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Abstract

Two revolutionary and experimentally validated theories of the early twenti-

eth century gave rise to much of the research in theoretical physics until now.

These theories are Quantum Mechanics and General Relativity. Quantum

Mechanics (QM) is the theory which precisely describes the counter-intuitive

behaviour of particles at a very small scale. General relativity (GR) is the

theory which changed how we think about gravity at a very large scale. Both

of these theories have respectively been experimentally validated time and

time again. However, when attempting to unify QM and GR such that we

may have a consistent understanding of the universe which we observe, they

appear to be incompatible.

The search for a coherent theory which unifies QM and GR in a quantum

theory of gravity is ongoing. Loop Quantum Gravity (LQG) is one contender

for such a theory, alongside the popular String Theory and many others, and

it is the aim of this paper to develop an understanding of the foundations of

LQG.

Each of the three words Loop, Quantum, and Gravity are considered
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somewhat independently. Chapter 1 covers much of the mathematical ground-

ing of gravity and of loops. Chapter 2 explores the tools of quantisation via

a generalised classical Hamiltonian formalism.
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Notation and Definitions

GR = General Relativity

QM = Quantum Mechanics

LQG = Loop Quantum Gravity

EH = Einstein-Hilbert

EC = Einstein-Cartan

E-L = Euler-Lagrange

d.o.f. = degrees of freedom

ηµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


= diag

(
−1 +1 +1 +1

)

bold text indicates a definition

bijection = injection (one-to-one) and surjection (onto)

equivalence relation = a relation ∼ which satisfies properties of reflexivity,

symmetry and transitivity

equivalence class = all elements of a set which are equivalent ∼ to each

other
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Chapter 1

The Mathematical Foundations

of Gravity

The main idea of Loop Quantum Gravity is to use and assume what is already

known from GR, in particular the assumption of diffeomorphism invariance,

and to use this to formulate a Quantum Mechanical theory of gravity. [1,

p.9]

To speak about geometry and curved spaces we must develop the neces-

sary mathematical tools. This chapter builds up to this by providing useful

and intuitive descriptions and definitions of the required mathematical struc-

ture. We begin with topological spaces and develop into manifolds, bundles,

Riemannian geometry, and finally to loops and loop representations.
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1.1 Topology

As humans we know from our intuition of everyday life that there exists

continuity, be it in space or time. A topological space defines the simplest

mathematical structure on which a notion of continuity can be made. [2,

Lec.4] To develop a precise mathematical model of the universe it is therefore

of fundamental importance to use this notion, defined as follows:

For some set X, a topological space is a coupling (X,T ) such that T has

the following properties:

1. X and ⊘ ∈ T ;

2. Any union of open subsets of X is in T ;

3. Any finite intersection of open subsets of X is in T .

In this case, T is called a topology on X.

For a full understanding of topological spaces it is important to investigate

the notion of a set. This is not included here. As a brief outline, however,

note that sets can be understood via axiomatic set theory, which in turn

can be justified with an understanding of propositional logic. [2, Lec.1-3]

Furthermore, an understanding of the foundational structure of mathematics

as a discipline can be derived from the study of propositional logic.

Canonical examples of topological spaces include:

1. Trivial topology (or “chaotic topology” [2]): consists of only the empty

set ⊘ and the entire set X;
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2. Standard topology (or “usual topology” [3, p.100]): consider a ballBr(p)

which in R1 is some open interval of length (or diameter) 2r, in R2 is an

open circle of radius r, in R3 is an open ball of radius r, and so on into

higher dimensions. Intuitively, any set U is in the standard topology if

and only if there exists some ball Br(p) about every point p ∈ U which

is entirely contained in the set X. The radius r ∈ R
+ can be taken as

small as needed to satisfy this requirement;

3. Induced topology (or “relative topology” [3, p.101]): Given some topo-

logical space (M, θ) and subset N ⊂ M , the induced topology θ |N is

defined as

θ |N= {U ∩N : U ∈ θ} .

As stated above, we can define a notion of continuity on a topologi-

cal space. A function f is continuous if the inverse of an open set (the

codomain) is also an open set (the domain). Furthermore, if there exists

some continuous function g such that two topological spaces are mapped

onto one another by g and g−1, then g is a homeomorphism and the two

spaces are homeomorphic. More generally, however, two spaces are homo-

topic if they can be continuously deformed into each other with two a priori

unrelated functions f and g. As such, a homeomorphism is a special type of

homotopy which is bijective.
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1.2 Manifolds

Manifolds are the mathematical spaces which physicists use to model space-

time. A manifold M is a topological space which is locally homeomorphic

to R
n. As such, manifolds inherit the continuity conditions of topological

spaces as described above, and they also inherit structure from our usual

n-dimensional Euclidean geometry.

Although manifolds are locally flat, they can be globally curved. We must

therefore establish tools to measure and generalise to curved spaces. Some

of these tools are outlined below.

A chart (U, ϕ) is an open set U ∈ M coupled with a mapping ϕ from U

to Rn. Charts are intuitively always possible since manifolds are locally flat

by definition. A transition function ψji maps one chart (Ui, ϕi) to another

(Uj, ϕj) via the manifold M , where Ui∩Uj ̸= ⊘. Transition functions can be

visualised as in figure 1.1, and can be written as follows:

ψji = ϕj · ϕ−1
i . (1.1)

A differentiable manifold is one for which the transition functions

between charts are differentiable. A manifold is smooth if it is infinitely

differentiable, denoted C∞, and we will henceforth assume the smoothness

of differentiable manifolds unless stated otherwise.

A tensor is a mathematical object which is invariant (ie. it does not

change) under coordinate transformations from one coordinate chart onto

13



Figure 1.1: The transition function ψji visualised from one chart (Ui, ϕi) to
another (Uj, ϕj) via the manifold M , where Ui ∩ Uj ̸= ⊘.

another. We can think of tensors as manifold invariants, since they can

look very different in different charts but will always remain the same on

the manifold itself. Tensors are often expressed in terms of components and

basis vectors. Under a coordinate transformation the components transform

proportionally to the basis vectors, acting to cancel any change to the tensor

itself so that it remains invariant.

