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Abstract

In this review, we summarise recent developments in the black hole information paradox, specif-

ically focusing on the Page curve. We first provide an exposition of the paradox with the nice

slice argument. We then explain how theories such as the AdS/CFT correspondence can shed

light on the paradox. Finally, we introduce the Page curve before reviewing recent progress in

reproducing it.
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Chapter 1

Introduction

1.1 A brief history

Black holes are fascinating objects. Soon after Albert Einstein announced his theory of general

relativity in 1915, Karl Schwarzschild found his eponymous, spherically symmetric solution

which admitted the tantalising possibility of black holes, which has become an active area of

research ever since. It was only recently in 2019 when the first image of a black hole was

released following observations by the Event Horizon Telescope.

Besides its defining property of being a region from which no causal observer can escape from, it

also obeys the no-hair theorem, which states that all black holes can be completely characterised

by its mass, charge and angular momentum. This already provided a bit of a problem, since

it implied that the information of whatever fell into a black hole would not be able to be

distinguished from outside the event horizon. Simply put, the result from an elephant falling

into a black hole would look the same as if it were instead an identical massive boulder.

This provided some consternation, but it was speculated that this information would be hidden

behind the horizon. But in 1975, Stephen Hawking discovered that black holes emit the char-

acteristic radiation that still bears his name [1]. We can roughly think of Hawking radiation

involving the creation of an entangled pair of particles near the horizon, where one particle
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escapes whereas the other falls into the black hole. The main implication is that all black

holes will gradually evaporate and eventually disappear. This means that either information is

truly lost in black holes, or that information has been preserved by Hawking radiation by some

mechanism.

In 1997, a public wager was announced between John Preskill on one side, and Hawking and

Kip Thorne on the other. Preskill contended that unitarity is preserved and information is

not lost in black holes. On the other hand, Hawking and Thorne believed that information is

indeed lost in black holes. Hawking has since conceded the bet to Preskill, although Thorne

has not followed suit.

A key tenet of black holes is that an observer passing freely through the horizon does not

experience anything strange. But some resolutions to the paradox posit that a traditional

black hole event horizon does not form and so some drama is encountered at the horizon. One

resolution is the concept of a firewall, which purports that high energy particles are encountered

at the horizon [2, p. 3]. Another is that black holes are ‘fuzzballs’, which has the corollary of

doing away with the concept of a black hole interior entirely. But there are difficulties with

both hypotheses, and it is argued in [3, p. 117] that resorting to firewalls or fuzzballs are not

necessary to solve the information paradox for evaporating black holes.

1.2 Black hole preliminaries

As mentioned in the previous section, Hawking showed in his landmark paper how black holes

emit radiation by considering quantum field theory in a Schwarzschild spacetime [1]. A modern

rederivation of Hawking radiation can be found in [3, p. 8-13]. In addition, Hawking showed

that this radiation obeyed a thermal spectrum with the characteristic Hawking temperature

TH given by

TH =
ℏκ

2πkB
, (1.1)

where κ is the surface gravity of the black hole [4, p. 380].

2



Not only do black holes have a temperature, they also can be thought of possessing entropy.

Prior to the discovery of Hawking radiation, Bekenstein posited that the entropy of a black

hole is directly proportional to its area, although he did not manage to completely determine

the constant of proportionality. But Hawking managed to fix this constant of proportionality

from his derivation of (1.1), and so the formula for the entropy of a black hole (known as the

Bekenstein-Hawking formula) is given by

SBH =
kBA

4l2P
=
kBc

3A

4GNℏ
, (1.2)

where lP =
√

GNℏ
c3

is the Planck length.

Now as a black hole emits Hawking radiation and gradually evaporates, it loses mass and so

the area of the event horizon shrinks. From (1.2), it would naively seem that the entropy

will decrease over time. But the total entropy for a black hole and its surroundings has a

contribution from quantum fields outside the horizon. This total entropy is known as the

‘generalised’ entropy, which we can write as

S = SBH + Soutside, (1.3)

where Soutside denotes the entropy of matter outside the horizon of the black hole [5, p. 5].

1.3 Fine and coarse-grained entropy

When a black hole emits Hawking radiation, the particles that escaped are entangled with the

ones that fell into the black hole. There exists an entropy associated with entanglement, which

is von Neumann entropy. Given a state with corresponding density matrix ρ, the von Neumann

entropy SvN is given by [6]

SvN = −tr(ρ ln ρ). (1.4)

3



Now, we can decompose the density matrix as ρ =
∑

i λi|i⟩⟨i|, where λi denotes the set of

eigenvalues of ρ. Using this form, we can express the S in the more useful form

SvN = −
∑
i

λi lnλi. (1.5)

There are some properties of von Neumann entropy that are useful to note:

• A pure, separable state would yield an entropy of SvN = 0.

• A maximally entangled state would have an entropy of SvN = lnN , where N is the

dimension of the Hilbert space in which the state lives.

• SvN is invariant under a unitary time evolution.

• If we are considering a bipartite state |ψ⟩, then to apply the formula in (1.4), we must use

the reduced density matrix ρA = trB|ψ⟩⟨ψ|. This is done similarly for tripartite states

and so on.

It is with entanglement entropy where we can make a more accurate statement of the infor-

mation paradox. If one computes the von Neumann entropy of the entanglement of Hawking

radiation, we find that this entropy increases as the number of emitted quanta. But after a

black hole completely evaporates, all that is left is the radiation which is still entangled and so

is in a mixed state. But the black hole could have formed from a pure state. It is not possible

to evolve from a pure state to a mixed one under unitary evolution, hence the paradox.

