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Abstract

This thesis reviews the background of Massive gravity, introducing dRGT gravity as originally presented and

in the tetrad formalism. Kaluza-Klein (KK) theories are reviewed, together with dimensional deconstruction.

The application of these results to the graviton to recover dRGT gravity is explored. The last sections consist

of novel work, or modifications of previous work (4.5.1-3,4.8) extending these techniques to all other types of

matter with lower spin than the graviton (Scalar, Spinors, Yang-Mills, and Rarita-Schwinger fields). This thesis

is meant to serve as a pedagogical introduction to Massive gravity, shaped by the author’s own research interests,

as such ∼ 95% of calculations on this thesis have been done from scratch to ensure any reader familiar with the

mathematical technology can follow every step. As a consequence of this, some parts can be more computation

heavy than you would find in usual research publications.
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1 Motivation and introduction

General relativity has been one of the two pillars of modern physics for over a century, geometrically describing

the symbiotic interplay between mater and geometry elegantly and succinctly. In fact, the Einstein-Hilbert (EH)

action, describing the Einstein field equations (EFE) is close to the simplest equation you can write in 4D curved

spacetime. Nevertheless, the theory of gravity is one of the most complicated theories to study, as it has an infinite

number of self interacting terms. This makes it a very interesting theory to study from a mathematical standpoint,

as the linearised Einstein equations would initially appear to have enough breadth to allow for different interacting

massless Spin-2 theories to emerge at the non-linear level. However, it has been shown by Deser [1] that the

only non-linear extension that respects Diffeomorphism invariance is that described by GR. Thus, there exist few

remaining options to extend our current models of gravity. Loss of Poincaré invariance has been suggested as a

solution to this [2], however, there has been no evidence to suggest that Poincaré invariance should be abandoned.

A further possible extension is the study of interacting massive Spin-2 fields. As such, we expect this fields to

propagate 5 degrees of freedom, and demand them not to be plagued by ghosts. These are modes that propagate

with the wrong kinetic sign, meaning that when in a Lagrangian with a particle of opposite kinetic sign, one can

arbitrarily increase the magnitude of both’s kinetic terms without violating conservation of energy, which is clearly

unphysical. As a consequence, the Hamiltonian is unbounded from below, which is forbidden physically. The aim

of this thesis is to provide an account of some recent advances in this field and how these can be related to other

extensions of gravity.

The structure will be threefold; firstly, we will tackle the basics of gravity from a field theory point of view, and

summarising the breakthroughs of massive gravity through the years. We will start by deriving Einstein’s equations

from the Einstein-Hilbert action and linearising them. We will provide some background on why Spin-2 fields make

sense to explain gravity from Heuristic arguments and introducing the symmetry of GR; Diffeomorphism invariance.

This should be seen as an extension of the introduction as the concepts here are designed to be friendly for general

physicists without a theory background. Moving on from here, we will look at results such as the Fierz-Pauli

action [3] [4] for a linear massive graviton, which was the first action written with no ghosts at the linear level for a

massive Spin-2 field. As we know, adding mass terms breaks the gauge invariance of theories, so we will introduce

Stuckelberg fields, so this is preserved and the right degrees of freedom are recovered in the massless limit. We will

see that Fierz-Pauli massive gravity experiences a discontinuity (the vDVZ [5] discontinuity) in its propagator in the

massless limit, making it irreconcilable with a working linearised theory of gravity. The Vainshtein mechanism [6]

will explain that this is due to the radius where non-linearities are important being dependent on the mass of the

graviton, and we will see that this radius goes to infinity in the massless limit. We will finish this section by a short

note on quantum gravity. This section is heavily inspired by the insightful living reviews of Prof. de Rham [7] and

Prof. Hinterbichler [8]. Secondly, will learn about the developments that led to a unique, non-linear, ghost-free
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theory of massive gravity, namely dRGT gravity [9] [10]. This will be done by generalising the Fierz-Pauli mass

term such that the contributing mass terms in the decoupling limit are total derivatives. Additionally, this will

raise the cut-off of the theory to a higher scale [11] [9]. Finally, we will delve into different extensions of gravity.

We will first introduce the Einstein-Cartan formulation of GR, which uses the tetrad formalism and derive the

most important relations. We will see that in this language, dRGT gravity has a very intuitive meaning and can

be written succinctly. We will do a short introduction of Kaluza-Klein (KK) [12] theories where we will see how for

peculiar metrics, a 5D universe with no matter and a compact dimension is equivalent to a 4D universe with both

matter (Yang-Mills, gravity, and a scalar field) and geometry. We will see how Mach’s principle motivated Brans-

Dicke [13] gravity, and how this is a special case of KK theories. We will also look at Dvali-Gabadadze-Porrati

(DGP) models, where we take this extra dimension to be non-compact, and we see how this gives rise to massive

gravitons in 4D, where the mass is not one, but follows a Källén–Lehmann spectral representation. This digression

into extensions of gravity will pay off where we follow the prescription of dimensional deconstruction [14] [11] to

recover ghost-free massive gravity from the discretisation of tetrads in 5D [15]. Finally, we present some novel (not

peer-reviewed) work where we will use this prescription to generalise the construction to other types of matter,

starting by a scalar field where we find it will propagate two modes; a massless one and another mode with mass

proportional to the graviton mass. Interestingly, these modes mix the fields in both locations in the y dimension.

This same approach is used to find similar results for Spin-1/2 fermions, where we see the mass term becomes

chiral. For completeness, Yang-Mills and Rarita-Schwinger fields are also studied. These results are obtained in a

novel way through dimensional discretisation, but follow what would be expected from KK towers. However, these

all display nuisances in the interactions between fields living in different locations in our latticised dimension.
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2 History of massive gravity

2.1 EH action and linearised Einstein’s equations

The Einstein equations are often introduced in undergraduate level courses the same way they were introduced to

the world in 1915 [16]; as the bare field equations with no derivation. Here we show how these can be derived from

the variation of a succinct action where the Ricci scalar is minimally coupled to gravity. We then expand this action

to find the linearised Einstein equations and introduce the gauge symmetry of general relativity; Diffeomorphism

invariance. While some of these calculations are quite straightforward, they are useful to derive some of the tools

that will be used in subsequent parts of this report.

