensor and transforms

with the same weight is then written as

Da = ∇Weyl
a + ωAa (2.26)

The Weyl connection should be related to the affine connection on the fluid velocity field

such that the action of the Weyl covariant derivative would result in the fluid velocity being

transverse and traceless.

uaDau
b = 0Dau

a = 0 (2.27)

This then allows the connection one form to be uniquely defined based on the vector field.

A = uc∇cua −
1

d− 1
ua∇cu

c (2.28)

As the shear stress tensor is defined as the symmetric distortion of the stress energy tensor it can

easily be defined through the weyl covariant derivative as σab = D(aub) It seems convenient now to introduce the correlation functions that could be uncovered through the CFT hydrodynamics.[3] For a simple U(N) gauge theory, The generating functional is Z=
∫
DAµexp(− 1

4g2

∫
d4xTrF 2(2.29)One can then use the Kubo relations to derive different viscosity terms coupled to various operators. As the shear viscosity will be coupled to the first order variation of the stress tensor, The deformation to the action will read as, S=S0 +

1
2

∫
d4xT µνhµν(2.30)The perturbation expansion around the one point function of the stress tensor where one would have the first derivative expansion which is related to the green function through the two point function. ⟨T xy(æ,z)⟩ =

∫
e−iwt−Gxy,xy

R (ω, k = 0)hxy(ω, k = 0)(2.31)Leading to the first order approximation, ⟨T µν(x)⟩ = ⟨T µν⟩0 −
1
2

∫
d4yGµν,αβ

R (x− yhαβ(y)(2.32)Where the Green’s function will be equivilant to Gµν,αβ
R (x− y) ≡ θ(x0 − y0) ⟨T µν(x)Tαβ(y)⟩(2.33)taking the fourier transform of it ⟨T xy(ω, k)⟩ = −Gxy,xy

R (ω, k)hxy(ω, k)(2.34)Looking back at how the shear tensor is defined. It will be related to the stress energy tensor and hence the connection form by η = − limω → 0 lim k → 0ImGxy,xy
R (ω, k)(2.35)the Kubo relation yields, µ = − limω− > 0 ImGR(w,k=0

ω
(2.36)That was for the conserved current due to the stress tensor but any sort of operator would be defined and can be generalised the same way with the green function being the related to the two point function of the operator. The poles can be also expanded to relativistic hydrodynamics where the contribution to the correlation functions for the longitudinal and transverse ones is taken to be [3] SL

gg(ω, k) = 2sT Γsω2k2

(ω2−c2sk
2
)
2
+(Γω

sk
2
)
2 (2.37) ST

g g(ω, k) = 2 ηk2

ω2+( η
sT
k2

)
2 (2.38)With the sound attenuation length Γs =

4
3
η+ζ

sT
(2.39)So the same is seen that there exist two poles for sound modes and diffusive modes. One specific note is that in the first order gradient expansion one of the issues that persists is the lack of conservation of causality. The diffusive equation is first order in time but second order in speed. Hence to solve is this issue the second order is usually included. In the kinetic theory description it can be found that as there exist a fluid of quasi particles the diffusion of impurities and shear viscosity are related. As always there exists conservation equations and the number of impurity particles is conserved by the current. [6] ∂n

∂t+∇·j=0(2.40)
Which at leading order would become ∂n

∂t=D∇2n(2.41)
Where D is the diffusion coefficient. In kinetic theory the motion of individual particles takes a stochastic mode. dp

dt=−ηDp+ξ(t)(2.42)
where ξ(t) is the stochastic force and κ is related to the mean square momentum change per unit time. 3κ = ⟨(δp2⟩/(∆t). And this then in the case of large spherical particles with radius a in simple fluid leads to the a relation between the diffusion constant and the shear viscosity,D = T/(6πηa). 2.3 Usage of stress energy tensor as E.O.M and D.O.F of a strongly correlated system

2.3.1 CFT

Conformal field theory is a field theory which its symmetry group is bigger than the symmetries

of the Poincare group. For a more detailed review of the constructions of the CFT you can look

at [7]. Conformal invariance implies a local scale invariance on the metric. I.e it is possible to

scale the metric as gµν=gµνΓ(x).
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The conformal transformation on the metric results in

ηρσ
∂x′ρ

∂x′σ
∂x′µ

∂x′ν
= Λ(x)ηνµ (2.43)

Focus momentarily on the algebra of the symmetry group for a field living in this space time it

is possible to see that an infinitesimal coordinate transformation would lead the the constraint

that

x′µ = xµ + ϵµ (2.44)

The infinitesimal version of the succeeding equation is then

ηρσ
∂x′ρ

∂x′σ
∂x′µ

∂x′ν
= ηρσ(δ

ρ
µ +

∂ϵρ

∂xµ
+O(ϵ2))(δσν

∂ϵσ

∂xν
) +O(ϵ2)) = ηµν + (

∂ϵµ
∂xν

+
∂ϵµ
∂xν

) +O(ϵ2) (2.45)

Thanks to this one can derive the relation

∂µϵν + ∂νϵµ =
2

d
(∂ρϵ

ρ)ηνµ (2.46)

One sees that this restricts ϵ to be at most quadratic in x, hence the only terms that can exist

are

ϵµ = aµ + bµνx
ν + cµρνx

νxρ (2.47)

As it is clear the first term corresponds to infinitesimal translation with the generator being

the usual momentum operator.

Second term can have both anti symmetric and symmetric modules and hence based on the

main relation it is possible to see that the symmetric part is constrained by the equation to be

proportional to the metric as one has
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2b(µν) =
2

d
(ηρσbρσηνµ (2.48)

The transformation for which, x′µ = (1 + α)xµ leads to the generator D = −ixµ∂nu. This is

called the scale transformation.

For the third part of the infinitesimal transformation one can use the equation () to derive that

∂ρ∂µϵν + ∂ρ∂νϵµ = ηνµ
2

d
(∂ · ϵ) (2.49)

At which point it is possible to view the permutations of the indices and realise that one can

write

cµρν = cµρν + cµνρ − cνρµ = ηµρbν + ηµνbρ − ηνρbµ, bµ =
1

d
(2.50)

Hence

x′µ = xµ + 2(x.b)xµ − (x2)bµ (2.51)

Which clearly leads to

Kµ = −i(2xνxµ∂µ − (x2)∂ν) (2.52)

The infinitesimal dialtion transformation leads to a conserved Noether’s current which in turn

confirms the tracelessness of the stress energy momentum tensor. In the scope of conformal

fields the requirement on the stress energy tensor is that it is necessarily traceless. Using this

algebra it is possible to represent the field in So(2,d) which corresponds to the transformation

groups od Ads space. The Stress energy tensor’s restriction then by turn defines the liquid

corresponding to the CFT.
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Superconformal algebra follows similiar lines, in addition to the usual supersymmetry generators

Q and the conformal algebra there are additional algebra to describe the representation of the

fermionic parts. Clearly this means that one of them has to be the commutation between K and

Q, called S. The anticommmutation of S and Q gives rise to the R charges that depending on

the theory may exist. For cases of theories without spin 2, i.e gravitationally free field theories

the maximum number of supersymmetries is 16 (as observed in the SYM), which leads to 32

generators for the fermionic sector, (combinations of the supersymmetric algebra and the spins).

For d=4 which would be the main focus of this paper, the R charge is SU(4) and spinor and

conformal representation of the fermionic generators will be (4, 4)+ (4̄, 4̄) in SO(4, 2)×SU(4).

With regards to correlators as the a result of the conformal invariance and scale invariance the

two point function of an operator on the scalar field is related

1

|x1 − x2|2∆
(2.53)

2.3.2 Heavy Ion Collision

Heavy iron collision reveals a very interesting story about the achievements of RHIC and

their discovery. It was shown that the collision of two nuclei led to a very big asymmetry in

the transverse momentum on different sides. I.e the distribution of the angle on the plane

was uneven. What was then discovered is that the collisions led to a fluid model which was

almost completely in agreements with perfect relativistic hydrodynamics. Perfect relativistic

hydrodynamics as mentioned above has zero viscosity as it does not diffuse. Using this and

the connection of the viscosity with the mean free path it was concluded that the result of

the collision which is believed to be a quark gluon plasma is described as a strongly correlated

system since the momentum transfer is very small and the model cannot be described using

quasi particles of kinetic theory. The data also showed that the system reaches the local

equilibrium and fluid flow very early on after the collision. The problem persists on the fact

that the lattice calculations on the quark gluon plasma would be very complicated and as the

fluid is strongly coupled the perturbative analysis is invalid. Hence the only possible outcome
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seems to be the study of other strongly coupled plasmas similiar enough to the QGP. [3] A

fairly comprehensive description of the process experienced in the RHIC has been done in

reference 115,116. The summary follows that important cross over regimes are indicated as the

initialisation time τ0 wehre the hydrodynamics characterstics begin to show before the local

equilibrium is reached. There is also the freeze out tempreature where the system behaves

non hydrodynamically. Analysis has pointed out that the freezeout regime has to do with

the confinement/deconfinement phase transition and it is related to the point when particles

begin to be confined and there exist a rapid decoupling. The measure of the validity of the

hydrodynamics mode might be the calculations of the shear viscosity and the upper bound of

which experimentally seems to be set at around (3− 5)/4π.

2.3.3 QCD, quark and gluon plasma (flavourful theories)

To calculate the states of QCD, that is in the deconfined state there exists a more complicated

aspect to it. Firstly the breaking of the central symmetry of the group as a result of a non

zero polyakov loop. In the quark introduction the situation becomes much more complicated

as there exists regimes of chiral synmmetry breaking at low temperature and their symmetry

being left unbroken on the higher temperatures. One of the most puzzling bits of this is that

lattice calculations above the 1.5 Tc tends to support the weakly coupled description of QCD

where the perturbative expansion works and there seems to be an existence of quasi particles.

However the the elliptic flow description shows that the plasma constituents must have severe

interaction at above the the critical temperature. [3] This issue is resolved by comparing QCD to

the N=4 super Yang mills. Experimental evidence shows that at high enough temperatures the

susceptibility measured by the holographic methods tends to be in support of the calculations

of susceptibility from the heavy iron collisions. Hence in a way dynamically this supports the

fact that the quark gluon plasma acts as a strongly coupled system and therefore provides more

evidence that the hydrodynamic description would have a higher region of validity with a dual

of gravity which is later explored.

As the work will mostly work with the supersymmetric version of QCD, An introduction to
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how it schematically will look like is necessary.

N=4 Susy QCD is the theory with the highest amount of supersymmetry. In YM theory one

has that the coupling of the N=4 gauge theory is λ ≡ g2YMNc. It includes a gluino, a Weyl

fermion in adjoint representation of the gauge group and in the fundamental representation

of the global SU(4)R symmetry consistent with the dual symmetries of the 5 sphere in the

supergravity description. It also has a coloured higgs field which is also in the adjoint rep of

the gauge group and in the anti symmetric tensor (dim=6) of the SU(4) R symmetry. []

L = −1

4
Ga

µνG
a
µν − iλ̄ai σ

µDµiλ̄
a
i +Dµϕ†

ij
aDµϕ

a
ij (2.54)

With the fermionic spin indices suppressed.

