
Imperial College of Science, Technology and Medicine

Department of Physics

Shift on W boson mass

I Cheong Hong

Submitted in part fulfilment of the requirements for the degree of
Msc QFFF

September 2022



Abstract

In April 2022, the CDFII experiment that measures the mass of w boson shows anomalous

among previous experiments and the Standard model prediction. In this master thesis, we

have gone through the background knowledge which is needed to understand modern W boson

analysis. This thesis gave an introduction to both experimental aspects and theoretical calcu-

lations. The experimental side includes the setup of the CDFII experiment and methodology,

while the theoretical side mentioned loop correction calculation, and the most important –

SMEFT(Standard model effective field theory). SMEFT is used in [4] to analyse the shift in

the W boson mass. The aim of this thesis is to give the reader knowledge of the W boson

analysis so the reader is capable to understand the academic papers that is on this topic.
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Chapter 1

Introduction

1.1 Motivation and Background

In order to examine the Standard Model, physicists have been working on the precise measure-

ment of fundamental particles for many years. For example, the observation of the Higgs boson

in 2012 by LHC( Large Hardon Collider) is a piece of strong evidence for the standard model.

However, a recent report [1] from CDF ( Collider Detector at Fermilab) Collaboration proposed

that the mass of W boson measured in CDF II is Mw = 80433.5± 9.4 MeV, which is different

compared to the Standard model predicted value, 80354 ± 7MeV. This is interesting because

the data is taken at the most precise measurement ever. There are many possible reasons

for this mass shift in both theoretical and experimental aspects. In this thesis, I provided an

overview of the CDF II experiment which hugely based on the CDF II report [1]as well as an

introduction to theoretical calculation for the mass of W boson at the level of Master students.

Steps for some equation are inlcuded.
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Chapter 2

Experimental Aspect— CDF II result

2.1 Introduction

CDF(Collider Detector at Fermilab) [15] is one of the detectors located at the Tevatron accel-

erator ring at Fermilab, Chicago. When proton and antiproton that accelerate to the centre of

mass energy 1.96 Tev [1] by the Tevatron collide, they produce many subatomic particles during

the collision. The CDF tracks the product particle using 7 layers of silicon at the innermost

layer in order to measure the momentum. The second layer act as a calorimeter, which is used

to measure the energy of the resulting hardon. The third layer is a muon detector which mea-

sures the particles that did not absorb by the calorimeter. These three parts combine and give

the data which can be used to analyse what happens during the collision. In the CDFII exper-

iment, detectors are calibrated by comparing the mass of the J/ψ meson to the experimental

value.

3
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2.2 Measurement of W boson

2.2.1 W boson decay

However, the experiment does not directly take the measurement of the W boson. In the CDFII

measurement, they analyse a high purity sample of lepton decay data, which is the process that

W boson decay to lepton ( Figure 2.1 ) W → e+ ν̄e and W → µ+ ν̄µ. The mass of the w boson

is reconstructed using the kinematic data of electrons and muons. The branching ratios [12]for

these two process are 0.1046 ± 0.0042 ± 0.0014 for electron and 0.1050 ± 0.0041 ± 0.0021for

muon.

Figure 2.1: W boson decay to leptons – electron example

2.2.2 Trigger system

In order to obtain useful information and a pure sample for W → eν and W → mν, a trigger

system is applied to filter the data. Only Muon with pT (Transverse momentum) > 18 GeV or

electron ET > 18 GeV will be recorded by the online trigger system. Those data are downloaded

for offline analysis. In the offline selection part, electron must have pT > 18 GeV and energy

ET > 30 GeV. Muon must have pT > 30 GeV, and both electron and muon’s COT (central

outer tracking drift chamber) track must meet requirements for quality. The cosmic-ray muons

and Z boson event data are being rejected from the data.
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2.2.3 W boson mass reconstruction

The w boson mass is reconstructed using kinematics data of the product leptons. Because

the longitude momentum of neutrino is not measurable, so what we reconstruct here is the

transverse momentum and transverse mass.(The transverse momentum of the neutrino pνT can

be inferred by the conservation of transverse momentum.) This reconstruction uses one called

the ’Transverse momentum method’ [19]. The transverse mass of the W boson is given by

mT =
√

2(peTp
ν
T − p⃗eT · p⃗νT ). The steps are given in the appendices A. The resulting reconstructed

mT is a distribution, which will peak at mw (so-called Jacobian Peak). ( For details see

appendices B) The figure 2.2shows the mT distribution measured in the CDF II experiment.

Figure 2.2: mT distribution at CDF II experiment [1]

2.2.4 Monte Carlo – RESBOS

In order to infer the w boson rest mass from transverse mass distribution, a custom Monte

Carlo simulation(RESBOS, Resummation for Bosons) [5] is used. It takes boson mass, and

transverse momentum as input( require coupling constant as as external input) and performs

next to leading order QCD calculation. The output is the differential cross-section of the

process. Here is the abstract of the Monte Carlo:

1. take a mass value as the starting point of the program

2. use the code to generate mT and pT distribution.

3. Compare to the experimental data, repeat to get the best fit
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This Monte Carlo uses NNPDF3.1 [6] as the Parton distribution function (PDF), which denotes

a 3.9 MeV PDF uncertainty to the inferred W boson mass.

2.2.5 Result

In order to make sure the measurement is correct, CDF II also measures the mass of the Z

boson. The result for the Z boson is mz = 91194.3 MeV, which is consistent with the world

average. Fig.2.2 shows the resulting data. The blue points are experimental data and the red

indicates the best fit for Monte Carlo. The resulted W boson mass is mw = 80433.5± 9.4MeV,

which is the most precise measurement ever(Fig 2.4) , shows a 7 σ difference compare to the

standard model prediction. This experiment also shows a large deviation from the previous

experiment.(Fig.2.3) Thus, it might be a hint to theory beyond the standard model.
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Figure 2.3: Comparison between CDF II data and previous experiment [1]
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Figure 2.4: Summary of uncertainty [1]



Chapter 3

Introduction to the Standard model

Before going to cutting-edge theory describing the shift of the W boson mass, I re-introduce

the ’standard’ standard model here for readers unfamiliar with particle physics or needing a

recap on it. Also, I will define notation and convention in this chapter.