2.1.1 EH action

We start by introducing the EH action and explicitly showing that variation with respect to gµν recovers Einstein’s

equations. We will follow use [17] as the core of the analysis, but this will deviate in different parts. We will

introduce and vary the Einstein-Hilbert action to fnd the equations of motion of GR;

S =
1

κ

∫
d4x

√
−g[R+ Lmatter]. (2.1)

To vary it, we will need some basic equations that will be useful throughout this dissertation.

The variation of Rµν is A.2 1. [18].

δRσν = ∇ρδΓ
ρ
νσ −∇νδΓ

ρ
ρσ

(2.2)

We now have all the ingredients we need for the variation of the EH action2.1, first ignoring the matter sector:

Firstly, the variation of the Ricci tensor vanishes 2

∫
d4x
(√

−g(δRαβ)gαβ
)
= 0 (2.3)

up to a boundary term 3. So

δS =
1

κ

∫
d4x
(
δ(
√
−g)R+

√
−g(Rαβδ(gαβ))

)
. (2.4)

We have (See A.1):

δ
√
−g =

1

2

√
−ggµνδgµν (2.5)

1we will use the notation ∂µ and ,µ interchangeably according to what is most suitable to each equation
2See A.3
3Here we assume the universe has no boundary, otherwise we would add a Gibbons–Hawking–York (GHY) [19] [20] boundary term
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using A.5 and A.6 we find

δS =
1

κ

∫
d4x
(1
2

√
−ggαβδgαβR−

√
−g(Rρσ(δgαβ)gβρgασ)

)
(2.6)

which yields

Rαβ − 1

2
gαβR = 0 =⇒ Rµν −

1

2
gµνR = 0. (2.7)

And we are rewarded with Einstein’s equations as promised, derived from the variation of a Lagrangian. One can

add matter easily by defining

Tµν =
−2√
−g

δ(
√
−gLmatter)
δgµν

, (2.8)

recovering Einstein’s equations in their usual form;

Rµν −
1

2
gµνR = κTpv, (2.9)

or using Einstein’s tensor

Gµν = κTpv. (2.10)

2.1.2 Linearised EH action

From a field theory or representation theory viewpoint, the linearised Einstein equations are the equations of

motion of a massless Spin-2 particle. Additionally, these have linear Diffeomorphism invariance, as we will see

shortly. These equations are ubiquitous in modern physics as they predict gravitational waves [21] and that these

will propagate at the speed of light, which was recently verified experimentally by the LIGO collaboration [22] and

so these provide deep insight into the inner workings of GR, even at the approximate linear level. To linearise

Einstein equations, we consider small fluctuations around a background flat metric (Minkowski in this case);

gµν = ηµν + hµν , hµν ≪ 1. (2.11)

We define the following pseudo-tensors;

hµν ≡ hαβη
µαηνβ

hµν ≡ hµαη
αν

h ≡ ηµνhµν

gµν = ηµν − hµν

(2.12)

to first order

Γµνρ =
1

2
ηµσ(gσν,ρ + hσρ,ν − hνρ,σ) (2.13)
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and schematically ΓΓ h2 and so

Rµνρσ = ηµλΓ
λ
νσ,ρ − ηµλΓ

λ
νρ,σ (2.14)

which, after some massaging, one can get

Rµνρσ =
1

2
(hµσ,νρ + hνρ,µσ − hνσ,µρ − hµρ,νσ) (2.15)

which is simply all the possible second derivatives of h that respect the symmetries of the Riemann tensor. One

also finds

Rνρ =
1

2
(2hµ(σ,ν)µ −□hνσ − h,νσ)) , R = hµν,µν −□h (2.16)

so

Gµν =
1

2
(2hα(µ,ν)α −□hµν − h,µν − ηµν(h

αβ
,αβ −□h))). (2.17)

This can also be obtained by considering all possible combinations of the different derivatives of h, requiring that

no ghosts are introduced when splitting the metric into a transverse tensor and the derivative of a Spin-1 vector

field as shown in [7].

These can also be obtained from varying the FP action:

SFP =
1

κ

∫
d4x(−1

4
hµν,ρh

µν,ρ +
1

2
hµν,ρh

ρµ,ν +
1

4
h,µh

,µ − 1

2
h,µh

µν
,ν) (2.18)

noting that

δhµν ≡ ηµαηµβδhαβ =⇒ δhµνhµν = hµνδhµν (2.19)

then

δSFP =
1

κ

∫
d4(−1

2
(δhµν,ρ)h

µν,ρ +
1

2
((δhµν,ρ)h

ρµ,ν

+ hµν,ρδ(h
ρµ,ν)) +

1

2
δ(h,µ)h

,µ − 1

2
((δh,µ)h

µν
,ν + h,µ(δh

µν
,ν)),

(2.20)

integrating by parts,

δSFP =
1

κ

∫
d4x(−1

2
□hµνδhµν −

1

2
hµρ,νρδhµν −

1

2
hρν,µρδhµν

− 1

2
ηµν□hδhµν +

1

2
δ(hµν)h,µν +

1

2
hαβ,αβη

µνδhµν)

(2.21)

which yields 5.6. It is worth noting we may write this Lagrangian as

L =
1

4
hµν Êαβµν hαβ (2.22)
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where the Lichnerowicz symbol E is defined acting on h as

Êαβµν hαβ =
1

2
(2hµ(α,ν)

α −□hµν − h,µν − ηµν(h
αβ

,αβ −□h))) (2.23)

Once again, we can couple matter to our Spin-2 field by simply writting

Smatter =

∫
d4hµνTµν (2.24)

2.1.3 Gauge symmetry

We are familiar with gauge symmetries, that being Abelian such as in electromagnetism (U(1)), or non-Abelian

such as in Yang-Mills. As previously anticipated, gauge symmetry of massless linearised GR is linear Diffeomor-

phism invariance, which physically means that laws are invariant under Diffeomorphisms; the metric and matter

distribution change covariantly to give rise to equations of the same form. One of the special things about GR is

that the metric is treated dynamically, as opposed to theories such as Yang mills, where the theory is impregnated

by an a priori metric that does not change with the matter distribution like GR does. It is to be emphasised that we

expect all theories of physics to be Diffeomorphism invariant as we expect physical laws to transform covariantly,

as this is one of the postulates of SR, but GR has the extra requirement that the background is dynamical. Linear