A simple example is that of the well known vector, which is a (1, 0)

tensor. A vector can be expressed familiarly as:

v = viei = v1e1 + v2e2 + · · ·+ vnen (1.2)

Under a coordinate transformation, if a basis vector ei transforms by a factor
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of 2 then the components vi will transform by a factor of 1
2
in order to leave

the underlying vector invariant. This is precisely why tensors are used in

GR: GR assumes symmetry under coordinate transformations, also known

as diffeomorphism invariance or general covariance.

The rank of a tensor is the number of basis vectors needed in order to

fully specify a tensor component. For example,

r = rµνeµ ⊗ eν (1.3)

(where µ, ν ∈ {0, 1, 2, ...}) is a rank-2 tensor since it has 2 basis vectors, but

the vector given in 1.2 above is a rank-1 tensor.

So far we have seen contravariant tensor components which are spec-

ified with superscript indices. There are also covariant tensor compo-

nents, which are denoted by subscript indices. In particular, a differential

one-form is a special type of tensor which is covariant and is totally anti-

symmetric. We will first encounter one-forms in the Bundles section.

A tensor density is an object which transforms like a tensor but with

an additional factor due to the Jacobian determinant of the transformation.

The power of the determinant involved establishes the weight of the tensor

density. We will see an important use of a tensor density in the EH action

in the General Relativity section.

Since manifolds can have different curvature at different points (unlike a

Euclidean manifold), it is necessary to have tools for moving and comparing
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objects at different points or locations. For example, an integral curve is a

curve on a manifold with a direction at every point equal to the direction of

the tangent vector at that point. The flow σ(t, x0) of a vector field on some

manifold picks out an integral curve with starting point x0 and extends it for

a distance t.

The Lie derivative LXY calculates the change in a vector field Y as it

moves along a flow of another vector field, X. The Lie derivative is analogous

to the gradient of vector calculus.

1.2.1 Lie groups, Lie algebras and Representation

Theory

Similarly to topological spaces, a group (G, ◦) simply defines a structure or

relationship between elements of a set G. In particular, in order to be a

group a set of elements G must be coupled with a binary product or com-

position operation ◦ between the elements, and must satisfy the following

4 axioms [4]:

1. Closure Composition of any 2 elements a and b of the set G must give

another element also contained in G, ie.

a ◦ b = c, where a, b, c ∈ G; (1.4)
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2. Associativity For any elements a, b, c ∈ G,

a ◦ (b ◦ c) = (a ◦ b) ◦ c; (1.5)

3. Identity There exists an element e such that for any a ∈ G,

a ◦ e = a; (1.6)

4. Inverse For any element a ∈ G there exists an element a−1 ∈ G such

that

a ◦ a−1 = e. (1.7)

There is a fifth condition which sometimes holds. Group (G, ◦) elements

may or may not commute with each other. If they do then it is called

an abelian group.

5. Abelian For any elements a, b ∈ G

a ◦ b = b ◦ a. (1.8)

A Lie Group (G, ◦) is a group where the set G is also a differentiable

manifold. [Clarification: there is no a priori relationship between Lie groups

and Lie derivatives other than the name.] Lie groups encode many symme-
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tries in physics, so understanding their structure is of vital importance to

physicists. Given their differentiability, Lie groups are also continuous and

we can therefore always find an element infinitessimally close to any other

element. It follows that any group element A ∈ G near the identity can be

expressed as an exponential as follows:

A = eϵX = 1+ ϵX + · · · (1.9)

where we have Taylor expanded the exponential up to first order, and

0 < ϵ ≪ 1 can be chosen to be arbitrarily close to zero. We can then

use the X from this construction to impart information about the local

structure of the Lie group. In fact the set of X, which generate all Lie group

elements as above, form a Lie algebra g when coupled with a binary bracket

operation [·, ·], known as a Lie bracket. A Lie algebra is simply a vector

space coupled with a Lie bracket which by definition must satisfy conditions

of antisymmetry, bilinearity and the Jacobi identity. Lie algebras are very

useful for their relation to Lie groups as outlined above.

So far we have introduced the structure of Lie groups and Lie algebras

abstractly. In order to apply this usefully to physics, however, we must

represent these groups with sets of numbers which satisfy the structure of

these Lie groups or Lie algebras. To do this we use matrices along with

matrix multiplication. The structure preserving map which we use is the

homomorphism, defined as H(a ◦ b) = H(a)H(b) ∀ a, b ∈ G, where (G, ◦)
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is a group and the product on the RHS is matrix multiplication. The study

of matrices which fulfil the given abstract group structure (or any abstract

algebraic structure) in this way is called representation theory. [4]

Two important examples of Lie groups for the study of gravity are SU(2)

(special unitary group) and SO(n) (special orthogonal group). Both of these

groups have elements with determinant 1 (ie. special). SU(2) can be repre-

sented by 2× 2 matrices U for which U † = U−1, and SO(n) matrices can be

represented by n× n matrices O which satisfy OT = O−1. A common basis

for SU(2) are the Pauli matrices,

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (1.10)

Following the procedure of exponentiating to find a Lie algebra as shown

in eqn.1.9 above, we find that the elements X ∈ su(2) must be traceless,

TrX = 0, and hermitian, X† = X. These Lie algebra element properties

come directly from the group element properties of being special and unitary,

and are therefore the only restrictions on the elements of su(2).

The dimension (or dimensionality) D of any Lie group is the number

of linearly independent matrices in its Lie algebra (see [5]). Since su(2)

elements are hermitian and traceless for example, the dimension of SU(2) is

the number of degrees of freedom of these 2×2 matrices, which is (2×2−1) =

3. In fact, all of the information of a Lie algebra g can be deduced from its
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structure constants fabc, which are constants which satisfy

[
Xa,Xb

]
= fabcXc, (1.11)

where Xa,Xb,Xc ∈ g.

For any group we can choose from multiple representations (or reps),

depending on the context. For example:

� the trivial representation maps all elements of a group to the matrix

identity element, 1;

� the fundamental/defining representation is used to define the

group. The defining rep. of SU(2) are 2× 2 matrices which are special

(ie. they have determinant 1) and unitary, such as the Pauli matrices

above;

� the adjoint representation elements are D × D matrices, where D

is the dimension of the group as defined above. Elements of the ad-

joint representation are given by (T a)bc = −ifabc, and as such they are

strongly related to the group’s Lie algebra.

