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Abstract

In this project, we explore asymptotically safe pure gravity as a candidate for a
quantum field theory of gravity. We first present Wilson-Kadanoff renormalization before
exploring the existence of fixed points on corresponding renormalization group flows. We
then study the Asymptotic Safety program which aims at renormalizing gravity in a non-
perturbative way using properties of non-Gaussian fixed points. We consider gravity in
2 + ϵ dimensions as original evidence for said program. Then, we compare two methods
used to investigate the Asymptotic Safety program. Namely, a Functional Renormalization
Group Equation of a gravitational Effective Average Action, and a perturbative one-
loop expansion of renormalization group flow equations in higher-derivative quadratic
gravity. Both give further evidence to support asymptotically safe gravity as a valid
quantum gravity theory. Later, we show that, despite these methods being in one-to-one
correspondence, only the latter can be used to address the ultraviolet renormalization
problem because it involves less arbitrarily postulated ’initial data’ for the coupling flow
equation. Finally, we critically assess the Asymptotic Safety program before concluding
on potential extensions of this project.
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1 Introduction

Einstein’s General Relativity (GR) is our best known theory of gravity [1]. To this day,
experimental evidence have confirmed its various foundational principles to very high accuracies.
The latest such experiment tested the weak equivalence principle to an astounding accuracy
of 10−15 [2]. In GR, gravitational interactions are shown to emerge from objects moving on
geodesics in a curved Riemannian manifold called ’spacetime’, whose curvature is dictated by
the presence of mass or energy [3]. The Einstein’s field equations describing spacetime as a
dynamical entity are given by

Rµν −
1
2Rgµν = 8πGTµν , (1)

where we are free to include a cosmological constant on either side, though its interpretation
will change depending on which side we introduce it in. The LHS of (1) describes the
curvature of spacetime. Indeed, Rµν and R are both constructed from the Riemann curvature
tensor Rµνρσ. The metric tensor of spacetime gµν provides a notion of distance on a general
topological space. The RHS of (1) contains the stress energy tensor Tµν which encodes the
presence of matter or energy in spacetime.

In 1900, Max Planck’s solution to the anachronistically named ’ultraviolet (UV) catastrophe’
shifted the scientific paradigm towards what we now know as Modern Physics [4]. In his paper,
Planck intuited that electromagnetic radition was only absorbed or emitted in ’bundles’, or
quanta in latin. In this way, many physical quantities, such as energy, can be shown to be
mutliples of the fundamental Planck’s constant h, or its reduced versions ℏ ≡ h/2π. Since
then, physicists have studied matter through the powerful lense of Quantum Mechanics, which
is a special Quantum Field Theory (QFT). Today, all known particles and interactions, with
the exception of gravity, are described by such theories, in particular the Standard Model
of Particle Physics. The RHS of (1) encodes the presence of matter, so it should follow the
laws of the Standard Model. Thus, one would want to rewrite the LHS of (1) in a quantum
language.

However, the Heisenberg’s uncertainty principle makes this impossible [5,6]. It states that
the following inequality, ∆x∆p ≥ ℏ/2, governs the product of the measurement errors of the
position x and momentum p of a quantum body. Making a measurement of curvature at small
distances implies an uncertainty on the momentum, and therefore the energy, which gives a
lower bound on the resolution at which we can measure spacetime [7]. This lower bound
is the Planck scale ℓ2

p ≡ Gℏ/c3 where G is Newton’s constant and c is the speed of light.
A quantum description of spacetime would imply that spacetime itself undergoes quantum
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fluctuations below this scale, making it a highly unstable and unpredictable dynamical entity.
However, a core concept of GR is asymptotically flat spacetime. Indeed, at the shortest scales,
any curved manifold should locally look flat. Hence, any Riemannian spacetime locally looks
like Minkowski flat spacetime. Both views cannot be reconciled and reveal a fundamental
incompatibility between these theories.

As outlined, quantum fluctuations depend on scale in gravity, but they do not in quantum
electrodynamics (QED) [8,9]. This observation can be made into the more technical statement:
QED is renormalizable but GR is not. The latter cannot be covariantly quantized as other
QFTs. Veltman and t’ Hooft showed that the Einstein-Hilbert (EH) action, from which
the equations of motion (1) are derived, was perturbatively non-renormalizable at one-loop
order [10]. This is known as the renormalizability problem. As a special case, pure
gravity (GR with no matter content or vacuum energy) has a lucky cancellation of one-loop
divergences but the same quantities blow up at 2-loop order and higher [11]. The resulting
covariantly quantized theory of gravity is highly non-predictive since it requires an infinity of
experiments to fix the coupling constants arising from the finite parts of an ever increasing
number of counter-terms introduced into the EH action [12].

For these reasons, GR is considered a low-energy (infrared, IR) Effective Field Theory
(EFT), valid below at some momentum k < ℓp. Hence, it should arise from the fundamental
theory in which degrees of freedom (dofs) above k are integrated out, and those below k are
not included. Importantly, EFTs allows one to treat renormalizable and non-renormalizable
theories on equal footing. The quantization of the latter has a perfectly valid intepretation
provided we focus on low-energy predictions. The corresponding theory would simply be a low-
energy/long-distance, coarse-grained approximation to a more fundamental renormalizable
theory in which short distance details are unimportant [13,14].
EFTs go hand in hand with Wilsonian renormalization [13, 15–21], which lets low-energy
theories emerge from coarse-graining dofs by integrating, or averaging over short-scale quantum
fluctuations. Iterating this ’changing of the scale’ in a theory induces a Renormalization Group
(RG) flow in the space of coupling constants. Wilson, observing that physical systems are
different depending on the scale at which we probe them, takes seriously the existence of a
physical scale above which the EFT is not valid anymore (ℓp for GR).
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When trying to replace GR by a ”UV completed” fundamental theory of gravity, one
can either introduce new dofs and symmetries; or retain the fields and symmetries of GR
and postulate that gravity is a fundamental theory at the non-perturbative level. The
former strategy is explored by String Theory [22]. A proposal along the lines of the latter
strategy is the Asymptotic Safety program [23–29] which, motivated by gravity in 2 + ϵ

[30, 31], was proposed by Weinberg in 1979 [32, 33]. This proposal is based on the following
non-perturbative Wilsonian renormalization condition: a theory can be UV completed if
it lies on the finite-dimensional UV critical surface of a non-trivial fixed point (FP) of the
Renormalization Group (RG) flow. The expression ’asymptotic safety’ refers to the asymptotic
freedom of QCD, which lies on the UV critical surface of the trivial FP at the origin of
coupling space, where couplings vanish. This point corresponds to the free theory, hence
’freedom’ [34,35]. Even though ”Matter matters in asymptotically safe quantum gravity”, we
restrict our discussion to pure gravity [36].

In this project, we present and motivate the Asymptotic Safety Program before comparing
two different methods used to investigate it. Finally, we present counter-arguments to this
scenario.
More precisely, in Section 2.1, we discuss the UV renormalization problem encountered in
QFTs before motivating the Wilsonian view of renormalization. We then give practical
examples of RG transformations used in the Wilsonian framework. In section 2.2, we define
the concept of critical surface and linearize the RG flow around a FP. In Section 2.3, we show
how FPs can be used in non-perturbatively renormalizing a QFT. Finally, in Section 2.4 we
present Weinberg’s Asymptotic Safety scenario and his original motivation for proposing it.
In Section 3, we apply the methods from previous sections to GR. In particular, we extensively
study the Functional Renormalization Group formalism in Section 3.1, and quadratic gravity
in Section 3.2, before comparing them in Section 3.3. Finally, we present critical reflections
on the program in Section 4, before discussing them and concluding on this work in Section
5.
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2 Asymptotic Safety

2.1 Wilson-Kadanoff RG

2.1.1 The UV renormalization problem

To compute observables in a QFT, one might use a perturbative expansion in couplings if these
are small enough. In this case, contrary to Quantum Mechanics, one finds UV divergences
at each order in the expansion. To deal with these divergences, one can use perturbative
renormalization by introducing a set of effective (renormalized) quantities. The divergences
are then transferred from the perturbative expansion to the relation between the bare (non-
renormalized) and renormalized parameter. Still, perturbative renormalization is merely a
mathematical trick: in Wilson’s words, using this method amounts to ”sweeping divergences
under the rug” [21,37]. Instead, Wilson argues that the origin of UV divergences is physical:
they originate from quantum fluctuations. We shall comment on the power of Wilsonian
renormalization by discussing its physical interpretation in Section 2.1.2.2.

UV divergences were thought to arise from the infinite number of degrees of freedom
(dof) that characterises both Classical Field Theories and QFTs. However, fluctuations are
only present in SFTs and QFTs. Hence we only find UV divergences in these theories. The
mathematical contribution associated with quantum fluctuations are Feynman diagrams. We
can now make two remarks on said fluctuations:

1. Approximations are necessary to compute these fluctuations (otherwise the model would
be exactly solvable).

2. According to Wilson, fluctuations are not summed in the right way in perturbation
theory. All wavelengths are treated on the same footing and summed over at each order
in the perturbation expansion, giving rise to divergent momenta integrals [37,38].

To illustrate remark 2 we consider the 1-loop contribution to 2-2 scattering in ϕ4, at second
order in coupling, after Euclidean continuation, in D-dimensions:

J ∼
∫ Λ dDp

(2π)D

1
(p2 −m02)2 . (2)

We regularized this integral by a UV momentum cut-off Λ. J is also cut-off in the IR by the
non-renormalized mass m0. Thus, we expect divergences since all momenta should contribute
from the UV to the IR cutoff. We don’t include iϵ terms since the contour integral is along the
real axis and does not go through any poles after the Euclidean continuation. Importantly,
all momenta scales ∥p∥ ≤ Λ in J contribute to the renormalized value of the coupling. In
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momentum space, the range of J is over

ξ−1 = m0 ≤ ∥p∥ ≤ Λ (3)

and in real space, from the uncertainty principle, the range of p is

a = Λ−1 ≤ ∥x∥ ≤ ξ = m0
−1 (4)

where we interpret a as a small physical distance like a lattice spacing. ξ is the interaction
length scale or the correlation length. Therefore, taking a → 0 corresponds to a continuum
limit. Note, since a = Λ−1, this limit is equivalent to Λ→∞.
Starting from perturbation theory forces us to use a ’bottom-up’ approach to renormalization:
we start at some energy scale µ, the renormalization scale, and ask if we can take all quantum
dofs into account up to some arbitrary high-momentum scale Λ (the UV cutoff). If we can
keep the physics at scale µ under control and independent of the choice of cutoff Λ, then we
can take the continuum limit Λ→∞ and find a UV complete and renormalized theory [39].
Hence, to define a QFT without a cutoff, one needs to determine in what cases we are allowed
to take continuum limits. In this sense, removing the cutoff Λ is similar to defining a real
bounded integral as the limit of a Riemannian sum. One may take the area under a curve I

as approximately the sum
I = lim

h→0

[
h
∑

i

f(xi)
]
. (5)

To ensure the convergence of this sum, we scaled it by an appropriate factor. The limit exists

Figure 1: The ordinate lines are drawn from the x axis to the curve
representing f(x), they are at a distance h apart. The integral is
approximately the Riemannian sum of h times those ordinates f(x). This
approximation gets better as we take the limit h→ 0 [40].

when we take this factor to be h, the spacing between ordinate lines [40]. For QFTs, Wilson
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argues that the continuum limit exists when one tunes the coupling such that the correlation
length, is much larger than the lattice spacing: ξ ≫ a [38]. Thus, the problem of defining
a QFT is the same as the one of finding a continuous phase transition, where ξ diverges, in
Statistical Mechanics.
Continuous phase transitions have notably been studied by Widom [41], Fisher [42, 43],
Patashinskii and Pokrovskii [44] and particularly by Kadanoff [45]. At criticality, approaching
such phase transition, Kadanoff showed that a system displays an emergent symmetry: scale
invariance. He argued that long distance (low energy) universal quantities do not sensitively
depend on the short distance ’details’ of a physical system. UV configurations that vary
rapidly average-out and contribute only a small amount to the IR-scale behaviour.

2.1.2 Wilsonian renormalization

To solve the problem raised in remark 2 from Section 2.1.1, Wilson proposed an approximation
scheme to sum over fluctuations based on Kadanoff’s insight about the decoupling of long and
short-distance physics [38]. He related the mathematical use of an effective Hamiltonian in
condensed matter and statistical physics and the Feynman path integral formulation of QFTs.
Wilson’s method consists of integrating-out the fast modes (UV) of the generating functional
to focus on the slower modes (IR). Again, we can iterate this procedure down to a scale k to
obtain an effective theory for the low momenta modes p < k. The long distance physics is
found by taking the p → 0 limit. Hence, we can take the k → 0 limit in the effective action,
where no fluctuations remain, to find the behaviour of the IR dofs [46]. From the uncertainty
principle, a decreasing value of the UV cutoff Λ is equivalent to an increasing value of the
lattice spacing a (lowering the number of dofs), hence the iterative process is called coarse-
graining. Wilson’s procedure is called a Renormalization Group (RG) transformation. In
statistical physics language, coarse-graining amounts to dividing a critical problem, where
quantum fluctuations at all scales are considered, into sub-critical ones where this is not true
anymore [24,47].

In summary, contrary to the perturbation theory approach to renormalization, Wilson RG
transformation is a ’top-down’ approach. We take seriously the existence of a fundamental
UV cutoff Λ (since divergences have a physical origin) and ask which effective theory emerges
at a lower energy scale µ, where all quantum fluctuations at intermediate scales µ < E < Λ
have been accounted for [39].

Let us now study two examples of RG transformations, the first in real space [45],
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the second in momentum space [19]. We first quickly explore the main steps of a RG
transformation through the real space example. We will then study the momentum space
case. The latter example will be more thoroughly and mathematically approached.

2.1.2.1 Real space RG transformation: Kadanoff spin decimation
Consider Euclidean theory in D dimensions regularized on a lattice. The field content of
the theory is a real field ϕ(x), regularized as ϕi, where i labels lattice sites. The action is
constructed from monomials O containing the field and its derivatives ∂µ, that become finite
differences ∇µ on a discretized lattice. The action is then:

S =
∫

dDx
α∑
α

Oα = aD
α∑
i

Oα[ϕi,∇µϕi, ...], (6)

where we used Einstein’s summation to make the sum over α implicit in the second equality.
u represents all coupling constants compatible with the symmetries of the system. The key
take-away is that the space of all couplings, or all actions, or all theories is defined by fixing
the field content and symmetries of the system. In the context of the Ising model on a square
lattice of side-length a, Kadanoff proposed a way to compute the partition function

Z =
∫
Dϕe−S[ϕ] (7)

iteratively. Each spin is a single dof sitting on a single lattice site, interacting with strength
u (the coupling) with its nearest neighbours (we could consider next-to-nearest-neighbour
interactions, three and four spin interactions...). Each dof has two eigenvalues: +1 for up-
state and −1 for down state. At each step, a block of spins, say a square lattice of 4 spins,
defines a new effective spin as shown in Fig. 2. This is known as spin ’decimation’ [39].
The behaviour of a block is dependent on the average behaviour of the rapidly varying spin
eigenvalues inside said block. By summing over short distances dofs in this way, one is left
with an effective, renormalized picture with less dofs, a coarse-grained picture. The middle
picture in Fig. 2 is coarse-grained. Through this coarse-graining process, we double the lattice
spacing at each step: a → 2a → 4a . . . ⇐⇒ a → a

b →
a
b2 . . . where ∥b∥ < 1 (here b = 1

2).
We then need to rescale the length scale at each step by b such that the actions are directly
comparable

x′ = bx. (8)
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Figure 2: The 3 steps of Wilson-Kadanoff renormalization in real space for the Ising
model. (1) Average over blocks (decimation), (2) compute the effective action with
a new lattice spacing, (3) rescale the space x and field ϕ such that the renormalized
action is directly comparable to the original one. In this example, the rescaling factor
is b = 1

2 , [39].

The picture on the right in Fig. 2 is rescaled, with new lattice spacing a′ = a
b , to be comparable

with the original system. One would also need to rescale the field by a factor

ϕ′ = b∆ϕ (9)

where ∆ is the ’scaling dimension’ of ϕ. The choice of ∆ usually depends on the action. The
field rescaling is required because we want the local fluctuations of ϕ′ to look like those of ϕ.
Importantly, since the rescaling allows to directly compare the forms of the renormalized action
to the original one, the mapping between actions S → S ′ induced by the RG transformation
can be expressed as a mapping between u → u′ in the space of couplings. Each point
corresponds to a different theory, so this space is also commonly called theory space, denoted
T . Taking the continuum limit, allows us to make continuous RG transformations [24, 47].
Therefore, the set of points uj , for j ∈ R, becomes a RG trajectory. Importantly, different
couplings on the same RG trajectory correspond to theories with different micro-physics but
similar macro-physics because they have the same generating functional Z [46]. This property
is reminiscent of universality in Statistical Mechanics. The set of all such RG trajectories
obtained from different initial conditions, i.e. different starting points, is called the RG
flow [48].

2.1.2.2 Momentum space RG transformation: Wilson-Fisher momentum shell
We now discuss the Wilson-Fisher momentum shell RG transformation [19]. Instead of local
blocks of dofs, we focus on iteratively integrating out shells of fast modes in momentum
space [13]. We use Euclidean ϕ4 theory as an example. Our starting point is the following
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action in D dimensions:

S[ϕ] =
∫

dDx

[
1
2(∂µϕ(x))2 + m0

2

2 ϕ(x)2 + λ

4!ϕ(x)4
]
. (10)

Expressed in terms of the sharp UV cutoff, the mass m0
2 and the coupling constant λ are:

m0
2 = aΛ2 and λ = cΛϵ, (11)

where ϵ = 4−D. This is known as the ϵ expansion [13]. The action becomes

S[ϕ] =
∫

dDx

[
1
2(∂µϕ(x))2 + aΛ2

2 ϕ(x)2 + cΛϵ

4! ϕ(x)4
]
. (12)

where a and c are dimensionless quantities.

