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Abstract

We review various examples of gauge/string dualities between superconfor-
mal field theories (SCFTs) in four dimensions and Type IIB superstring theo-
ries compactified on orbifolds and orientifolds of the background AdS5×S5 in
the near-horizon limit. In particular, we consider Type IIB theory on N |Zk|
D3-branes at orbifold singularities of the form R4/Zk and R6/Zk, and review
the degree of supersymmetry preserved in their SCFT dual description by
considering different actions of the orbifold group on the coordinates of the
transverse space. We also consider orientifold theories on AdS5 × RP5 with
different amounts of discrete torsion and match them to the dual SCFT with
appropriate gauge group.

A thesis submitted in partial fulfilment of the requirements for the degree of Master
of Science in Quantum Fields and Fundamental Forces of Imperial College London.
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1 Introduction

The AdS/CFT correspondence is ubiquitous in modern-day theoretical physics, and
its applications are many. The aim of this dissertation is to take the reader through
a pedagogical review of the tools required to motivate and understand various exam-
ples of gauge/string dualities between four-dimensional superconformal field theories
(SCFTs) and Type IIB superstring theories compactified on different orbifolds and
orientifolds of the background AdS5 × S5 in the near-horizon limit.

To this end, Section 2 reviews basic concepts in superstring theory including the
RNS formalism and the construction of open/closed superstring spectra. The next
section uses these spectra to build two different consistent superstring theories in ten
dimensions. Of particular interest to this dissertation is Type IIB theory, which is
crucial to understand the different examples of gauge/string dualities to be presented
further on in the text. Section 4 introduces the concept of compactification and the
extra structure this adds to the field theory being examined.

We then introduce the ideas of orbifolding and orientifolding within the context of
string theory, to later construct Type I theory as a Z2 orientifold projection of Type
IIB theory. The next section is devoted to the study of D-branes. In particular, we
review the dual nature of D-branes both as charged BPS states, and as solutions
to the supergravity equations of motion. This is at the heart of the AdS/CFT
correspondence. Section 5 concludes by motivating how non-Abelian gauge theories
emerge as worldvolume theories on different D-brane configurations.

Section 8 introduces the general idea of dualities within superstring theory and pro-
vides some explicit examples. The next sections (9 and 10) build up to the statement
of correspondence between N = 4 super Yang-Mills and Type IIB string theory on
AdS5×S5. This is verified by considering Maldacena’s decoupling argument and by
matching the global symmetries of both theories. Further arguments are presented
heuristically for its validity. The end of Section 11 motivates the existence of a larger
class of dualities between four-dimensional SCFTs and Type IIB string theories on
different AdS5 backgrounds by considering the large N limit of gauge theories.

Finally, we present some examples of dualities in this class, corresponding to different
orbifolds and orientifolds of the AdS5 background, and find that different degrees
of supersymmetry are preserved by the dual SCFT. In particular, we construct
N = 2, N = 1 and N = 0 SCFTs as worldvolume theories on a stack of D3-
branes at different orbifold singularities in the near-horizon limit. Furthermore, the
AdS5 ×RP5 orientifold of Type IIB theory is also explored and matched to its dual
SCFT. Possible extensions to the work presented here are briefly discussed in Section
13.
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2 A Review of Superstrings

The theory of bosonic strings proves to be a good toy model to grasp the power
and beauty of string theory. However, while a lot can be learnt from it, one must
note that it is ultimately flawed. This is mainly due to two reasons: Firstly, it only
describes bosonic degrees of freedom, and it is clear that to describe our Universe
we need fermions. Secondly, it contains a tachyonic ground state, which implies an
unstable vacuum and this, in turn, hints at the fact that the theory itself needs to
be adapted [1]. We thus introduce the idea of superstrings.

2.1 RNS Formalism

One can equip the worldsheet (WS) of the bosonic theory with a fermionic sector.
This can be done via the RNS formalism, which we follow here, where fermions are
introduced via supersymmetry (SUSY) as spacetime vectors on the WS.

Following [2], we can write the full RNS action in conformal gauge as

SRNS = − 1

4π

∫
d2ξ

1

α′∂αX
µ∂αXµ + iψ̄µ

Aγ
α
AB∂αψµB (1)

which corresponds to a two-dimensional free field theory, ξα = (τ, σ). The indices
α = 0, 1 correspond to vector indices on the two-dimensional WS while latin indices
are spinor indices, and µ = 0, 1...D−1 are spacetime coordinates for a string propa-
gating in D flat spacetime dimensions. The first term is the usual Polyakov action in
the bosonic theory, and Xµ(ξ) correspond to the embedding of bosonic fields on the
WS. We further identify ψµ

A as Majorana-Weyl spinors1 which are Lorentz vectors
on the WS. ψ̄ = ψ†γ0 are the dual spinors and γα are the usual gamma matrices
obeying the Clifford algebra condition {γα, γβ}AB = 2ηαβ1AB. α

′ is related to the
string length, ls, as ls =

√
α′. Note further that the relative factor of 1

α′ between
both terms is due to the difference in dimensions between bosonic fields, [X] = 1,
and fermionic fields, [ψ] = 1

2
.

The RNS action (1) is invariant under the following pair of transformations:√
2

α′ δX
µ = iϵ̄ψµ (2a)

δψµ =
1√
2α′

ϵγα∂αX
µ (2b)

1These are real spinors with definite chirality (i.e. they have a definite eigenvalue under γ =
γ0γ1).
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where ϵ is a Grassman-odd parameter. These transformations relate bosonic and
fermionic degrees of freedom, which is characteristic of a SUSY. The conditions on
ϵ required for invariance of the action take the form γβγα∂βϵ = 0. In light-cone
coordinates, where ξ± = τ ± σ, the invariance conditions become ∂±ϵ± = 0 and we
clearly see that the above symmetry of the action is chiral. One must note that
these conditions only hold on shell, assuming the equations of motion for the fields
are satisfied.

We now detail the mode expansions and boundary conditions (BCs) for each sector
of the worldsheet. In the case of the bosonic sector, we follow the standard liter-
ature (e.g. [2]) and the results are as usual (we can have Neumann/Dirichlet BC
combinations depending on the string nature). For the fermionic sector, we rewrite
the fermionic part of SRNS in light-cone gauge as

SF =
i

2π

∫
d2ξ (ψ+∂−ψ+ + ψ−∂+ψ−) (3)

varying this one obtains

δSF =

∫
dτ [ψ+δψ+ − ψ−δψ−]

σ=l
σ=0 (4)

plus terms which vanish using the equations of motion. We then distinguish between
two cases. The first one is referred to as closed sector and corresponds to both terms
in (4) cancelling. Imposing Poincaré invariant BCs we have, compactly,

ψµ
±(σ + ls) = ei2πϕ±ψµ

±(σ) (5)

where ϕ = 0 corresponds to the Ramond (R) sector (spinor fields are periodic) and
ϕ = 1

2
corresponds to the Neveu-Schwarz (NS) sector, where the spinor fields are

antiperiodic. This distinction is possible since the spinor fields enter quadratically
in the constraint (4). The mode expansions for each sector thus take the form [1]:

• R-sector: periodic BCs with n ∈ Z

ψµ
±(τ, σ) =

∑
n∈Z

√
2π

ls
bµne

−i 2π
ls

n(τ±σ) (6)

• NS-sector: antiperiodic BCs with r + 1
2
∈ Z

ψµ
±(τ, σ) =

∑
r∈Z+ 1

2

√
2π

ls
bµr e

−i 2π
ls

r(τ±σ) (7)
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We note the Fourier coefficients bµr vary between periodic/antiperiodic cases. Thus,
within the closed sector of the fermionic part of the WS, we can construct four
distinct sectors which we denote as:

(ϕ+, ϕ−) = (0, 0)↔ R–R
(ϕ+, ϕ−) = (1

2
, 0)↔ NS–R

(ϕ+, ϕ−) = (1
2
, 1
2
)↔ NS–NS

(ϕ+, ϕ−) = (0, 1
2
)↔ R–NS

(8)

For the open case, we now require that the terms in (4) vanish individually. This
means that we have

ψµ
+(σ)

∣∣σ=ls

σ=0
= ±ψµ

−(σ)
∣∣σ=ls

σ=0
(9)

as the relation between spinor components. The mode expansions in this case follow
closely those in (6) and (7) for Neumann-Neumann (NN) BCs, except that we replace
the factors of 2π by π only. Note for the open case we can impose also Dirichlet-
Dirichlet (DD) BCs since open strings are allowed to end on a D-brane. The mode
expansions now are the same exceptX− −→ −X− and thus by WS SUSY we also must
have ψ− −→ −ψ−. Here, we also distinguish between 4 different sectors corresponding
to σ = 0, ls and the periodicity of the fields (±).

Lastly, we can group the sectors according to the spacetime boson-fermion parity of
their respective states. Thus, we have the R − R and NS −NS sectors as bosonic
(even parity) and then the NS −R and R−NS sectors as fermionic (odd parity).

The coefficients of the bosonic modes Xµ, obey the usual commutation relations
[αµ

m, α
ν
n] = mηµνδm+n,0 [2]. The fermions obey the equal-time anti-commutation

relations
{ψµ

±(τ, σ), ψ
ν
±(τ, σ

′)} = 2πηµνδ(σ − σ′) (10a)

{ψµ
+(τ, σ), ψ

ν
−(τ, σ

′)} = 0 (10b)

provided that {bµm, bνn} = {b̃µm, b̃νn} = ηµνδm+n,0 holds for all components. Note the b̃
coefficients correspond to the ψ− solutions while b are for ψ+.

We construct states by acting the corresponding oscillators on the appropriate Fock
vacuum. For the NS sector, the vacuum is constructed such that

αµ
m |0⟩NS = 0 = bµr |0⟩NS ∀m, r > 0,m ∈ Z, r ∈ Z+

1

2
(11)

and is annihilated by the right-mover oscillators in the open case2. The key is to

2For the closed superstring, |0⟩NS is annihilated by α̃µ
m and b̃µr in an analogous manner.
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note that |0⟩NS is unique and also a spacetime scalar, thus α̃µ
−|m| and b̃µ−|r| create

bosonic Fock states by acting on the scalar vacuum.

For the R-sector, recall that we only have integer mode expansions of the fields, thus
the Fock vacuum here is defined such that

αµ
m |0⟩R = 0 = bµr |0⟩R ∀m, r > 0 ∈ Z (12)

However, |0⟩R is degenerate, since bµ0 |0⟩R ̸= 0 but it is annihilated by any of the
oscillators in (12). From the condition below equation (10b), the 0-modes obey
{bµ0 , bν0} = ηµν . Confronting this with the Clifford algebra condition for Γµ, we can
thus make the identification that

bµ0 =
1

2
Γµ (13)

i.e. that the Fourier 0-modes of the fermion mode expansion are d-dim gamma
matrices. Thus, it is clear that |0⟩R is a d-dim spinor, as it furnishes a d-dim
representation of the Clifford algebra (for more details see Ch.6 of [3]).

In d-dim a Dirac spinor has 2
d
2 components. Further, for d = 2+ 2k, k ∈ Z, we can

decompose the spinor representation as [4]

[2
d
2 ]Dirac −→ [2

d
2
−2]Weyl ⊕ [2

d
2
−1]Weyl (14)

where the Weyl spinors have opposite chirality. This result will be useful later. We
conclude that the R-sector states are fermionic and are obtained by acting αµ

−|m| and

bµ−|r| respectively on |0⟩R. Due to the Majorana reality condition, these states have

2
d
2 real components.

We now impose the constraints from the super-Virasoro algebra which are of the
form:

T±± = 0 = J± (15)

where the extra constraint with respect to the bosonic theory is due to the presence
of a supercurrent J±, whose Fourier modes (Gr) generate the odd part of the super-
algebra. The Fourier modes of the stress-energy tensor (Lm) generate the remaining
(even) part (see Appendix 14.1 for more details).

2.2 Open Superstring Spectrum in Light-Cone Quantisation

We assume that we have NN BCs along all dimensions. Light-cone quantisation
(LCQ) accounts for ghost contributions by exploiting the residual superconformal
symmetry of SRNS to solve for the super-Virasoro constraints explicitly. Following
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the constraints (15), we impose the physical state conditions for the NS and R
sectors. For the NS-sector the mass-shell condition becomes:

α′M2 =
∞∑
n=1

αi
−nα

i
n +

∞∑
r= 1

2

rbi−rb
i
r − aNS (16)

Counting the dynamical degrees of freedom in LCQ, the normal-ordering constant is
aNS = (D−2)( 1

24
+ 1

48
) where the 1

24
comes from a periodic boson and the 1

48
from an

antiperiodic fermion. For a Poincaré-invariant theory, states must form irreducible
unitary representations under a subgroup of SO(1, D−1) [5]. The first excited state
(FES) forms a representation of SO(D−2), the little group of massless states, hence
aNS = 1

2
is required, and thus by comparing both results we see that Dcrit = 10 for

the open superstring. Thus, the FES forms the 8v of SO(8), while higher excited
states are massive. The ground state (GS) is tachyonic.

For the R-sector, we had periodic BCs with n ∈ Z, hence the normal-ordering
constant aR = (D − 2)( 1

24
− 1

24
) = 0 vanishes due to periodicity of the fields. The

mass-shell condition here is the same as (16) but with no normal-ordering constant
and with both n, r ∈ Z. The GS is a spinor in 10-dim and therefore has 32 real
components. For D even, we apply (14) to decompose |0⟩R as 32 = 16 ⊕ 16′.
Furthermore, light-cone gauge induces the decomposition SO(1, 9) −→ SO(1, 1) ⊗
SO(8), where SO(1, 1) corresponds to x± and the SO(8) to the dynamical xi. Hence,
under this, the Weyl spinors further decompose as

16 −→ [
1

2
,8]⊕ [−1

2
,8′] (17a)

16′ −→ [
1

2
,8′]⊕ [−1

2
,8] (17b)

In the end, the GS reduces to |0⟩R = [1
2
,8] ⊕ [1

2
,8′], where only the spin-1

2
parts

are kept since |0⟩R ̸= 0 and this must satisfy the Dirac equation. It is worth noting
that since aR = 0, the GS is massless so [1

2
,8] and [1

2
,8′] form the 8s and 8c spinor

representations of SO(8) respectively, which have opposite chirality.

2.3 Closed Superstring Spectrum in LCQ

Accounting for G-parity3 and the fact that up to level-matching the right (τ + σ)
and left (τ − σ) movers are independent, we now have 10 independent sectors that

3The G-parity operator is GNS = (−1)F+1 and GR = Γ(−1)F where Γ = Γ0Γ1...Γ9 and F
refers to the fermion number in each of the NS and R sectors respectively.
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can produce a consistent 10-dimensional theory. These take the form (R+, R−),
(NS+, R−)...,etc, and we note that the NS− sector cannot pair with any of the
others due to level-matching. The mass-shell condition is now

α′M2 = 4(N − a) = 4(Ñ − a) (18)

We examine the massless FES of the various allowed combinations of sectors up to
interchange of left/right-movers. Compactly these are given as:

Sector SO(8) representation Nature
(NS+, NS+) 8v ⊗ 8v Bosonic
(R+, R+) 8s ⊗ 8s Bosonic
(R+, R−) 8s ⊗ 8c Bosonic
(R−, R−) 8c ⊗ 8c Bosonic
(NS+, R+) 8v ⊗ 8s Fermionic
(NS+, R−) 8v ⊗ 8c Fermionic

The (NS−, NS−)-sector contains a tachyonic GS with α′M2 = −2, where we used
that aNS = 1

2
. We now proceed to decompose these states into irreducible represen-

tations of SO(8). For the (NS+, NS+) sector, the decomposition is as for the purely
bosonic theory

8v ⊗ 8v = [0]⊕ [2]⊕ (2) (19)

i.e. into a trace part, an antisymmetric 2-form and a traceless symmetric rank-2
tensor which have the interpretation of the dilaton scalar ϕ, the Kalb-Ramond field
Bµν , and the graviton Gµν respectively.

The (R±, R±) sectors involve spinor bilinears, which are decomposed using the Fierz
decomposition (see Appendix 14.2). Then, we have

Sector SO(8) representation SO(8) irrep
(R+, R+) 8s ⊗ 8s [0]⊕[2]⊕ [4]+
(R+, R−) 8s ⊗ 8c [1]⊕[3]
(R−, R−) 8c ⊗ 8c [0]⊕[2]⊕ [4]−

where the [n] denote n-forms in D = 8-dim, and [n]± refer to the self (antiself)-dual
parts of the form with respect to Hodge duality. These are spacetime bosons.

Lastly, the mixedNS/R sectors have states which contain spinor-vector bilinears and
hence are spacetime fermions. These decompose under a Fierz-type decomposition
as

Sector SO(8) representation SO(8) irrep
(NS+, R+) 8v ⊗ 8s [8]’⊕[56]
(NS+, R−) 8v ⊗ 8c [8]⊕[56]′

7



In the (NS+, R+) sector, the [8]
′ is identified with a spin-1

2
dilatino, λa, and the [56]

is a spin-3
2
gravitino, ψi

a, of opposite chirality. The (NS+, R−) sector has the same
field content but with opposite chirality with respect to the previous sector.

3 Type IIA/IIB Theory

We now have included fermions in the picture via the RNS formalism and we seek
to construct a consistent theory of closed superstrings by combining the different al-
lowed sectors available (a priori one would have 210 possible theories). Furthermore,
we note that we still have a tachyonic GS, which we must GSO-project out of the
spectrum.

To understand how to refine the sectors which are to be included in a consistent
theory, we note that (3) is conformally invariant if the RNS fields ψµ

± are taken to

be primary fields (see Appendix 14.3) of conformal weight h(ψ) = h̄(ψ̃) = 1
2
and

h̄(ψ) = h(ψ̃) = 0. Indeed, the full RNS action is conformally invariant, so SRNS

defines an N = 1 super-conformal field theory (SCFT), to which we can impose the
following requirements [1; 2]:

• Vertex operators must be mutually local in pairs. Vertex operators with
branch-cuts in their OPEs are thus not mutually local.

• Modular invariance of the one-loop amplitudes implies that we must have at
least one R+ and one R− sector present in the theory.

• No monodromies4 can be present (i.e. the OPEs need to be singled-valued).

We consider a new way of characterizing the allowed sectors of the theory instead
of using NS± and R±. The sectors will be labelled by (α, F, α̃, F̃ ) where α = 1− 2ϕ
and ϕ = 0, 1

2
as usual for the R and NS sectors respectively. F denotes the fermion

number and the tilded quantities refer to the left-movers. Hence, the overall phase
a vertex operator acquires when it encircles another is given by

exp[iπ(F1α2 − F2α1 − F̃1α̃2 + F̃1α̃2)] (20)

which must be unity so that the amplitude of both vertex operators can be defined.
We consider the effect of each the requirements imposed on the SCFT on (20).