3.1 The Standard Model

The standard model is the most successful model in physics. It states that fundamental parti-

cles make up everything in the world, and particles are classified into two classes: boson and

fermion. Fermion constructs matter and the boson is the force carrier. Fig3.1 shows all the

fundamental particles in the standard model.

There are four fundamental forces in nature. Gravity, strong force, weak force, electromag-

netic force. The standard model describes all of them well except gravity, and the rest of the

fundamental forces are described by quantum fields. The standard SU(3) × SU(2)L × U(1)

Lagrangian describe all of these quantum fields, which are:

9
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Figure 3.1: Particle zoo

L =− 1

4
BµνB

µν −−1

4
W l

µνW
lµν − 1

4
Ga

µνG
aµν

+ (Dµϕ)
†(Dµϕ) +m2ϕ†ϕ− 1

2
λ2(ϕ†ϕ)2

+
3∑

f=1

(l̄fLi��Dl̄
f
L + l̄fRi��Dl̄

f
R + q̄fLi��Dq̄

f
L + d̄fRi��Dd̄

f
R + ūfRi��Dū

f
R

−
3∑

f=1

yfl (l̄
f
Lϕl

f
R + h.c.)

−
3∑

f,g=1

(yfgd q̄
f
Lϕd

g
R + yfgu q̄

f
Lϕ̃u

g
R + h.c.) (3.1)

3.1.1 Definitions and notations

And the definition of notations above are :

Gauge fields

U(1) gauge field :

Bν ,

Bµν = ∂µBν − ∂νBµ (3.2)
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SU(2) gauge field :

W l
ν , l = 1 . . . 3

W l
µν = ∂µW

l
ν − ∂νW

l
µ + gϵljkW

j
µW

k
ν (3.3)

SU(3) gauge field :

Ga
ν , a = 1 . . . 8

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsfabcG

b
µG

c
ν (3.4)

µν are Lorentz indices, a is the SU(3) indices, l is the SU(2) indices. fabc is the SU(3) generator,

g and gs is the coupling constant for SU(2) and SU(3) gauge field. ϵljk is the anti-symmetric

tensor. Dual gauge field is defined as X̃ = 1
2
ϵµνρσX

ρσ, where X is the gauge field.

matter fields

In the Standard Model, fermion has three-generation, and I labelled them as f and g in the

summation. The colour indices are ignored for quark fields.L/R means the handedness of the

particle. The lepton fields is the following:

l1L = ( νeL
eL ) (3.5)

l2L =
( νµL

µL

)
(3.6)

l3L = ( ντL
τL ) (3.7)

l1R = eR (3.8)

l2R = µR (3.9)

l2R = τR (3.10)

and the quark field :
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qfL =
(

uf
L

dfL

)
(3.11)

The right-handed up/down type quark is written as ufR and dfR. The Yukawa couplings is yfe

Higgs field and covariant derivative

Define the covariant derivative : Dµ = ∂u − igs
1
2
λaGa

µ − ig 1
2
τ lW l

µ − ig
′
Y Bµ

The Higgs doublet ϕ

The Higgs vacuum expectation value is ϕ0 =
(

0
v√
2

)
where v2 = 2µ2

λ
= 1√

2GF
=. GF is the Fermi constant. Experimentally, v = 246.22GeV.

3.2 Masses of gauge boson and Higgs mechanism

In the Lagrangian, the mass term is the coefficient that appears with the field’s quadratic (For

example, the mass term of Higgs field m2ϕ†ϕ). It is clear that in Eq.3.1 does not have an

explicit mass term(as well as field mixing) for the gauge boson. In order to get the masses

for physical bosons, the Higgs mechanism and electroweak symmetry breaking is needed. The

breaking electroweak symmetry pattern is SU(2)×U(1)−→U(1). Below is an abstract of the

process:

Consider SM Lagrangian with only Bµν ,Wµν gauge boson and Higgs field (other is not rel-

evant yet):

L =− 1

4
BµνB

µν − 1

4
W l

µνW
lµν

+ (Dµϕ)
†(Dµϕ) +m2ϕ†ϕ− 1

2
λ2(ϕ†ϕ)2

(3.12)
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where

Dµ = ∂u − ig
1

2
τ lW l

µ − ig
′
Y Bµ (3.13)

Choose the vev ϕ0 =
(

0
v√
2

)
, so that the m2ϕ†ϕ− 1

2
λ2(ϕ†ϕ)2 vanishes.

Expand the (Dµϕ)
†(Dµϕ)

(Dµϕ)
†(Dµϕ) = |(∂u − ig

1

2
τ lW l

µ − ig
′
Y Bµ)

1√
2
( 0
v ) |2 (3.14)

The hypercharge Y (ϕ) = 1
2

=
1

8
|(−igτ lW l

µ − ig
′
Bµ) ( 0

v ) |2

=
v2

8
|(−igτ lW l

µ − ig
′
Bµ) ( 0

1 ) |2

=
v2

8
|(−ig(

(
0 W 1

W 1 0

)
+
(

0 −iW 2

iW 2 0

)
+
(
W 3 0
0 −W 3

)
)− ig

′( B 0
0 B

)
) ( 0

1 ) |2

=
v2

8
|
(

gW 1−igW 2

g
′
B−gW 3

)
|2

=
v2

8
(g2((W 1

µ)
2 + (W 2

µ)
2) + (gW 3

µ − g′Bµ)
2)

This term can be written in a mass matrix form v2

8



g2 0 0 0

0 g2 0 0

0 0 g2 −gg′

0 0 −gg′
g

′2





W 1
µ

W 2
µ

W 3
µ

Bµ


Because there is a mix between W 3 and B, diagonalization of the mass matrix is needed to

obtain a physical boson.

If diagonalize directly,
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λ1 = 0 c1 =



0

0

sinθ

cosθ



λ2 =
g2v2

8
c2 =



1

0

0

0



λ3 =
g2v2

8
c3 =



0

1

0

0



λ4 =
(g2 + g

′2)v2

8
c3 =



0

0

cosθ

−sinθ



where define the Weinberg angle cosθ = g√
g′2+g2

Define the following physical fields :

W± = 1√
2
(W 1µ∓ iW 2

µ)

Aµ = 1√
g2+g′2

(gW 3
µ + g′Bµ)

Zµ = 1√
g2+g

′2
(gW 3

µ − g′Bµ)

where W± is the W bosons, Zµ is the Z boson and Aµ is the photon field.