STEP 1 - Coarse-graining
We now split momentum space into a momentum shell bΛ < ∥p∥ < Λ (where ∥b∥ < 1) and
the remaining ball of radius ∥p∥ < bΛ, such that

ϕ(x) = ϕf (x) + ϕs(x), (13)

since

ϕs(x) =
∫

dDx

(2π)D
θ(Λ2 − p2)eipxϕ(p),

ϕf (x) =
∫

dDx

(2π)D
θ(p2 − Λ2)eipxϕ(p),

(14)

where θ(p2 − Λ2) is the heaviside function. Importantly, we chose Euclidean theory as an
example since we cannot impose an upper cutoff on p2 on a Lorentzian background, where
the time component has a sign opposite to the spatial ones. We also split the Fourier transform
ϕ(p) of the quantum field ϕ(x) between fast and slow modes, respectively ϕf (p) and ϕs(p).
These have different support in momentum space. We use Λ as a sharp UV momentum
cutoff, so the fast modes only have support on the momenta shell bΛ < ∥p∥ < Λ, that we will
integrate out, and the slow modes have support on the rest of the space:

ϕf (p) =


0, ∥p∥ > Λ

ϕ(p), bΛ < ∥p∥ < Λ

0, ∥p∥ < bΛ

, (15)
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Figure 3: The momentum shell bΛ < ∥p∥ < Λ, where ∥b∥ < 1 [37].

ϕs(p) =


0, ∥p∥ > Λ

0, bΛ < ∥p∥ < Λ

ϕ(p), ∥p∥ < bΛ

. (16)

Defining the averaged field as ϕs(p) with a new cutoff bΛ is equivalent to the decimation
process of the block-spin approach, shown in step (1) in Fig. 4. From equation (13), we have:

Figure 4: The 3 steps of the RG procedure in momentum space. Step (1),
left picture, corresponds to decimation or coarse-graining, where we define the
averaged field as the slow modes ϕs for which we want an effective theory. During
step (2), the middle picture, we integrate out the momentum shell where the fast
modes have support. In step (3) we rescale momentum p, space x and the field
ϕ for the actions S and Seff to be directly comparable [39].

S[ϕ] = Sfree[ϕ] + Sint[ϕ] = Ss[ϕs] + Sf [ϕf ] + Sint[ϕs, ϕf ], (17)

and there is no mixing term between fast and slow modes for the quadratic free part of the
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action. Indeed, Fourier transforming ϕ(x)

Sfree[ϕ] =
∫

dDx

[
1
2(∂µϕ(x))2 + aΛ2

2 ϕ(x)2
]

= 1
2

∫
dDx

[(∫
dDp

(2π)D
ϕ(p)∂µ

(
eipνxν

))2

+ aΛ2
(

dDp

(2π)D
ϕ(p)eipx

)2]

= 1
2

∫
dDx

(∫
dDp

(2π)D
ϕ(p)eipx

)(∫
dDq

(2π)D
ϕ(q)eiqx

)[
(ip)(iq) + aΛ2

]
.

(18)

Integrating over x to get a (2π)Dδ(p + q) factor and using the delta function (q → −p) to
integrate over q, we get:

Sfree[ϕ] =
∫

∥p∥<Λ

dDp

(2π)D

1
2
(
p2 + aΛ2

)
ϕ(p)ϕ(−p)

= Ss[ϕs] + Sf [ϕf ],
(19)

as stated, where:

Ss[ϕs] =
∫

dDx

[
1
2(∂µϕs)2 + aΛ2

2 ϕ2
s + cΛϵ

4! ϕ4
s

]
, (20)

and
Sf [ϕf ] =

∫
dDx

[
1
2(∂µϕf )2 + aΛ2

2 ϕ2
f + cΛϵ

4! ϕ4
f

]
. (21)

Indeed, both terms in the factor ϕ(p)ϕ(−p) have the same support in momentum space. This
kills cross terms of the form ϕs(p)ϕf (−p).

STEP 2 - Computing the effective action for the averaged field
Now, we integrate out the fast modes ϕf , as explained in step (2) of Fig. 4, by performing a
Gaussian integration of ϕf . This is possible since there is no mixing between fast and slow
modes at the free quadratic level.

Z =
∫
Dϕe−SΛ[ϕ]

=
∫
DϕsDϕf e−SΛ[ϕs,ϕf ]

Z =
∫
Dϕse−SbΛ

eff [ϕs]
∫
Dϕf e−SΛ

f [ϕf ]−SΛ
int[ϕs,ϕf ]

(22)

We write

e−SbΛ
eff [ϕs] ≡ e−SΛ

s [ϕs]
∫
Dϕf e−SΛ

f [ϕf ]−SΛ
int[ϕs,ϕf ] (23)
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which defines the effective action SbΛ
eff [ϕs] of the slow modes in the theory cutoff at scale bΛ.

We can generally compute the path integral in equation (23) either by using perturbation
theory in c, provided λ is small enough, or by integrating over the high-momentum modes,
treating the low momentum ones as external sources [39]. The effective action is now

SbΛ
eff [ϕs] =

∫
dDx

[
1
2(∂µϕs)2 + m0

2

2 ϕ2
s + λ

4!ϕ
4
s

]
. (24)

The Wilsonian action at scale bΛ is equivalent to the bare action defined in a cutoff scheme
since we only integrate modes up to the energy scale Λ to quantize the theory [49]. Once
the new Wilsonian action is known, it can be used to compute its corresponding generating
functional in the same way as a classical action for which no heavy fields existed. Importantly,
the Wilsonian Lagrangian is local as long as we work to finite order in its expansion in inverse
powers of the fast scales [50].

STEP 3 - Rescaling
There is an implicit dependence of the original action S on the cutoff scale Λ, and the momenta
in the effective theory are still to scale with this cutoff. We need a theory where the momenta
of the renormalized theory are to scale with the IR cutoff bΛ and not the UV one. One must
rescale both x, p, and ϕ. The former two rescalings in equation (25) allow to make the new
action to scale with the new cutoff bΛ,

p→ p′ = p

b
and x→ x′ = bx, (25)

where ∥b∥ < 1. This induces a rescaling of both the integration measure and the spacetime
derivative: ∫

dDx′ = bD
∫

dDx and ∂µ′ = ∂µ

b
. (26)

The field rescaling in equation (27) is necessary to make S′ = SbΛ
eff [ϕs] and S comparable.

Accounting for all rescalings above, in order to keep the kinetic term the same in S′ and S,
we have: ∫

dDx′(∂µ′ϕ′(x′))2 =
∫

dDx(∂µϕ(x))2

∫
dDx′(∂µ′ϕ′(x′))2 = b2

bD

∫
dDx′(∂µ′ϕ(x))2

=⇒ ϕ′(x′)2 = b2−Dϕ(x)2

ϕ′(x′) = b
2−D

2 ϕ(x).

(27)
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As promised, the effective action looks like S:

S′[ϕ′] = SbΛ
eff [ϕs] =

∫
dDx′

[
1
2(∂µϕ′)2 + m0

2(bΛ)
2 (ϕ′)2 + λ(bΛ)

4! (ϕ′)4
]
, (28)

As stated before, the RG induced mapping S → S′ can be expressed in terms of the simultaneous
mapping m0 → m′

0 and λ → λ′ in the, a priori, infinite space of couplings. The RG
transformation is a scale transformation, which makes the couplings explicitly depend on,
or ’run’ with, the scale bΛ [39].

The theory is now divergence-free. There is no more summation of fluctuations over all
length scales since integrations are performed over momenta-shell p ∈ [bΛ, Λ] which involve
only a finite number of degrees of freedom. We only expect divergences when having integrated
all momenta shells, i.e. after an infinite number of iterations of the RG procedure [46,48].

Now is a good time to assess the power of the Wilsonian approach, especially its advantages
over standard perturbative renormalization.
Firstly, rather than performing the complicated continuum limit at once, we break the process
in many incremental steps. After one step is well understood, the problem reduces to the
iteration of many simple steps. In doing so, we bypass the standard UV renormalization
problem to focus on solving a dynamical system [51].
Secondly, the sliding momentum scale bΛ enters the action in two ways, but always drops
out of physical observables. The action’s dependence on bΛ originates from the running
couplings, and from virtual particles which have their momenta cutoff at this scale. It turns
out that the bΛ dependence in couplings exactly cancels the contribution from virtual particles.
This discussion parallels the traditional perturbative treatment of renormalization, in which
the regularization dependence of the divergent loop integrals are cancelled by ’manually’
introducing counter-interaction terms into the classical action. Thus, one might regard
the classical bare action of a non-renormalized theory as the Wilsonian action of a more
fundamental theory that applies above the introduced UV cutoff Λ. This view point is
particularly powerful because of the insight it gives on the physical nature of the cutoff-
dependence (bΛ) cancellation [50].
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2.2 Iteration, RG flow, critical surface and fixed points

By iterating this RG procedure, we build a series of couplings [46].

Λ→ u,

bΛ→ u′,

b2Λ→ u′′, etc.

(29)

As stated previously, the repeated RG action induces a flow in the space of couplings u →
u′ → u′′..., called the RG flow. If this flow converges to a constant value u∗ of the coupling,
→ u′ → u′′... → u∗ → u∗, we call u∗ a fixed point (FP), or critical point of the RG

flow. Despite its misleading name, the set of RG transformations {Rb} is not a group in the
mathematical sense, but only a ’semi-group’, since RG transformations are non-invertible.
This is to be expected since, through coarse-graining, we integrate out the microscopic dofs
and lose information about the physical system and the structure of the theory [39, 48].
Though, it is possible to invert the transformation in T , u 7→ u(b) = Rb(u), near a FP, this
subtlety can be ignored and we always consider b as a continuous parameter, i.e. we took the
continuum limit. Hence, in practice, this RG procedure is performed in a continuous flow.
For the Wilson-Fisher method this corresponds to integrating out infinitesimal shells of fast
momentum modes.

We define the set of initial conditions that flow to a FP u → u′ → . . . u∗ → u∗ as the
basin of attraction of the FP. Now, we come back to the block-spin example to illustrate
this notion. Take a RG transformation Rb(·) that maps the coupling of the original spin
lattice system u onto u′. The dimensionless correlation length is defined as ξ = ξ̄

a , with a the
lattice spacing [46]. It transforms as ξ((b)) = bξ(u) under Rb(·). By definition, Rb(u∗) = u∗

and so ξ(u∗) = bξ(u∗), which implies that either ξ(u∗) = 0 or ξ(u∗) = ∞, where ∥b∥ < 1.
In statistical mechanics, a FP with ξ(u∗) = 0 is a trivial fixed point. A FP with ξ(u∗) = ∞
is a critical fixed point. The latter describes the singular behaviour of continuous phase
transitions. This type of FP will be our focus. We define the UV critical hypersurface or
unstable manifold, denoted SUV , as the basin of attraction of a critical fixed point. If the
starting point of a RG trajectory uc is on the critical surface, then

lim
b→0

Rb(uc) = u∗, (30)

and in turn limb→0 ξ((b)) = ∞. Indeed, if ξ = ∞, where the system is at criticality, then
Rb(ξ) = bξ = ∞ and in particular ξ′ = bξ = ∞. The block-spin system with coupling u′

is still critical. In conclusion, the critical surface is also defined as the set of points uc with
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infinite correlation length ξc =∞ [46, 48].
All theories in the basin of attraction of a FP have the same long distance physics,

described by the theory with coupling u∗: they are in the same universality class. Indeed,
equation (30) shows that, regardless of where the starting point uc is on the critical surface,
all RG trajectories will end at the FP u∗ . However, universality also holds in physical systems
asymptotically close to criticality. Hence, we can assume that the RG flow is continuous near
the FP. Furthermore, the RG trajectory emanating from a point u close to SUV stays close to
the one emanating from a point uc on SUV as long as ξ(b) = bξ is large enough. When 1

b ∼ ξ

the trajectory starting at u diverges away from u∗ and the critical surface [46].

2.2.1 Linear behaviour of RG flows near fixed points

With these relations and the hypothesis of the existence of a FP, we can derive power law
behaviours of the RG flow in the viscinity of u∗. We now study all RG trajectories emanating
from points close to criticality that stay close to u∗ for a while. This allows us to linearise
the RG flow equations around u∗, where k denotes a variable mass-scale. We now need
an equation from which to derive the RG trajectories and the RG flow. The dimensionful
essential couplings ūα, i.e. those that cannot be absorbed by field redefinitions, parametrizing
theory space T give a system of infinitely many coupled partial differential equations:

β̄α(ūα, k) = k∂kūα(k), (31)

where α = 1, 2, . . . indexes the couplings. Equations (31) are called RG equations and they
will be derived in Section 3.1.7. The function in the LHS of (31) is the Gell-Mann Low beta
function [14], originally used in perturbative renormalization to change the values of the bare
coupling u and the UV cutoff Λ while keeping the value of the renormalized coupling, say λ,
constant

β(u) = Λ ∂u

∂Λ
∣∣∣
λ
. (32)

Denoting ūα as dimensionful couplings with canonical mass dimension dα, we define

uα = k−dα ūα, (33)

where the couplings uα are now dimensionless. We can rewrite

βα(uα, k) = k∂kuα(k). (34)
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Now, the βα have an explicit k dependence and they define a vector field on T , as shown
later in Fig. 8. RG trajectories are solutions of equation (34). Following [46], we use these
definitions to compare two running couplings on the same RG trajectory, differing by an
infinitesimal RG transformation, from scale k to scale k − dk (the direction of increasing
coarse-graining is the direction of decreasing momentum-scale k):

k
∂uk

∂k
= β(u). (35)

This makes the evolution of β(u) local in coupling-space, since at each step, β(u) only depends
on the coupling evaluated at scale k. By definition, in the dimensionless T , a FP is a zero
of the β vector field, such that β(u∗) = 0. In this case, the dimensionless couplings u∗ do
not depend on scale [52, 53]. This is consistent with the scale invariance property of critical
systems shown by Kadanoff. Hence, Taylor expanding around the FP,

k
duk

dk
− k

du∗

dk
= β(uk)− β(u∗)

= dβ

duk

∣∣∣
u∗

(uk − u∗) +O
(

(uk − u∗)2
)

,
(36)

where dβ
duk

∣∣∣
u∗

is the Jacobi, or stability matrix with explicit indices

Bij = dβi

duk,j

∣∣∣
u∗

= ∂jβi(u∗). (37)

Thus, near the fixed point where uk ≃ u∗, we approximate to linear order in (uk − u∗) and
we get,

k
d(uk − u∗)

dk
≃ B(uk − u∗). (38)

Having linearized the RG flow near the fixed point, we can rewrite the beta function as

β(u) = k∂k(u(k)− u∗) ≃
∑

j

Bij(uj(k)− u∗
j ), (39)

where we highlight that u∗
j is not dependent on the scale k, or importantly, on the UV cutoff

Λ. Solving equation (39), we find in terms of k

ui(k) = u∗
i +

∑
I

CIV I
i

(
k

k0

)−θI

. (40)

CI are constants of integration. They are determined by the initial conditions, or starting
points, of the RG flow. θI are called stability, scaling or critical exponents, since they
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are related to the critical exponents of second order phase transitions when we apply the RG
formalism to critical phenomena [54,55]. Importantly, they are universal quantities, i.e. they
depend neither on the coordinate choice on T , {uα}, nor on the cutoff scheme [53]. To derive
equation (40) we used ∑

j

BijV I
j = −θIV I

i , (41)

i.e. VI are the eigenvectors of B with eigenvalues −θI . {V I} are sometimes called scaling
operators [48, 53]. We assume that {V I} form a complete set of eigenvectors, providing a
basis for the tangent spaces to T at the FP.

We derive equation (40) as follows. We define the difference between couplings

g(k) = u(k)− u∗, (42)

which is sometimes called the scaling field [48, 53]. Expanding in the complete basis {V I
i }

formed by the eigenvectors of Bij , we get

∑
i

gi(k)V I
i = ui(k)− u∗

i . (43)

Now, we can plug this into equation (39) to obtain

k
∂g(k)

∂k
=
∑

i

Bijgi(k)V I
i ,

k
∂g(k)

∂k
=
∑
i,I

(−θI)gi(k)V I
i ,

k
∂(∑i gi(k)V I

i )
∂k

= −
∑
i,I

θIgi(k)V I
i ,

(44)

where we used equation (41). Dropping the indices and the basis vectors [56], we get

k
∂g(k)

∂k
= −θIg(k). (45)

We can try solving this partial differential equation using the following general ansatz

g(k) = CI

(
k

k0

)−θI

, (46)

where k0 is a fixed reference scale and CI are constants of integration. As expected, equation
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(45) is solved by the ansatz (46):

∂g(k)
∂k

= ∂

∂k

(
CI

(
k

k0

)−θI
)

,

= (−θI)k−θI−1CI

( 1
k0

)−θI

,

∴ k
∂g(k)

∂k
= −θICI

(
k

k0

)−θI

,

k
∂g(k)

∂k
= −θIg(k).

(47)

We used the fact that k0 is a constant with respect to k. The ansatz (46) is exactly equivalent
to equation (40), which is indeed the general solution to (39):

ui(k) = u∗
i +

∑
I

CIV I
i

(
k

k0

)−θI

,

ui(k)− u∗
i =

∑
I

CIV I
i

(
k

k0

)−θI

,

∑
i

gi(k)V I
i =

∑
I

CIV I
i

(
k

k0

)−θI

,

g(k) = CI

(
k

k0

)−θI

.