• Mutual locality: (F1α2 − F2α1 − F̃1α̃2 + F̃1α̃2) ∈ 2Z

• OPE closure: Since α and F are conserved mod-2, if (α1, F1, α̃1, F1) and
(α2, F2, α̃2, F2) are in the spectrum, then (α1 + α2, F1 + F2, α̃1 + α̃2, F̃1 + F̃2)
must be too.

4Monodromy refers to the behavior of operators when they encircle each other near a branch-cut.
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Assuming the presence of at least one (α, α̃) = (1, 0) sector (i.e. an (R,NS) sector)5,
we find that a closed superstring theory must contain only pairs of the following
sector combinations:

(NS+, R+) (NS+, R−) (R+, NS+) (R−, NS+) (NS+, NS+) (R±, R±) (21)

For the case of Type IIB theory, the massless spectrum is given by

Sector SO(8) irrep Particle Interpretation
(NS+, NS+) [0]⊕ [2]⊕ (2) ϕ⊕B[µν] ⊕G(µν)

(R+, R+) [0]⊕ [2]⊕ [4]+ C(0) ⊕ C(2)
[µ1µ2]

⊕ C(4)+
[µ1...µ4]

(R+, NS+) [8]′ ⊕ [56] λa ⊕ ψi
a

(NS+, R+) [56]⊕ [8]′ ψi
a ⊕ λa

where it is clear that this is a chiral theory since the left/right-movers have the same
chirality in all sectors. The so-called Type IIB’ theory, which is also chiral, can be
defined as above, but by interchanging R+ −→ R− and adapting the field content.

Now, for the case of Type IIA theory, the massless spectrum is given by

Sector SO(8) irrep Particle Interpretation
(NS+, NS+) [0]⊕ [2]⊕ (2) ϕ⊕B[µν] ⊕G(µν)

(R+, R−) [1]⊕ [3] C
(1)
[µ1]
⊕ C(3)+

[µ1...µ3]

(R+, NS+) [8]′ ⊕ [56] λa ⊕ ψi
a

(NS+, R−) [8]⊕ [56]′ λ̃a ⊕ ψ̃i
a

which defines a non-chiral theory since it is clear that we have 2 gravitinos and
2 dilatinos of opposite chirality. Similarly, Type IIA’ theory can be defined by
considering the interchange R± −→ R∓. This corresponds to a spacetime reflection
about a single axis of the Type IIA theory.

We now consider some remarks regarding the superstring theories we have con-
structed. The absence of an (NS−, NS−) sector means that we do not have a
tachyonic GS. This is an automatic consequence of the consistency conditions ob-
tained by projecting the spectrum of the theory into eigenspaces of eiπF and of eiπF̃ .
This is known as the GSO projection. For Type IIA, we have taken opposite GSO
projections in the NS − R and R −NS sectors, resulting in a non-chiral spectrum
(invariant under [8]↔ [8]′ and [56]↔ [56]′). For Type IIB theory, we have the same
GSO projection in each sector, so the spectrum is chiral. On the worldsheet, this
symmetry corresponds to the product of spacetime parity and WS parity.

We note also that Type IIA/IIB theories contain an equal number of bosonic and
fermionic degrees of freedom. This is a necessary condition for spacetime SUSY [3].

5Dropping this assumption leads to Type 0 theories which contain no fermionic field content.
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Each theory contains two massless spin-3
2
gravitinos, which are the superpartners of

the gravitons in the (NS+, NS+) sector, implying the existence of local SUSY. This
will be relevant later, but for now provides motivation for the fact that the low-
energy limit of a Type II superstring theory can describe a model of supergravity
(SUGRA).

Furthermore, the presence of two independent gravitinos implies the existence of
two distinct SUSY algebras (2 conserved supercurrents) in the theory, hence Type
II theories display N = 2 SUSY in 10-dimensions (i.e. maximal SUSY in d = 10).

Ultimately, what we have argued here is that the requirements of vacuum stability
and consistency of the SCFT are sufficient to show that Type IIA/IIB are consistent,
closed, oriented superstring theories with local SUSY in ten dimensions.

4 Compactification

We must introduce the idea of compactification to be able to understand our sought
after gauge-string dualities. This concept is also central in the emergence of orbifolds
and orientifolds within string theory.

The idea here is to split our 10-dim manifold into a product of a (10−n)-dim space
and an n-dim internal space as M10 −→ M̃10−n × Ωn. We take the limit such that
the size of the internal space is very small, and require Ω to satisfy the equations of
motion coming out from the effective field theory of the string theory to which we
apply the compactification to. This requires a modification of the WS action (free
theory) to an intereacting non-linear σ-model [6].

4.1 Kaluza-Klein Compactification in Field Theory

We begin by considering a field theory in (d + 1) flat spacetime dimensions. Intro-
ducing the compactification ansatz:

R1,d −→ R1,d−1 × S1 (22)

for S1 a circle of radius R is equivalent to identifying xd+1 ∼ xd+1+2πR for the (d+
1)th dimension only. Imposing diffeomorphism invariance, we obtain the following
‘new’ features with respect to a usual field theory in flat spacetime in the same
number of dimensions [7]:

• Kaluza-Klein (KK) tower of massive states in d dimensions

• Extra U(1) symmetry in d dimensions

• Modulus fields (massless scalars) emerge in d dimensions

10



We examine these in turn. Firstly, let M,N = 0, 1...d, d + 1 and µ, ν = 0, 1..., d.
Then, for a massless scalar field ϕ, we have that ∂µ∂

µϕ(xµ) = 0 must hold. In order
to maintain periodicity along xd+1 we take the ansatz

ϕ(xµ) =
∞∑

n=−∞

ϕn(x
µ)e

in
R
xd+1

(23)

Plugging this into the K-G equation of motion (where ∂M = ∂µ + ∂d+1) we obtain

∂µ∂
µϕn(x

µ) =
n2

R2
ϕn(x

µ) ∀n (24)

which from the perspective of the d-dimensional theory, we see that ϕn(x
µ) appears

as a scalar of mass squared m2
n = n2

R2 . These are precisely the states which form the
massive KK tower in d-dim (note that the n = 0 state is massless and independent
on xd).

In the limit R −→ 0, m2
1 −→ ∞, so the KK tower of massive states collapses in the

low-energy spectrum. For E ≪ 1
R
, the compactified theory looks d-dimensional.

The emergence of an extra U(1) gauge potential arises from the components Gd+1
µd

of the (d+ 1)-dim metric. From (22), it is natural to split the metric of the uncom-
pactified theory as

ds2 = G
(d+1)
MN dxMdxN = G(d)

µν dx
µdxν +Gdd(dx

d + Aµdx
µ)2 (25)

and hence one can reparametrize the Gd+1
µd components of the metric as Gd+1

µd =
2GddAµ. A priori, Aµ is introduced for convenience of the reparametrization, but
we will motivate its gauge field nature [8].

Considering the 0-modes of the field expansion only for simplicity, so that Gµν , Aµ

and Gdd depend only on xµ (xd+1 dependence decouples), the subgroup of the (d+1)-
dimensional diffeomorphisms compatible with (22) has the following action on the
compactified product manifold:

• Diffeomorphism invariance on R1,d−1: xµ −→ xµ′ = xµ (is invariant)

• Diffeomorphism invariance along S1: xd −→ xd + λ(xµ) which in turn implies
that Aµ −→ A′

µ = Aµ−∂µλ(xµ) is gauge invariant. Thus, Aµ can be interpreted
as a gauge potential in d-dimensions.

It is therefore clear that the extra U(1) gauge symmetry emerges from (d + 1)-
dimensional diffeomorphism invariance, so that under (22) we have that

GL(d+ 1,R) −→ GL(d,R)× U(1) (26)

11



for the diffeomorphism symmetry group under the compactification ansatz.

Lastly, note that from the perspective of the d-dim theory, Gdd is a scalar. The
vacuum expectation value (VEV) of Gdd gives the volume of the internal space S1

as [6]

Vol(S1) =

∫ 2πR

0

dxd
√
Gdd = 2πR

√
Gdd (27)

We say Gdd is a modulus field since it is a flat scalar whose VEV gives geometrical
properties of the internal (compactified) space. More formally, one can say that this
scalar (dilaton) parametrises the geometry of the fiber S1.

4.2 KK Compactification of the Closed Bosonic String

We choose to work in units where 2π
ls

= 1. The theory of bosonic strings lives in
(d + 1) = 26 dimensions. The mode expansion for the bosonic fields is given in [1]
as

xµ(τ, σ) =
1

2
(xµ + x̃µ) +

√
α′

2
(αµ

0 + α̃µ
0 )τ +

√
α′

2
(αµ

0 − α̃
µ
0 )σ +N + Ñ (28)

where we note that αµ
0 =

√
α′

2
pµ, α̃µ

0 =
√

α′

2
p̃µ and µ = 0, 1...(d+1). N and Ñ refer

to the number operators of the right/left-movers respectively. Under a shift of the
coordinates such that σ −→ σ + 2π, then, we have that

xµ(τ, σ) −→ xµ(τ, σ) + 2π

√
α′

2
(αµ

0 − α̃
µ
0 ) (29)

and hence, imposing periodicity of the fields leads to αµ
0 = α̃µ

0 ←→ pµ = p̃µ. If we
consider a KK compactification of x25 along S1, such that as before we identify
x25 ∼ x25 + 2πR, then, this implies two new features on the field theory:

• Momentum quantisation along the x25 direction, that is:

p25 =
n

R
↔ (α25

0 + α̃25
0 ) = 2

√
α′

2

n

R
∀n ∈ Z (30)

which can be understood from the fact that we require the wavefunctions of
the bosonic fields (∼ eip25x

25
) along this direction to be single-valued. In other

words, they must have the same periodicity as the compactified coordinate.

• Another possible configuration is that of winding strings. These loop ω times
around the internal space S1. This is better illustrated in Figure 1, where
the non-winding string (ω = 0) obeys x25(τ, σ + 2π) = x25(τ, σ). The strings
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with ω = ±1 wind once around the compact the dimension and the sign
is associated with the directionality of the winding as shown. These obey
x25(τ, σ + 2π) = x25(τ, σ) + 2πRω, and it is useful to think of the covering
space as the quotient S1 ≃ R/2πRω.

Figure 1: Representation of the compactified space (R1,24 × S1) for the theory of
bosonic strings in (d + 1) = 26 dimensions. The Y direction corresponds to R1,24

and X to S1. Adapted from [9].

For the winding case, the periodicity constraint from (29) translates to α25
0 − α̃25

0 =√
2
α′ωR, and one can express the left/right-moving momenta independently (in the

compact dimension) as

α25
0 = (

m

R
+
ωR

α′ )

√
α′

2
= p25L

√
α′

2
(31a)

α̃25
0 = (

m

R
− ωR

α′ )

√
α′

2
= p25R

√
α′

2
(31b)

which still respects the momentum quantisation condition in (30). The mass-shell
condition following from the Virasoro constraints gives the effective mass of the
compactified theory as [6]

m2 = −pµpµ =
2

α′ (N + Ñ − 2) +
n2

R2
+
ω2R2

α′2 (32)

where aside from the usual first term, we have a contribution from the quantised
momentum and a ‘wrapping’ energy term. Furthermore, for a closed string theory
we have the additional level-matching condition which in this case reads as

N − Ñ = mω (33)

In the winding case therefore, we see the following structure emerging:

• For ω = m = 0 and in the limit R −→ ∞, we recover the states of the uncom-
pactified closed bosonic theory.

• For n ̸= 0 and ω = 0, following (32), we note the presence of a KK tower of
states with mass mn = n

R
in the point-particle theory along S1.
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• For ω ̸= 0, winding states with extra mass of m2
ω = ω2R2

α′2 arise.

Similarly as before, in the R −→ 0 limit the KK tower vanishes from the low-energy
spectrum and the winding states become light (since m2

ω ∼ R2).

We now examine the massless spectrum of the compactified theory for generic R.
This corresponds to n = ω = 0 and N = Ñ = 1. The possible states are thus6:

State Particle Interpretation
αµ
−1α̃

ν
−1 |0; k⟩ G(µν) ⊕B[µν] ⊕ ϕ in R1,24

|Vµ
1 ⟩ = (αµ

−1α̃
25
−1 + α25

−1α̃
µ
−1) |0; k⟩ Vector of R1,24/ U(1) gauge potential from G

(d+1)
µd ∼ Aµ

|Vµ
2 ⟩ = (αµ

−1α̃
25
−1 − α25

−1α̃
µ
−1) |0; k⟩ Vector of R1,24 (antisymmetric combination) ∼ Ãµ

α25
−1α̃

25
−1 |0; k⟩ Scalar of R1,24 corresponding to G

(d+1)
dd

The states containing combinations of spacetime/internal oscillators have a general
U(1)L × U(1)R gauge symmetry corresponding to the left/right isometries of the
internal space S1 where U(1)L is associated to Aµ and U(1)R to Ãµ. Furthermore,
the massless scalar is a compactified degree of freedom of the uncompactified metric
in (d+ 1) = 26 dimensions. This scalar has VEV=R [7] and thus is also a modulus
field.

We now examine how the above gauge symmetry is enhanced at special radii, namely
at R =

√
α′, which is a purely stringy effect. The L/R momenta along the compact-

ified direction take the form p25L/R = 1√
α′ (n ± ω) and, thus, the massless condition

now requires that
(n+ ω)2 + 4N = (n− ω)2 + 4Ñ = 4 (34)

together with level-matching (33). This allows for the following new massless states:

• For n = ω = ±1, N = 0 and Ñ = 1↔ 2 new vectors |V µ
a ⟩ = αµ

−1 |±1,±1⟩ and
two scalars |ϕa⟩ = αd

−1 |±1,±1⟩ for a = 1, 2 and µ = 2, ...(d− 1).

• For n = −ω = ±1, N = 1 and Ñ = 0 ↔ 2 new vectors |Ṽ µ
a ⟩ = α̃µ

−1 |±1,∓1⟩
and two scalars |ϕ̃a⟩ = α̃d

−1 |±1,∓1⟩ for the same value of the indices as above.

Hence, for R =
√
α′, in addition to |V⟩µ1 and |V⟩µ2 , we have 4 extra massless vec-

tors which altogether form the adjoint representation of the gauge group SU(2)L ×
SU(2)R. Furthermore, states with ω = 0 (considering also, in addition to the ones
above, αµ

−1α̃
d
−1 and αd

1α̃
µ
−1) form the u(1)L × u(1)R Cartan subalgebra of su(2)L ×

su(2)R. Thus, in total, for R =
√
α′, we have a non-abelian gauge symmetry en-

hancement of the form

U(1)L × U(1)R −→ SU(2)L × SU(2)R (35)

6For generality we use d indices as we did in the previous section. Here, d+ 1 = 26.
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One can generalize the compactified space to an n-torus, T n ≃ S1 × ...× S1, where
n dimensions are compactified. The compactification ansatz thus becomes R(1,d) −→
R(1,d−n) × T n. In a sense, KK compactification can be regarded as a special case
of toroidal compactification on an n = 1 torus. The results obtained above also
generalize for the case of toroidal compactification, where the geometry of T n is
entirely contained in a non-diagonal internal metric GIJ and a constant 2-form
background field BIJ by adapting the ansatz (25) for n compact directions.

The gauge symmetry enhancement due to the compactification procedure for special
radii relies on the presence of tachyonic states (e.g. αµ

−1α̃
ν
−1 |0; k⟩) to generate the

Cartan subalgebra of the enhanced symmetry group. Thus, this effect is not present
in Type II theories where GSO projection removes tachyonic states from the particle
spectrum.

5 Orbifolds and Orientifolds

We seek to explore the role of orbifolds and orientifolds within string theory. To this
extent, and to construct somewhat more realistic models from superstring theories,
we start by focusing on a class of compactification spaces, which are not manifolds,
called orbifolds. In this section we will develop this idea, as well as the need to
introduce so-called twisted sectors in the theory, and finally present the concept of
orientifold projections. The latter will be complemented by a discussion on orien-
tifold planes (On-planes) in Section 7.2. We begin with some definitions.

Definition 1. ForM a smooth, differentiable manifold with a finite, discrete isom-
etry group G, the quotient space X ≃M/G defines an orbifold.

A point x ∈ X corresponds to the set of points inM which include the point itself
and all other x′ ∈M such that x′ ∼ x are identified via the action of G. The points
inM which are left invariant by the action of a non-trivial group element g ∈ G are
mapped to singular points in the quotient spaceM/G. At non-singular points, the
orbifold and the manifold are locally isomorphic (M/G ≃ M) and hence one can
define a metric as a local structure on the orbifold at such points. For convenience,
we assume the orbifold quotient acts only along spatial dimensions of the manifold.

Consider the following examples:

• S1/Z2 ≃ [0, π]: Quotienting the manifold S1 by Z2, that is, introducing an-
tipodal identification on the points of the circle (x ∼ −x), S1 is mapped to
the closed interval on the real line from 0 to π (i.e. a compact space). This
orbifold contains singularities at x = 0 and x = π since the Z2 action leaves
these points invariant on the original manifold.
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• C/Z2: Introducing antipodal identification on the complex plane, the orbifold
space has the topology of a cone with apex at (0, 0) which opens up along the
positive direction of the imaginary axis. This space is clearly non-compact
since the radius at the base of the cone is not bounded. The group action has
precisely one fixed point at (0, 0) leading to one isolated quotient singularity
in the orbifold space.

Even though the orbifold may contain (conical) singularities, strings are able to
propagate consistently on such spaces if we introduce the extra structure of twists
on the spectrum of states of the theory [10]. Twisted states make the string CFT on
the orbifold consistent and agree with unitarity, which we state somewhat vaguely
here. For a more complete discussion the reader is referred to [11] and [12]. For free
strings propagating on an orbifold, we thus differentiate between untwisted/twisted
states.

• Untwisted states: If one projects the space of string states on the manifoldM
onto a subspace of states which are invariant under the action of the isometry
group, then, ψ ∈ M is an untwisted state of the orbifold if ψ = gψ ∀g ∈ G
(i.e. if it is G-invariant).

• Twisted states: For closed strings, recall that Xµ(σ + 2π) = Xµ(σ). Hence,
a string connecting x −→ gx where x, gx ∈ M would not be an allowed con-
figuration of the theory for non-trivial g ∈ G due to the periodicity condition.
However, in the orbifoldM/G, this would be allowed since points related via
the action of G are equivalent. That is, the periodicity condition for closed
strings on the orbifold becomes Xµ(σ + 2π) = gXµ(σ) (the value of the fields
after a cycle around the closed string is restricted to their original value modulo
g). For a twisted sector we require g ∈ G to be a non-trivial group element.
Hence, the number of distinct twisted sectors which can be defined on the
orbifold is precisely equal to the number of conjugacy classes of the isometry
group G.

We will now introduce the idea of orientifold projections by considering the quotient
of a Type II theory by a representative of a general class of operators with elements
Ω̃. In our particular case, it is useful to define Ω as the worldsheet parity operator
which acts on the WS coordinates in both open and closed string theory by:

Open Ω : (τ, σ) −→ (τ, π − σ) (36a)

Closed Ω : (τ, σ) −→ (τ, 2π − σ) (36b)

where (τ, σ) denote the time and spatial coordinates of the WS respectively. We
have chosen units such that ls = π, and take the length of the closed string to be
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2ls. These actions reverse the orientation of the WS (see Section 7.2).