Substitute the fields defined above back to the original mass matrix
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W+
µ W

−µ = 1
2
((W 1

µ)
2 + (W 2

µ)
2),

the mass term v2g2

8
((W 1

µ)
2 + (W 2

µ)
2) = v2g2

4
W±

µ W
∓µ = m2

wW
±
µ W

∓µ, so mw = vg
2

For the Z boson:

(g2+g
′2)v2

8
(cosθW 3

µ − sinθBµ)
2 = (g2+g

′2)v2

8
ZµZ

µ = m2
z

2
ZµZ

µ

mz =

√
(g2+g′2)v

2

The L after electroweak symmetry breaking and in terms of physical fields is:

L0 =− 1

4
AµνA

µν − 1

2
W+

µνW
−µν − 1

4
ZµZ

µ

+m2
wW

+
µ W

−µ +
m2

z

2
ZµZ

µ (3.15)



Chapter 4

Loop correction and accurate

prediction

However, the mass of the W boson calculated above is the bare mass(or the mass in Lagrangian).

It is not the physical mass. In order to get an accurate prediction, loop correction is needed.

For example, the tree-level prediction of (mw)tree = 80.939GeV and the averaged experimental

value(mwexp) = 80.3 (From PDG) is different by many S.D. For the purpose of introduction, a

scalar field example here is introduced. The example below is based on the lecture notes from

the QED course at Imperial College London.

4.1 Scalar field example

Consider two point function for scalar field ϕ in ϕ4 theory ( ignore the wave function renormal-

ization here, which set Z0 = 1):

F (p) =

∫
d4xeipx ⟨Ω| T ˆϕ(x)ϕ(0) |Ω⟩ (4.1)

16
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Figure 4.1: For example 1 PI, from [18]

Assume it can be written in propagator form

F (p) ∼ i

p2 −m2 + iϵ
(4.2)

The pole here is p2 ∼ m2, where defined the physical mass m. The two-point function can also

be written in the form:

F (p) = F0(p) + F0(p)(−iΠ(p))F0(p)

where −iΠ(p) is the sum of all amputated diagrams (removed all external propagators) and

F0(P ) is

F0(p) =
i

p2 −m2
0 + iϵ

m0 is the bare mass.

The −iΠ(p) can also be seen as the sum of all amputated 1-PI (1 particle irreducible diagram)

(Fig.4.1)

−iΠ(p) = −iΣ(p) + (−iΣ(p))F0(p)(−iΣ(p)) + (−iΣ(p))F0(p)(−iΣ(p))F0(p)(−iΣ(p)) + .....

(4.3)
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So that

F (p) = F0(p) + F0(p)(−iΠ(p))F0(p)

= F0(p)(1 + (−iΠ(p))F0(p))

= F0(p)(1 + (−iΣ(p)F0(p) + ((−iΣ(p))F0(p))
2 + .....)

= F0(p)
1

1 + iΣ(p)F0(p)

=
i

F0(p)−1 − Σ(p)

=
i

p2 −m2
0 + iϵ− Σ(p)

(4.4)

Compare to 4.2, we can identify the physical mass:

p2 −m2
0 + iϵ− Σ(p) = 0|p2=m2

The Σ(p) is also called self-energy. This method is also called on-shell renormalization.

4.2 W boson 1 loop correction

However, when we try to renormalize the W boson observable, on-shell renormalization is not

the best choice. It is because a usual renormalization always alter the experimental observ-

able e, g, g
′
,mw,mz, θw. For the purpose of simplicity and applicability, a new renormalization

scheme is used.[18]. Many physicists choose the input parameters as GF ,mz, α because these

three can be measured in experiments very well. Below is a short introduction to this scheme.

Note that quantity with a lower indices 0 is renormalized quantity, or called bare quantity.

Begin with the Standard model Lagrangian after electroweak SSB:

LV B
m =

v20
2
(
g20
2
W+

µ W
−µ +

1

4
(g0W

3
µ − g′0Bµ)

2) (4.5)
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where all the fields and coupling constant are renormalized. To generate counterterms, one

alters the bare coupling constant:

g0 = g − δg

v20 = v2 − δv2

And the Lagrangian 4.5 can be written in :

LV B
m =

v2 − δv2

8
[(Aµ(g

′c− gs)− Zµ(gc+ g′s)− δg′(cAµ − sZµ) + δg(cZµ + sAµ)]
2 (4.6)

+
(v2 − δv2)(g − δg)2

4
W+

µ W
−µ (4.7)

where the c=cosθw, s=sinθw. θw is the Weinberg angle that tan(θ) ≡ g′

g
.

Ignore higher order terms O(((δg)2, (δg′)2, (δg)(δg′)) :

LV B
m =

m2
z − δm2

z

2
ZµZ

µ + δm2
zaZmµA

µ + (m2
w − δm2

w)W
+
µ W

−µ (4.8)

δm2
z = (g2 + g′2)

δv2

4
+
v2

4
δ(g2 + g′2) (4.9)

δm2
w =

v2δg2 + g2δv2

4
(4.10)

δm2
za =

m2
z

(g2 + g′2)(
1
2
)
(cδg′ − sδg) (4.11)

The field rescaling and renormalisation are ignored here due to the reason of keeping Largangian

simple. For the purpose of studying a physical mass matrix, it is sufficient to use such a scheme.

In order to identify the physical masses of Z and W bosons, need to introduce the unrenormalize

boson self-energy:

Πµν
zz (q

2) = Azz(q
2)gµν +Bzz(q

2)qµqν (4.12)

Πµν
zz (q

2) = Aww(q
2)gµν +Bww(q

2)qµqν (4.13)
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Figure 4.2: tzz and tww term [18]

where the Πµν
zz is the same as defined 4.3.(Also refer to Fig4.1) One can write the amputated

propagator in 4.12 form because the boson propagator is written in the form

Dµν(k) = −
gµν − kµkν

k2

k2 −m2 + iϵ
(4.14)

To obtain the physical mass mw and mz, choose

δm2
z = ReAzz(m

2
z) + tzz (4.15)

δm2
w = ReAww(m

2
w) + tww (4.16)

The tzz and tww are the contribution from a tadpole and tadpole counter-term of the Higgs

field ( Fig 4.2). One can choose the vacuum expectation value so the tzz and tww = 0

Combing the equations above, we can find

δm2
zA =

m2
w

2sc
Re(

Azz(m
2
z)

m2
z

− Aww(m
2
w)

m2
w

+O(α2)) (4.17)

This counterterm is very important in analysing hadronic contribution to Zγ mixing self-energy.