(48)

We now introduce a general scale variable s parametrizing RG trajectories in the direction
of increasing coarse-graining, such that s = 1

b [46]. For instance, the momentum shell
previously defined in Fig. 3 now has bounds p ∈ [Λ

s , Λ]. Clearly, ∥s∥ > 1 since ∥b∥ < 1.
We replace the fixed reference momentum-scale k0 by the UV cutoff, and the RG trajectory’s
scale parametrization is now carried by s rather than k:

k0 = Λ,

k = Λ
s

.
(49)

We can then rewrite the general solution (40) in terms of this new parameter s:

ui(s) = u∗
i +

∑
I

CIV I
i

( Λ
s

Λ

)−θI

,

ui(s) = u∗
i +

∑
I

CIV I
i

(1
s

)−θI

,

ui(s) = u∗
i +

∑
I

CIV I
i sθI .

(50)
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As mentioned before, B is not symmetric in general and its eigenvalues may be complex
[57]. Still, couplings like g(s) are observables, and we expect to experimentally determine
such quantities. Hence, CI should cancel out contributions from the oscillatory behaviour of
sθI when Im(θI) ̸= 0 [53]. We can then determine the stability of the fixed point under RG
perturbations, s→ s + ds, solely from Re(θI). We can rewrite

g(s) = CIsRe(θI), (51)

or
ui(s) = u∗

i +
∑

I

CIV I
i sRe(θI) . (52)

In conclusion, around the FP u∗, the RG flow behaves as power laws along its eigendirections
V I [24, 37, 46–48, 53, 54, 56, 58–60]. We assume that the flow starts at couplings near the FP
but not necessarily in its basin of attraction [48]. We distinguish between three cases:

• Re(θI) > 0: since ∥s∥ > 1, sRe(θI) ↗ when s ↗. Hence, g(s) ↗ when s ↗ and
the coupling is greater at the coarse-grained scale Λ

s . Since g(s) = u(s) − u∗, then
the RG flow in the direction V I gets away from the FP. We call V I a linearly relevant
direction and g(s) a linearly relevant coupling. Indeed, in the direction of increasing
coarse-graining, we go from UV to IR physics so we say g(s) is ’relevant’ to low-energy
physics.

An action containing relevant couplings will be driven away from SUV . The RG trajectories
that these theories follow are shown as black lines in Fig. 5. Starting from the FP action
and turning on a relevant coupling generates a renormalized trajectory, i.e. the RG
flow emanating from the FP. This is the red line in Fig. 5. The black lines evolve along
this line in the direction of increasing coarse-graining [52].

• Re(θI) < 0: then sRe(θI) ↘ when s ↗. The flow in the direction V I approaches the
FP. In this case, V I is a linearly irrelevant direction and g(s) a linearly irrelevant
coupling. If u describes a trajectory on the critical surface of said FP, we have to set
CI = 0 such that lims→∞ u(s) = u∗. Irrespective of the initial conditions, if we turn on
irrelevant couplings in a given action, the RG flow will drive us back to the FP.

• Re(θI) = 0: g(s) is a linearly marginal coupling. We need to go beyond the linear
approximation to determine if it is relevant or irrelevant. The RG flow in this direction
is slow since it is logarithmic instead of a power law.

There are a clear decompositions of T from the eigenvectors of B following these definitions.
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We say the different V Is respectively span the relevant, irrelevant and marginal subspaces of
T [53, 56, 58–60]. The irrelevant sub-manifold of T , or the set of points attracted to a FP in
along the RG flow, is called the stable manifold of that FP.

Figure 5: Arrows point in the direction of increasing coarse-graining. From
equation (30), we know that theories on SUV are attracted to the FP in this
direction. The corresponding trajectories appear as grey dotted lines. Black lines
correspond to trajectories associated with actions containing relevant couplings.
They are driven away from SUV by the renormalized trajectory, the red line, i.e.
the RG trajectory emanating from the FP [60]. Points on such trajectory are
called perfect actions since they can be used to compute continuum answers
for physical quantities in the presence of a UV cutoff Λ [24, 47]. Theories
corresponding to black line trajectories are in the same universality class. That
is, they have the same long-distance physics [52].
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2.3 Non-Perturbative renormalizability

2.3.1 Different fixed points

Consider a set of beta-functions behaving as follows

βα(u) = −dαuα +O(2), (53)

where we sum over α = 1, 2, . . . and do not account for loop corrections coming from the
coupling. As before, the dimensionful couplings ūα have canonical mass dimension [ūα] = dα.
We now want to find a FP, that is, a solution to βα(u∗) = 0. An obvious solution is u∗

α = 0 for
all α, where dα ̸= 0. This solution defines a Gaussian Fixed Point (GFP), because the FP
action becomes quadratic and free in the fields, and the measure becomes Gaussian [24, 47].
There is always a trivial GFP, where all couplings vanish, at the origin of each theory space
T . The stability matrix of this FP is given by Bαj = ∂jβα(u) = −dαδα

j . This matrix is
diagonal and we established that its eigenvalues were −θα in equation (41). Hence, cancelling
the minus signs on both sides,

θα = dα. (54)

This motivates the introduction of a minus sign in equation (41). The eigenvalues of B are
exactly the canonical mass dimension of ūα. While we can find beta functions behaving
differently than in (53), the statement (54) is coordinate-independent, since θα are universal
for all α, and always defines a GFP. A Non-Gaussian Fixed Point (NGFP) is then defined
as a point where critical exponents can vary from their canonical value [53,56,58,59].

2.3.2 Dimension of SUV

We must impose that, for all couplings,

lim
k→∞

uα(k) = u∗
α. (55)

This will allow us to determine the dimensionality of the critical surface. Note, taking the
k → ∞ limit, provided that k ≤ Λ as it should, drives the UV cutoff Λ → ∞ as well. So
removing the cutoff Λ can be done by taking the UV limit k →∞ [24, 47].

Close to the FP, the general solution (52) to the linearized RG equation (39) provides a
valid description of all RG trajectories, whether they run in SUV or not [53]. Now, letting k →
∞, or equivalently s→ 0, in equation (52), makes terms corresponding to relevant directions
vanish, independently of the values of CI . Terms corresponding to irrelevant directions, with
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Re(θI) < 0, will diverge in the k → ∞ limit unless their CI = 0. Finally, terms with
Re(θI) = 0 will deviate from u∗ by a finite amount unless their CI = 0 as well. Therefore,
to impose the limit (55), we set CI = 0 for irrelevant and marginal directions. On SUV , we
rewrite

ui(s) = u∗
i +

∑
Re(θI)>0

CIV I
i sRe(θI). (56)

In conclusion, SUV is spanned by the RG trajectories emanating from the FP along the
relevant directions. The dimensionality of SUV , denoted ∆UV , is given by the dimensionality
of the relevant subspace of T , for k decreasing. Equivalently, it is the number of eigenvalues
of the stability matrix B with a positive real part:

dim(SUV ) ≡ ∆UV = #{θI , Re(θI) > 0}. (57)

This assertion is consistent with the following statement from statistical mechanics: the
dimension of the UV critical surface is the number of parameters one needs to fine-tune
to make the system critical [46].

Note, even though B may be an infinite dimensional matrix, ∆UV can be finite. Indeed,
the UV critical surface of a critical FP, those associated to second-order phase transitions, are
finite dimensional [32, 53]. For instance, there are two relevant directions for the transverse
field Ising model since only the temperature and magnetic field are needed to make the system
undergo a continuous phase transition [46].

2.3.3 Renormalization using fixed points

The analysis in Section 2.2.1 was done in the direction of increasing coarse-graining, i.e. in
the direction of decreasing momentum scale k. This is the direction of the RG flow. We could
also work in the inverse RG flow direction, i.e. increasing k. In this direction, a relevant
direction is a V I with non-zero CI and Re(θI) < 0, instead of Re(θI) > 0 under the RG flow.
The same logic applies to irrelevant and marginal directions. We can think about the sign
(direction) of the vectors V I changing. This negative sign is absorbed by Re(θI), making a
previously irrelevant direction relevant and vice-versa. We say irrelevant couplings are IR-
attractive and UV-repulsive, since they go towards the FP in the RG flow direction (from
UV to IR) and away from it in the direction of inverse RG flow (from IR to UV). On the
contrary, relevant couplings are UV-attractive and IR-repulsive.

By definition, SUV , the unstable manifold of a FP, is the subset of points in T that are
pulled towards the FP under the inverse RG flow, i.e. the relevant subspace of T . Equivalently,
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SUV is the set of points in T that can be reached by the RG, or renormalized trajectories
emanating from the FP, as seen in Fig. 5.

What do we mean here by ”renormalized”? From the concepts of theory space and
FPs, we arrive at a new notion of non-perturbative renormalization. The boundary of T
separates points with well-defined essential couplings uα (inside), and those with divergent
ones (outside). Now, we know removing a UV cutoff from a QFT amounts to integrating all
field modes out. To do this, there should exist a well-defined action at all momenta scales
k ∈ [0,∞). Geometrically, using a dimensionless language, renormalization theory is tasked
to construct a complete RG trajectory. That is, an infinitely long RG trajectory that
never leaves T , i.e. that never develops divergences. This must be true for finite scales
from the IR limit k → 0 up to the UV limit k → ∞, and at both limits. Every such
RG trajectory corresponds to a renormalized QFT. Thus, non-perturbative renormalization
becomes a problem about the behaviour of the trajectories in infinite dimensional T after
enough RG ’time’. RG time is denoted t where t ≡ ln

(
k
k0

)
[53, 54].

When looking for complete RG trajectories, it is notoriously difficult to ensure that
the trajectories stay in T at k → ∞. This is the reincarnation of the high-momenta UV
divergences met in Section 2.1.1. To overcome this challenge, we can perfom the UV limit
k → ∞ at a FP. This point is a zero of the β⃗ ≡ βα vector field where the momentum-
scale running of the dimensionless couplings encoded in βα stops. The ’velocity’ of the RG
trajectories ∂tuα = βα is small in the viscinity of this FP since the βα are small. Therefore, if
the RG trajectory describing a QFT is expected to run into a FP when k →∞, we can use-up
an infinite amount of RG time while staying within an infinitesimally small neighbourhood of
the FP. In doing so, we ensure that the RG trajectory stays inside T when taking the UV limit,
i.e. it develops no divergences at high-energies since the FP is an inner point of theory space.
We say the corresponding QFT is asymptotically safe from UV divergences when removing
the cutoff. To ensure that the trajectory of a QFT hits the FP at k → ∞, its couplings
must be on the UV critical surface of said FP [32,53,54,56,58,59]. Therefore, a trajectory is
complete if and only if it lies upon the UV critical hypersurface of the corresponding FP.

2.4 The Asymptotic Safety Program

2.4.1 Weinberg’s criteria for asymptotically safe theories

The expression ’asymptotic safety’, first introduced by Weinberg in 1979 [32], refers to the
’asymptotic freedom’ of non-Abelian gauge theories, such as QCD [34, 35]. Asymptotic
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freedom is the realisation of the method outlined in Section 2.3.3, restricted to cases where
we take the UV limit k → ∞ at a GFP. As required, QCD lies on the UV critical surface of
the GFP at the origin of its theory space TQCD, where couplings vanish. We would like to
apply this formalism to GR. However, asymptotic freedom fails for the EH action. Requiring
that the EH action is dimensionless in non-natural units, we find that the dimensionful
gravitational coupling, Newton’s constant ḠN, has negative mass dimension [ḠN] = −2 in
exactly 4 dimensions. Therefore, it is irrelevant in the direction of inverse RG flow. From
equation (54) and the analysis in Section 2.2.1, this statement entails that GR is not on the
UV critical surface of the corresponding GFP [53,54].

To tackle this issue, in his seminal 1979 paper [32], Weinberg proposes a conjecture
about the existence of the UV limit in quantum gravity. Now, this conjecture is known as
the Asymptotic Safety scenario or Asymptotic Safety program. Weinberg’s renormalizability
condition based on Wilson-Kadanoff renormalization [15,16,20,21,38,45,61] is the following:
a QFT is asymptotically safe (UV complete) if it lives on the UV critical surface
of a corresponding non-trivial fixed point [32]. His conjecture is divided in two non-
perturbative renormalization conditions as follows:

• (AS1) The theory space T contains a NGFP and the corresponding SUV has low-
dimensionality, i.e. ∆UV is finite.

• (AS2) Every trajectory that does not hit said NGFP develops divergences in the UV
limit k →∞, or Λ→∞.

2.4.2 Predictivite power of asymptotically safe theories

The second part of condition (AS1) connects asymptotic safety to phenomenology [56]. Indeed,
if ∆UV <∞ for some FP, the RG trajectory running into it corresponds to a QFT which is as
predictive as a perturbatively renormalizable theory with ∆UV ’renormalizable couplings’ [54].
We elaborate on these statements now.

Asymptotically safe theories aim to be fundamental QFTs, that is theories valid at arbitrarily
high momentum scale. In this regard, they are different from EFTs that require, at higher
momenta, an ever increasing amount of couplings to be determined by experiments. By
requiring the existence of a continuum limit, and presupposing the existence of a FP, we reduce
the RG dynamics to the UV critical surface, making finite the number of free parameters of the
model. These parameters determine the dynamics at all scales, since they are part of complete
RG trajectories, i.e. trajectories which correspond to theories that have the same IR physics
as that of the FP, a point of scale invariance [59]. Let us now explain how asymptotic safety
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reduces the number of experimentally determinable parameters.
The limit k →∞ places all RG trajectories on SUV since all CI = 0 for irrelevant couplings

in this infinite cutoff limit. We determined in Section 2.3.3 that relevant couplings are UV-
attractive under the inverse RG flow, so they span SUV . Any point on SUV can be reached
in the IR by a RG trajectory emanating from the FP in the UV.
Hence, IR values of relevant couplings are not predicted and need to be determined by
experiments. There is a family of ∆UV free parameters of the model. Of these ∆UV , there
are (∆UV − 1) RG trajectories approaching u∗ in the UV, since we must specify (∆UV − 1)
constants of integration in equation (52) to identify one specific RG trajectory in SUV . Hence,
(∆UV − 1) parameters are dimensionless and only one parameter is dimensionful. The latter
tells us where we are on the chosen RG trajectory in terms of k [32]. We see that the
predictability of the theory increases when ∆UV decreases [54]. Therefore, for the theory to
be predictive, we require that ∆UV be finite.
In contrast, all orthogonal directions to the FP (the stable manifold, spanned by irrelevant
couplings) are predictable since they are IR attractive. That is, there is no freedom in the IR
values of the irrelevant couplings because they are determined by the FP values [56].

In conclusion, the conditions (AS1) and (AS2) of asymptotic safety play a role similar to
the usual perturbative renormalizability condition, in QED for instance [53]. That is, they
fix all parameters of the theory (irrelevant couplings) but a finite number of them (relevant
couplings) [32].

Some couplings do not affect the explicit expressions of some observables. These couplings
might diverge at k → ∞ and not be ascribed FP values. Said couplings do not affect the
theory’s predictivity so we call them inessential, following Weinberg [32]. This is why, up to
now, we focused on essential couplings to parametrize theory space, as in Section 2.2.1.

2.4.3 The first hint of asymptotic safe gravity: gravity in 2 + ϵ dimensions

As we mentioned in Section 2.4.1, asymptotic freedom fails for GR. Hence, to build a theory of
quantum gravity, we might want to look for a NGFP, where u∗

α ̸= 0, and take the continuum
limit at this point, à la Asymptotic Safety. However, nothing guarantees that we can use
Asymptotic Safety to complete GR at asymptotically high-energies. In particular, there is no
reason why there should exist a FP that satisfies the requirements (AS1) and (AS2).

To solve this problem, Weinberg uses results from the study of critical phenomena [32].
The failure of mean field theory shows that some phase transitions are not governed by GFP,
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outlining the need to look for other FP. This problem was solved by Wilson and Fisher in
1972 by considering a continuous change in the spacetime dimension of the physical system,
known as the ϵ expansion [17,18].

Weinberg studied a toy model inspired by this solution, namely gravity in D = 2 + ϵ

dimensions with ϵ ≪ 1, and found it displayed a FP that did satisfy both (AS1) and (AS2).
This is the first hint that asymptotic safety may be applied to gravity. It constitutes the
original motivation for the presentation of the Asymptotic Safety Program by Weinberg in
1979 [24,32,47,53,54].

The EH bare action in exactly 2 dimensions is given by

SEH = 1
GN

∫
d2x
√
−gR(g), (58)

where g = det(gµν). As usual, the scalar curvature has canonical mass dimension [R] = −2
in natural units. This comes from the derivative terms of the Riemann tensor. When d = 2,
requiring that SEH be dimensionless entails that GN is also dimensionless. Hence, the theory
described by (58) is power counting perturbatively renormalizable [24,47,53]. However, action
(58) is a topological invariant, i.e. it is invariant under homeomorphisms, and is equal to

SEH = 4πχ where χ = 2− 2h, (59)

where h is the genus of the topological surface. Therefore, the Einstein tensor Gµν = 0 and
the system is not dynamical, i.e. it has a trivial kinetic term [62]. To solve this problem,
we can study the behaviour of beta functions near D = 2, i.e. at D = 2 + ϵ with ϵ ≪ 1.
This dimensional regularization gives rise to two different types of poles in 1/ϵ [24,47,53,62].
The first one originates from the usual UV divergences. The second arises since the action is
purely topological at ϵ → 0+. In this case, the graviton propagator gets ’kinematical’ poles
of order 1/ϵ. This pole structure is derived in Appendix A.

Another difficulty, specific to gravity, is encountered. In pure gravity ḠN is an inessential
parameter. That is, it can be absorbed by fields redefinitions. To resolve this issue, we use
perturbative renormalization, and start by absorbing the two divergences into renormalized
quantities. This turns the bare coupling ḠN into a running, or floating coupling ḠN(µ) where
µ is the renormalization mass scale of the dimensional regularization scheme [53]. Since µ is
not an observable, only the flow of Newton’s constant relative to that of another observable
has meaning. This comparison amounts to making ḠN(µ) into an essential coupling. The
coefficient of the reference operator corresponding to said observable is denoted γ and is fixed
to be constant [24,30–32,47,63–65]. γ can be chosen to be:
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• a cosmological constant term
∫

d2+ϵx
√

g [30–32],

• monomials from matter fields that are quantum mechanically scale invariant in D = 2,

• monomials from matter fields that are quantum mechanically not-scale invariant in
D = 2,

• the conformal mode ϕ of the metric gµν in a background field expansion [63–65].

