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Abstract

In this dissertation, we will review the moduli space of gauge theories in 3d, 4d and
5d with 8 supercharges and the engineering with brane system. We will also discuss
the higher form symmetry which generalise the symmetry to a topological operator
related with a arbitrary dimensional objective and not necessarily a group. With
non-invertible 1-form symmetry we can construct a collection of 3d N = 6 theories
with 12 supercharges whose moduli space are C4n/Γ, Γ is complex reflection group.
When Γ belongs to one of the infinite families of complex reflection group under
classification of Shephard-Todd, it can be identified with ABJ(M) theories; When Γ

is exceptional complex reflection group, it’s a new theory.
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1

Introduction

In the traditional way, we approach a QFT with Lagrangian and correlation func-
tions, both are local function of fields. This formulation is invalid for theories have
no Lagrangian, such as 6d N = (1, 0) theories and many-body system, or multiple
Lagrangian, such as duality, or the Lagrangian is too complicated to analysis. The
non-Lagrangian construction of supersymmetric theories from string/M/F theories
has highly enriched our understanding of QFTs in the past few decades. Moreover,
the local operators (or more precisely, mutual local) are not necessarily to be defined
as local functions of fields, and play a crucial role in duality. As we will analysis
in this article, the GNO monopole in 3d N = 4 theories is defined by boundary
condition and the t’Hooft-Wilson line in 4d N = 4 is theories defined on a path
integral.

A new language to describe symmetries has be purposed in [1], which gener-
alises the description of Noether and Landau. This new types of symmetries emerge
both in string theory and condensed matter theory, for example, the categorical
description of topological phase beyond Landau-Ginzburg theory. In this formula-
tion, symmetries are allowed to be 1. higher form symmetries depend on a manifold
topologically, 2. higher group symmetries when higher form symmetries in different
degrees affect each other, 3. non-invertible symmetries of non-invertible topological
defects and 4. subsystem symmetries depends on a manifold geometrically. All those
generalised symmetries can be spontaneously broken. The structure of symmetries
are no longer limited to groups, now it fits into the language of category theory more
naturally. Global symmetries give constrains in QFT dynamics. For example, the
gauging of global symmetries are obstructed by the well-known t’Hooft anomaly in
RG flow, and also in duality, the global symmetries (or spectrum of operators) are
required to be matched. Hence, the extended understanding of symmetries provides
us with a new tool to find new theories and duality.

Moduli space, on which holomorphic functions are expected to be identified with
chiral ring of gauge invariant operators, plays an important role in our analysis of
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supersymmetric field theories and their duality. Many tools we have developed to
analysis the moduli space in the past few years, such as Hilbert series[2, 3] counting
the invariants of moduli space, highest weight generating function[4] encoding the
Hilbert series in a more compact way and etc. It’s recommend to check A for readers
unfamiliar with those tools.

In 3d N = 4 theories we have used brane construction in Type IIB string
theory[5] to describe the moduli spaces successfully. We can further classify the
hyper-Kähler quotient with corresponding magnetic quiver of brane system. It’s a
huge convenience to represent the Higgs branch of 3d, 4d, 5d and 6d theories with 8

supercharges into magnetic quiver, which is better studied.

In chapter 2, we will provide a brief introduction of 4d N = 2, and also
3d N = 4 theories, which can be obtained through dimensional reduction preserving
all SUSY[6]. The structure of moduli space will be emphasised. We will also discuss
the emerging of higher form symmetry in the last section.

In chapter 3, we will focus on the Type IIB string theory approach to 3d N = 4

quiver gauge theories, and also the Hasse diagram technique to encode the symplectic
structure of moduli space (or equivalently the Englert-Brout-Higgs-Guralnik-Hagen-
Kibble mechanism).

In chapter 4, we will dive into the brane web and toric construction of 5d N = 1

theories[7][8] and analysis the strong coupling non-perturbative properties through
webs. The strong coupling non- trivial fixed point of 5d N = 1 is studied in [9,
10, 11]. Different gauge theories can be reached by different mass deformation of
the same SCFT, we call it "UV duality", which means a SCFT may have different
low energy description. There is a topological U(1)I symmetry with current J =

⋆trF ∧ F , instantons charged under this symmetry. The global symmetry can be
enhanced by instanton in UV fixed point, Genhanced ⊃ G× U(1)I . For example, the
SU(2) theories with Nf fundamental matters can has enhanced symmetries from
SO(2Nf ) → ENf+1, E1 = SU(2), E2 = SU(2) × U(1), E3 = SU(3) × SU(2), E2 =

SU(5), E6, E7, E8. We will focus on SU(Nc) gauge theory with Nf flavours and
Chern-Simons level k, and obeys the condition Nc − 1

2
Nf + 2− |k| ≥ 0[12].

In chapter 5, we study the novel 3d N = 6 theories beyond ABJ(M) model
[13, 14]. 4d N = 4 SYM with gauge algebra g has moduli space C3n/W(g). Com-
pactifying 4d N = 4 SYM with a twist along S1 to 3d, we can obtain theories
with N = 2, 4, 6[15, 16, 17]. For certain value of τYM , it’s stabliser in SL(2,Z)
may form a symmetry. However, the SL(2,Z) symmetry genericly change the spec-
trum of line operator, therefore, the symmetry that leave τYM invariant may no
longer be a symmetry. By gauging a 1-form symmetry, we can secure the spec-
trum, and result in a non-invertible symmetry. Moduli spaces of those 3d N = 6

theories have the form of C4n/Γ, where Γ is a finite subgroup of W(g) and also a
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complex reflection group[18, 19, 20]. When Γ belongs to one of the infinite families
of complex reflection group under classification of Shephard-Todd, it can be iden-
tified with ABJ(M) theories; When Γ is exceptional complex reflection group, we
have a new theory beyond ABJ(M).
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2

4d N = 2 and 3d N = 4

4d N = 2 theories has the superalgebra

{QI
α,Q

†J
β̇
} = δIJPµσ

µ

αβ̇
, {QI

α,QJ
β} = ϵIJϵαβZ, (2.1)

where I, J = 1, 2 labels the two collection of supersymmetry generators, Z is central
charge. We can obtain 3d N = 4 theories through dimensional reduction preserving
all SUSY[6]. The aim of this chapter is to provide a brief introduction of 4d N = 2

and 3d N = 4 theories, especially the structure of moduli space. We will also discuss
the emerging of higher form symmetry in the last section. This chapter will follow
the logic of [21], with some notation taken from [22, 23].

2.1 Electromagnetic duality

Let’s start with Maxwell theory. The free Maxwell equations in differential form are

dF = d ⋆ F = 0. (2.2)

Where (⋆F )µν = 1
2
ϵµνρσF

ρσ. It’s easy to see the equations are invariant under Hodge
dual:

F ↔ ⋆F. (2.3)

This operation is also called S-transformation. Define the electromagnetic charge
(n,m), where n is the electric charge under U(1), m is magnetic charge. Wick-
rotating to Euclidean space-time, we have the following relation:∫

S2

4π

e2
⋆ F = 2πn (enclose an electric particle),∫

S2

F = 2πm (enclose a Dirac monopole).

(2.4)
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The action is given by

1

4e2
FµνF

µν +
ϑ

32π2
Fµν ⋆ F

µν . (2.5)

The second term is a total derivative:

1

2
Fµν ⋆ F

µν = ∂µ(ϵ
µνρσAν∂ρAσ). (2.6)

This term has a topological contribution in quantum theory, which we will discuss
later. Define the complexcoupling as:

τ =
4πi

e2
+

ϑ

2π
. (2.7)

The theory is invariant, quantum mechanically, under ϑ → ϑ + 2π (In Yang-Mills
theory, it can be explained as instanton contribution is periodic in ϑ). This operation
is also called T-transformation.

S and T transformation generate a SL(2,Z) group on the space spanned by
(n,m):

S =

(
0 1

−1 0

)
, S

(
n

m

)
=

(
−m
n

)
, Sτ = −1

τ
,

T =

(
1 1

1 0

)
, T

(
n

m

)
=

(
n+m

m

)
, T τ = τ + 1.

(2.8)

Generally, the complex coupling transform under SL(2,Z) as τ → aτ+b
cτ+d

.

2.2 ’t Hooft-Polyakov monopole

’t Hooft-Polyakov monopole can be treated as a solitonic analogue to Dirac monopole
in non-Abelian theory. Let’s start with the classical setup of ’t Hooft-Polyakov
monopole. Consider a SU(N) theory with a scalar transforms in adjoint representa-
tion, the action is:

tr

∫
d4x

1

g2
(
1

2
FµνF

µν +DµΦD
µΦ). (2.9)

Trace taken over SU(N), Φ is N × N traceless Hermitean matrix. To find the
solution, we can apply the same trick as Bogomoln’yi [24]. First we set ∂0 = A0 = 0,
s.t, the solution is time-independent and pure magnetic. Then we written down the

8



monopole energy:

E = tr

∫
d3x

1

g2
(BiB

i +DiΦD
iΦ) (2.10)

= tr

∫
d3x

1

g2
[(Bi ∓DiΦ)

2 ± 2BiD
iΦ] (2.11)

≥ 2

g2

∫
d3x ∂itr(B

iΦ). (2.12)

The Bogomoln’yi bound satisfied when Bi = ∓DiΦ (it’s also called BPS (Bogo-
moln’yi–Prasad–Sommerfield) bound[24, 25], more generally). (A general inequity
of mass of a particle with electric n, magnetic m and flavor charge f required by
BPS bound is M ≥ |Z| = |n ·a+m · 2τa+ f ·µ|, where |2a| is the mass of W -boson,
µ is the mass term constant.) There’s no constraint for Φ, so we can pick the vev
we want. Here we set

⟨Φ⟩ =


Φ1

. . .

ΦN

 = Φ⃗ · H⃗, (2.13)

Φ⃗ is root vector with Φa > 0,∀a ̸= N and
N∑
a=0

Φa = 0. H⃗ is basis for SU(N) Cartan

subalgebra (simple root for SU(N) is α⃗i = (0, · · · , 1i−th,−1i+1−th, · · · , 0)). If Φi ̸=
Φj,∀i ̸= j, the gauge group broken into the maximal torus SU(N) → U(1)N−1. The
moduli space for vev given by SU(N)/U(1)N−1. The monopole is particle-like object
with co-dimension 1, and in our construction, it localised in space, so we can consider
the vev on the spatial boundary S2

∞, which defines a map S2
∞ → SU(N)/U(1)N−1.

This map can be classified by second fundamental group:

Π2(SU(N)/U(1)N−1) ∼= Π1(U(1)
N−1) ∼= ZN−1. (2.14)

From the vacuum condition DµΦa = 0 when Φ = ⟨Φ⟩, we can derive the expression
for Bi, then we will find the relation between magnetic charge and the winding
number (we omit the proof here):

m⃗ =

∫
S2
∞

d2xBi =
4πν⃗

g
, ν⃗ ∈ ZN−1. (2.15)

The energy bound of monopole in different topological sectors labelled by winding

number is E ≥ 2π
g2

N−1∑
a=1

νaΦa. More generally, m⃗ take value in dual of root lattice of

g modulo the Weyl group, or weight lattice of dual of g modulo the Weyl group.
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2.3 Vector multiplets and hypermultiplets

We use the N = 1 formulation to construct the multiplets for 4d N = 2 theory. An
N = 2 vector multiplet consist of a N = 1 vector multiplet and a N = 1 chiral
multiplet in adjoint representation of G.

↗↙ λα ↔ Aµ N = 1 vector multiplet

Φ ↔ λ̃α ↗↙ N = 1 chiral multiplet
(2.16)

An N = 2 hypermultiplet consist of a N = 1 chiral multiplet and a N = 1

anti-chiral multiplet in bi-fundamental representation of G.

↗↙ Q ↔ ψ N = 1 chiral multiplet

ψ̃† ↔ Q̃† ↗↙ N = 1 anti− chiral multiplet
(2.17)

We demand a symmetry does not commute with the supersymmetry generators,
the R-symmetry. Here we have SU(2)R symmetry among gaguinos λα, λ̃α and also
among Weyl fermions Q and Q̃†.