(since it comes with the A and Z fields in the Lagrangian).

The above renormalization does not compete. We still need to consider boson-quark interaction

and renormalization of electric charge. They are all done in [18]. In the next section, we jump

to the most important conclusion and prediction of this scheme, loop correction for muon decay.
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Figure 4.3: Example of Muon decay [16]

4.3 Loop correction for muon decay

Muon decay is important because this process gives important hints and constraints to the W

boson and Fermi constant mass. The Feynman diagram for tree level muon decay is 4.3 From

this process one can deduce an important and famous relation (note the g here is the physical

g):

GF√
2
=

g2

8m2
w

(4.18)

To proceed with the process of radiation correction, we need to sum over all possible Feynman

diagrams in 1-loop order. Fig.4.4 shows the self-energy, tadpole and counterterm contribution

to the muon decay. The sum in this section is:

M4 =M0[
Aww(q

2)−ReAww(m
2
w)

q2 −m2
w

− 2δe

e
+
c2

s2
Re(

Azz(m
2
z)

m2
z

− Aww(m
2
w)

m2
w

)] (4.19)

where

M0 = −g
2

2
(ūvµγµa−uµ)(ūeγµa−ννe)

−i
q2 −m2

w

(4.20)

is the tree-level propagator. e is the EM coupling,

e = gs
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Figure 4.4: Self-energy part [18]

and the counter term

δe = c3δg′ + s3δg (4.21)

.

This counterterm is adjusted to cancel correction to photon emission. Fig.4.5 shows all diagrams

that have 1-loop correction at the interaction vertex. The contribution of those diagrams are:

M5 =M
0 g2

16π2
[
c2

s2
(1 + c2)lnc2 + 2 (4.22)

− 64π2ic2
∫
n

1

(k2 −m2
z)(k

2 −m2
w)

(4.23)

− 64π2is2
∫
n

1

(k2)(k2 −m2
w)

(4.24)

The circle in the vertex means all possible ways virtual bosons are attached to the fermion line.

In addition, 2 more Feynman diagrams called boxed diagrams that showed in Fig.4.6 needed

to be considered. The contributions are:
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Figure 4.5: Vertex diagram at 1loop order [18]

Figure 4.6: In addition Feynman diagram (Box diagram)[18]
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Mbox =M0 g2

32π2
c2ln(

1

c2
)(5

c2

s2
− 3

s2

c2
) (4.25)

Adding Eq.4.22 4.19 4.25,

M =M0∆r

And use a redefinition of coupling g to absorb the correction(Note that in this step the usual

definition of GF changes due to a different choice of renormalization scheme):

ĝ2 = g2[1 + ∆r] (4.26)

Combine it to 4.18

m2
w =

√
2

8

ĝ2

GF

=

√
2

8

g2(1 + ∆r)

GF

=

√
2

8

e2(1 + ∆r)

s2GF

=

√
2

8

4πα(1 + ∆r)

s2GF

=
πα(1 + ∆r)

s2GF

√
2

=
πα(1 + ∆r)

(1− c2)GF

√
2

=
πα(1 + ∆r)

(1− m2
w

m2
z
)GF

√
2

And we arrived at the famous 1-loop correction equation:

m2
w(1−

m2
w

m2
z

) =
πα(1 + ∆r)√

2GF

(4.27)

where ∆r can be written as [2] :

∆rα = ∆α− c2

s2
∆ρ+∆rrem(MH) (4.28)
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∆α describes the effect from fermionic correction to the fine structure constant. ∆α ∝ log(mf ).

∆ρ is the shift to the ρ parameter, which defined as ρ ≡ m2
w

m2
zc

2 . ∆ρ = ∆ρ(m2
t ) where mt is mass

of top quark. ∆rrem are classified as the remaining part which contains the dependence on the

Higgs mass. For details and steps of Eq.4.28, see [13]

For predicting W boson mass, the equation 4.29 is employed

m2
w = m2

z(
1

2
+

√
1

4
− πα(1 + ∆r)√

2m2
zGF

) (4.29)

It is easy to show that 4.29 is equivalence to 4.27 ( See appendix C )

4.4 Oblique parameters

In order to parametrize new physics contributions to electroweak radiative correction, a set of

parameters proposed by Peskin and Takeuchi [17], called Oblique parameters (S T U param-

eters) is used. These parameters are only affected by self-energy correction from new physics

( Example of self-energy type diagram Fig 4.19). There are three assumptions to using STU

parameters:

[13]

1.No additional electroweak gauge boson other than γ ZW ( Electroweak group is SU(2)L×U(1)

2. Only oblique correction (self-energy part) needs to be considered

3. The energy scale of new physics is higher compared to the electroweak scale

QEDWard identity implies the self-energy of photon and Z-γ mixing is 0 ( Πγγ(0) = 0,Πzγ(0) =
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0), and perform a Taylor expansion :

Πγγ(q
2) = q2Π′

γγ(0) + . . . (4.30)

Πzγ(q
2) = q2Π′

zγ(0) + . . . (4.31)

Πzz(q
2) = Πzz(0) + q2Π′

zz(0) + . . . (4.32)

Πww(q
2) = Πww(0) + q2Π′

ww(0) + . . . (4.33)

where the Π′ means the derivatives of the vacuum polarization function. This form of setup

leaves 6 undetermined parameters. Input experiment data GF , α, mz, one can reduce to 3

undetermined parameters. Here define these 3 parameters as:

αS = 4s2c2[Π′
zz(0)−

c2 − s2

sc
Π′

Zγ(0)− Π′γγ(0)] (4.34)

αT =
Πww(0)

m2
w

− Πzz(0)

m2
z

(4.35)

αU = 4s2[Π′
ww(0)− c2Π′

zz(0)− 2scΠ′
zγ(0)− s2Π′

γγ(0)] (4.36)

The definition of T can also represent a shift in the ρ parameter:

ρ = 1 + δρsm + αT (4.37)

Many of the predictions predict U ¡¡T, thus in much research people assume U = 0. If custodial

symmetry is a real symmetry, it will cause T = U = 0 When no new physics is presented,

S=T=U=0. These sets of parameters are useful when we try to see how the new physics

is presented and affects the experience observable. Also, it has a strong linkage to SMEFT

(which will be discussed in a later chapter). The determination of STU parameters via fitting

experimental data are [3]:

S =0.03±0.10,T=0.05±0.12,U=0.03±0.10

Using mH=126GeV mt = 173GeV
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Figure 4.7: State of the art prediction, from Possible hints for new physics from EWPO and
Higgs, searches, Imperial College Seminar, [M. Berger, S. Heinemeyer, G. Moortgat-Pick, G.
W. ’22]

4.5 State-of-the-art prediction

Unfortunately, the 1-loop result is not enough for precise measurement. Fig.4.7 shows the

difference between prediction from higher loop order and one loop order. If we just use a 1-loop

result it will indicate a heavy Higgs mass, which is incompatible with the experimental result.