While the exact value of γ differs depending on what reference observable we choose, it is
agreed in the literature that γ > 0 in pure gravity [24,47,53,63–65]. We choose to derive the
Callam-Symanzik equation at one-loop order in perturbation theory using the cosmological
constant term as a reference operator [30–32]. Since [ḠN] = −ϵ, in D = 2 + ϵ dimensions, we
start by using the bare dimensionless coupling

G0 = µϵḠ0, (60)

We can expand these couplings in a Laurent series

G0(µ) = G(µ) +
∞∑

ν=1
ϵ−νγν(G(µ)), (61)

where we denote G as the finite part of G0. Now we perform µ∂µ on both sides of the equation
to get

ϵG(µ) + γ1(G) +
∞∑

ν=1
ϵ−νγν+1(G) = β(G) +

∞∑
ν=1

ϵ−ν ∂γν

∂G
β(G), (62)

where we used the renormalization group equation µ∂µG(µ) = β(G, ϵ). We rearrange this
into

β(G) =
(

ϵG(µ) + γ1(G) +
∞∑

ν=1
ϵ−νγν+1(G)

)(
1 +

∞∑
ν=1

ϵ−ν ∂γν

∂G

)−1
. (63)

We can take a binomial expansion of the second term on the RHS to obtain,

β(G) = ϵG(µ)−G(µ)∂γ1
∂G
−

∞∑
ν=2

ϵ−ν ∂γν

∂G
+ γ1(G) + γ1(G)

∞∑
ν=1

ϵ−ν ∂γν

∂G
+

∞∑
ν=1

ϵ−νγν+1(G)

−
( ∞∑

ν=1
ϵ−νγν+1(G)

)( ∞∑
ν=1

ϵ−ν ∂γν

∂G

)
+ . . . ,

β(G) = ϵG(µ) + γ1(G)−G(µ)∂γ1
∂G

+O
(1

ϵ

)
.

(64)

Ultimately we want to come back to exaclty 2 dimensions, so we take the limit ϵ → 0+. We
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are left with
β(G) = ϵG(µ) + γ1(G)−G(µ)∂γ1

∂G
. (65)

For small G we expect γ1 = γG2 +O(G3). Discarding terms of order O(G3), we are left with

βpert ≡ µ
∂

∂µ
(G(µ)) = ϵG− γG2. (66)

It is possible to show that all choices of reference observable lead to the flow equation (66)
[24, 47]. We check that it is true for at least one other reference observable in Appendix A.
For all γ > 0, this RG flow contains a NGFP in the UV at

G∗(µ) = ϵ

γ
. (67)

The derivation presented in this section is only valid for ϵ≪ 1 and it is not at all clear whether
we can extend this to the physical case ϵ = 2. At Weinberg’s time [32], this perturbatively
accessible NGFP was the only evidence for the non-perturbative renormalizability of pure
gravity, in the sense outlined in Section 2.4.1. This changed when the EAA for gravity was
introduced [53,66]. We will come back to this in Section 3.1.6.
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3 Methods for the Asymptotic Safety program

We now compare two methods used to derive a quantum theory of gravity using the formalism
of Asymptotic Safety. The first is the Functional Renormalization Group (FRG) formalism
which is based on the concept of the EAA [53,55,67–78]. The second, introduced by Nierdemaier
[79,80], is based on the use of perturbation theory and results from higher-derivative gravity
theories.

There is additional evidence to support the Asymptotic Safety scenario from methods such
as dimensional reduction [24,47]. This is out of the scope of this dissertation.

3.1 The Functional Renormalization Group

The most commonly used non-perturbative method in the Asymptotic Safety scenario is based
on the Functional Renormalization Group Equation (FRGE), first introduced by Wetterich
[67] and adapted to gravitational scenarios by Reuter [66]. Originally, it was used to probe
the scale dependence of a QFT, to extract β-functions and look for asymptotic safety [56,67].

3.1.1 Motivation

In Section 2.1.1, we argued that we could define real integrals as limits of Riemannian sums.
Yet, if we think about path integrals like (7) as weighted sums over all histories, ensuring
the convergence of such sums is much harder than for real integrals. This is because path
integrals usually involve a high-order of infinity of paths to sum over. We could try to find
a normalizing factor, similar to h in Fig. 1, to define (7) as the limit of a sum. However,
Feynman says: ”Unfortunately, to define such a normalizing factor seems to be a very difficult
problem and we do not know how to do it in general terms.” [40].

As we shall see, the power of the FRGE approach lies in ’taking the derivative’ of the
gravitational path integral. Indeed, rather than studying the integral per se, we interpret it
as the solution of a differential equation called the FRGE. The FRGE can be considered as a
closed ’evolution equation’ taking place in an infinite dimensional dynamical system where the
RG scale plays the role of time [53,58]. Contrary to the path integral, the evolution equation
itself is well-defined since it describes infinitesimal changes in the IR cutoff k (see Appendix
B) [24,47,56,58,59,66].

3.1.2 Background independence

We focus on the possibility of constructing a QFT of gravity in which the spacetime metric
carries the dof associated with ’space’, i.e. the background is dynamical, and the symmetry
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is given by diffeomorphism invariance. Such theory is generically called Quantum Einstein
Gravity (QEG). Such quantization is quite difficult, since it is in contradiction with the
usual construction of other QFT where we perform calculations on a rigid, non-dynamical
background structure, e.g. Minkoswki spacetime [24, 47, 53]. In the same sense as GR,
background independence is required to construct a quantum theory of gravitation. More
precisely, none of the theory’s rules, assumptions and predictions should depend on a specific
metric chosen a priori. The physically relevant metrics should arise from the intrinsic gravitational
dynamics. However, in many ways, this impairs FRG methods when applying them to
gravity. Firstly, regularization schemes depend heavily on the metric given by the background
spacetime. Secondly, when requiring background independence, non-perturbative methods
suffer from the concept of coarse-graining becoming ill-defined. Even more so when trying to
use Wilson-type methods that rely on iterative coarse-graining. For instance, coming back
to Section 2.1.2.1, (i) what metric should we use to measure a physical block of spins? (ii)
How then should we rescale? (iii) How to discriminate between IR and UV dof, (iv) and how
should we integrate out modes?

To answer these questions and comply with the requirement of background independence
in Asymptotic Safety, we adopt the following strategy. We use a classical background metric
ḡµν at intermediate steps of the quantization and check at the end that observables do not
depend on the choice of said metric. This background field method is similar in spirit to the
method introduced by DeWitt [81, 82]. It is akin to the one used to investigate gravity in
2 + ϵ dimensions in Appendix A, and is central to the gravitational EAA approach [66]. Even
though the background independence is not explicit at intermediate quantization steps, this
strategy is interesting because it allows us to use the tools from conventional background-
dependent QFT [53]. We define the quantum operator ĝµν , i.e. the quantum metric, as

ĝµν = ḡµν + ĥµν . (68)

Its expectation value is the full spacetime metric of quantum gravity gµν such that

⟨ĝµν⟩ ≡ gµν = ḡµν + hµν . (69)

Here, ⟨ĥµν⟩ ≡ hµν , defines the fluctuation from the background classical metric ḡµν . These
definitions correspond to the ’bi-metric’ approach to the background independence problem,
where we discriminate between gµν and ḡµν [83–87]. We have answered questions (i) and (ii)
raised earlier in this section.
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3.1.3 Asymptotic Safety reformulated

The goal of the asymptotic safety program is to give mathematical meaning, and to compute
the functional integrals, over all off-shell geometries, of the form

Z =
∫
Dĝµνe−S[ĝµν ], (70)

from which physical quantities can be deduced [24, 47, 53]. This approach for quantizing
gravity was originally adopted by Feynman and Misner [88,89]. Though this viewpoint is not
shared in the asymptotic safety community, some [24,47] claim that overcoming the difficulties
of a functional integral picture is preferable to losing the intuitive physical premise based on
past matter-interaction quantizations [8,9]. We accept this point of view in this dissertation.

We now address three important issues that will constrain (70).

• To address the background independence problem we use results from Section 3.1.2 and
replace the integration over ĝµν by an integration over ĥµν , i.e. Dĝµν → Dĥµν . This
makes our task easier, since the problem is now akin to the quantization of a matter
field ĥµν in a fixed classical background ḡµν [53, 66].

• As in every QFT, we want to quantise infinitely many dofs. Hence, we introduce IR
and UV cutoffs, respectively called k and Λ, at intermediate steps of quantization [53].

• To quantize gravity, a gauge theory, the bare classical action S[ĝµν ] must be diffeomorphism
invariant. Diffeomorphic metrics are all equivalent gauge field configurations. To avoid
over-counting in each ’gauge orbit’, or solution of the path integral, we follow [53]
in using the Fadeev-Popov gauge fixing method [90]. To S, we add the gauge-fixing
term Sgf ∝

∫ √
ḡḡµνFµFν , where Fµ ≡ Fµ(ĥ, ḡ). The condition Fµ = 0 picks one

representative per gauge orbit, i.e. class of equivalent diffeomorphic metrics. The
Fadeev-Popov determinant is expressed as a functional integral over the Grassmannian
ghost fields Cµ and C̄µ. This functional integral is governed by exp{−Sgh}.

Equation (70) becomes
Z̃[Φ̄] =

∫
DΦ̂e−Stot[Φ̄,Φ̂], (71)

where the total bare action is Stot = S + Sgf + Sgh. It depends on the dynamical field
Φ̂ ≡ (ĥµν , Cµ, C̄µ), on the background field Φ̄ ≡ (ḡµν), and sometimes on other matter fields,
not included for simplicity. If we did add matter fields, Φ̂ may have been altered in this
redefinition.
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3.1.4 The Effective Average Action

We define the ordinary effective action as Γ, a functional depending on Φ ≡ ⟨Φ̂⟩, which reduces
to S[Φ] in the classical limit. It yields the solution to the quantum mechanical field equation
(δΓ[⟨Φ̂⟩]/δΦ) = 0. From the previous section, this action depends on both cutoffs such that
Γ ≡ Γk,Λ[Φ, Φ̄]. The EAA is obtained from the following functional integral

Zk,Λ[J, Φ̄] ≡
∫
DΦ̂e−SJ

tot[Φ̄,Φ̂]e−∆Sk[Φ̂,Φ̄], (72)

where we replaced Stot by SJ
tot ≡ Stot −

∫
dxΦ̂(x)J(x) to couple the dynamical fields to a

classical external source J(x) [24,47,53,56,58]. The second exponential, containing the cutoff
action ∆Sk[Φ̂, Φ̄] achieves the IR regularization [67,68,68].

We now show how this regularization is realised. We expand the integration variable Φ̂ in
terms of the eigenfunctions φp of the covariant Laplacian operator related to the background
metric D̄2 ≡ ḡµνD̄µD̄ν . We have −D̄2φp = p2φp and so we write symbolically Φ̂(x) =∑

p αpφp(x). We replace the integration over Φ̂(x) by an integration over the generalized
Fourier coefficients

Zk,Λ[J, Φ̄] =
∏

p2∈[0,Λ2]

∫ ∞

−∞
dαp exp

{
−SJ

tot[{αp}, Φ̄]−∆Sk[φp, {αp}, Φ̄]
}

. (73)

We retained only the squared momenta modes, i.e. −D̄2 eigenvalues, smaller than Λ2. The
cutoff action is given by ∆Sk[Φ̂, Φ̄]

∆Sk[φ] = 1
2

∫
dDp

(2π)D
φ(−p)Rk(p2)φ(p) (74)

where Rk ∝ k2R(0)(−D̄2/k2) is the cutoff operator, or mode-suppressing operator. R(0)

is a dimensionless function. In the −D̄2 basis, ∆Sk[φ] ∝ k2∑
p R(0)(p2/k2)α2

p contains a
p2-dependent ’mass’ term. We want R(0)(p2/k2), the mode suppressing part of the cutoff
operator, to be like a smeared step function which kills terms satisfying p2 ∈ [0, k2]. We then
write

R(0)
(

p2

k2

)
=

0, p2

k2 ≳ 1,

1, p2

k2 ≲ 1.
(75)

One example of such mode-suppressing function is shown in Fig. 6. In explicit calculations,
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Figure 6: Typical cutoff shape function separating momentum modes p

above and below the squared IR cutoff k. The hatched red area highlights
an area of significant mode suppression [91].

we often use the ’exponential cutoff’

Rk(p2) = p2
(

exp
{

p2

k2

}
− 1

)−1
, (76)

even though other cutoff operators are available [55,92–95]. The low-momentum modes (p2 <

k2) in (73) are indeed suppressed by a Gaussian exponential factor e−k2α2
p whereas high-

momentum ones, p2 ∈ [k2, Λ2], are unaffected by ∆Sk[Φ̂, Φ̄].
The background metric, via the covariant Laplacian D̄2, defines which modes are high

or low-momentum when tuning the scale k between Λ and 0. Lowering the IR cutoff from
k = Λ to k = 0 ’un-suppresses’ modes of increasingly small momenta. This process, called
’integrating out’ in FRGE language, is shown in Fig. 7. Importantly, encoding the contributions
of momentum modes to Zk,Λ[J, Φ̄] in a ’running’, or scale-dependence, of the cutoff action
functional (74) is precisely a Wilsonian view of renormalization [24, 47, 53, 56, 58]. Thus, we
answered questions (iii) and (iv) raised in Section 3.1.2.

In Appendix B, we derived the Wetterich equation (167) [67], i.e. the FRGE for the EAA
defined in (161). We now outline the important properties of this FRGE and its corresponding
EAA [24,47,53].

The EAA Γk,Λ, scale dependent solution of the FRGE, forms a RG trajectory in the
corresponding theory space [91]. Its end points are the bare microscopic action Stot,Λ, reached
at k → Λ for large Λ, and the UV regularized ordinary effective action ΓΛ reached when k → 0.
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Figure 7: Modes with covariant (squared) momentum above k2, appearing
as blue hatched areas, are integrated out following the method devised in
Section 2.1.2.2. Modes below k2 are suppressed by functions such as (76),
which typical shape appears in Fig. 6. Lowering the IR cutoff to k′ amounts
to integrating out the fields in the interval p ∈ [k′, k]. This corresponds to
coarse-graining in a Wilsonian sense [91]. Solving the FRGE from some
very high fixed UV scale k = Λ, where the initial condition Γk,Λ = Stot,Λ ≡
S is imposed, down to k amounts to integrating out modes with ∥p∥ ∈ [k, Λ].
Going as far as k = 0 yields the ordinary Wilsonian effective action Γk,Λ =
ΓΛ [53].

This is shown in Fig. 8. This interpolation of the EAA is schematically

ΓΛ
k→0←−−− Γk,Λ

k→Λ−−−→ Stot,Λ. (77)

The latter statement, limk→0 Γk,Λ = ΓΛ, follows from equation (75). Indeed, Rk(p2) = 0
for all p2 > 0; then, from (161) and (159) the EAA does reduce to the ordinary average
action. Justifying the former statement involves (168). We know from (75) that Rk(p2) →
k2 for k → Λ and Λ large. Hence, the second exponential on the RHS of (168) becomes
exp

{
−k2 ∫ dDx(Φ̂− Φ)2

}
which approaches a delta-functional δ[Φ̂ − Φ] up to an irrelevant

factor. We can perform the integration over Φ̂ in the rest of (168) and we finally recover
limk→Λ Γk,Λ ≈ Stot,Λ for Λ large. A more careful treatment of this argument, based on the
saddle point approximation of equation (168), is presented in [67].
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Figure 8: The blue area denotes a generic theory space, or equivalently a space
of all action-functionals A[·]. This hyperspace may be infinite dimensional. It
is parameterized by essential couplings. A vector field β⃗ ≡ βα is defined by
truncating the generic FRGE (167), i.e. expanding A[·] in terms of couplings.
This is shown explicitly in Section 3.1.7. We relate notations with remark 3.1.4
of Section 3.1.4 as follows. Γ ≡ Γk,Λ interpolates between the ordinary effective
action Γ0 = Γ ≡ ΓΛ and the bare microscopic fixed point action Γ∗ = Γ∞ ≡
Stot,Λ. The arrow on the RG trajectory corresponding to Γ goes in the direction
of decreasing mass-scale k, i.e. in the direction of increasing coarse-graining
[54].

3.1.5 The UV renormalization problem reformulated

All previous discussions, including Appendix B, have been done with fixed UV cutoff Λ.
However, the central theme of the UV renormalization problem is the removal of the UV
cutoff [24,47]. In this FRG framework, we distinguish between two aspects.

1. The first, trivial one, is removing the UV cutoff from the trace on the RHS of the
Wetterich equation (166). This can be done since (Γ(2)

k,Λ[Φ, Φ̄] + Rk,Λ[Φ̄]) defines a
bounded operator. Indeed, the trace is finite in the IR and UV (also staying finite
when taking the limit Λ → ∞). The former property is implemented by the mass-like
regulator Rk,Λ in the denominator. The latter property is ensured by the fact that, in
momentum representation, (Γ(2)

k [Φ, Φ̄] +Rk[Φ̄]) ∝ (p2 +Rk(p2) + . . . ) and [k ∂
∂kRk(p2)]

are only non-zero around p2 ≈ k2. A more careful discussion is presented in Appendix
B.