In 3d N = 4, we can get the ingredients of multiplets through dimensional
reduction. According to the branching rule:

[1, 0]so(4) → [1]su(2),

[0, 1]so(4) → [1]su(2),

[1, 1]so(4) → [2]su(2) ⊕ [0]su(2).

(2.18)

The hypermultiplets remain intact, and in vector multiplets, one component of
vector boson Aµ is fixed to be scalar.

2.4 Quiver gauge theory

Now we consider quiver representation of theories[26]. Start from unitary quiver with
4d N = 1 formulation, circle node with label N represents a U(N) gauge group,
square node with label k represents a SU(k) flavour group. Line with arrow from
node A to B means chiralmultiplet transform in anti-fundamental representation of
group of A and fundamental representation of group of B. When A = B, it’s a
vector multiplet (or hypermultiplet) transform in adjoint representation of group A.
The superpotential can be written as W ∼ trQ̃†ΦQ. In 4d N = 2 formulation, a
pair of lines with different arrow direction is replaced by a line without arrow means
hypermultiplet transform in bi-fundamental representation, and we assign a vector
multiplet to every circle node automatically.
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Φ

Q

Q̃†

4d N = 2 formulation

4d N = 1 formulation

2.5 Coulomb branch and Higgs branch

The terms of Coulomb branch and Higgs branch firstly appears in [6]. The classical
moduli space of supersymmetric vacua is the zero locus of the scalar potential. In
our case, the moduli space can be split into Coulomb branch, Higgs branch and
Mixed branch depending on how the symmetry are broken.

1. The Coulomb branch MC is where the scalars in vector multiplets take generic
vev in Cartan subalgebra h of gauge algebra g quotient by Weyl group W ,
while the scalars in hypermultiplets vanish. The flavour symmetry and SU(2)R
symmetry is preserved. The complex dimension of Coulomb branch is

dimC(MC) = rank(G). (2.19)

In general, Coulomb branch will receive quantum corrections, it’s required to
be a special Kähler manifold after q.c.

2. The Higgs branch MH is where the scalars in vector multiplets vanish, and
the scalars in hypermultiplets take vev with respect to D-term and F-term
equation, quotient by gauge group G. The flavour symmetry and SU(2)R

symmetry is broken. The complex dimension of Higgs branch is

dimC(MH) = 2(nH − nV ). (2.20)

Where nH is the number of hypermultiplets and nV is the number of vector
multiplets. Higgs branch is a hyper-Kähler manifold by definition. It doesn’t
receive any perturbative quantum correction due to the supersymmetric non-
renormalisation theorem[27].

3. The mixed branch MMixed is where scalars from vector multiplets and hy-
permultiplets both take generic non-vanishing vev. Gauge symmetry, flavour
symmetry and SU(2)R are broken. The Mixed branch is locally a metric prod-
uct of a special Kähler base and a hyper-Kähler fiber. The 4d N = 4 SYM
theories, which can be seen as 4d N = 2 SYM coupled with a adjoint hy-
permultiplet, have moduli space C3r/Γ parameterised by adjoint scalars from
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N = 2 vector multiplets and N = 2 adjoint hypermultiplets, this is an example
of mixed branch.

With our definition of MC ,MH ,MMixed, the whole moduli space can be written as
a union

M = MC ∪MH ∪MMixed. (2.21)

In 3d N = 4, the Higgs branch will be the same as in 4d N = 2, in fact, this
will also apply to 5d and 6d theories with 8 supercharges. The Coulomb branch in
3d is hyper-Kähler, there is a hidden ingredient after we perform the dimensional
reduction to 3d. Recall the electromagnetic duality we have mentioned before, we
say the vector Aµ in hypermultiplet is a 1-form gauge field. Then the field strength
F = dA is a 2-form. Now we perform the Hodge dual, and resulting dual field
strength FD ∼ ⋆F is a 1-from (in d-dim manifold, the Hodge dual of a p-form is a
(d-p)-form), which can be described by a 0-from (scalar) dual field. Now we have 2
scalars (from 4d N = 2 vector multiplet) + 1 scalar (from dimensional reduction of
vector) + 1 scalar (from the dual description of vector) to parameterise the Coulomb
branch, which result in a hyper-Kähler manifold[6, 28]. From [29, 27], when we
promote constants to background superfields:

1. Scalars in gauge coupling transform in ([0]+[2])×[0] representation of SU(2)L×
SU(2)R, which indicates that it can only appears in Coulomb branch. Hence,
Higgs branch is non-renormalised;

2. Scalars in mass term transform in [2]× [0] representation of SU(2)L×SU(2)R,
hence, only affected the metric on Coulomb branch;

3. Scalars in Fayet-Iliopoulos term of U(1) factors of gauge group transform [2]×
[0] of SU(2)L × SU(2)R, hence, only affected the metric on Higgs branch.

FI term associated with a hidden global symmetry which doesn’t manifest in La-
grangian. For every U(1) factors in gauge group, there is a topological conserved
current ⋆trF , which give rise to FI term. The conservation law of the non-Abelian
part of gauge group is violated by instantons [30]. All the U(1)s forms the Cartan
U(1)r of a non-Abelian hidden global symmetry.

2.6 Monopole operator

We can generalised the idea of ’t Hooft-Polyakov monopole to operator. Different
from point operators, which are defined as local function of fields, monopole operator
cannot be supported on an local point. The ’t Hooft monopole operator in 3d may
be created by dimensional reduction from 4d ’t Hooft line operator. The monopole
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operator Vm(x) can be defined by insert a Dirac monopole-like singularity at point
x with magnetic charge m, i.e, we can set the boundary condition as r → 0 to
be[31, 32]:

A± ∼ m

2
(±1− cosθ)dϕ,

σ ∼ m

2r
.

(2.22)

The Vm(x) we just defined is a half BPS bare monopole operator (preserving SUSY
of 3d N = 2), satisfying the BPS equation (d− iA)σ = − ⋆ F . A± is connection 1-
from in northern/southern patch of S2 enclosing x, m take value in weight lattice of
GNO (or Langlands) dual group of gauge group G[33], quotient by Weyl group, i.e,
Λw(ĝ)/W(ĝ), and satisfies the quantization condition in section 1.2. The monopole
operator may or may not charged under the topological symmetry group, the center
of the dual group Z(ĝ) = Λw(ĝ)/Λr(ĝ), which is the weight lattice quotient by root
lattice of dual group. Vm(x) can be dressed by constant background adjoint complex
scalar ϕ commute with m, with same SUSY preserved.

2.7 Monopole formula

[34] Bare and dressed monopole operators take vev on Coulomb branch of 3d N = 4

theory and contribute to chiral ring. The R-charge of bare BPS monopole Vm is

∆(m) = −
∑
α∈∆+

|α(m)|+ 1

2

n∑
i=1

∑
ρi∈Ri

|ρi(m)|. (2.23)

Where the first term summing over positive roots ∆+ of gauge group is contributed
by vector multiplets, and the second term summing over weights of matter fields
representation Ri under gauge group is contributed by hypermultiplets. In good
(∆ > 1

2
) or ugly (∆ = 1

2
) theory, the R-charge coincides with the conformal dimen-

sion. [35] The Hilbert series of Coulomb branch of 3d N = 4 good or ugly theory
given by monopole formula:

HS =
∑

m∈Λw(ĝ)/W(ĝ)

zJ(m)t∆(m)PG(t,m), (2.24)

where t is the fugacity for R-symmetry, z is the fugacity for topological symmetry,
J(m) is topological charge, PG is the dressing factor counting the Casimir invariants
of residual gauge group compatible with m,

PG(t,m) =
r∏

i=1

1

1− tdi(m)
, (2.25)
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where dm is the degree of Casimir invariants.

2.8 Higher form symmetry

Higher form symmetry, also known as generalised global symmetry[1], generalise
the concept of symmetry to a topological operator. In duality, the global symme-
tries of dual theories have to be matched, which including all higher form global
symmetry. Analysis for ’t Hooft-Wilson line operator is studied in [36]. Start with
ordinary symmetry, when the symmetry group is continuous, the conserved charge
Q is integral of Noether current d− 1-form j,

Q(M (d−1)) =

∮
M(d−1)

j, (2.26)

whereM (d−1) is a co-dimension 1 manifold. Consider symmetry transformation as an
topological operator Ug(M

(d−1)) where g is element of global symmetry. Ug(M
(d−1))

is defined for both continuous and discrete symmetry, Ug(M
(d−1)) ∼ eQ when con-

tinuous. The transformations satisfy associativity,

Ug1(M
(d−1))Ug2(M

(d−1)) = Ug1g2(M
(d−1)). (2.27)

The transformation we defined is topological, it changes only when the deformation
of M (d−1) crosses an operator V (P ), charged under the symmetry, on a space time
point P . When M (d−1) a closed d− 1 sphere surrounding P ,

Ug(S
d−1)Vi(P ) = Rj

i (g)Vj(P ). (2.28)

When M (d−1) is the entire space (which can be seen as an analog for ETCR),

Ug(M
(d−1))Vi(P ) = Rj

i (g)Vj(P )Ug(M
(d−1)), (2.29)

where Rj
i (g) is the representation of g acts on V . The ordinary symmetry is a 0-form

symmetry, means the charged operator V supported on a 0-dimensional point P .
For higher p-form symmetry, associated with d− p− 1-form Noether current when
continuous, we define the symmetry operator associated to a co-dimension p + 1

manifold
Ug1(M

(d−p−1))Ug2(M
(d−p−1)) = Ug1g2(M

(d−p−1)). (2.30)

The charged operator V under p-form symmetry supported on a p-dimensional man-
ifold C(p). Then we have the following relations, when M (d−1) a closed d − p − 1
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Figure 2.1: Abelian and non-Abelian symmetry demonstration

Figure 2.2: Ward identity / ETCR demonstration

sphere linking C,
Ug(S

d−p−1)V (C(p)) = g(V )V (C(p)), (2.31)

when M (d−p−1) is the entire space,

Ug(M
(d−p−1))V (C(p) = g(V )l(C

(p),M(d−p−1))V (C(p))Ug(M
(d−p−1)), (2.32)

where g(V ) is the representation of g acts on V , l(C(p),M (d−p−1)) is the linking
number between C(p) and M (d−p−1).

p-form symmetry also has the following properties:

1. When p ≥ 2, the symmetry is Abelian;

2. When p ≥ d− 2 and continuous, the symmetry can never be broken;
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3. When p ≥ d− 1 and discrete, the symmetry can never be broken;

In practice, when we have a theory with a simply connected gauge group G and
no matters transforming under Γ, subgroup of center of G, the theory has a 1-form
global symmetry Γ. (In standard model, there is an ambiguity to choose the true
gauge group since all the matters are blind to the center of U(1)× SU(2)× SU(3).
Here is the reason. ) In a 4d non-Abelian theory with gauge algebra g, a ’t Hooft-
Wilson line operator (defect) is labelled by charge (n,m) ∈ Λw(Λw(g) × ĝ). The
mutual locality of two lines imposed by m ·n′ −n ·m′ = 0 (mod k) to guarantee the
correlation function of line operators are local. Consider a SU(2) gauge theory, the
center Z(SU(2)) = Z2. We are able to further classify the theory by specifying the
the representation of line operators under 1-form symmetry Z2[36]:

1. SU(2) Spectrum includes Wilson line in fundamental representation of gauge
group SU(2) (n,m) = (1, 0). Due to mutual locality condition, the allowed
spectrum (n,m) satisfies n ∈ Z, m ∈ 2Z.

2. SO(3)+ Spectrum includes t’ Hooft line in fundamental representation of dual
gauge group SU(2) (n,m) = (1, 0), the allowed spectrum (n,m) satisfies n ∈
2Z, m ∈ Z.

3. SO(3)− Spectrum includes dyonic line (1, 1), the allowed spectrum (n,m) sat-
isfies n+m ∈ 2Z.

For a general SU(N) theory, it can be further classified into (SU(N)/Γ)i, Γ is
subgroup of center Z(SU(N)), i labels the spectrum of line operators. For example,
allowed spectrum of SU(4) with discrete subgroup Z4 and Z2 are

1. SU(4) n ∈ Z, m ∈ 4Z,

2. (SU(4)/Z2)0 2n+m ∈ 4Z,

3. (SU(4)/Z2)1 n ∈ 2Z, m ∈ 2Z,

4. (SU(4)/Z4)0 n ∈ 4Z, m ∈ Z,

5. (SU(4)/Z4)1 n−m ∈ 4Z,

6. (SU(4)/Z4)2 n+ 2m ∈ 4Z,

7. (SU(4)/Z4)3 n+m ∈ 4Z.