All the loop corrections are absorbed to ∆r as one loop result previously. A accurate prediction

of W boson mass [10] mw = 80354 MeV using full higher loop result : [2].

∆r2loop = ∆r(α) +∆r(ααs) +∆r(αα
2
s) +∆r(αα

3
sm

2
t ) +∆r

(α2)
bos +∆rG

2
Fαsm4

t +∆(G3
Fm6

t ) (4.38)

where ∆rα is the one loop result. Other terms include two loops, three loop and approximate

four loop QCD result, 2loop pure fermionic and bosonic electroweak correction.
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A numerical approximation is used to predict the W boson mass[2]:

mw = m0
w + ct∆t + c′t∆

2
t + cz∆z + cα∆α + cαs∆αsMeV (4.39)

∆t = (
mt

173GeV
)2 − 1 (4.40)

∆z =
mz

91.1876GeV
− 1 (4.41)

∆α =
∆α5

had(m
2
z)

0.0276
− 1 (4.42)

∆αs =
αs(m

2
z)

0.119
− 1 (4.43)

m0
w = 80.359.5 (4.44)

ct = 520.5 (4.45)

c′t = −67.7 (4.46)

cz = 115000 (4.47)

cα = −503 (4.48)

cαs = −71.6 (4.49)

mt is the mass of the top quark. The αs(m
2
z) is the hadronic contribution, and αs(m

2
z) represent

the running of strong coupling,where αs =
gs
4π
.
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SMEFT — the Standard model

effective field theory

The prediction above worked well and shows a good match to several experiments2.3, except

for the very precise result from CDFII. At this point, we finally get to the main problem — the

anomalous w boson mass. After the publication of the CDF group, theorists suggested many

models explain the difference between prediction and CDFII results. One of them is SMEFT

(Standard model effective field theory)[8] . It was originally proposed by W. BUCHMLJLLER

and D. WYLER in 1985. Emanuele Bagnaschi, John Ellis, Maeve Madigan, Ken Mimasu,

Veronica Sanze, and Tevong You use this model to analyse the shift in W boson mass [4]

after the CDFII result was out. In this chapter, an introduction and overview of SEMFT are

presented below.

5.1 Effective field theory

If we assumed that, the Standard model is actually an effective field theory, which only describes

physics well at an energy scale less thanmw( Since it works very well at the present experiment),

and the heavy fields are being integrated out in the standard model. It is natural to think that

adding terms that contain the power of 1
Λ
will ”compete” the standard model at energy scale

29
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Λ. We can propose the SMEFT lagrangian as the following:

Leff = L0 +
1

Λ
L1 +

1

Λ2
L2 + higherdimensions... (5.1)

L0 is the standard model lagrangian, the L1 are the dimension five terms and L2 are the

dimension six terms. It is easy to see the dimension of those operators since the Leff is dimen-

sion four, and 1
Λ
denote a dimension of -1. For sure we can always construct terms that are

higher than 6 dimensions, but as a starting point (also One can also impose a condition that

the lagrangian is SU(3)XSU(2)XU(1) invariance.This is a very helpful and useful condition

when constructing operators later. Besides SU(3)XSU(2)XU(1) symmetry, one also can im-

pose baryon number conservation and lepton number conservation in order to construct higher

dimension operators.(It is not necessarily) In conclusion, to construct a higher dimension stan-

dard model operator, one needs to impose the following conditions:

1. SU(3)XSU(2)XU(1) invariance

2. Lorentz invariance

3. Baryon number and lepton number conservation(Optional)

5.2 Dimension five operators

The goal of this chapter is to construct dimension five operators.

Full fermionic / bosonic/ scalar operators is not possible ( fermion field dimension is 3
2
and

bosonic/scalar field is 2). For it to be Lorentz invariance, the lepton field must couple with its

charge conjugate field. In order to have SU(2) invariance, the scalar field must also be coupled

with itself. The only operator that satisfies condition (1) and (2) is: (However this field violates

the lepton number)

L1 = ϵij l̄
Ci
R ϕ

jϵkll
k
Lϕ

l + c.c. (5.2)
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where l̄Ci
R = ( ¯νeL

C

ēL
C ) is the charge conjuate of SU(2) doublet lepton field,ϵij is the anti-symmetric

tensor

 0 1

−1 0

. This operator will give a Majorana mass term for neutrino, which leads to

a huge problem for this operator. After solving the Majorana mass (appendix D ), the mass

term is in the order of G−1
F Λ−1. Since the known neutrino mass from the experiment is in the

order of 0.1 eV, the energy scale Λ will be in the order of 1014 GeV. This result indicated that

this dim-five operator is super heavy, so it is not useful in the current analysis. We then move

to the next field, the dim-six operator.