1.3 Bundles

In the previous section we constructed manifolds from our previous knowl-

edge of topology. Bundles present the next level of structure. In fact, much

of physics is formulated on different types of bundles.
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A bundle (E, π,M) is a topological space defined by the two manifolds

E and M and by the map π between them. E is called the total space,

M is the base space, and π is a continuous and surjective map called the

projection, where

π : E −→M. (1.12)

The pre-image of some point p ∈M is the set {q ∈ E : π(q) = p}. Given

some p ∈ M , the pre-image of the point p is called a fibre F . The fibre is

therefore the set of all points in the total space which map to p on the base

space (via the projection π). A fibre bundle is a bundle for which all of

the fibres are homeomorphic to each other. In other words, they all have

the same structure. A fibre bundle is denoted (E, π,M, F ), and its fibres are

called typical fibres.

A common example of a fibre bundle is the tangent bundle, which has

fibres which are the tangent spaces TpM to the base space M at every point

p ∈ M . The disjoint union of all of these tangent spaces is denoted TM ,

which is the total space of the tangent bundle. Given the projection π the

bundle can be written as the map from each tangent space TpM to the points

p ∈M to which they are tangent:

π : TM −→M (1.13)

Since each of the tangent spaces of the tangent bundle are in fact vector
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Figure 1.2: The cylinder E = S1 × R extended to infinity in both directions
[6] is an example of a trivial bundle. The vertical lines are the fibres R, and
the circle S1 is the base space. There is a projection π from the total space
E to the base space S1.

spaces, a tangent bundle is also a vector bundle.

A trivial bundle is a fibre bundle (E, π,M, F ) with total space which

is isomorphic to a product bundle, E = M × F . A canonical example of a

trivial bundle (which is therefore also a fibre bundle) is a cylinder, since the

total space is the product between the circle S1 (base space) and the real line

R (fibres), E = S1 × R, as shown in figure 1.2.

To see that this is indeed a fibre bundle note that the fibres are all straight,

real lines, so they are clearly homeomorphic to each other and hence are

typical fibres.

A bundle morphism (or bundle map) is defined so that two bundles

(E,M, π) and (E ′,M ′, π′) have diffeomorphisms u and f as per the diagram

below, such that the diagram commutes.
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E
π

M

u

f

E’
π′

B’

In other words, for a bundle morphism we must have π′ ◦ u = f ◦ π.

1.3.1 Principal Bundles

The principal bundle is important to us in particular since it is the structure

which forms the basis of the Einstein-Cartan formulation of GR, as discussed

in the GR subsection below. More generally, however, principal bundles are

ubiquitous in physics, and Yang-Mills theories in general can be understood

in terms of them. What follows is a practical introduction to principal bun-

dles.

Continuing from the discussion of fibre bundles above, sometimesG is also

included when denoting a fibre bundle (E, π,M, F,G). Here G represents

the structure group, which is a Lie group whose elements are those which

transform coordinates from different (overlapping) charts into each other.

For example, as per p.349 of [3], given two charts Ui and Uj of Rn with

coordinates xi and yj respectively, where Ui ∩ Uj ̸= ⊘, we have a vector

V ∈ Ui ∩ Uj such that:

V = V i ∂

∂xi
= V j ∂

∂yj
. (1.14)
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It follows that

V j =
∂yj

∂xi
V i (1.15)

where ∂yj

∂xi ∈ GL(n,R) since it is an invertible matrix (GL stands for general

linear group, which includes all invertible matrices). Eqn.1.15 clearly con-

nects the charts Ui to Uj using the Lie group element which is the coordinate

transformation. Barring any restriction on the change of coordinates in this

case, G = GL(n,R) is the structure group.

Loosely speaking, a principal bundle is a fibre bundle for which the

fibres F are the same as the structure group G. Given that we represent

groups with matrices which are not always abelian, it is important to specify

how the group elements act on the manifold points. Every principal bundle

therefore comes equipped with a right group action ◁, by definition. Although

the above definition of a principal bundle is not false, we need some further

structure in order to define it more precisely. This structure is given below.

The orbit θp of a group element is the set of points q ∈ M in the base

manifold which are mapped to each other by the action of all of the elements

of the group G on p, θp = {q ∈M | ∃g ∈ G : p ◁ g = q}.

Each of the points of the base manifold belong to exactly one orbit, and

the set of all of these orbits, which partition the manifold, is called the orbit

space. In fact, each orbit defines an equivalence class, ∼, and the orbit space

is the quotient space of the manifold, often denoted M/ ∼≡M/G.
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Figure 1.3: Example of an orbit space, with concentric SO(2) circles in the
space R2\ {(0, 0)}. Since the origin is not included in the space, this example
has a free action, ▷.

A very intuitive example from [2] considers a Euclidean manifold without

the origin, R2\ {(0, 0)}. Acting on points p ∈ R
2\ {(0, 0)} from the left (with

▷) with elements g ∈ SO(2), we find that the equivalence classes ∼ are

concentric circles around the origin, as per figure 1.3. In fact, each of these

circles is isomorphic to SO(2), which as we will see shortly is always the case

for a free action.

The stabilizer Sp of a point p ∈ M is the set of group elements g ∈ G

which leave the point unchanged. An action (right ◁ or left ▷) is free if

all of the points p ∈ M are left unchanged by only the identity. In other

words, an action is free if all of the points of the manifold have stabilizer

Sp = {e} ∀p ∈ M . We have already seen an example of this in the figure of

concentric circles above.
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Finally, a principal bundle (E, π,M, F,G) is defined as a fibre bundle

with the following properties:

� The total space manifold E is equipped with a right G-action ◁,

� The action ◁ is free, and

� There is a bundle morphism (or bundle map) ∼= such that

E
π

M

∼=
E
ρ

E/G

where ρ maps points of the total space E to their respective orbit (or

equivalence class, ∼).