Under S and T transformation, spectrum changes follows the rule we introduced
in Section 2.1, hence, the theories change between each other. The duality orbits of
SU(2) and SU(4) are shown in Figure 2.3.
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Figure 2.3: Duality orbit of 4d N = 4 theories with g = su(2), su(4)[36]
.
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3

Brane construction and quiver

Supersymmetric field theory can be constructed from string/M theory with gravity
decoupled, which are genericly non-Lagrangian. This chapter we will focus on the
Type IIB string theory approach to 3d N = 4 quiver gauge theories.

3.1 Type IIB configuration

We use the same construction from[5]. The objects we need to engineer the 3dN = 4

quiver gauge theory are D3 branes, D5 branes and NS5 branes. We put the D3
branes along x0, x1, x2, D5 branes along x0, x1, x2, x7, x8, x9, and NS5 branes along
x0, x1, x2, x3, x4, x5.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
D3 • • • •
D5 • • • • • •
NS5 • • • • • •

Table 3.1: Spacetime direction of Type IIB configuration.

All the brane solutions in Type IIB are half-BPS states, which means preserve
half of the supersymmetry. For a D5 brane located at fixed x3, x4, x5, x6, to preserve
a half SUSY, we require the Killing spinor satisfies

ϵL = Γ0Γ1Γ2Γ7Γ8Γ9ϵR. (3.1)

For a NS5 brane located at fixed x6, x7, x8, x9, the Killing spinor satisfies

ϵL = Γ0Γ1Γ2Γ3Γ4Γ5ϵL, ϵR = −Γ0Γ1Γ2Γ3Γ4Γ5ϵR. (3.2)

With both D5 branes and NS5 branes as our setup, one quarter SUSY are preserved,
i.e, we have 32/4 = 8 supercharges. We can further derive from the above that if
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the Killing spinor satisfy the conditions for D5 branes and NS5 branes above, it will
automatically satisfy

ϵL = Γ0Γ1Γ2Γ6ϵR. (3.3)

This means we can import D3 branes, as describe at the beginning, without breaking
SUSY any further. The Lorentz group SO(1, 9) breaks into SO(1, 2) × SO(3)V ×
SO(3)H , with SO(3)V acts on m⃗ and SO(3)H acts on w⃗. The double cover of
SO(3)V and SO(3)H , which are SU(2)V and SU(2)V , will act as symmetry on
Coulomb branch and Higgs branch respectively. We denote (m⃗, zi) = (x3, x4, x5, x6)

and (tj, w⃗) = (x6, x7, x8, x9), as position of i-th D5 brane and j-th NS5 branes
respectively, and (x⃗k, y⃗k) as (m⃗, w⃗) position of k-th D3 brane. Instead of infinite D3
branes, here we will consider D3 branes ends on fivebranes, which has three infinite
directions (x0, x1, x2), and on finite direction x6. The worldvolume theories on finite
D3 branes are 2+1d theories, with R-symmetry exactly SU(2)V × SU(2)V . There
are three cases for D3 branes:

1. When ends on NS5-NS5, each D3 brane gives a U(1) vector multiplet, which
will be enhanced from U(1)n to U(n) via Chan-Paton factors when n D3 branes
coincide. The vector multiplets can be identified with open strings ends on
same or different D3 branes. The position condition to allow this happen is
y⃗ = w⃗1 = w⃗2, D3 is free to move along m⃗;

2. When ends on D5-D5, each D3 brane gives a massless hypermultiplet. The
position condition is x⃗ = m⃗1 = m⃗2, D3 is free to move along w⃗. Under mirror
symmetry the D5 branes convert into NS5 branes and massless hypermultiplets
convert to vector multiplets, this gives U(n) theory;

3. When ends on D5-NS5, no massless modes, no moduli, only one D3 brane is
allowed between each pair of D5 and NS5 branes. The position condition is
x⃗ = m⃗, y⃗ = w⃗.

We start with electric theory, i.e, D3 branes ends on D5 branes. The coupling
constant of D3 worldvolume theory stretch between i-th and i + 1-th NS5 branes
is 1

g2
∼ |ti − ti+1|. We call the theory after duality magnetic theory, with coupling

constant 1
g2

∼ |zj−zj+1|. In electric theory, the massless hypermultiplets arise when
the D3 branes on different side of NS5 brane meet, which can be identified as string
stretch between D3 branes on different sides. For example, k1 D3 branes on the
left and k2 D3 branes on the right give rise to hypermultiplets transform in [k1, k̄2]

representation of gauge group U(k1)×U(k2). Same logic applies for magnetic theory.
Also, when a single D3 brane "cross" fivebrane, massless hypermultiplets arise due
to string stretch between D3 brane and fivebrane.
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Now let’s look at the brane creation or annihilation process, the Hanany-Witten
transition. As proposed in [5], the linking number of fivebranes invariant under
transition. The linking number of A brane is LA = 1

2
(rB−lB)+(L−R), where L and

R is the number of D3 branes end on the left and right side of A brane respectively,
rB and lB is the number of B branes to the right and left side of A brane respectively,
(A,B) = (D5, NS5) or (NS5, D5). When a D5 brane go cross a NS5 brane, 1. if
a D3 connected in between, it annihilates; 2. If no D3 connected in between, a D3
brane is created between them after crossing. To find the corresponding quiver of
a brane system, first we perform the HW transition until no D3 branes attached to
D5 branes, then for each interval of two successive NS5 branes having n coinciding
D3 branes, there is a U(n) gauge node, and nodes of adjacent interval are connected
with link 1. The quiver theory we acquire will have

∏
i U(ni) gauge symmetry. For

each interval with k D5 branes, there is a square node with U(k) flavour symmetry.
We also need to decouple a U(1) factor either from gauge or flavour symmetry, due
to the translation symmetry (we can think of it as center of mass). Usually, like in
KG theory[37], we will decouple it from gauge symmetry when the rank of gauge
group ≥ 2.

3.2 Mirror symmetry

In our configuration of Type IIB, the mirror symmetry can be explained as symmetry
between D5 branes and NS5 branes, generated by S ∈ SL(2,Z) exchange the type
of D5 and NS5 branes and a rotation R change xi to xi + 4 and xi + 4 to −xi for
i = 3, 4, 5. Let take the configuration in Figure 3.1 as example. Take the vertical axis
as x3 and horizontal axis as x6, in this setup, NS5 brane is a infinite vertical line, the
D5 brane is point-like, and D3 is finite horizontal line. There is a D3 brane end on
two NS5 branes, and N D5 branes between the two NS5 branes. The worldvolume
theory corresponding to quiver (1)-[N]. Now we perform the RS transformation, in
the mirror image, the vertical axis change to x7 and horizontal axis remains x6.

We summarise the properties of mirror symmetry [28, 37] in 3d N = 4 theories
as follow:

Mirror
Complex Structure Complexified Kähler form

Coulomb branch MC Higgs branch MH

Mass term m⃗ ⇆ FI term w⃗
R-symmetry SU(2)L R-symmetry SU(2)R
Gauge symmetry G Global symmetry GF

Table 3.2: Mirror symmetry in 3d N = 4
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Figure 3.1: Mirror symmetry in practice: brane realisation of SQED AN quiver and
its dual aN quiver

3.3 Hasse diagram

Every symplectic singularity (hyper-Kähler cone) admits a finite stratification 0 =

X0 ⊂ X1 ⊂ · · · ⊂ Xn = X, s.t, the singular part ofXi+1 isXi and the normalisation
of any reducible components of Xi is a symplectic singularity[38]. The stratification
is not unique generally.

With the technique of Kraft-Procesi transition[39, 40], later generalised by quiver
subtraction[41], we can embed the symplectic structure of the moduli space of a
quiver gauge theory into a finite partially ordered set, also called Hasse diagram.
We call the node in Hasse diagram leaves and line transverse slices (also a symplectic
singularity). It’s conjectured in [42] that the slices for generic symplectic singularities
are the same as for nilpotent orbit closures. A more recent job to proceed quiver
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subtraction as affine Grassmannian is discussed in [43]. To construct Hasse diagram,
we start from a magnetic Q,

1. We find all subquiver D which are elementary slices (The elementary slice we
commonly use can be found in Appendix B.), align Q and D;

2. Subtract the ranks of D from D, and add U(1) nodes to add Q′, which matches
the balance of remaining nodes with Q.

3. Identify D as line of transverse slice between nodes of Q′ and Q′.

This agrees with the result from partial Higgsing[44, 45], or more precisely,
Kibbling[46, 47].

Let’s check for the following cases:

Higgs branch of SU(3) with N fundamental hypermultiplets

The gauge symmetry SU(3) can be potentially broken into SU(2)×U(1), SU(2), U(1)×
U(1), U(1), {1}. Firstly consider SU(3) → SU(2)× U(1), the branching rule is

1. [1, 0]SU(3) → q[1]SU(2) + q−2[0]SU(2);

2. [0, 1]SU(3) → q−1[1]SU(2) + q2[0]SU(2);

3. [1, 1]SU(3) → [2]SU(2) + (q[1]SU(2) + q−1[1]SU(2) + [0]SU(2)) acquire mass.

The W-bosons acquire mass by absorbing components of hypermultiplets in the
same representation, which cannot happen due to the U(1) charge. We can make
the observation that SU(3) → SU(2) is allowed. There will be

1. 1[0]SU(2) absorbed and (2(N −1)+1)[0]SU(2) becomes transverse (trivial under
SU(2)), forming a U(1) theory with N − 1 fundamental hypermultiplets;

2. [2]SU(2)+2(N−2)[1]SU(2) remaining form SU(2) theory with N−2 fundamental
hypermultiplets.

(We should be careful about the bi-fundamental when counting numbers in 4d N = 1

formulation.)

Higgs branch of SU(4) with N fundamental hypermultiplets

The same argument can be conducted for SU(4), first we consider SU(4) → SU(3),
the branching rule is

1. [1, 0, 0]SU(4) → [1, 0]SU(3) + [0, 0]SU(3);

2. [0, 0, 1]SU(4) → [0, 1]SU(3) + [0, 0]SU(3);
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Figure 3.2: Hasse diagram of SU(4) with N fundamental hypermultiplets

3. [1, 0, 1]SU(4) → [1, 1]SU(3) + ([1, 0]SU(3) + [0, 1]SU(3) + [0, 0]SU(3)) acquire mass.

The transverse and remaining theory are

1. 1[0]SU(3) absorbed and (2(N −1)+1)[0]SU(2) becomes transverse (trivial under
SU(3)), forming a U(1) theory with N − 1 fundamental hypermultiplets;

2. [1, 1]SU(3)+(N −2)[1, 0]SU(3)+(N −2)[0, 1]SU(3) remaining form SU(3) theory
with N − 2 fundamental hypermultiplets.

Compared with the Hasse diagram from quiver subtraction, we find agreement.
The above examples show the Hasse diagram of Higgs branch (or Coulomb branch

of magnetic theory), now we try to construct the Hasse diagram for full moduli space.
Invertible Hasse diagram [48]. First we define the inversion of Hasse diagram with
only ADE or nilpotent orbit closure type slices as inverting the partial ordering and
exchange the singularity type of ADE with nilpotent orbit closure with each other.
For example, the inverse of partial ordering d5 → a7 is A7 → D5. Once we have
the Hasse diagram of Higgs branch (or Coulomb branch), we can use inversion to
generate the diagram for the other branch, then for every node we add the inversion
of sub-diagram with higher partial order attach to the node, then identify all the
nodes can reach to a same node by subtracting same slices up to permutation.
Examples will be given in Section 4.6.
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4

5d brane webs and torics

The strong coupling non- trivial fixed point of 5d N = 1 is studied in [9, 10, 11].
Different gauge theories can be reached by different mass deformation of the same
SCFT, we call it "UV duality", which means a SCFT may have different low energy
description.