5.3 Dimension Six operators

The L2 can be written in the form:

L2 =
∑
i

αiOi (5.3)

αi here is the Wilson coefficients, a dimensionless coupling constant. The original work from

Buchmüller and Wyler [8] has constructed 80 operators in dimension six. For the purpose of

analysing W boson mass shift, the operators that will affect W boson mass at the tree level are

(The dual field is included here but it will not enter the calculation below):

OϕW =
1

2
(ϕ†ϕ)W l

µνW
lµν (5.4)

OϕW̃ =
1

2
(ϕ†ϕ)W̃ l

µνW
lµν (5.5)

OϕB =
1

2
(ϕ†ϕ)BµνB

µν (5.6)

OϕB̃ =
1

2
(ϕ†ϕ)B̃µνB

µν (5.7)

OWB = (ϕ†τ lϕ)W l
µνB

µν (5.8)

OW̃B = (ϕ†τ lϕ)W l
µνB

µν (5.9)

O
(1)
ϕ = (ϕ†ϕ)(Dµϕ

†Dµϕ) (5.10)

O
(3)
ϕ = (ϕ†Dµϕ)(Dµϕϕ

†) (5.11)
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To see the effect of these operators, we start from the lagrangian and perform an SSB to

determine the mass of those bosons. The overall procedure is the same but with an additional

dimension of six terms. The gauge boson lagrangian with dimension six terms (ignore G field

here) :

LWB =L0WB + L2WB
1

Λ2

=− 1

4
BµνB

µν − 1

4
W l

µνW
lµν

+
1

Λ2
(αϕw

1

2
(ϕ†ϕ)W l

µνW
lµν + αϕB

1

2
(ϕ†ϕ)BµνB

µν + αWB(ϕ
†τ lϕ)W l

µνB
µν)+

(Dµϕ)
†(Dµϕ) +

1

Λ2
(α

(1)
ϕ (ϕ†ϕ)(Dµϕ

†Dµϕ) + α
(3)
ϕ (ϕ†Dµϕ)(Dµϕϕ

†) (5.12)

It looks long but we can do it step by step.Substituting the vev to ϕ and ϕ† and (Dµϕ)
†(Dµϕ)

which is calculated in the Chapter3 , the equations above becomes:

LWB =− 1

4
BµνB

µν(1− αϕw
v2

Λ2
)− 1

4
W l

µνW
lµν(1− αϕB

v2

Λ2
)

+
1

Λ2
αWB(ϕ

†τ lϕ)W l
µνB

µν+

v2

8
(g2((W 1

µ)
2 + (W 2

µ)
2) + (gW 3

µ − g′Bµ)
2)(1 +

v2

Λ2
α
(1)
ϕ ) + α

(3)
ϕ (ϕ†Dµϕ)(Dµϕϕ

†) (5.13)

The only non-zero indices for αWB term is l=3, where τ 3 =

1 0

0 −1

. This term becomes

a current mixing term, which increases the difficulty of our work. The α
(3)
ϕ term contains the

mixing mass term. The lagrangian will look like this:

LWB =− 1

4
BµνB

µν(1− αϕw
v2

Λ2
)− 1

4
W l

µνW
lµν(1− αϕw

v2

Λ2
)

+
v2

2Λ2
αWBW

3
µνB

µν+

v2

8
(g2((W 1

µ)
2 + (W 2

µ)
2) + (gW 3

µ − g′Bµ)
2)(1 +

v2

2Λ2
α
(1)
ϕ ) + α

(3)
ϕ

v4

16
(gW 3

µ − g′Bµ)(gW
3µ − g′Bµ)

(5.14)

In order to determine the mass of the physical boson field, one needs to perform a diagonal-

ization. However, compare to the standard model lagrangian, the equations above contain
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mass mixing and current mixing terms are mentioned above. To deal with this problem, we

first diagonalize the mass mixing term with others first. The new mass matrix and be writ-

ten as: v2

8



g2(1 +
α
(1)
ϕ

2Λ2 ) 0 0 0

0 g2(1 +
α
(1)
ϕ

2Λ2 ) 0 0

0 0 g2(1 +
α
(1)
ϕ

2Λ2 ) + g2v2
α
(3)
ϕ

2Λ2 −gg′
(1 +

α
(1)
ϕ

2Λ2 )− gg′v2
α
(3)
ϕ

2Λ2

0 0 −gg′
(1 +

α
(1)
ϕ

2Λ2 )− gg′v2
α
(3)
ϕ

2Λ2 g′2(1 +
α
(3)
ϕ

2Λ2 ) + g′2v2
α
(3)
ϕ

2Λ2


Diagonalize this matrix directly (with the help of python code, see appendix E), and we get

λ1 = 0 c1 =



0

0

sinθ

cosθ



λ2 =
g2v2

8
(1 +

v2

2Λ2
α
(1)
ϕ ) c2 =



1

0

0

0



λ3 =
g2v2

8
(1 +

v2

2Λ2
α
(1)
ϕ ) c3 =



0

1

0

0



λ4 =
(g2 + g

′2)v2

8
(1 +

v2

2Λ2
(α

(1)
ϕ + α3

ϕ)) c3 =



0

0

cosθ

−sinθ



The good news is the eigenvector is not changed with the additional terms. We can still use the

previous definition for the physical boson field. However, the eigenvalues for this matrix are not

the mass term in our usual definition. Beware that there is a scale in front of the field kinetic

terms, one needs to perform a rescaling of the field in order to reach our preferred lagrangian
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form. If there is a factor of d2 in front of the field strength tensor:

L =
−1

4
d2WµνW

µν + . . .

Using a rescaling of field

W −→ 1

d
W (5.15)

m2
w −→ 1

d2
m2

w (5.16)

Apply the rescaling to the w boson mass, and d2 = (1 − αϕB
v2

Λ2 ). Taking the order that is up

to v2, we get

m2
weft =

g2v2

4
(1 +

v2

2Λ2
α
(1)
ϕ ) −→g2v2

4
(1 +

v2

2Λ2
α
(1)
ϕ )

1

(1− αϕB
v2

Λ2 )
(5.17)

=
g2v2

4
(1 +

v2

2Λ2
α
(1)
ϕ )(1 + αϕB

v2

Λ2
+ . . . ) (5.18)

=
g2v2

4
(1 +

v2

2Λ2
(α

(1)
ϕ + 2αϕB)) (5.19)

The final lagrangian is:

L2 =− 1

4
AµνA

µν − 1

2
W+

µνW
−µν − 1

4
ZµZ

µ

+m2
wW

+
µ W

−µ +
m2

z

2
ZµZ

µ (5.20)

with

m2
weft = m2

w0(1 +
v2

2Λ2
(α

(1)
ϕ + 2αϕB)) (5.21)

m2
zeft = mz(1 + (

1

2
αzz +

1

4
α
(1)
ϕ +

1

4
α
(3)
ϕ )

v2

Λ2
) (5.22)

where m2
w0 = 1

4
g2v2. Note that after field redefinition the electroweak field is also redefined.

For example, the W 3 and B field definition is changed. Our main goal is to analyse W boson,
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so this part is skipped. The equations above is the origin formalisation of w boson mass shift

that proposed in [8]. For a modern formalisation, one need to implent a new basis for operators

– the Warsaw basis.