Now, given some free action ◁, all of the group elements g (except for

the identity) map the point p to some other point/s. The group structure

is therefore preserved by any free action, since for some g1, g2, ..., gn ∈ G we

have

θp = {p, p ◁ g1, p ◁ g2, ..., p ◁ gn}

As such, all of the orbits in the orbit space E/G are necessarily diffeomorphic

to the group (G, ◦). From our morphism diagram in the definition above we

deduce that the base space M of a principal bundle is diffeomorphic to an

orbit space E/G, with each orbit making up one fibre of the bundle, and

we have just found that each orbit/fibre is diffeomorphic to the fundamental

group, (G, ◦). We have therefore now made precise the statement with which
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we started above: a principal bundle is a fibre bundle equipped with an action

for which the fibres are the same as the structure group (G, ◦).

There is one more type of bundle which is important to mention in the

context of GR, which is the associated bundle. Rather than using the most

general definition, in our case an associated bundle is a fibre bundle associated

to a principal bundle, which is defined as follows. Given some principal G-

bundle P and some smooth manifold F with a left G-action, the associated

bundle is πF : PF →M where

1. PF = (P × F )/ ∼G, where (p, f) ∼G (p′, f ′) ⇐⇒ ∃g ∈ G : p′ = p ◁ g

and f ′ = g−1 ▷ p, and

2. πF : [(p, f)] 7−→ π(p).

We can form an example of an associated bundle from the frame bundle,

which is a principal bundle. Similar to the tangent bundle, the frame bun-

dle has a total space which is the disjoint set of bases (or frames) LpM of the

tangent spaces TpM to M at every point p ∈M . Since bases transform into

each other via the GL(n,R) group, this is the structure group of the frame

bundle. We can choose some F = R
n and define a left action

▷ : GL(n,R)× F −→ F

(g ▷ f)a = (g−1)abf
b. (1.16)

We then have the associated bundle πRd : LMRd −→M [2, Lec.20].
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Figure 1.4: Example of the 2-sphere with tangent spaces TpM at p and TqM
at q. Since these tangents are not coplanar, they must have different bases.

Structure on Principal Bundles: Vectors on different tangent spaces

of a curved manifold often cannot be compared with each other as they

are. Consider for example the 2-sphere. The basis of one tangent space will

inevitably be different from that of a different tangent space, as shown in

figure 1.4.

There is a similar situation for the fibres of a principal bundle. The

solution is to find a tool to connect different fibres, which we call a con-

nection. As it turns out, we can always choose a differential one-form with

suitable limiting properties (which we do not specify here) as the connection

[2, Lec.21], and it is far more convenient to do so in practice. Furthermore,

this one-form connection on the principal bundle is Lie algebra valued, and
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from it we can define a local, Lie algebra valued one-form connection on the

base manifold itself. We call these local connection coefficients, and they

are precisely the notion which we use in GR and Yang-Mills theories where

they are usually denoted by Γµ and Aa respectively.

1.4 Riemannian Geometry

A metric tensor g = gµνdx
µ ⊗ dxν gives a measure of distance on a man-

ifold. It does so by introducing an inner product, ·. In the familiar case of

Pythagoras’ Theorem, for example, where a flat Euclidean manifold is as-

sumed, the distance between two points (0, 0) and (x, y) in 2D is
√
x2 + y2.

The way this is calculated is as follows:

√(
x y

)
·
(
x y

)

=

√√√√√√(
x y

)1 0

0 1


x
y


=
√
x2 + y2, (1.17)

where gµν = δij =

1 0

0 1

 is the Euclidean metric (notice that we often

refer to a metric tensor simply by its components, gµν , and this applies to

any other tensor as well). The inclusion of a metric in this otherwise familiar

example sheds light on an overlooked subtlety in high school mathematics.
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As we know, manifolds are not Euclidean in general and the metric gµν used

in the inner product in eqn.1.17 will vary according to the manifold we are

considering.

A Riemannian manifold is a real manifold with a positive definite met-

ric, which means that the metric is symmetric and has only positive eigenval-

ues. A pseudo-Riemannian manifold has, instead, a pseudo-Riemannian

metric, which means that some of the metric eigenvalues may be negative.

Common metrics include the Euclidean metric, δij, as seen above, the

Minkowski metric, ηµν , as well as the Schwarzschild metric, Reissner-Nordstrom

metric, and the Kerr metric which are used to investigate black holes. Each

of these metrics describes a very different geometry.

Whereas a Lie derivative is analogous to the gradient of vector calculus,

we need a notion of a directional derivative ∇ (see [7] for more details).

Furthermore we use this directional derivative to connect different tangent

spaces (or fibres) in a curved manifold, and we therefore call it a connec-

tion. This is indeed the same concept as the connection encountered in the

Principal Bundles sub-section above, however in this case it is significantly

restricted. From the general one-form connection defined previously we can

establish a notion of parallel transport on a principal bundle, and then on

an associated bundle, and finally on a vector bundle. We can then introduce

a difference between points on this vector bundle, from which we may define

the derivative which is the connection ∇ which we encounter here.

For our current use we only need to consider parallel transport on a
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vector bundle. As such, note that a tangent vector is said to be parallel

transported if it is moved in such a way that it remains parallel to itself at

all times. As we already know, basis vectors eµ are not constant in general

on a curved manifold, so their values may change when a vector is parallel

transported. The derivative connection compensates for this change, and it

is found as follows [8]:

∇V = ∇(V µeµ)

=
∂

∂xµ
(V αeα)

=
∂V α

∂xµ
eα + V α ∂eα

∂xµ
(Leibniz rule)

=
∂V α

∂xµ
eα + V αΓλ

αµeλ

=
∂V α

∂xµ
eα + V λΓα

λµeα (re-labelling indices)

=

(
∂V α

∂xµ
+ V λΓα

λµ

)
eα (1.18)

The Γλ
αµ is called the (local) connection coefficient, and the connection/directional

derivative ∇ is called a covariant derivative, since it transforms covari-

antly under a general coordinate transformation.