We should introduce the distinction between what is called ‘fine-grained’ entropy and ‘coarse-

grained’ entropy in the context of black holes. Fine-grained entropy is simply the von Neumann

entropy SvN of the Hawking radiation. On the other hand, coarse-grained entropy (which we

shall denote as Scoarse) is can be thought of as follows: given a system described by a density

operator ρ and a set of observables Oi, we can then consider the set of density operators ρ̃ that

give the same result for our set of observables as the first system (i.e. tr(ρ̃Oi) = tr(ρOi)). For

any given density operator within ρ̃, we can calculate its von Neumann entropy SvN(ρ̃). The

coarse-grained entropy is therefore the maximum possible value of SvN(ρ̃). [5, p. 16-17]
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Again, there are some properties of coarse-grained entropy that are useful to note:

• Coarse-grained entropy obeys the second law of thermodynamics, i.e. it increases over

time.

• From the definition of coarse-grained entropy, we must have SvN ≤ Scoarse.

The coarse-grained entropy of a black hole is given by the generalised entropy in (1.3) [5, p. 17].

We will refine this formula in chapter 3 with insights, such as those from AdS/CFT.

1.4 The Page curve

A black hole is usually formed by the gravitational collapse of matter and begins life as a pure

state. So the entropy of radiation is obviously zero when black hole is first formed. As it

begins to emit Hawking radiation, the emitted pairs of particles are entangled with each other

as aforementioned. If we consider only the outgoing particle, we find that it is in a mixed

state and so the entropy of radiation is no longer zero. We show in Chapter 2 that the entropy

increases as more and more particle pairs are emitted.

But while the black hole is evaporating, the area of its event horizon is shrinking so this means

that its thermodynamic entropy (given by the Bekenstein-Hawking entropy) is decreasing since

it is proportional to the area of the black hole. We then run into a problem since it seems that

the von Neumann entropy will become larger than the thermodynamic entropy at some point.

This cannot occur since the number of degrees of freedom of the black hole is related to the

thermodynamic entropy, so the entropy of radiation cannot be more than this. This means that

the entropy of radiation must begin decreasing at this point, and continue to decrease to zero

when the black hole completely evaporates. To summarise, we expect the entropy of Hawking

radiation to follow the curve shown in Figure 1.1, called the Page curve.

In this review, we aim to discuss recent developments to methods in reproducing the Page

curve. In chapter 2, we outline a derivation of the paradox which we will call the ‘nice slice’
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Figure 1.1: The dotted line labelled (i) represents the Bekenstein-Hawking entropy of the
black hole over time, whereas the dotted line labelled (ii) represents Hawking’s calculation that
radiation entropy increases monotonically until evaporation. The solid line is the Page curve,
and the Page time tPage is the time when entropy of the Hawking radiation is equal to the
Bekenstein-Hawking entropy. (Adapted from [5])

argument. The approach involves the construction of slices which satisfy certain criteria known

as ‘niceness conditions’. It is shown that the slices must evolve in time, i.e. are time dependent.

This then gives rise to particle creation, where pairs of particle are created from the vacuum.

We also discuss the effect of small corrections to the leading order of the calculation.

We discuss how the gravitational theories such as the AdS/CFT correspondence can shed some

light on the paradox in chapter 3. We first provide a short introduction to the correspondence,

examining the properties of both anti-de Sitter space and conformal field theories. One signifi-

cant result is that the evaporation of a black hole within the framework of AdS/CFT is strictly

unitary, so this suggests that unitarity must be preserved and so information is not lost in

black holes. We also introduce formulae and procedures to calculate generalised entropy, which

required introducing the concept of quantum extremal surfaces.
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In chapter 4, we reintroduce the Page curve and apply the methods and formulae in Chapter 3

to black hole evaporation. We see how these methods lead to us recovering the Page curve. We

go further with the concept of islands, and end with a brief mention of entanglement wedges

and replica wormholes.
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Chapter 2

The information paradox

In this chapter, we will delve into the nature of the information paradox using the slice argu-

ment, of which we will mostly follow the treatment in [7]. We will also discuss the effect of

small corrections and how this affects the paradox.

2.1 The nice slice argument

Our argument involves considering spacelike slices on a Schwarzschild background around the

horizon and their evolution over time. We want to work in a regime where any effects due to

quantum gravity is small. To this end, we shall assume a set of ‘niceness conditions’, which are

as follows [7, p. 2]:

• N1: The intrinsic curvature of the slice must not be larger than the Planck scale at any

point of the slice.

• N2: The slice lives in a four-dimensional spacetime. The extrinsic curvature must also

not be larger than the Planck scale anywhere.

• N3: The curvature of the spacetime near the slice must also be less than the Planck scale

everywhere.
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• N4: Matter on the slice should obey some energy condition. Quanta on the slice should

not have wavelengths shorter than the Planck length, and the energy density should be

less than the Planck density everywhere.

• N5: When evolving the slice to a later time, all subsequent slices must still obey the

previous niceness conditions N1 to N4. Evolution must also be smooth.

A slice that obeys the niceness conditions above is henceforth referred to as a ‘nice’ slice.

We will now construct a nice spacelike slice on a Schwarzschild spacetime. The Schwarzschild

metric is given by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2
2, (2.1)

with an event horizon at r = 2M and a curvature singularity at r = 0. Recall that the event

horizon is merely a coordinate singularity; an observer passing through the horizon should not

observe anything out of the ordinary.

Outside the horizon at r > 2M , a slice segment with constant t is spacelike. On the other

hand, a spacelike slice segment inside the horizon can be chosen to be a slice with constant r.

In the vicinity of the horizon, these two segments are joined smoothly joined by a ‘connector’

segment, which can be made spacelike throughout. The entirety of the slice is illustrated in

Figure 2.1.