Chapter 6

Mordern SMEFT analysis

As mentioned in the previous chapter, there are 80 operators in the original paper[8]. In fact,

some of those operators can be written using another operator – a paper by B. Grzadkowski, M.

Iskrzyński, M. Misiak, and J. Rosiek[9] shows that using the conservation of baryon number and

equation of motion, the number of operators can be reduced to 59 independent operators, and

this is called Warsaw basis. Using this new basis, a different approach to analysis w boson mass

shift is presented. In this chapter we will not discuss deeply how to construct a Warsaw basis

as the complete list of operators is already given in [9]. Instead, this chapter will focus on how

the SMEFT analysis of the W boson shift work in Warsaw basis. Also, this chapter competed

for some ambiguity in Chapter 5, such a redefinition of SM parameters. Though working on a

warsaw basis, the notation for the Wilson coefficient sticks with [8]. Every operator that comes

with higher order than v2

Λ2 will be ignored.

6.1 Reintroduce the electroweak observable

In the SMEFT, the definition of parameters is different to the parameters that we defined

in the SM Largagian( which is ignored in the previous section for simplicity) in SMEFT. It is

because additional terms in SMEFT cause the shift of definition. To perform a modern SMEFT

analysis[7], a clear definition of parameters is needed. In the following, the letter with a hat is

36
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the experimentally measured parameter. Note that for convenience, all the Wilson coefficient

(αi) comes with a hidden factor 1
Λ2 in this chapter.

6.2 Effective measured mixing angle

The usual definition of the mixing angle is s2 = g2

g2+g′2

Writing this in terms of observable, we define the measured effective mixing angle :

ŝ = seff =
1

2
− 1

2
(

√
1− 4

πα̂
√
2ĜF m̂2

z

) (6.1)

6.3 Fermi constant

The definition of the Fermi constant also changed. In the Fermi’s local effective lagrangian for

muon decay,

LFermi = −4ĜF√
2
(ν̄µγ

µPLµ)(ēγµPLνe) (6.2)

Due to the presence of the new operators, the origin relation between the Fermi constant and

vacuum expectation value no longer holds. SMEFT contribute additional Fenynam diagrams

to this process(Fig.6.1,6.2) . If assuming flavour symmetry, two operators affecting directly this

process. They are:

O
(3)
ϕl = (ϕ†iD̂I

µϕ)(l̄pτ
Iγµlr) (6.3)

Oll = (l̂pγµlr)(l̄sγ
µlt) (6.4)

where D̂ is defined as

ϕ†iD̂ϕ = iϕ†(Dµ −
↼

Dµ)ϕ

ϕ†i
↼

Dµϕ = (Dµϕ)
†ϕ
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Figure 6.1: Feynman for Oϕl in muon decay. Orange dot means the SMEFT operator coupling

These two operators contribute directly to the muon decay lagrangian, and so affect the rela-

tionship between Fermi constant and vacuum expectation value. The SMEFT relation is:

ĜF =
1√
2v̄2

− 1√
2
αll +

√
2α

(3)
ϕ (6.5)

And of course, the definition with respect to the vacuum expectation value changed. The

vacuum expectation value in SMEFT is represented by v̄ and the relationship between the SM

vev and SMEFT is:

v̄ = (1 +
3αϕv

2

8λ
)v (6.6)

λ is the Higgs coupling. The corresponding operators:

Oϕ = (ϕ†ϕ)3 (6.7)
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Figure 6.2: Feynman for Oll in muon decay. Orange dot means the SMEFT operator coupling
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It is natural to define δGF as:

v̄2 =
1

√
2ĜF

+
δGF

ĜF

(6.8)

so

δGF =
1

√
2ĜF

(
√
2αϕl −

αll√
2
) (6.9)

6.4 Z boson mass

The mass eigenstate of Z boson is ( from the SSB and diagonalisation procedure in Chapter5,

but redefined in Warsaw basis) :

m̄2
z =

v2

4
(ḡ2 + ḡ′2) +

1

8
v̄4α

(3)
ϕ (ḡ2 + ḡ′2) +

1

2
v̄4ḡḡ′αWB (6.10)

and δm2
z

δm2
z ≡ m̂2

z −
v̄2

4
(ḡ2 + ḡ′2) = − 1

2
√
2

m2

ĜF

α
(3)
ϕ − 22

1
4
√
π
√
α̂m̂z

ĜF

3
2

αWB (6.11)

6.5 Coupling constant

The SMEFT coupling constant is renormalised as:

g = ḡ(1 + αϕW v̄
2) (6.12)

g′ = ḡ′(1 + αϕB v̄
2) (6.13)
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Working at tree level, express the coupling constant using the input parameters:

ḡ2 + ḡ′2 = 4
√
2GF m̂

2
z(1−

√
2δGF − δm̂2

z

m̂2
z

) (6.14)

ḡ2 =
4πα̂

ŝ2
[1 +

δs2

ŝ2
+
ĉ

ŝ

1√
2GF

αWB] (6.15)

6.6 Mixing angle in SMEFT

A kinetic term mixing (being introduced in the previous chapter(5.13) cause the definition of

mixing angle to change. The SMEFT definition of mixing angle is :

s̄2 =
ḡ2

ḡ2 + ḡ′2
+
ḡḡ′(ḡ2 − ḡ′2)

ḡ2 + ḡ′2
v̄2αWB (6.16)

Define δs:

δs2 = ŝ2 − s̄2 =
ŝĉ

2
√
2ĜF (1− 2ŝ2)

[ŝĉ(α
(3)
ϕ + 4αϕl − 2αll) + 2αWB] (6.17)

6.7 W boson

The definition of W boson mass is SMEFT is:

m̄2
w =

ḡ2v̄2

4
(6.18)

Substituting result and definition in the previous section, and express it in terms of observable:

m̄w
2 =

πα̂

ŝ2
[1 +

δs2

ŝ2
+
ĉ

ŝ

1√
2GF

αWB](
1

√
2ĜF

+
δGF

ĜF

) (6.19)
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Take m2
w(with simple algebra) factor out and take only linear order :

m̄2
w =

1
√
2ĜF

πα̂

ŝ2
[1 +

δs2

ŝ2
+
ĉ

ŝ

1√
2GF

αWB](1 +
√
2δGF ) (6.20)

m̄2
w = mw

2πα̂

ŝ2
[1 +

δs2

ŝ2
+
ĉ

ŝ

1√
2GF

αWB +
√
2δGF ) (6.21)