The prepotential description of 5d N = 1 theory is:

F =
1

2
m0hδijϕ

iϕj +
1

6
kdijkϕ

iϕjϕk +
1

12
(
∑

e∈Λr(g)

|e ·ϕ|3−
∑
i

∑
w∈Ri

|w ·ϕ+mi|3), (4.1)

where m0 =
1
g20

is the ground instanton mass, h is the Dynkin index of gauge group
G, k is the Chern-Simons (CS) level, dijk is the anomaly index of G, Λr(g) is the
root lattice of gauge algebra g, w is the weight of hypermultiplet in representation
Ri. The magnetic monopole string tension is T = ∂iF , the effective gauge coupling
is 1

g2
= ∂i∂jF , the cubic Chern-Simons coupling C = ∂i∂j∂kF ∈ Z. There is a

topological U(1)I symmetry with current J = ⋆trF ∧ F , instantons charged under
this symmetry. The global symmetry can be enhanced by instanton in UV fixed
point, Genhanced ⊃ G×U(1)I . For example, the SU(2) theories with Nf fundamental
matters can has enhanced symmetries from SO(2Nf ) → ENf+1, E1 = SU(2), E2 =

SU(2)× U(1), E3 = SU(3)× SU(2), E2 = SU(5), E6, E7, E8.
Here we will focus on theories which can be represented by brane webs, which are

SU(Nc) gauge theory with Nf flavours and Chern-Simons level k, and the condition
Nc − 1

2
Nf + 2− |k| ≥ 0[12].

4.1 Type IIB again

Now let’s see the brane web configuration[49]. As in the last chapter, we construct
brane web in Type IIB. We introduce (p, q) fivebrane as bound state of D5 brane
and NS5 brane, with tension Tp,q = |p + τq|TD5, where τ is the axiodilaton. The
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(1, 0) fivebrane is D5 brane, (0, 1) fivebrane is NS5 brane.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
(p, q) fivebrane • • • • • p q
(p, q) sevenbrane • • • • • • • •

Table 4.1: Spacetime direction of 5D brane web configuration

By setting τ = i, we can represent fivebrane with charge (p, q) by lines with slope
∆y/∆x = q/p. Vertices are allowed if charge neutral, i.e,

∑
pi =

∑
qi = 0. The

Lorentz group SO(1, 9) is broken into SO(1, 4)× SO(3), the double cover of SO(3)
forms the R-symmetry of 5d N = 1 theory, SU(2)R ∼= Sp(1)R. Brane web also has
SL(2,Z) symmetry on (x, y) plane imported by τ .

Figure 4.1: Spectrum and deformation of 5d brane web

Take brane web for pure SU(2) theory with θ = 0 as example, we can identify the
number # of local deformation with the dimension of Coulomb branch, the number
# of global deformation minus 3 (due to the positions of three external legs are
redundant to determine the shape) with the rank of global symmetry group, which
is the topological symmetry group U(1)I here, instanton operators charged under
this symmetry. We can also the read the spectrum by (as shown in figure 4.1, we
fixed τ = i)

1. identifying the fundamental string stretch between two D5 brane with W-
boson, whose mass is the length times string tension, mW = Ts∆y = ϕ;

2. Identifying the D string stretch between two NS5 brane with instanton, whose
mass is the length times string tension, mI = Ts∆x = ϕ + 1

g2
, where g is the

coupling constant;

3. Identifying the 3-brane wrapping on a face in web with monopole[49], the
monopole tension is given by the area of the face in unit of T 2

s , which is
Tm = T 2

s∆x∆y = ϕ(ϕ+ 1
g2
).

They are all BPS saturated states. (Spectrum with mixed charge can be found in
[50].) On Higgs branch ϕ = 0, we have massless boson and monopole. We set
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g → ∞ to reach the infinite coupling fixed point, where instanton also becomes
massless. The massless instanton turns on the Higgs branch by modifying the chiral
ring relation from S2 = 0 to S2 = I+I−. With ϕ = 1

g2
= 0, we have a conformal

field theory with enhanced E1 = SU(2) global symmetry.

On top of pure gauge theory, we add Nf external (p, q) fivebrane to introduce
matter fields, the charge of all external fivebrane determines the CS level, the quark
mass identified with the distance between external fivebrane and D5 brane. We
can also equivalently let each external semi-infinite (p, q) fivebrane ends on a (p, q)

sevenbranes with an SL(2,Z) monodromy Mp,q for τ ,

Mp,q =

(
1 + pq −p2

q2 1− pq

)
, τ → (1 + pq)τ − p2

q2τ + 1− pq
. (4.2)

A (p′, q′) brane crossing the monodromy becomes Mp,q(p
′, q′)T . An element g ∈

SL(2,Z) act on monodromy as gMp,qg
−1. Now we can move the branes with respect

to Hanany-Witten transition:

Figure 4.2: HW transition from F2 to F0

Figure 6. in [51]

We can identify the string stretch between color brane and flavour brane, and the
quark mass with length of the string times tension, mQ = |m± 1

2
|. We can perform

the integrating out by move external fivebranes to infinite, start from a theory with
Nf and k, we can result with N ′

f = Nf − n and k − n
2
≤ k′ ≤ k + n

2
[52][49][53].

A technique to reach the theories violate the bound Nc − 1
2
Nf + 2 − |k| ≥ 0 by

introducing and integrating out "pseudo" hypermultiplets was proposed in [54].
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Figure 4.3: Integrating out from SU(2) + 1F

Figure 4.4: Integrating out from SU(3) 1
2
+1F

SU(2) with 8 flavours is in fact a 6d theory (small E8 instanton)[55] compactified
on a circle S1, we can calculate the monodromy and lead to identity. All SU(N)0 +

(2N + 4)F theories are also KK theories compactified from 6d theory with/without
twist.

We can represent brane web with its dual toric diagram[50], exchanging the ver-
tices with polygons, faces with points, and (p, q) edge with ±(−q, p) line orthogonal
to it. The similar idea as we associated web with toric singularity. It’s can be
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proofed that the toric diagram has to be convex. We use two type of points in toric
diagram[56]: the solid node • and empty node ◦:

1. A line as • − • means a fivebrane ends on a sevenbrane;

2. A line as • − n ◦ −• means n+ 1 fivebranes ends on the same sevenbrane.

Figure 4.5: Web and its dual toric

The toric diagram was generalised in [8], with s-rule and r-rule required.

4.2 Generalised toric polygon

A generalised toric polygon on a 2d lattice consist of

1. a set of black vertices •, Vb = vi ∈ Z2,

2. a set of edges, E = Eα ∈ V (Z2), connect a subset of vertices,

3. a set of white vertices ◦, Vw = (∂E ∩ Z2) \ Vb,

specified by the following data:

1. λα = gcd(Eα), the greatest common divisor of two components of Eα as a Z2

vector;

2. Lα = Eα

λα
, the reduced vector of edges;

3. µα = (µα,1, · · · , µα,bα+1) ∈ P(λα), the partition of λα as the distribution of •
and ◦ on Eα, where bα is the number of internal • on Eα.

For example, the SU(3)1 + 6F theory at infinite coupling can be represented by

L = ((0,−1), (1, 0), (0, 1), (−1, 1), (−1, 0)),

λ = (4, 2, 3, 1, 1), µ = ((14), (2), (13), (1), (1))
(4.3)
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4.3 S-rule, r-rule

We require all GTPs of 5d theories to satisfy the s-rule, i.e. the rule to preserve the
SUSY. Here we follow the same rule from [8] which is a modification of [56]. We can
define a "Tile" as a convex polygon consist of E1, E2, E3, E4, with requirements

1. L2 = −L4 with λ2 ≥ λ4, λ4 can be zero, which means the tile is either trapezoid
or triangle;

2. µα = (λα), no • as internal point of edges;

3. define L̃ = (L1, L2, L3), λ̃ = (λ1, λ2−λ4, λ3), then, λ̃αλ̃β|det(λ̃αλ̃β)| ≥ λ̃2γ, ∀α ̸=
β ̸= γ.

The s-rule requires the GTPs can be tessellated with tiles. Also, an r-rule is
required, which means r, the number local deformation, the rank of the gauge theory
it represent, is no smaller than zero. We define the rank of a GTP as

r = Area+ 1− 1

2

∑
α

(µα)
2. (4.4)

Web with E = {(−N, 1), (N, 1), (0, 1), (0, 1)} obeys s-rule so long as N ≥ 2.

4.4 Magnetic quiver, from decomposing webs

Now we can move to the next step, [7] proposed to use maximal decomposition and
tropical intersection[57] to determine the magnetic quiver of the 5D theory

H3D(Brane Web) =
⋃

Max.Decops

C5D(Magnetic Quiver).

First, we decompose the web into subwebs maximally, each n coincided subweb rep-
resent a unitary n node of magnetic quiver. The intersection between two intersected
fivebranes with charge (p1, q1) and (p2, q2) is

I = det

∣∣∣∣∣p1 q1

p2 q2

∣∣∣∣∣ , (4.5)

the stable intersection between subwebs are the total intersection stable under a
shift. It will also receive correction ±1 if fivebranes from different subwebs end
on the same/different side of a same sevenbrane. Stable intersection represent the
number of links between corresponding nodes. Since the decomposition is not unique
genericly, we will get multiple magnetic quivers. Then, the overall moduli we have
is the union of cones we get from magnetic quivers, the intersection can also be
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calculated easily with web. However, the discrete contribution to the moduli space
of 5d N = 1 theories by glueball operators cannot be reflected by brane web, we
will see in the later examples.

Figure 4.6: Webs with same stable intersection 2

4.5 Tropical quiver, from coloring torics

[8] proposed a algorithm to determined magnetic quiver from GTPs by coloring the
edges, which is the dual algorithm as web decomposition. We define a color partition
nc∑
i

λiα ∈ P(λα), where nc is the number of colors. We required colored GTPs to

satisfy the following conditions:

1.
∑

α λ
i
αLα = 0, each color can form a sub-polygon Si by shifting;

2. Each Si is a mi = gcd(λi) times refined Minkowski sum (sum of vertices
with respect to sum of the partitions) of unique IMP (irreducible and minimal
polygon, minimal means cannot form a new GTP by turn a • into ◦, irreducible
means cannot be decompose into Minkowski sum of two GTPs) Ti, which
satisfies r-rule;

3. µα ≤
nc∑
i

µi
α, where µi

α is the partition of colored edge induced by λiα, all

sub-polygons fit into GTP simultaneously.

By add colored lines internally, a colored GTP can be further divided into polygons
with same color edges and parallelograms with same color parallel edge. The mixed
volume of Si, Sj is the total area of parallelograms with color i, j. We can iden-
tify each color with a node of mi, link between two nodes i and j receive positive
contribution from mixed volume of Si, Sj, and negative contribution from both i, j

colored edge, li,j = 1
mimj

(MV (Si, Sj)−
∑
α

µi
α·µj

α). Furthermore, the self-intersection

is li,i = 1
m2

i
(2Area(Si)−

∑
α

(µi
α)

2) = 2(r(Ti)−1), the number of loops (adjoint hyper-

multiplets) is 1 + li,i
2

. Also, each Eα contribute to a bα sequence of nodes with rank
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(mα,1, · · · ,mα,bα), where mα,k =
k∑
x

(−µα,x +
nc∑
i

µi
α,x). The link between neighbor

nodes in the sequence is one, no loops can be attached to the nodes. The link
between k-th sequence node of Eα and i color node is lα,i,k = 1

mi
(µi

α,k − µi
α,k+1).

4.6 SU(3) with single cone

Let’s take SU(3) 3
2
+ 5F and SU(3)1 + 6F at infinite coupling (UV theories) as

example, both cases has a single cone.
The colored GTP and web decomposition of SU(3) 3

2
+5F are shown in Figure.4.7.