2. The second, non-trivial one, is sending the UV cutoff to infinity in the EAA itself. This
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directly relates to the traditional UV renormalization problem. Truly, since Γk,Λ[Φ, Φ̄]
comes from a regularized functional integral, it will develop the usual UV divergences
outlined in Section 2.1.1. To solve this issue, we can fine tune the bare action S, in
Stot,Λ ≡ S + Sgf + Sgh, so that the functional integral is asymptotically independent
of Λ. As shown in Section 3.1.8, the FRGE is precisely solved from some very high
fixed UV scale k = Λ, where the initial condition Γk,Λ = Stot,Λ is imposed, down to k.
However, the FRGE itself does not provide any means of identifying how to adjust the
bare action [24,47,79,80,96].
Still, there are ways to investigate the EAA’s RG flow in a generic theory space T to
find a NGFP without specifying the bare action. If this NGFP satisfies both (AS1) and
(AS2), we can UV-complete a gravity theory in the ’asymptotically safe’ way. Said FP
then becomes the bare action. The task of finding a bare classical action that reproduces a
given effective one is known as the reconstruction problem [97,98]. A ’reconstructive’
strategy is used to investigate QEG for instance [53,54].
This represents one of the strengths of the Asymptotic Safety program. The bare actions,
corresponding to UV fixed points actions of the RG flow, can be considered as predictions
of Asymptotic Safety rather than required inputs [24,47,53,91]. The Asymptotic Safety
program based on the EAA then amounts to a research process among quantum theories,
rather than the quantization of a given classical system.
We will come back to this in Section 3.3.

3.1.6 A FRGE for the gravitational EAA

We now focus on the examination of QEG by investigating the RG flow of a gravitational
EAA (GEAA), defined by a corresponding FRGE. That is, we study a gravitational version
of the path integral (72) as a solution of an evolution equation, the gravitational FRGE.
We follow exactly the method outlined in Appendix B, by making explicit the fields denoted
as Φ, to derive a gravitational FRGE for the GEAA [54, 66, 91, 99]. For simplicity we drop
hats on quantum operators for now. The gravitational generating functional is given by

exp{Wk[tµν , σµ, σ̄µ, ḡµν , βµν , τµ]} =∫
DhµνDCµDC̄µ exp

{
−S[ḡ + h]− Sgf[ḡ, h]− Sgh[ḡ, h, C, C̄]−∆Sk[ḡ, h, C, C̄]− Ssource

}
.

(78)

For the gravitational field itself, in Euclidean signature (where the tensor density of the volume
element has a positive sign in front of the spacetime metric’s determinant inside the square
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root), the cutoff action is given by

∆Sk[h, C, C̄, ḡ] = 1
2κ2

∫
dDx

√
ḡhµνRgrav

k [ḡ]µνρσhρσ +
√

2
∫

dDx
√

ḡC̄µRgh
k [ḡ]Cµ, (79)

where κ ≡ (32πḠbare
N )−1/2. The cutoff operators have the general form Rk[ḡ] = Zkk2R(0)(−D̄2/k2).

As explained in Section 3.1.4 and shown in Fig. 6, the shape function R(0)(−D̄2/k2) is chosen
to smoothly interpolate between R(0)(0) = 1 and R(0)(∞) = 0. Note, Zgh

k is a pure number
whereas Zgrav

k is a tensor defined as

(Zgrav
k )µνρσ = ḡµν ḡρσZgrav

k . (80)

Coupling hµν , Cµ and C̄µ to the sources tµν , σ̄µ and σµ, we obtain the following source action

Ssource = −
∫

dDx
√

ḡ[tµνhµν + σ̄µCµ + σµC̄µ + βµνLC(ḡµν + hµν) + τµCν∂νCµ], (81)

where the last two terms are required by BRST symmetry, which is out of the scope of this
dissertation. LC is defined as the Lie derivative with respect to the ghost vector field. We
define the expectation values of the quantum fields, i.e. classical fields, as follows

h̄µν ≡ ⟨hµν⟩ = 1√
ḡ

δWk

δtµν
, ξµ ≡ ⟨Cµ⟩ = 1√

ḡ

δWk

δσ̄µ
, ξ̄µ ≡ ⟨C̄µ⟩ = 1√

ḡ

δWk

δσµ
. (82)

Finally, the gravitational EAA (GEAA) is given by

Γk[h̄, ξ, ξ̄, β, τ, ḡ] =
∫

dDx
√

ḡ

(
tµν h̄µν + σ̄µξµ + σµξ̄µ

)
−Wk[t, σ, σ̄, β, τ, ḡ]−∆Sk[h̄, ξ, ξ̄, ḡ] .

(83)
Now, using (69) we define

Γk[h̄, ξ, ξ̄, β, τ, ḡ] ≡ Γk[g − ḡ, ξ, ξ̄, β, τ, ḡ]. (84)

It is now easier to see that the GEAA is invariant under general coordinate transformations,
when all its arguments transform as tensors of the corresponding rank, including the classical
background metric ḡµν [54, 66,91]. Indeed, since

Wk[J + LvJ ] = Wk[J ] , J ≡ (tµν , σµ, σ̄µ, ḡµν), (85)
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then we can write

Γk[Φ + LvΦ] = Γk[Φ] , Φ ≡ (gµν , ḡµν , ξµ, ξ̄µ). (86)

We now assume that the functional measure in (78) is diffeomorphism invariant. In addition, it
is shown in [66] that setting ξ = ξ̄ = 0 does not change the symmetry of the GEAA. Finally,
we succeeded in constructing a diffeomorphism invariant generating functional for gravity,
since both Γk[gµν , ḡµν , ξµ, ξ̄µ] and Γk[gµν , ḡµν , 0, 0] are invariant under the general coordinate
transformations δgµν = Lvgµν [54,66]. Importantly, whilst the physically interesting situation
is given by Γk[gµν , ḡµν , 0, 0], we must first solve the RG dynamics of (83) before setting the
classical ghost fields ξ and ξ̄ to zero [53,66].

The GEAA (83) is a solution of the exact non-perturbative gravitational FRGE

∂

∂t
Γk =1

2 Tr
[
(Γ(2)

k + R̂k)−1
h̄h̄

(∂tR̂k)h̄h̄

]
− 1

2 Tr
[{

(Γ(2)
k + R̂k)−1

ξ̄ξ
− (Γ(2)

k + R̂k)−1
ξξ̄

}
(∂tR̂k)ξ̄ξ

]
,

(87)

where we defined the RG time as t ≡ ln k, such that k∂k = ∂t. This equation is exact, since
it contains all couplings: we call it an Exact Renormalization Group Equation (ERGE). The
GEAA (83) and its corresponding gravitational FRGE (87) have the properties outlined in
remark 3.1.4. Now, Tr[. . . ] is thought of as

∫
dDx

√
ḡ(x) in position space. Instead, the trace

is understood as
∫

dDx for a generic, non-gravitational FRGE, as presented in Appendix B.
Similarly, the Hessian of the GEAA is, at fixed ḡ,

Γ(2)
k (x, y) = 1√

ḡ(x)ḡ(y)
δ2Γk

δφ(x)δφ(y) , (88)

where we defined φ ≡ (h̄µν , ξµ, ξ̄µ) as the dynamical fields. The functional derivatives are
left-derivatives in the ghost sector [54,66,91,99].

The background gauge invariance of the GEAA expressed in (86) will play a key practical
role in Section 3.1.7. Truly, if we know a priori that the initial functional does not contain non-
invariant terms, then no symmetry-violating terms will be generated during the RG evolution.
This reduces the number of operators to be retained in a reliable truncation of theory space,
i.e. an invariant combination of the fields. Such approximation is customarily used to solve
(87) [24,47,53,54,56,58,59,66,91,99]. We now study this method in more detail.
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3.1.7 Truncations of theory space

First, using the results and notations from Appendix B and [53, 54], we investigate general
truncations. We start by decomposing a general theory space T . A generic point action
functional A ∈ T admits an expansion in terms of infinitely many action functionals Iα[·],

A[Φ, Φ̄] =
∑

α

ūαIα[Φ, Φ̄], (89)

where α = 1, 2, . . . . Again, ūα, the components of A[·] in the basis {Iα}, are dimensionful
essential couplings, sometimes called generalized couplings [53,54]. Iα[Φ, Φ̄] are monomials
of powers of both fields Φ and Φ̄ and their derivatives, all evaluated at the same point,
and integrated over all spacetime. Geometrically, the integral curves of (167) are the RG
trajectories k 7→ Γk. They are one-parameter families of actions like the EAA Γk, defined in
(161), i.e. they are solely parametrized by the scale k. For fixed values of k, we can expand
Γk as in (89),

Γk[Φ, Φ̄] =
∑

α

ūα(k)Iα[Φ, Φ̄]. (90)

The k dependence of the EAA is now carried by the running coupling constants ūα(k). We
can plug (90) in the Wetterich equation (167) to yield

∑
α

k∂kūα(k)Iα[Φ, Φ̄] = 1
2 Tr

{(∑
α

ūα(k)I(2)
α [Φ, Φ̄] +Rk[Φ̄]

)−1
k∂kRk[Φ̄]

}
. (91)

In turn, we can expand the Tr{. . . } term on the RHS in terms of {Iα[·]} as 1
2Tr{. . . } =∑

α β̄α(ū1, ū2, . . . , k)Iα[Φ, Φ̄]. The expansion coefficients on the RHS are interpreted as beta-
functions. We then arrive at the following system of infinitely many coupled partial differential
equations

k∂kūα(k) = β̄α(ū1, ū2, . . . , k). (92)

These are precisely the RG equations (31) we promised to derive in Section 2.2.1. They define
the vector field β⃗ ≡ βα on T , shown in Fig. 8. The local potential approximation is an
example of a truncation of the scalar theory space [24,39,47,53,54].

3.1.8 The Einstein-Hilbert truncation

With these tools in hand, our goal is to solve (87), subject to the initial condition Γ∗ =
Γ∞ ≡ Stot,Λ, and search for a NGFP in the RG flow of the GEAA. However, practically,
this task is as hard as solving (72). Hence, we need to devise approximation methods. The
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truncation of theory space makes use of the full power of the FRGE approach and follows the
’reconstructive’ philosophy. We first fix the operators entering the GEAA to solve the RG
flow before ascribing to the couplings their NGFP values. The GEAA with fixed FP couplings
in the continuum limit defines the bare microscopic action.

An example of a very general truncation consists of freezing the ghost sector, i.e. neglecting
the evolution of the ghost action [24,47,53,54,56,58,59,66,91,99]. The corresponding ’ghost-
freezing’ ansatz for the GEAA is

Γk[g, ḡ] = Γk[g, g, 0, 0, 0, 0] + Γ̂k[ḡ, g] + Sgf[g − ḡ, ḡ] + Sgh[g − ḡ, ḡ, ξ, ξ̄]

−
∫

dDx
√

ḡ

(
βµνLξgµν + τµξν∂νξµ

)
,

(93)

where Γ̂k[ḡ, g] encodes the deviation of ḡ from g. Hence, it vanishes when its two arguments
are equal, i.e. Γ̂k[g, g] = 0. When inserting (93) into (87) we get,

∂tΓk[g, ḡ] = 1
2 Tr

[(
κ−2Γ(2)

k [g, ḡ] +Rgrav
k [ḡ]

)−1
∂tRgrav

k [ḡ]
]

− Tr
[(
−M[g, ḡ] +Rgh

k [ḡ]
)

∂tRgh
k [ḡ]

]
,

(94)

where the Fadeev-Popov operator is

M[ĝ, ḡ]µν = ḡµρḡσλD̄λ(ĝρνDσ + ĝσνDρ)− 2ωḡρσ ḡµλD̄λĝσνDρ. (95)

Here, ω is a free parameter and D is the usual covariant derivative defined from the metric
ĝµν . To not confuse the latter with the spacetime dimension, we now work in d dimensions.
Equation (94) is known as the reduced FRGE. The first term on its RHS corresponds to
the graviton term, induced by metric fluctuations hµν , whereas the second one arises from the
ghosts. In (94), the RG flow dynamics have been projected to the space spanned by the set of
all action functionals {A[g, ḡ, ξ, ξ̄]}. However, this truncation is still too general for practical
purposes so we will further constrain the ansatz (93) using the well-known single-metric EH
truncation [24,47,53,54,56,58,59,66,91,99].

We start from the EH action at the UV cutoff Λ and evolve it to lower momenta scales
k < Λ. We want to project the RG flow defined by (87) onto the finite-dimensional subspaces
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of TQEG spanned by a suitable truncation ansatz for the GEAA (83). This ansatz is given by

Γtrunc
k [g, ḡ] = 1

16πḠk

∫
ddx
√

g(−R + 2λ̄k) + classical gauge term,

= 2κ2Zk

∫
ddx
√

g(−R + 2λ̄k) + κ2Zk

∫
ddx

√
ḡḡµν(Fαβ

µ gαβ)(Fρσ
ν gρσ),

(96)

where
Fαβ

µ = δβ
µ ḡαγD̄γ −

1
2 ḡαβD̄µ. (97)

Note, Ḡk ≡ Ḡrenorm
k = (Zk)−1Ḡbare

k where Zk is the renormalization factor of Newton’s
constant. By inserting (96) into (94), we project the reduced evolution equation onto the
subspace of TQEG spanned only by the operators

∫
ddx
√

g and
∫

ddx
√

gR. Taking a derivative
expansion on the RHS of (94), we arrive at a RG flow equation for Zk and the dimensionful
running cosmological constant λ̄k. The EH truncation is a ’single-metric’ truncation so we
now set gµν = ḡµν which makes the classical gauge term vanish, i.e. Γ̂[g, g] = 0 [53]. We
renormalize Ḡk and λ̄k by solving their respective differential equations and imposing that we
recover the EH action at Λ. This is done by using the following initial conditions

ZΛ = 1 , λ̄Λ = λ̄. (98)

We then obtain RG flow equations for Ḡk and λ̄k. We can define the dimensionless Newton’s
and cosmological couplings gk and λk as follows,

gk ≡ kd−2Ḡk , λk ≡ k−2λ̄k. (99)

Their RG flow equations are given by

k∂kgk = βg(gk, λk),

k∂kλk = βλ(gk, λk).
(100)

These are solved by the following beta-functions,

βg(g, λ) = (d− 2 + ηN )g, (101)

and

βλ(g, λ) = −(2−ηN )λ+ 1
2g(4π)1− d

2

[
2d(d+1)Φ1

d/2(−2λ)−8dΦ1
d/2(0)−d(d+1)ηN Φ̃1

d/2(−2λ)
]
.

(102)
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Here, ηN is the anomalous dimension of Newton’s constant. Its value is

ηN = gB1(λ)
1− gB2(λ) , (103)

where B1(λ) and B2(λ) are complicated functions of the cosmological constants, Φp
n(x) and

Φ̃p
n(x). The threshold functions Φp

n(x) and Φ̃p
n(x) depend on the cutoff shape function R(0)

[24,47,53,54,56,59,66,91,99]. The beta functions (101) and (102) give rise to RG flows that
can be analyzed for any cutoff shape and in general dimensions d. For instance, QEG was
shown to be non-perturbatively renormalizable in the ’asymptotically safe’ sense for the sharp
cutoff function

Rk(p2) ≡ R̂θ(k2 − p2). (104)

Indeed, for d = 4, both RG flows yield a UV-attractive NGFP at numerical values g∗ = 0.403
and λ∗ = 0.330 called the ’Reuter FP’ [66, 99]. This is shown in Fig. 9 and Fig. 10. We

Figure 9: This graph presents the phase portrait of the EH truncation. That
is, the RG flow defined by (100) in a selected part of the g-λ-plane. The arrows
point in the direction of increasing coarse-graining, i.e. of decreasing k. This
flow is dominated by a NGFP at g∗ = 0.403 and λ∗ = 0.330 and a GFP at
the origin of this truncated 2-dimensional subspace of TQEG. The NGFP is UV
attractive in both the g and λ direction [99].

recover the NGFP derived in Section 2.4.3 and Appendix A when taking d = 2 + ϵ. However,
the result derived in the present Section is more general. Its derivation does not involve
any analytic continuation, and is valid in any arbitrary continuous dimension d. We find

42



Figure 10: This reproduction of Fig. 9 contains additional information about
the velocity of the RG flow. The flow is slower in darker regions and faster in
lighter regions. There is no RG flow in white regions, i.e. the running stops
completely. There are two such regions, at the GFP and the NGFP. The green
RG trajectory is called the ’separatrix’ [100]. It joins the two FPs [91,99].

particularly interesting results in the physically relevant situation where d = 4. One can show
that gravity is ’anti-screening’ at such dimension. That is, Newton’s coupling grows with the
interaction distance,

Gk = G0(1− wḠkk2 +O(Ḡ2
kk4)), (105)

where w is a positive parameter. This is rather intuitive since we expect the gravitational
mass not to be screened by quantum fluctuations but instead to receive positive contributions
from the virtual particles surrounding it [24,47,53,54,56,59,66,91,99].
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3.1.9 Discussion on the validity of the truncation approximation scheme

We may question the generality of the results derived in Section 3.1.8, together with the
reliability of truncations. Is the NGFP we found a projection of a true FP in the full un-
truncated theory space or an artefact of our approximation [54,96]? We respond to this in two
steps: first we argue that truncations are a valid approximation scheme. Second, we show that
a NGFP that can be used in an Asymptotic Safety construction is derived for every known
alternative to this truncation [101]: both within the EH one for different cutoff functions and
backgrounds, but also for different truncations.

• In theory space truncations, operators beyond the truncation can be generated by the
RG evolution on the right-hand-side of equation (87). This contribution are set to zero
in the beta functions (101,102). We seem to lose important information in this process.
However, results on interacting FPs in various QFTs obtained from truncations (mostly
in d < 4) were compared with other techniques such as the ϵ-expansion, Monte Carlo
simulations or the conformal bootstrap. The results were all shown to agree, highlighting
the power of the truncation method.
To know if the FP found from a truncation is a true FP in the exact theory, we study its
stability under extensions of the truncation used, specifically robustness under changes
of cutoff scheme [96]. Actual FPs are convergent whereas truncation-induced ones
are unstable [67, 102–106]. In our case, the quality of approximate solutions to (87),
including truncations, is also given by their consistency with the BRS Ward identities
(170) (see Appendix C) [107,108].