As defined above, the covariant derivative is a very commonly used type

of connection called an affine connection. Affine connections use parallel

transport to connect tensors. The properties of an affine connection are as
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follows [3, p.268]:

∇X(Y + Z) = ∇XY +∇XZ (1.19)

∇(X+Y )Z = ∇XZ +∇YZ (1.20)

∇(fX)Y = f∇XY (1.21)

∇X(fY ) = X[f ]Y + f∇XY (1.22)

The following example is given to shed further light on the affine connec-

tion, and it is also relevant to the loop formulation which we develop in a

subsequent chapter. A closed curve is simply a curve with the same start

and end point. On a curved manifold, a parallel transported vector does not

in general return to the same value when it is transported around a closed

curve (or loop, see the Loops and Loop Representations section below). The

connection coefficient Γλ
αµ of an affine connection removes this difference

in a vector value due to parallel transport (ie due to the curvature of the

manifold), thereby enabling comparison between vectors in different tangent

spaces. In summary, the covariant derivative measures how different one

object is from a different, parallel transported object.

Lastly, a metric connection is an affine connection which is metric

compatible, which means that the metric g is covariantly constant at all

points on the manifold ([3, p.272]), or equivalently if “g is parallel with

respect to ∇” [9]. In particular, the condition for a metric connection is
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∇g = 0. The connection coefficient of the metric connection is as follows:

Γλ
µν = Γλ

(µν) + Γλ
[µν]

=
{
λ
µν

}
+Kλ

µν (1.23)

where

{
λ
µν

}
=

1

2
gλα(gαµ,ν + gαν,µ − gµν,α) (1.24)

is the Christoffel symbol and

Kλ
µν =

1

2

(
T λ
ν µ + T λ

µ ν + T λ
µν

)
(1.25)

is the contorsion, with torsion tensor

T λ
µν = −T λ

νµ . (1.26)

Notice that in eqn.1.23 we have split the connection coefficient into its sym-

metric (rounded brackets) and antisymmetric (square brackets) parts. Taking

torsion T λ
µν = 0 the antisymmetric part vanishes, and we are left with the

Christoffel symbol as the connection coefficient, Γλ
µν =

{
λ
µν

}
. In this case the

connection ∇ is called the Levi-Civita connection, which is precisely what is

used in the usual classical Einstein formalism of GR.

A geodesic curve is a curve which has been formed from the parallel
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transport of a vector along itself. Geodesics generalise the notion of a straight

line in Euclidean space to curved spaces, often giving the shortest distance

between two points on a manifold.

It is clear from the example given above that connection coefficients Γλ
µν

encode information about the curvature of a manifold. However, these coeffi-

cients are not tensors and so are not coordinate (or diffeomorphism) invariant.

The coordinate invariant object that we use instead is the Riemann tensor:

Rµ
νσρ = Γµ

νρ,σ − Γµ
νσ,ρ + Γµ

σλΓ
λ
ρν − Γµ

ρλΓ
λ
σν (1.27)

[Note once again that we have given only the components of the tensor here,

and we would need to include the basis vectors to show the tensor in full.]

Contracting the 1st and 3rd indices we get Rνρ = Rµ
νµρ, called the Ricci

tensor, and contracting once again we get the Ricci scalar R = Rν
ν =

gµνRµν .

An important identity involving the covariant derivative of the Riemann

curvature is the following Bianchi identity:

Rµναβ;σ +Rµνσα;β +Rµνβσ;α = Rµν[αβ;σ] = 0. (1.28)

where ‘; η’ is a shorthand to mean the ‘covariant derivative with respect to

η’.
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1.4.1 General Relativity

Einstein’s classical theory of General Relativity is formulated in the language

of Riemannian geometry, and (in a vacuum) can be stated as follows:

Gµν = 0. (1.29)

where Gµν = Rµν − 1
2
gµνR is called the Einstein tensor. This is the equa-

tion of motion which results from varying the Einstein-Hilbert action (again

excluding matter),

SEH =

∫
d4x

√
−gR, (1.30)

where here we have g = det gµν . The metric determinant in this action is a

tensor density which is used to make the 4-integral coordinate invariant (or

diffeomorphism invariant). [10] As we know, the Ricci scalar R comes from

the Riemann tensor Rσµρν via the Ricci tensor Rµν = gσρRσµρν , since R =

gµνRµν , and each of these objects provides information about the curvature

of a manifold (see [11] for an intuition of their relationship). This realisation

sheds light on the interpretation of gravity as the curvature or geometry of

spacetime.

So far our consideration of GR has implicitly been on the tangent bundle,

where the tangents are the bundle fibres. There is however another way to

formulate GR which is known as the Einstein-Cartan (EC) formalism, or
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the tetrad or non-coordinate formalism. Although it largely imparts the same

information as the EH (Einstein-Hilbert) action SEH above, the structure of

the EC formalism lends itself to being interpreted as a gauge theory, and it

is what we use in quantum gravity and String theory, amongst others [12,

p.42][13, p.5].

In a coordinate basis “every tangent vector [to a manifold] at a point p

can be expressed as a linear combination of the coordinate derivatives ∂
∂xµ”

[14]. As implied above, the EC formalism replaces the usual coordinate basis

∂
∂xµ with a non-coordinate basis, in particular with an orthonormal basis eI ,

where I ∈ {0, 1, 2, 3}. This new basis eI is in fact a one-form which we call

the tetrad. Although we use Einstein’s local equivalence principle whilst

transitioning the metric g to the tetrad in the beginning of [13], we find that

all of the information of our usual metric g (or “spacetime dynamics”) is in

fact encoded in the tetrad globally. We have the following relationship:

g = gµν dx
µ ⊗ dxν = ηIJ e

I ⊗ eJ (1.31)

Since we have not introduced any sort of restriction on our new basis

eI , which is a 4 × 4 Lie algebra valued one-form matrix, it has 16 degrees

of freedom. In our previous metric g we had 10 d.o.f., however, and this

discrepancy is famously resolved by assuming 6 gauge d.o.f. This introduces

the Lorentz group (gauge group) SO(3, 1).

To find the connection in EC theory we start by simply changing the basis

36



of our usual Levi-Civita connection Γµ
ν = Γµ

ναdx
α to the non-coordinate

(tetrad) basis (which we denote with indices I,J,K,... as above) to find:

Γµ
ν → ΓI

J = eIµΓ
µ
νe

ν
J − deIρe

ρ
J (1.32)

Writing the transformed expression on the RHS of 1.32 in the following form,

gA = gAg−1 − dgg−1 (1.33)

for some group g ∈ G, it is clearly recognizable as the usual gauge connection

transformation from Lie algebra theory. Our connection in the EC formalism

is therefore nothing more than the analogue of the Lie algebra valued con-

nection which we know so well from Yang-Mills gauge theories. Furthermore,

it can be shown that when subjected to the metric compatibility condition

of the Levi-Civita connection, ΓI
J is in fact an element of the so(3, 1) Lie

algebra, legitimising our choice of the Lorentz gauge group SO(3, 1) above.