For the theory it was found that the entropy in infinite coupling as a ratio of the free theory’s

entropy is obtained in an expansion of the coupling as

sλ=
s0

=
3

4
+

1.69

λ3/2
(2.55)

As explained above the QCD plasma will undergo a phase transition from confinement to de-

confinement. When it comes to phase transition it is important to study the critical fluctuations

near the liquid gas phase transition. Evidence indicates that Near this point the sound modes

are higher in energy than the diffusive modes and therefore are dominant. As a result one can

see that the QCD is not behaving conformally and their non conformaty will be explored in

chapter 2.5.5.

Reason for the conformal symmetry breaking is that the QCD is expected to have an extra

phase transition corresponding the chiral critical point.

Although there is evidence that viscoisty minimum is located at the end point of the liquid-gas

phase transition both the shear and bulk viscosities diverge near that end point. Data from [8].

As the QCD also experiences phases of quasi particle descritpion at low enough temperature
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the next chapter is dedicated to providing an alternative analysis for the weakly interacting

quantum field theories through kinetic theory.

2.4 Weak interacting systems and hydrodynamics limit

2.4.1 kinetic theory

Kinetic theory is only valid when the system is weakly interacting. The theory consists of quasi

particles with a mean free path much larger than the duration of their interaction. This coin-

cides with the YM theory at weak coupling due to λmfp1/(g
4T ). Therefore they are described

by a distribution function of particles f(x,p). Which is the number of particles at a position x

with the momentum p. The Fourier transform of this must be smaller than the the momentum

of the particles. At long distances these particles follow classical field theory and they are on

shell. [3]

The stress tensor of this is given by

T µν(x) =
∫ d3p

(2π)3
pµpν

E
f(x,p) (2.56)

The dynamic of such system is described by boltzmann equation

E
d

dt
f(x,p) = pµ∂µf(x,p) + Ep

dp

dt

∂

∂p
f(x,p) = C[f ] (2.57)

Where C[f ] is the contribution for all collisions [9]. In the presence of curvature one has to

impose the changes that the curvature connection will have on the path of the particles and

hence in a background metric that is not flat one would alter the boltzmann equation to

pµ∂mf(x,p)− Γλ
µνp

µpν∂pλf(x,p) (2.58)
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Now it is possible to study metric fluctuation parallel to the linear response analysis that was

done for the CFT in Kabo analysis. The response of the system then determines the transport

coefficients for the Kinetic theory and allows a pathway for Hydrodynamics construction. The

starting point then would be to introduce the metric fluctuations perturbively writing our

general space metric two form as gµν = ηµν + hµν and then chosing the transverse components

of the metric to the direction of the wave vector travel, z.

If one has the deviation from the equilibrium written as

f(x,p) = feq(Ep) + δf(x,p) (2.59)

As the result of the disturbance and assuming rotational invariance the equilibrium position is

altered from the perturbation as Ep →
√
|(ηµν + hµν)pµpν| to

feq = f0 + f ′
0p

xpy
|vp
p
hxy ≈v=E/p f0 + f ′

0

pxpy

E
hxy (2.60)

Collision terms are very complicated to calculate, one would have for an elastic scattering the

very complicated. One can then instead use the relaxation time approximation which assumes

a local equilibrium and knowing that oscillations from the equilibrium are driven back to the

equilibrium the relaxation time τR should be of the same order as the λmfp [9].

The equilibrium is chosen to be

f0 =
1

exp[
√
pi(ηij + hij)pj/T ∓ 1

(2.61)

Inputting the δf into the boltzman equation one then has

(∂t + vp∂x)δf + np(1 + np)
pipj

2Ep

∂thij = 0 (2.62)
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the solution of which is going to be

δf(ω, k) = −iωhxy
np(1 + np)

−iω + ivpq + 1/τRE
(2.63)

Leading to the retarded correlator [3]

Gxy,xy
R (K) = −

∫ d3p

(2π)3vxvy ωpxpy(np)(1+np)

ω−qvp+
i

τR

(2.64)

Now Oen can work in the limit of q to zero which is possible by imposing that all momenta is

smaller than the internal scale, which is the limit for the kinetic theory as well.

Using Green-Kubo relations then one recovers the form for shear viscosity as

η = −τR
∫ d3p

(2π)3

(pxpy)2

E2
(np)(1 + np) (2.65)

One can also recover sound modes by relaxing the metric restriction set at the start and allowing

longitudinal modes [9]

T zz = −1

2
Gzzzz(ω, k)hzz(ω, k)

Gzzzz(ω, k) = (ϵ0 + P0)
c2sω

2−iΓsω3

ω2−c2sk
2+iΓsk2ω

(2.66)Where Γ is the usual sound attenuation length.

2.5 Holography

2.5.1 Open vs closed strings

Starting with Type II string theory, p branes are the objects to look for when it comes to

connecting Large N field theories and string theory as they modify the allowed boundary
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condition to include Dirichlet boundary conditions, i. e xp, ...xd − 1 = 0. These branes

along with the closed strings introduce an open string with any value for the coordinates

x0, ...xp, andxp + 1..xd − 1 = 0 which describe the excitation of the p branes [10]. The quan-

tisation of them is at a 1-1 correspondence with the orientable open string which is regularily

known. Massless modes are a vector and spinor superpartner with the gauge group U(1) in

SYM. As the boundary condition implies the dissapearance of the 0 modes, the gauge vector

bosons are only described by the 0,...,p coordinates. And scalars are described by p+1...d-1.

In this sense the scalars can be viewed as the oscillations in the position of the p+1 brane. On

the Dirichlet p brane more commenly known as the Dp brane, we can start to discuss the open

string dynamics. Dp branes can be viewed as D branes with a defect, a fixed point where a

closed string can split into two open strings being attached to the p dimensional subspace of

the ”hole”. These open strings represent the excitation of the p-branes. As the strings reside

on the boundary of the Dp brane, then if the subspace is p dimensional the world volume of

the Dp brane is necessarily p+1 dimensional. Therefore taking the string action we will refer

to this p+1 dimensional space. The open string represents the fluctuations of the d-brane. The

fields only exist on the world volume, hence they can be used to describe the fluctuations of

the D-brane in the transverse direction using their excitations. There exist 9-p of them in 10

dimensional construction. The existence of the U(1) gauge field is very essential and leads to

some of the more key properties explored when treating open strings as a thoery for non abelian

gauge theory. As multiple branes come close to each other the presense of non abelian gauge

fields becomes important. As an example imagine two D-branes close to each other, There

exist four different combinations of open strings that can be created using different end points.

Therefore the symmetries that occure from that combination will be the U(2) symmetry group.

As the establish connection of open strings viewed in terms of a gauge theory, one can also

represents this as a gauged field theory.



2.5. Holography 21

The gauge field then can have two indices for each end point which shows that it is represented

by the U(2) gauge group. Moreover the bosonic field superpartners of the gauge field are

represented in the adjoint group of the SU(2). As the representation is Nc*Nc in the adjoint

with Nc being the number of the D-branes stacked together we can see that as an example

for D-3 branes the fields are going to be ϕi = 1, 2, 3, 4, 5, 6 and coupled to four fermions. In

effective field theory at low energies where the massive modes can be integrated out, it is

possible to see that the space of n p branes near by is the full maximally supersymmetric gauge

theory of SYM, with the interesting property that the beta function which is the measure of

the coupling change with scale is zero, meaning that the coupling doesnt run with scale and

that the low energy gravitational prescription is dual to a conformally invairant field theory

[11]. The Lagrangian is written as

tr[
1

2g2
FµνF

µν+
θI
8π2

FµνF̄
µν−iλaσµDµλa−DµX

iDµX i+gCab
i λa[X

i, λb]+gCiabλ
a
[X i, λ

b
]+
g2

2
[X i, Xj]2]

(2.67)

As closed strings can propagate through the full 10 dimensioanl space time the lagrangian

written above would receive higher order corrections, called Dirac born Infield corrections.

However at low energies they can be neglected and give rise to the correct correspondance [3].

As one would like to work only in AdS space, the compact directions need to manifest themselves

in another way. To be able to preform this reduction, a process called Kaluza-Klein (KK)

compactification is used [12]. This compactification on S5 allows the theory to include the

SU(4) gauge group on the supergravity. Meaning one gauges the supergravity in order to work

in a smaller subspace. The full SYM can be described by solely the AdS5 as long as the

spherical harmonics are included in the field. To draw a map of this, it is possible to say that

the supergravity theory in 10 dimensions can be theorized as the one explained above by taking

the gauge theory to be the fiber bundle over a compact manifold. Since the Gauge group in

question is SU(4) which is a cover of SO(6) it is possible to represent this as a fiber bundle

over S5. As the discussion now includes an infinite volume compact curvature, the gauge field

strength should be related to a volume form on S5 and that exist stationary wave solutions

which are quantised. The quantisation of them leads to frequencies
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ω|R| = λ+
−
+ l + 2n (2.68)

.

Using the fact that the masses of states in the kaluza-klein have the infinite tower construction,

the mass restriction is set to be (mR)2 = l(l + 4). Which would lead to the the definition

of λ being related to l. Hence bounding the frequency from below and creating conformal

time periodic dependency for all of the scalar fields in the supergravity multiplet (As described

above compactifying the time dimension for the theory into an S1). The importance of the

quantisation comes to importance when there is a comparison of the fields in the SYM and

the spectrum. Going back to formulating the gauged supergravity, The spectrum of the N=8

supergravity is the practically the same as the gauged supergravity with the only difference

being that 12 of the vector fields take the form of anti symmetric two forms. That is to

say that as the result of the kaluza-klein compactification the representation of the vector

supermultiplets now includes indices for its representation in the gauge theory. To be able to

write the action, the scalar fields now will transform covariantly on the gauged global symmetry

as usual.

The region of stability allows tachyonic modes as the exponets above would converge for the

values of

m2R2 ≥ −d
2

4
(2.69)

It turns out as the kaluza-klein excitiations are of order one, as the radius of S5 is comparable

to the AdS5 Radius, The dimension one fields on the conformal field theory are exactly the

mass excitation of the kaluza-klein theory which was thoroughly calculated in [].

2.5.2 Gauge gravity Correspondence

To show that the space time symmetries of AdS are related to the conformal symmetries

of the minkowski space, We can take use of the conformal compactification used by carter

penrose when describing the spacetime of classical blackholes. Starting with the minkowski
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space with the lorentzian signiture,we change coordinates as usual and analytically continue to

the boundary of the space time [11].