The general operator Ω̃ = ΩΣ defining the orientifold projection is formed by com-
bining the WS parity operator Ω, with any discrete symmetry the background of the
superstring theory we are considering might have, which we denote Σ for Type IIB
and Σ̄ for Type IIA. Furthermore, the WS parity operator as well as the discrete
isometry actions of the background obey:

Ω2 = 1 (37a)

ΩΣΩ−1 = Σ ΩΣ̄Ω−1 = Σ̄ (37b)

and in the case where Σ and Σ̄ correspond to a Z2 symmetry, then Σ2 = Σ̄2 = 1 too.

The orientifolds we will be concerned about are built on Type II theories and su-
persymmetric compactifications to R(1,3), so that the 10-dimensional space of the
theory is given as M10 ≃ R(1,3) × W where W is 6-dimensional and its topology
depends on the degree of supersymmetry 7. More types of orientifolds exist but we
refer the reader to [10] and [13] for further details.

We can further consider other symmetry actions of the groupG acting on the internal
space, so that one can then think of the full orientifold group of, say, Type IIB theory
as:

G
(IIB)
Ω = ΩΣG = Ω̃G (38)

That is, the orientifold is constructed by first taking an orbifold quotient of the
internal space by G and then performing a projection on the orbifold space by the
general operator Ω̃ = ΩΣ.

We now consider an example of a toroidal orientifold to better illustrate this. Let
W ≃ T 6 and G ≃ ZN (or more generally ZN × ZM) be the cyclic group describing
the discrete isometry of W , and let Σ be another distinct isometry of the internal
space. Introducing a complex structure on T 6, we can parametrize the manifold by
a set of complex coordinates zi for i = 1, 2, 3 which describe the bosonic fields on
the WS8. We can further choose the action of the Σ̄/Σ isometry such that for:

Type IIA: Σ̄ziΣ̄−1 = ±z̄i (39a)

Type IIB: ΣziΣ−1 = ±zi (39b)

where for Type IIA, all three coordinates are either positive or negative after con-
jugation by Σ̄. For Type IIB, the nature of the conjugation is specified by the

7For N = 2, W is a Calabi-Yau manifold, for N = 4, W ≃ K3× T 2 and for N = 8, W ≃ T 6.
8Recall for Type II theories these exist only in the (NS,NS) and (R,R) sectors.
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number of possible minus signs (even or odd) induced on the coordinates zi after
the involution acts. Indeed, there exists a distinction with respect to the number
of complex directions which are reflected by the conjugation with Σ, which leads to
different allowed orientifold planes in each case. For an even number of − signs, the
theory accepts O5 and O9-planes, whereas for an odd number of − signs the theory
accepts O3 and O7-planes. We describe this in more detail in the next section. The
full orientifold group on the 6-torus is then constructed as per (38). These actions
extend to the fermionic fields via WS SUSY. Note that (39a) describes an antiholo-
morphic involution on the WS coordinates, whereas (39b) describes a holomorphic
conjugation of the coordinates in Type IIB theory, explaining our choice of notation.

Later, we will see explicitly that one can construct a Type I theory as an orientifold
projection of Type IIB theory, where we have Σ = I be a trivial isometry so that
Ω̃ ≃ Ω is just the WS parity operator. Thus, schematically, we have Type I ≃
Type IIB/Ω. For now, this is all rather heuristic, but it will be formalized in Section
7.1.

6 Dp-Branes

In this section we introduce Dp-branes and review some of their features. We explore
their dynamical nature as well as some tools needed to interpret them as both hyper-
planes where open strings end and as solutions to the field equations of supergravity
theories. In particular, we focus on the emergence of U(Na)×U(Nb) gauge theories
for specific configurations of parallel Dp-branes, which provide an important step
towards the understanding of gauge/string dualities.

6.1 Motivation and Definition

String theory predicts the presence of higher-dimensional extended objects known
as Dp-branes. These are (p + 1)-dimensional hyperplanes to which open strings
are attached (see Figure 2) and arise in the theory when one chooses Neumann
boundary conditions, ∂σx

µ|σ=0,π = 0, for directions along the hypersurface (i.e. for
µ = 0, 1...p) and Dirichlet BCs in the transverse directions, that is, δxµ = 0 for
µ = (p + 1), ...(D − 1) where D is the dimension of spacetime. The position of
the Dp-brane in spacetime is fixed at the boundary coordinates x(p+1), ...x(D−1),
which define the corresponding string theory background. The open string ends
are described by the coordinates x0, ...xp and are constrained to move along the
(p+ 1)-dimensional hypersurface.
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Figure 2: A configuration of two parallel Dp-branes with open strings attached is
shown. String ends are constrained to move within the hyperplane but are allowed
to end on different Dp-branes if such configuration is allowed by the theory. Adapted
from [1].

6.2 Dynamical Nature

Dp-branes are not static in spacetime, but rather, they are dynamical objects which:

• Gravitate by coupling to closed strings in the (NS,NS) sector and thus have
mass (by SUSY, coupling to fermionic superpartners also occurs).

• Are charged under R-R p-form potentials C(p+1) [14].

We now delve deeper into the above statements to further motivate the dynamics of
Dp-branes. Firstly, in a QFT, the worldvolume swept out by a Dp-brane undergoes
quantum fluctuations in directions normal to the hyperplane that defines them [15].
These, in turn, are described by the lowest mass open string states. The excitations
take the general form ψn

− 1
2

|0; k⟩NS, where the Fock vacuum is a unique scalar in the

NS-sector as discussed previously, and hence all the excitations are bosonic. The
spacetime spinor ψn

− 1
2

of SO(8) is projected along the Dirichlet/Neumann directions

defined on the Dp-brane, that is, it is decomposed under SO(9 − p) × SO(p + 1).
Furthermore, these excitations describe massless scalar fields propagating along the
Dp-brane, which happen to be moduli fields since their VEV determines a geomet-
rical property of the internal space, the position of the Dp-brane. The presence of
such quantum fluctuations follows by analogy with the closed string case. Closed
superstrings in a flat background contain gravitons in their massless spectrum (recall
Section 2.3), which correspond to quantum fluctuations of a dynamical metric. For
the open string sector, strings propagate along an a priori static surface, however,
the massless spectrum exhibits scalar fields (dilatons) which, in turn, represent the
quantum fluctuations of the dynamical hyperplane (the Dp-brane).
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For the second statement, we first review a crucial observation made in Section 2.4 of
[15]. The one-loop amplitude of an open string attached to two distinct Dp-branes is
equivalent to the tree-level exchange of closed R-R and NS-NS sector strings between
two Dp-branes. In particular, one can compare the exchange amplitude of R-R and
NS-NS states with the one described by a low-energy effective action of (p+ 1)-dim
hyperplanes charged under an R-R p-form potential. This low-energy effective action
on the worldvolume of the Dp-brane is given as [16]:

Seff = SDBI[ϕ,G,B] + SCS[Cp] (40a)

where

SDBI[ϕ,G,B] = −Tp
∫
dp+1ξ e−ϕ[−det(Gab + 2πα′Fab)]

1
2 (40b)

and

SCS[Cp] = −µp

∫
ch(2πα′F) ∧

√
Â(RT )

Â(RN )
∧
⊕

C(p) (40c)

Seff encodes the dynamics of massless open string modes as well as describing a 10-
dimensional gauge field multiplet. SDBI is the Dirac-Born-Infeld action9 and couples
to the NS-NS sector. It describes the Chan-Paton10 gauge fields on a single Dp-
brane at low energies. Gab = ∂ax

µ∂bx
νGµν(x(ξ)) is the pull-back of the ambient

space metric onto the worldvolume, where a ∈ [0, 1...p] are the coordinates along
the Dp-brane and xµ(ξ) describe the embedding of the brane worldvolume in 10-
dimensions. The dilaton pre-factor is related to the string coupling as gs = eϕ,
and implies that Seff describes tree-level processes. The combination 2πα′Fab =
2πα′Fab + Bab contains the field strength Fab of a U(1) gauge field on a single Dp-
brane and the pull-back of the Kalb-Ramond 2-form, Bab = ∂ax

µ∂bx
νBµν , onto the

brane worldvolume. This combination is uniquely invariant under the closed string
U(1) symmetry transformations (δBµν = ∂µξν − ∂νξµ and δAµ = − 1

2πα′ ξµ) due to
the WS coupling of the non-linear σ-model for a closed bosonic string on a general
background with a potential boundary ∂Σ. The action of the σ-model takes the
form:

S =
1

4πα′

∫
Σ

d2ξ
√
h(ϵab∂ax

µ∂bx
νBµν +habGab+α′R(h)ϕ(x))+

∫
∂Σ

dξAµ∂ξx
µ (41)

The strength of the coupling is controlled by Tp = 2π

l
(p+1)
s

, where ls = 2π
√
α′. SCS

refers to the Chern-Simons action, expressed using standard differential form cal-
culus. Here, ch(2πα′F) = tr[exp(2πα′F)] denotes the Chern character and Â(Ri)

9Expanding the square root to first order gives the kinetic term of the Yang-Mills action.
10See section 6.3.
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corresponds to the A-roof genus of R = l2sR, where R is a curvature 2-form and the
indices on R specify the curvature of the tangent (or normal) bundles of the D-brane
worldvolume. The full form of SCS, (40c), is included only for completeness pur-
poses. We restrict our attention to the massless spectrum of the R-R sector of Type
II theories, which contains only p-forms (C(1)⊕C(3) for IIA and C(0)⊕C(2)⊕C(4)+

for IIB). In D = 10, one can (Hodge) dualize the field strengths as

∗F (q+1) = ∗dC(q) = F̃ (9−q) = dC̃(8−q) (42)

where the dualized quantities are tilded. The potentials can be dualized by consid-
ering the 8 dynamical (transverse) dimensions of light-cone gauge, where a self-dual
4-form was found. This implies that the forms C(q) and C̃8−q describe the same
degrees of freedom. With this in mind, we can equivalently consider the field con-
tent for the massless (R+, R+) sector of both Type II theories with the added “dual
redundancies”:

IIA −→ C(1)
µ1
⊕ C̃(7)

[µ1...µ7]
⊕ C(3)

[µ1...µ3]
⊕ C̃(5)

[µ1...µ5]
(43a)

IIB −→ C(0) ⊕ C̃(8)
[µ1...µ8]

⊕ C(2)
[µ1µ2]

⊕ C̃(6)
[µ1...µ6]

⊕ C(4)+
[µ1...µ4]

(43b)

While the field content appears to have changed, the degrees of freedom described by
the p-forms remain the same. We note that only odd p-forms appear in the spectrum
of Type IIA whereas only even p-forms appear in the spectrum of Type IIB. The
R-R p-forms behave like generalised electromagnetic fields coupling to Dp-branes
which act as generalised charged particles.

We now explicitly state how (p+ 1)-forms couple to the worldvolume of Dp-branes.
To lowest order, one can expand the Chern-Simons action into [16]:

SCS = −µp

∫
Dp

C(p+1) = −µp

∫
dξ0...dξpC

(p+1)
[1...(p+1)] (44)

where µp = 2π

lp+1
s

refers to the charge of the Dp-brane under C(p+1). Knowing the

form of the coupling, and the p-form field content, we can thus deduce the spectrum
of Dp-branes in Type II theories, which is:

IIA −→ C(2p+1) ∼ D(2p)-brane for p ∈ (0, 1...4) (45a)

IIB −→ C(2p+2) ∼ D(2p+ 1)-brane for p ∈ (−1, 0...4) (45b)

Only the above Dp-branes can exist as stable extended objects in each case since
they must couple to the available R-R forms in the spectra of the theories (e.g.
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in IIB theory a D7-brane is stable as it carries a C̃(8) charge, whereas in IIA it
must decay since it cannot couple to an 8-form). For tree-level processes, we can
approximate Tp ≃ µp, such that the brane charge and tension coincide. This means
that Dp-branes respect the BPS bound M ≥ Z between mass and charge, and are
thus BPS objects.

6.3 String Orientation, C-P Factors and Wilson Lines

We must make a distinction between oriented and unoriented superstring theories.
To this end, we define an unoriented string as one which is invariant under an
orientation reversal σ −→ −σ, corresponding to the conjugation of the fields by the
WS parity operator Ω, that is, Ω†xµ(τ, σ)Ω = xµ(τ, l − σ) where l here refers to
the length of a string (can be open or closed). Note that an orientation reversal
also interchanges left/right-movers since f(τ + σ) −→ f(τ − σ), so the states in the
spectrum of an unoriented theory must be symmetric with respect to L/R-mover
interchange, or equivalently, they must be symmetric under αµ

−n ←→ α̃µ
−n. Type II

theories are consistent closed oriented superstring theories in 10-dimensions. If one
were to consider the massless spectrum of an open unoriented bosonic string theory,
the K-R 2-form B[µν] would be projected out of the theory since by definition, it is
antisymmetric with respect to µ←→ ν. Oriented theories contain string states which
are sensitive to orientation reversal.

Figure 3: Chan-Paton labels m̄ and n attached to the ends of an open oriented
string. Adapted from [16].

Chan-Paton (CP) factors are additional non-dynamical degrees of freedom carried
by open strings at their endpoints. For the case of oriented open strings, the two
ends are inequivalent after an orientation reversal, so one associates the labels m̄
and n to the string ends as in Figure 3. These correspond, respectively, to the
antifundamental representation11 at the σ = 0 end of the string, and the fundamental

11This refers to the complex conjugate of the fundamental representation.
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representation at σ = π of a gauge group U(N) associated to the string via the N
non-dynamical degrees of freedom at each end.

The CP labels retain the Poincaré and WS conformal invariance of the theory [17].
We therefore can use the set of N × N matrices, λaij, as well as the Fock space
labels and momenta, to describe the string states. Hence, for R1,25, the states can
be expressed in the basis

|ϕ; k; a⟩ =
N∑

i,j=1

|ϕ; k; ij⟩λaij (46)

where the λ matrices encode the U(N) charge of string states at each end via the
integers i, j ∈ [1, ...N ] respectively. Due to the complex conjugation, the string
has opposite U(N) charges at each end. With the CP labels in place, the states
become N2-degenerate (in a background of N coincident D-branes) since we must
introduce precisely N2 hermitian matrices λaij (due to the reality condition on the
string fields) to describe the state. These furnish the adjoint representation of the
new U(N) gauge group.

Unoriented strings are invariant under orientation reversal, so the CP labels at each
end must coincide (i.e. the antifundamental and fundamental representations must
be equal) so that the new symmetry group introduced by the CP labels must have a
real fundamental representation, reducing the possibilities to SO(N) and Sp(N) for
even N . Before being projected out due to symmetry, a general state in the theory
can be symmetric or antisymmetric with respect to µ ←→ ν. Then, if the massless
vector states of the theory correspond to [16]:

• Symmetric states −→ N(N+1)
2

of them −→ Sp(N) gauge symmetry.

• Antisymmetric states −→ N(N−1)
2

of them −→ SO(N) gauge symmetry.

The general N × N hermitian matrices introduced to described the basis of states
of a general open theory, λaij, are projected, upon introducing orientation, into sym-
metric/antisymmetric matrices depending on the symmetry of the massless vector
states of the theory. That is, they must obey the condition λaij = λaji up to a sign.
In terms of representations, introducing orientation in the theory is equivalent to
the adjoint representation of U(N) being decomposed into adjoint representations
of SO(N) or Sp(N) depending on the symmetry of the CP matrices.

We further check whether or not the n-point scattering amplitudes are invariant
under the new symmetry groups introduced via the CP factors. Consider the 3-
point amplitude A3 in the oriented bosonic string theory. Due to the CP labels, A3

will contain the extra factor of δii
′
δjj

′
δkk

′
λ1ijλ

2
j′kλ

3
k′i′ = Tr(λ1λ2λ3). Recalling that
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λaij form the adjoint representation and using the cyclicity of the trace, we clearly see
the emergent U(N) symmetry on the WS at the level of the scattering amplitudes.
This argument holds for the other gauge group symmetries.

Hence, if we consider the most general gauge group in a general open string theory
(prior to considering orientation) it will be of the form:

G =
∏
a

U(Na)×
∏
b

SO(Nb)×
∏
c

Sp(Nc) (47)

and the only allowed representations for the fields are the adjoint, symmetric, anti-
symmetric and bifundamental representations [17], which is easy to see if we think
in terms of Young Tableaux.

We now switch focus and turn to another gauge-invariant configuration known as
the Wilson line. If we consider a spacetime with S1 topology (corresponding to the
compactified coordinate x25) of radius R and a U(1) gauge symmetry, we can choose

A25(x
µ) = − θ

2πR
= −iΛ−1∂25Λ where Λ = exp(−iθx

25

2πR
) (48)

as the constant background gauge field potential where θ is just a phase. This choice
corresponds to pure gauge locally. Then, we construct the U(1) Wilson line as [18]

Wq = exp

[
iq

∮
dx25A25

]
= e−iqθ (49)

which is an observable of the gauge theory. The integration contour refers to non-
contractible cycles on the WS and we have used the usual coupling (second term of
(41)) of the gauge field to the WS. With this choice of gauge, all fields moving around
the circle with U(1) charge q, pick up a phase equal to eiqθ. Hence, the canonical
momentum pµ = i ∂L

∂ẋµ = iẋµ for a point particle in the compactified dimension is
shifted by

p25 −→ n

R
+

qθ

2πR
(50)

which shows that A25 cannot be fully cancelled, even in pure gauge, unless Wq = 0.

Considering now the more general U(N) case for an oriented open string, in the
same topology, we make the choice

A25 = diag{θ1, ...θN}/2πR = −iΛ−1∂25Λ (51)

where

Λ = diag

{
exp(−iθ1x

25

2πR
), ...exp(−iθNx

25

2πR
)

}
(52)
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which, again, is pure gauge but locally. This generally breaks U(N) −→ U(1)N . The
presence of these gauge-invariant observables in an open string theory is equivalent,
under T-duality, to a theory of non-coincident D-branes with separations determined
by the value of the Wilson line. They also play an important role in orbifold com-
pactifications, but we will see this in more detail when discussing T-duality in Type
I theory.

6.4 D-Branes as Charged BPS States

We have seen how D-branes carry conserved antisymmetric charges of topological
nature (RR p-form charges) which in a SUSY context one can relate to the central
charge of a superalgebra. In particular, recall that the charge of a Dp-brane under
C(p+1) is given by µp = 2π

l
(p+1)
s

, to lowest order, and this alone implied that the Dp-

brane satisfied the BPS boundM ≥ Z. In the case considered in Section 6.2, we had
Tp = µp −→M = Z, which constitutes a saturation of the BPS bound. The saturated
states from the above condition belong to shortened super-multiplets (containing 28

states as opposed to the usual 216 states of a generic super-multiplet) due to the
extra 0s appearing in the super-algebra if M = Z [19].