To summarise, the construction of the nice slice is outlined as follows where, for concreteness,

we shall follow the prescription in [7, p. 6]:

i. r > 4M : Slice segment far from horizon is given by t = t0, where t0 is a constant.

ii. M
2
< r < 3M

2
: Slice segment well within horizon is given by r = r0, where r0 is a constant.

iii. r0 < r < 4M : The two segments are smoothly connected by a connector segment that is

spacelike everywhere.
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Figure 2.1: An example of a spacelike slice in a Schwarzschild background near the horizon.
The segments are labelled as in the prescription above, with (ii) being the connector segment.
(Adapted from [5, Fig. 2])

Now that we have constructed a nice slice, we shall now consider how it evolves in time. A slice

slightly further ahead in time as the previous one is constructed as follows [7, p. 7]:

i. r > 4M : t = t1 = t0 +∆, where ∆ is a constant, ∆ > 0 and is small.

ii. M
2
< r < 3M

2
: r = r1 = r0 + δ, where δ is a constant, δ < 0, δ ≪ M . The radius of this

segment has decreased since, within the horizon, the timelike direction is in the direction of

decreasing r.

iii. r0 < r < 4M : As previously, the two segments are smoothly connected by a connector

spacelike segment.

This evolution of a slice over time is illustrated in Figure 2.2. We see from the figure that the

slice will have to ‘stretch’ as it evolves over time. Specifically, it is the connector segment that

has to stretch, since it has to cover the distance covered by the slice segment within the horizon

whose radius has decreased. By contrast, the t = const. and r = const. parts of the slice remain

unchanged under evolution.
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Figure 2.2: Our initial slice S0 evolving infinitesimally to later slice S1. Note that the connector
segment has stretched, whereas the other segments are essentially unchanged. (Adapted from
[5, Fig. 2])

The stretching of these spacelike slices results in pairs of particles being created from the

vacuum. The connector segment lives in the vicinity of the event horizon of the black hole, so

we see particle creation at the event horizon.

One might have the impression that this is a somewhat simplistic but not very useful picture.

But slices (not always of the ‘nice’ variety) have been recently used in [8] to provide a description

of the evolution of the quantum state describing a black hole. This methodology can also be

extended to interacting theories as well as other metrics, including that of anti-de Sitter.

Figure 2.3 illustrates the process of particle creation. When a slice stretches, any particle pairs

{(bn, cn)} already on the slice is pulled apart while a new particle pair (bn+1, cn+1) appears in its

place. The {cn} particles fall into the black hole, whereas the {bn} quanta escape into infinity

as Hawking radiation. Despite this, they are still entangled with the {cn} particles as well as

the matter state representing the black hole (represented by the black square in the Figure 2.3).
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Figure 2.3: As a slice stretches, pairs of particles bn, cn are created. The black square represents
the matter state that represents the black hole. (Adapted from [7, Fig. 4])

Let us examine how the particles are entangled throughout the process; we will mostly follow

the treatment in [7, p. 11-12]. Initially, we only have the slice and the matter state, so we

have |Ψ⟩ = |ψ⟩M where we have denoted the overall state as |Ψ⟩ and the matter state as |ψ⟩M .

When the first particle pair (b1, c1) is created, the overall state is now

|Ψ⟩ ≈ |ψ⟩M ⊗
(

1√
2
|0⟩c1|0⟩b1 +

1√
2
|1⟩c1|1⟩b1

)
, (2.2)

where note that b1 and c1 are entangled with each other. Assume that the c1 particle falls

into the black hole, whereas the b1 particle escapes to infinity as Hawking radiationn. We can

compute the von Neumann entropy of b1 with (M, c1), which happens to be SvN = ln 2. At the

next timestep when the second particle pair (b2, c2) is created, the state is now

|Ψ⟩ ≈ |ψ⟩M ⊗
(

1√
2
|0⟩c1|0⟩b1 +

1√
2
|1⟩c1|1⟩b1

)
⊗
(

1√
2
|0⟩c2 |0⟩b2 +

1√
2
|1⟩c2|1⟩b2

)
. (2.3)

As before, c2 falls into the black hole and b2 escapes to infinity. Now, computing the von

Neumann entropy of the entanglement of {b1, b2} with {M, c1, c2} gives SvN = 2 ln 2.
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We can easily generalise the state Ψ to N steps, which takes the form

|Ψ⟩ ≈ |ψ⟩M ⊗
(

1√
2
|0⟩c1|0⟩b1 +

1√
2
|1⟩c1|1⟩b1

)
⊗
(

1√
2
|0⟩c2|0⟩b2 +

1√
2
|1⟩c2|1⟩b2

)
...

⊗
(

1√
2
|0⟩cN |0⟩bN +

1√
2
|1⟩cN |1⟩bN

)
. (2.4)

Now, the von Neumann entropy of the entanglement of {b1, . . . , bN} with {M, c1, . . . , cN} gives

the general result

SvN = N ln 2, (2.5)

so, in general, the von Neumann entropy increases by ln 2 each time a new particle pair is

created [7, p. 11-12]. We now see how the information paradox arises. When the black hole

completely evaporates, we are left with the quanta {b1, . . . , bN} which have an entanglement

entropy of N ln 2 ̸= 0. As we previously mentioned briefly, a problem arises in that we arrived

at a nonzero entropy from an initial state that was pure. This is not possible under unitary

evolution as we stated in the previous chapter, so it seemingly

2.2 The effect of small corrections

We saw in the previous section how evolving the initial state/slice leads to a nonzero entropy.

But this is a leading order calculation that does not take into account small corrections, which

for instance can arise from interactions between different pairs of particles [7, p. 14]. As a

result, it was conjectured that small corrections to the state Ψ would be sufficient to remove

the paradox. In this section, we shall discuss two opposing arguments regarding this matter.

One argument is made in [7] which says that small corrections to the leading order calculation in

the previous section will not fundamentally change our conclusion that unitarity is violated. We

will closely follow that argument here. Recall that we are mainly interested in the subsystems
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{b} and {M, c}, which are entangled with each other. Let us write our state |Ψ⟩ at timestep tn

as |ψM,c, ϕb(tn)⟩. Now, at the next timestep tn+1, a new particle pair is created so we can write

the evolution of the state |Ψ⟩ from tn to tn+1 as

|ψM,c, ϕb(tn)⟩ → |ψM,c, ϕb(tn+1)⟩ = |ψM,c, ϕb(tn)⟩
(

1√
2
|0⟩cn+1 |0⟩bn+1 +

1√
2
|1⟩cn+1|1⟩bn+1

)
,

(2.6)

where as usual the new particle pair is an entangled state. To take into account small corrections

during the particle creation process, we assume that the newly created state representing the

new particle pair lives in a space spanned by the orthonormal vectors given by

|V1⟩ =
1√
2
|0⟩cn+1|0⟩bn+1 +

1√
2
|1⟩cn+1|1⟩bn+1

|V2⟩ =
1√
2
|0⟩cn+1|0⟩bn+1 −

1√
2
|1⟩cn+1|1⟩bn+1 .