We can write down the following partition and color partitions for colored GTP, and
calculate all the non-zero links:

Figure 4.7: Web and GTP of SU(3) 3
2
+5F: Wrong coloring, right coloring and web

decomposition

µ =
((
13
)
, (2),

(
13
)
, (1), (1)

)
,

µb=((2),−,(2),−,−), µg=(−,(1),(1),−,(1)), µr=((1),(1),−,(1),−)

mb= 2, mg= 1, mr= 1

m1 = (2, 1), m3 = (2, 1)

lb11 = lr11 = 1, lb31 = lg31 = 1, lgr = 1

(4.6)
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The tropical quiver we get is in 4.8. It’s easy to check the magnetic quiver de-
duced from web decomposition is the same as tropical, which agrees our statement.
Now we can construct Hasse diagram both from quiver subtraction, or web manip-
ulation or from Minkowski sum and tessellation of GTP (more details in [8]). The
Hasse diagram is a4, a6, {0}.

Figure 4.8: Tropical quiver of SU(3) 3
2
+ 5F

Figure 4.9: Hasse diagram of Higgs branch of SU(3) 3
2
+ 5F

Same logic applies to SU(3)1+6F are shown in Figure.4.10. The Hasse diagram
is d5, a7, {0}.

µ =
((
14
)
, (2),

(
13
)
, (1), (1)

)
,

µb=((3),−,(3),−,−), µg=((1),(1),−,(1),−), µr=(−,(1),−,−,(1))
mb= 3, mg= 1, mr= 1

m1 = (3, 2, 1), m3 = (2, 1)

lb11 = lg11 = 1, lb32 = 1, lbr = 1

(4.7)

The theories at finite coupling can also be represented by GTP with certain
tessellation, we will skip the discussion here. It’s not hard to see that the sub-web
and sub-GTP is indeed dual to each other. We can also, which will be much more
convenient when calculate the stable intersection and move between different phase
on web, label the subweb with colors as in [42].
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Figure 4.10: GTP coloring and web decomposition of SU(3)1 + 6F

Figure 4.11: Tropical quiver of SU(3)1 + 6F

Figure 4.12: Hasse diagram of Higgs branch of SU(3)1 + 6F
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Figure 4.13: Hasse diagram of full moduli space of SU(3) 3
2
+ 5F and SU(3)1 + 6F
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4.7 SU(3) with two cones

We take SU(3)0 +4F as example, there are two cones with empty intersection, and
we have a "Y"-shape Higgs branch Hasse diagram.

1.

µ = ((13) , (2), (12) , (1), (1)) ,

µb=((1),(2),−,(1),(1)), µg=((2),−,(2),−,−)

mb= 1, mg= 2

m1 = (2, 1), m3 = (1)

lb11 = lg11 = 1, lg31 = 1, lbg = 1

(4.8)

2.

µ = ((13) , (2), (12) , (1), (1)) ,

µb = ((12) , (1),−, (1),−), µg=(−,(1),(1),−,(1)), µr=((1),−,(1),−,−)

mb= 1, mg= 1, mr= 1

m1 = (1, 1), m3 = (1)

lb12 = lr11 = 1, lg31 = lr31 = 1, lbg = 2

(4.9)

Figure 4.14: Hasse diagram of Higgs branch of SU(3)0 + 4F
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Figure 4.15: GTP coloring and web decomposition of SU(3)0 + 4F

Figure 4.16: Tropical quiver of SU(3)0 + 4F
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4.8 Global symmetry conjecture

The i-th node i is balance if the excess [35]

ei =
∑

i,j connected

rj − 2ri, (4.10)

where ri is the rank of i-th node. Affine Dynkin diagram with dual Coxeter label is
balanced. BGS algorithm to compute the global symmetry was proposed in [58]:

1. When the quiver is framed, and has s balanced sub-Dynkin diagram each gives
a Lie group Gi and k unbalanced node, the global symmetry is

G = U(1)k ×
s∏
i

Gi; (4.11)

2. When the quiver is unframed:

(a) if there is a unbalanced node of rank one ungauge it and use the formula
for framed quiver;

(b) if there is no unbalance node of rank one, ungauge one from an unbalanced
node of any rank, then the global symmetry is

G = U(1)k−1 ×
s∏
i

Gi. (4.12)

4.9 Equations From SQCD

Here we use the F-term equations from 4d N = 2 to help us describe the classical
Higgs branch of 5d (N) = 1. For SU(Nc) + NfF, the equations can be written as
following[59]:

MM ′ = 0;

When Nf ≥ Nc :

∗BB̃ = ∗MNc ;

M ′B = B̃M ′ = 0;

B[i1i2...iNcBj1]j2...jNc = 0;

When Nf ≥ Nc + 1 :

M ∗B = ∗B̃M = 0,

(4.13)

where quarkQi
a is the scalar component of hypermultiplets in the form ofNc×Nf ma-

trix, mesonM i
j = Q̃a

jQ
i
a, M ′ =M− 1

Nc
Tr(M), baryon Bi1···iNc = ϵa1···aNcQi1

a1
· · ·QiNc

aNc
.
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The corresponding algebraic varieties of brane web follow the above equations cor-
rectly. In the cases we will discuss later, some of the equations may be converted to
nilpotent equations. For Nf < Nc, there is only mesonic branch, no baryon exists.
The chiral ring of Higgs branch is

C =
C[M ]

⟨MM ′⟩
. (4.14)

MM ′ → M2 as we change Nc to ∞, however, the ring structure is invariant. Note
that M2 = 0 implies (trM)Nf+1 = 0. The glueball operator [60] and the instanton
operator will give correction to the equations, whose analysis is generally non-trivial.
With the techniques we learnt so far, we can try to written down the vacuum
equation when infinite coupling. It’s easy to be done when the Higgs branch is
a reduced instanton moduli space, but generally, it’s challenging.

4.10 Examples

4.10.1 SU(2)

When the gauge group is SU(2) there is no CS level, but the theory still have two
different phases, denoted by E1 (θ = 0) and Ê1 (θ = π).

Ê1

At both finite and infinite coupling, the Higgs branch of Ê1 is the reduced moduli
space one-U(1) instanton. In ADHM construction, we have two possible reduced
moduli space for one-U(1) instanton, trivial or Z2, the right answer here is the
latter. We can write down the chiral ring relation as S2 = 0, where S is the glueball
operator bilinear in gaugino. There is no enhancement for global symmetry U(1)I .

E1

At finite coupling, the Higgs branch of E1 is also Z2. At infinite coupling, the global
symmetry of E1 is enhanced from U(1)I to E1 = SU(2), the Higgs branch is the
same as reduced one-E1 instanton moduli space C2/Z2, the magnetic quiver is affine
A1. We can write down the chiral ring relation as S2 = I+I−, and the Hilbert series

HS[E1]∞ =
1− t4

(1− t2)(1− qt2)(1− q−1t2)
, (4.15)

where t is fugacity for SU(2)R symmetry, q is the fugacity for U(1)I which is iden-
tified with the Cartan of global symmetry SU(2). The 1

1−t2
factor is generated by

S. I+, I− and S form a triplet of SU(2).
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4.10.2 SU(2) + 1F

From the brane web or toric, when finite coupling, the web is non-decomposible and
toric is non-colorable, we have discrete moduli space defined byM2 = S2 = SM = 0,
which is Z2∪Z2 with empty intersection. At infinite coupling, we can read the cone
of moduli space from magnetic quiver as a1, and also a Z2 with empty intersection,
determined by equation S2 = I+I−, (S −M)2 = (S −M)S = 0. The enhanced
global symmetry is E2 = SU(2)× U(1). The Hilbert series is

HS[E2]∞ =
1− t4

(1− t2)(1− qt2)(1− q−1t2)
+ t2. (4.16)

4.10.3 SU(2) + 2F

Calculate from web or toric, the classical Higgs branch of SU(2)+2F is composed of
two cones: a mesonic cone and a baryonic cone. At finite coupling, we have equation
M2 = BB̃, M2 = 1

2
MtrM, S2 = B(M − 1

2
trM) = SB = SM = 0. When B take

non-vanishing vev, the baryonic symmetry SU(2)R manifest, we are on baryonic
cone. When B vanishing, it’s mesonic cone. The two cones has empty intersection.
the Higgs branch is a1 ∪ a1 ∪ Z2 with a1 ∩ a1 = a1 ∩ Z2 = 0. At infinite coupling,
mesonic branch receives further correction from instanton operator, changes from
a1 to a2. Now the Higgs branch is a1 ∪ a2 ∪Z2 with a1 ∩ a2 = a1 ∩Z2 = a2 ∩Z2 = 0.
The enhanced global symmetry is E3 = SU(3)× SU(2). The Hilbert series is

HS[E3]∞ =
1− t4

(1− t2)(1− µ2t2)(1− qµt2)(1− q−1µt2)
+

1

1− ν2t2
− 1, (4.17)

where µ is the fugacity of mesonic symmetry SU(2)M as a subgroup of SU(3), ν is
fugacity of baryonic symmetry SU(2)B.

More cases of SU(2) are studied in [61].

4.10.4 SU(N)0

At finite coupling, we have moduli space ZN defined by SN = 0. At infinite coupling,
with correction from instanton operators, the moduli space is C2/ZN defined by
SN = I+I−.

4.10.5 SU(N) 1
2
+ 1F

At finite coupling, we have moduli space Z2∪ZN with empty intersection, defined by
M2 = SN = 0. At infinite coupling, with correction from instanton operators, the
moduli space is C2/ZN ∪Z2 with empty intersection, defined by SN = I+I−, M2 =

SM = 0.
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4.10.6 SU(N)1 + 2F

At finite coupling, the Higgs branch is C/ZN ∪ C/Z2 ∪ Z2 with empty intersection,
defined by equations M2 = BB̃, M2 = 1

2
MtrM, SN = B(M − 1

2
trM) = SB =

SM = 0. At infinite coupling, both the mesonic cone and baryonic cone receive
correction from instanton operators.

4.10.7 SU(N)N
2
+NF

For Nc > 2, the baryonic branch receives correction from instanton too, as shown in
Figure 4.17. The center node of mensonic branch magnetic quiver connected with
a new U(1) node with bond 2. The two nodes of baryonic branch magnetic quiver
connected with a new U(1) node with bond 1, the bond between the two nodes 1
less.

SU(N) theories which can be categorised into "Exceptional Sequences" are stud-
ied in [62].

4.11 Geometric classification

From geometric engineering perspective [63, 51], we can classify families of 5D the-
ories start form a father theory which is a 5d KK theory related to 6d theory on
S1. Consider M-theory compactified on a smooth non-compact Calabi-Yau three-
fold CY3, in the singular limit when all Kähler parameters vanishing, we have a 5d

SCFT. The Calabi-Yau threefold associated to the 5d SCFT can be described as a
local neighborhood of a union of Kähler surfaces

⋃r
i Si ∈ CY3 glued together, where

r is the rank of gauge group in 5d. With certain gluing rule we can construct the
family of 5d theories from 5d SCFT.

For SU(3) theories with only fundamental matters, we have SU(3)0 + 10F,
SU(3)− 3

2
+ 9F, SU(3)4 + 6F, SU(3)9 as father theories.
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Figure 4.17: Web and magnetic quiver of SU(N)N
2
+NF
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5

Moduli space of 3D N = 6 theories

4d N = 4 SYM with gauge algebra g has moduli space C3n/W(g). Compactifying
4d N = 4 SYM with a twist along S1 to 3d, we can obtain theories with N =

2, 4, 6[15, 16, 17]. For certain value of τYM , it’s stabliser in SL(2,Z) may form a
symmetry. However, the SL(2,Z) symmetry genericly change the spectrum of line
operator, as we have stated in Section 2.8, therefore, the symmetry that leave τYM

invariant may no longer be a symmetry. By gauging a 1-form symmetry, we can
secure the spectrum, and result in a non-invertible symmetry. Moduli spaces of
those 3d N = 6 theories have the form of C4n/Γ, where Γ is a finite subgroup of
W(g) and also a complex reflection group[18, 19, 20]. When Γ belongs to one of the
infinite families of complex reflection group under classification of Shephard-Todd,
it can be identified with ABJ(M) theories; When Γ is exceptional complex reflection
group, we have a new theory.

5.1 Non-invertible symmetry

The topological operation we import to secure the symmetry is σ: gauging the one
form and ι: stacking with an invertible phase, for more discussion of non-invertible
defect please check[64, 65, 66, 67, 68, 69, 70]. The origin duality orbit only hold
up to a local counterterm imported by topological operation, we can further label
the theories according to the counterterm. In su(2) theories, the duality orbit is
modified to Figure 5.1.