These states are stable, since they are fixed so long as SUSY is preserved. We
check explicitly the amount of SUSY preserved by D-branes. For this, we consider
D9-branes which correspond to open strings in D = 10. We denote Qα and Q̃α

as the distinct spacetime supercharges carried by L/R-movers in Type IIB theory
(N = 2), which are also 10-dimensional Majorana-Weyl spinors, and thus have 16
real components. The open string BCs identify L/R-movers, and preserve only the
linear combination Qα + Q̃α of the supercharges, which corresponds to effectively 1

2

of the original SUSY of Type IIB theory. Thus, D-branes are regarded 1
2
-BPS states

since they preserve one half of the original supersymmetry of the theory.

There exists a “no-force” condition [20] between extended objects satisfying a BPS
bound and preserving partial SUSY. This applies to configurations where the D-
branes are parallel to each other, such that static configurations of these states can
exist in the theory due to a cancellation between gravitational/gauge forces arising
between them. This cancellation can be interpreted from the fact that the open
string one-loop amplitude is equivalent to the tree-level closed exchange of R-R and
NS-NS strings, as stated in 6.2. The one-loop amplitude of the open string between
two parallel Dp-branes is given by:

A1−loop =

∫ ∞

0

dt

2π
TrNS,R

[
1 + (−1)F

2
e−2πtL0

]
= 0 (53)

where the trace is taken over the whole superstring spectrum. This vanishes from
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a field theory perspective (see [2]) but also is readily zero due to the BPS nature
of the D-branes, since effectively the net forces from the R-R and NS-NS sectors
cancel exactly if the D-branes are parallel. To see this, we consider the separate
contributions from the NS-NS and R-R sectors respectively (where in the former,
terms including (−1)F refer to periodic fermions in the R-R sector, and terms with-
out the (−1)F factor refer to antiperiodic fermions corresponding to NS-NS sector
exchange). Taking the limit t −→ 0 as in [15], one finds precisely that ANS = −AR.
The vanishing of this static force on a p-brane probe due to the gravitational back-
ground of a distinct p̃-brane is central in the construction more general composite
BPS brane configurations, however, the relevance for us is that D-branes can indeed
be regarded as charged BPS states.

6.5 D-Branes as Solutions to Supergravity Field Equations

Now, we present the dual interpretation for D-branes. In particular, we note that
a Dp-brane can be interpreted, by WS duality, as a source for closed strings (as it
carries R-R charges). From the spectrum in (43b) we note that the D3-brane is self-
dual, since it couples to C(4)+ which gives rise to a self-dual field strength ∗F5 = F̃5

in Type IIB theory. In the low-energy limit of Type IIB theory, one obtains the
N = 2 supergravity (SUGRA) action in 10-dimensions via the Type IIB low-energy
effective action. This is given by:

Seff = SNS + SR + SCS (54)

where

SNS =
1

2κ210

∫
d10x

√
−Ge−2ϕ(R + 4∂µΦ∂

µΦ− 1

12
HµνρH

µνρ) (55a)

which coincides with the low-energy effective action of the bosonic theory.
Secondly, we have that

SR = − 1

4κ210

∫
d10x
√
−G(F1 ∧ ∗F1 + F̃3 ∧ ∗F̃3 +

1

2
F̃5 ∧ ∗F̃5) (55b)

where the tilded field strengths correspond to the gauge invariant combinations
F̃3 = F3 − C0 ∧H3 and F̃5 = F5 − 1

2
C2 ∧H3 +

1
2
B2 ∧ F3. Finally, SCS is given as

SCS = − 1

4κ210

∫
C4 ∧H3 ∧ F3 (55c)

In the above formulae, we have that Fn+1 = dCn and H3 = dB2 corresponding to
the exterior derivative of the Kalb-Ramond 2-form [2].
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A classical Dp-brane solution to the equations of motion emerging from Seff is in-
variant under the action of the symmetry group R(p+1)×SO(1, p)×SO(9−p) where
one can deduce that:

• Poincaré invariance is preserved in the (p+1)-dim hyperplane via the subgroup
R(p+1) × SO(1, p).

• The remaining (9 − p) dimensions exhibit maximal rotational symmetry en-
coded in SO(9− p).

These solutions are referred to as 1
2
-BPS states as they preserve precisely one half

of the SUSY of the theory. Using the above symmetry of the solution, we can take
the following ansatz for the metric:

ds2 =
1√
H(y⃗)

ηµνdx
µdxν +

√
H(y⃗)dy⃗2 (56)

where xµ refer to coordinates along the Dp-brane (µ = 0, 1...p) and yi refer to
coordinates perpendicular to the Dp-brane (i = p + 1, ..., 10). Further analysis

[21] shows that eϕ = H(y⃗)
3−p
4 and that H(ȳ) must be a harmonic function of the

coordinates yi taking the form:

H(y⃗) = 1 +

(
L

y

)(7−p)

(57)

in 10-dimensions for L an arbitrary scale factor, after imposing the condition that
we must recover flat space away from the bulk (in the limit y =

√
y⃗.y⃗ −→ ∞). In

particular, for a stack of N coincident Dp-branes, we take the scale factor to be of
the form:

L(7−p) = (4π)
5−p
2 α′( 7−p

2
)N gsΓ

(
7− p
2

)
(58)

where gs denotes the string coupling constant and N refers to the number of units
of magnetic 5-form flux N =

∫
S5 F5 sourced by the stack of Dp-branes in Type IIB

theory, with F5 being the self-dual field strength. In this way, we can construct a
classical Dp-brane solution to the equations of motion from the low-energy effective
action of Type IIB theory coupling to the corresponding p-form in the spectrum. For
example, we can construct the D3-brane solution coupling to the self-dual 4-form
C(4)+. Other possibilities exist, such as the D1-brane solution coupling electrically
to C(2) (with the D5-brane as the corresponding dual brane coupling magnetically12

12The charge of the magnetic dual brane is found by computing the flux
∫
Sp+2 Fp+2, where in

D = 10, Sp+2 can surround a (6− p)-brane, that is, the magnetic dual of a p-brane [2].
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to the 2-form) and more exotic solutions involving the D(-1)-brane and the so-called
fundamental string, F1, coupling to the K-R 2-form.

For a stack of N D3-branes, the brane dynamics is precisely described by four-
dimensional N = 4 SU(N) Super Yang-Mills (SYM) theory [21]. This fact, and the
dual interpretation of D-branes will be very useful when introducing the AdS/CFT
correspondence via the decoupling argument.

6.6 Configurations of D-Branes

We have motivated how different gauge symmetries can appear in open string the-
ories by considering CP labels. To conclude this section, we consider the effect of
having Dp-branes which intersect along some subspace containing R(1,3). Generally,
intersecting D-brane models yield non-supersymmetric, chiral low-energy spectra
and consideration of appropriate sets of D-brane stacks can result in the construc-
tion of the Standard Model-like gauge theories.

We begin by considering a system of two D6-branes in R(1,9) (flat, non-compact
Minkowski space) in Type IIA theory, such that each D6-brane spans the following
dimensions:

D6A −→ 0, 1, 2, 3, 4, 6, 8 D6B −→ 0, 1, 2, 3, 5, 7, 9 (59)

The pair of D6-branes thus intersects along the space R(1,3)×(xi = 0) for i = 4, 5...9.
We assume that the D-brane angles θiAB between the x4 − x5, x6 − x7 and x8 − x9
planes are all π

2
for simplicity, although general intersection angles can be considered

(see Figure 4).

Figure 4: Pair of D6-branes intersecting as in (59) at arbitrary angles θiab in R(1,9).
Angles are to be measured from brane a to brane b as shown. Adapted from [22].

Generally, the pair of D6-branes will be related by a (SO(8)/SO(p − 1)) × T9−r

isometry [23], where in our case p = 6 and T9−r refers to the translation group in
(9−r) dimensions with r being the dimension of the direct sum of the tangent space
dimensions (in our case r = 6). Although the common dimensions span R(1,3), the
setup is not yet effectively 4-dimensional since states propagating along D6A and
D6B will generally have components propagating along the remaining dimensions of
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the full 10-dim space. However, the effect of these is negligible upon a KK compacti-
fication to R(1,3) if the limit of the size of the internal space being very small is taken.
At the intersection of Dp-branes, the total amount of SUSY of the 10-dimensional
theory preserved, depends on the sum

∑N
i=1 θ

i
AB of angles between the planes formed

by the intersecting directions of the Dp-branes. In the above case, where all angles
are π

2
, SUSY is fully broken [24]. In compactified models, D-brane configurations

are severely restricted by consistency conditions (e.g. anomaly cancellations). The
allowed intersecting models correspond to new effective 4-dimensional vacua of the
original 10-dimensional theory and can be used for semi-realistic effective theory
model-building.

We now examine the effect of configurations corresponding to stacks of NA/NB

coincident DA/DB-branes and consider the open string spectra arising from the
theory in a background containing these. We can divide the spectrum into different
sectors:

• A-A/B-B Sectors : These correspond to strings ending on the same type of D-
brane stack. They contain U(NA) and U(NB) gauge bosons respectively (due
to the CP labels) plus their superpartners. Along the intersecting dimensions
of the stacks, both bosons propagate and hence, for the space R(1,3)× (xi = 0),
the gauge symmetry is of the form U(NA)× U(NB).

• A−→B/B−→A Sectors: These refer to strings which are stretched between differ-
ent D-brane stacks. The string states are localised at brane stack intersections
and thus propagate only along R(1,3)×(xi = 0) [24]. Because of this, adding CP
labels results in these states transforming in the bifundamental representation
of U(NA)×U(NB), where by convention we choose states in the A−→B sector to
transform as (N̄A, NB) and states in B−→A to transform as (NA, N̄B), matching
the convention in Figure 3. Given the isomorphism U(NA) ≃ SU(NA)×U(1)A,
we choose the antifundamental representation N̄A to have a normalized U(1)A
charge of −1A (so then NA has charge +1A).

For further details on the latter sectors, we quantise the mixed BCs along the com-
pact space dimensions of the stacks. In the A−→B sector, if we follow the previous
example, these take the form:

∂σX
n(τ, σ = 0) = 0 n = 0, 1, 2, 3, 4, 6, 8 (60a)

∂τX
m(τ, σ = 0) = 0 m = 5, 7, 9 (60b)

∂σX
n(τ, σ = l) = 0 n = 0, 1, 2, 3, 5, 7, 9 (60c)
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∂τX
m(τ, σ = l) = 0 m = 4, 6, 8 (60d)

Where (60a) and (60b) refer to the DA-brane, whereas (60c) and (60d) refer to
the DB-brane. We clearly have Dirichlet/Neumann BCs along the dimensions i =
4, 5, ...9. Quantising gives:

• A−→B Sector: The R-sector contains a fermionic GS along R(1,3), so the mass-
less spectrum features a single chiral fermion, denoted ψα

AB, where α = 1, 2 is
a 4-dimensional Weyl spinor index and AB are CP labels. It also contains an
antichiral fermion ˙ψα

AB of the same properties. In the NS-sector, the mixed
BCs of the D-brane stacks give a single boson of M2 > 0. The chiral fermion
has no massless superpartner so SUSY is broken by the D-brane intersection.

• B−→A Sector: The spectrum here follows by acting the WS parity operator Ω
on the previous states. The fermionic states will have the opposite chirality
and their CP labels reversed [25].

After a GSO projection, the antichiral fermion is projected out of the spectrum.
Then, the total field content is given by ψα

AB transforming as (N̄A, NB) in the A −→ B
sector, and ψα̇

BA transforming as (NA, N̄B) in the B −→ A sector with opposite
chirality. These correspond to a particle-antiparticle pair and so describe the same
degrees of freedom. Representations of general open string states are constructed
as tensor products of fundamental/antifundamental representations at each end of
the string. Thus, we can conclude that a stack of NA DA-branes and a stack of
NB DB-branes intersecting along R(1,3) × (xi = 0) give rise to a U(NA) × U(NB)
(Yang-Mills) gauge theory and one chiral fermion transforming in the bifundamental
representation (N̄A, NB) of the gauge group.

As a further example, we review the case of R(1,9) ≃ R(1,3) × T 6, where we choose
to conveniently factorise the internal space as T 6 ≃ T 2 × T 2 × T 2 and we consider
the setup of two stacks of coincident D6-branes as per (59). These will span the
entire R(1,3) space and will intersect non-trivially in the 6-dimensional fiber space.
The precise intersection pattern will give the effective particle content in the 4-
dimensional model. We consider the case where a stack wraps a non-contractible
one-cycle (ni,mi) in each of the torii T 2. Here, ni and mi refer to the number of
times the D6-brane stack wraps around T 2 horizontally and vertically, respectively.
Then, the D6A- and D6B-brane will intersect T 6 at precisely three points13 (for
specific examples refer to Figure 5), where at each point we will have one chiral
fermion transforming in the bifundamental representation of the gauge group.

13Generally 3-cycles in 6-dim compact spaces intersect at points [22].
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Figure 5: Examples of possible intersecting 3-cycles in T 6. Taken from [22].

Thus, the CP gauge fields on the D6-branes yield the 4-dimensional (Yang-Mills)
gauge fields of the effective theory, and while D-brane models do not restrict the
number of fermion generations to be exactly 3 (as in the Standard Model) they do
induce a finite number of generations of fundamental particles, usually greater than
one, which prove useful for semi-realistic model-building.

7 Type I Theory

In this section, we discuss Type I theory, which is the only consistent theory of open
unoriented superstrings in 10 dimensions. We firstly construct Type I theory as an
orientifold projection of Type IIB theory, which can also be done by considering extra
O-planes in the latter. By gauging the symmetry introduced by orientifolding, we
review the need to include non-orientable worldsheets in the target space, which add
more structure to the theory. Finally, we consider the condition for cancellation of
tadpole-like divergences in the theory, from which we can deduce the gauge symmetry
group of Type I theory.

7.1 Type I as a Type IIB Orientifold Projection

We begin by describing how the fermionic RNS fields transform upon an orientation
reversal. The conjugation by the WS parity operator is analogous to the bosonic field
case, giving Ω†ψµ(τ, σ)Ω = ψµ(τ, l− σ). For the bosonic oscillators, the conjugation
gave Ω†αµ

nΩ = α̃µ
n, whereas for the fermionic oscillators we have

Ω†bµnΩ = ei2πϕb̃µn where ϕ =

{
0 −→ R-sector
1
2
−→ NS-sector

(61)

Thus, if we consider an orientifold projection of Type IIB theory by Ω̃ = Ωσ, with a
trivial σ = I isometry, one can gauge this discrete symmetry since both L/R-moving
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sectors in Type IIB have the same GSO projection and then, a priori, one can define
the closed sector of Type I theory as:

(Type I)closed := Type IIB/Ω (62)

which we check explicitly now. Firstly we consider the bosonic fields in Type IIB,
for which the action of the WS parity operator on the GS gives:

• Ω |0⟩L ⊗ |0⟩R = |0⟩L ⊗ |0⟩R for the (NS,NS) sector. This can be easily seen by
noting that Ω interchanges L/R-movers and since here, the GS of L/R-movers
is bosonic, the product of states must commute.

• For the (R,R) sector this is slightly different since the ground states are spinors
and thus their product anticommutes. This gives Ω |a⟩L⊗|b⟩R = |a⟩R⊗|b⟩L =
− |b⟩L ⊗ |a⟩R.

Recall now, from Section 2.3, that the field content in the (NS+, NS+) sector was
given by 8v⊗8v −→ [0]⊕ [2]⊕ (2). Now, however, it is clear that [2] ≃ B[µν] ∈ SO(8)
is odd with respect to the action of Ω (since it is antisymmetric in µ←→ ν), so that
the state is projected out of the spectrum by the Ω quotient. The states remaining
in the spectrum are Ω-even, leaving the multiplet of fields (ϕ,Gµν) to form the 36
of SO(8) (i.e. the symmetric representation).

For the (R+, R+) sector we had that 8s⊗8s −→ [0]⊕ [2]⊕ [4]+, where now, a bit more
care needs to be taken to work out which states survive the orientifold projection.
A priori, one would think that [2] ≃ C

(2)
[µν] would be projected out, as it forms the

antisymmetric representation of SO(8), however, the extra factor of (−1) from the

action of Ω on the fermionic GS in the R-R sector implies that C
(2)
[µν] is indeed Ω-even.

On the other hand, the states [0]⊕ [4]+ ≃ 36, forming the symmetric representation
of SO(8) are Ω-odd due to the extra negative sign from the anticommutation of the
ground states and are thus projected out of the spectrum. In summary, the massless
level of the bosonic sector of (Type I)closed theory contains the fields ϕ,Gµν and C

(2)
[µν].

We now proceed to consider the action of Ω on the fermionic sectors of Type IIB
theory, which correspond to the mixed (NS+, R+) and (R+, NS+) sectors, which are
related by WS parity. On the GS, the action of Ω is given by Ω |0⟩L,NS ⊗ |a⟩R,R =
|0⟩R,NS⊗|a⟩L,R = |a⟩L,R⊗|0⟩R,NS where the last equality follows from commutation
of bosonic and fermionic fields. We note that the first state labels characterize
L/R-movers while the second state labels distinguish between R/NS-sectors. Hence,
one sees that the projection by Ω has the overall effect of interchanging the R/NS
sectors. The field content in each of the mixed sectors is given by [8]′⊕[56] ≃ λa⊕ψi

a,
where the dilatino and gravitino have opposite chirality. Quotienting by Ω, only the

diagonal combination

(
8′ 0
0 56

)
containing one copy of (λa, ψi

a)(NS−R,R−NS) of
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SO(8) is kept in the spectrum [26].

The theory we have constructed as an orientifold projection of the Type IIB theory,
thus has the following massless spectrum:

(Type I)closed −→ 1⊕ 28⊕ 35⊕ 8′ ⊕ 56 ≃ ϕ⊕ C(2)
[µν] ⊕G(µν) ⊕ λa ⊕ ψi

a (63)

Since there is only one independent gravitino in the spectrum, this theory preserves
1
2
of the SUSY present in Type IIB theory. It therefore exhibits N = 1 SUSY in

10-dimensions.

7.2 Type I as Type IIB with extra O-planes

Before moving further and checking our construction in terms of consistency at the
level of interactions, we provide an alternative way of describing the spectrum given
in (63).

Consider a path on the closed sector of the WS connecting σ −→ 2π − σ. Gauging
the WS symmetry introduced by Ω, a string carried around a closed path on the
WS only needs to come back to itself up to a gauge transformation, hence the path
described above forms a closed loop in the orientifold theory (Type IIB/Ω). Gaug-
ing WS parity therefore implies the inclusion of unoriented worldsheets, which add
extra structure to the string states [27]. The simplest example of a non-orientable
Euclidean surface is the projective plane RP2 ≃ S2/Z2. Further, restricting the
string theory WS to σ > 0 is equivalent to inserting cross-cap states on the WS at
σ = 0, so RP2 can be thought of as a sphere with a cross-cap insertion as per Figure
6.