Next, we choose orthonormal bases for the two subsystems {M, c} and {b} as {|χi⟩} and {|ξi⟩}

respectively. This allows us to write the state at time tn as

|ψM,c, ϕb(tn)⟩ =
∑
m,n

Cmn|χm⟩|ξn⟩, (2.7)

where Cmn is a set of constants. We can perform a transformation to {χi} and {ξi} such that

we obtain

|ψM,c, ϕb(tn)⟩ =
∑
i

Ci|χi⟩|ξi⟩. (2.8)

Computing the reduced density matrix ρb(tn) representing just the {b} subsystem, we obtain

ρ̂b(tn) = |Ci|2 1̂, (2.9)

so from (1.5) we can compute the von Neumann entropy at time tn to be

SvN(tn) = −
∑
i

|Ci|2 ln |Ci|2. (2.10)

We now want to consider evolution by one timestep to tn+1 and its effect on the von Neumann
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entropy in (2.10). The most general possible evolution is given by

|ξi⟩ → |ξi⟩ (2.11)

|χi⟩ → |χi,1⟩|V1⟩+ |χi,2⟩|V2⟩. (2.12)

The reason why |ξi⟩ is unchanged is that we can consider the {b} quanta to have escaped the

hole and thus is no longer influenced by it. On the other hand, the {M, c} subsystem has

evolved to include the newly created pair represented by |V1⟩ and |V2⟩. Note that we must have

∥|χi,1⟩∥2 + ∥|χi,2⟩∥2 = 1, (2.13)

with our leading order calculation being the special case |χi,1⟩ = |χi⟩ and |χi,2⟩ = 0.

Using (2.11) and (2.12), we can evolve (2.8) to time tn+1 which gives

|ψM,c, ϕb(tn+1)⟩ =
∑
i

Ci

(
|χi,1⟩|V1⟩+ |χi,2⟩|V2⟩

)
|ξi⟩ (2.14)

= |V1⟩

(∑
i

Ci|χi,1⟩|ξi⟩

)
+ |V2⟩

(∑
i

Ci|χi,2⟩|ξi⟩

)
(2.15)

= |V1⟩|Λ1⟩+ |V2⟩|Λ2⟩, (2.16)

where we have defined

|Λ1⟩ =
∑
i

Ci|χi,1⟩|ξi⟩, |Λ2⟩ =
∑
i

Ci|χi,2⟩|ξi⟩. (2.17)

Note that we have

∥|Λ1⟩∥2 + ∥|Λ2⟩∥2 = 1 (2.18)

since |V1⟩ and |V2⟩ are both orthonormal and |ψM,c, ϕb(tn+1)⟩ is normalised. We can finally

define corrections to the leading order calculation to be small if

∥|Λ2⟩∥ < ϵ, ϵ≪ 1. (2.19)
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Let us now consider the whole system at time tn+1. We have three subsystems: the emitted

quanta {b} ≡ {b1, . . . , bn}, the black hole interior {M, c} ≡ {M, c1, . . . , cn}, and the newly

created pair p ≡ (bn+1, cn+1). Now, if we are considering the entropy of some subsystem A with

the other two subsystems B and C, we will denote this as SvN(A) ≡ −tr(ρA ln ρA). By this

notation, (2.10) can be written as

SvN({b}) = −
∑
i

|Ci|2 ln |Ci|2. (2.20)

In [7, p. 18-19], the three following inequalities were proven:

SvN(p) < ϵ (2.21)

SvN({b}+ p) ≥ SvN({b})− ϵ (2.22)

SvN(cn+1) > ln 2− ϵ, (2.23)

of which we will not reproduce the proof here for the sake of brevity. Note that (2.21) shows

how the new pair p ≡ (bn+1, cn+1) is very weakly entangled with the rest of the system.

We now apply the strong subadditivity theorem for a system with three subsystems A,B, and

C which is given by

SvN(A+B) + SvN(B + C) ≥ SvN(A) + SvN(C). (2.24)

Setting A = {b}, B = bn+1, C = cn+1 whilst noting that p = B + C, we have

SvN({b}+ bn+1) + SvN(p) ≥ SvN({b}) + SvN(cn+1)

=⇒ SvN({b}+ bn+1) ≥ SvN({b}) + SvN(cn+1)− SvN(p).

Using the inequalities (2.21) and (2.23), we finally arrive at the inequality for governing the

entropy for all of the emitted quanta {b1, . . . , bn+1} with the rest of the black hole interior,
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which is

SvN({b}+ bn+1) ≥ SvN({b}) + ln 2− 2ϵ. (2.25)

Recalling that ϵ≪ 1 if leading order corrections are small, we conclude that the von Neumann

entropy of emitted quanta must increase by at least ln 2 − 2ϵ each time a new particle pair is

created, and so our original conclusion is unaffected when taking into account small corrections.
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Chapter 3

Entanglement entropy in gravitational

theories

In this chapter we shall review notions of entropy in the framework of the conjecture known as

AdS/CFT (also called gauge-gravity duality). AdS/CFT is a conjecture first proposed by Juan

Maldacena in 1998 [9]. AdS refers to anti-de Sitter space, whereas CFT stands for conformal

field theory. AdS/CFT remains a conjecture for now, but there are indications that it is correct

[10].

It is the most successful realisation of the holographic principle, which was first proposed by

Gerard t’Hooft in the context of quantum gravity [11] and given a precise formulation by

Leonard Susskind [12]. The principle essentially states that a feature of quantum gravity is

that a volume of space can be described as being encoded on its boundary.