The conformal minkowski space time then has the metric

ds2 =
1

cosu+cos2u(du+du− + 1
4
sin2(θdΩ2p− 1(2.70)

where u± = τ ± θ/2

absorbing the scale factor 1
cosu+cos2u

into the metric one can see this corresponds to Einstein’s

static universe and has the geometry of R×Sp with the generators of the global time translation

taking the form

H =
1

2
(P0 +K0) = J0,p+2P0 :

1

2
(
∂

∂u+

∂

∂u−
) (2.71)

K0 :
1

2
(u2+

∂

∂u+
+ u2−

∂

∂u−
) (2.72)

Therefore it is possible to show that using the killing vectors symmetries, that the time like

killing vector is going to be related to the combination of translation and and special conformal

group, which then is going to be the SO(2) subgroup of the maximally compact subgroup of

SO(2,p+1). It is clear that that SO(p+1) represents the symmetries of the Sp sphere and

hence it is possible to say that the maximally compact subgroup discussed above is isomorphic

to R ∗ Sp. On the other hand looking at the AdS spacetime it is possible to see that the

universal cover of it is isomorphic to half of the static universe. The boundary of this space is

exactly isomorphic to the boundary of the p+1 minkowski which can be seen as the Einstein

static universe is covered half way through. The clear definition of H also allows the CFTs on

the minkwoksi to be extended onto the geometry described above.

Now we can move on to discuss the symmetries of the AdS. To be able to embed the AdS space,

it should be constructed as a hyperboloid. As it is often found in general relativity there exist

some inconsistencies in regards to arbitrary choices such as coordinates. In this paper most of
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the choices as such are consistent with the original paper on the corespondance. Following this

it is possible to write the hyperbola as

X2
0 +Xp + 22− (2.73)

obviously the symmetry due to the conservation of the hyperbola would lead to the action of

SO(2,p+1) on a module. The embedding of the anti-desitter in the flat space then takes the

form [11]

ds2 = −dX2
0 − dXp + 22 +

p+1∑
i=1

(2.74)

The full AdS metric will be then

ds2 = R2(−cosh2ρdτ 2 + dρ2 + sinh2dΣ2) (2.75)

The spherical coordinates have a symmetry group of SO(p+1). Near the boundary ρ− > 0

the metric could be mapped to S1 ∗ Rp+1. Hence near boundary, The maximally compact

subgroup of what was of this mentioned above the SO(2)*SO(p+1) and the universal cover is

the symmetry group. To preserve casual structure which would be broken by having the time

like coordinate mapped on the S1 one performs another coordinate transformation to unwrap

the circle, tanθ = sinhρ and the metric full causal metric is

ds2 =
R2

cos2θ
(−dτ 2 + dθ2 + sin2θdΩ2) (2.76)

The causal structure of AdS written in this format is related to the Einstein’s static universe

although it is apparent that τ >= π
2
instead of the full π, meaning that the boundary of AdS

only covers half of the Einstein’s static universe, any metric that has this behaviour on the

boundary is called assymptotically AdS, which is the larger class of metrics that can be studied

in this correspondance, the same way that the field theory is applicable in any asymptotically

Minkowski space [11].
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As the KK reduction has been explained one can expand the fields as towers of fields in AdS

by including harmonics of S5 such that

ϕ(x,Ω) =
∑
ℓ

ϕℓ(x)Yℓ(Ω) (2.77)

And then one can work on the AdS reduction and its equivilance to N=4, SYM in 4d.

In string theory the coupling constant of the string is given by the value of dilaton at infinity.

gs = eΦ. Here the infinity chosen will be the boundary (∂AdS) [13]. If there exist a new local

operator with a source term ϕ(x) the generalisation of the argument above imposes that there

must exist a field in the bulk which has the value corresponding to ϕ at the boundary.

ϕ(x) = Φ|AdS(x) = lim
z→0

Φ(x, z). (2.78)

With the addition of mass into the theory, there would be the need for scaling dimension as

there exist a scale symmetry in need of conservation. Imagine the theory expanded around the

quadratic order of Φ, After solving this one finds out the solutions are in the asymptotic form

of [3]

Φ(z, k) ≈ A(k)zd−∆ +B(k)z∆ (2.79)

The mass dimensions are

∆ =
d

2
ν ν =

√
m2R2 +

d2

4

(2.80)

As the scale isometry would restrict a transformation of scale to
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Φ(z, x) → Φ(Λz,Λx)A(Λx) = Λ∆−dA(x) (2.81)

Now to the argument before about the proptionality of the boundary source to the bulk field

at the boundary one has to impose dimensional restrictions, i.e

ϕ(x) = Φ∂AdS ≡ limz→0z
∆−dΦ(z, x) (2.82)

Which restricts the source to have the dimensions d − ∆ and Hence the field operator would

have to have dimensions ∆.

For Spin-2 fields, (graviatons), the scaling dimensionality leads to a bulk p-form having the

scale of the highest root of

m2R2 = (∆− p)(∆ + p− d) (2.83)

One of the amazing outcomes of this formulation is that in terms of the correlates if one imagines

that the boundary field is identified with A(x) and that the expectation value of the operator

⟨O⟩ϕ = 2νB(x) (2.84)

which using linear response theorem would result in the proportionality

GE(ωE, k⃗) =
⟨O(ωE, k⃗)⟩
ϕ(ωE, k⃗)

= 2ν
B(ωE, k⃗)

A(ωE, k⃗)
(2.85)

This relation is crucial as it shows that the poles of the two point function are bijective with

the solutions of the equations of motion for the bulk field at the boundary.

Hence A(x) has a mass scaling dimension of d-∆, and B(x), of ∆. As energy-momentum tensor

is a conserved operator for transitionally invariant theory, (Since they are the generators of
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it), it becomes a very important operator that has the external metric changes as its source,

gµν(x). This metric also corresponds to the boundary value of the bulk metric and shows that

the gravity theory is dynamical if the energy-momentum tensor is a conserved operator.

Generalising to any source field on the gravity side with the dual operator partner in CFT side,

The field operator correspondence can be written in terms of its generating functional

⟨e
∫

d4xϕ0(x⃗)O(x⃗)⟩ = ZString[ϕ(x⃗), z)|z=0 = ϕ0(x⃗] (2.86)

Now to calculate explicit correlation function for a theory that has a scalar as a source, one

takes a look at the connected diagrams, their contribution can be written as

Wgauge[ϕ0] = −log ⟨e
∫

d4xϕ0(x⃗)O(x⃗)⟩CFT =≈ extremumISUGRA[ϕ0] (2.87)

Now considering the scalar in the supergravity,

using the besel functions described before one would have in 4 dimensions

⟨O(x⃗)O(y⃗)⟩ = ϵ2(∆−4)2∆− 4

∆

Γ(∆ + 1)

π2Γ(∆− 2)

1

|x⃗− y⃗|2∆
(2.88)

Which is in the agreement with the CFT correlation function [11]. And the process can be

continued for higher order functions.

As the usage of hydrodynamics will require dependence on thermodynamics it would be worth

while to study the correspondence for field theories at finite temperature.

2.5.3 CFT and blackholes, blackbrane

We now turn our focus to study some systems using holography. After the construction it could

be easily conjectured that the macroscopic properties of the blackhole would have a dual in the
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effective field theory in question. This thermodynamic properties then in turn give us a way of

describing various hydrodynmamic properties in the fluid gravity correspondance. Therefore it

is crucial to study the thermodynamical properties of the blackholes in the dual field theory

more closely. In the paper [input number]. One of the first analysis of the correpondance in

such way was done on reisnner nordstrom charged black holes [14]. Obviously their action along

with the gravitational part has the field strength tensor from the maxwell action and can be

written as

I = − 1

16πG

∫
dn+1x

√
−g[R− F 2 +

n(n− 1)

l2 M
(2.89)

With Λ = n(n− 1)l2 with respect to the length scale l.

The metric takes the form of

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΣ2

n−1 (2.90)

with f(r) = 1− m
rn−2 +

12

r2n−4+ r2

l2

using the parameter q one then can determine the pure gauge

potential and can fix the gauge by demanding euclidean regularity of the one form at the

horizon. In order to discuss thermodynamics We look at the euclidean sector of the metric

which comes with the idea that we find the period of euclidean time (imaginary time) in terms

of the area and etc. The period of the imaginary time arises from the periods of the killing

vector which arises from wanting the solutions to have a regular forms and can be written in

terms of potential Φ = 1
c

q

rn−2
+

β =
4πl2r2n−3

+

(n− 2)l2(1− Φ2) + nr2+
(2.91)

This in turn can be understood as the euqilibrium of blackholes. Hence The period can be

rewritten as a thermodynamical equation of state. For example for n=3, the equations of state

lead to the Blackhole temperature of
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T =
Φ2(1− Φ2) +Q2

2QΦ
(2.92)

To calculate different energies, it is necessary to regularize the calculation since the gravitational

action and hence the energy is infinte [14]. Therefore one method that usually gets carried out is

to introduce a background metric which matches the solutions and subtracting a sort of action

contribuition. In the RN case introdced above it is possible to use metrics that are assymptotic

to the AdS. This method such as some of the dimension regularisation methods in quantum

field theory regulaises the action by adding boundary counterterms to it. The Gibbs potential

contribution is calculated to be

W [Φ, T ] =
1

12
[3
Q

Φ
(1− Φ2(−(

Q

Φ
)3] (2.93)

The helmolz free energy takes into account the relationship with the normallisation factor so

depending on the normalisation, the change of boundary conditions would affect it.

F [Q, T ] =
1

12
[3
Q

Φ
(1− Φ2(−(

Q

Φ
)3 + 9QΦ] (2.94)

While plotting this the writers of the paper found out that there exist a shape as they called

it resembling a swallow tail for values of T¿Tcrit or Q lowwr than the critical point. Obviously

the critical points have been calcualted to be the points where the F[Q,T] has a zero derivative

with respect to each. The swallow tales physical significance comes in to the play for the phase

transition condition. The condition can be translated in terms of the areas inclosed by the

isotherm curves, where the phase transition is viewed as an equal area law. The equations of

state show that for the intrinsic variable Φ and extrinsic variable Q there exist three branches

of solutions for sub critical charge. For the thermodynamical stability it follows that there

exist two different bracnehs. The branches of the solutions have different phase changes and

it can be shown that the second branch extending between the two slopes of dQ/dϕ. This is

electrically stable as it has positive slope and it can be computed exactly where the electrical

stability starts.



30 Chapter 2. Background Theory

The thermodynamical properties discussed above can then be translated into different models

of blackholes. The fact that there is swallow tail and there exist phase transitions at different

temperature could shed some light on phase transitions in dual field theories.

In turn there is the correpondance between blackhole dynamics and thermodynamics. It was

argued that generally that the boundary theory of a gauged gravity theory with a gauge group

of rank c is described effectively by a conformal fluid with a set of c U(1) charges. Using the

thermodynamical properties of the charged static blackholes it is possible to determine the

partition function. However, there are conditions to be satisfied in order to use the equations of

fluid dynamics. The first, is that fluctuations around correlation functions has to be minimal,

which is the case in the large N dynamics of the field theory. Secondly a fluid has to be in a local

equilibrium, hence it is only useful when the length scale of of the variations of thermodynamical

variables and the curvature of the space is larger in comparison to the mean free path which

is an effective description of the equilibration length scale. This is dual to a condition that the

horizon radius of the blackhole is large compared to the AdS radius [15].

It is also possible to study the blackhole through extrinsic curvature calculations.