Diffeomorphism invariance can be written as

hµν −→ hµν + 2∂(µξν). (2.25)

We can see that linearised GR is explicitly invariant under these Diffeomorphisms,

δSFP =
1

κ

∫
d4x(−Gµνδhµν) =

1

κ

∫
d4x(−Gµν∂µξν) =

1

κ

∫
d4x(∂µG

µνξν) = 0 (2.26)

where we have used the conservation of Einstein’s tensor (in linearised gravity ∇µ → ∂µ) and its symmetry. Since

hµν is a symmetric 4 dimensional tensor we expect 10 degrees of freedom, nonetheless, we can fix the gauge. To

do this, we recall Lorentz gauge in EM:

∂µA
µ = 0 (2.27)

so

∂µF
µν = jν =⇒ □Aν = jν . (2.28)

The analogue for GR is the de Donder gauge:

∂µh
µν − 1

2
∂νh = 0. (2.29)
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In the full non-linear theory this is equivalent to

gµνΓρµν = 0 (2.30)

which one can easily check recovers de Donder gauge in the linear limit:

1

2
(ηµν − hµν)((ηρα − hρα)(hαµ,ν + hαν,µ − hµν,α) =

1

2
ηµν(hρµ,ν + hρν,µ − hµν

,ρ) = hµ
ρ,µ − 1

2
h,ρ = 0 (2.31)

which recovers de Donder gauge 2.29. This is particularly useful as

□ = gµν∇µ∇ν = ∂µ∂µ. (2.32)

Using de Donder gauge we find,

hµν,µν =
1

2
□h (2.33)

which we can use to rewrite Einstein’s linearised equations as

−□hµν +
1

2
□hηµν = 2κTµν = 16πGTµν (2.34)

where G is Newton’s constant. We may define the pseudotensor

h̄µν = hµν −
1

2
hηµν (2.35)

satisfying

□h̄µν = −16πGTµν . (2.36)

In this form, the linearised Einstein equations look like a sourced wave equation in 4D, which we know how to

solve. In a vacuum, Tµν = 0 and we can then write the vacuum wave equations as

□h̄µν = 0 (2.37)

which we might solve using the trial solution

h̄µν = Re(Hµνe
ikρx

ρ

). (2.38)

with the condition that k is a null vector: kρk
ρ = 0. We also require H to be symmetric, and yield a further

constraint from the de Donder gauge, ∂µh̄µν = 0 =⇒ kµHµν = 0 which tells us that the polarization is transverse
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Figure 1: Image taken from [23] showing the polarisations of gravitational waves at different phases. As previously
anticipated, we have two polarisations.

to the propagation. We also need to take into account Diffeomorphism invariance:

hµν → hµν + ∂µξν + ∂νξµ =⇒ h̄µν → h̄µν + ∂µξν + ∂νξµ − ∂ρξ
ρηµν . (2.39)

In de Donder gauge we find that ξ satisfies□ξν = 0 which following the previous analysis gives us further constraints.

Under these transformations we find

Hµν → Hµν + i(2k(µλν) − kρλρηµν) (2.40)

so we can choose λ in such a way such that H0µ = 0 and Hµ
µ = 0, known as the TT gauge. Our initial tensor H

had 10 degrees of freedom, but de Donder Gauge lets us fix four constraints, and λ lets us fix four further degrees

of freedom. In total, this leaves us with 2 polarizations, which is the right amount for a Spin-2 massless particle.
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2.1.4 Why Spin-2?

We will follow the analysis by Feynman [24] that heuristically lets us find these two polarisations by analogy to

electromagnetism, and then check that these correspond to the ones given by Einstein’s equations.

First, we ponder on why it is that we need a Spin-2 field to describe gravity? We may consider a simple

Lagrangian of the form

L = ∂µϕ∂
µϕ+ gϕT − 1

2
m2ϕ2 (2.41)

where m is small. This is because the range of the force is suppressed by the Yukawa [25] term e−rm and we

require gravity to be a long range theory. While this theory might at first seem reasonable, there is an issue that

rules it out. The electromagnetic stress energy tensor is

Tµν =
1

µ0

[
FµαF να − 1

4
ηµνFαβF

αβ

]
(2.42)

from which one can easily check that its trace, T, vanishes in 4D:

Tµν =
1

µ0
[FµαFµα(1−D/4)] . (2.43)

This implies that the field does not couple to relativistic matter and so light would not bend in this theory, which

we know not to be the case, and so we can discard this. Additionally, as pointed out by Feynman pointed out [24]

that for Spin-0 fields the energy of a gas goes as γ−1, for Spin-1 we find it is independent of velocity, while for

Spin-2 it goes like γ which points at Spin-2 being the correct field. Additionally, in Spin-1 fields, like charges repel,

which we know not to be the case in gravity. This leads us to Spin-2 as a possible candidate.

In what follows, we follow Feynman’s analysis to see how currents and Spin-1 fields interact in EM, and we

draw a comparison to gravity. In Classical EM we have

Aµ = − 1

k2
jµ (2.44)

which connects to a current j’ as −jµ 1
k2 jµ. One might choose the frame such that kµ = (ω, κ, 0, 0) such that

−jµ 1

k2
jµ =

1

ω2 − κ2
(j′4j

4 − j′ij
i). (2.45)

Additionally conservation of charge imposes

ωj4 − kj3 = 0 (2.46)

so 2.45 reduces to

−jµ 1

k2
jµ =

j′4j
4

κ2
+

1

ω2 − κ2
(j′1j

1 + j′2j
2) (2.47)
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from where we see the first term is frequency independent, and represents the instantaneous Coulomb potential.