We recall the Euler characteristic for a non-orientable surface, which is a topological
invariant, is given by

X (M) = 2− 2g − b− c (64)

where g refers to the genus, b to the number of boundaries and c to the number of
cross-caps of the given worldsheet. Topologically, cross-caps can be thought of as
boundaries with opposite points identified (boundaries with Z2 identifications).

Figure 6: Construction of RP2 by identifying opposite points on the equator of a
hemisphere, which is equivalent to a sphere S2 with a cross-cap insertion. From [15].
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Using the two-fold interpretation of D-branes presented in the last section, intro-
ducing D-branes in a closed theory is equivalent to an extension of their CFT by
insertions of boundary and cross-cap states. If we think of boundary states as states
where the WS ends on a D-brane, cross-cap states correspond to a WS ending on an
orientifold plane. The periodicity condition along the cross-cap leads to oscillator
mode excitations with Neumann/Dirichlet BCs with extra phase factors, that is:

αµ
n ± eiπnα̃

µ
−n = 0 = ψµ

r ± iηeiπrψ̃
µ
−r (65)

where η = ±1 labels the G-parity of the fermions. The cross-cap states |Cp⟩, satisfy
these conditions as operator expressions and have an oscillator part given by:

|Cp, η⟩osc = exp

[
SMN

∑
n>0

1

n
eiπαM

−nα̃
N
n + iηSMN

∑
r>0

eiπrψM
−rψ̃

N
r

]
|Cp, 0, η⟩ (66)

where SMN = diag(−1, ...−1,+1...+1) encodes the (+1) Dirichlet and (-1) Neumann
BCs of the given state. To define precisely what is meant by an orientifold plane,
we consider the image of the path σ −→ 2π − σ extending throughout the entire WS
in Type I theory. Its endpoints are restricted to a fixed locus of Σ (the discrete
isometry) for a closed loop. This fixed locus of Σ is what defines the (p + 1)-
dimensional Op-plane. For Type I theory, where Σ = I is trivial, the locus then
refers to the entire target spacetime which can be thought of as an O9-plane. The
worldvolume of an Op-plane is defined as the fixed locus of an element of the general
orientifold group GΩ, given in (38) for Type IIB theory. This implies that O-planes
cannot fluctuate and that the coordinates describing them, which one can choose to
be cross-cap states, are non-dynamical [28].

We can therefore construct the closed sector of an N = 1 unoriented superstring
theory by considering a spacetime-filling O9-plane in Type IIB theory, which will
effectively project the IIB fields into the Ω-invariant fields of Type I.

7.3 Tadpole Cancellation in Type I Theory

The field content of the closed Type I theory sector we have constructed describes
the N = 1 supergravity multiplet in 10-dimensions, which turns out to be anoma-
lous. The full partition function must therefore contain extra contributions from an
open unoriented sector for consistency at the level of interactions. For an orientifold
theory, these contributions come from amplitudes over non-orientable Riemann sur-
faces. At X (M) = 0 (tree-level), we thus have the Möbius strip and the Klein bottle
to be considered, whose amplitudes will precisely cancel the tadpole-like divergences
coming from the closed Type I sector. Prior to this, however, we must think about
the allowed configurations of D-branes and O-planes in the full Type I theory.
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So far in (Type I)closed, we have defined boundary states as states where the WS ends
on a D-brane for the closed string theory. These states have an oscillator part which
takes the same form as the crosscap states in (66) (i.e. |Bp, η⟩osc = exp[...] |Bp, 0, η⟩).
Further, these must also be compatible with the orientifolding by Ω, thus the only
allowed D-branes in this construction are D1- and D5-branes. To see this, we refer
back to the massless field content in (63). It is clear that C

(2)
[µν] will couple to a D1-

brane, so these must be allowed, but it can also couple magnetically to its dual brane
as we have seen, which in this case is a D5-brane. These are the only BPS-states
that survive the orientifold projection in Type I theory and come from the closed
sector.

The emergence of the D9-branes comes from the additional open sector, which we
need to include to eliminate divergences, and in a sense, their presence is trivial.
This extra sector contains open strings with ends allowed to be anywhere in the
10-dimensional space. The space effectively contains a set of spacetime-filling D9-
branes, which one can think of as part of the open sector vacuum rather than as
excited states above it, since the theory requires them for consistency. In summary,
the D-branes that are kept in the theory after orientifolding are the D1-, D5- and
the (non-BPS) D9-branes. By analogy, the only allowed O-planes (non-dynamical,
mirror-like hyperplanes) are thus the O1-, 05- and O9-planes.

If we consider a stack of N coincident D9-branes filling the target space, the overall
divergent term can be written as [24]:

(2
D
2 ±N)2

∫ ∞

0

ds
D=10−−−→ (32±N)2

∫ ∞

0

ds (67)

where the ± corresponds to a specific orientifold projection, that is, the possible
actions of Ω on the Chan-Paton labels of massless gauge bosons

Ω |ϕ, k, ij⟩ = ± |ϕ, k, ij⟩ (68)

with basis λaij = ±(λaij)T . The choice of orientifold projection will determine the
gauge group of the theory. If we choose Ω = −1 (equivalent to the antisymmetry
condition of massless vector states in Section 6.3), we generate the gauge group
SO(2Ñ) ≃ Spin(2Ñ)/Z2 on the stack of D9-branes. Alternatively, choosing the
Ω = +1 projection, the gauge group generated is Sp(2Ñ)14. It is clear that for
consistency conditions, if we want our theory to be tadpole-free, we must choose
an N = 32 D9-brane stack (or more precisely Ñ = 16 D9-branes and their images
under the mirror symmetry of the O9-plane) with Ω = −1. This analysis assumes

14Where the 2Ñ = N emphasises the condition of N being even for the symmetry groups
generated by the CP labels.
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D-branes are coincident with the O-planes, that is, there are massless states in the
mixed D-brane/O-plane Möbius amplitude, so that the gauge group is broken into
the cases above by the orientifold projection, depending on the nature of the mirror
symmetry introduced by the O-planes. For non-coincident D-branes and O-planes,
the gauge group is unitary and physical states must be invariant under the mirror
symmetry introduced by orientifolding [29]. Thus, the full Type I theory is a theory
of unoriented open strings in 10-dimensions formed by the (Type I)closed sector, as
well as by the degrees of freedom coming from the R+ and NS+ open sectors coming
from 32 D9-branes, subject to the orientifolding with Ω = −1. The gauge group of
the theory is SO(32) ≃ Spin(32)/Z2.

8 Dualities in Superstring Theory

So far, we have seen the idea of duality in passing when mentioning dual branes and
self-dual p-forms. In fact, this concept is very powerful in string theory, and allows us
to relate the 5 consistent superstring theories (IIA, IIB, I and two heterotic theories)
in 10-dim to each other. This hints at the idea that these must all be contained in a
larger 11-dimensional mother theory known as M-theory. In this section, we briefly
explore the geometry of the moduli space of the bosonic theory. We then focus
on specific examples of T-duality, namely how Type IIA and Type IIB are T-dual
theories and finally provide an alternative view on how orientifold planes emerge
under a T-duality transformation of an unoriented theory.

8.1 T-Duality Group of the Closed Bosonic String

We trace back to the example of toroidal compactification of the closed bosonic
string, specifically to the mass-shell condition (32). We notice that this formula is
invariant under the simultaneous transformations R −→ α′

R
and n −→ ω. That is, a

string moving along a circle of radius R exhibits the same particle spectrum as a
string moving along a circle of radius α′

R
if the winding and momentum numbers are

swapped. A theory A is T-dual to another theory B if they are equivalent when A
is compactified on a small space and B is compactified on a large space. It is clear
that as R −→ 0, the radius of the T-dual circle becomes very large, thus, the above
case constitutes an example of T-duality. These relations state that the physics at
R <

√
α′ is equivalent to the physics at R >

√
α′, implying that there exists a

minimal scale (self-dual radius) R =
√
α′ at which non-abelian enhancement occurs,

explaining the choice at the end of 4.2.

T-duality transformations for more general (non-orthogonal) toroidal compactifica-
tions R(1,d) −→ R(1,d−n) × T n (n > 1) are realized via actions of the discrete, finite
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group O(n, n;Z) ⊂ O(n, n;R) [30]. This is the T-duality group and is generated by
matrices A satisfying:

AT

[
0 In
In 0

]
A =

[
0 In
In 0

]
(69)

where we differentiate between two distinct elements

Inversions −→ A =

[
0 In
In 0

]
(70a)

Shifts −→ A =

[
In 0
NIJ In

]
(70b)

with NIJ an antisymmetric matrix of integers.

The space of moduli fields in the (d − n) effective theory is parametrized by the
n2-parameters of the linear combination GIJ + BIJ ∈ GL(n,R) (the metric of the
internal space and the constant 2-form background). This space of matrices can
be represented as a homogenous space (a topological space where the action of
the symmetry group is transitive) and further, using a theorem by Helgason in
[31], one can relate this homogeneous space to the coset space G/H for H ⊂ G
a closed subgroup of the symmetry group. The appropriate choice for the moduli
space is therefore M0

(n,n) ≃ O(n, n;R)/[O(n;R) × O(n;R)] where one can check

that dim(M0
(n,n)) = n(2n−1)

2
− n(n − 1) = n2, so the dimensions match and that

O(n;R)×O(n;R) ⊂ O(n, n;R) is a closed subgroup. However, points in the moduli
space related by the action of T-duality belong to the same equivalence class, which
implies the presence of a discrete gauge symmetry, and therefore, we must adapt the
above choice to the physical moduli space, which is:

M(n,n) ≃M0
(n,n)/O(n, n;Z) (71)

where, whileM0
(n,n) is a smooth manifold,M(n,n) contains singularities corresponding

to the fixed points of the T-duality group. The quotient ensures the equivalence of
states related by an O(n, n;Z) action.

8.2 T-duality for Open Strings

The T-duality transformations we have defined, for a theory compactified on S1,
exchange winding and Kaluza-Klein modes, however, open strings have no such
winding modes. This is because, topogically, they correspond to a point. If we
consider a spacetime-filling D25-brane, so that open strings15 have Neumann BCs

15The bosonic mode expansion is given as X(τ, σ) = x+ pτ + i
∑

n ̸=0
1
nαne

−inτ cos(nσ).
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∂σX
µ(τ, σ)|σ=0,π = 0, compactifying X25(τ, σ) = XR(τ − σ) + XL(τ + σ) along S1

with radius R, a T-duality transformation gives [1]:

X25(τ, σ) −→ X̃25(τ, σ) = XL −XR = x̃+ pσ +
∑
n̸=0

1

n
αne

−inτsin(nσ) (72)

This result shows that X̃25(τ, σ) carries no momentum along the compactified di-
mension, so that the T-dual coordinate features only oscillatory motion. Indeed,
the dual coordinate corresponds to an open string coordinate with Dirichlet BCs
(∂τX(τ, σ)|σ=0,π = 0). One must note that

∂τX̃ = ∂σX and ∂τX = ∂σX̃ (73)

so that T-duality interchanges Dirichlet and Neumann BCs. In fact, considering the
end-points of (72) we see that X̃(τ, π) − X̃(τ, 0) = 2πnα′

R
= 2πnR̃, the string ends

are constrained to a fixed position in the compactified dimension by this Dirichlet
BC, but are free to propagate along the other 24 spatial directions. The spacetime-
filling D25-brane which wraps around the compact dimension X25 cannot exist in
the T-dual space, since the BC along S1 becomes Dirichlet, and therefore transforms
it into a D24-brane at a specific point along the T-dual circle.

For more general T n compactifications, the original Dp-brane turns into a D(p−n)-
brane under T-duality [32]. Recalling that for U(N) we introduced the Wilson line
as per (51), then under X25 −→ X25 + 2πR, the fields pick up a phase equal to
diag{e−iθ1 , ..., e−iθn}. The open string momenta are shifted and become fractional
as before, and since T-duality exchanges n↔ ω, then ω must be fractional too. This
means that the string endpoints do not lie on the same hyperplane. One such open
string with CP labels |ij⟩ will pick up a phase ei(θj−θi), so that the momentum shift
is

pij −→
n

R
+
θj − θi
2πR

(74)

so then
X̃25(τ, π)− X̃25(τ, 0) = (2πn+ θj − θi)R̃ (75)

such that the string end-points in the dual theory are at X̃25 = θiR̃ = 2πα′A25,ii

and the D-brane position in the dual space is governed by the Wilson line of the
Dp-brane wrapping the compactified dimension.
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Figure 7: Positions of three D-branes along the T-dual circle, with R′ = R̃ the dual
radius. Dashed planes are periodically identified. Open strings can be attached to
the same or different hyperplanes. From [16].

Generally, we can have N different hyperplanes at different positions if several co-
ordinates (say Xm = {X25, ..., Xp+1}) are periodic, as shown in Figure 7. The
separations between these is given by the difference in their positions (e.g. θi − θj)
along the T-dual circle, which in turn, are purely determined by the Wilson lines of
each D-brane in the original theory.

In the dual theory, compactifying a single coordinate, the effective (D−1)-dimensional
mass is shifted into

M2 = (p25)
2 +

1

α′ (N − 1) −→

[
(2πn+ (θi − θj)R̃

2πα′

]2
+

1

α′ (N − 1) (76)

and thus we see that massless states correspond to states with N = 1, n = 0
and θi = θj (string end-points lying on the same hyperplane). These states are
interpreted as gauge fields (since N = 1) either on the D-brane or along the compact
dimension, and describe fluctuations of the geometry of the hyperplane defined by
θiR̃. This is crucial for our later study of gauge-string dualities, since for the first
time we see how gauge theories can be used to learn about the geometry and position
of D-branes, and, conversely, D-branes and the string theories containing them, can
be used to learn about gauge theories. Considering the case of a T n compactification,
with U(N) symmetry, we can have the following setups [33], [34]:

• No coincident D-branes: This gives one massless vector per D-brane, the
symmetry breaking pattern due to the Wilson line in the original theory is
U(N) −→ U(1)N .

• k-coincident D-branes: Extra massless states arise since strings stretching be-
tween coincident D-branes automatically satisfy θi = θj = ... = θk. We thus
have k2 massless vectors which form the adjoint representation of U(k), which
is the subgroup of U(N) left unbroken by the Wilson line in the original theory.
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• N -coincident D-branes: This recovers the original U(N) group.

8.3 T-duality for Type II Theories

We have seen that the bosonic string compactified from D −→ (D − n) dimensions
on some n-torus T n has a discrete target space duality (T-duality) symmetry action
associated with elements of the subgroup O(n, n;Z) ⊂ O(n, n;R). For closed strings
compactified along a circle, these transformations are equivalent to the momenta
transformations

pdL −→ pdL and pdR −→ −pdR (77)

which can be easily seen by recalling that pdL/R = n
R
± ωR

α′ . This is generalized to a
full parity transformation of the bosonic string fields, that is:

Xd(τ, σ) = Xd
L(τ + σ) +Xd

R(τ − σ) −→ X̃d(τ, σ) = Xd
L(τ + σ)−Xd

R(τ − σ) (78)

which is itself a symmetry of the bosonic CFT. For a T-duality transformation along
the compactified coordinate, X9(τ, σ), of a Type IIA/IIB string, the action on the
fermionic fields follows by WS superconformal invariance, so that ψ̃9

R(τ − σ) −→
−ψ̃9

R(τ − σ). For the R-sector, the right-moving 0-modes transform as b̃80 ± ib̃90 −→
b̃80∓ ib̃90. Recalling the identification made in (13), and the relation for a-dimensional
Gamma matrices, Γa± = 1

2
(Γ2a ± iΓ2a+1), then we see that the chirality of right-

moving spinors is flipped under T-duality, since the previous relation implies that
for a = 4, Γ̃4± −→ Γ̃4∓.

Hence, we have that the different sectors of the theory transform as

(R+, R±) −→ (R+, R∓) and (NS+, R±) −→ (NS+, R∓) (79)

under T-duality, so that both chiral and non-chiral sectors become equivalent after
compactification of a single spatial dimension along S1. It is therefore clear that T-
duality transforms IIA←→ IIB at the level of the different sectors. More precisely,
we have that Type IIB theory compactified on S1 with radius R is T-dual to Type
IIA theory compactified on S1 with radius R̃ = α′

R
. The value of R corresponds to

the classical value of a scalar field in 9-dimensions, and so the compactified IIA/IIB
theories are really two distinct 10-dimensional limits of such value. The scalar field
has a flat potential and both theories are said to smoothly connect as boundary
points of the moduli space of this 9-dimensional theory after compactification [35].

To see the duality at the level of the field content more explicitly, we use the results
from Section 6. For Type IIB theory compactified on S1, applying a T-duality
transformation to the compactified coordinate we obtain the following map for the
D-branes:

D(2p+ 1)-brane←→ D(2p)-brane (80)
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where the mapping is two-fold, since equivalently applying a T-duality transforma-
tion to a D-brane in the compactified space corresponding to the T-dual theory
recovers the D-branes in Type IIB. Recalling that D-branes couple to (p + 1)-form
potentials as specified in Section 6.2, we can deduce the appropriate field content of
the R-R sector of the dual theory, which is then matched to that of Type IIA. This
transformation will also map the symmetries of one theory to another [36]. In this
way, we relate both Type II theories perturbatively.

8.4 T-duality and O-planes

We now explore how compactifying an unoriented theory along S1 and taking
the limit R −→ 0 leads to the emergence of orientifold planes. Considering the
action of the WS parity operator Ω on the T-dual bosonic fields, we have that
ΩX̃d(z, z̄) −→ −X̃d(z̄, z) in complex coordinates. While in the original unoriented
theory the coordinates exhibit Ω-invariance, the coordinates of the T-dual theory
show a product of WS and spacetime parity invariance. The T-dual compact space
in d + 1 = 26 dimensions corresponds to the line segment 0 ≤ X25 ≤ πR̃ (namely
S1/Z2), where the other half of the circle is present as the mirror image of the seg-
ment that is reflected by Ω. The end-points of the segment are fixed with respect to
the action of Ω and correspond to 24-dimensional hyperplanes in the full space. At
these, only one half of the usual states of the theory remain, since the rest are related
by the action of Ω and therefore are projected out. Thus we have two O24-planes.
More generally, if we have k-compact dimensions the T-dual compact space will be
T 25−k/Z2, where the Z2 reflection acts only along the compact directions. We will
have 2k Ω-invariant points, corresponding to O(25 − k)-planes arranged as vertices
of a hypercube [37]. At the O-planes, the theory remains unoriented, but locally in
the bulk, the physics is oriented since the Ω-projection relates string states to their
mirror image behind the fixed O-planes.

It is interesting to see that orientifold planes can emerge also as the compact dual
spaces of toroidally compactified unoriented theories. Of course, as we have seen,
more general On-planes independent on the construction given above can arise from
considering more complex orientifold groups with non-trivial discrete isometries Σ,
as in Section 5.