As an aside, note that this choice is not unique, since a Lie algebra does not

in general uniquely specify a Lie group. We could have chosen the double

cover Spin(3, 1) of SO(3, 1), for example.

Unlike our usual Levi-Civita connection, in EC theory we do not neces-

sarily restrict to vanishing torsion T = 0. Instead we have contorsion

CIJK = TKIJ − TJKI − TIJK , (1.34)
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and our complete connection in EC theory is

ωI
J = ΓI

J + CI
J , (1.35)

which we call the spin connection. For simplicity, however, by assuming

vanishing torsion we can transform our Riemann curvature to the orthonor-

mal (non-coordinate) basis as follows:

Rµ
ναβ → RI

J = eIµe
ν
J R

µ
ναβ

1

2
dxα ∧ dxβ, (1.36)

where this curvature is the analogue of our field strength tensor in Yang-Mills.

We now have the fundamental tools of the EC formulation, namely the

tetrad eI and the connection ωI
J . To shed light on the construction from

a mathematical perspective (see [13]), consider a principal G-bundle with

G = SO(3, 1) and an associated vector bundle with trivial fibre the SO(3, 1)

representation space V. Following the steps encountered in the ‘Principal

bundles’ chapter to find local connection coefficients, the connection which

we find is the spin connection ωI
J . Furthermore, the tetrad eI comes from

an invertible and differentiable map e : TM −→ V. We define an inner

product ⟨·, ·⟩ from an object called the Killing-Cartan form, from which we

find g = ηIJ e
I ⊗ eJ as given in eqn.1.31. This is the mathematical structure

underlying the EC formalism. [15]

Lastly, if instead of SO(3, 1) in the principal bundle construction above

we choose its double cover, G = Spin(3, 1), then it is possible to couple
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spinors to gravity. This is of obvious necessity for a complete theory of

gravity, though we do not provide any further details here.

1.5 Loops and Loop Representations

In addition to the Riemannian geometry outlined above, a holonomy is a

measure of the change to a tensor or spinor when it is parallel transported

around a closed curve (or loop) in a smooth manifold. We consider closed

curves l and m to be equivalent if they have the same holonomy. We then

define a loop to be any equivalence class [l ] of closed curves. In other words,

a loop is defined as the set of closed curves with the same holonomy.

We denote the set of closed curves which start and end at o by Lo. Simi-

larly, we denote the set of loops (ie. equivalence classes) basepointed at o by

Lo.

Along with loop composition ◦, loops satisfy the group axioms of closure,

associativity, identity and inverse. The identity is the loop with zero holon-

omy, and the inverse of a loop is the same set (or equivalence class) of closed

curves but traversed in the opposite direction. We know that the set is closed

under loop composition since l◦m gives another loop at o, ∀l,m ∈ Lo. Lastly,

loop composition is associative. The resulting group is called the group of

loops, which is non abelian [16] since loops do not commute.

As for the relationship between loops and closed curves just described,

we define a path to be any equivalence class of open curves (ie. curves
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with different start and end points). The notation for an open curve p from

the origin o to some point x is pxo .

A tree is a closed curve which does not enclose any area. In other words,

a tree is an open curve composed with its inverse. A synonym for a path

which is a tree is a thin path. Finally, two (open) paths pxo and qxo are

equivalent if and only if pxo ◦ q−1x
o is a tree. Unlike loops, paths do not form

a group under path composition.

In the context of bundles, it is the connections Aa (which we know from

the previous chapter to be Lie-algebra-valued one-forms on the base manifold,

M) which are parallel transported around closed curves to find holonomies.

For a trivial bundle, given a closed curve l from the fibre at o back to itself

via connections Aa, we can therefore write the holonomy as

HA(l) = P exp

(∫
l

Aa(y)dy
a

)
. (1.37)

Here P is a path ordering operator, which ensures that the parallel transport

occurs in the right order around the closed curve l.

Furthermore, on a principal G-bundle the holonomies are group elements,

HA(l) ∈ G (in fact they are representations of the group of loops). Given a

parametrisation of the curve path which starts at l(0) and ends at l(1) we

have the following product

l(1) = l(0)HA(l), (1.38)
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which defines the right action of the principal bundle.

As we did in previous chapter sections, it is useful to define tools to

compare objects as they move through the continuous space of loops (see pg.7

of [16] for more detail about loop space continuity). For some function Ψ,

given an infinitessimal variation δγ to a loop γ, we define the loop derivative

as the operator △ab which acts on the original loop function Ψ(γ) to give

the difference between Ψ(γ) and Ψ(γ + δγ), as per the following equation

[16]:

Ψ(πx
o ◦ δγ ◦ πo

x ◦ γ) =
(
1 +

1

2
σab(x)△ab (π

x
o )

)
Ψ(γ). (1.39)

In this expression, σab = 2ϵ1ϵ2(u
[avb]) is the area of δγ, and △ab is anti-

symmetric. It is not obvious what an infinitessimal variation δγ of a loop

looks like. As per figure 1.5, it includes a small loop at x and an open path

connecting the points o and x. A very similar notion of a derivative can be

defined for open paths, though this is not our focus here.

The loop derivative is in fact a tensor and, given suitable conditions, it

satisfies the Bianchi identity. Furthermore, it is a generator of the group of

loops.