2.5.4 fluid gravity correspondance

Imagine setting up the field theory an describing the fields in the adjoint rep as a combination

of anti fundamental and fundamental, except for a mixing term which is going to have 1/N

contribution there exist an equivilance between the SU(N) and the U(N) of the anti/fund. If

this is imagined as a surface then there is a way to topologically discuss the feynman diagrams

produced by this prescription.

The perturbation theory one is at a 1-1 with closed orientable strings with the coupling constant

related to 1/N. Fields expectation value, analogous to the string theory vertext operators in

the world sheet. D brane construction for an extremal black p brane solution. The world

duality relates d branes not only as the source of closed strings but as the boundary of the

open strings. Therefore the same gauge theory construction built from the supergravity theory
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applicable in the low energy regime is applicable by imagining N dbranes stacking up together.

The prescription related to the D branes is more useful when it comes to string perturbation as

it uses to string world sheet. Then using the duality between open and closed strings on the D-

branes it was possible to develope the AdS/CFT description. Some of the physical phonemena

that influenced the gauge/duality prescription include the Greybody factors and blackholes,

which showed that two open strings collision on the D brane sourcing the closed string in the

bulk is a process mimicking the hawking radiation [11]. The calculations for the cross section

of the particle coming from infinity absorbed by blackholes was shown to have agreements in

both calculations made by two point correlators and the supergravity solutions. This in turn

sparked the idea that the two are interconnected and related to each other in regions where

t’hooft coupling limits are opposite. For more information check out ( the references). Similiar

processes using D1-D5 brane which has the 1+1 quantum theory it can be shown that the

far region describes the near region much like how the throat of the minkowski region in the

Ads-Scharwarzschild can be used to match conditions between the black hole thermodynamics

and quantum thermodyanmics in the far outside of the throat region.

In AdS/CFT there exist an isomorphism of the particle states in the classical hilbert space

of string thoery and single trace operators of the gauge theory. As the space of single trace

operators is infinite there is a infinite class of gauge theories which have dynamics described by

einstein gravity with negative cosmological constant. As explained above at sufficiently high

temperatures, near equilibrium it is possible to describe the dynamics of the quantum field

theory using hydrodynmaics. What can be derived from this is that in the long wave length

regime the Einstein’s equations in the bulk should reduce to the equations of hydrodyanmics

in the boundary. As derived above if the equatiosn of hydrodynamics have been determined to

second order gradient expansion then one expects the fluid dynamical equations to correspond

to einstein’s gravity in second order perturbation. i.e inhomogeniousk, time dependent black

holes with slowly varying but otherwise generic horizon profiles. Boundary stress tensor is

related to to normalisable metric perturbations about a state. Holographic renormalisation as

an approach to recursively perturb the metric in higher dimensions. The best way to start with

the duality would be the global equilibrium, then that allows us to observe when the equations
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of state cannot describe the boundary away from that equilibrium. Hawking tempeature has

already been established as a dual of the temperture field where as the fluid dymamical velocity

is dual to the horizon boost velocity of the black hole [6]. As the blackhole has assymptotically

Ads Behaviour and the temperature of Schwarzchild-Ads Blackhole grows linearly with horizon

we are ensured thermodynamic stability in the long Ads Radius Regime. To create a gradient

expansion what is being done on the hydrodynamics level is slightly varying the temperature

and velocity field from position to position, the dual of this would be similar to smoothly

patching together different configurations of blackholes varying in temperature and boost. find

a good source to get the symmetries and etc out of it to be able to discus the first order

expansion. As T(x) and u(x) are invariant under redefinition, which implies that there is a

freedom to choose the frame for u away from the equilibrium. upon choosing the liquid rest

frame called the landau frame which has the from (input form) and it fixes the ambiguity of

the fields by relating the velocity and the temperature to the stress tensor. Remember that the

construction of the stress tensor is related to the velocity fields. Naturally as the stress tensor

is related to the entropy by the relationship (describe the relationship) you would expect there

to be an entropy current whose divergence is point wise non negative, and these constraints

lead to the entropy current taking the form

Ja
s = sua − 1

T
ubΠ

ab
(1) (2.95)

To construct the solutions the starting point would be the solution that corresponds to a global

thermal equilibrium in Shwarzschild-AdS

ds2 = −r2f(r/T )dt2 + dr2

r2f(r/T )
+ r2δijdy

idyj

(2.96)

Where f(r) ≡ 1− (4πdr)
d

The solution has been adapted from the usual AdS-Shwarzschild
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ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

d−1 (2.97)

with the identification that the relation between the blackhole temperature and the horizon

radius is r+ ≡ (4πTr)
d

. [15] It is possible to use a boosted frame along the spatial directions to

get a solution that is written in terms of the velocity field which along with the temperature

gives the hydrodynamic properties of the bulk.

To generalise this point it is possible to adapt general AdS seed geometry. One can study the

away from equilibrium properties of the system by creating perturbations to the seed geometry.

ds2 = −2ua(x)dx
adr − r2f(r/T )ua(x)ub(x)dx

adxb + r2Pabdx
adxb (2.98)

Where Pab = uaub + hab, the metric is written In ingoing coordinates. With a gauge fixing

grr = 0 and gra = −ua.

As perturbations are assumed to involve a perturbation series expansion, the metric is expanded

into

gµν =
∑
k=0

g(k)µν (T (x), u
(ϵx) (2.99)

Hence to each order of perturbation what is needed to be done is to solve the Einstein equation

too that order.

The corrections of the seed metric can be written out as

H[g(0)(T
(0)

, ua(0)]g(n) = sn (2.100)

where the operator H is constructed from the information in the equilibrium.

The general understanding of what the equation entails is to look at the Einstein equations
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and the meaning of each part. The Era would be a conservation equation for the momentum

in the radial direction. The Err part is the Hamiltonian (energy) constraints for the radial

evolution. The Era can be solved for each slice since the direction is parallel to the radial

direction and the Eab would be the dynamical equations that can move the solutions between

slices. Hence as it is possible to study the Era equations at each slice it makes sense to bring

the dynamical solutions to the boundary and study them there and then it can be solved for

the whole system. It turns out that what is studied at the boundary is just the conservation

of the stress tensor at that point. Now it is possible to re express the situation in terms of

expression from hydrodynamics for the generic metric derived above.

ds2 = −2ua(x)dx
a(dr +Db(r, x)dx

b) + Gab(r, x)dx
adxb (2.101)

To be able to parametrise these values it is possible to taylor expand the stress tensor. Doing

such would lead the second order perturbation to take the form

∂λ∂µT0
λµ = 0 (2.102)

In landau frame.

As the seed metric preserves the SO(3) rotation one can apply constraints specifically to the

scalar vector and tensor channels. A summary of these constraints is found in []. For second

order the number of channels increases and as the fluid is supposed to be conformal the Weyl

covaraince from chapter 2.3 also plays a role. The values for the parameters above can be

summarised as

Da = rAa−Sac−⌊1(r/t)P b
aDcσ

c
b+ua[

1

2
r2f(r/T )+

1

4
(1−f(r/T )ωcdω

cd+⌊2(r/T )
ωcdω

cd

d− 1
] (2.103)

Gab = r2Pab − ωc
aωcb + 2(r/T )2}1(br)[4πTd σab + }1(r/T )σc

aσcb]−

}2(br)σcdσ
cd

d−1
Pab − }3(r/T )[I1ab

1
2
I3ab + 2I2ab] + }4(r/T )[I1ab + I4ab]
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Sab =
1

d−2
(Rab− R

2(d−1)ab

andR is the Weyl covariant curvature tensor. The tensors not introduced

previously are to produce a weyl covariant basis and their details along with the coefficients

can be found in [5] and [15].

To finish the construction it is possible to simply write the stress energy tensor found (2.24)

by making the replacement infront of the coefficents τI , λi to their respective weyl covariant

partners Iab
i . The coefficients themselves are calculated in [15].

In order to introduce a physical attribute to the convergence modes described later, it is possible

to use small fluctuation of the first order dissapative coefficients above in an oscillatory fashion.

Such that In first order the infinetesimal shifts to coefficents would be related to eiwv + kx.

By solving for the hydrodynamic equations one can derive a dispersion relationship for them.

The convergence of these modes provides the realm in which the hydrodynamic description are

valid. [5]

Another natural way to consider what has been done is the fact that the hydrodynamics de-

scription derived from gravity has strong connections with the membrane paradigm discussed

in [16].

In the r limit of the blackhole horizon classical Einstein gravity tells us there lives a fictitious

fluid on the horizon, membrane paradigm. membrane paradigm and the boundary theory fluid.

In some prescriptions it has been observed that the equations are exactly precise at low fre-

quency regimes and correspond exactly to that of the mebrane paradigm. What this comparison

creates is a clearer description of the connections of the thermodynamics in the gravitational

point of view to ones of the statistical physics. The paper shows how one can describe the

transport coefficients of the boundary liquid in terms of the sole near horizon of the blackhole

geometry. However away from the lowest order of the expansion of frequency, the full geometry

affects the relationship. The procedure to relate the membrane to the boundary fluid then at

the non low frequency limit relies on introducing constant radius hypersurfaces and introuding

a dynamical flow equation that moves across the radius to the boundary. This in a way is an

intuitive analogue of the dynamical equations introduce in the fluid gravity section. To this



36 Chapter 2. Background Theory

point It is important to have an overview of this included in the paper.

The membrane paradigm can be summarised by starting of outside of the horizon. If one

demands that causality is respected then the effective action on the observer is the outside the

horizon action plus the effective action of the horizon on the observer. This is not the same as

the complete action at the boundary of horizon. The dynamics of the boundary is determined

by demanding that the observer is stationary with respect to it.

There are certain physical properties that can be derived from this. Firstly the membrane

conductivity can be found by demanding that there exist a U(1) gauge field in the bulk.

The bulk action then will have the term

Sbulk = −
∫
dd+1x

√
−g 1

4g2d+1(r)FMNFMN
(2.104)

Where g(r) is a radius dependent gauge coupling.

The boundary term at the horizon is determined by varying the action and that determines

the boundary action that cancels it out to be

SSurf =
∫
dd
√
−γ jµ√

−γ
Aµ

Σ

(2.105)

Where the Legendre conjugate variable of Aµ is set to be jµ.

Hence the current induced due to the boundary on the horizon would be

Jν
mb ≡

(jv(r0))√
−γ

= − 1

g2d+1

√
grrF rν(r0) (2.106)

Applying the near boundary coordinates and the appropriate gauge (Ar = 0) leads to the

interpretation that the current is the response of the horizon membrane to the electric field

with membrane conductivity
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σmb =
1

g2d+1(r0)
(2.107)

Same structure can be used to calculate the shear viscosity of the membrane. As shear viscosity

is the response of the stress-energy tensor when there exist massless scalar modes, The relevant

action will be

Sout = −1

2

∫
dd+1x

√
−g 1

q(r)
(∇ϕ)2

r>r0

(2.108)

Boundary term is then

§surf =
∫
dd
√
−γ Π√

−γ
ϕ(r, x)

Σ

(2.109)

For which then the membrane scalar charge to be calculated as

Πmb ≡
Πr0√
−γ

= −
√
grr∂rϕ(r0)

q(r0)
(2.110)

assuming that the field is the off diagonal component of the graviton, one then has the coupling

as q = 16πGN and the shear viscosity can be measured as

ηmb =
1

16πGN

(2.111)

and using the fact that the entropy density for a black hole is going to be s = 1/4GN one

deduces the famous bound of ηmbsmb = 1/4π which strengthens the argument of a connection

between the two regions.