8.5 Type I’ Theory

We now have the tools required to think about applying a T-duality transformation
to Type I SO(32) ≃ Spin(32)/Z2 superstring theory, which contains 16 D9-branes
and their mirror images under the symmetry of a spacetime-filling O9-plane. Con-
sider Type I theory in an R1,8×S1 background, where S1 has compactification radius
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R. We have shown that Type I theory is constructed as an orientifold projection of
Type IIB, and also that Type IIA/IIB are T-dual theories. Hence, at least heuris-
tically, we expect the T-dual Type I theory (Type I’) to be some sort of orientifold
projection of Type IIA theory compactified on S1 with dual radius R̃ = α′

R
.

To check this educated guess, firstly note that gauging the Ω symmetry gives an
orientifold projection of the compact dual space, which topologically is S1/Z2. The
Z2 here should be regarded as a projection by the product Ω× I, where I denotes
spatial reflections (i.e IX̃ = −X̃). The reason for this is that Type IIA theory
is not invariant under Ω alone, since it is a non-chiral theory, and this is precisely
compensated by the involution I. The O9-plane in Type I theory wraps around the
compact space, and after T-duality it is isomorphic to the closed interval 0 ≤ X̃ ≤
πR̃. The two fixed points under the action of Ω × I correspond to the presence
of two O8-planes in Type I’ theory and the 16 D9-branes remain untouched. By
considering the bulk picture of the T-dual theory (away from the fixed O-planes
and D-branes) the local physics is that of a closed16 oriented theory by the same
reasoning as before, that is, a type II theory. Due to this, the cross-cap states are
forced to be localised near one of the O8-planes, where the physics is unoriented.
The original Type I theory has an equal number of L/R-moving chiralities, thus
T-dualising in one dimension makes the theory non-chiral, implying that at least in
the bulk the T-dual theory is some projection of Type IIA theory. This projection
is precisely the one obtained by gauging Ω. Hence, the statement of T-duality in
Type I theory reduces to:

Type I −→ Type I’ ≃ Type IIA/[Ω× I] on R1,8 × S1 (81)

Lastly, note that R-R charges must be conserved in the theory since the stack of 16
D9-branes and its image forms a BPS state. While we think of D-branes as sources
for such charges, the O-planes act as R-R charge sinks, which carry the opposite
BPS charge. More on this can be found in [38] and [39]. There exist other types
of dualities such as S-duality (weak/strong coupling duality) and U-duality, which
help to further unify the 5 consistent superstring theories in D = 10. We will briefly
discuss S-duality later and omit U-duality to avoid digression.

9 N = 4 Super Yang-Mills

Gauge theories, and more specifically Yang-Mills theories arise as the low-energy
limit of the dynamics of a stack of D-branes and the massless open string modes that
live on the D-brane worldvolume. Indeed, D-branes are the starting point to inves-
tigate dualities between non-gravitational theories and string theories (gauge/string

16Since the open strings are far away from the D-branes we regard them as effectively closed.
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dualities) which we will get to later. However, for now, we will define N = 4 Super
Yang-Mills (SYM) in D = 4 dimensions, which we will need to explore the duality
between this theory and Type IIB strings on an AdS5 × S5 background as well as
subsequent examples.

We consider an SU(N) N = 4 SYM theory in four dimensions. This theory exhibits
maximal SUSY in 4-dimensions as it contains the maximum number of allowed non-
zero supercharges. One can uniquely define the theory by specifying its gauge group
and the field content in the allowed supermultiplets. In the case of N = 4, the only
possibility is the gauge multiplet, given by:

(Aµ, ψ
a
α, ϕ

i) (82)

where Aµ is a spin-1 gauge field and µ is a spacetime index, ψa
α are four Weyl

fermions (a = 1, ..., 4 and α = 1, 2) and ϕi (i = 1, ..., 6) are six real scalars. The
gauge multiplet is in the adjoint representation of SU(N). There exists a global
symmetry (R-symmetry) realised via the automorphism group SU(4)R ≃ SO(6)R
under which the fields in the gauge multiplet transform respectively as a singlet, a
vector and a rank-2 antisymmetric tensor, that is, (Aµ, ψ

a
α, ϕ

i) ≃ (1,4,6). Note the
indices a and i denote R-symmetry indices.

The action in Euclidean signature reads [40]:

S =
1

g2YM

∫
d4xTr

(
1

2
FµνF

µν +
g2YMθI
8π2

FµνF̃
µν +Dµϕ

iDµϕi + iψ̄ΓµDµψ

−1

2
[ϕi, ϕj][ϕi, ϕj] + iψ̄Γi[ϕi, ψ]

) (83)

where the trace is over the gauge group indices which are suppressed. Note we have
expressed the Weyl fermions compactly as a single Majorana-Weyl spinor in 10-
dimensions, with Γi and Γµ being Dirac matrices in the same dimensions. The term
F̃ = ∗F denotes the usual Hodge dual field strength, gYM refers to the Yang-Mills
coupling constant and θI is the instanton angle.

The action (83) is invariant under SUSY transformations which are detailed in [41]
and are omitted here. In 4 dimensions the coupling constant and instanton an-
gle have mass-dimension [gYM ] = [θI ] = 0 so the theory exhibits classical scale
invariance. It is also invariant under the conformal group in d = 4 dimensions,
SO(4, 2) ≃ SU(2, 2). In fact, the presence of SUSY and conformal symmetry imply
that N = 4 SYM is a SCFT with an enlarged symmetry group denoted SU(2, 2|4)
(known as the superconformal group in 4 dimensions17). The notation labels the

17For more details see Appendix 14.4 and 14.5.
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maximal bosonic subgroup SU(2, 2) × SU(4)R ⊂ SU(2, 2|4) which will be relevant
when discussing the map between global symmetries in both sides of the correspon-
dence.

Constructing the parameter τ = θI
2π

+ i4π
g2Y M

, a further symmetry of the action is

revealed. Indeed, (83) is invariant under

τ −→ aτ + b

cτ + d
where a, b, c, d ∈ Z and ad− bc = 1 (84)

which corresponds to an SL(2,Z) transformation (the S-duality group). This sym-
metry will appear again in an AdS/CFT context when mapping global symmetries
between the theories in both sides of the correspondence.

10 A Brief Account of AdS(d+1) Space

We now understand the SCFT on one side of the yet-to-be formulated gauge/string
dualities. To fully understand the statement of correspondence, we must define the
background in which the dual superstring theory is to be compactified. The cases
of interest involve the product AdS5 × S5 (and later Zn orbifolds and orientifolds
of this space). Hence, we must delve into the nature of AdS(d+1), that is, (d + 1)-
dimensional Anti-de Sitter space. In this section we will briefly review the idea of
conformal boundaries in AdS(d+1) and also see that AdS5 is the only compact space
with the same isometries as the four-dimensional conformal group SO(2, 4).

10.1 Definition of AdS(d+1) and Isometries

We describe the Minkowskian (d+ 1)-dimensional AdS space by the hyperboloid

X2
0 +X2

(d+1) −
d∑

i=1

X2
i = R2 (85)

embedded in the flat (d+ 2)-dimensional space with intrinsic metric

ds2 = −dX2
0 − dX2

(d+1) +
d∑

i=1

dX2
i (86)

where R denotes the AdS radius, and one can think of the flat space (86) as having
two timelike directions. AdS space is a maximally symmetric (i.e. homogeneous and
isotropic) space of constant negative sacalar curvature, and hence has the maximum
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possible number of Killing vectors for its dimensions, that is, (d+1)(d+2)
2

in (d + 1)-
dimensions. The condition of maximal symmetry fully fixes the form of the Riemann
tensor, which is given by

Rabcd =
R

n(n− 1)
(gacgbd − gadgbc) (87)

where in our case n = d+1, and gab denotes the metric tensor defined above. Further-
more, one can solve (85) by setting X0 = Rcosh(ρ)cos(τ), Xd+1 = Rcosh(ρ)sin(τ)
and Xi = Rsinh(ρ)Ωi such that

∑d
i=1 Ω

2
i = 1, so that then, in these coordinates,

(86) becomes
ds2 = −R2(cosh2(ρ)dτ 2 − dρ2 − sinh2(ρ)dΩ2) (88)

The solution for X0 covers the entire hyperboloid once with ρ ≥ 0 and 0 ≤ τ ≤ 2π,
hence the set of coordinates (ρ, τ,Ωi) are known as the global coordinates of AdS.
Topologically, the hyperboloid is isomorphic to S1×Rd, which one can see by taking
the limit ρ −→ 0 in (88) and keeping the leading terms.

One can equivalently express AdS(d+1) as the coset manifold SO(2, d)/SO(2, d− 1)
[42]. From this, and the defining equations, it is clear that the isometry group of
AdS(d+1) is given by SO(2, d). The maximal compact subgroup of the isometry
group is given by SO(2)× SO(d) ⊂ SO(2, d), where, using global AdS coordinates,
we see that SO(2) corresponds to a constant translation in τ and SO(d) refers to
Sd−1 rotations with

∑d
i=1 Ω

2
i = 1.

Wrapping the closed S1 parametrised by τ and taking the universal cover of the
hyperboloid we obtain a causal spacetime. To investigate the causal structure of
AdS(d+1) we let sinhρ = tanθ, where 0 ≤ θ < π

2
, so that the line element is expressed

in the so-called conformal coordinates as

ds2 =
R2

cos2θ
(−dτ 2 + dθ2 + sin2θdΩ2) (89)

Then, performing a Weyl re-scaling (Λ = cosθ such that ds2 −→ Λ2ds2) one has
that the conformal compactification of AdS space corresponds to a region with the
same boundary structure as one half of that of the Einstein static Universe (covering
one hemisphere of Sd−1) where θ = π

2
denotes the boundary of Sd−1. From this, we

extract the useful result which motivates the correspondence between AdSd+1/CFTd
and its holographic nature. That is, the boundary of the conformal compactification
of AdS(d+1) is equivalent to the conformal compactification of R1,d−1 ≃ R × Sd−1.
More formally, the statement is

∂(AdSd+1) ≃ R1,d−1 (90)

45



and we call spaces where conformal compactification leads to the same boundary
structure as that of d-dimensional Minkowski spacetime asymptotically AdS spaces.

Lastly, we follow the results given in Appendix 14.4 regarding the conformal group
in d-dimensions to conclude that for d = 4, the conformal group is given by SO(2, 4),
which is precisely the isometry group of AdS5. Indeed, it turns out that AdS5 is the
only locally compact space that satisfies this property in 4 dimensions. We are now
ready to explore the correspondence between AdS5/CFT4, namely, we are ready
to understand how N = 4 SYM in d = 4 dimensions is dual to Type IIB theory
compactified on general backgrounds involving the product AdS5 × S5.

11 Type IIB on AdS5× S5 and N = 4 Super Yang-

Mills Correspondence

In these final sections, we will give further motivation for the AdS/CFT correspon-
dence by following Maldacena’s decoupling argument and will state the correspon-
dence formally in its so-called strong form. We will also provide various examples
of this family of string/gauge dualities and will show, somewhat explicitly, that the
theories on each side of the correspondence are indeed dual. This will be done by
first matching their global symmetries, and then briefly discussing the field/operator
maps between them.

In this particular section we review the decoupling argument by following Malda-
cena’s reasoning in [21] closely. This leads to a relation between Type IIB string
theory compactified on AdS5 × S5 and N = 4 SYM in four spacetime dimensions
via a duality. This will serve as motivation for further examples of compactification
on other AdS5 backgrounds (i.e. orbifolds and orientifolds of AdS5 × S5).

11.1 D3-Branes as Hyperplanes with Open String Modes

Starting with Type IIB theory on R1,9, the decoupling argument is realized by con-
sidering a stack of N parallel, coincident D3-branes spanning a (3 + 1)-dimensional
hyperplane of the background R1,9. In this configuration, the string theory will con-
tain both open strings (ending on the D3-branes) and closed strings (corresponding
to excitations of empty space). In the low-energy limit, E ≪ 1

ls
, only massless

modes are excited, which correspond respectively to the 10-dim SUGRA multiplet
for the closed excitations, and to an N = 4 vector supermultiplet in the open case.
The latter is due to the presence of the stack of D3-branes, noting that the low-
energy effective action for the open modes indeed corresponds to that of an N = 4
U(N) SYM theory [43]. Before proceeding further, we recall that D3-branes can
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be interpreted both as dynamical hyperplanes with open string excitations as well
as solutions to the SUGRA field equations (which deform the corresponding string
background).

We follow the former interpretation for now, so that the full action for the massless
modes takes the form

S = Sbulk + Sbrane + Sint (91)

where Sbulk encodes the 10-dimensional Type IIB SUGRA action as well as massive
modes of O(α′). Sbrane contains the N = 4 SYM action plus higher order terms (e.g.
(α′)2Tr(F 4) [44]) and lastly, Sint describes interactions between the D3-brane modes
and bulk modes, which scale as gs(α

′)2. Heuristically, then, we see that in the α′ −→ 0
limit (the low-energy limit) we have Sint −→ 0 and Sbulk + Sbrane −→ SSUGRA + SSYM.
Hence, in this regime, after the actions simplify, we have free 10-dim SUGRA in the
bulk and (3 + 1)-dim N = 4 U(N) SYM on the D3-brane stack as two independent
decoupled theories. This is shown schematically in Figure 8.

Figure 8: Stack of N coincident D3-branes viewed as hyperplanes where open strings
end. The low-energy limit of this configuration decouples into free 10d SUGRA and
N = 4 SYM gauge field theory. From [22].

11.2 D3-Branes as Solutions to SUGRA Field Equations

Now adopting the latter interpretation for the configuration of D3-branes (recalling
also that they are charged BPS states), the explicit solution for the SUGRA field
equations for the system is obtained by adapting the general solution given in (56),
(57) and (58) for p = 3. The D3-brane solution therefore takes the form:

H(y⃗) = 1 +
L4

y4
(92a)

where y is the radial coordinate perpendicular to the brane stack, the scale factor is

L4 = 4π(α′)2Ngs (92b)

and the magnetic 5-form flux has field strength given by

F5 = (1 + ∗)dx0dx1dx2dx3dH(y⃗)−1 (92c)
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As pointed out by Maldacena, the low-energy limit of the background described
by the above equations, as seen by an observer at ∞, corresponds to a theory
decoupling into free SUGRA in the bulk (R1,9) corresponding to the limit y ≫ L,
and another theory which we will specify by first considering the near-horizon region
of the geometry, which corresponds to the limit y ≪ L. For this limit, one finds
that H(y⃗) −→ L4

y4
, and the line element (56) becomes

ds2 −→ y2

L2

[
− (dx0)2 +

3∑
i=1

(dxi)2

]
+
L2

y2

[
dy2 + y2dΩ2

5

]
(93)

where we have written the six-dimensional metric dy⃗2 = dy2 + y2dΩ2
5 conveniently

in spherical coordinates. Thus, one can identify the geometry in the limit close to
the D3-brane stack as corresponding to the geometry of AdS5 × S5. Indeed, we
find that in the limit y ≫ L, the system decouples into (10-dim SUGRA in R1,9)⊕
(Type IIB on AdS5 × S5).

Taking the low-energy limit of the theory both from the point of view of a field
theory of open strings on the D3-brane stack, as well as from the supergravity
interpretation, we obtain two independent decoupled theories, where in both cases
one of them corresponds to supergravity in 10-dim Minkowski spacetime. Because
the decoupled theories are obtained by considering the dual description of D-branes,
it is natural to identify the remaining decoupled systems with each other [21]. In
other words, one can make the conjecture that N = 4 U(N) SYM theory in (3+1)-
dimensions is dual to Type IIB superstring theory on AdS5 × S5.

We must point out that this alone doesn’t constitute a proof for the correspondence
due to various subtleties to do with how the near-horizon limit is precisely taken (for
more on this see [21] and references therein). Furthermore, there is another subtlety
with respect to the gauge group of the N = 4 SYM dual theory. Firstly, it is useful
to note that a U(N) gauge theory is equivalent to an SU(N) gauge theory times a
free U(1) vector multiplet (up to ZN identifications), which one can understand from
the isomorphism U(N) ≃ [SU(N) × U(1)]/ZN . Aside from the asymptotically flat
space (y ≫ L) and near-horizon (y ≪ L) excitations, there also exist zero-modes
in the region connecting the bulk and the near-horizon regions. These zero-modes
correspond to the aforementioned U(1) degrees of freedom, which also include six
scalars related to the centre of mass motion of the D3-branes. These modes are
sometimes referred to as singletons (or doubletons) [45], and from the AdS point of
view they live at the boundary of the space. Hence, the choice of whether or not
they are to be included in the AdS theory directly affects whether the dual gauge
theory has a U(N) or an SU(N) symmetry group.

Recall that ∂(AdS5) ≃ R1,3, matching the background in which the dualN = 4 SYM
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theory lives. Indeed, one can identify the stack of D-branes as living in the boundary
of AdS5 [46], which in turn contain the dual gauge theory. Hence, one can refer to
the correspondence as holographic, in the sense that the dynamics of the Type IIB
theory compactified on S5 (which is effectively 5-dimensional) can be contained on
a gauge theory which lives on the boundary of AdS5 (which is four-dimensional).

11.3 Matching the Global Symmetries

After all these considerations, we make the statement that: Type IIB string theory
on AdS5×S5 (both of radius R) with 5-form integer flux N and string coupling gs ≃
(3+1)-dimensional N = 4 Super-Yang-Mills theory with coupling gYM and gauge
group SU(N) (or U(N)) where we identify the parameters of both theories as:

L = [4πgsN(α′)2]
1
4 , 4πgs = g2YM , ⟨χ⟩ = θI (94)

where the first relation is clear from the arguments given previously, and to motivate
the second one note that gclosed ≃ g2open, where open strings live on the D3-brane
stack harbouring the SYM theory. The last relation relates the expectation value
of an R-R scalar (axion) to the instanton angle. This is the strong form statement
of the correspondence, where the strength of the statement refers to the conditions
imposed on the parameters of the theories and also to the fact that it must hold for
all values of the couplings 4πgs = g2YM and for all N .

For the correspondence to hold, if both theories are to be dual, then it is clear that
the global unbroken symmetries on both sides must be identical. We will explicitly
check this now. Firstly, for N = 4 SYM in R1,3 in (super)conformal phase18, the
continuous global symmetry takes the form of the superconformal group SU(2, 2|4).
The actions of this supergroup are generated by a conformal symmetry, SU(2, 2) ≃
SO(2, 4), for the specified background R1,3, an R-symmetry for N = 4, realised via
the isometry group SU(4)R ≃ SO(6)R and then 32 Poincaré and conformal SUSYs
which are generated by the supercharges Qa

α and Saα and their complex conjugates,
respectively. The isometry group of AdS5 is SO(2, 4), which corresponds to the
conformal group in four spacetime dimensions. Hence, the low-energy limit of the
decoupled theory on the D-brane stack is a CFT, which is seen from the fact that
the near-horizon (y ≪ L) geometry is that of AdS space. The maximal bosonic
subgroup takes the form SU(2, 2) × SU(4)R ≃ SO(2, 4) × SO(6)R ⊂ SU(2, 2|4),
which is precisely the isometry group of AdS5 × S5, where SO(6) generates S5

rotations. The completion into the full supergroup occurs as follows: since the D3-
branes are viewed as 1

2
-BPS states, the maximal bosonic subgroup preserves only 16

18This refers to the configuration where ⟨ϕi⟩ = 0 for all the real scalars in the gauge multiplet,
which form the 6 of SU(4)R. For this case, the global SU(2, 2|4) is unbroken.