We will first review the key features of AdS/CFT, first by examining the features of anti-de

Sitter space and conformal field theories in turn, which will then allow us to make a precise

statement of what AdS/CFT is. We then explain what inferences can be made from AdS/CFT

to shine some light on the information paradox. The main result is that one can create a black

hole state and evolve it forwards in time, where it is found that this evolution is unitary [13,

p. 87]. This means that if AdS/CFT is true, then black hole evaporation is indeed unitary.

After reviewing AdS/CFT, we will introduce the Ryu-Takayanagi formula which provides an
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expression for fine-grained entropy within AdS/CFT.

3.1 Anti-de Sitter space

Anti-de Sitter (AdS) space is a maximally symmetric space with a constant negative Ricci scalar

curvature and a negative cosmological constant that is a solution of Einstein’s equations1. One

form of the metric is given by

ds2 = −fdt2 + 1

f
dr2 + r2dΩ2

d−1, (3.1)

where f = 1 +
(

r
rAdS

)2
, t ∈ (∞,∞), r ∈ [0,∞). Here rAdS is a length which relates to the

vacuum energy ρ0 by

1

r2AdS

= − 16πGρ0
d(d− 1)

, (3.2)

but we can simplify things by setting rAdS = 1, which we will do from now on [13, p. 69].

Let us examine some properties of AdS spacetime. It asymptotically approaches Minkowski

space for r ≪ 1, but not as r → ∞. It is useful to note that, analogously to flat space, there

exists a notion of asymptotically AdS spacetime. Put simply, an asymptotically AdS spacetime

approaches AdS as r tends to infinity, and its boundary is timelike [13, p. 69-70].

To examine its behaviour of AdS as r tends to infinity, we can perform the substitution r =

tan ρ, which transforms (3.1) into

ds2 =
1

cos2 ρ
(−dt2 + dρ2 + sin2 ρ dΩ2

d−1), (3.3)

where ρ ∈ [0, π
2
). We can compactify by including ρ = π

2
which represents the boundary, but

we see that (3.3) shows that AdS space is topologically equivalent to R×Sd−1 (a d-dimensional

‘cylinder’). We also see from the metric that massless particles moving outwards in ρ would (on

this cylinder) move diagonally towards the boundary, at which point it will return to where it

1Its counterpart is de Sitter space, which has a positive cosmological constant.
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came from. On the other hand, massive particles moving outwards would move away for some

distance without reaching the boundary and then turn around to return to its origin [13, p. 69].

This is all illustrated in Figure 3.1.

Figure 3.1: (a) The Penrose diagram for anti-de Sitter space, with a (d− 1)-sphere represented
as a circle (Adapted from [10, Fig. 1]). (b) A slice of the Penrose diagram showing a: (i)
massless geodesic (ii) massive geodesic.

3.2 Conformal field theory

Recall that the Poincaré group is the group that keeps the Minkowski metric ηµν invariant.

This means symmetry under translations and Lorentz transformations (rotations + boosts),

whose action on a spacetime coordinate xµ is given respectively by

xµ → x′µ = xµ − aµ (3.4)

xµ → x′µ = Λµ
νx

ν , (3.5)

where Λµ
ν ∈ SO(1, d − 1) and aµ is some constant translation [13, p. 70-71]. The Poincaré

group is generated by the translation and Lorentz generators Pµ and Mµν respectively, which
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form the Poincaré algebra given by

[Mµν , Pα] = −i(ηµαPν − ηναPµ) (3.6)

[Mµν ,Mαβ ] = −i(ηµαMνβ − ηµβMνα − ηναMµβ + ηνβMµα ). (3.7)

We can consider another type of symmetry which is scale symmetry. A theory that has scale

symmetry is invariant under a scaling transformation (also known as a dilation or dilatation),

whereby a spacetime coordinate xµ transforms as

xµ → λxµ, (3.8)

where λ ̸= 1 is some real number. Dilations are generated by the dilation operator D which

acts on a function f(x) as

Df(x) = ixµ∂µf, (3.9)

and commutes with Mµν but also obeys

[Pµ, D] = iPµ. (3.10)

A field can scale in different ways but in general it transforms as

ϕ(x) → ϕ′(x) = λ∆ϕ(λx), (3.11)

where ∆ is known as the scaling dimension of the field [13, p. 71].

The final type of symmetry we need to consider is symmetry under a special conformal trans-

formation, which is given by

xµ → xµ + aµx2

1 + 2xµaµ + a2x2
, (3.12)

where aµ is some constant spacetime vector. Essentially, it is the composition three transfor-

mations: an inversion xµ → xµ

x2 , a translation xµ → xµ + aµ, and a second inversion in that

order. Special conformal transformations are generated by a generator Kµ, which acts on a
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function f(x) as [13, p. 70-71]

Kµf(x) = i(x2∂µ − 2xµx
ν∂ν)f. (3.13)

The conformal group is therefore the group which is symmetric under all three transformations:

Poincaré, dilation and special conformal. It is the set of transformations of Minkowski space

that preserves angles (but not always lengths) and is isomorphic to SO(d, 2) [13, p. 71]. This

group is then generated by the generators Pµ,Mµν , D,Kµ which form an algebra given by

[D,Kµ] = iKµ (3.14)

[Pµ, Kµ] = 2i(Mµν − ηµνD) (3.15)

[Mµν , Kα] = −i(ηµαKν − ηναKµ) (3.16)

in addition to the ones in (3.4), (3.5) and (3.10). A conformal field theory is therefore some

field theory that is invariant under the conformal group. One simple example of a conformal

field theory is the free massless scalar field [13, p. 71].