The bulk evolution is simply in zero in the low frequency regime as one has

Π =
−
√
−g

q(r)
grr∂rϕ∂rΠ =

−
√
−g

q(r)
grrgµνkµkνϕ (2.112)
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Second equation drops out due to the killing vector properties of black holes and the symmetries,

however these one forms are to approach zero at the low frequency regime which means that

the radial evolution doesn’t happen.

The more interesting regime is the high/infinite frequency regime where there exist complicated

structures that cannot be described classically by the membrane paradigm. This regime shows

a hydrodynamics flow [16].

Starting with constant r membrane hypersurfaces and defining the usual transport coefficient

for each of them.

χ̄(r, kµ) =
Π(r, kµ)

iωϕ(r, kµ)

(2.113)

From the previous two equations it is possible to derive the evolution of it in terms of a flow

equation.

∂rχ̄(r) = iω

√
grr)

√
gtt

[
χ̄2

ϕ(r)
− Σϕ(r)(1−

k2

ω2

gzz

gtt
] (2.114)

Σ =
1

q(r)

√
−g
grrgtt

(2.115)

The flow equation then can be integrated to derive the response of AdS/CFT to all different

freuquencies. In a way analytically continuing the method into regimes where it should not

have any applications.

As an example of this flow one can take the momentum diffusion. Small perturbation in

momentum density away from the equilibrium in the z direction is taken. In this case the
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graviton fields in the gauge har = 0 where a is the normal directions to z, are decoupled from

the rest and the remaining components are hat and haz. As diffusion would only involve non

diagonal components the momenta is T aµ, mapping the plane spanned by a using a Kaluza

Klein reduction to a gauge field, the graviton modes are mapped to a gauge field and what is

found is that the correlator in the retarded green’s function would take the form

haµ = Aµ, T
µ
a = jµ

Gaz,az
R = s

4π
ω2

iω−Dsk2

(2.116)

Poles of which are found out by determining the diffusion constant

Ds =
η

ϵ+ p
= 4GNs

∫
dr′

grrgtt√
−ggxx

r0

(2.117)

And overall one can calculate the evolution of momenta density using the correlator. The overall

importance of this method is that now there exist a map of classical gravity to hydrodynamics.

What it could provide is that using this method the low energy and high energy regimes are

now well connected and calculations based on AdS/CFT now can be analytically extended and

vice versa. It also provides a flow equation from the non linear hydrodynamic prescription

between relativistic and non relativistic limits [1].

Another point to added to the description is the universality of the shear stress tensor value.
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This can be analysed using a general blackbrane in any dimension.

A general black brane in D-dimensions has a metric of the form

ds2 = f(ξ)(dx2 + dy2+gµνdξ
µdξν) (2.118)

Using the area law the entropy is porpotional to

S =
A

4G
(2.119)

The absorption cross section of the gravitons polarised in the xy direction that propagates

normal to the brane is calculated by the greens function of Txy which is the operator coupled

to the boundary metric hxy [17].

σabs = −2
κ2

ω
ImGR(ω) =

κ2

ω

∫
dtdx ⟨Txy(t,x)Txy(0,0)⟩ (2.120)

Which then comparing to the Kubo Relationship previously discussed would lead us to the

clear relationship between the absorption cross section and the shear viscosity.

η =
σabs
2κ2

(2.121)

What is interesting is that it can be shown that the cross section is calculable by solving a wave

equation for the hxy . It then leads to the observation that by considering the low energy limit

where the perturbations to the geometry are very small and assuming that as the gravitons are

polarised and the only non vanishing first order of the perturbation is hxy, It could be shown

that by solving the Einstein equations that the behaviour of the perturbation is the same as a

minimally coupled scalar. Hence the absorption cross section of the graviton is the same as a

massless scalar.

The theory follows from [17]
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RMN = TMN − T

D − 2
gMN (2.122)

The stress-energy tensor depends on various matter fields such as the dilaton. It can be then

shown that as the result of the O(2) rotational symmetry for xy that all the matter fields are

perturbation free as they would be coupled to the perturbed metric hxy which would break the

symmetry.

Hence the Einstein Equation can be rewritten as

−(L+
T (0)

D − 2
)δαβf+hαβ

(2.123)

The Lagrangian is that of the matter fields. By rewriting the LHS of Einsteins equation in

linear order of h and comparing it to the unperturbed results deduced from the blackbrane

metric one can have.

Rxy = −1

2
2hxy +

1

f
∂µ∂µhxy −

(∂f)2

f 2
hxy = −1

2
[
2f

f
− (∂f)2

f 2
]hxy

(2.124)

Which then in turn by changing variables of hxy to fhxy It is possible to see that the equation

that this 1-1 tensor satisfies is exactly that of the massless non interacting scalar, i.e hxy = 0.

Based on the work of [18], then it can be said imperically that as the bound of the scalar

absorption cross section of a scalar in the blackbrane metric is equal to the area of the horizon
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and since the entropy is related to the horizon by the relation s = a/4G by re introducing the

plank constant scales and the rest one retrieves the minimum value of the shear viscosity has

to be equal to the

η

s
=

h̄

4πkB
(2.125)

The universality of this theory was tested by the work of [19], which provided evidence for and

against the theory ad showed that including matter fields in the fundamental representation

violate this bound.

The paper discussed how the different Quantum corrections affect the theory. For this purpose

one can start by writing the action schematically. As the dual field theory is conformal one can

expect the gravity action in AdS to take the look of

S =
∫
d5
√
−g 12

L2
+R + L2λ1W

2 + L4λ2W
3 + L6

3W
4 (2.126)

W is the weyl tensor and the specific inputs of the parameters for the weyl tensor and the

λn can be calculated using perturbative string theory. In zero temperature when the gauge

theory is supersymmetric the second term vanishes and without matter in the fundamental

representation (usually quarks) the first term also drops out. Considering these simplifications

it was shown that

η

s
=

1

4π
(1 +

15ζ(3)

λ3/2
) (2.127)

Which respects the bound discussed before for the infinite coupling t’hooft limit.

However a 4-d conformal theory can be described by two central charges which then using the

Gauge/Gravity duality yield the anomaly calculation that sets 1
∼= (c− a)/8c. Calculating the

gravity action and hence calculating the η
s
, using the fluid gravity method previously discussed,

it can be seen that the leading order which is the first term of the gravtiy action would have

the effect of
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η

s
=

1

4π
(1− 8λ1 +O(λ3, λ

2
1)) (2.128)

Hence the bound is only respect for the negative values of the coefficient. In theories where

c-a is non negative one has the violation of the bound. It was found that in the large class of

the CFTs and SU(Nc) gauge most of the theories violate this bound and the situation is only

exacerbated once there exist a gauge field in the action. However as the leading corrections are

of the order 1/Nc they will be very small so although the bound is not quite universal It could

be used as a point of vicinity.

2.5.5 Plasma Balls

Plasma balls are droplets of deconfined plasma surrounded by the confining vaccum. Con-

jectured by [20], These plasma balls map to localised blackholes. As the dual gauge theory

of interest is expected to be at a finite temperature one needs to restrict the theory to only

background gravity solutions which can have blackbranes of finite energy density higher than

a critical value exxamined by them. A study based on this later confirmed the findings by

showing that blackholes in 6 dimensions that assymptote to the Scherk-Shwarz (anti periodic

fermion boundary conditions on the KK compactification) compactifcation of AdS6 [21] are

dual to the plasma balls described above. Specifically as the boundary of these blackholes will

be dual to the Scherk-Shwarz compacification the 4+1 dimensional CFT, the long wave length

effective description is dual to the 3+1 Navier stokes equation. The viscosity parameters of

which can be derived from the fluid gravity correspondance.

The topology of these gravitational solutions is and Rd × afilledtorus. As there exist two

cycles in a filled torus as such, there can exist two distinct solutions based on which cycle is

filled in. When the torus is a square one can have a phase transition between the two solutions

as there is no prefered direction and hence the thermodynamical porperties are described by

the phase transition temperature and the changes between the solutons. The identification of

the phase transition in the large coupling limit when one has large anamolous dimension that
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allow the existence of gluballs with masses much higher than the graviton leading to their dual

theory simply being the classical string theory oscillations. The configuration is set up such

that the blackhole decay is dual to a gluon plasma ball decaying using hadronization. There are

a multitude of papers discussing the gravity dual of the plasma balls. One of the main reasons

of interest in the field of fluid gravity is that fluid gravity correspondent is only valid for plasma

without a boundary surface. Reason for it being that at the surface the denisty and pressure

have a large variance between points and the hydrodynamics conditions break down. As the

plasma balls and discs possess a boundary one requires the full gravitational solutions in order

to produce a dual to the boundary fluid. The construction in [22] showed that at regions with

infrared cutoff which is controlled by breaking the conformal symmetry, the infrared localised

black holes in an assymptotic AdS4 backrgound are in fact dual to the plasma balls.

The construction begins at the metric

ds2 = ℓ
(x−y)2

[−ℓ−2H(y)dt2 + dx2

G(x)
+G(x)dϕ2]

whereH(y) = y2(1 + 2µy), G(x) = 1− x2 − 2µx3

ℓ =
√
−3/Γ is the cosmological radius.

G(x) contains a dimensionless parameter and one can restrict the parameter so that the G(x)

contains three roots that are

− 1

2µ
< x0 < x1 < 0 < x2 (2.129)

To simplify the solution one can take the limit µ → 0 which leads to the solution of x1

asymptoting to -1.

One recovers the patch with the subgroup symmetry of poincare in the empty AdS4.

ds2 =
ℓ2

z2
(dz2 − dt2 + dr2 + r2dϕ2) (2.130)

Where one has -ℓ/y and arccos(x) as polar coordinates of the (r,z) plane. Using the fact that
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one wants implement an infrared cutoff, It is possible to implement a wall with vacuum energy

momentum tensor as its souurce.

The gemoetry of the cutfoff works by restricitng that x1 < x0. As the conditions of the wall

are satisfied at x=0 and one could have the wall extend to infinity as the horizon will become

essentially infinite at the critical point µc where x has the value of −
√
3, With infinite horzion

temperature and area.

The area can be calculated using kumar intergration and is set to be

AH = 4πℓ2
(x21 − 1)2

x21(3− x21
(2.131)

At this limit the horizon exhibits an interesting effect called low-wetting, it loses its spherical

profile and the horizon grows larger alonmg the directions parallel to the infrared wall and

creates a water droplet like shape. At this limit there exist regimes of negative curvature

around the center of the horizon. This is surprising as what was expected is that at around the

center one would recover the geometry of the black brane. The solutions of which is found in

the paper. But the most important property is that the mass is of the order

m =
ℓ

3
√
3

(2.132)

Which gives the sense that the blackhole will not reach planar geometry in the large horizon

radius limit. What this then indicates is that eventhough the horizon diverges, the blackhole

does not extend infinetly and in fact it is exhibiting a warped hyperbolic geometry.