In the EC theory given previously, we found that gravity is usefully for-

mulated as a gauge theory. We know that gauge theories have observables

which must be gauge invariant. Taking the trace of our holonomy provides
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Figure 1.5: Infinitessimal loop δγ extending from the loop γ. [16]

such a quantity,

WA(γ) = Tr

[
P exp

(∮
γ

Aa(y) dy
a

)]
, (1.40)

and it is called the Wilson loop, [17]. In fact, “all the information present

in a holonomy can be reconstructed from the Wilson loops.” [16]

Using the tools given so far in this section and previously writing gravity

as a gauge theory in the EC formulation, it is possible to rewrite our best

theory of gravity to date, GR, using the group of loops. Before we can

quantise gravity from this theory, however, we must learn how to rewrite it

in the language of quantum theory, namely the Hamilton formulation. This

is the subject of the next chapter.
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Chapter 2

Generalized Hamiltonian

Formulation

2.1 Canonical formulation

In order to quantise gravity we need first to derive a canonical formulation

of general relativity, namely a Hamiltonian formalism. As outlined by Dirac

in his 1964 New York Lectures [18], in general this proceeds as follows:

1. Find an action for the theory from which the equations of motion can

be derived,

S =

∫
L dt (2.1)

where the integrand L is the Lagrangian of the theory, then

2. Rewrite the action in terms of a Hamiltonian H rather than a La-
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grangian.

We denote the n = 1, . . . , N general degrees of freedom in the Lagrangian

formulation by qn and q̇n = dqn
dt
, so that L = L(qn, q̇n), and we treat qn as

independent of q̇n and vice versa. We then find the usual Euler-Lagrange

equation,

d

dt

(
∂L

∂q̇n

)
=
∂L

∂qn
(2.2)

and introduce the general momentum as,

pn =
∂L

∂q̇n
. (2.3)

2.1.1 Primary and Secondary Constraints

However, in our case we need a generalized Hamiltonian formalism, which

necessarily introduces the need for constraints. An excellent and simple

explanation of the need for constraints is given in section 4.4 of [12], which

uses an example of making measurements in a classical Newtonian system but

with a consistently and non-linearly late (or early) clock. It turns out that it

is in fact possible to make precise measurements in this system, if we initially

generalise the time coordinate and then apply appropriate constraints. This

is similar to our case. In order to increase generality we do not assume that

the momentum pn is independent of velocity q̇n. As a result of this extra
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freedom we introduce constraints which take the following form:

ϕm(qn, pn) = 0. (2.4)

Since these are independent of the Euler-Lagrange (E-L) equations of motion

they are called primary constraints.

We know that the Hamiltonian is given by H = pnq̇n − L, so

δH = q̇nδpn + pnδq̇n −
∂L

∂qn
δqn −

∂L

∂q̇n
δq̇n, (2.5)

using the product rule and the multivariable chain rule. We have already

defined pn = ∂L
∂ ˙qn

in eqn.2.3 above, so the 2nd and 4th terms in this eqn.2.5

cancel, which gives

δH = q̇nδpn +
∂L

∂q
δqn. (2.6)

Furthermore, using the Euler-Lagrange equations we know that ∂L
∂qn

=

d
dt

(
∂L
∂ ˙qn

)
= d

dt
(pn) = ṗn, so we get

δH = q̇nδpn + ṗnδqn. (2.7)

Rearranging this result we find the Hamiltonian equations,

q̇n =
∂H

∂pn
+ ṗn

∂qn
∂pn

(2.8)
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ṗn = −∂H
∂qn

+ q̇n
∂pn
∂qn

. (2.9)

However, Dirac [18] writes these as

q̇n =
∂H

∂pn
+ um

∂ϕm

∂pn
(2.10)

ṗn = −∂H
∂qn

+ um
∂ϕm

∂qn
, (2.11)

where by comparison it is clear that each of the ϕm terms is qn and pn

dependent only, whereas um can also have other dependence such as velocity

q̇, for example. These dependencies will be important to remember in what

follows.

Now, using the multivariable chain rule for some function g which is

dependent on q and p, we have

ġ =
dg

dt
=

∂g

∂qn

dqn
dt

+
∂g

∂pn

dpn
dt

=
∂g

∂qn
q̇n +

∂g

∂pn
ṗn (2.12)

Substituting the results 2.10 and 2.11 into 2.12 we get

ġ =
∂g

∂qn

(
∂H

∂pn
+ um

∂ϕm

∂pn

)
+

∂g

∂pn

(
−∂H
∂qn

+ um
∂ϕm

∂qn

)
= [g,H] + um [g, ϕm] , (2.13)

where we have used Poisson brackets similarly to our usual Hamiltonian
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formalism, satisfying the usual anti-symmetry and linear properties and the

Jacobi identity. To summarise, we now have both of Hamilton’s equations

2.10 and 2.11 incorporated into one single equation 2.13, which therefore

encodes all of the same dynamics as the E-L equations of motion.

Note that we can rewrite eqn.2.13 in a more compact form

ġ = [g,H + umϕm] , (2.14)

which includes the function um for which we know that the Poisson bracket

is not defined. The reason this works is that, by the bracket linearity and

product rule we have

[g,H + umϕm] = [g,H] + [g, umϕm] (linearity)

= [g,H] + [g, um]ϕm + um [g, ϕm] , (product rule) (2.15)

and the second term on the second line is clearly zero by the primary con-

straint, ϕm ≈ 0, regardless of the value of the (undefined) Poisson bracket.

We are therefore once again left with eqn.2.13, as promised.

Another important point to note at this point is that the ϕm from eqn.2.4

should only be taken to be zero after all Poisson brackets have been worked

out. Dirac [18] therefore refers to these as “weak equations”, with notation

ϕm ≈ 0. Furthermore, since Poisson brackets can only be applied to functions

with q and p dependencies they are not defined for um.
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We stated above that primary constraints are those which hold inde-

pendently of the E-L equations (or equivalently in our Hamiltonian case, of

eqn.2.13). By contrast, secondary constraints are those which must hold

after the E-L equations have been satisfied, but not necessarily before.

For example, if we let g = ϕm in eqn.2.13 then we get

0 ≈ [ϕm, H] + u′m [ϕm, ϕ
′
m] , (2.16)

since ϕm remains zero throughout time, so ϕ̇m = 0. Once the Poisson brackets

have been worked out on the RHS and the primary constraints have been

implemented, we either find that eqn.2.16 is automatically satisfied, or we

find that we must put another constraint χM ≈ 0 in place such that it is

satisfied, where χM is independent of um so χM = χM(p, q). If the latter,

then we call χM ≈ 0 a secondary constraint. We may find more secondary

constraints by inserting χM into eqn.2.13 once again, and this continues until

we have found all of the constraints.