One might see this more clearly by taking the inverse Fourier transform:

F−1
[j′4j4
κ2

]
=

e2

4πr
δ(t− t′) (2.48)

and the other terms represent the corrections to the instantaneous potential. This process is pedagogical to extract

information about the mediating particles; the photons. We know that the interaction between two particles

involves virtual photons, and by looking at the poles of the interaction amplitude (ω = ±κ). The residue of the

pole term at ω = κ is nothing but the diagonalised interaction of what looks like two photons interacting with the

two different currents: (j′1j
1 + j′2j

2), which means photons have two polarisations. Similarly circular polarisation

is simply a linear combination of these in a new basis:

j′1j
1 + j′2j

2 =
1√
2
(j1 + ij2)(j

′
1 + ij′2)

∗ +
1√
2
(j1 − ij2)(j

′
1 − ij′2)

∗ (2.49)

where it is easy to see the photons rotate by eiθ or e−iθ so we still have two polarisations. This also splits the

photon into helicity modes, as we see each one has a definite helicity; either +1 or -1, from which we can start seeing

the quantum properties of EM emerging. Understanding the EM theory is important as many of the techniques

used here will translate to the analysis of gravity, including techniques such as Stueckelberg tricks to restore gauge

invariance when breaking it explicitly by introducing mass. We now consider the amplitudes for exchanges of

gravitons. In this linearised regime, we assume the D’Alambertian operator is simply k2 and so we write

hµν =
1

k2
Tµν . (2.50)

We guess that, like in EM, the interaction goes like T ′µν 1
k2Tµν . We also require conservation of this tensor, which in

momentum space reads kµν = 0. And similarly, using the same convention for the momentum vector as previously,

we find that ωT4ν = −κTν so one finds

1

k2
Tµν = − 1

κ2

[
T ′
44T44(1−

ω2

κ2
)− 2T ′

41T41 − 2T ′
42T42

]
+

1

ω2 − κ2

[
T ′
11T11T

′
22T22 + 2T ′

21T21

]
(2.51)

where the first term is akin to the instantaneous force and the second is the retarded part of the interaction. The

transverse components are presumably independent, which gives us three polarisations. This means that we have

a mixture of Spin-2 and Spin-0 in our theory, and so we can get rid of this by adding a term of the form T ′ 1
k2T

where T is the trace of the stress energy tensor. Tuning this parameter to − 1
2 , the retarded term reduces to

1

ω2 − κ2

[1
2
(T ′

11 − T ′
22)(T11 − T22) + 2T ′

12T12

]
(2.52)
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Figure 2: Polarisations of two particles from the tensor components.Image taken from [24]

so that we can see that the polarisations are 1√
2
(T11 − T22) and

√
2T12 = 1√

2
(T12 + T21) using the symmetry of the

tensor. This means in particular that the field hµν can be written as

hµν = eµνe
ikαx

α

(2.53)

and the polarisations are such that e11 = 1√
2
,e11 = − 1√

2
, e12 = e21 = 1√

2
. One might visualise these two

polarisations as We can see from here that rotating by π
2 returns us to the same setup but in anti-phase, and by

π brings us back to our original setup. This means there are two cycles in 360 and so this is a Spin-2 field as

expected. This approach to “come up” with a Spin-2 field is rather instructive, as direct comparison to EM results

in linearised GR.

The general interaction is

T ′µν 1

k2
Tµν −

1

2
T ′ 1

k2
T (2.54)

which can be written with the propagator Pστµν = 1
2k2 (ηµσηντ + ηµτηνσ − ηµνητσ) as

T ′στPστµνT
µν (2.55)

which will be an important operator later when comparing massive and massless gravity.

2.2 Stuckelberg trick for EM

This section and is based on the living reviews of massive gravity by [7] and [8]. Adding mass terms to the equations

of motion of a field with a certain symmetry often explicitly breaks the latter. To mend this, in 1938 Stuckelberg

introduced a way of preserving gauge invariance after adding a mass term by means of introducing an extra field

so the degrees of freedom in the massless limit would match. Recent reviews include [26]. To begin, we consider

Maxwell theory, and we see how introducing a mass breaks gauge invariance explicitly. The generic kinetic term
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for Maxwell is

LEM = −1

4
FµνF

µν (2.56)

and in Lorentz gauge we have that the components of the vector potential satisfy the massless KG equation

□Aν = 0. Additionally, we have the gauge invariance, δAν = ∂νχ which also satisfies the massless KG equation.

This lets us fix one more degree of freedom, meaning that a massless Spin-1 field has two propagating degrees of

freedom in Maxwell’s theory. This theory may be promoted to a massive Spin-1 field by introducing a mass term

and a current:

LMassiveEM = −1

4
FµνF

µν − 1

2
m2AµAµ +AµJ

µ (2.57)

which is also known as the Proca Lagrangian [27] this mass term explicitly breaks the gauge symmetry and so this

theory now has 3 propagating degrees of freedom. Even though the Proca equation can be smoothly deformed

into the Maxwell Lagrangian, a discontinuity emerges when considering the number of degrees of freedom, as these

are different in both theories regardless of how small the mass of the particle is. To reconcile this, we introduce a

Stuckelberg field:

Aµ → Aµ + ∂µϕ (2.58)

then the action changes to

S =

∫
d4x− 1

4
FµνF

µν − 1

2
m2(Aµ + ∂µϕ)

2 +AµJ
µ − ϕ∂µJ

µ (2.59)

integrating the last term by parts. We can now define a new gauge transformation

δAµ = ∂ξ, δϕ = −ξ (2.60)

and we see the new Lagrangian is gauge invariant. One can always recover the initial Lagrangian by setting ϕ to

zero, which is called unitary gauge. This manoeuvre of introducing a new field and a new gauge symmetry is called

the Stuckelberg trick. This is a clear illustration of Gauge freedom simply being the exemplification of inefficient

theories in the sense that they contain redundancies, as we can take any theory and make it a gauge theory by

introducing degrees of freedom, or removing the gauge freedom by constraining these fields. This tells us that

gauge symmetry is not a true symmetry of our theory, like rotational invariance would be, which is an important

distinction. What gauge symmetry is good for, however, is to make the symmetries of the theory explicit, as for

example in EM theory we see Lorentz invariance explicitly in the gauged theory, but removing the gauge invariance

also removes the explicit gauge invariance, though it remains in the underlying theory, but is not as intuitive. Thus,

keeping redundancy can often be helpful to see the symmetries. Coming back to our previous Lagrangian, one may
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perform a field redefinition ϕ→ ϕ
m , so the action transforms into