Following the paper it is suitable to give the plasma ball CFT some formulations as well [?].

Imagine the metric written in Fefferman-Graham coordinates (z, xi),
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ds2 =
ℓ2

z2
(dz2 + gz,xdx

idxj) (2.133)

Such that the metric can be expended in terms of a power series in orders of z.

the third order gives the stress tesnor of the dual theory

⟨Tij(x)⟩ =
3ℓ2

16πG
g
(3)
ij

(2.134)

The calcualations are once again preseneted there. There are certain conclusions one can derive

from this, first of all is that the metric on which the CFT is the boundary theory is non flat and

is dependent on x1. Hence one gets different geometries for different values of the parameter.

One can then see the duality by observing the stress energy tensor as a function of radial

distance and it was found that in fact in the centre there exist a perfect fluid and as the critical

limit is approached the pressure and energy density remains the same until the boundary of

the plasma where it drops off rapidly. THis proves that the dual object has a boundary that is

non hydrodynamical and that it is in fact describing a plsama ball. This regions as said before

coincides with the ricci scalar for the boundary metric of R0 − 6ℓ2

and to check it is possible to even see that the stress energy tensor is exactly the same witout

a coformal factor. The external curvature is the controlling limit of how much the geometry of

the boundary is warped to allow the formation of the plasma ball and in the critical limit

K|rp=rball → 1.5ℓ−1 (2.135)

which is finite and the edge remains the same shape. Through this analysis certain character-
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sitics of the wall can be studied. Firstly the characteristics of the spontenously broken conformal

invariance, which should lead to massless modes could be studied through the massless radion

produced and its effect on the confinement deconfinement phase transition.

It was found that through this that the deconfinement temperature is vanishingly small , hence

the formation of plasmas is not first order as the plasma phase is related to the temperature.

As this idea is not stable it seems like that the only way to stabilise the plasma ball is to give

the raidon degrees of freedom mass and allow the modifications of the curvature of.

The aim of the inclusion of this is to view fireballs along with the necessary identification

of dynamical gravity in the boundary theory, Which recovers the first order phase transition.

Hence there exist interpolations of fluid dynamics and gravity in a deconfined plasma ball. This

Theory and the conjecture inspired the work of calculating the dynamics of plasma balls from

holography in numerical simulations. For the simulation. As described before AdS solitons

are found to be the dual to the confining phase of the N=4 Superyang mills and the metric is

described as a metric with a flat conformal boundary and a compact S1 directon. The numerical

scheme works by solving einstein’s field equations in terms of solutions that include the soliton

as the background with some sort of non small metric deformation [?].

The soliton has a metric

ĝ =
1

(1− ρ2)2
(−dt2 + 42

f(ρ)
dρ2 + dx21 + dx22 + f(ρ)dθ2)

with f(ρ) = 1− (1− ρ2)4(2.136)IR bottom is at ρ = 0. Assuming no symmetries except for the

compactified circle

one can have a general form of the metric with all of the cross terms. Confinement scale and

the deconfinement temperature are both related to the period of the circle by Tc = 1/∆θ = Λ.

If the AdS-soliton has a vanshing stress-tensor, i.e the counter term for the renormalisation

scheme is taken such that the lhs of the background einstein equation is set to zero, the black

branes on this background have the thermodynamical quantities



48 Chapter 2. Background Theory

(ϵ, P1 = P2, pθ) =
π2

4
(3T 4 + Λ, T 4 − Λ4, T 4 + 3Λ4)

(2.137)

The analysis takes into account of matter formation by coupling massless scalar field ϕ to the

gravity. The dual of it is going to have the value of the scalar at the boundary as the source

term and a scalar operator dual to it as its momentum conjugate. The CFT hasnt had the

stress tensor of it modified and hence by construction it is still trasless.

The result of the simulation indicated that for the anystropic distribution of the scalars there

is a black hole formation at the IR bottom with the blackhole being extended in one direction

more than the other, resembling the almond shape interaction viewed at the RHIC.

The results explain an unusual behaviour. As the scalar field is supposed to be described by a

set of gapped and quantum like modes, in late time it should have been expected that they will

couple and the frequencies of each mode reaches its assymptotic stage, however shockingly it was

discovered that fluctuations and mode mixing is still present although at a very small amount

even in late times. As this is supposed to be dual to the Quark Gluon plasma reaching its final

freezout stage, what has been observed is dual to the freezeout not being present at the times

previously expected. These are the results of the modes bouncing back and fourth between

the IR bottom and the AdS boundary, as they cause periodic fluctuations. The study points

out this strongly interacting regime exist when the wavelength of the modes are comparable

to the size of the blackhole. This phase is described in QCD as a transfer of energy between

IR and UV modes coupled to the dynamical oscillations caused (dynamical) by the dynamical

boundary metric.

For more realistic model of QCD where there is an epxectation for the existence of quark which

are matter fields in the fundamental representation, there would be an additional existence of
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D7 branes and their respective orientfold planes.

2.5.6 confinement-deconfinement phase transition

At finite temperature as the ground state energy is changed the supersymmetry and conformal

invariance is broken. Computation of entropy for the finite temperature U(N) Yang-Mills is

quite arduous. However using a free field approximation it could be shown that the results of

the identification were quite successful. In this construction then it was shown that for the

identification to apply one should set the hawking temperature in the supergravity which is

once again related to the area of the horizon equal to the field theory temperature. As a result

it was shown that [3]

FSYM =
4

3
FSUGRA (2.138)

In the strong coupling limit the supergravity relation would be equivilant. In the weak coupling

regime the calculation was done from the expansion to two loop in perturbation theory. The

strong results came from the leading corrections to the supergravity action. Both of these

corrections become the subject of interest in the hydrodynamic prescription. In order to achieve

the t’Hooft large N limit It is known that the loop stringy corrections are not counted in, hence

there is an extermination similiar to the process of stationary point approximation applied to the

generating functional of the supergravity fields. The biggest problem is that as gravity as at all

points divergent it is non renormalisable, hence they are only valid using particular asymptotic

boundary solutions. This leads to certain multiple solutions to the theory, which should be

summed over to obtain the singular solution to the gauge theory side. The importance of this

choice of solution is that it leads to phase transitions between the multiple solutions leading

to the deconfinement-confinement transition which would be discussed in the extent of certain

confinfing-deconfining quantum solutions such as the plasma balls in an AdS background.

The choice of the solution leads to distinct and different topological spaces. First one with

S4 × S1 with the boundary being S3 × S1. Discussed in [12] it is possible to have a completely

different topologically distinct structure R2 × S3. In regards to spin structure the second
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manifold has a distinct structure as it is simply connected, However as the S1 is not simply

connected, there is a non uniqueness to its spin since it will be possible to have different non

continuous patches. Hence the representation of the spin can take two different forms, thermal

and supersymmetric. The second topology restricts the first space dubbed X1 to have the

thermal structure. Leaving the supersymmetric patch to X2. Since both of them have a saddle

point contribuition, using a cut off radius as a regularisation scheme to reach definite values and

defining a consistent time for both (the circumfrance of S1 for X1 is the same as the geodesic

length of the time killing vector of the other) It is possible to write the action difference as

I(X2)− I(X1) =
π2r3+(R

2 − r2+)

4G5(2r2+ +R2
(2.139)

Whichever space’s contribution is bigger it leads to a different theory. This leads to two regions

of validity. One where this value is positive, where it is the blackhole in the AdS or if the

X1 contribution is bigger and the sign is negative then thee thermal gas of particles in AdS is

favoured. Using the coupling limits of QCD it was found that these in field theory are the phase

transitions from confinement to deconfinement. Hence One expects to work with quasi particles

in AdS when describing a deconfined field theory. This idea of the confinement deconfinement

is of importance while studying gauge theories that exhibit assymptotic confinement. QCD

an assymptotically free and confining theory could benefit a study from this approach. The

starting point is to compactify time on a circle and use anti periodic boundary condition. The

metric produced is the euclidean black hole. The effective dimensionless gauge coupling of QCD

is determined by the fact that the periodic boundary condition on the circle will lead to the

radius of the compactifiying circle to provide the uv cutoff. The dimensionless gauge coupling

at the cutoff distance is determined by gSN .

This prescription can then gave rise to the analysis through shockwave solutions. In shockwave

soluions one uses a soliton background which is the dual X1 described before and by apply-

ing gravitational shockwaves that produce blackholes study a deconfined phase in a confined

background [23].

The metric of this analysis is
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ds2 = 2dx+dx+(dx+)2Φ(xi)δ(x+)+dx⃗2(2.140)

With Φ being a harmonic 0-form of the manifold and satisfying the Poisson equation

∆D−2Φ(x
i) = −16πGpδD−2(xi) (2.141)

This becomes the background in the curved space. The gravitational scatterings was shown to

produce blackholes. Now turning the attention to the pion scattering, It was conjectured that

the position of the IR brane is the pion dual in the gravity theory.

The scalar as a product of the pion field shockwaves collision, the soliton, should be dual to the

blackhole description. Some scale prescription shows that that the blackhole creation begins

at the scale MP which in the gauge theory relates to Mp = N1/4λQCD and the gauge theories

maximal ”Froissart behaviour” is observed when the size of the blackhole is its AdS radius.

However before the saturation of the band and before the AdS reaching the IR brane, the

scattering leads to a gauge theory with the cross section related to s1/11. And the maximal

Froissart behaviour is reached before the expected energy bound. Hence showing the description

works before the bound is saturated. So there exist at a lower energy band a dual description

of the blackhole for the lightest glueball(the lightest pion excitation where there exist no other

pions in the system except for it). As the KK modes are the lightest of the gravity modes, a

prescription was implied to check whether these two are dual.

The prediction led to the conjecture that these pion fields exactly describe the Color Glass

Condensate (CGC), that eventually expands into the Quark Gluon Plasma, which eventually

decays into the free pions. Hence one can track the evolution of the plasma as reasonably high

energies in the gravity dual. The first phase would be dual to the blackhole Formation. The

decay of the soliton into pion is then the gravitons radiating away from the blackhole and the

temperature for the freeze out is the hawking’s temperature of the blackhole. This led to the

realization that this may be the temperature of the phase transition from confinement into
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deconfinement. To check the prediction the used the spherically symmetric nature of the black

hole at the IR brane to derive the temperature of the blackhole as

T =
M1

4π
(2.142)

Where M1 is the mass of the KK graviton. As the conjecture implies that these modes cor-

respond to the lightest pion modes, once the pion average mass is inserted, the results should

indicate the temperature for the freeze out regime. The value was calcualted to be 175.76 MeV

which is fantastically close to the 176 MeV calculated for the freezout regime at the RHIC.