49



out of the 32 SUSYs of the full supergroup [43]. However, the doubling of SUSYs
occurs as a consequence of superconformal invariance in the near-horizon region
(since the superconformal algebra has twice as many fermionic generators as the
Poincaré superalgebra), hence one has the enlargement

SO(2, 4)× SO(6)R −→ SU(2, 2|4) (95)

so that globally, both theories have the same spacetime SUSY.

Furthermore, we also stated that N = 4 SYM had an SL(2,Z) symmetry group,
corresponding to transformations of the parameter τ . Using the mapping given in
(94), this parameter translates into τ −→ i

gs
+ ⟨χ⟩

2π
for the dual string theory. In this

way, Type IIB theory also has an SL(2,Z) self-duality symmetry which extends to
the non-trivial AdS5 × S5 background, since all fields defined on it are SL(2,Z)-
invariant [47]. Hence, at the level of global symmetries, the strong form of the
correspondence holds exactly.

11.4 Large N Limit and Further Checks

In this section, we motivate the existence of a family of more general gauge/string
dualities to which our previous example belongs to, by considering the large N limit
of gauge theories. We also present further coupling-independent checks for our stated
duality, for which we must first reformulate the statement of correspondence in its
weak form. The latter involves the extra conditions that [48]

gYM −→ 0, N −→∞ and λ ≡ g2YMN −→∞ (96)

where N refers to an additional parameter of the SU(N) gauge theory being exam-
ined, which is introduced so that one can obtain a meaningful perturbative expansion
to learn about physics near the QCD scale (ΛQCD) in terms of the parameter 1/N .
This is because SYM theories in four dimensions have no dimensionless parameters,
and so, a priori, there isn’t an obvious way to perform such an expansion. For the
expansion to be valid, one must take the t’Hooft limit: N −→ ∞. Thus, generally,
to study the low-energy regime of gauge theories, which is strongly coupled, one
needs to rely upon taking this so-called large N limit, for which the theory simpli-
fies. Upon taking this limit, we also need to understand how to scale the coupling
constant gYM . For N = 4 SYM (a SCFT), which is the case in hand, the t’Hooft
coupling λ can be taken to ∞ consistently as N −→ ∞, whereas for non-conformal
theories, λ is usually kept fixed as N −→∞.

Surprisingly, in the large N limit of non-abelian gauge theories, the perturbative
expansion in terms of 1/N can be reorganised into a topological expansion in terms
of closed oriented surfaces, to which the contributing field theory Feynman diagrams
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can be embedded into. One can write the perturbative expansion for any diagram
in the field theory with fields in the adjoint representation of the gauge group as a
double expansion of the form [21]

∞∑
g=0

N2−2g

∞∑
i=0

cg,iλ
i =

∞∑
g=0

N2−2gfg(λ) (97)

where in the first and third terms we are summing over genera. The label i on
the second term is just a field label (e.g. flavour, spin) with cg,i being expansion
coefficients/weights depending on the field label and the genus. The function fg(λ)
represents a polynomial in λ which sums over all possible diagrams at a given genus
g. We find that for N −→ ∞, the double expansion is dominated by surfaces of
maximal Euler character X = 2 − 2g, or minimal genus g, which correspond to
surfaces with the topology of a sphere and are associated to planar 19 diagrams in
the field theory. These give a contribution of order N2, with all other diagrams being
suppressed by factors of [ 1

N2 ]
n for n ∈ Z. The relevance of (97), is that it is precisely

the same expansion as the one found in a perturbative theory of closed oriented
strings, if the identification that 1/N ←→ gs is made. This therefore motivates the
fact that, in general, non-abelian gauge theories and string theories can be dual,
where the duality would become more noticeable as N −→ ∞, in the region where
the string theory is weakly coupled. Hence, we see that the example discussed in
previous sections is not accidental, and that more examples of gauge/string dualities
should exist. We note that this doesn’t constitute a formal proof for the existence of
such dualities due to the lack of convergence (in general) of the perturbation theory
analysis presented. We explore some more examples of dualities belonging to this
family in the coming sections.

We now return to the examination of the stated correspondence between Type IIB
strings on AdS5 × S5 and N = 4 SYM in four dimensions. The AdS/CFT corre-
spondence is a strong/weak coupling duality, in the sense that the large N limit
relates the region where the t’Hooft gauge theory coupling, λ = g2YMN , is weak
(high-energy regime), to the large curvature region in the string theory. Because
of this, a direct comparison between the n-point correlators on both sides of the
correspondence is generally quite involved20, since their computation is perturbative
(in λ on the gauge theory side, and in 1/

√
λ on the string/gravity side). Hence, to

test the duality, one must draw upon properties of both theories which are indepen-
dent on the coupling constants, and thus on the t’Hooft coupling λ. Some of these
properties are summarised below:

19These are field theory diagrams which can be drawn on the plane.
20There exists a prescription by Witten [49] which goes about this, but we omit its discussion.
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• In Section 11.3, we saw that both theories have the same SU(2, 2|4) global
symmetry, as well as a non-perturbative SL(2,Z) self-duality symmetry acting
on the parameter τ . Additional global Zn isometries emerge when the theory is
compactified on non-simply connected surfaces (see following sections). These
global symmetries are resistant to (non-extremal) changes in the value of the
coupling constants.

• We can also construct what is known as a Field/Operator map between the
supergravity modes on AdS5 and the locally gauge-invariant observables of the
SYM theory. More specifically, this map relates the representations in which
these fields/operators are in for each of the theories in the correspondence.
This is constructed explicitly in section 3.1.2 of [21].

• A comparison of the spectrum of chiral differential (primary) operators on
either side of the correspondence, which is also coupling-independent, can be
performed.

• A priori, one could also relate points in the moduli spaces of each theory, since
both are related by a duality. For the SU(N) gauge theory, the moduli space is
topologically of the form R6(N−1)/SN , and it is parametrised by the eigenvalues
of six N × N traceless matrices which commute. The problem arises for the
AdS side, where it is not clear how to define such moduli space, which, as a
coset superspace, could contain singularities at points of large curvature (in
string units). However, in principle this would also be a valid check as we
expect the dual theories to have topologically equivalent moduli spaces.

Many more qualitative checks exist, some of which are further outlined in [21], [42]
and [48]. We assume that the ones presented here are sufficient to confidently assert
that the correspondence between Type IIB strings on an AdS5×S5 background and
N = 4 SYM, which constitutes an example of maximal SUSY, holds exactly.

12 Further AdS5/CFT4 Duality Examples

We have motivated the existence of a larger class of gauge/string dualities by con-
sidering the large N limit of gauge theories, whereby we now assume that a cor-
respondence of similar nature to the one discussed can be formulated between any
theory of quantum gravity (where the metric contains an AdS5 factor) and a SCFT
in four dimensions. The theory of quantum gravity must be an AdS theory for con-
sistency, since we want the energy-momentum tensor operator to be mapped to the
AdS5 graviton under the field/operator map [48] and the string theory background
must have an SO(2, 4) isometry. Thus, the general background need not be of the
form AdS5 ×X, where X represents a compact manifold. However, we restrict our
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discussion to cases of this form for simplicity.

A special class of AdS5×X backgrounds are those arising in the near-horizon limit of
D-brane configurations, where one must determine the nature of the dual SCFT to
which they correspond to. In the case discussed, we considered the decoupled (non-
supergravity) low-energy field theory, and then took the limit y ≪ L to construct
the sought after dual SCFT. However, if we consider transverse spaces to the D3-
brane stack containing orbifold or orientifold singularities, then the corresponding
amount of SUSY preserved by the dual SCFT is modified. This section is devoted
to studying some of these cases.

12.1 Orbifolds of AdS5 × S5

We can use string theory methods to derive the low-energy field theory corresponding
to a configuration of D3-branes at an orbifold singularity. In particular, we consider
one such configuration at the origin of the transverse space with topology R4×R6/G,
where G denotes a discrete isometry G ⊂ SO(6)R ≃ SU(4)R of the rotational
symmetry of the compact manifold S5. The dual SCFT is obtained after taking the
near-horizon limit, which is of the form AdS5×S5/G, and can have different degrees
of SUSY for non-maximally supersymmetric cases which depend on the nature of
the isometry G, namely:

• N = 2 SUSY if G ⊂ SU(2) ⊂ SU(4)R

• N = 1 SUSY if G ⊂ SU(3) ⊂ SU(4)R

In this case, as previously mentioned in Section 5, the orbifolding by G involves
more structure than just merely projecting out G-invariant states from the original
theory. More specifically, for the dual gauge theory it means an enlargement of its
symmetry group, and for the string theory it implies the presence of twisted and
untwisted sectors. We distinguish between two cases regarding the quotient by the
orbifold group:

• If the G-action has only the origin as its fixed point, then S5/G is smooth.

• If the G-action produces a set of non-trivial fixed points, then S5/G contains
orbifold singularities.

We now examine briefly the nature of the twisted and untwisted sectors in the
orbifold theory for each of the cases above. The untwisted sector is not sensitive to
orbifold singularities, and contains the remaining states of the theory on AdS5× S5

after the orbifold quotient, as well as G-invariant SUGRA states. However, the
twisted sector depends on the topology of the orbifold S5/G. If the orbifold has
singularities, one has light twisted states near such singular points, but if S5/G is
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smooth, all twisted states are heavy in the sense that they involve strings which
are stretched between points in the same equivalence class of the orbifold group G.
Heavy twisted states decouple from the low-energy theory in the limit λ ∼ gsN −→∞,
so that the dual field theory features an additional global discrete symmetryG, under
which these twisted states are charged and untwisted states remain neutral.

Taking the t’Hooft limit N −→∞ and λ ∼ gsN −→ fixed, one finds that all correlators
corresponding to operators in the untwisted sectors are equivalent up to a scaling
by a factor proportional to dim(G) [50]. We now consider specific examples of
orbifolded D3-brane field theories preserving different amounts of SUSY.

12.1.1 N = 2 Supersymmetric Theories

Consider N D3-branes at orbifold singularities of the form R4/G, where G ⊂ SU(2)
is a discrete group. The worldvolume theory is constructed by taking N |G| D3-
branes on the covering space, and then performing a projection on both the Chan-
Paton labels and the fields on the worldvolume stack by G. It turns out that
the possible forms of the group G fall into an ADE-type classification [21] (where
the possible groups G are in one-to-one correspondence with simply-laced Dynkin
diagrams). We expect CFT’s to arise on the D3-branes when the representation of
G acting on the C-P labels is the N -fold copy of the regular representation21 of the
symmetry group. This statement is equivalent to the orbifold quotient acting only
on the S5, leaving the AdS5 factor untouched [51], so that the unbroken SO(2, 4)
isometry of AdS5 becomes the conformal symmetry of the dual gauge theory on
the D3-branes. For the S5, the orbifold quotient causes the breaking pattern of the
R-symmetry to be of the form

SU(4)R −→ SU(2)R × U(1)R ×G (98)

where SU(2)R ×U(1)R corresponds to the new R-symmetry group of the boundary
SCFT and G becomes an additional discrete global symmetry of the dual SCFT.

We now specify the orbifold group as G = Zk, which in the ADE language corre-
sponds to the Ak−1 case. The D3-branes sit at a point in the transverse space R6,
where the locus of fixed points after the orbifold action define a plane, which inter-
sects S5 along an S1. Thus, while the untwisted states correspond to Zk projections
of the AdS5 × S5 states, the light twisted states are contained in the fixed locus of
the Zk action, which topologically corresponds to an AdS5 × S1 geometry.

The orbifold breaks spacetime SUSY from N = 4 to N = 2, and the low-energy
field theory at non-fixed points in the moduli space features a U(N)k gauge theory

21This refers to the linear representation formed by a group action on itself via translation.
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with bifundamental hypermultiplets in the

[N, N̄,1, ...,1]⊕ [1, N, N̄ ,1, ...,1]⊕ ...⊕ [N̄ ,1, ...,1, N ] (99)

representation. The theory with the matter spectrum given above indeed cor-
responds to an N = 2 SCFT. If we take the near-horizon limit, we have that
U(N)k −→ SU(N)k for the field theory, where the matter content remains the same
since the off-diagonal U(1) factors (corresponding to operators from twisted sectors)
are IR-free and the diagonal U(1) factors decouple and so can be omitted.

Indeed, the N = 2 gauge theory with field content (99) will have, a priori, k distinct
gauge coupling constants which can be tuned independently and define a k-complex-
dimensional fixed hypersurface of CFT’s. If all the couplings are tuned to the same
value, then g2YM −→ gs as we have seen before. For the string theory, one therefore
expects k-complex parameters which can be tuned independently without altering
the AdS5 factor of the background. Some of these k-parameters include the dila-
ton [21], and the remaining (k − 1) parameters correspond to R-R/NS-NS sector
Kalb-Ramond 2-form values (marginal operators of the SCFT) which, in turn, also
correspond to the so-called blow-up modes22 of the dual string theory, which for our
example turns out to be Type IIB on AdS5 × S5/Zk. A more detailed analysis of
the mapping between marginal operators in the SCFT and fields in the dual string
theory shows the duality:

Type IIB on AdS5 × S5/Zk ≃ N = 2 SU(N)k gauge theory (100)

more explicitly, where the SCFT is constructed on the worldvolume of N |k| D3-
branes at an orbifold singularity of the form R4/Zk. The details of the mapping are
omitted here, but can be followed in [51].

12.1.2 N = 1 Supersymmetric Theories

We now consider the construction of SCFTs which preserve a smaller amount of
SUSY. The general prescription is similar to the one outlined in the previous sub-
section, with some modifications. Here, we will build the SCFT by considering N
D3-branes at orbifold singularities of the form R6/G, where now G ⊂ SU(3) is a
finite, discrete, abelian group. For the worldvolume theory, we will take N |G| D3-
branes on the covering space and then will project both the worldvolume fields and
the C-P labels by G, requiring that the representation of G acting on the latter
corresponds to the N -fold copy of the regular representation. The action of this rep-
resentation then translates to an orthogonal action on the D3-branes on AdS5 × S5

22Blow-up modes allow for the resolution of ADE-type singularities (orbifold fixed points) by
replacing them with an n-sphere. For more on these, refer to [21] and references therein.
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which, as before, preserves the AdS structure. The SO(2, 4) symmetry of AdS5 is
unbroken and constitutes the conformal symmetry of the SCFT on the D3-brane
worldvolume. The R-symmetry on S5 is broken by the orbifold action into:

SU(4)R −→ U(1)R ×G (101)

where, again, G corresponds to an additional global symmetry of the theory on
the D3-branes (which is also a symmetry of the corresponding quiver diagram) and
U(1)R denotes the R-symmetry of the boundary SCFT. In these cases, we expect
the worldvolume theory on the D3-brane configuration to be an N = 1 SCFT.

We consider the simplest example, where we take G = Z3, and follow the general
procedure we have outlined. The action of the Z3 orbifold on the complex coordinates
X i parametrizing the transverse space R6 ≃ C3 is:

X i −→ ei
2π
3 X i (102)

for i = 1, 2, 3. The Z3-action has the origin of R6/Z3 as a fixed point, and since S5

has non-zero volume, then, S5/Z3 is a smooth manifold and the orbifold action is
free (so we expect no blow-up modes to resolve ADE singularities).

Thus, the low-energy limit of the theory constructed at the orbifold fixed point
with 3N D3-branes in the covering space gives a SU(N)3 gauge theory with chiral
multiplets in the

3×

{
[N, N̄,1]⊕ [1, N, N̄ ]⊕ [N̄ ,1, N ]

}
(103)

representation [52]. Indeed, the theory with such matter content is a SCFT with
N = 1 SUSY. Taking the near-horizon limit with λ ∼ gsN −→ ∞, the spectrum of
untwisted states contains only the Z3 projection of SUGRA states of the AdS5×S5

theory. Because the compact space is smooth after orbifolding, twisted states are
all heavy.

We let the three types of charged matter fields be Ui, Vi and Wi respectively. There
is also a classical superpotential of the form

W = gsϵ
ijkUiVjWk (104)

where we have set all the values of the superpotential couplings hijk ≡ gs equal
to the string coupling. The theory features three distinct gauge couplings, which
for the classical case are all tuned to the same value (and equal to gs too) so that
the mapping g2YM −→ gs follows as usual. In this case, we have four independent
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parameters which can be changed without any effect on the AdS5 factor of the
string background.

For the quantum case, the procedure is more involved. We do not delve into the
precise details here, but it can be shown that in the space spanned by the three gauge
couplings and the coupling of the superpotential, there exists a one-dimensional fixed
line of superconformal points (for more details, refer to section 3 of [52]). Omitting
technical details, the fixed line of this space is parametrised by a parameter which
is identified with the dilaton belonging to Type IIB theory on an AdS5 × S5/Z3

background. Contrary to the N = 2 case, here, there are no remaining (k − 1)
parameters which define the analogous fixed hypersurface of CFT’s described in the
N = 2 case. Matching AdS5 fields to chiral operators of the gauge theory has some
additional difficulties in this case (see [21] and [48]). The untwisted states can be
matched easily via the field/operator map since they correspond to Z3 projections
of the original SUGRA states and, if one regards the field theory on the D3-brane
worldvolume as an N = 4 SU(3N) gauge theory quotiented by Z3, the states of
this theory after orbifolding correspond to a Z3-projection of those in the original
SCFT. For the twisted sector, states are identified with operators of the field theory
which are non-trivially charged under the global Z3 symmetry. Thus, in this case,
the AdS/CFT correspondence relates

Type IIB on AdS5 × S5/Z3 ≃ N = 1 SU(N)3 gauge theory (105)

where the dual SCFT is built on a stack of 3N D3-branes at an orbifold singularity
of the transverse space of the form R6/Z3 ≃ C3/Z3.

12.1.3 Non-supersymmetric Theories

As one might imagine, there are also examples of non-supersymmetric orbifolds of
AdS5 × S5 where the constructed SCFT is an N = 0 theory. These (S)CFT’s are
built as the low-energy limit of the theory living on a stack of D3-branes which sit
at orbifold singularities of the transverse R6 taking the form R6/G. In this case,
G ⊂ SU(4)R is again a discrete subgroup which only quotients the S5 factor. The
isometry of the AdS5 piece becomes the conformal symmetry of the new CFT on
the D3-brane stack’s worldvolume upon orbifolding. The R-symmetry is broken by
the action of G so that

SU(4)R −→ G (106)

constitutes a new global symmetry of the boundary CFT.