S =

∫
d4x− 1

4
FµνF

µν − 1

2
m2(AµA

µ +
2

m
Aµ∂

µϕ+
1

m2
∂µϕ∂

µϕ) +AµJ
µ − 1

m
ϕ∂µJ

µ (2.61)

where we see that in the massless limit, requesting that the current is conserved or that the combination 1
mϕ∂µJ

µ

goes to zero in the massless limit yields a Lagrangian

L = −1

4
FµνF

µν − 1

2
∂µϕ∂

µϕ+AµJ
µ (2.62)

with a gauge symmetry,

δAµ = ∂µξ, δϕ = 0 (2.63)

which clearly has two degrees of freedom, as one can fix ξ and ϕ freely. Thus, introducing the Stuckelberg field ϕ

has allowed us to get rid of the discontinuity in degrees of freedom between the massive and massless theories.

2.3 Ghosts, Cauchy problems, and fake interactions

Massive gravity theories are often plagued by what is coined as a ghost. Before we delve into the intricacies of

massive gravity models it is important to understand what ghosts are, where they come from and how to properly

define a problem for which our theories behave as we would expect them to

2.3.1 Ghosts

In the context of classical mechanics, ghosts refer to fields with a kinetic term entering the Lagrangian with the

wrong sign. The issue arises as quantum mechanically the vacuum is unstable as, if we have two particles with

different kinetic term signs, we could create an infinite number of pairs without violating energy conservation due

to the different signs. The simplest schematic example of a ghost is

L = −1

2
(∂ϕ)2 − 1

2
(∂π)2 − V (π, ϕ) (2.64)

where ϕ and π are scalar fields. This can also be seen by noticing that the wrong term of the kinetic term means

that the Hamiltonian is unbounded from below, which even at a classical level means these two particles would be

able to attain arbitrarily large kinetic energies without violating energy conservation.

Ostrogradsky’s [28] ghosts are a special kind of ghosts that arise from Lagrangians with higher derivative terms

such as in:

L = −1

2
(∂ϕ)2 − 1

2m2
g

ϕ□2ϕ (2.65)
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for which we may make the substitution 1
m2

g
□ϕ = ψ so that the Lagrangian is

L = −1

2
(∂ϕ)2 − ∂µϕ∂

µψ +
1

2
m2
gψ

2 = −1

2
(∂ϕ̂)2 +

1

2
(∂ψ)2 +

1

2
m2
gψ

2 (2.66)

with ϕ̂ = ϕ + ψ We see that this Lagrangian has a ghostly propagating scalar due to the wrong sign, and is an

explicit example of Ostrogradsky’s ghosts.

2.3.2 Cauchy Problems and fake interactions

Definition Let Ω ⊂ Rd be an open subset of Rd , for d > 1 a positive integer (called the dimension), and denote

by x = (x1, x2, ..., xd) a vector in Ω. Let (unknown) function u : Ω → Rd whose partial derivatives up to order k

exist. A partial differential equation (PDE) of order k in Ω in d dimensions is an equation of the form

F (x, u,
∂u

∂x1
,
∂u

∂x2
, ...,

∂u

∂xd
, ...,

∂2u

∂x12
, ...,

∂ku

∂xd−1∂xd
k−1

) = 0 (2.67)

where F is a given function.

Definition Consider a PDE of the above form and let S be a Hypersurface on Rd let n(x) be the unit normal

vector to S at a point x. Suppose that on any point p of the surface the values of the solution u and of all its

derivatives up to order k-1 in the direction of n are given. The Cauchy problem consists of finding the unknown

function(s) u that satisfy simultaneously the PDE and all the conditions.A well posed Cauchy problem is one such

that a solution exists, this solution is unique, and additionally the solution is continuous with respect to the initial

data. To see an example of a non-well-defined Cauchy problem, we look at [29]. We start with a Lagrangian.

L =
1

2
χ□χ+

1

Λ3
χ(□χ)2 +

1

2Λ6
χ(□χ)□(χ(□χ)) (2.68)

where Λ is our EFT cut-off scale. This model has higher derivatives, and so we suspect ghosts might be present.

One may expand about a background solution χ → µ+ δχ where µ is a constant, such that to quadratic order in

the variation:

L =
1

2
δχ□δχ+

1

Λ3
µδχ□2δχ+

1

2Λ6
µ2δχ□3δχ (2.69)

we see that the equation of motion w.r.t the perturbation is

□(δχ+
2

Λ3
µ□δχ+

1

Λ6
µ2□2δχ) = 0 =⇒ □(1 +

µ

Λ3
□)2δχ. (2.70)
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We may perform one more field redefinition χ̄ = χ+χ□χ
Λ3 so the Lagrangian reduces to

L =
1

2
χ̄□χ̄ (2.71)

which looks like a free Lagrangian, but it is clearly fake as this exhibits no ghosts and so some solutions (dof) have

been masked by the field redefinitions. We now consider a new theory, also containing higher derivatives

L =
1

2
ϕ□ϕ+

1

2
ψ□ψ +

□ψ(∂α∂βϕ)2

Λ5
+

(∂α∂βϕ)
2□(∂µ∂νϕ)

2

2Λ10
(2.72)

varying w.r.t to ψ yields

□ψ +
□(∂α∂βϕ)

2

Λ5
= 0 (2.73)

meaning we can write ψ = −□(∂α∂βϕ)
2

Λ5 +ψ0 where ψ0 solves the massless KG equation. One may integrate out the

field ψ to get

L =
1

2
ϕ□ϕ+

1

2
□ψψ +

□(∂α∂βϕ)
2

Λ5
) +

1

2
(
(∂α∂βϕ)

2

Λ5
)(−□(∂α∂βϕ)

2

Λ5
) +

(∂α∂βϕ)
2□(∂µ∂νϕ)

2

2Λ10
(2.74)

which reduces to

L =
1

2
ϕ□ϕ+

1

2
(□ψ)ψ0 =

1

2
ϕ□ϕ+

1

2
(ψ)□ψ0 =

1

2
ϕ□ϕ (2.75)

which is just free theory on-shell. This means we need 2 degrees of freedom to determine each field, and thus, no

ghosts appear. One may also work out the equations of motion for the ϕ field, which yield

□ϕ+
2

Λ5
∂µ∂ν

[
∂µ∂νϕ(□ψ +

□(∂α∂βϕ)
2

Λ5
)
]

(2.76)

however, we see that on shell, this reduces to the massless KG equation for ϕ, meaning only 2 d.o.f are needed.