• Within the EH truncation, a considerable number of truncations with increasingly large
subsets Iα, different cutoff functions and different backgrounds have been investigated.
The publication [101] contains an exhaustive list of the results obtained from such
extensions. These include quadratic gravity (a term like R2 appears in the truncation
ansatz) [109], gravity with the two-loop counterterm, actions containing up to 71 powers
of the Ricci scalar, or actions containing a single trace of up to 35 Ricci tensors. This
has further been extended by accounting for polynomials in R (”f(R) truncations”) [96],
polynomials in Rµνρσ (”f(Rµνρσ) truncations”) [110], and the squared Weyl curvature
tensor C2 [111]. In addition, the impact of matter fields has been investigated in [56,
59,112].
Moreover, other truncations have been studied. Examples include the Hilbert-Palatini-
Holst type [53], implemented in the Einstein–Cartan gravity setting by [113,114].
Importantly, all extensions of the EH truncation and other truncations agree with the
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existence of at least one NGFP for Newton’s coupling, satisfying both (AS1) and (AS2)
[24,47,53,54,56,91]. This universal existence in 4 dimensions is non-trivial since we
can find cutoff functions that destroy the NGFP in d ≳ 5 in the EH truncation [53].

Although a complete proof is not yet within reach, it seems that the NGFP derived in the
present section exists in the un-truncated theory space TQEG. That is, it is not an artifact of
our approximation scheme [58,96]. Within the EH truncation, there is even further evidence
hinting at the asymptotic safety of QEG in exactly 4 dimensions [53,54,58]. Namely,

• All the different cutoff schemes find positive values for both g∗ and λ∗. This is important
for stability reasons.

• The NGFP is always UV attractive. Indeed, linearizing the RG flow, as done in Section
2.2.1, yields positive real parts of the critical exponents for all cutoffs.

• The product g∗λ∗ takes universal values as expected from FP coupling values.

Since truncations seem to be reasonable approximation schemes, we may now ask: what
constitutes a good truncation? We want the exact position of the NGFP in the un-truncated
theory space not to depend on the truncation, or within a given truncation on different
backgrounds and different cutoffs. A valid truncation scheme should capture relevant physics
at low order in the truncation. For a given FP this is given by the relevant directions. For
a GFP, eigenvectors of the Jacobi matrix with positive real valued eigenvalues point exactly
in the direction of theory space’s axis. Following Section 2.3.1, at the free FP we truncate
according to canonical power counting.
For a NGFP, relevant eigenvectors can be linear combination of many couplings, making it
difficult to know if a given truncation contains enough information about the RG flow near a
NGFP. To devise a good non-perturbative truncation scheme in this case, we assume ’near-
perturbativity’, i.e. critical exponents exhibit small deviations from the canonical spectrum of
scaling dimensions. In principle, including higher-order terms in such truncations will make
all NGFPs converge to the true FP in the full infinite-dimensional theory space. Results in
this direction seem encouraging thus far [101].
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3.2 Perturbative quadratic gravity

In addition to non-perturbative treatments, we can use methods from higher-derivative gravity,
such as perturbation theory, to investigate the Asymptotic Safety program [24,32,47,96]. By
higher-derivative gravity theories, we mean gravitational theories whose bare actions contain
terms proportional to the Riemann tensor and its covariant derivatives [24,47].

3.2.1 Motivation

The motivation for taking this route comes from the fact that higher derivative gravity in four
dimensions is close to being a renormalizable quantum theory of gravity. Indeed, motivated
by [115–117], Stelle showed in 1977 [118] that adding terms like quadratic products of the
curvature tensor to the EH action

S = −1
2

∫
d4x
√
−g

(
R

κ2 + αRµνRµν − βR2
)

, (106)

defines a power-counting perturbatively renormalizable theory of gravity to all loop orders.
In (106), κ ≡ (16πḠbare

N )1/2. As in the original paper [118], we omitted total derivative terms
like ∇2R and the integrand of the Gauss-Bonnet term E in (106) . Herein, we focus on
Stelle’s treatment of higher-derivative gravity theories [118] rather than on the one advocated
by Gomis and Weinberg [119]. We can rewrite (106) using the square of the Weyl tensor in
terms of the topological invariant term E,

C2 = CµνρσCµνρσ = E + 2RµνRµν − 2
3R2. (107)

We reabsorb the term quadratic in the Ricci tensor into a term proportional to (107) and find
with general signature ε = (±1, 1, 1, 1),

S = ε

∫
d4x
√

g

(
Λ̃− R

κ2 + 1
2s

C2 − ω

3s
R2
)

, (108)

where ω and s are couplings, κ ≡ (16πḠbare
N )1/2 and Λ̃ ≡ 2Λ

κ2 [79, 80].
The field equations arising from the variation of (106) include quartic derivative terms.

These are used to absorb the 1/p4 UV divergences appearing in the one-loop scalar corrections
to the free graviton propagator. The corresponding theory is ’strictly renormalizable’ according
to the definition in [24,47]. That is, a formal continuum limit exists in which we can remove
the UV cutoff such that observables are independent of the regularization scheme in the sense
of power series in the loop counting parameter. The successor problem to the perturbative
non-renormalizability of gravity is twofold:
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1. Firstly, perturbation theory is presumed to cover only a small part of a theory’s physics
content, so we must find a formulation of the theory that is renormalizable in the
Kadanoff-Wilson sense.

2. Secondly, we must find observables obeying unitarity [79, 80]. Indeed, the 1/p4 falloff
of the free propagator arises from 1/p2 − 1/(p2 + s/κ2), where the second term has a
negative norm in the Fock space of the theory [120]. Thus, they are problematic from
the point of view of unitarity and causality [24, 47, 118]. We will come back to this in
Section 4.2.

The asymptotic safety program offers a solution to both problems at once [24,32,47].

3.2.2 Does perturbation theory see gravitational fixed points?

The contact from the Asymptotic Safety program to higher-derivative gravity and perturbation
theory has been established by Niedermaier [24, 47, 79, 80]. As outlined in Section 2.4.1, two
elements are crucial to this program.

1. The first is the existence of a UV-attractive NGFP for the dimensionless positive Newton
coupling constant, g∗ > 0, and potentially for the dimensionless cosmological constant
λ∗ ̸= 0. In analogy with (99), the dimensionless couplings are defined as g = µ2κ2 and
λ = µ−2Λ. As usual, µ is the renormalization mass scale of the regularization scheme.

2. The second is that the flow of all four gravitational couplings must be asymptotically
safe, that is, bounded for all µ and finite at both limiting values µ → 0 and especially
µ→∞.

As explained by Weinberg in his 1979 paper [32], these properties are dependent on the theory
space parametrization chosen. One should try to define ”the coupling constants as coefficients
in a power series expansion of the reaction rates themselves” [32]. If this is achieved, the
UV regime of an asymptotically safe theory should be accessible by standard perturbation
theory [80]. In what follows, we show that a NGFP for Newton’s constant is indeed visible
from perturbation theory.

In quantizing the EH action [120,121], the fluctuation around the background metric (hµν)
is rescaled by a factor of κ ≡

√
8πḠbare

N such that the coupling constant is absorbed away
from the kinetic term of the Lagrangian relevant to the graviton propagator (hµν → κhµν).
The corresponding gravitational vertices then carry factors of κ.
Applying this reasoning to the higher-derivative gravity defined by (108), we expect vertices
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to contain terms in positive powers of s. Since s is asymptotically free in perturbation
theory [122, 123], perturbative expansions are expansions in powers of s. The perturbation
expansion is asymptotically convergent (it reaches its GFP), and hence describes well the
theory in its UV limit. Note, s and g are of order 1 in the loop counting parameter ℏ, whereas
other couplings in (108) are of order 0 [79, 80]. Since Newton’s constant may appear in the
perturbative expansion in ratios s/g of order O(ℏ0), a non-zero NGFP of g is within the reach
of perturbative theory.
This argument is analogous to the one demonstrating the ability of perturbation theory
to describe UV interactions in QCD because the theory’s coupling is asymptotically free.
This originally motivated Niedermaier to attempt to build a conceptual bridge between the
antisymmetric field strength tensor Fµν in QCD, and the contracted curvature Weyl tensor
Cµν in gravity [24,47].

3.2.3 Finding the NGFP

Now, we follow [79] to compute the gravitational coupling flow to lowest order in perturbation
theory. In this derivation, we focus on the Euclidean signature to rewrite (108) as follows

S =
∫

d4x
√

q

(
Λ̃− R

κ2 + 1
2s

C2 − ω

3s
R2
)

, (109)

where qµν is the full metric from which the Ricci scalar and Weyl tensor are constructed.
Recall, q = det(qµν). Since Λ̃ is the cosmological constant, the UV cutoff is denoted ΛUV .

Once again, we expand the full metric qµν around a static background gµν such that
qµν = gµν + fµν . Raising and lowering indices is done with the background static metric gµν .
We perform the functional integral over the quantum dynamical metric fµν to obtain the
divergent part of the one-loop effective action for pure gravity [124]. It contains logarithmic
and powerlike divergences, and is given by

Γdiv
1 = − 1

(4π)2

∫
d4x
√

q

[
Λ4

UV Υ1+Λ2
UV (Υ2R+µ2Υ3)+ln

(ΛUV

µ

)
(ζ1C2+ζ2R2+µ2ζ4R+µ4ζ5)

]
,

(110)
where we introduced the dimensionful sliding scale µ to make the argument of the logarithm
dimensionless. The loop counting parameters Υ and ζ are real valued functions of ω, λ and
the ratio s/g, that we expected. Note, the gauge independence of the effective action (110) is
automatic for the coefficients of the logarithmic divergences but is non-trivial otherwise [80].
Studying the non-trivial cases is not in the scope of this dissertation.

From remark 1 in Section 3.2.1, and the dimensional nature of the gravitational couplings
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in (108), we expect them to have a power-law running. This is confirmed by equation (110).
Hence, the standard scheme of dimensional regularization and minimal substraction, which
only ’sees’ logarithmic divergences, is no longer valid. Instead, we use a background covariant
operator cutoff which will keep track of powerlike divergences [125]. This allows one to make
contact with the non-perturbative results outlined in Section 3.1 [79, 80]. The non-minimal
subtraction ansatz for the bare couplings κ0 and Λ̃0, used to absorb the divergences in (110),
is

Λ̃0 = µ4 2λ

g

{
1 + ℏ

(4π)2

[
a10 + a11 ln

(ΛUV

µ

)
+ a12

(ΛUV

µ

)2
+ a13

(ΛUV

µ

)4]
+O(ℏ2)

}
,

κ2
0 = µ−2g

{
1 + ℏ

(4π)2

[
b10 + b11 ln

(ΛUV

µ

)
+ b12

(ΛUV

µ

)2]
+O(ℏ2)

}
.

(111)

g and λ are now the renormalized gravitational and cosmological couplings. Standard minimal
subtraction suffices for the dimensionless couplings s and ω [80], such that

s0 = s

{
1 + ℏ

(4π)2

[
c11 ln

(ΛUV

µ

)]
+O(ℏ2)

}
,

ω0 = ω

{
1 + ℏ

(4π)2

[
d11 ln

(ΛUV

µ

)]
+O(ℏ2)

}
.

(112)

The field renormalization is given by

q0
µν = qµν + ℏ

(4π)2 ln
(ΛUV

µ

)
gξqµν +O(ℏ2), (113)

where ξ can be a function of s/g, λ, ω. We define u0 ≡ (Λ̃0, κ2
0, s0, ω0) as the bare couplings,

and u ≡ (λ, g, s, ω) as the dimensionless renormalized ones. The bare action can be written as
S0[g0, u0] = S[g, u] + ∆S[g, u], where g0 is the bare background metric. ∆S[g, u] corresponds
to the divergent terms in S0[g0, u0], whereas S[g, u] is the finite part of the bare action. By
plugging (113,111) into S0[g0, u0], we obtain

∆S[g, u] = ℏ
(4π)2

∫
d4x
√

q

[
Λ4

UV

2λ

g
a13 + Λ2

UV

(
µ2 2λ

g
a12 + b12

g
R

)

+ ln
(ΛUV

µ

)(
µ4 λ

g
(2a11 + 4gξ) + µ2

g
R(b11 − gξ)− c11

2s
C2 − ω

3s
(d11 − c11)R2

)]
+O(ℏ2).

(114)

The counter-term ’cancellation condition’ ∆S[g, u] = −Γdiv
1 fixes a11, a12, a13, b11, b12, b13, c11

and d11 in terms of the Υs and ζs but leaves a10 and b10 unconstrained. In standard PT, bare
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couplings are assumed to be independent of µ. By constrat, in Wilsonian renormalization,
when the running renormalization scale µ reaches the UV cutoof ΛUV , the renormalized
parameters should match their bare values. Thus, we require

Λ̃0 = Λ4
UV

2λ

g
when µ = ΛUV ,

κ2
0 = Λ−2

UV g when µ = ΛUV .

(115)

Replacing µ by ΛUV in (112) fixes the ’initial’ values of the yet unfixed a10 and b10 coefficients
as follows

a10 + a12 + a13 = 0,

b10 + b12 = 0,
(116)

since ln (ΛUV /ΛUV ) = ln (1) = 0. Together, (115,116) form the ’matching condition’ [79, 80].
Essentially, we determined a10 and b10 in terms of the Υs and ζs by deriving conditions that
relate them to the fixed a11, a12, a13, b11, b12, b13. Thus, we arrived at a uniquely defined non-
minimal subtraction ansatz, fixed by the matching and cancellation conditions. Importantly,
we have fixed the dependence of all the latin letters parameters (a1i, b1n, c11 and d11 for
i = 0, 1, 2, 3 and n = 0, 1, 2) in terms of all the greek letters ones (Υo, ζt and ξ for o = 1, 2, 3
and t = 1, 2, 3, 4, 5).

We can now derive the flow equations for all renormalized dimensionless couplings. As
an example, we derive the one for s explicitly and simply state the others. For instance, the
cancellation condition fixed c11 = −2sζ1. We plug this into the first line of (112) and apply
µ d

dµ on both sides of the equation

µ
ds0
dµ

= µ
ds

dµ
+ µ

d

dµ

[
− 2ζ1s2ℏ

(4π)2 ln
(ΛUV

µ

)]
,

0 = µ
ds

dµ
+ µ

d

dµ

[
− 2ζ1s2ℏ

(4π)2 ln (ΛUV ) + 2ζ1s2ℏ
(4π)2 ln (µ)

]
,

0 = µ
ds

dµ
+ µ

µ

[2ζ1s2ℏ
(4π)2

]
,

∴ µ
ds

dµ
= −2ζ1s2ℏ

(4π)2 ,

(117)

where we used the fact that bare couplings are independent of µ. We now easily see that s

is indeed asymptotically free [122, 123]. By applying this method to the other couplings, we
recover the universal flow equations for both s and ω [122, 123, 126], and obtain the ones for
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g and λ:

µ
dω

dµ
= − sℏ

(4π)2 (3ζ2 + 2ωζ1),

µ
dg

dµ
= 2g + g2ℏ

(4π)2 (ζ4 + ξ + 2Υ2),

µ
dλ

dµ
= −2λ + gℏ

2(4π)2 [ζ5 + 4λζ4 + Υ3 + 4λΥ2 + 4Υ1 − (2λξ + 2λζ4 −Υ3)].

(118)

Note, ζ4 = ζ5 = ξ = Υ3 = 0 at the GFP s∗ = 0. Hence, the position of the FPs for g and λ

are only determined by Υ1 and Υ2. The non-trivial ones are located at

g∗ = − (4π)2

Υ2(ω∗) , λ∗ = − Υ1(ω∗)
2Υ2(ω∗) . (119)

Here, the numerical value for the ω FP is ω∗ ≈ −0.022864. While the ζs have been determined
in many gauges [122, 123, 126–128], the Υs have not been computed before Niedermaier [79].
It is possible to determine the numerical values of g∗ and λ∗, by computing the Υ coefficients
in the three parameter harmonic gauge [79,80]:

Sgf = 1
2s

∫
d4x
√
−gχµY µνχν ,

χµ = ∇νfµν + b1∇µf,

Y µν = −1
a

(gµν∇2 + (b2 − 1)∇µ∇ν −Rµν),

b1 = − 1
4c1

1 + 4ω

1 + ω
,

b2 = −2c2
3 (1 + ω).

(120)

a = c1 = c2 = 1 defines the minimal gauge. The ghost action in this gauge is

Sgh =
∫

d4x
√
−gC̄µ∆µ

νCν , (121)

with kernel
∆µν = −gµν∇2 − (1 + 2b1)∇µ∇ν −Rµν . (122)

Using heat kernel methods [79, 80, 127, 129], in minimal gauge, on a flat background, we can
determine Υ1 and Υ2. This derivation is out of the scope of this dissertation, so we only state
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the final result. We can rewrite (118) as one-loop gauge independent RG flows:

µ
dg

dµ
= 2g + 2g2(u2 + sλ

g
u3),

µ
dλ

dµ
= −2λ + 2g(u1 + λu2) + 2s(u3 + λu5) + s2

2g
u4.

(123)

Taking s0 = 1 and ω0 = −1/2, which corresponds to a smooth cutoff, we find one NGFP for
each flow in (123). Their numerical values are given by

g∗ ≈ 1.3697 , λ∗ ≈ 0.9451. (124)

Importantly, these arise from a gauge-independent effective action which in turn gives rise to
the gauge-independent RG flows (123) [79, 80]. The corresponding UV-attractive NGFP is
shown in Fig 11.