5.2 Twisted compactification

Denote supercharges of 4d N = 4 SYM by Qaα, Q̄
a
α̇, with α = 1, 2 and a = 1, · · · , 4,

transform in (2,4) and (2̄, 4̄) of SO(1, 3) × SO(6)R respectively. The R-symmetry
SO(6)R ∼= SU(4)R.
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Figure 5.1: Topological operation is blue, S,T transformation is red. σ, ι generate a
SL(2,Z2) group.

5.2.1 S-duality twist

The S duality group SL(2,Z), under which the Yang-Mills coupling τ → aτ+b
cτ+d

,
can be associated with a U(1) bundle with transition function eiv in which v =

arg(cτ + d)[71]. Qaα, Q̄
a
α̇ have charge ∓1

2
under U(1) modular transformation:

γ : Qaα → e−i v
2Qaα, Q̄

a
α̇ → ei

v
2 Q̄a

α̇. (5.1)

The S-duality twist acts on supercharges non-trivially, therefore, the SUSY is
broken. To recover the SUSY we want, we need R-symmetry twist to compensate
the additional phase[72, 73, 74].

5.2.2 R-symmetry twist

R-symmetry twist introduce additional phase for charged operators. Here we will
use the basis of SU(4), s.t, the R-twist takes the form

r =


eiϕ1

eiϕ2

eiϕ3

eiϕ4

 ∈ SU(4). (5.2)

It acts on supercharges as

r : Qaα → eiϕaQaα, Q̄
a
α̇ → e−iϕaQ̄a

α̇,

4∑
i=1

ϕi = 0. (5.3)
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5.3 S-R twist with dressing

By choosing ϕ1 = ϕ2 = ϕ3 = v
2
, ϕ4 = −3v

2
, we preserve 3

4
of 16 supercharges, so

result in 3d N = 6 theory. With different choice of γ, The overall S-R twist can be
elements from Zk, k = 3, 4, 6.

As mentioned above, we need to dress γ with topological operation σ, ι to make it
a non-invertible symmetry we want. A good news is that the action on supercharges
is unchanged after dressing, which makes the analysis easy to proceed.

Now we needs to consider the how the invariant polynomials of W(g) transform
under the twist, for simply-laced g, fn → e2nπ/kfn, fn is homogeneous invariant
polynomial of W(g) with degree n. By counting the remaining invariants, we can
easily identify the complex reflection group Γ. For example, consider 4d SYM with
SU(N)0, the invariant of W(suN) have degree 2, 3, · · · , N . for k = 3, the remaining
degrees are 3, 6, · · · , which coincide with invariant degrees of G(k, 1, n), where n =

[N/k] denote the rank. It’s proposed in [75] that the theory is exactly U(n+ r)k ×
U(n)−k ABJ(M) theory, where N = nk + r and r < k[13, 14]. We are interested in
novel theories cannot given by ABJ(M), the simplest example is obtained by twist
compactifying so8 with k = 3, the moduli space is C8/G4, where G4 is the smallest
exceptional Shephard-Todd group. e6, C8/G25 with k = 3, C8/G8 with k = 4, C8/G5

with k = 6. e7, C8/G26 with k = 3, 6, C8/G8 with k = 4. More about complex
reflection group can be found in Appendix F.

5.4 Orbifold C4n/Γ

5.4.1 ADE revisit

The ADE singularity, as known as local K-3 singularity, Kleinian singularity and
Du Val singularity, lies on the origin of C2/Γ, where Γ is a finite subgroup of SU(2).
Subgroups of SU(2) can be classified into ADE type.

1. An: cyclic group Zn+1;

2. Dn: binary dihedral group D2n−4 ⋉ Z2;

3. E6: binary tetrahedral group T ⋉ Z2;

4. E7: binary octahedral group O ⋉ Z2;

5. E8: binary icosahedral group I ⋉ Z2.

The followings are the action of Γ on C2, defining equation of C2/Γ and unrefined
Hilbert series[2]:
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Type Generator Defining equation HS (unrefined)

An

〈(
wn 0

0 w−1
n

)〉
uv = wn+1 1+tn+1

(1−t2)(1−tn+1)

Dn

〈(
w2n 0

0 w−1
2n

)
,

(
0 i

i 0

)〉
u2 + v2w = wn−1 1+t2n−2

(1−t4)(1−t2n−4)

E6 ⟨S, T ⟩ u2 + v3 + w4 = 0 1−t4+t8

1−t4−t6+t10

E7 ⟨S, U⟩ u2 + v3 + vw3 = 0 1−t6+t12

1−t6−t8+t14

E8 ⟨S, T, V ⟩ u2 + v3 + w5 = 0 1+t2−t6−t8−t10+t14+t16

1+t2−t6−t8−t10−t12+t16+t18

S =
1

2

(
−1 + i −1 + i

1 + i −1− i

)
, T =

(
i 0

0 −i

)
,

U =
1√
2

(
1 + i 0

0 1− i

)
, V =

(
i
2

1−
√
5

4
− i1+

√
5

4

−1−
√
5

4
− i1+

√
5

4
− i

2

)
.

(5.4)

5.4.2 Orbifolding on C4

For our construction of C4, we don’t expected it to be hyper-Kähler, since the
action doesn’t satisfy the Calabi-Yau relation: det = 1 in general. We preserve the
SU(4) symmetry of C4 when orbifolding, which can be identified as the R-symmetry
of 3d N = 6 theories above. (For the classification of orbifolding C4 with action as
a finite subgroup of SU(4), please see [76])

The Molien formula is

HS =
1

|G|
∑
g∈G

1∏4
i 1n − gti

, (5.5)

n is the rank of G, the product times over all fugacities of SU(4). Then we the
fugacity map t1 → xt, t2 → y

x
t, t3 → z

y
t, t4 → 1

z
t.

C4/Zn

Orbifold HS(Unrefined) PL HWG
C4/Z2

1+6t2+t4

(1−t2)4
[2, 0, 0]t2 − [0, 2, 0]t4 + [1, 1, 1]t6 +

O(t8)

PE[µ2
1t

2]

C4/Z3
1+16t3+10t6

(1−t3)4
[3, 0, 0]t3 − [2, 2, 0]t6 + ([1, 1, 2] +

[1, 4, 0]+[2, 2, 1]+[4, 1, 1])t9+O(t12)

PE[µ3
1t

2]

C4/Z4
1+31t4+31t8+t12

(1−t4)4
[4, 0, 0]t4 − ([0, 4, 0] + [4, 2, 0])t8 +

([1, 1, 3]+[1, 4, 1]+[2, 2, 2]+[2, 5, 0]+

[3, 3, 1]+[4, 1, 2]+[4, 4, 0]+[5, 2, 1]+

[7, 1, 1])t12 +O(t16)

PE[µ4
1t

2]

C4/Z5
1+52t5+68t10+4t15

(1−t5)4
[5, 0, 0]t5 − ([2, 4, 0] + [6, 2, 0])t10 +

O(t15)

PE[µ5
1t

2]
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5.4.3 C4/Zn (C4/G(n, 1, 1), C4/G(np, p, 1))

The orbifolding action we required of Zn on C4 is generated by w14, w = ei2π/n. This
action, which preserves SU(4), has different form compared with A-type singularity
on C2,

(
w 0
0 w−1

)
, which breaks the SU(2) symmetry into U(1).

We can calculate the Hilbert series for C4/Zn using Molien formula:

HS =
n−1∑
i=0

1

(1− wit1)(1− wit2)(1− wit3)(1− wit4)

=
n−1∑
i=0

∞∑
j1,j2,j3,j4=0

wi(j1+j2+j3+j4)tj11 t
j2
2 t

j3
3 t

j4
4

=
∑

j1+j2+j3+j4=nm

1− wn(j1+j2+j3+j4)

1− wj1+j2+j3+j4
tj11 t

j2
2 t

j3
3 t

j4
4

=
∞∑

m=0

Symnm[t1 + t2 + t3 + t4]

(5.6)

using the the fugacity map t1 → xt, t2 → y
x
t, t3 → z

y
t, t4 → 1

z
t to identifying the

fundamental representation,

→
∞∑

m=0

Symnm[1, 0, 0]su(4)t
nm =

∞∑
m=0

[nm, 0, 0]su(4)t
nm. (5.7)

The HWG is:

HWG =
∞∑

m=0

µnm
1 tnm = PE[µn

1 t
n]. (5.8)

Now we use the PL to read the generators and relations:

PL = [n, 0, 0]tn +

[n
2
]∑

i=1

[2n− 4i, 2i, 0]t2n +O(t3n). (5.9)

It remains the same form for Cm/Zn

PL = [n, 0, · · · ]SU(m)t
n +

[n
2
]∑

i=1

[2n− 4i, 2i, 0, · · · ]SU(m)t
2n +O(t3n). (5.10)

The generators transform in the n-th symmetric product of fundamental representa-
tion, whose elements can be identified with monomials of degree n, we denote it as
Mi1,··· ,in = xi1 · · ·xin , Mi1,··· ,in = M(i1,··· ,in). The relations can be identified with the
collection of Young Tableaux with partition (2n−2i, 12i). The generating function of
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relations of Cm/Zn , for all m, can be written as

∞∑
n=2

[n/2]∑
i=1

µ2n−4i
1 µ2i

2 t
2n =

∞∑
n′=0

n′∑
i=1

µ
2(2n′)−4i
1 µ2i

2 t
2n′

+
∞∑

n′=0

n′∑
i=1

µ
2(2n′+1)−4i
1 µ2i

2 t
2n′+1

= PE[µ2
1t+ µ2

2t
2]µ2

2t
2.

(5.11)

Cm/Zn is hyper-Kähler only when n is divisor ofm, where the HS is palindromic.
C4/Z3 can be realised by 4d su3 theory and so6 theory with k = 3, C4/Z4 can be
realised by 4d su4 theory and so6 theory with k = 4, C4/Z6 can be realised by 4d

su6 theory, so8 theory and so10 theory with k = 6.

5.4.4 C8/G(3, 1, 2)

G(3, 1, 2) is a novel complex reflection group with order 18 and rank 2. The braid
relation of group generators are r2 = s3 = 1, rsrs = srsr.

The Hilbert series of C8/G(3, 1, 2) is:

HS (unrefined) =(1 + 16t3 + 216t6 + 776t9 + 1636t12 + 1676t15 + 1116t18

+ 340t21 + 55t24)/((1− t3)4(1 + t6)4).
(5.12)

The PL of HS is:

PL =[3, 0, 0]t3 + [6, 0, 0]t6 − ([0, 3, 1] + [3, 0, 2] + [3, 3, 0] + [5, 2, 0])t9

+ ([0, 1, 2] + [0, 3, 2] + [1, 1, 3] + [1, 2, 1] + [1, 4, 1] + [2, 1, 0]

+ [2, 2, 2] + [2, 3, 0] + [2, 5, 0] + [3, 0, 3] + [3, 1, 1] + [3, 3, 1]

+ [4, 1, 2] + [5, 0, 1] + [5, 2, 1]− [0, 6, 0]− [4, 4, 0]− [8, 2, 0])t12 +O(t15).

(5.13)

The HWG is:

HWG = PE[µ3
1t

3+µ6
2t

12+µ6
1t

6)](1+µ2
2µ

2
1t

6+µ3
2µ

3
1t

9+µ2µ
7
1t

9+µ4
2µ

4
1t

12+µ5
2µ

5
1t

15).

(5.14)

5.4.5 C8/G(3, 3, 2) (C4/D3, C4/S3)

G(3, 3, 2) has order 6 and rank 2. It is isomorphic to Symmetric group S3 and
Dihedral group D3. S3 can be represented by permutation of coordinates on C3,
which is 3-dim reducible with invariant subspace spanned by x+y+z, we can easily
obtain the 2-dim reducible representation by projection, generated by r = ( −1 −1

1 0 )

and s =
(

0 −1
−1 0

)
, with respect to the relation {r2 = s2 = (sr)3 = 1} the set

of generators is not unique. by choosing sr as one of the fundamental generators,
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we get the generators and relation of D3, which is {r2 = (sr)3 = (sr2)2 = 1},
again, the generators are not unique, we can choose the other set of generators
so long as the relation holds. More generally, the relation of generators of Sn is
{r21 = · · · = r2n−1 = (r1r2)

n = · · · = (rn−2rn−1)
n = 1}, the relation of generators of

Dn is {r2 = sn = (rs)2 = 1}. The Hilbert series is independent of the choice of
generator basis.