Since all the Cauchy data is specified by the equations of motion, no ghostly degree of freedom propagates, in spite

of the higher derivatives.

2.4 Fierz-Pauli massive gravity model

To add mass to our linearised Einstein equations, we consider the different ways in which we can add a Lorentz

scalar term of the form of ∼ h2. The result is that we can either trace our spin-2 field and square it, or square it

and then trace over it. This generates one constant to fix, as one of the two can always be absorbed into the mass

term;

S =

∫
d4x− 1

2
hµν Êαβµν hαβ − 1

8
m2(hµνhµν − αh2) +

1

2
κhµνT

µν . (2.77)
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This theory was first introduced by Fierz and Pauli (FP) [30], where it was shown that avoiding a ghostly sixth

degree of freedom requires α = −1, which we will adopt here onwards. We want to preserve linear Diffeomorphism

invariance so, akin to the EM case, we can use a Stuckelberg vector field

hµν → hµν + 2∂(µχν) (2.78)

our gauge transformations here are

hµν → hµν + ∂(µξν), χµ → χµ − 1

2
ξµ (2.79)

such that the mass term transforms as

Lmass = −1

8

(
(hµν + 2∂(µχν))

2 − (h+ 2∂αχ
α)2
)

L′
mass → −1

8

(
(hµν + ∂(µξν) + 2∂µ(χν) −

1

2
ξν))− (hµν + ∂αξ

α + 2∂α(χ
α − 1

2
ξα)
)
= Lmass

(2.80)

and so we see this Lagrangian preserves linear Diffeomorphism invariance. Similarly, it is clear that the original

FP term is recovered in unitary gauge.

2.4.1 Helicity decomposition

We follow the prescription presented in [29] and [7] to decompose the massive Spin-2 field into helicity two, helicity

one, and helicity zero modes, which add up to the correct number of degrees of freedom which is five for a massive

Spin-2 field. We decompose the Stuckelberg field as

χµ =
1

m
Aµ +

1

m2
ηµν∂νπ (2.81)

then the massive FP action splits into

LFP = −1

4
hµν Êαβµν hαβ − 1

2
hµν(Πµν − [Π]ηµν)−

1

8
FµνF

µν − 1

8
m2(hµνhµν − h2)− 1

2
m(hµν − hηµν)∂(µAν) (2.82)

where Πµν is defined as ∂µ∂νπ and [Π] is its trace with respect to the background metric (ηµν). One can diagonalise

this metric by making the substitution ¯hµν = hµν − πηµν one finds

LFP =− 1

4
h̃µν Êαβµν h̃αβ − 3

4
(∂π)2 − 1

8
F 2
µν

− 1

8
m2
(
h̃2µν − h̃2

)
+

3

2
m2π2 +

3

2
m2πh̃

− 1

2
m
(
h̃µν − h̃ηµν

)
∂(µAν) + 3mπ∂αA

α

(2.83)
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we now see the massive gravity field decomposes into a helicity-2 mode hµν , a helicity-1 Aµ and a helicity-0 mode

π which in total sum to 5 d.o.f . Diagonalising also shows us that hµν couples to the stress energy tensor, Tµν while

the longitudinal mode π couples to its trace T.

2.4.2 The vDVZ discuntinuity

Massive gravity was long thought to be inconsistent with a working theory of gravity because of the following

calculation. We formally recover 2.55 directly from Einstein equations: in de Donder gauge, the linearised Einstein

equations read

□hµν −
1

2
ηµν□h = −κTµν (2.84)

taking the trace of this equation we find that

□h = κT (2.85)

where h and T are the traces of hµν and Tµν respectively. This means we can write the linearised equations in

reverse trace form as

□hµν = −κ(Tµν − ηµν
T

2
) = − 2

Mpl
(Tµν − ηµν

T

2
) (2.86)

so can write the interaction between two currents for linearised GR as

T ′µν f
massless
µναβ

□
Tαβ (2.87)

with

fmasslessµναβ = ηµ(αηνβ) −
1

2
ηµνηαβ . (2.88)

Now we look at the massive gravity analogue, for which the calculations are similar. first, we calculate the trace of

the Lichnerowicz operator

Êαβµν hαβηµν = □h− hαβ,αβ (2.89)

Additionally, we see this is conserved:

∂µÊαβµν hαβ =
1

2
(2hµ(α,ν)

αµ −□hµν
,µ − h,µν

µ − ηµν(h
αβ,µ

αβ −□h,µ))) = 0 (2.90)

where the first part of the first term cancels with the second, the second part with the penultimate, and the

remaining two terms also cancel. We saw that the equation of motion can be written as

Êαβµν hαβ +
1

2
m2(hµν − hηµν) =

1

MPl
Tµν . (2.91)
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Taking two derivatives of the equation of motion one finds

∂µ∂ν
(
Êαβµν hαβ +

1

2
m2(hµν − hηµν)

)
=

1

MPl
Tµν,µν =⇒ □h− hµν

,µν =
−2

MPl
Tµν,µν = Êαβµν hαβηµν (2.92)

where we have used that the divergence of the Lichnerowicz symbol is zero and 2.89. Subbing back into the equation

of motion and tracing, we find

Êαβµν hαβηµν +
1

2
m2(h− hηµνηµν) =

1

MPl
T

=⇒ −2

MPl
Tµν,µν −

3

2
m2h =

1

MPl
T

=⇒ h =
−2

3m2MPl
(T +

2

m2
Tµν,µν)

(2.93)

and similarly

∂µÊαβµν hαβ + ∂µ
(1
2
m2(hµν − hηµν

)
=

1

MPl
Tµν,µ (2.94)

4 which we can rearrange to find

hµν
,µ =

2

Mplm2
(Tµν

,µ − 1

3
T,ν −

2

3m2
Tαβ,αβν). (2.95)

Writing the equation of motion out in full one has

1

2
(2hµ(σ,ν)µ −□hνσ − h,νσ − ηµν(hµν,µν −□h)) +

1

2
m2(hµν − hηµν) =

1

MPl
Tµν (2.96)

we want to have the propagator in the form
fαβµν

□−m2 so we separate the equation into

−1

2
(□−m2)hµν =

−2

Mplm2
(Tα(ν,αµ) −

T,µν
3

− 2

3m2
Tαβ,αβµν)

− 1

3m2
(T,µν +

2

m2
Tαβ,αβν) + ηµν

Tαβ,αβ
m2Mpl

− ηµν
3Mpl

(T +
2

m2
Tαβ,αβ) +

1

Mpl
Tµν .