There is a useful notation whereby all S constraints, including both pri-

mary and secondary, can be written as ϕS = ϕ1, ..., ϕm, ϕm+1, ..., ϕm+M . Here

there are m primary constraints and M secondary constraints, though they

are both included in the ϕS notation.
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2.1.2 First and Second Class constraints

We argued above that eqn.2.16 is either automatically satisfied or we must

impose a secondary constraint to make it so, independent of um. There is

however a third option in which neither of these holds true, which is when

the RHS remains dependent on um. After some further analysis [18], this

leads to a notion of first and second class constraints.

A function R = R(p, q) is first class if it satisfies [R, ϕS] ≈ 0 for all of the

primary and secondary constraints ϕS. An equivalent way to express this is

[R, ϕS] = rijϕj since ϕj ≈ 0. The function is second class if this condition

does not hold for all constraints ϕS.

The notions of first and second class constraints are in fact especially

relevant to the quantisation of gravity. [16, Chp.7][19][20]

2.2 ADM Hamiltonian

In order to present Einstein’s theory of GR as a quantum (field) theory,

canonically quantised, we must first write it in the Hamiltonian formalism.

Using our usual methods as described in the Canonical Formulation section

above, we first write our action in the Lagrangian formalism, which we have

seen previously as:

SEH =

∫
d4x

√
−gR. (2.17)
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We then transform the Lagrangian
√
−gR according to H = pq̇ − L.

This poses a problem. In general, field theories in the Lagrangian or

Hamiltonian formalism treat space and time differently, since we need some

notion of time in order to define the velocity q̇. On the other hand, we know

that GR treats space and time on the same footing via the requirement

for diffeomorphism invariance. The solution most often used to sort out

this discrepancy is to split space and time and consider them separately,

making a 3+1 space which we will call M . The reason this works is that the

time component which we choose is left arbitrary, thereby avoiding setting a

preference for any particular direction of time. [12, p.40]

A hypersurface is an (n − 1)-dimensional manifold embedded in an

n-dimensional manifold. For example we usually picture the 2-dimensional

surface of a smooth kitchen table as embedded in the 3-dimensional space

of the kitchen, or kitchen space. The topology which we get as a result of

the splitting outlined above is M = 3Σ×R, where 3Σ is some 3-dimensional

hypersurface embedded in M , and R is some parameter t on the real line. In

our analogy, M is analogous to the kitchen space and 3Σ is the surface of the

table.

Now, each different value of t specifies a different foliation of the 3Σ

space, which can be denoted as 3Σt, and since 3Σ is left completely arbitrary

diffeomorphism invariance is in fact preserved. To help with picturing the

foliations, this is similar to a bunch of numbered papers being stacked on top

of each other forming a pile of papers, and then using the number parameter
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Figure 2.1: Shift and lapse functions shown explicitly in the context of a
foliation of hypersurfaces 3Σ. [1]

to distinguish one paper from another.

Although it is of arbitrary topology by construction, it is of course useful

and necessary to parametrise the 3Σ space. We do this by introducing some

unit vector nµ normal to 3Σ at every point. We then define a parameter T µ

such that

T µ = Nnµ +Nµ, (2.18)

where Nµ is tangent to the 3Σ surface, and it is called the shift vector. N

is called the lapse function. Furthermore, it is an obvious choice to make

nµ timelike, which makes 3Σ spacelike. See figure 2.1 for further clarity.
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We introduce a metric qab on the 3-space 3Σ,

qab = gab + nanb (2.19)

and the extrinsic curvature Kab [1, p.42],

Kab = qρaq
σ
b∇ρnσ (2.20)

=
1

2
Lnqab (2.21)

Sometimes the metric q and curvature K are called the first and second

fundamental form of 3Σ, respectively. Notice that the letter which we

have used to denote the 3Σ space metric q is the same as that used for

the generalized position q in eqn.2.2. This similarity is intentional, since

the metric plays the role of the generalized position in our (generalized)

Hamiltonian formulation.

From the structure which we have developed up to now we can construct

the velocity,

q̇ab = Ltqab = 2NKab +LNµqab (2.22)

and the conjugate momentum,

πab =
δL

q̇ab
=

√
q(Kab −Kqab) (2.23)
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as per the outline in Chapter 7 of [16]. Rewriting the EH Lagrangian in terms

of these variables, and then transforming it into the Hamiltonian formalism

we get

H =

∫
d3x

(
N(−

√
det qR + (

√
det q)−1(πabπab −

1

2
(πabqab)

2))− 2N bDaπ
a
b

)
(2.24)

where R is the intrinsic curvature of 3Σ, and Da is the covariant derivative

compatible with qab. Just like any other Hamiltonian formulation, here we

have conjugate variables q and π, which are related as follows:

{
qab, π

cd
}
= δcaδ

d
b δ(x− y). (2.25)

This should be recognizable from QM (although we have not yet quantised

our system), where as usual in the natural system of units we set ℏ = 1. For

completeness we include the full action of the ADM Hamiltonian formulation:

S =

∫
dt

∫
d3x

(
πabq̇

ab + (
√

det q
−1
N)(−qR + (πabπab −

1

2
(πabqab)

2))− 2N bDaπ
a
b )

)
(2.26)

This method of splitting space and time in such a way to get the Hamil-

tonian above was developed by Arnowitt, Deser and Misner. We therefore

call the resulting Hamiltonian the ADM Hamiltonian.

Now that we have found a generalized Hamiltonian the next step is to
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find the constraints of our theory. Having found all of the constraints, we

proceed to quantisation.

2.3 Loop Quantum Gravity

We now have many of the tools needed to quantise gravity, which brings us to

the end of the paper. Given more time, the next step is naturally to explore

the application of all of these tools to the quantisation of GR.

Areas left to be explored include the use of Ashtekar variables in the quan-

tisation of GR, especially using the loop formalism. From here we would go

on to study the research of Rovelli, Smolin, Gambini and Pullin, into the uses

and relevance of spin networks and spin foams, and including applications to

black holes. An exploration of the Wheeler-DeWitt equation is also in order,

including a look into the so called problem of time.
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