Conformal field theory is a massive topic and is a whole field of study in itself, but we shall

examine two important properties here. One property of CFTs is that we can always find a set

of operators called primary operators, which we shall denote as O(x). These operators commute

with the generators of special conformal transformation when x = 0 and also transform under

dilations as

O(x) → O′(x′) = λ−∆O(x), (3.17)

where ∆ is the conformal dimension of the primary operator. A CFT is unitary if ∆ is real and

positive, whereas O(x) is a scalar operator if ∆ ≥ d−2
2

[13, p. 71]. The correlation functions

of primary operators are very simple. For example, the time-ordered two point correlation

function for a primary operator takes the form

⟨Ω|T̂O(x, t)O(0, 0)|Ω⟩ = 1

(|x|2 − t2 + iϵ)∆
. (3.18)
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Another property of CFTs is something called the state-operator correspondence. Given some

Hamiltonian, we have a set of energy eigenstates. In any CFT, we have a natural bijection

between these energy eigenstates and operators that act locally, i.e. in the neighbourhood of

the origin. This bijection is what is known as the state-operator correspondence. It arises from

studying CFTs on the cylindrical space R× Sd−1 with metric

ds2 = −dt2 + dΩ2
d−1. (3.19)

We then consider the Euclidean metric Rd written as

ds2 = dρ2 + ρ2dΩ2
d−1. (3.20)

Taking ρ = eτ , (3.20) then becomes

ds2 = e2τ (dτ 2 + dΩ2
d−1), (3.21)

where we see that it is equivalent to (3.19) after a Weyl transformation as well as a Wick

rotation τ = it [13, p. 71-72].

3.3 AdS/CFT and the information paradox

Now that we have introduced both sides of AdS/CFT correspondence, we can provide a precise

statement of it [13, p. 73]:

• Any relativistic conformal field theory on R× Sd−1 with metric (3.19) can be interpreted

as a theory of quantum gravity in an asymptotically AdSd+1 ×M spacetime. Here M is

some compact manifold that may or may not be trivial.

Put simply, it posits that there exists a duality between certains CFTs and theories of quantum

gravity in AdS spaces. Often we refer to some AdS description as the ‘bulk’ theory whereas the
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CFT is called the ‘boundary’ theory. Now, the statement above reads like a definition but, as

mentioned at the start of this chapter, it remains a conjecture although there exists evidence

pointing towards its validity.

So how does this mapping work? The simple answer is that bulk fields are mapped to a CFT

via a ‘dictionary’. For example, one important ‘entry’ in this dictionary is the extrapolate

dictionary which describes how a bulk field can be extrapolated to the boundary where we

obtain some quantity that corresponds to a primary operator in the CFT [13, p. 73-74].

Turning our attention back to black holes, we note that there exists a black hole solution in

AdS which has metric

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2dΩ2

d−1, (3.22)

where

f(r) = r2 + 1− α

rd−2
(3.23)

and we have set rAdS = 1 as usual. Here α is a constant that is related to mass M by

α =
16πGM

(d− 1)Ωd−1

. (3.24)

Now, the main inference we can make from what we know in AdS/CFT is that Hawking

radiation (by virtue of being massless) can reach the boundary and be reflected back to where

it originated. This means that a black hole in AdS spacetime eventually reabsorbs the radiation

it emitted. Of course, a black hole may evaporate completely long before any radiations returns

to it. This leads us to the notion of ‘big’ and ‘small’ black holes in AdS, where ‘big’ AdS black

holes are those which are large enough such that radiation is reflected back to the black hole

as fast as it emits them. These black holes therefore never evaporate and so are also called

‘eternal’ black holes. By contrast, ‘small’ black holes are those that eventually evaporate as

usual.

We can derive the regimes at which black holes are big or small. A given black hole with

energy E will have some fraction x of its energy in the black hole, with the rest being in
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emitted radiation. The total entropy of the system is given by

S ≈ (Elp)
2x2 + (ErAdS)

3
4 (1− x)

3
4 , (3.25)

where the first term on the right hand side represents the entropy of the black hole and the

second term represents the entropy of radiation [13, p. 78-79].

We want to find x when S is maximised. At low E, the second term dominates so it is maximised

at x = 0, which means there is no black hole. On the other hand, at large enough E, the first

term dominates so S is maximised when x is close to but not exactly 1. This is when almost

all the energy is contained within a black hole which is eternal. So we showed that a black

hole becomes eternal at large enough E. This threshold can be found by finding when the two

terms in (3.25) are comparable. This is when the energy satisfies [13, p. 79]

ErAdS =

(
rAdS

lp

)2(
rAdS

lp

)− 2
5

. (3.26)

We now have the tools needed to consider the information paradox within the context of

AdS/CFT. Using creation operators within a CFT, we can form a shell of matter that we know

will collapse to create a black hole. We need to specify that the black hole is small enough to

evaporate, which means we have

ErAdS ≪
(
rAdS

lp

)− d2−1
2d−1

, (3.27)

but it also has to be large enough to be semiclassical which means

ErAdS ≫ rAdS

lp
. (3.28)

Once we have formed our black hole, we can evolve it forward in time within the CFT. This

evolution is always unitary, so we can conclude that the answer to the paradox is that infor-

mation is preserved. It should be noted this does not yet say anything about the mechanism
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in which unitarity is preserved [13, p. 87].

3.4 Fine-grained entropy in AdS/CFT

We can now switch our attention to entropy. Recall in Chapter 1 that we introduced the notions

of fine and coarse-grained entropy. In 2006, Shinsei Ryu and Tadashi Takayanagi proposed a

way to compute the von Neumann (fine-grained) entropy within the case AdS3/CFT2 [14]. The

idea is that given our CFT lives on the space R × Sd−1, we pick out some Cauchy slice with

topology Sd−1 and examine some state from the CFT on it. We can consider dividing the slice

into two regions A and B and computing the entanglement entropy SA for region A. This

would as usual be given by [14, p. 1]

SA = −tr(ρA ln ρA), (3.29)

where

ρA = trB(|Ψ⟩⟨Ψ|). (3.30)

But Ryu and Takayanagi proposed that SA can be computed with the formula

SA =
Area of γA

4G
(d+2)
N

, (3.31)

where γA is a d-dimensional static minimal surface whose boundary is ∂A and 4G
(d+2)
N is the

(d + 2)-dimensional Newton’s constant. This formula has been found to obey properties that

entropy also should, such as strong subadditivity and monogamy of mutual information [15].