The Hilbert series of C8/G(3, 3, 2) is:

HS (unrefined) =(1 + 6t2 + 16t3 + 21t4 + 36t5 + 56t6 + 36t7 + 21t8

+ 16t9 + 6t10 + t12)/((1− t2)4(1− t3)4).
(5.15)

The PL of HS is:

PL = [2, 0, 0]t2 + [3, 0, 0]t3 − [1, 2, 0]t5 − ([0, 0, 2] + [2, 2, 0])t6 +O(t7). (5.16)

The HWG is:

HWG = PE[µ2
1t

2 + µ3
1t

3 + µ2
2t

4 + µ2µ
3
1t

5 − µ2
2µ

6
1t

10]. (5.17)

From the palindromic Hilbert series we can see C8/G(3, 3, 2) is hyper-Kähler.

5.4.6 C8/G4

The calculation of C8/G4 as follow:

HS (unrefined) =(1 + 31t4 + 130t6 + 391t8 + 970t10 + 1766t12 + 2310t14

+ 2595t16 + 2410t18 + 1695t20 + 920t22 + 445t24

+ 140t26 + 20t28)/((1− t6)4(1− t4)4).

(5.18)

PL =[4, 0, 0]t4 + ([0, 3, 0] + [6, 0, 0])t6 − [0, 4, 0]t8 − ([1, 0, 3]

+ [2, 1, 2] + [2, 4, 0] + [3, 2, 1] + [4, 3, 0] + [6, 2, 0])t10 +O(t12).
(5.19)

HWG = PE[µ4
1t

4 + (µ6
1 + µ3

2)t
6](1 + µ4

1µ
2
2t

8 + µ8
1µ2t

10). (5.20)

However, in PL the [0, 3, 0]t6 is not what we wanted. When a group act on a vector
space V , the invariants of degree n is in the ring Symn[V ∗], so it should be stay
in Symn[1, 0, 0] = [n, 0, 0] representation of SU(4) intuitively. The emergency of
[0, 3, 0] remains a problem to us. Either we should modify the Molien sum and
fugacity map at the beginning or we will have a more exotic explanation of it.
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6

Conclusion and Discussion

Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.
– Ludwig Wittgenstein

In this article, we reviewed the brane construction of 3d/N = 4 theories and
the corresponding magnetic quiver. We analysis the Higgs branch, especially the
non-perturbative correction when infinite coupling, in 5d N = 1 theories with two
dual algorithm: web decomposition and toric coloring, and we represent the cones
in the language of magnetic quivers. We use SR twist and topological operation
related with non-invertible defect in 4d N = 4 theories to construct a collection of
new 3d N = 6 theories which are out of the scope of ABJ(M) model.

Moduli spaces as a orbifold of complex reflection groups also appear when S-
folding 6d N = 2 theories[77]. The complex reflection group provide us a new
collection of theories and duality, many new results are waiting to be explored.

Review and outlook of the generalised global symmetry can be found in [78].
With the technique of manipulating generalised symmetries, we can construct more
theories which are prohibited by the observation with only ordinary symmetry, which
brings us one step closer to the core of non-perturbative and non-Lagrangian fea-
tures of quantum world.
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Appendix A

Useful math tool

A.1 Invariants and moduli space

More details of the definitions in this section can be found in [79, 80].

A.1.1 With Gröbner elimination

Gröbner elimination provides a systemic way to analysis the invariants and relations.
In practice, with a set of fundamental generators, A = {f1(x1, · · · , xn), · · · , fm(x1, · · · , xn)},
we extend A to B = {g1 = f1(x1, · · · , xn), · · · , gn = fn(x1, · · · , xn)}. Then elim-
inate (x1, · · · , xn) from B, we can get the set of relations in terms of generators.
For example, for A-type singularity on C2, the generators are u = xn, v = yn of
degree n, w = xy of degree 2, eliminate x, y from generators we get the relation
uv = wn of degree 2n. The complication to get the relations increases rapidly with
more generators.

Hilbert Basis Theorem. Every ideal of polynomial ring K[X] is finitely generated.

Lexicographic Order. Given two polynomials xa and xb, we say xa >lex x
b if the

left most entry of a − b ∈ Zn is positive. For example, in K[x, y, z], x5y2z2 >lex

x2y6z7, yz3 >lex z
4.

Division Algorithm. Let F = (f1, f2, ..., fm) be an ordered set (m − tuple) of
polynomials in K[X], then every polynomial f in K[X] can be written as f =

a1f1 + a2f2 + ...+ amfm + r, where ai, r ∈ K[X]. We denote r as f̄F .

Gröbner Basis. Fix a monomial order <, G = g1, g2, ..., gm ⊂ I is a Gröbner Basis
of ideal I if for ∀f ∈ I, ∃ i, s.t, the leading term of f under order > is divisible by
leading term of gi. A Gröbner Basis of ideal I is indeed a basis of I, i.e, I =< G >.
G is reduced, if ∀g ∈ G, the leading monomial of g only appear in g. G is monic if G is
reduced and the coefficient of leading monomial is 1. Monic reduced Gröbner Basis

is unique for each I.
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Elimination Ideal. The i-th elimination ideal of ideal I in K[x1, ..., xn] is Ii =

I ∩K[xi+1, ..., xn].
Elimination Theorem. Fix order >, if G is a Gröbner Basis for I, then Gi =

G ∩K[xi+1, ..., xn] is a Gröbner Basis for Ii.

A.1.2 With Hilbert series

A more compact way to analysis the invariants and relations is to count them first.
Hilbert Series. Let R = K[X], f ∈ R can be decompose into sum of homogeneous

polynomials f = f0+ ...+ fm, in which fd has degree d. S =
⊕
d≥0

Sd, where Sd is the

subspace (not subring) of homogeneous polynomials with degree d. Under group
action G, the ring of invariants is S/G =

⊕
d≥0

S/G ∩ Sd We can call S and S/G

graded ring. The Hilbert series of graded ring S/G is:

HS =
∑
d≥0

dim[S/G ∩ Sd]t
d ∈ Z[t]. (A.1)

If S/G is generated by homogeneous polynomials with degree d1, ..., dm, it can be
written as:

HS =
∑
d≥0

F (t)

(1− td1) · · · (1− tdn)
, (A.2)

F (t) ∈ Z[t], and when S/G is complete intersection with relations at degree r1, ..., rm,
F (t) = (1− tr1) · · · (1− trm), when S/G is hyper-Kähler, F (t) is palindromic.

Molien′s Theorem. When G ⊂ GL(n) is a finite group, Hilbert series of S/G is
given by:

HS =
1

|G|
∑
g∈G

1

1n − gti
. (A.3)

A.2 Plethystic Exponential

The definition follows [2][3].

PE[f(t)] = exp(
∞∑
n=1

f(tn)− f(0)

n
). (A.4)

PEF [f(t)] = PE[f(−t)] = exp(
∞∑
n=1

f((−t)n)− f(0)

n
). (A.5)

PL[g(t)] = PE−1[g(t)] =
∞∑
k=1

µk

k
log(g(tk)). (A.6)
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µ(k) =


0 if k has repeated prime factors

1 if k = 1

(−1)n if k is product of n distinct prime factors

(A.7)

They have the following useful properties:

PE[
∞∑
n=1

ant
n] =

∞∏
n=1

1

(1− tn)an
. (A.8)

PL[

∏∞
m=1(1− tm)bm∏∞
n=1(1− tn)an

] =
∞∑
n=1

ant
n −

∞∑
m=1

bmt
m. (A.9)

PE[f(x)t] =
∞∑
n=1

Symk[f(x)]tk. (A.10)

PEF [f(x)t] =
∞∑
n=1

Λk[f(x)]tk. (A.11)

We perform PE on all the variables by default.

A.3 Highest weight generating function

Highest generating function is introduced in [4] to encode the information of refined
Hilbert series in a more compact form. With the orthogonal relation of irreducible
representation,

µ1
n1 ...µr

nr =
∞∑

m1,...,mr=0

∫
G

dµG[m1, ...,mr]
∗[n1, ..., nr]µ1

m1 ...µr
mr , (A.12)

where the integral is over global symmetry G with rank r, dµG is Haar measure
of G. Hence, we can derive the HWG formula:

HWG =
∞∑

m1,...,mr=0

∫
G

dµG[m1, ...,mr]
∗µ1

m1 ...µr
mrHS. (A.13)

For example,

HS = PE[[2, 0, · · · , 0]su(n)t] → HWG = PE[
n−1∑
i=1

µ2
i t

i + tn]. (A.14)
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A.4 Fugacity map and branching rule

Here we discuss the branching rule and fugacity map from Dynkin diagram. We start
from A-type diagram. A3 → A2×A0 We label the fugacity of U(1) (A0) charge with
q. For fundamental representation, with the fact that the net U(1) charge is 0 for
SU(4), we can fix the branching as: [1, 0, 0] → [1, 0]q+[0, 0]q−3. Now we write down
the characters in coordinates: x+ y

x
+ z

y
+ 1

z
→ (x+ y

x
+ 1

y
)q+ q−3. Here we are free

to fix one variable, let’s take z → q3. Then we can derive the full fugacity map as
x→ xq, y → yq2, z → q3.

We always start with affine Dynkin diagram for the other types. Take D4 as an
example. We label the node with root fugacities z0, z1, z2, z3, z4, the constraint can
be read from dual Coxeter label (which is the same as conformal dimension when
we balance the quiver): z0z1z

2
2z3z4 = 1, the roots can be mapped to coordinates

with fugacity map zi → x
Aij

j where Aij is the Cartan matrix. z1 = x2

w
, z3 =

y2

w
, z4 =

z2

w
, z2 =

w
xyz
, z0 =

1
w
. Now let’s consider the branching D4 → A3(z1, z2, z3). We can

set z4/z0 → 1. Then we identify the coinciding nodes. We can get the fugacity map
x→ x, y → y, z → 1, w → w.

This can also be done with given projection matrix P . For example, the projec-
tion matrix for Sp(10) → SU(6) is,

P =


0 0 1 1 0 1 1 0 1 2

0 1 0 1 1 0 1 1 1 0

1 0 0 0 0 1 1 2 1 2

0 1 2 1 2 1 1 0 0 0

0 0 0 1 1 2 1 2 3 2

 . (A.15)

Then we can write the fugacity map as xi → P T
ijxj, which maps [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]Sp(10) →

[0, 0, 1, 0, 0]SU(6).

A.5 Nilpotent orbit

We take the definition from book[81]. X ∈ g is nilpotent if the adjoint operator
adx : g → g is nilpotent, i.e, (adx)

m = 0,∃ m ∈ Z+. Take g = sl(n,C) as an
example. We denote the set of all partitions λ of n as P(n), for n=3,

P(3) = {(3), (2, 1), (13)}. (A.16)

We can use Young tableaux to represent partition, and the transposed partition
identify with Young tableaux reflected with respect to diagonal. For example, λ =

(4, 23, 1) → (5, 4, 12) = λt. Define the Jordan block Ji as i× i matrix with the form:
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0 1 0 · · · 0

0 0 1
. . . ...

...
... . . . . . . 0

0 0 · · · 0 1

0 0 · · · 0 0


. (A.17)

Every nilpotent elements X ∈ sl(n,C) can be taken into Jordan normal form by
action of PSL(n) = SL(n)/Z, Z is the center of SL(n). Jordan normal Form
determined uniquely by partition λ = (λ1, · · · , λk):

Xλ =


Jλ1

. . .