(2.97)

Which we can simplify to

(□−m2)hµν = − 2

Mpl

[
Tµν −

1

3
(ηµν − ∂µ∂ν)T − 2

m2
Tαµ,αν +

1

3m2
(ηµν +

2

m2
∂µ∂ν)T

αβ
,αβ

]
. (2.98)

One can write this as

(□−m2)hµν = − 2

Mpl

[
ηµαηνβ−

1

3
(ηµν−

∂µ∂ν
m2

)− 1

m2
(∂α∂νηµβ+∂µ∂αηβν)−

1

3m2
(ηµν+

2

m2
(∂µ∂ν))∂α∂β

]
Tαβ (2.99)

4It is important to note that depending on the normalisation convention we use, these answers will differ. For example, [7] and [8]
use different conventions, resulting in slightly different answers
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Being careful, we may write

(□−m2)hµν = − 2

Mpl

[
η̃µ(αη̃βν) −

1

3
η̃µν η̃αβ

]
Tαβ (2.100)

with η̃µν = ηµν − 1
m2 ∂µ∂ν and so we can write the propagator of this Spin-2 massive field as

Gmassiveαβµν (x, x′) =
fmassiveαβµν

□−m2
(2.101)

with the polarisation tensor being

fmassiveαβµν = η̃µ(αη̃βν) −
1

3
η̃µν η̃αβ (2.102)

which one may translate into Fourier space by interchanging ∂µ ↔ pµ as

fmassiveαβµν =
2

3m4
pµpνpαpβ + ηµ(αηβν) −

1

3
ηµνηαβ

+
1

m2

(
pαp(µην)β + pβp(µην)α − 1

3
pµpνηαβ − 1

3
pαpβηµν

)
.

(2.103)

While this may seem divergent at first, we realise that we have the requirement that sources are conserved in the

massless limit and so all the terms with derivatives vanish in this limit. Thus, the remaining polarisation tensor

can be written as

fm→0
αβµν = ηµ(αηβν) −

1

3
ηµνηαβ (2.104)

and so the scattering amplitude between two sourcing stress energy tensors is

Am→0
TT ′ =

∫
d4xhµνT

′µν =

∫
d4xT ′αβ f

m→0
αβµν

□
T ′µν =

∫
d4xT ′αβ 1

□
(Tαβ − 1

3
Tηαβ) (2.105)

which comparing to 2.88 we see that a discontinuity appears as the Spin-2 field couples to the trace of the source

with a factor of a third instead of half in the massless limit. This is known as the van Dam, Veltman and Zakharov

discontinuity [5]. This is resolved by the Vainshtein mechanism [6] where it is pointed that after a certain limit,

non-linearities become important and we can no longer trust the linear theory. We will see more about this in the

upcoming sections.

2.5 Quantum gravity?

It is often said that quantum gravity is an inconsistent theory, and here we go through [31] to see why this is the

case from the point of view of EFTs. In EFTs we work in the low energy regimes where the physics is understood,

taking a coarse grain approach towards unknown phenomena at higher energies. This approach has been extremely

successful. As an example, GR is an EFT with cut-off scale MP l of a full theory of quantum gravity, where we may

have String theory or Loop quantum gravity as candidates of a UV complete theory. Nonetheless, we know GR
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to be an extremely suited theory, able to make predictions to many significant figures in most circumstances, and

there are many other examples where ETFs can be very accurate models of the physics. For a pedagogical review

on ETFs, see for example [32].

2.5.1 Classical EFT

GR is built from an action that depends exclusively on the Ricci scalar R, and the metric determinant g, but why

are other terms not allowed? One could build a coordinate invariant theory with the form

S =

∫
d4x

√
−g
{
Λ +

2

κ2
R+ c1R

2 + c2RµνR
µν + . . .+ Lmatter

}
(2.106)

with an infinite number of terms following the dots, where the terms are ordered by the number of derivatives

involved to construct them, so Λ ∂0, R ∂2. . . the first term is simply the Ricci scalar as this is the only way of fully

contracting the Riemann tensor without it being identically zero. One must be careful when constructing higher

order terms as, for example, for a Lagrangian of the form

L =
2

κ2
R+ cR2 (2.107)

where c is a constant. The equations of motion for this theory are

□h+ κ2c2□□h = 8πGT (2.108)

where the propagator in Fourier space clearly has the form 1
p2+κ2cq4 which we can split into

1

p2 + κ2cq4
=

1

p2
− 1

p2 + 1κ2c
(2.109)

but the second has the wrong sign. This would lead to a short range Yukawa potential that goes like

V (r) = −Gm1m2

[
1

r
− e−r/

√
κ2c

r

]
(2.110)

as worked out by K. Stelle [33], who using empirical data gives bounds for c1, c2 < 1074, and thus this would

be irrelevant for all observable physics as the curvature is so small that these terms would bear no significance

physically.
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2.5.2 Gauss-Bonnet theorem

The Euler Characteristic is a well known topological invariant in topology, as it is a topological invariant of

polyhedra. This was extended to manifolds by Gauss and Bonnet in a formula that reads as