We can extend this to a ‘generalised’ entropy which includes the entropy of external fields. As

before, this will be calculated on some surface such that the surface minimises the entropy.

This minimal entropy is therefore the value for the fine-grained entropy. We can encapsulate
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this with the ‘formula’ [5, p. 10]

S ∼ min

[
Area

4GN

+ Soutside

]
. (3.32)

But what we really want is to extremise the surface not only in space, but in time. More

accurately, we want to minimise it in the spatial direction but maximise it in the temporal

direction. Such a surface is then an ‘extremal surface’. This is done by choosing some Cauchy

slice, finding the minimal surface on it, and then finding the Cauchy slice with the maximum

value for its minimal surface [5, p. 10]. We can write this as

S(X) = minX

{
extX

[
Area(X)

4GN

+ Ssc(ΣX)

]}
, (3.33)

where X is a surface of codimension 2 (it has dimension two fewer than that of the spacetime it

lives in), ΣX is the region bounded by X and Ssc(ΣX) is the von Neumann entropy of quantum

fields living on ΣX . We then call the surface that extremises (3.33) a ‘quantum extremal

surface’ since it takes into account the external quantum fields [5, p. 10-11]. This procedure is

illustrated in 3.2. In the next chapter, we will see how this generalised entropy reproduces the

Page curve.
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Figure 3.2: How to find the quantum extremal surface for a black hole. We start on some
imaginary cutoff surface where surface X is varied until the entropy is extremised. Note that
a point on the diagram represents a 2-sphere. (Image credit: [5, Fig. 8])
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Chapter 4

The Page curve

In this section, we will further explore the Page curve, which we introduced in Chapter 1. We

first reiterate qualitatively how it arises, and then apply the methods in the previous chapter

to show how the Page curve can be reproduced.

4.1 Deriving the Page curve

Recall in Chapter 1 that we reasoned that the entropy of Hawking radiation should follow the

Page curve as shown in Figure 4.1. Essentially, we said that the entropy of radiation is zero

at the start. and increases as it begins to emit Hawking radiation. We then noted that the

thermodynamic entropy decreases as the black hole evaporates since its area is shrinking. This

meant that the entropy of radiation decreases after the Page time since the entropy of radiation

cannot be greater than the thermodynamic entropy of the black hole. This was because the

thermodynamic entropy is related to the number of degrees of freedom of the black hole.

Overall, our motivation for the shape of the Page curve is that black hole evaporation should

be unitary. This idea can be restated in more specific terms in a principle known as the ‘central

dogma’1. It can be stated as follows [5, p. 5]:

1This name is derived from biology where it pertains to the flow of genetic information [5, p. 7]
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Figure 4.1: An approximate profile for how the Page curve should look like. For black hole
evaporation to be truly unitary, the entropy must The entropy of radiation is maximised at
tPage.

• As seen from the outside, a black hole can be described in terms of a quantum system

with Area/(4GN) degrees of freedom that evolves unitarily under time evolution.

Note that this statement makes no assumptions about the black hole interior. By ‘degrees

of freedom’, we mean more specifically that it is related to the logarithm of the dimension of

the Hilbert space. Since the number of degrees of freedom is finite, we therefore have that

the Hilbert space dimension is also finite. We should also note that, although quantum effects

become significant when the black hole is about to evaporate completely (when its radius is

comparable to a Planck length), the argument still remains since we first conflicted with the

central dogma at the Page time when the black hole isn’t small [5, p. 5-9]

4.2 Reproducing the Page curve

We now turn our attention to efforts in finding a mechanism that reproduces the Page curve.

Recall we introduced the formula for finding the fine-grained entropy in the previous chapter

given by

S(X) = min

{
ext

[
Area(X)

4GN

+ Ssc(ΣX)

]}
, (4.1)
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where we calculate this on a quantum extremal surface X. We shall now apply this procedure

to an evaporating black hole and see how the resultant entropy varies throughout the lifetime

of the black hole.

When the black hole first forms, it happens to be that the extremal surface is vanishing, so the

first term in (4.1) is zero. This is illustrated in Figure 4.2. But the second term is also zero if

the collapsing matter that formed the black hole is a pure state. Therefore S = 0 at the start.

By contrast, the thermodynamic entropy is nonzero shortly after the black hole forms since

the area is nonzero. When the black hole begins to emit Hawking radiation, the von Neumann

entropy begins increasing whereas the thermodynamic entropy starts decreasing [5, p. 11]. This

is all illustrated in Figure 4.3

Figure 4.2: At early times, the minimal surface of the black hole is zero, also known as the
vanishing surface. (Image credit: [5, Fig. 9])

But this is complicated by the fact that a non-vanishing extremal surface appears shortly after

evaporation begins. Where exactly the quantum extremal surface appears depends on the

amount of radiation already emitted and so is time-dependent. In fact, it lies close to the black

hole event horizon [5, p. 11].

We determine the location of the quantum extremal surface by moving back in time from a
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Figure 4.3: Left: Vanishing surfaces at different times. Right: In the case of vanishing surfaces,
S(X) is zero at the start, but increases as Hawking radiation is emitted. By contrast, thermo-
dynamic entropy decreases over time. (Image credit: [5, Fig. 10])

given point on the cutoff surface by an amount rS lnSBH and releasing an ingoing light ray.

Where the ray meets the event horizon is where the quantum extremal surface is close to. This

means that S(X) is approximately equal to the area term, which means that it decreases over

time just like for thermodynamic entropy. The quantity rS lnSBH is known as the ‘scrambling’

time [5, p. 11-12]. This is all shown in Figure 4.4.