Jλk

 . (A.18)

Then the nilpotent orbit is defined as:

Oλ := PSL(n) ·Xλ. (A.19)

Every partition λ defined a nilpotent orbit uniquely, which has empty intersection
between each other, due to the uniqueness of Jordan normal form. We can also
define the closure of nilpotent orbit Oλ as

Ōλ =
⋃
λ′≤λ

Oλ′ . (A.20)

where the partition ordering defines as

for λ ̸= λ′, we say λ > λ′, iff λi ≥ λ′i, ∀i. (A.21)

For example, Ō(3,1) = O(3,1)∪O(22)∪O(2,12)∪O(14). We can compute that the Higgs
branch of (1)-[N] quiver are closure of minimal nilpotent orbit of the slN . The Higgs
branch is defined as

{MN×N |M2 = 0, trM = 0, rank(M) ≤ 1}, (A.22)

M is a nilpotent element of slN , the corresponding Jordan normal forms satisfy
rank ≤ 1 are ones with trivial partition (1N) and minimal partition (2, 1N−2). Easy
to check from the definition, Ō(2,1N−1) = O(1N )∪O(2,1N−1) is exactly the Higgs branch.
Furthermore, the Coulomb branch of ADE type quiver is the closure of minimal
nilpotent orbit of the corresponding algebra of Dynkin diagram.
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Appendix B

Simply-laced magnetic quiver

Figure B.1: ADE magnetic quivers and their Coulomb branches. An stands for
orbifold with An type singularity, an stands for closure of minimal nilpotent orbit
of an.
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Appendix C

Table of 5D global symmetry

Figure C.1: Global symmetry of Higgs branch of 5d N = 1 theories, table 1 in [7]
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Appendix D

Monopole formula in practice

Here we consider the first two case of family of quivers in form of (1)-(2)· · · (k-
1)=(k)-(2)3adj.

a

Start from the simplest case (a). We decouple a U(1) factor from U(2) node with
3 adjoint hypermultiplets (the same for quiver(b), (c)), then the monopole charge is
(m, 0), the R-charge is ∆(m) = (3 − 1)(m − 0) = 2m, The monopole formula for
quiver (a) is

HS =
∞∑

m≥0

PSU(2)(m)zm(t2)2m, PSU(2)(t
2;m) =

 1
1−t4

if m = 0

1
1−t2

if m > 0
. (D.1)

Note that we use t2 instead of t to match the power of t with the degree of polynomial
invariants. It’s easy to calculate that

HS (unrefined) =
1− t12

(1− t4)2(1− t6)
. (D.2)

This is the Hilbert series of D4 singularity.
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b

The monopole charge is (m1, 0), (m2), the R-charge is ∆(m1,m2) = 2m1+
1
2
|m1−m2|,

The monopole formula for quiver (b) is

HS =
∞∑

m1≥0,m2≥0

PU(1)(t)PSU(2)(t;m1)z
m1
1 zm2

2 (t2)2m1+
1
2
|m1−m2|,

PU(1)(t) =
1

1− t2

(D.3)

The unrefined HS is

HS (unrefined) =
1− t12

(1− t2)3(1− t5)2
(D.4)

The global symmetry is A1, with the fugacity map z1 → 1
x2 , z2 → x2. The highest

weight generating function is

HWG = PE[µ2
1t

2 + t4 + µ2
1t

5 + µ2
1t

7 − µ4
1t

14]. (D.5)

c

The monopole charge is (m1, 0), (m21,m22), (m3), the R-charge is ∆(m1,m2,m3) =

2m2+
1
2
(|m1−m21|+|m1−m22|+m21+m22)−|m21−m22|+1

2
(|2m21−m3|+|2m23−m3|),

The monopole formula for quiver (c) is

HS =
∞∑

m1≥0,m21≥m22,m3≥0

PU(1)(t)PSU(2)(t;m1)PU(2)(t;m2)z
m1
1 zm21+m22

2 zm3
3 (t2)∆(m1,m2,m3),

PU(2)(m2; t) =

 1
(1−t2)(1−t4)

if m21 = m22

1
(1−t2)2

if m21 > m22

.

(D.6)

The unrefined HS is

HS (unrefined) =

1 + 6t2 + 16t4 + 32t6 + 47t8 + 57t10 + 62t12 + 57t14 + 47t16 + 32t18 + 16t20 + 6t22 + t24

(1− t2)4(1− t6)4
.

(D.7)

The global symmetry is C2, with the fugacity map z1 → x2

y
, z2 → y2x2 and constrain

z1z2z3 = 1, we can calculate the HWG

HWG = PE[t4 + µ2
1t

2 + µ2
2t

4 + µ2t
6 + µ2t

8 − µ2
2t

16]. (D.8)
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Appendix E

Brane system of D4

Brane system of D4 consists of four D-branes, a orientifold plane, images of D-branes
under orientifold plane and strings stretch in between, with boundary condition that
string cannot end on both D-brane and its image. We identify the Cartan with string
with both ends on the same D-brane. All positive roots shown in Figure E.1,

1. α1 = e1 − e2, α2 = e2 − e3, α3 = e3 − e4, α4 = e3 + e4 (simply roots);

2. α1 + α2 = e1 − e3, α2 + α3 = e2 − e4, α2 + α4 = e2 + e4;

3. α1 + α2 + α3 = e1 − e4, α1 + α2 + α4 = e1 + e4, α2 + α3 + α4 = e2 + e3;

4. α1 + α2 + α3 + α4 = e1 + e3;

5. α1 + 2α2 + α3 + α4 = e1 + e2.

Figure E.1: Brane system of D4
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The dimension of representation [n1, n2, n3, n4] can be derived as:

dim = (n1 + 1)(n2 + 1)(n3 + 1)(n4 + 1)(n1 + n2 + 2)(n2 + n3 + 2)(n2 + n4 + 2)

×(n1 + n2 + n3 + 3)(n1 + n2 + n4 + 3)(n2 + n3 + n4 + 3)

×(n1 + n2 + n3 + n4 + 4)(n1 + 2n2 + n3 + n4 + 5)

/(14 · 23 · 33 · 4 · 5).
(E.1)

It’s not easy to see the triality from brane system, but from roots, we can see the
triality between α1, α2, α3, which result in the equivalence of vector representation
[1, 0, 0, 0], spinor representation [0, 1, 0, 0] and conjugate representation [0, 0, 1, 0].
We can construct the brane system of A-type, B-type and C-type group with dif-
ferent boundary condition. It’s a challenging task to construct brane system of
exceptional groups. For E8, we may introduce a NS5 brane on the orientifold con-
sist of a half brane and its image, to contribute half linking number.
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Appendix F

Complex Reflection Group

A complex reflection group is a group generated by (pseudo)-reflection on vector
space V over C, whose action preserves a complex hyperplane. Complex reflection
group is classified by Shepherd and Todd[20]. Irreducible complex reflection groups
can be classified into infinity family G(m, p, n) and 34 exceptional cases. G(m, p, n)
can be realised as a semiproduct of Abelian group of order mn/p and Sym(n).
G(m, p, n) has rank n (n− 1 when m = p = 1 or m = n = p = 2), order mn × n!/p,
degrees of primitive polynomial ring invariants m, 2m, · · · , (n− 1)m,mn/p. (For a
mathematical reference please see [19], an for physicist we recommend [18])

Special cases: G(1, 1, n) = W(An−1), G(2, 1, n) = W(Bn), G(1, 1, n) = Sym(n),

G(2, 2, n) = W(Dn), G(m, p, 1) = G(m/p, 1, 1) = Zm/p, G(p, p, 2) = Dp, G(2, 2, 2)

is Klein four group, G(m, p, n) is reducible if and only if m = p = n = 2.
The invariants of degree 2 of group G can always be given by invariant forms

defined by:
f = {f ∈ GL(Cn)|∀g ∈ G, f = g · f · gT}. (F.1)

The invariants given by x · f · xT . The calculation of higher degree invariants will
get messier. The good news is that we can always use Sage (or other algebraic
geometry computing software) to study the group structure, including the elements,
the braid relation of generators, invariant forms and invariants. Given the invariants
of complex reflection group on Cn[x, y], we can generalise it to C4n[xi, yi], i =

1, · · · , 4. The the primitive invariants of C/Z2 are x2, of C4/Z2 are xixj, where
i, j = 1, · · · , 4. The the primitive invariants of C2/D3 are x2−xy+y2, x2y−xy2, of
C6/D3 are xixj − xiyj + yiyj, xixjyk − xiyjyk, up to a permutation of i, j, k, where
i, j, k = 1, · · · , 4.

F.1 Data of exceptional complex reflection group

Data of the exceptional complex reflection group we meet above:
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ST name rank order braid relation
G4 2 24 r3 = s3 = 1, rsr = srs
G5 2 72 r3 = s3 = 1, rsrs = srsr
G8 2 96 r4 = s4 = 1, rsr = srs
G25 3 648 r3 = s3 = t3, rsr = srs, sts = tst, rt = tr
G26 3 1296 r2 = s3 = t3, rsrs = srsr, sts = tst, rt = tr

Table F.1: Rank, order and braid relation of G4, G5, G8, G25, G26

Invariants:

1. G4 : x
4 − 8xy3, x6 + 20x3y3 − 8y6;

2. G5 : x
6 + 20x3y3 − 8y6, x9y3 + 3x6y6 + 3x3y9 + y12;

3. G8 : x
8 + 14x4y4 + y8, x12 − 33x8y4 − 33x4y8 + y12 ;

4. G25 :

x6−10x3y3+y6−10x3z3−10y3z3+z6, x6y3−x3y6−x6z3+y6z3+x3z6−y3z6,
x9y3 − 4x6y6 + x3y9 + x9z3 + 2x6y3z3 + 2x3y6z3 + y9z3 − 4x6z6 + 2x3y3z6 −
4y6z6 + x3z9 + y3z9;

5. G26 :

x6 − 10x3y3 + y6 − 10x3z3 − 10y3z3 + z6,

x9y3 − 4x6y6 + x3y9 + x9z3 + 2x6y3z3 + 2x3y6z3 + y9z3 − 4x6z6 + 2x3y3z6 −
4y6z6 + x3z9 + y3z9,

x12y6 − 2x9y9 + x6y12 − 2x12y3z3 + 2x9y6z3 + 2x6y9z3 − 2x3y12z3 + x12z6 +

2x9y3z6 − 6x6y6z6 + 2x3y9z6 + y12z6 − 2x9z9 + 2x6y3z9 + 2x3y6z9 − 2y9z9 +

x6z12− 2x3y3z12 + y6z12.

F.2 Character table of G4 and ADE classification

From the character table, we can derive the product representation of G4 (binary
tetrahedral group) by multiplying the characters.

Name/Size 1 1 4 4 6 4 4
1 1 1 1 1 1 1 1
1′ 1 1 ω ω2 1 ω ω2

1′′ 1 1 ω2 ω 1 ω2 ω
2 2 -2 -1 -1 0 1 1
2′ 2 -2 -ω -ω2 0 ω ω2

2′′ 2 -2 -ω2 -ω 0 ω2 ω
3 3 3 0 0 -1 0 0

Table F.2: Character table of G4, ω is a 2nd root of unity.
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We can encode the representation tensor product into Dynkin diagram.

1. 2× 1 = 2

2. 2× 1′ = 2′

3. 2× 1′′ = 2′′

4. 2× 2 = 1+ 3

5. 2× 2′ = 1′ + 3

6. 2× 2′′ = 1′′ + 3

7. 2× 3 = 2+ 2′ + 2′′

We draw the representations as nodes, if two nodes are related by times repre-
sentation 2, connect them. Here we have an affine E6 Dynkin diagram with dual
Coxeter label.

Figure F.1: Dynkin diagram of Ê6

Following the same logic, we can find the corresponding Dynkin diagram of G12

(binary octahedral group) is affine E7. The finite group with Dynkin diagram affine
E8 is binary icosahedral group, which is not a complex reflection group.

Name/Size 1 1 12 8 6 8 6 6
1 1 1 1 1 1 1 1 1
1′ 1 1 -1 1 1 1 -1 -1
2 2 -2 0 -1 0 1 ω2 -ω2

2′ 2 -2 0 -1 0 1 -ω2 ω2

2′′ 2 2 0 -1 2 -1 0 0
3 3 3 1 0 -1 0 1 1
3′ 3 3 -1 0 -1 0 -1 -1
4 4 -4 0 1 0 -1 0 0

Table F.3: Character table of G12, ω is a 8th root of unity.
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Figure F.2: Dynkin diagram of Ê7
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