This section shows a familiar cross between the field theory and gravity theory through thermo-

dynamics. To expand on the effect of hydrodynamics on shockwave solution the next chapter is

dedicated to the study of the hydrodynamics simulations and efficacy of the gradient expansion

on these solutions.

2.5.7 shockwave solutions

Using holography it has been possible to derive a multitude of dual theories that have various

uses. As mentioned in the section 2.3.2, the data from RHIC support hydrodynamics viscous

flow for the system. Therefore it is logical to present gravity models that could be dual to

this collision and study the fluid gravity correspondence to evaluate the hydrodynamics of such

systems. It is also a great model for the response of at what limits the collision can be described

by hydrodynamics. As the process of QGP formation can be dual to the gravitational collapse

and blackhole formation and hadronisation and the relaxation of QGP to the confined state

mapped to the blackhole evaporation, all stages of the evolution can be mapped to gravity

models that can be numerically studied in an iterative fashion.

One of the dual theories that describes a simple model of QGP production is the gravitation

shockwaves collision which form blackholes. Nucleus being dual to the planar shockwaves and

proton the transversely localised shockwaves. One then can numerically solve the dynamical
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einstein equations and track the evolution of the SYM stress tensor. The gradient expansion of

the hydrodynamics stress tensor coupled to the SYM has orders of power 1/ℓTeff where ℓ is he

scale over which T µν varies and Teff is the effective temperature. It is not a surprise then that

the effective temperature acts as the representation of mean free path. The model presented

in this section focuses on the small mean free path which is the more strongly coupled regime

of the scale. The model [24]has the shockwaves moving in the z direction at the speed of light.

In Fefferman-Graham coordinates the metric of these shockwaves is

ds2 = r2[−dt2 + dx2 +
dr2

r4
] + h±(x⊥, z∓, r)dz

2
∓ (2.143)

h±(x⊥, z∓, r) ≡
∫ d2k

(2π)2
eik·x⊥H

˜
±(k,z±

8I2(k/r)

k2r2
(2.144)

from holography it is possible to view the boundary theory stress tensors in terms of the

transverse Fourier transform (i.e fourier transform in the transverse directions) of the H ±̃ such

that

T 00 = T zz = ±T 0z = H±(x⊥, z∓) (2.145)

The numerical simulation then apporoximates a simple choice of the shock profiles such that

it consists of a longitudinal δ function in terms of a gaussian δω(z) =
1√
2πω2

e−
1
2
z2/ω2

and a nor-

malised longitudinally integrated energy density per area which then helps with the localisation.

It could be represented by µ+(x⊥)
3 = e−

1
2
x2⊥/σ2

. The evolution of the geometry is tracted using

a near boundary approximation and gradient expansion described above in an assymptotically

AdS space time. If one has the near the boundary metric as gµν = ηµν + g(4)µν /r
4 + O(1/r5)

which evolves the stress energy tensor as

T µν = gµν
(4) +

1

4
ηµνg

(4)
00 (2.146)
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The simulations seems to show that the region with hydrodynamics validity is when |x|σ̃ and

depends on the transverse size of the proton. One can use the temporal eigen value which is

the energy and the eigen vector of it which is the fluid velocity calculated from the extact stress

tensor and approximate the stress tensor for hydrodynamicas using the mechanism outlined in

the previous sections. The plot shows the rapid decay between the values of the stress tensor

and the hydrodynamic expression for it. Using a measure of anistropy it was shown that the

ideal hydrodynamics case is not a good approximation and the results pointed out that the

first order gradient is almost as large as the ideal stress. Which shows the extreme capability

of hydrodynamics description even in a region with large gradient. As the large gradients are

accompanied by large initial viscosity parameters which drive the rapid development of the

transverse flow. Leading to a higher region of validity of hydrodynamics prescription.

Phys. Rev. Lett. 115 (2015) 241602, [1506.02209] Colliding Shockwaves

2.5.8 non conformal gauge/gravity duality models

Until very recently most of the simulations provided by the shockwave solutions were done for

theories dual to conformal field theories, however as QCD is a theory which carries a scale

factor for most of the temperatures, It raises questions about the quality of the models that

use Holography and as a result mostly conformal field theories as an approxiamtion to Heavy

Ion collisions. The procedure for producing these models is the following [25].

Models that are dual to the CFT are deformed by a source which breaks scale in variance and

produces an Renormalisation Group flow [26]. The procedure is quite similar to the explanation

of adding quarks as sources to the theory explained above. One of the intriguing aspects of

what is shown is that as the relation between the energy and density which used to be fixed

by symmetry (The stress tensor energy tensor being traceless) is not anymore under that

constraint. Therefore the freeze out and relaxation includes and extra channel relating to the

asymptotic behaviour of both called EoSization.

As realised before to deform the theory one can always couple a scalar field to the gravity
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model.

The gravity action then is changed to

S =
2

κ25
=

∫
d5x

√
−g[1

4
R− 1

2
(∇ϕ)2 − V (ϕ)]

(2.147)

The potential is then chosen to satisfy some properties. As one would like to keep the vacuum

solution asymptotically AdS at UV, Secondly the second scalar derivative at ϕ = ϕmax would

constrict the mass of the field into be −3/L2, allowing the dual operator to have dimension 3

at the UV regime.

The potential then accordingly is chosen to be

L2V (ϕ) = −3− 3

2
ϕ2 − 1

3
ϕ4+

(1
2ϕ4

M+ 1

3ϕ2
M

)ϕ6− 1

12ϕ4
M

ϕ8

(2.148)

Which has a maximum at ϕ = 0 and a minimum at ϕ = ϕM .

The dimensions for the IR region ( at ϕ = ϕM) are presented in the paper [26]. Using (FG)

coordinates the solution following the assumption that it will be asymptotically AdS will be be

ds2 =
L2

u2FG

du2FG + e2aFGu(FG)ηµνdx
µdxν (2.149)
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Using principles of super symmetry one can then obtain an arbitrary addition of super potentials

related to the potential and as there exist auxiliary fields related to the metric coefficients one

can derive the solution necessary (based on the choice of super potential in the paper), The

equations are the following and their analytical solution is presented in the paper

uFG
daFG

duFG

=
2

3
W,uFG

dϕ

duFG

= −∂W
∂ϕ

(2.150)

To apply gradient expansion then it is possible to take the 5 dimensional AdS assymptoting

metric in the FG form

and power expansion of the holographic coordinate

such that

gµν = ηµν + g(2)µν u
2
FG + g(4)µν u

4
FG + ...ϕ = ϕ0uFG + ϕ(2)u3FG

(2.151)

Producing up to u4FG the 1 point correlators dual to the metric and the field ϕ for the field

theory respectively as

⟨Tµ nu⟩ =
2L3

κ25
[g(4)µν + Λϕ(2) − Λ4

18

Λ4

4ϕ2
M

ηµν ]

(2.152)
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with the UV limit of ϕ being the source of the dual operator.

⟨O⟩ = −2L3

κ25
(2ϕ(2) +

Λ3

ϕ2
M

(2.153)

Taking the trace of the penultimate equation one can derivate the equation

⟨T µ
µ ⟩ = −Λ ⟨O⟩ (2.154)

Which was to be expected for the breaking of the conformal invariance.

The numerical simulation follows a very similiar procedure to the shockwave solutions described

before for the conformal plasma balls, hence stating the results of the simulation seems sufficient

enough.

As η/s = 1/4π in all the Einstein gravity models, it becomes unimportant to measure it.

However the ratio of the bulk viscosity to the shear viscosity becomes an important index of

the measure of the conformality of the fluid.

The ratio is calculated using

ζ

η
= 4(

dlogs

dϕH

)−2 (2.155)

Once again the results show that hyrdoynamisation comes before isotropisation (where the fluid

has isotropic pressure) as the transverse pressure is still about 70% larger than the longitudinal

modes. The EoSization time which is defined as the time taken for the average pressure to agree

with the equilibrium by 10% accuracy is controlled by the expectation value of operator dual

to the scalar and its peak time seems to be decrease at high energies. As the conformal effects
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become more strong and it assymptotes to the hydrodynamisation time. This is explained

through the fact dynamics of the condesate decouple from the stress tensor. What is interesting

is that hydrodynamisation time is smaller than the Eosization time in more non conformal

systems, and it indicated a value for the degree of non conformality necessary for this to

happen in terms of the bulk viscosity. THe bulk viscosity has be around 0.025 for this effect to

occure, which shows the response of the fluid to increased bulk viscosity.

2.6 convergence of hydrodynamic modes

The rise of interest in finding the radius of convergence is described by all of the proceeding sec-

tions before hand. As the green’s functions of the stress tensor in equilibrium has infinitely many

poles in the fluid gravity prescription it allows numerical results to be manifested. The trust

in these numerical results is based on how good the hydrodynamic prescription is. Amongst

these poles the most relevant ones as the work presented mainly focuses on CFTs are the shear

and sound channel described above [27].

The modes can be simply written as

ω⊥ = i
η

sT
k2 +O(k4) (2.156)

for the sheer mode,

ω±=± 1√
3
k−i 2

3
η
sT

k2+O(k4)(2.157)

2.6.1 Large coupling limit

Why do we care about the convergence of the hydrodynamics mode. It is infact because if

the gradient expansion mentioned in section 2.2 is actually viable, by having a convergent

series to the expansion we can have away from equilibrium microscopic description of whatever
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theory is described by the stress energy tensor. Recent studies shows hydrodynamic gradient

expansion is divergent. The work of [28] points out to the fact that there exist a finite radius

of convergence. This section will follow with studying the convergent series and a general way

to gain analytical control over the divergence of the series for general values. The holographic

theory that was presented in this paper is the Einstein Maxwell theory for AdS4. Which ofcourse

would contain RN blackbrane in the bulk for the equilibrium. Paralllel to what you will see for

the kinetic theory one observes the structure of the complex k plane to determine the radius

of convergence. This leads to a multi sheeted modes of (ω(k)) with the principal sheet being

related to the hydrodynamics properties of the theory and contains branch points

k = ±ik∗wherek∗ = 1

2µ

√
ϵ+ p

2µ
√
η

(2.158)

This was accredited physically to the collision of the branch point and the hydrodynmaic

mode on the k axis. What has been interesting is that if one analytically continues the quasi

normal modes past the branch point they will move on to a secondary shorter lived sheet which

corresponds to the non hydrodynamic modes hence drawing a connection between the different

modes through this prescription. One can then use the analytical continuation to determine

the breakdown of hydrodynamics in the complex plane.

Starting with AdS4 RN blackbrane with horizon at (z=1) can be written as the metric

ds2 =
1

z2
(−f(z)dt2 + dz2

f(z)
+ dx2 + dy2 (2.159)

And

f(z) = 1− (1 +
µ2

4
)z3 +

µ2z4

4
(2.160)

As one is dealing with the convergence radius of the shear modes, one perturbs the metric and

gauge filed transversely

δg(t, x, y, z) =
e−i+ikx

z2
(hty(z)2dtdy + hxy(z)2dxdy) (2.161)
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δA(t, x, y, z) = e−i+ikxhy (2.162)

One can form a master equation satisfying both ODEs.