The example we consider here is for G = Z5, where this time the orbifold acts only
on two of the three complex coordinates parametrising the transverse space to the
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D3-branes. Explicitly, the action is of the form:

(X1, X2, X3) −→ (ei
2π
5 X1, ei

6π
5 X2, X3) (107)

This projection gives an N = 0 gauge theory with SU(N)5 gauge symmetry. The
matter content for such theory is summarised below, where we consider the fields
emerging from the orbifolding of each X i [52].

• X3 −→ X3 ⇒ 1 complex scalar ϕj in the adjoint representation for each SU(Nj)
(note the index j labels each of the SU(N) groups) where we omit the trivial
representation (the 1s in the multiplet) with respect to the other four SU(N)s.

• X2 −→ ei
6π
5 X2 ⇒ Complex scalars ϕj,j+2 in the [Nj, N̄j+2] representation.

• X1 −→ ei
2π
5 X1 ⇒ Complex scalars ϕj,j+1 in the [Nj, N̄j+1] representation.

The spectrum also features fermions, which are given by ψi,i±1 and ψi,i±2, in the
[Ni, N̄i+1] and [Ni, N̄i+2] representations respectively. The complex conjugates of the
bifundamental fields are also to be included, and their corresponding representations
are obtained by complex conjugation. It is clear that the spectrum of this theory is
non-supersymmetric.

Similarly to the N = 2 case, the five distinct gauge couplings define a 5-complex-
dimensional fixed hypersurface of CFT’s. These five expected independent parame-
ters on the string theory are to be matched to Kaluza-Klein supergravity modes on
AdS5×S5/Z5. However, in this case, the correspondence between primary operators
and KK SUGRA modes is not one-to-one [51], and the duality

Type IIB on AdS5 × S5/Z5 ≃ N = 0 SU(N)5 gauge theory (108)

with the dual CFT constructed on 5N D3-branes at orbifold singularities of the form
R6/Z5 has only been checked so far to one-loop order in perturbation theory.

We have provided several examples of gauge/string dualities by constructing four-
dimensional (S)CFT’s on orbifolds of AdS5×S5 preserving different degrees of SUSY
by using string theory methods. In particular, the cases of dualities with N = 4, 2, 1
theories are exact, while the case of N = 0 holds to one-loop.

12.2 Orientifolds of AdS5 × S5

The construction of low-energy field theories on different configurations of D3-branes
at orientifold planes follows rather similarly to the orbifold case, except that now
there are no twisted sectors in the theory, which are projected out upon orientifold-
ing. For completeness, we will briefly discuss the case of N parallel threebranes
placed at an O3-plane in the near-horizon limit.
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Following [21], without too many details, the above setup generates a four-dimensional
N = 4 SCFT, where all 32 supercharges are preserved after orientifolding. Recall
that in Section 7.3, we distinguished between two types of orientifold projections:
the Ω = 1 projection which gave rise to an Sp(2N) gauge theory, and the Ω = −1
projection, which implied a gauge theory with symmetry group Spin(2N)/Z2. In
our case, the symmetry group (symplectic or orthogonal) of the dual N = 4 SCFT
on the D-brane configuration placed at the orientifold singularity depends on the
nature of the orientifold projection that is chosen (in the low-energy limit).

The corresponding dual theory which gives rise to these SCFTs in the near-horizon
limit of D-brane configurations is precisely Type IIB string theory on an AdS5×RP5

background, where RP5 ≃ S5/Z2 defines the five-dimensional real projective plane
formed after introducing an antipodal identification on points of the five-sphere. The
Z2 action leaves only the origin of R6 (into which S5 is embedded) as its fixed point,
hence RP5 defines a smooth manifold. The orientifold nature of AdS5×RP5 is shown
by the orientation reversal of the world-sheet upon going around a non-contractible
cycle in the target space.

In the orbifold examples considered previously, the string theory topological expan-
sion (in the t’Hooft limit) was in powers of 1/N2 as it only included contributions
from closed orientable surfaces. However, after orientifolding, the new string theory
background allows to sum over non-orientable closed surfaces, which in turn imply
the presence of odd powers of 1/N in the perturbative expansion. Hence, the dual
SCFT will feature Feynman diagrams which admit embeddings into non-orientable
Riemann surfaces (with cross-caps) that contribute to the string theory perturbative
expansion.

Using this fact, another way to differentiate between the distinct gauge theories that
can be produced from orientifolding is given by presenting a useful result shown in
[53], which shows the equivalence between Sp(2N) and SO(−2N) gauge theories
after taking N −→ −N while keeping λ = g2YMN fixed. Applying this transformation,
one finds that matter multiplets in representations given by Young Tableaux Mi

for the Sp(2N) theory correspond to the matter fields in the SO(−2N) theory
with representations given by the transposed Young Tableaux (Mi)

T . Furthermore,
all gauge-invariant observables can be shown to coincide. For the given limit, the
induced effect of taking N −→ −N on the perturbative expansions of the theories
inverts the sign of the contribution of field theory diagrams (world-sheets) with
RP2 topology, that is, diagrams with an odd number of cross-caps [54]. The sign
difference of RP2 contributions at the level of the Feynman diagrams corresponds
precisely with the main feature differentiating between SO(2N) and Sp(2N) gauge
theories for large N . To see this, note that a diagram corresponding to a Riemann
surface of genus g with c cross-cap insertions (copies of RP2) and no boundaries is
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of order N2−2g−c as per (64) and (97). The effect of taking N −→ −N is precisely to
include a factor of (−1)c in the expansion, which reverses the sign of the contribution
of the diagram for odd c.

The corresponding effect in the dual string theory on AdS5×RP5 was found in [55],
and translates to the implementation of a discrete torsion on the real projective
plane. These torsions effectively amount to phenomena which model the B-field on
the string theory over an orbifold spacetime. To better grasp this idea, we note
an important fact about the Type IIB O3-plane. There exists a supersymmetric
O3-plane which is SL(2,Z)-invariant, so that, upon orientifolding one can obtain an
SL(2,Z)-invariant configuration of D3-branes on R4 × R6/Z2. This, in turn, allows
to construct an SL(2,Z)-invariant compactification on AdS5×RP5. We assume this
choice. To understand the effect of turning on this discrete torsion, we need to see
how the 2-forms (B-fields) of the SL(2,Z) theory transform upon orientifolding. We
denote these BNS−NS and BR−R. Recall that the orientifold projection reverses the
orientation of the WS by exchanging L/R-movers, hence BNS−NS transforms as a
2-form with an extra negative sign due to the Z2 action induced by the orientifold,
it is a twisted two-form. Since the orientifolding is SL(2,Z)-invariant, BR−R is also
a twisted two-form, since it is related to BNS−NS by the action of SL(2,Z).

Remarkably, this achieves the same effect as theN −→ −N operation on the SCFT, in
that it reverses the contribution of surfaces with odd number of cross-cap insertions
to the perturbative expansion of the string theory. Thus, the above setup leads
to four different possible superstring theories on AdS5 × RP5, corresponding to the
choices of zero or non-zero discrete torsion for both BNS−NS and BR−R (parametrised
by θNS and θR respectively). These in turn, correspond to different dual SCFTs as
pointed out in [55]. We state the relevant results for our discussion here:

• String theories with trivial discrete torsion in both sectors (i.e. θNS = θR = 0)
are dual to N = 4 SO(2N) gauge theories which are also SL(2,Z)-invariant
(self-dual).

• Theories with θNS = 0 and θR ̸= 0 are dual to N = 2 SO(2N + 1) gauge
theories.

• The remaining cases with non-trivial discrete torsion in the NS-NS sector
(θNS ̸= 0) correspond to N = 2 Sp(2N) SCFTs.

Further checks of these dualities between SCFTs and the supersymmetric orientifold
theories of IIB strings on AdS5×RP5 can be performed by matching chiral (primary)
operators to SUGRA fields, which, as before, we do not detail. It is interesting to
note, however, that in the case of trivial discrete torsion in both sectors, SO(2N),
there exists an additional chiral superfield known as the Pfaffian. This operator is
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matched to the AdS5 field corresponding to a D3-brane wrapped around a 3-cycle
in RP5, where the wrapping is only possible when no discrete torsion is turned on
[56]. This is consistent with the fact that Pfaffian objects only appear in SO(2N)
theories, but not in SO(2N + 1) or Sp(2N) SCFTs.

We have outlined more examples of gauge/string dualities by considering orientifold
projections of Type IIB theories on AdS5 × S5. The resulting dual SCFTs exhibit
varying degrees of SUSY too, which depend on the nature and amount of discrete
torsion chosen for each of the sectors in the superstring theory.

13 Concluding Remarks

The power of dualities is unquestionable in the field of string theory, since it has
allowed us to understand the behaviour of theories in regimes where perturbation
theory fails to be valid. This dissertation aims to be a self-contained starting point
towards the understanding of different examples of gauge/string dualities between
Type IIB string theories on different backgrounds of AdS5 and super Yang-Mills
gauge theories of varying degree of SUSY (different N ). For this, we have presented
the reader with a pedagogical review of the tools and concepts required, starting
with superstrings and compactification, then motivating how to construct gauge
theories on stacks of parallel D-branes and finally introducing examples of dualities
of the type AdS5/CFT4.

We now discuss possible extensions of the work presented in the latter sections of the
text. Firstly, note that the methods presented in Section 12.1 can be equivalently
used to examine other families of dualities, such as 6-dimensional SCFTs which
can be constructed from different orbifolds of AdS7 × S4 (i.e. correspondences of
the type AdS7/CFT6) or 3-dimensional SCFTs, which can be built from AdS4 ×
S7 orbifolds (i.e. correspondences of the type AdS4/CFT3) following the general
prescription given. Within this section, one can also explore the consequences of
the non-injective mapping between primary operators and KK supergravity modes
for the non-supersymmetric Z5-orbifold, and try to understand the consequences of
this mismatch between operators of the gauge theory and SUGRA states in terms
of the correspondence holding to different orders in perturbation theory.

For Section 12.2, it would be interesting to consider conifold theories, arising from
more general types of compactification spaces with Calabi-Yau manifolds. These
cases test the AdS/CFT correspondence, where the dual SCFT has reduced degree
of SUSY, in a more general setting (with less symmetry). Here, the background of
the string theory being examined is of the form AdS5 × M5, where M5 is a five-
dimensional compact space that is not locally isomorphic to S5. The problem arises
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when trying to perform the equivalent direct analysis of the field theory as we have
been doing in our examples, which is not possible for these cases. However, other
methods can be used to test the correspondence to some extent (see [21]).

Lastly, one can consider the dual SCFT description of the orientifold theory obtained
by orbifolding transversely to a toroidal compact space by Zk. In particular, we
can use string theory methods to see what consistency conditions are required for
anomaly cancellation and how these affect the resulting field content and gauge
symmetry group of the corresponding dual SCFTs. In [56], it is implied that the
precise nature of the SCFT is a result of the choice of complex structure on the
compactified torii. Hence, it would be interesting to see whether the choice of
complex structure for the orbifold examples introduced in this Section 12.1 (by
considering e.g. R4/G ≃ C2/G) is a more fundamental indicator of the properties
of its dual gauge theory description.

Acknowledgements

I would like to express my gratitude to my supervisor, Prof. A. A. Tseytlin, for
introducing me to the fascinating world of string theory during the MSc course,
and in particular, for suggesting the subject of orbifolds and orientifolds for this
dissertation, on which I have throughly enjoyed working. I am grateful for his help
and guidance throughout the whole project and value the numerous discussions we
have had.

I also want to thank my family and friends who have supported me throughout the
years.

62



14 Appendices

14.1 Super-Virasoro Algebra

This refers to the supersymmetric extension of the Virasoro algebra (the unique
central extension of the complexified Lie Algebra generated by elements of Diff(S1))
to a Lie superalgebra with N = 1 SUSY by including Z2-grading. Its generators
obey

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 2ϕ)δm+n,0 (109a)

[Lm, Gr] = (
m

2
− r)Gm+r (109b)

{Gr, Gs} = 2Lr+s +
c

12
(4r2 − 2ϕ)δr+s,0 (109c)

where ϕ = 0 for the R-sector and ϕ = 1
2
for the NS-sector. The central charge is

c =
3

2
D = (1 +

1

2
)D (110)

where the bosonic conformal field theory contributes the D and the fermionic CFT
contributes the extra factor of D

2
. Note further that in Lm, m ∈ Z always but for

Gr, r is an integer in the R-sector and a half-integer in the NS-sector.

14.2 Fierz Decomposition

To decompose spinor bilinears, we construct them of the form ξ̄Γ[µ1...µp]ψ, where ξ̄ is
a dual spinor, for suitable p, such that they transform as antisymmetric tensors of
SO(8). For a theory in d = 2k + 2 dimensions with Weyl spinors (2k) (chiral) and
(2k)′ (antichiral), the possible bilinears decompose as [4]

(2k)⊗ (2k) =

{
[1]⊕ [3]⊕ ...⊕ [k + 1]+ for k-even

[0]⊕ [2]⊕ ...⊕ [k + 1]+ for k-odd
(111)

(2k)⊗ (2k)′ =

{
[0]⊕ [2]⊕ ...⊕ [k] for k-even

[1]⊕ [3]⊕ ...⊕ [k] for k-odd
(112)

into direct sums of n-forms. [n]+ corresponds to the self-dual part of the form with
respect to the Hodge star (∗) operator. Also for reference, an n-form inD-dimensions
has D!

r!(D−r)!
degrees of freedom.
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14.3 Aside on CFT

A primary field is a field which under a local conformal transformation z −→ z′ =
f(z), transforms as

ϕ(z, z̄) −→ ϕ′(z′, z̄′) =

(
∂f

∂z

)−h(
∂f̄

∂z̄

)−h̄

ϕ(z, z̄) (113)

where the conformal weights, (h, h̄), specify the transformation properties of the
fields under the map.

A quasi-primary field satisfies condition (113) for f(z) ∈ PSL(2,C), the automor-
phism group of the Riemann sphere.

For a general QFT, the operator product expansion (OPE), in the case of two oper-
ators, is an approximate expansion of the product Oi(xi)Oj(xj) given by

Oi(xi)Oj(xj) ≃
∑
k

Ck
ij(|xi − xj|)Ok(xk) (114)

which holds in the limit xi − xj −→ 0.

To define the RNS theory on a sphere, we perform a Wick rotation and introduce
new complex coordinates w = τ − iσ and w̄ = τ + iσ. This allows to define the
periodic coordinate z = e

2π
l w, so that the RNS primary fields can be expanded in

terms of a Laurent series as [1]

ψµ(z) =
∑

r∈Z+ϕ

bµr

zr+
1
2

(115a)

ψ̃µ(z̄) =
∑

r∈Z+ϕ

b̃µr

z̄r+
1
2

(115b)

where again, ϕ = 0, 1
2
for the R and NS sectors respectively. The extra factor of 1

2

in the denominator exponent is due to the conformal weight. One notices that for
the R-sector, r + 1

2
∈ Z+ 1

2
, which implies that the R sector features a square-root

branch cut. This isn’t the case for the NS sector since here, r + 1
2
∈ Z due to the

non-zero value of ϕ.

In our case, for the right-moving (holomorphic) RNS fields, the OPE takes the form

ψµ(z1)ψ
ν(z2) ≃

ηµν

z1 − z2
(116)

which follows identically for the left-moving (antiholomorphic) sector.
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14.4 Conformal Group

This refers to the group of transformations preserving the metric up to an overall
conformal (scale) factor:

gµν(x) −→ Ω2(x)gµν(x) (117)

In R1,d−1 the conformal group is generated by linear combinations of the generators
of the Poincaré group as well as by dilatations D : xµ −→ λxµ and special conformal
transformations Kµ : xµ

x⃗2 −→ xµ

x⃗2 − bµ, where bµ is a constant d-vector. Following the
conformal compactification procedure, one can turn

ds2 = −dt2 + dr2 + r2dΩ2
d−2 −→ ds̃2 = −dτ 2 + dθ2 + sin2θdΩ2

d−2 (118)

that is, R1,d−1 −→ R × Sd−1, which corresponds to the maximal extension of the
uncompactified space.

For R1,d−1, the global conformal group is SO(2, d), which corresponds to an enlarge-
ment of SO(1, d− 1) (the Lorentz group) [1]. The generators of SO(2, d) are given
by:

Jµν =Mµν , Jµ,d =
1

2
(Kµ − Pµ), Jµ,d+1 =

1

2
(Kµ + Pµ), Jd+1,d = D (119)

where Mµν and Pµ generate the Poincaré group. These obey

[Jab, Jcd] = −i(gacJbd − gbcJad + gbdJac − gadJbc) (120)

for gab = diag(−1,+1...,+1). After a Wick roatation, R1,d−1 −→ Rd, hence field
theories on Rd and Sd are equivalent since there exists a bijective conformal map
relating the two.

Global time translations on R1,d−1 ≃ R× Sd−1 are generated by the Hamiltonian

H =
1

2
(P0 +K0) = J0,d+1 (121)

and its existence implies that a correlation function on a CFT on R1,d−1 can be
analytically continued to R×Sd−1. One can deduce this by noting that the isometries
of AdS space are in one-to-one correspondence with generators of the conformal
group [42].

Introducing gradation on the conformal algebra, the symmetry group is enlarged
due to the fact that SUSY and special conformal transformations do not commute.
One then has, that for d = 4

SO(2, 4) −→ SU(2, 2|N ) (122)

where SU(2, 2|N ) is the superconformal group (with N the number of supercharges)
and its form can be seen from the isomorphism su(2, 2) ≃ so(2, 4) at the level of the
Lie algebras.
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14.5 Super-Poincaré Algebra and its Representations

One can enlarge the usual Poincaré Algebra (see e.g. [2]) by introducing a graded
structure (Z2-grading) as well as by adding spinor supercharges Qi

α, where α is a
spinor index and i = 1, ...,N describes the degree of SUSY. These supercharges
transform under the spinor representation of the Lorentz group and commute with
translations. In d = 4, they also obey:

{Qi
α, Q̄β̇j} = 2δijσ

µ

αβ̇
Pµ (123)

and
{Qi

α, Q
j
β} = 2ϵαβZ

ij (124)

where Pµ are the generators of translations, Zij = −Zji is the antisymmetric central

charge which commutes with all generators, σµ are Pauli matrices and Q̄β̇j = (Q†
βj).

For N = 1 the central charges vanish, but for N > 1 this need not be the case.

The SUSY algebra has an automorphism symmetry group called R-symmetry which
takes the form: {

U(1)R for N = 1

SU(N )R for N > 1
(125)

which in both cases corresponds to an (Abelian/non-Abelian) rotational symmetry
of the supercharges. For N = 4, the R-symmetry group corresponds to SU(4)R ≃
SO(6)R, the isometry group of S5.

Requiring unitarity, choosing Pµ = (M, 0, 0, 0) and bringing Zij into block-diagonal
form, one arrives to the BPS-bound on the mass:

M ≥ |Zā| (126)

Saturation of the bound implies that one or more of the supercharges vanish, leading
to a shorter BPS multiplet.
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