Figure 4.4: Left: non-vanishing surfaces at different times on the cutoff surface, the first of
which is situated near the horizon but inside the black hole. Right: In the case of non-vanishing
surfaces, S(X) decreases over time. (Image credit: [5, Fig. 11])

The last thing to do is to minimise over all possible extremal surfaces, so real generalised entropy
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is found by taking the minimum of the entropy for either the vanishing or non-vanishing case

at all times. This leads to the Page curve shown in the right figure in Figure 4.5. The left

figure in Figure 4.5 shows how we initially start with a vanishing surface and then eventually

a non-vanishing surface is created. We transition from using a vanishing surface to a non-

vanishing one when the entropy calculated from a non-vanishing surface is smaller than that of

its vanishing counterpart, which occurs at the Page time [5, p. 13].

Figure 4.5: Left: A vanishing surface eventually transitions into a non-vanishing one as the
black hole evaporates. Right: The Page curve (shown in black) is recovered by taking the
minimum of the two cases. (Image credit: [5, Fig. 13])

4.2.1 Islands

So we saw how quantum extremal surfaces and the application of (4.1) leads us to obtain the

Page curve. But we assumed that ΣX was connected. To go further, we can consider the case

when ΣX is disconnected. This would increase first term in (4.1), i.e. the boundary area, so

to ensure that the entropy is still minimised, we must correspondingly decrease the Ssc term.

This is possible if there exists regions far away from any entangled matter, and in fact this is

the situation with Hawking radiation which is entangled with fields in the black hole interior.

So we can decrease Ssc by adding a region representing the black hole interior to the formula.
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Disconnected regions like these are called ‘islands’, and the modified formula is given by

S(X) = minX

{
extX

[
Area(X)

4GN

+ Ssc(Σrad ∪ Σisland)

]}
, (4.2)

where the area term now represents that of the island and we are now extremising with respect

to the island [5, p. 13-14]. The setup is illustrated in Figure 4.6.

Figure 4.6: The semiclassical entropy is now calculated on the union of two regions: the island
Σisland and Σrad. (Image credit: [5, Fig. 14])

To use (4.2), we first find the entropy of the region from the cutoff surface to infinity. This

region then represents Σrad in the formula. We then include the entropy of Σisland. Just like

before, we can have the case of a vanishing island. Then the semiclassical entropy only has a

contribution from Σrad since the area term (which is that of the island) is zero. Σrad includes

emitted Hawking radiation, so the entropy increases over time [5, p. 13], which is shown in

Figure 4.7.

But a non-vanishing island appears about one scrambling time after the black hole forms. The

island changes its position depending on the time on the cutoff surface [5, p. 14]. Now in

this non-vanishing case, the term Ssc(Σrad ∪ Σisland) is close to zero since the ingoing Hawking
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Figure 4.7: In the vanishing island case, the area term vanishes so entropy increases over time
due to the emission of Hawking radiation. (Image credit: [5, Fig. 15])

radiation is combined with the outgoing radiation and therefore turns what was before a mixed

state into a pure one. This means that the area term dominates, so the entropy follows the

profile shown in Figure 4.8.

Figure 4.8: Left: A non-vanishing island appears sometime after the black hole is formed.
Right: This case gives a decreasing entropy over time. (Image credit: [5, Fig. 16])

As before, the fine-grained entropy is given by the minimum of the two cases (vanishing and

non-vanishing). This then leads to the Page curve in a similar fashion to the case with quantum

extremal surfaces, as we see in Figure 4.9.
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Figure 4.9: Left: The vanishing island case eventually transitions into the non-vanishing case.
Right: The Page curve (shown in black) is recovered by always taking the minimum of the two
cases. (Image credit: [5, Fig. 17])

4.2.2 Further work

To summarise, in this section we showed how to apply the methods in Chapter 3 to a a black

hole to recover the Page curve. This was able to be achieved through considering quantum

extremal surfaces. We then generalised this procedure by introducing the concept of islands.

We shall not delve too much deeper in this review, but we can go further with what’s known as

‘entanglement wedges’. To understand them, let us consider some quantum extremal surface.

The entanglement wedge is then the region in the Penrose diagram that is causally associated

with that quantum extremal surface, i.e. it is the ‘causal diamond’ of that quantum extremal

surface [5, p. 15]. The concept of entanglement wedges were used in solving a paradox pointed

out by John Wheeler in [16] which he called ‘bags of gold’, but that is beyond the scope of this

review. We shouldn’t also neglect to mention the concept of replica wormholes, which justifies

including the interior when calculating the fine-grained entropy using the island formula. This

was done using something called the ‘replica trick’ [17].

Although much progress has been made in ways to obtain the Page curve, it should be noted

that many questions remain. One thing in particular that isn’t understood well is the use of

a cutoff surface, which played an important role in calculating the entropy in both the cases

examined in this chapter. The case when the cutoff surface is the boundary of some AdS space
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is well understood, but other questions remain open [5, p. 19-20].
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Chapter 5

Summary and Discussion

The aim of this review was to examine the Page curve and recent developments to methods in

recovering it. We began this review with introducing the essential physics of black holes and

entropy that pertained to the black hole information paradox and the Page curve. We then

outlined the information paradox using the nice slice argument, and then discussed what the

effect of small corrections would have on the validity of the argument.

The next chapter saw a gentle introduction to the AdS/CFT correspondence, where we exam-

ined both aspects of the duality. We then explored how aspects of AdS/CFT can provide some

insight on the information paradox. The main takeaway is that unitarity is preserved in black

hole evaporation within its framework, although it does not tell us how. We also introduced

the Ryu-Takayanagi formula as well as a formula for generalised entropy. Computing the latter

formula required us to introduce the concept of quantum extremal surfaces.

Chapter 4 was devoted to the Page curve, where we applied the generalised entropy formula in

the previous chapter to black hole evaporation, where we found that we were able to obtain the

Page curve. We then generalised the formula to include the possibility of islands, which also

lead to the Page curve being reproduced. The concepts of entanglement wedges and replica

wormholes were also briefly discussed.

To fully understand the Page curve and how it is reproduced goes a long way to resolving the
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information paradox. With even more progress, it is hoped that the paradox nears its end.
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