Figure 11: This graph presents the gauge-independent
Wilsonian RG flow in quadratic gravity (109) for g and λ at
one-loop order in perturbation theory, in minimal gauge, with
a smooth cutoff. We reach the NGFP (124) when increasing
the sliding renormalization mass scale µ, i.e. in the direction
of inverse RG flow. Hence, the NGFP is UV-attractive under
the inverse RG flow, as required by the Asymptotic Safety
program [79].
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3.3 Comparing the two methods

The methods of the FRGE and of perturbation theory used in higher-derivative quadratic
gravity are in one-to-one correspondence [96]. However, only the latter is able to tackle the
traditional UV renormalization problem [79,80,96].

3.3.1 FRG and perturbative quadratic gravity are equivalent methods

There are many ways to draw a connection between FRG and perturbative formalisms:

• The Exact FRGE (87) (or ERGE) can be interpreted as an RG improvement of a
perturbative one-loop equation [96]. Indeed, the one-loop effective action corresponding
to the bare action S for a bosonic field ϕ, is given by

Γ(1) = S + 1
2 Tr

{
ln
[

δ2S

δϕδϕ

]}
. (125)

Now, adding the cutoff term

Γ(1)
k = S + 1

2 Tr
{

ln
[

δ2S

δϕδϕ
+Rk

]}
. (126)

This is now the one-loop effective average action. It satisfies the one-loop equation

k
dΓ(1)

k

dk
= 1

2 Tr
{[

δ2S

δϕδϕ
+Rk

]−1
k

dRk

dk

}
, (127)

which is of the same form as (167). The only difference with the Wetterich equation is
that the RHS of equation (127) contains bare couplings through the Hessian of the bare
action. Instead, the Wetterich equation contains renormalized couplings. In this sense,
we can say that the ERGE (167) is an RG improved version of the one-loop equation
(127).
We can choose to approximate the cutoff function Rk so that it only depends on k

explicitly, and not through its implicit dependence on running couplings. Then, the
entire content of the ERGE is contained within the RG improved one-loop beta-functions
[79,80,96,129].

• The flow equations have the same structure in the EH truncation and in perturbation
theory treatments [96]. The former contain extra-terms compared to those obtained
from one-loop calculations. This is a result of the renormalization group improvement
discussed in the previous remark.
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• We recover the one-loop perturbative UV divergences, originally derived by Veltman
and ’t Hooft, from the ERGE [10]. In the EH truncation of the ERGE (87) without a
cosmological constant, we recover the cutoff-scheme-dependent divergences. Including
the cosmological constant, we recover the scheme-independent ones [96].

Since the two methods are seemingly equivalent, one can even use one method in concordance
with the other, as in [130]. Indeed, in a reconstructive spirit, one can use the ansatz (109)
for the running effective action. This is known as the ”Higher-Derivative Gravity truncation”
[130]. Using this method, it can be shown that one of the NGFPs found for Newton’s coupling
corresponds to a theory free of tachyons.
In addition, one can confirm that the dimension of the critical surface is ∆UV = 3 for pure
gravity [131]. The correspond asymptotically safe theory is predictive as understood in Section
2.4.2. Yet, this result is not general since it is possible to find 4-dimensional UV critical
surfaces in other cases. This is out of the scope of the present work.

3.3.2 Advantage of perturbation theory

In Section 3.1.5 we established that the FRGE is solved from a fixed UV scale k = Λ, where
the initial condition Γk,Λ = Stot,Λ is imposed, down to k. For instance, in Section 3.1.8,
we approximately solved the gravitational FRGE (87) by using the EH truncation ansatz
(96) as an approximation to the exact GEAA (83). We required that (96) obeys the limit
limk=Λ→∞ Γk = Stot, where the bare action S appears in the total action Stot,Λ = S+Sgf+Sgh.
In the FRG formalism, we essentially trade the traditional UV renormalization problem for
the identification of a fine-tuned initial bare action [47]. However, we explained that the
FRGE itself gives no means to find such adjusted action. Hence, the UV renormalization
problem is not properly adressed in the FRG framework.

Beyond PT, the only hope for FRG, and only known non-perturbative method to identify
the bare action, is constructive renormalization [132, 133]. This approach treats the
instabilities of the RG-induced-non-polynomial action at large fields [51]. Yet, this method
cannot be used because the 4-dimensional QFTs of interest are beyond constructive control
[47]. Hence, only perturbation theory allows to address the traditional UV renormalization
problem, i.e. the continuum limit Λ→∞ is not rigorously defined in FRG [79,80]. The FRG
flow matches PT by construction only after said problem is solved [134].
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4 Critical reflections on the Asymptotic Safety Program

On top of the technical difficulties raised in Section 3.1.9, some foundational questions still
pose serious challenges to the Asymptotic Safety program. We present two of them: the
running of gravitational couplings and unitarity.

4.1 Running gravitational couplings

As mentioned in Section 3.1.9, in theory space truncations, the RG evolution causes dimensionful
running couplings to receive contributions from operators that were turned off in the original
truncation. For example, this is the case of GR, where each loop-order added in a computation
induces terms two derivative orders higher in the counterterm action. In Section 3.1.9, we
argued that these contributions were set to zero in the beta functions. These contributions
are dependent on the physical process used to probe how the couplings run with momentum
scale. Hence, the definition of dimensionful running couplings is non-universal and ambiguous
[101]. Concretely, Donoghue, Anber, Dunbar and Norridge showed this by calculating the
perturbative one-loop order of Newton’s constant’s running [135–137]. They computed it for
the graviton vacuum polarisation, graviton-graviton scattering and the gravitational scattering
of identical massless scalars and non-identical relativistic scalars. The calculated one-loop
runnings are different for each process.

As an example, we follow [137] and consider scattering of non-identical scalars A + B →
A+B. We introduce the usual Mandelstam variables s, t and u and neglect particle masses by
taking the relativistic limit s≫ m2. The tree level reduced matrix element of the scattering
amplitude is given by

Mtree = iκ2su

4t
, (128)

where κ2 ≡ 32πG. The one-loop amplitude is given by

M1-loop = iκ4

(4π)2

[ 1
16(s4I4(s, t) + u4I4(s, t)) + 1

8(s3 + u3 + tsu)I3(t)− 1
8(s3I3(s) + u3I3(u))

− 1
240(71us− 11t2)I2(t) + 1

16(s2I2(s) + u2I2(u))
]
.

(129)

I2(s), I3(s) and I4(s, t) are the scalar bubbled, triangle and box diagrams respectively. They
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take the form

I2(s) =
(1

ϵ
− ln (−s) + finite

)
,

I3(s) = −1
s

( 1
ϵ2 −

ln2 (−s)
ϵ

+ ln (s)2

2

)
,

I4(s, t) = 1
st

( 4
ϵ2 −

2 ln (−s) + 2 ln (−t)
ϵ

+ 2 ln (−s) ln (−t) + finite
)

,

(130)

where ϵ ≡ (4− d)/2 is introduced in the regularization scheme. We can define the amplitude
corresponding to IR divergences as

MIR = κ4

2(4π)2
((−s)1−ϵ + (−u)1−ϵ + (−t)1−ϵ)

ϵ2 Mtree. (131)

We absorb the divergences of the one-loop amplitude (129) by subtracting (131) from it

Mh =M1-loop −MIR, (132)

to be left with Mh, the ’hard part’ of the one-loop amplitude. To compute the one-loop
running of Newton’s constant requires to calculate said hard amplitude at the renormalization
center kinematic point s = 2E2, t = u = −E2. We obtain the total amplitude

Mtot = iκ2E2

2

[
1− κ2E2

10(4π)2

(
(19 + 10 ln 2) ln

(
E2

µ2

)
+ 5(π2 − (ln 2− 1) ln 2)

)]
. (133)

This can be used to renormalize the bare Newton’s constant as follows

G(E) = G0

[
1− κ2E2

10(4π)2

(
(19 + 10 ln 2) ln

(
E2

µ2

)
+ 5(π2 − (ln 2− 1) ln 2)

)]
. (134)

We can consider the amplitude of the slightly different process A + A→ B + B which is given
by (129) under the exchange s↔ t. Following the previous derivation, we obtain the following
total amplitude

Mtot = iκ2E2

8

[
1 + κ2E2

10(4π)2

(
9 ln

(
E2

µ2

)
− 5π2 + (19 + 5 ln 2) ln 2)

)]
. (135)

Clearly, (133) and (135) are different. This rather general result applies to other amplitudes
of gravitational processes that receive contributions from implicit higher-order derivative
operators. This is known as the non-universality problem of gravitational amplitudes
[135, 137]. It especially impairs the interpretation of equations such as (105), which we
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mentioned as evidence for anti-screening of gravitational interactions in the extreme UV.

4.2 Unitarity and causality

In truncations of theory space that include more terms than the EH truncation, higher-
derivatives terms are necessarily present in the microscopic classical action. This induces a
violation of unitarity, which corresponds to an instability of the theory, through Ostrogradsky’s
theorem [138]. This states that any non-degenerate Lagrangian with higher time derivative
of finite order leads to an unstable Hamiltonian with at least one term linear in a conjugate
momentum. Said momentum can be made arbitrarily small which results in a Hamiltonian
unbounded from below [101]. Therefore, a truncation to finite order in momenta is not well
suited to study the unitarity of a theory since it generates truncation-induced instabilities.

In QFTs, the instability problem manifests as propagating ghost states that violate unitarity.
As mentioned in remark 2 of Section 3.2.1, Stelle showed that graviton propagators with
dependence ∝ p−4 could absorb divergences arising in quadratic gravity [118]. However, this
theory, defined by (106), has spin-2 ghost states with mass mg propagating according to the
following partial-fraction decomposition

D(p) = 1
p2(p2 + m2

g) = 1
m2

g

( 1
p2 −

1
p2 + m2

g

)
. (136)

It is possible for mg to be negative, implying the existence of tachyons. Using Feynman
(+iϵ) prescription, this propagator can further be rewritten in the Källén-Lehmann spectral
representation

D(p) = 1
p2 −m2 + iϵ

+
∫ ∞

4m2
dM2 ρ(M2)

p2 −M2 + iϵ
, (137)

where m is the mass of the free theory, and ρ(M2) is the spectral density of the theory

ρ(M2) =
∑

n

(2π)δ(M2 −m2
n)
∣∣∣ ⟨Ω| ϕ̂(0) |n⟩

∣∣∣2. (138)

We define
∣∣∣ ⟨Ω| ϕ̂(0) |n⟩

∣∣∣ as the norm of a Poincaré invariant state constructed from the adjoint
of the true vacuum state |Ω⟩. The positivity of this function allows it to be interpreted as a
density of states. Problematically, the negative sign on the rightmost fraction in (136) induces
a negative residue of the propagator, and in turn a negative spectral density which violates
unitarity. There are three general ways of fighting Ostrogradsky instabilities, or violations of
unitarity [101]:

1. Avoiding a negative residue in (136) by finding a propagator consisting of an entire
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function with a single zero at vanishing momentum. This is done in Non-local ghost-
free gravity [139–142].

2. Giving up on Lorentz invariance by introducing higher-order spatial derivatives, like in
Hořava-Lifshitz gravity [143].

3. Allowing causality to be violated microscopically and interpreting the ghost dofs as
propagating backwards in time. If these ghosts are sufficiently heavy, they are undetectable
[144–147].

We expand on the latter solution. Using the (−iϵ) prescription, instead of the usual (+iϵ)
one, we can write the Feynman ghost propagator

DF (x, y) = lim
ϵ+→0

∫
C−

d4p

(2π)4 e−ipµ(x−y)µ −i

p2 −m2
g − iϵ

. (139)

We consider the forward time propagating part of DF (x, y), characterised by x0 > y0.
Reminding the reader of complex analysis methods, we integrate p0 in the clockwise direction
along the real axis and a semicircle in the lower-half of the complex plane of p0, called
C−. In this way, the contribution from the integral along the arc vanishes when we take
the semicircle’s radius to infinity. The contour C− includes the pole −E(p), so we can use
Cauchy’s theorem and separate the time and spatial parts of the exponential to obtain

DF (x, y) =
∫

d3p⃗

(2π)3E(p)e−iE(p)(y0−x0)eip⃗(x⃗−y⃗). (140)

The residue is positive in this setting, at the cost of a ghost propagating backwards in time
(x0 > y0 entails a negative sign in the first exponential) which violates causality. This is
equivalent to a ghost particle propagating forwards in time with a negative residue, which
violates unitarity [144,145]. We seem to have a choice between violating unitarity or causality.

However, following Donoghue and Menezes [146, 147], we can further consider self-energy
corrections to (140). From these, the denominator picks up a strictly positive imaginary part
γ. We can then replace E(p) by (E(p) + iγ/2E(p)) in equation (140)

DF (x, y) =
∫

d3p⃗

(2π)3(E(p) + iγ/2E(p))e−iE(p)(y0−x0)eip⃗(x⃗−y⃗)e
− γ

2E(p) (x0−y0)
. (141)

If γ is large enough, and x0 > y0, causality is only violated in the UV due to the behaviour of
the ratio in the rightmost exponential of (141). At low energies the propagator is exponentially
suppressed. The ghost’s decay timescale is proportional to the Planck scale, so it leaves no
detectable trace [101,146,147].

58



There are also case-specific ways to circumvent the unitarity problem. Still in quadratic
gravity, Niedermaier calculated that the Hessian’s spectrum eigenvalues are strictly positive
near the NGFP [80]. Since the Hessian corresponds to the inverse propagator, there are no
ghost states in this case (see Appendix B). One could argue that this is not general since
we employ the asymptotic freedom of s, the Weyl tensor’s coupling, and have no information
about the RG flow far away from the NGFP. However, other methods point at the same
result. In particular, in the FRG formalism, all we need to avoid violating unitarity is that
(Γ(2)

k + Rk) is a positive operator for all k, such that RG trajectories are defined down to
k = 0 [24, 47]. This is believed to be the case in the untruncated theory space, as shown in
the R2 truncation [109].
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5 Discussion and conclusion

Considering GR as an EFT solves most of the problems raised in this dissertation. Indeed,
the perturbative non-renormalizability of GR is not a problem anymore, since EFTs are not
required to be UV complete. Similarly, setting the effectiveness of the EFT at the ghost’s
mass scale resolves the ghost problem in higher-derivative theories.

However, it seems that there is an advantage of the Asymptotic Safety program over EFTs.
Not only can we make reliable computations in the gained energy range by UV completing
GR, but we can identify ’large’ quantum corrections at low energies. Indeed, well-defined low-
energy quantum effects are expected to be suppressed by E/mp in EFTs (where m2

p ≡ ℏc/G is
the Planck mass). If these low energy effects arise from UV quantum behaviour (beyond ℓp),
one would need to computationally propagate their effect through many orders of magnitude
down to experimentally accessible energies [24,47].

Rather than opting for an EFT description of GR, we presented the Asymptotic Safety
program, which ”takes the degrees of freedom of the gravitational field seriously also in the
quantum regime” [24, 47]. To solve the perturbative non-renormalizability, we adopted a
Wilsonian view of renormalization, allowing us to make no reference to perturbative theory.
We showed that a RG flow arises from a background independent gravitational path integral,
in which the metric field carries the gravitational dofs. In a reconstructive spirit, this flow
dictates what action we need for a QFT of gravity if there exists a NGFP from which the
RG trajectory emanates. All actions on this trajectory are in the same universality class,
allowing us to extract physical quantities on all energy scales by following it back to the FP.
Importantly, these actions yield quantities that are ”asymptotically safe” from UV divergences
at all energy scales under the one at which each action is defined.

Summarizing and extending this, we can highlight three main points of the Asymptotic
Safety program:

• We can relate UV and IR-physics of the gravitational field, which dofs are carried by
the metric field, through a Wilsonian RG flow.

• The resulting QFT of gravity is a quasi-renormalizable theory based on a UV-attractive
NGFP and its finite dimensional UV critical surface.

• We find that physical dofs in the extreme UV have antiscreening interactions.

Searching for ways of practically realising the first two points, we explored the possibility that
gravity is non-perturbatively renormalizable by outlining two equivalent methods based on
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background field expansions.
Namely, the gravitational FRG formalism, presented by Reuter, is based upon the concept
of a gauge and background independent GEAA. In a reconstructive spirit, we used the EH
truncation to find a non-trivial FP for the dimensionless Newton’s constant and cosmological
constant in the GEAA’s RG flow. In turn, the GEAA at high UV cutoff with FP valued
couplings became our bare microscopic action. We showed that truncations results were
robust under shifts in cutoff schemes.
The second perturbative method, presented by Niedermaier, extended Stelle’s developments
in higher-derivative quadratic gravity. By using the asymptotic freedom of the Weyl-tensor-
squared term, in minimal gauge and with a smooth cutoff, we derived gauge-independent
RG flow equations for all couplings and showed that a NGFP exists for the dimensionless
Newton’s constant and cosmological constant. Together with the evidence from gravity in
2 + ϵ dimensions, these methods strongly hint at the existence of a NGFP, that can be used
to renormalize gravity, in the full un-truncated theory space of 4-dimensional gravity.

Despite the structural equivalence between the two methods, only perturbation theory
addresses the traditional UV renormalization problem. That is, the continuum limit Λ→∞
is well-defined. In FRG, there is no means to determine a fine-tuned bare action, as an initial
condition for the FRGE, at arbitrarily high Λ. Moreover, other non-perturbative methods
such as constructive approaches are out of reach for 4-dimensional gravity.

Finally, we presented some of the difficulties faced by the Asymptotic Safety program. On
the one hand, the analysis of the extreme UV behaviour of gravitational dofs (antiscreening)
seems to be severely impaired by the non-universality problem faced by dimensionful running
gravitational couplings. On the other hand, the unitarity problem arising from the graviton
propagators in quadratic gravity can be avoided in many different ways. Notably, we focused
on a method which trades unitarity violation for microscopic causality violation. The ghosts
are not detectable in this approach.