Define the shift as:

m2
w − δm2

w = m̄2
w (6.22)

δm2
w = −m2

w(
δs2

ŝ2
+
ĉ

ŝ

1√
2GF

αWB +
√
2δGF ) (6.23)

δm2
w

m2
w

= ∆(4αWB +
c

s
α
(3)
ϕ + 4

s

c
αϕl − 2

s

c
αll) (6.24)

where

∆ ≡ cs

(c2 − s2)2
√
2ĜF

(6.25)

The 6.24is simplified using python code in Appendix( F). Another way to write this in terms

of vacuum expectation value ( the fashion that is presented in [4] is simply replaced GFand

release the 1
Λ2 . We get:

δm2
w

m2
w

= −s2θ
c2θ

v2

4Λ
(4αWB +

c

s
α
(3)
ϕ + 4

s

c
αϕl − 2

s

c
αll) (6.26)

which is the disered result. A gloal fit [4] based on the this equation analysis the CDFII result

for W boson, and give values for Wilson cofficient.



Chapter 7

Conclusion

Due to the limitation of time and effort here is the end of the thesis. There are a few possible

reasons for the mass shift. It can be caused by SMEFT, higher loop correction, experimental

uncertainty from Monte Carlo, also the Higgs triplet, which did not mention in this thesis,

can contribution to this process. With future detector in a higher energy the W boson mass

problem might be a hints to new physics. In summary, this thesis had a brief introduction

to the recent W boson mass shift from experimental methodology to SMEFT analysis. Some

derivation and steps for equations and the use of computation techniques are also presented

in this thesis. After finishing reading this thesis one should have a basic understanding of the

background of W boson mass shift and some approaches to it. For those who are interested in

this topic, higher loop correction and Higgs triplet are good topics to study further.
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Appendix A

Transverse mass of W boson

The steps are base on [14] and [11]

Define transverse mass m2
T = m2

rest + p2T = E2 − p2z , where p2T is the transverse momentum,

p2T = p2x + p2y. It is invariant under Lorentz boost at z direction.

Here we ignore the pz for the whole system first, and set the frame to W rest frame, so

P µ
W = (mT , 0), and P

µ
e = (ETe, p

µ
Te), P

µ
ν = (ETν , p

µ
Tν)

m2
T = (ETe + ETν , p

µ
Te + pµTν)

2

m2
T = E2

Te + E2
Tν + 2ETeETν − (pµTe

2 + pµTν
2 + 2pµTe · p

µ
Tν)

Here set electron and neutrino as a massless particle, so ET = pT

We get

mT =
√

2(peTp
ν
T − p⃗eT · p⃗νT ) =

√
2peTp

ν
T (1− cosϕ) as required.
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Appendix B

Transverse mass distribution and

Jacobian Peak

This base on

https://physics.stackexchange.com/questions/609727/particle-physics-understanding-the-jacobian-

peak

and

[19]

Here let’s discuss about the transverse mass method and a bit history. Historically, because

the observable is the lepton transverse momentum plT , people try to infer the W boson mass

directly from plT distribution.

Consider dσ
dplT

, which is dσ the differential cross section .

We define ϕ is the angle respect to the w boson beam direction, so that plT = p⃗lsinϕ and

plL = p⃗lcosϕ (longitude momentum)
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dσ
dplT

= dσ
dϕ

dϕ
dplT

and dϕ
dplT

= (
dplT
dϕ

)−1 = 1

p⃗lcosϕ
= 1

plL

The lepton has energy E = mw

2
, so plL =

√
(mw

2
)2 − p2T

which leads to

dσ
dplT

= dσ
dϕ

1√
(mw

2
)2−p2T

We can see a sudden drop when pT = MW

2
, this sudden drop is called Jacobian Peak. However,

due to QCD correction which affect W boson transverse momentum and detector’s limit, the

peak is smeared. An example of pT distribution is given at B.1

Figure B.1: A typical pT transverse momentum distribution (from CDFII report)

In order to get a better result, rather than using the lepton transverse momentum, one can use

the transverse mass (See Appendix A) because it is more stable against QCD correction. [19].

If we do a substitution , pT = ET = mT

2

dσ
dmT

= dσ
dϕ

2√
(mw

2
)2−mT

2

2

The mT shows a similar jacobian peak at mT = mw, see Fig2.2.



Appendix C

Equation for predicting W boson mass

m2
w =m2

z(
1

2
+

√
1

4
− πα(1 + ∆r)√

2m2
zGF

) (C.1)

m2
w

m2
z

− 1

2
=

√
1

4
− πα(1 + ∆r)√

2m2
zGF

(C.2)

(
m2

w

m2
z

)2 +
1

4
− m2

w

m2
z

=
1

4
− πα(1 + ∆r)√

2m2
zGF

(C.3)

m2
w

m2
z

(
m2

w

m2
z

− 1) =
−πα(1 + ∆r)√

2m2
zGF

(C.4)

m2
w(1−

m2
w

m2
z

) =
πα(1 + ∆r)√

2GF

(C.5)

(C.6)

which is same as the equation 4.27
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Appendix D

Neutrnio Majorana mass for

Dimension five operator

The dim 5 term is :

L1 = ϵij l̄
Ci
R ϕ

jϵkll
k
Lϕ

l + c.c. (D.1)

To infer majorana mass term for neutrino, we set ϕj =
(

0
v√
2

)
and because ϵij is anti-symmetric

tensor, the indicies that give non zero result is the neutrino mass term, when i=1 ,j=2, k=1,l=2.

The L1mass =
v2

2
ν̄CL νL , so the mmajorana ≈ 1

GFΛ
(Do not forget the 1

Λ
in the original expression

5.1). To match with the current experiemntal data for neutrino mass, the energy scaleΛ for

this operator will leads to 1014 GeV.
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Appendix E

Python code for diagonalization mass

matrix
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50 Appendix E. Python code for diagonalization mass matrix

Figure E.1: Part 1 of the code

Figure E.2: Part 2 of the code



Appendix F

Python code for simpification
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52 Appendix F. Python code for simpification

Figure F.1: Part 1 of the code
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