−f(fϕ′
±)

′ + f(q2 + µ2z2 − µzc±)ϕ± − ω2ϕ± = 0 (2.163)

On the boundary (z → 0), the boundary condition is the absence of sources hence producing

quasi normal modes for the bulk.

One then can expand both the shear mode and the solution to the perturbation in terms of a

series

ϕ+(z) =
inf∑
n=0

ψn(z)k
2n (2.164)

ω(k) =
inf∑
n=0

ωbk
2n (2.165)

Expanding ϕ in terms of (ω) then links the two series to each other.

For calculating the radius of convergence it is convenient to define Pade’s approximant which

defines a ratio between two polynomials as

Pk(k) =

∑inf
n=0 ank

n

1 +
∑inf

j=1 bjk
j

(2.166)

Which then gives the closest pole to k=0 to be k =≈ 0.753i

Which corresponds to a pair of modes

ω(0)/µ = ±0, 7493− 0.5128i

(2.167)
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The large order behaviour of the system is dominated by a factorial form

JnÃ
Γ(n+ α)

χn+α
(2.168)

χ and α are some constants. the factorial form is controlled by the parameter χ which was

coined as singulants.

The article[27] devised a way of using Dingle’s singulants to achieve control over its away from

equilibrium behaviour for non linear flows. Singulants are (define singulants and their behaviour

briefly). They applied the large order behaviour and the singulant theory to the gradient

expression. Assuming patches of space would have different flows and different velocities it is

possible to have the parameters defined above as scalar fields.

The ansatz can be summarised as

Πn
νµ(t, x⃗) = An

νµ(t, x⃗)
Γ(n+ α(t, x⃗))

χ(t, x⃗)n+α(t,x⃗)
(2.169)

There are discussions on why the main focus is longitudenal flow. The reason for that is that

you can always go into the liquids rest frame and it adds a degree of spherical symmetry and

translational invariance. The paper focuses on different regions of validity and their overlap

of domain. The study finds that the singulants have a duality to a particular domain of

gradient expansion. Moreover there is a region of absolute overlap between linear response

theory,hydrodynamics and the singulants which is the most resolved region.

We can quickly summarise the singulants in the longitidunal flow as follows. As the flow is

parralel to the motion it is possible to pick out a time and spatial direction. The velocity then

has to be constrained to the plane. This would mean that the velocity vector has a definition

Uµ∂mu = coshu∂tsinhu∂x (2.170)
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And any two tensor that is transverse and traceless and symmetric should be projected on the

hyperplane This could be achieved using

Aµν = (2− d)(ηµν + Uµν − d− 1

d− 2
P νµ
T )A(t, x) (2.171)

Summarise this the gradient expansion becomes only related to the ... In the holography case

which is obviosuly coupled to the strong interactions the gradient expansion is the dual to the

gradient expansion of the metric such that one can write the metric as

gAB =
∑

gnAB(X)ϵn (2.172)

obtained by the holographic renormalisation obtained above.

As discussed one would like to match the two gradient expansions together hence the orders of

the metric expansion will behave the same as the perturbations of the non linear fluid. In the

limit of large n it is expected that the recursion relations become linear and the u dependent

terms drop out. For the holographic case then the equations of motion at the large n simplify

to the solutions related to the solutions of the singulant. As in the action of ∂µ1 ...∂µp on the

gravitational term corresponds to ∂µ1 ...∂µpχ

Another way to realise this which does help with the understandings of the model is to introduce

plane wave fluctuations of pi. Then the same as the WKB approximation and mapping the

zeroth order thermodynamics equations to the equations of singulant dynamics.

To describe the longitudinal flow it is possible to create a geometry dual to it, the metric of

such space assuming that the boundary is described by xµ and the coordinate r takes us away

from the boundary,

ds2 = −2Uµ(x)dx
µ(dr + Vν(r, x)dx

ν) +Gµν(r, x)dx
µdxν (2.173)
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Gµν is a transverse tensor to the liquid velocity. expressing the coordinates as

xµ = (τ, σ, x
(1)
⊥ , x

(2)
⊥ )

(2.174)

where the first coordinate is time like and second is spacelike and together they form the

coordiantes of the longtidunal plane. There is a possibility to diagonalise the boundary metric

by the choice of coordiantes such that

dh2 = −e2a(τ,σ)dτ 2 + e2b(τ,σ)dσ2 + dx⃗2⊥ (2.175)

the fluid velocity is the time like killing vector on the metric.

The holography conjecture drew a very clear connection between the stress energy tensors from

each theory such that

⟨Tµν⟩ = tµν (2.176)

The calculations of each of the components of the stress energy tensor of the gravity i.e the

right hand side can be found in the reference [6]. The conclusion is that in the landau frame

where the fluid velocity defines the time orientation of the liquid stress tensor (the lhs). Then

using the process described above it is possible to write the zeroth order solutions taking into

acoount the bulk spacetime being assymptotically AdS. Then then by using the series relations

it is possible to obtain the large order behaviour of the gradient expansion. The only thing to

note is that there exist two regimes of solutions, the first is the infrared regime found at the

horizon and the high energy regime found at the assymptotes of infinity.

For different sections of the Einsteins equation there exist the different solutons. You can also
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find the dynamical equations of motions summarised in the paper. The significane of what

is found is that if you imagine infinetisemal hydrodyanmiocs fluctuations around a thermal

state of energy ϵ0. And expecting the other result from previous chapters to be applicable it

is possible to write them in terms of transport coefficients. And what can then be defined is a

clear understanding of the dispersion relations for the sound channels using the calculations of

the momentum dependendent sound attenuation length. The result of this is that at the poles

of the sound attentuation lenth it is possible for the corrections to the stress energy tensor to be

finite. Therefore it can be shown that by linearising the recursive relationships described above

and using the gradient expansion approach the dynamical equations of motion have analytical

sense in Dingle’s description of the singulants.

Small coupling limit Kinetic theory has gained interest as the result of its effective description

of QCD in high temperatures. Therefore it is convenient to find out what momentum radius

produces a converging hydrodynamic prescription. In second order of the momentum expansion

(i.e one higher order of perturbation than what was described above one would have the retarded

greens function for the shear and sound channel as

Gxy,xy
R,⊥ (ω, k)

ϵ+ P
=

2kτ(2k2τ 2 + 3(1− iτω)2 + 3i(1− iτω)(k2τ 2 + (1− iτω)2L

2kτ(3 + 2k2τ 2 − 3iτ) + 3i(k2τ 2 + (1− iτω)2L
(2.177)

and the sound channel written as

Gxz,xz
R,∥

−3(ϵ+ P )
=

1

3
+ ω2τ

2kτ + i(1− iτω)L

2kτ(k2τ + 3iω) + i(k2τ + 3ω(i+ τω))L
(2.178)

With L being

L = log(
ω − k + i

τ

ω + k + i
τ

(2.179)

The correlation functions have produced a branch cut at ω = − i
τ
+ k due to the value of

the logarithmic being singular. This has been described as the result of the stress tensor

obtaining contributions from particles coming in from various angles that lead to a logarithmic

distribution.
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To further analyse this [29] has presented a series expansion and has made use of the implicit

function theorem.

Firstly the shear channel has poles of the two point function at (τ is set to 1 for now)

2k(3 + 2k2 − 3iω) + 3i(k22 + (1− iω)2L = 0 (2.180)

Away from the poles its leading contribution is

ω⊥(k) = − i

5
k2 + ... (2.181)

As one needs to test the convergence, it is possible to write the series expansion as

ω⊥ =

inf cqk2q(2.182)∑
q=1

and then replace it as the solution for values near k=0, one can then find that since the

coefficients have the behaviour

limq→inf |
cq+1

cq
= |k∗⊥|−2 (2.183)

and numerical simulation set the value of

|k∗⊥| =
3

2
(2.184)

They then confirmed the results using symmetric Pade approximants where which maps the

real values to the complex plane. Poles in this method become lines of pole condensastion and

it was shown that there existed to of these condensations starting at
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k = k± = ±1.50020004i (2.185)

One can then turn to realise that the branch point singularities exist at k = 3
2
i, ω = i

2
. One can

check that these are valid solutions of (num) but also that at the coordinates the hydrodynamic

pole collides with the non hydrodynamic branch point. However for the case of real k it can

be observed that ω⊥ can in fact cross the branch cuts, meaning that it has moved from the

principal sheet to a different sheet by analytical continuation. And the same procedure can be

carried out to find the collision for gapless modes. Therefore the situation can be generalised

for them, and the point k=3
2idoescorresondtoalograithmicbranchpointof

ω⊥.

One can bring the same analysis to the sound channel.

for the sound channel the pole is at

2k(k2 + 3iω) + i(k2 + 3ω(i+ ω))L (2.186)

Then the series expansion ansatz around k=0 bring s to

ω±
∥ = ± k√

3
+

infq+2 c
±
q kq(2.187)∑

Once again plugging the series expansion into the pole and to find the location of the singu-

larities one can carry on with the Pade approximation. The first lines that coincide with the

k=0 starts at k0 = 0.7513375i and goes along the positive imagiary axis. The other two are

symmetric on the imaginary axis and start at the point k± = ±0.0102799 + 0.7409764. Since

their imaginary value is less than k0 it is expected that they are the ones setting the radius of

convergence.

To further the understanding of these symmetric points the pole is turned into an ODE for

ωpar
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C(ω∥(k), k)ω
′
∥(k)−D(ω∥(k), k) = 0

(2.188)

C(ω, k) = ik2 + 6k3ω + 3ikω2 − 6kω3

(2.189)

D(ω, k) = k4 + 6ik2ω + 8k2ω2 − 9iω3 − 9ω4 (2.190)

solving along a one parameter θ such that k = ξeiθ the results is indicative that at ξ = |k+|,

the first derivative i.e

d

dξ
ω−
∥ (ξe

iθ+ (2.191)

diverges and that the k+ point is associated to the point where the ω∥ diverges. One can expand

the arguments to the infinite poles expanded around the non principle sheet.

The conclusion is that to describe the rich background of the theory one has to deal with is

the analytically continued Green’s function which is defined on a multi sheeted Riemannian

surface.



Chapter 3

Discussion

The point of this review is to simply bring in together the elements of hydrodynamics explored

as an effective theory for dealing with collisions in the RHIC. Throughout this work it was

shown that hydrodynamics gradient expansion is achievable through an interative process with

gravity, allowing high order of precision with the simulations using fluid gravity. It was also

shown that the fluid can be probed using quasi particle description of kinetic theory. Hence

being able to describe QCD at both applied coupling. Moreover it was shown that there exist

a clear and correct prediction method for the RHIC collisions in plasma balls and shockwave

simulations. Using the experiments and the simulations described in the paper it was argued

that hydrodynamics correctly predicts the hydrodynamisation time occuring before equilibra-

tion time and the fact that it is possible to simulate the models much earlier after the collision

than expected effectively with hydrodynamics. The radii of convergence were calculated for

the different methods of holography and kinetic theory. Finally it was shown that although the

modes in the hydrodynamics prescritpion are factorally divergent there can be analytic control

gained using solitons and the method was described.
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