With more time, I would have liked to extend the present work by discussing Lorentzian
quantum gravity and spectral functions for the graviton [101, 148]. Moreover, I would be
interested in connecting the discussions from Section 3 to phenomenology by comparing RG
improved black holes solutions [149–151] with spherically symmetric and general black hole
spacetimes in higher-derivative gravity [152,153].
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[106] A. Jüttner, D. F. Litim, and E. Marchais. Global Wilson-Fisher fixed points. Nuclear
Physics B, 921:769–795, 2017. arXiv: https://arxiv.org/abs/1701.05168. 3.1.9

[107] U. Ellwanger. Flow equations and BRS invariance for Yang-Mills theories. Physics
Letters B, 335(3-4):364–370, 1994. arXiv: https://arxiv.org/abs/hep-th/9402077. 3.1.9

[108] U. Ellwanger, M. Hirsch, and A. Weber. Flow equations for the relevant part of the
pure Yang-Mills action. Zeitschrift für Physik C Particles and Fields, 69(1):687–697,
1995. arXiv: https://arxiv.org/abs/hep-th/9506019. 3.1.9

70

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.79.025008
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.79.025008
https://arxiv.org/abs/0811.3888
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.65.065016
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.65.065016
https://arxiv.org/abs/hep-th/0110054
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.92.201301
https://arxiv.org/abs/hep-th/0312114
https://www.frontiersin.org/articles/10.3389/fphy.2020.00269/full
https://arxiv.org/abs/2004.06810
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.68.064421
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.68.064421
https://arxiv.org/abs/hep-th/0302227
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.83.085009
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.88.042141
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.88.042141
https://arxiv.org/abs/1306.2952
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.245102
https://arxiv.org/abs/1609.03824
https://www.sciencedirect.com/science/article/pii/S0550321317302055
https://arxiv.org/abs/1701.05168
https://www.sciencedirect.com/science/article/abs/pii/0370269394903654
https://arxiv.org/abs/hep-th/9402077
https://link.springer.com/article/10.1007/BF02907453
https://link.springer.com/article/10.1007/BF02907453
https://arxiv.org/abs/hep-th/9506019


[109] O. Lauscher and M. Reuter. Flow equation of quantum Einstein gravity in
a higher-derivative truncation. Physical Review D, 66(2):025026, 2002. arXiv:
https://arxiv.org/abs/hep-th/0205062. 3.1.9, 4.2

[110] Y. Kluth and D. F. Litim. Functional renormalisation for f(Rµνρσ) quantum gravity,
2022. arXiv: https://arxiv.org/abs/2202.10436. 3.1.9

[111] D. Benedetti, P. F. Machado, and F. Saueressig. Asymptotic safety in higher-
derivative gravity. Modern Physics Letters A, 24(28):2233–2241, 2009. arXiv:
https://arxiv.org/abs/0901.2984. 3.1.9

[112] D. Dou and R. Percacci. The running gravitational couplings. Classical and Quantum
Gravity, 15(11):3449, 1998. arXiv: https://arxiv.org/abs/hep-th/9707239. 3.1.9

[113] J-E. Daum and M. Reuter. Einstein-Cartan gravity, Asymptotic Safety, and the running
Immirzi parameter. Annals of Physics, 334:351–419, 2013. 3.1.9

[114] U. Harst and M. Reuter. A new functional flow equation for Einstein-Cartan quantum
gravity. Annals of Physics, 354:637–704, 2015. arXiv: https://arxiv.org/abs/1301.5135.
3.1.9

[115] D. E. Neville. Gravity Lagrangian with ghost-free curvature-squared terms. Physical
Review D, 18(10):3535, 1978. 3.2.1

[116] R. Utiyama and B. S. DeWitt. Renormalization of a classical gravitational field
interacting with quantized matter fields. Journal of Mathematical Physics, 3(4):608–618,
1962. 3.2.1

[117] R. Arnowitt and P. Nath. Gauge theories and modern field theory. Proceedings of a
conference held at Boston, September 26 and 27, 1975. 1 1976. 3.2.1

[118] K. S. Stelle. Renormalization of higher-derivative quantum gravity. Physical Review D,
16(4):953, 1977. 3.2.1, 3.2.1, 2, 4.2

[119] J. Gomis and S. Weinberg. Are nonrenormalizable gauge theories renormalizable?
Nuclear Physics B, 469(3):473–487, 1996. arXiv: https://arxiv.org/abs/hep-
th/9510087. 3.2.1

[120] R. Percacci. An introduction to covariant quantum gravity and asymptotic safety,
volume 3. World Scientific, 2017. 2, 3.2.2

71

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.66.025026
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.66.025026
https://arxiv.org/abs/hep-th/0205062
https://arxiv.org/abs/2202.10436
https://www.worldscientific.com/doi/abs/10.1142/S0217732309031521?casa_token=t3PllQMur4sAAAAA:xiN32Y3PSmBhFwzIqqDdqHxJmqCTDfoaoVIbBGE_EsWf18m06EFxKf5vYOelUCH4IoMhyGXZgf0s
https://www.worldscientific.com/doi/abs/10.1142/S0217732309031521?casa_token=t3PllQMur4sAAAAA:xiN32Y3PSmBhFwzIqqDdqHxJmqCTDfoaoVIbBGE_EsWf18m06EFxKf5vYOelUCH4IoMhyGXZgf0s
https://arxiv.org/abs/0901.2984
https://iopscience.iop.org/article/10.1088/0264-9381/15/11/011/meta?casa_token=r6Ju8MvOTWIAAAAA:93lfKN7WfO7NwfrVqjsSsGaGTjJoAfNsbLLNICrC0HPjD3znPkb7PZ_8jp_7SSHftZaj_9PSRg
https://arxiv.org/abs/hep-th/9707239
https://www.sciencedirect.com/science/article/pii/S0003491613000675?casa_token=nF2XHOEIaaoAAAAA:mZFrtYaTRjCH-iXMIIpJf3GdLUNf14CUHJCAokvqZLxn7xnyrD1CWsrY0F5XRlxKE4c1Udl7r58
https://www.sciencedirect.com/science/article/pii/S0003491613000675?casa_token=nF2XHOEIaaoAAAAA:mZFrtYaTRjCH-iXMIIpJf3GdLUNf14CUHJCAokvqZLxn7xnyrD1CWsrY0F5XRlxKE4c1Udl7r58
https://www.sciencedirect.com/science/article/pii/S0003491615000093?casa_token=UvE3NuPbuywAAAAA:yQsEiY76b3o5SX68RXm7T6UmVFvbc9qdoFa_ar4HQBA0J8aslGZs4tYsYbrqWGAvSOBhy5FChWo
https://www.sciencedirect.com/science/article/pii/S0003491615000093?casa_token=UvE3NuPbuywAAAAA:yQsEiY76b3o5SX68RXm7T6UmVFvbc9qdoFa_ar4HQBA0J8aslGZs4tYsYbrqWGAvSOBhy5FChWo
https://arxiv.org/abs/1301.5135
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.18.3535
https://aip.scitation.org/doi/abs/10.1063/1.1724264?casa_token=Canx9FZyj1QAAAAA:zku6Pid4INpHYWonbjDIUf5flSS7IziV9-LRZf-R6e-eE2GwGsbcNDfgGYPRzN-IttMcMaKzmFgL
https://aip.scitation.org/doi/abs/10.1063/1.1724264?casa_token=Canx9FZyj1QAAAAA:zku6Pid4INpHYWonbjDIUf5flSS7IziV9-LRZf-R6e-eE2GwGsbcNDfgGYPRzN-IttMcMaKzmFgL
https://www.osti.gov/biblio/7354470
https://www.osti.gov/biblio/7354470
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.16.953
https://www.sciencedirect.com/science/article/abs/pii/0550321396001320
https://arxiv.org/abs/hep-th/9510087
https://arxiv.org/abs/hep-th/9510087


[121] M. J. G. Veltman. Quantum theory of gravitation. Méthodes en théorie des champs,
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Appendices

A Deriving the kinematical pole and NGFP using the background
field method

We decompose the metric into a conformal mode ϕ and a traceless symmetric tensor hµν as
follows

gµν = ĝµα(eh)α
νe−ϕ,

= g̃µνe−ϕ,
(142)

where ĝµν is the background metric [63–65]. Reparametrizing the action in terms of this new
metric and the conformal field, and taking into account the quantum corrections we get the
following EH action:

SEH(ĝµν , hµν , ϕ) = µϵ

G0

∫
dDx

√
ĝe− ϵ

2 ϕ

[
R̃− 1

4ϵ(D − 1)g̃µν∂µϕ∂νϕ

]
, (143)

where D = 2 + ϵ. We can expand in terms of hµ
ν and ϕ fields and drop the linear term.

SEH(ĝµν , hµν , ϕ) = µϵ

G0

∫
dDx

√
ĝ

[
R̂ + 1

4hα
µ,νhµ

α,
ν + 1

2R̂σ
µναhα

σhµν

− ϵ

4(D − 1)ĝµν∂µϕ∂νϕ + ϵ

2ϕhµ
νR̂ν

µ + (ϵϕ)2

8 R̂ + ϵ

2ϕhµν
,µν

− 1
2hν

µ,νhαµ
,α

]
+ . . . ,

(144)

where we follow the notations from [10], i.e. , µ is the covariant derivative ∇µ with respect to
the background metric. We apply the background field method [154,155] to compute quantum
corrections and choose the following gauge fixing term

µϵ

G0

∫
dDx

√
ĝ

(1
2hν

µ,ν + ϵ

2∂µϕ

)(
hαµ

,α + ϵ

2∂µϕ

)
. (145)
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This choice of gauge fixing cancels the last two terms in equation (144). Finally, the quadratic
part of the action is

SEH(ĝµν , hµν , ϕ) = µϵ

G0

∫
d2+ϵx

√
ĝ

[
1
4hα

µ,νhµ
α,

ν + 1
2R̂σ

µναhα
σhµν

− ϵ

8Dĝµν∂µϕ∂νϕ + ϵ

2ϕhµ
νR̂ν

µ + (ϵϕ)2

8 R̂

]
.

(146)

We can now expand the background metric around the flat metric

ĝµν = δµν + ĥµν . (147)

We expand the ϕ kinetic term in ĥµν

ϵ

8D
√

ĝĝµν∂µϕ∂νϕ = ϵ

8D∂µϕ∂µϕ− ϵ

8DŜµν∂µϕ∂νϕ + . . . , (148)

where
Ŝµν = ĥµν −

1
D

δµν ĥαα. (149)

Therefore, the ϕ propagator, where P denotes a generic graviton propagator following the
notation from [10], is given by

⟨ϕ(P )ϕ(−P )⟩ = − 1
P 2

4
ϵD

. (150)

This is precisely the kinematical pole of order 1
ϵ mentioned in Section 2.4.3.

We now evaluate the one-loop divergence to check that we get the same FP as in Section
2.4.3. The one-loop divergence due to one free scalar field is

− 1
24π

√
ĝ

R̂

ϵ
. (151)

Now, we count the number of dof to determine the total one-loop counterterm considering
all our theory’s field content. ϕ has 1 dof, hµ

ν contributes 2 dof in two dimensions and the
complex two component ghost field associated with this QFT contributes −4. The central
charges c label the matter fields coupled to gravity. The total one-loop counterterm is therefore

−25− c

24π

√
ĝ

R̂

ϵ
. (152)
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Equivalently, defining γ ≡ 25−c
24π , we are left with

−γ
√

ĝ
R̂

ϵ
. (153)

The bare coupling is then
1

G0
= µϵ

( 1
G
− γ

1
ϵ

)
, (154)

where G is the renormalized coupling. The beta function is given by

µ
∂

∂µ

( 1
G0

)
= 0, (155)

which yields the following perturbative flow equation, or Callam-Symanzik equation

βpert ≡ µ
∂

∂µ
(G(µ)) = ϵG− γG2. (156)

The RG flow contains a NGFP in the UV at

G∗(µ) = ϵ

γ
. (157)

In this case, the dimension of the FP’s unstable manifold is 1. This is valid for all γ > 0, i.e.
c < 25. We did find the same NGFP as in Section 2.4.3.
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B Deriving the Wetterich equation

We now derive a flow equation for the EAA governing its dependence on the IR cutoff scale
k [24, 47,53,67]. First we recall that

Zk,Λ = exp
{

Wk,Λ[J, Φ̄]
}

=
∫
DΦ̂e−SJ

tot[Φ̄,Φ̂]e−∆Sk[Φ̂,Φ̄],

=
∫
DΦ̂ exp

{
−Stot[Φ̂, Φ̄]−∆Sk[Φ̂, Φ̄] +

∫
dxΦ̂(x)J(x)

}
.

(158)

For simplicity, we drop the Φ̄ dependence for now and reintroduce it at the end of the
derivation. We define the cutoff action according to equation (74) but replace p2 by −∂2,

∆Sk[Φ̂] = 1
2

∫
dDxΦ̂(x)Rk(−∂2)Φ̂(x). (159)

This allows us to define the cutoff action without any reference to the Fourier decomposition
of Φ̂. To obtain the effective action, we take the Legendre transform of ln

(
Zk,Λ[J, Φ̄]

)
or

equivalently of Wk,Λ[J, Φ̄],

Γ̃k,Λ[Φ] = sup
{J}

(∫
dxΦ(x)J(x)−Wk,Λ[J ]

)
. (160)

We then subtract the cutoff action to the effective action to obtain the EAA,

Γk,Λ[Φ] = Γ̃k,Λ[Φ]−∆Sk,Λ[Φ]. (161)

To derive a FRGE for this EAA, we start by taking the k-derivative of (160) and inserting
(158) and (159) which yields

k
∂

∂k
Γ̃k,Λ[Φ] = 1

2

∫
dDx

∫
dDy⟨Φ̄(x)Φ̄(y)⟩k ∂

∂k
Rk,Λ(x, y). (162)

Next, we introduce the functional derivative definition of the connected two-point function,
associated with the Wk,Λ[J ] generating functional

Gk,Λ(x, y) ≡ δ2Wk,Λ[J ]
δJ(x)δJ(y) , (163)

and the Hessian of Γ̃k,Λ

Γ̃(2)
k,Λ ≡

δ2Γ̃k,Λ[Φ]
δΦ(x)δΦ(y) . (164)
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By taking two consecutive J-derivatives of (158) we obtain the two-point function ⟨Φ̄(x)Φ̄(y)⟩ =
Gk,Λ(x, y) + Φ(x)Φ(y). We can substitute this into (162) to obtain

k
∂

∂k
Γ̃k,Λ[Φ] = 1

2 Tr
{

k
∂

∂k
Rk,Λ(x, y)Gk,Λ(x, y)

}
+ 1

2

∫
dDxΦ(x)k ∂

∂k
Rk,Λ(−∂2)Φ(x). (165)

In terms of the EAA (161), the trace term on the RHS is actually equal to k ∂
∂k Γk,Λ[Φ] and

the term 1
2
∫

dDxΦ(x)k ∂
∂kRk,Λ(−∂2)Φ(x) cancels. This cancellation is the main motivation

of defining the EAA (161). Note, G and Γ̃(2) are related by a Legendre transform, so they
are mutually inverse matrices such that G−1Γ̃(2) = 1. Also, differentiating (161) twice with
respect to Φ(x) and Φ(y), we find that Γ(2)

k,Λ = Γ̃(2)
k,Λ − Rk,Λ. Therefore, Gk,Λ = [Γ̃(2)

k,Λ]−1 =
(Γ(2)

k,Λ +Rk,Λ)−1. We are left with the Wetterich equation [67],

k
∂

∂k
Γk,Λ[Φ, Φ̄] = 1

2 Tr
[
(Γ(2)

k,Λ[Φ, Φ̄] +Rk,Λ[Φ̄])−1k
∂

∂k
Rk,Λ[Φ̄]

]
. (166)

This exact non-perturbative FRGE is satisfied by the EAA, Γk,Λ[Φ, Φ̄].
In the following equation, we retain the implicit IR cutoff k which carries the scale

dependence of the EAA and tells us that only the thin-shell of momentum p2 ≈ k2 contributes
to the FRGE. [24,47,53,56]. We can rewrite

k
∂

∂k
Γk[Φ, Φ̄] = 1

2 Tr
[
(Γ(2)

k [Φ, Φ̄] +Rk[Φ̄])−1k
∂

∂k
Rk[Φ̄]

]
. (167)

The EAA satisfies the following integro-differential equation

exp
{
−Γk[Φ, Φ̄]

}
=
∫
DΦ̂ exp

{
−S[Φ̂] +

∫
dDx(Φ̂− Φ)Γ(1)

k

}
exp

{
−1

2

∫
dDx(Φ̂− Φ)Rk(−∂2)(Φ̂− Φ)

}
.

(168)
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C Modified BRS Ward identities

The sum S[ḡ + h] + Sgf + Sgh is invariant under the following BRS transformations presented
in [66] (ε is anti-commuting):

δεhµν = εκ−2LCgµν ,

δεḡµν = 0,

δεCµ = εκ−2Cν∂νCµ,

δεC̄µ = ε(ακ)−1Fµ.

(169)

From this statement, one can derive the modified BRS-Ward identities by taking the BRS
variation of the total action, including the cutoff and source actions. These identities are

∫
dDx

1√
ḡ

[
δΓ′

k

δh̄µν

δΓ′
k

δβµν
+ δΓ′

k

δξµ

δΓ′
k

δτµ

]
= Yk (170)

where we defined Γ′
k ≡ Γk−Sgf[h̄, ḡ]. The same action functional is used to derive this equation

and the gravitational FRGE. An exact solution of the latter necessarily solves the former.
Hence, the GEAA (83) solves the modified BRS-Ward identities (170). This conditions the
validity of QEG as a candidate for a QFT of gravity.

Note, we recover the standard gravitational Ward identities [156] from (170) when Yk = 0,
i.e. when the cutoff function Rk[ḡ] vanishes [66]. Hence, the standard effective action, given
by limk→0 Γk = Γ from (77), is guaranteed to obey (170) since Rk[ḡ]→ 0 in the k → 0 limit.
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