∫
M
KdA+

∫
∂M

kgds = 2πχ(M) (2.111)

for M a compact manifold, K is the Gaussian curvature, kg is the geodesic curvature, and χ(M) is the Euler

characteristic of the manifold. Thus, this connects topology to differential geometry. Intuitively, this formula can

be used to work out the geometry of a spacetime from the sum of angles of triangles, or given a manifold, do the

inverse calculation. To see this, we notice that the theorem can be written as

∫
M
KdA = 2π −

∑
α−

∫
∂M

kgds (2.112)

for geodesic triangles, with interior angles α. As a result, in flat space where the geodesics are straight lines and

the Gaussian curvature is zero, we find the usual
∑
α = π. This only applies to two-dimensional manifolds, but

can be generalised to any compact, orientable, 2n-dimensional Riemannian manifold without boundaries through

the Chern-Gauss-Bonnet Theorem [34]:

χ(M) =
1

32π2

∫
M

(
RµνρσR

µνρσ − 4RµνR
µν +R2

)
. (2.113)

These terms are however not often added to the equations of motions as they can be seen to vanish identically [35]

in 4 dimensions and lower, merely giving a total derivative which of course is not of interest to us. This kind of

theories were studied by Lovelock [36] with the shape

L =
√
−gαjRj (2.114)

with

Rj ≡ 1

2j
δ
µ1ν1...µiνj
α1β1...αjβj

j∏
i=1

Rαiβi
µiνi , and δ

µ1ν1...µjνj
α1β1...αjβj

≡ j! δµ1

[α1
δν1β1

. . . δµj
αj
δ
νj
βj ]

(2.115)

where it was found that the Gauss-Bonnet term appears at second order in R, and additionally there are no further

terms for 2j + 1 > D given the definition of δ as antisymmetrising on these indices will lead to identically zero

terms. This fact will be useful to keep in mind later on when discussing the unique ghost free theory of massive

gravity.
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2.5.3 Quantisation of gravity

To try to quantise gravity, we combine the quantisation developed by Feynman and De Witt [37] and the background

field method pioneered by ’t Hooft and Veltman [38]. Using Feynman’s method can be problematic in theories with

as much gauge freedom as gravity as some divergences might not be able to be absorbed into the coefficients of the

theories displaying the gauge symmetry, but the background field approach, as we have seen through Stuckelberg’s

trick, preserves the gauge invariance in the theory. We start by rewriting our metric as

gµν = ḡµν + κhµν (2.116)

we may expand the most general Lagrangian in terms of our Spin-2 field hµν :

2

κ2
√
−gR =

√
ḡ

{
2

κ2
R̄+ L(1)

g + L(2)
g + · · ·

}
L(1)
g =

hµν
κ

[
ḡµνR̄− 2R̄µν

]
L(2)
g =

1

2
DαhµνD

αhµν − 1

2
DαhD

αh+DαhDβh
αβ

−DαhµβD
βhµα + R̄

(
1

2
h2 − 1

2
hµνh

µν

)
+ R̄µν

(
2hλµhνα − hhµν

)
(2.117)

where D is the covariant derivative with respect to the background field ḡµν . The first order equations will vanish

on-shell for Einstein equations, so we are left with a quadratic Lagrangian and higher order interaction terms. First

we must gauge fixing, for which, like in other gauge theories, we must introduce Fadeev-Popov ghost fields [39] [40].

To build renormalizable theories from Lagrangians with gauge symmetries, we must divide by the gauge group

“volume” to mend this over counting. One defines the functional delta function

∫
Dχδ(χ− χ∗(A)) = 1 (2.118)

where χ∗(A) is the solution to the gauge fixed field [40]. Then we can extend the functional delta function to

transform as

δ(F [A]) =
1∣∣∣Det[ δF [A]
δA ]

∣∣∣δ(A−A∗) (2.119)

and so ∫
Dχδ(χ− χ∗(A)) = 1 =

∫
Dχδ(F [A′])Det[

δF [A′]

δχ
] (2.120)
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and so we can insert this into our generating function in the case of gravity:

Z =

∫
DχDhµνδ(F [A′])Det[

δF [A′]

δχ
]eiS (2.121)

from which we can bring the ghost field by using the identity

det(M) =

∫
dηdη̄ei

∫
d4xηMη̄. (2.122)

As usual, we work in harmonic/ de Donder gauge, imposing this constraint. The following analysis follows [31]

Gα = g
1
4 (Dνhµν −

1

2
Dµh)t

να (2.123)

where we may view t as similar to vierbein5:

ηαβt
µαtνβ = ḡµν (2.124)

leading to the gauge fixing Lagrangian [38]

Lgf
√
ḡ
[
(Dνhµν−

1

2
Dµh)(D

νhµν − 1

2
Dµh) (2.125)

and a ghost Lagrangian carrying free Lorentz indices, meaning we have fermionic fields

Lgh =
√
ḡη∗µ

[
DλD

λḡµν −Rµν
]
ην (2.126)

so the full Lagrangian is

S =

∫
d4s

√
ḡ

{
2

κ2
R̄− 1

2
hαβD

αβ,γδhγδ

+η∗µ
{
DλD

λḡµν − R̄µν
}
ην +O

(
h3
)} (2.127)

where Dαβ,γδ encapsulates the covariant version of the Lichnerowicz symbol and the gauge fixing terms. Around

a flat metric, we recover the GR described in earlier sections.

2.5.4 Issues with quantisation and renormalisation

There are two prominent issues when quantising gravity. Firstly, the coupling constant κ is dimensionful. This in

itself is not necessarily a huge problem as theories such as ϕ3 in 4D have this property too, but additionally, we

have interactions at all orders in hµν in the full non-linear theory. Loop diagrams will generate divergences that

cannot be renormalised into G, but instead will require from an infinite number of parameters to renormalise when

5These will be explained in more detail later.
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going to higher loop orders.

We do an energy expansion with the cosmological constant set to zero

Lg =
√
−g
[ 2

κ2
R+ c1R

2 + c2RµνR
µν +O(R3)

]
(2.128)

with dimensionless couplings ci and a matter Lagrangian

Lm =
√
−g
{
1

2

(
gµν∂µϕ∂νϕ−m2ϕ2

)
+d1R

µν∂µϕ∂νϕ+R
(
d2g

µν∂µϕ∂νϕ+ d3m
2ϕ2
)
+ . . .

} (2.129)

but here, the di play a more subtle role, proportional to 1
m2 where these play the role analogous to charge radius

in QED [31].Traditionally, if only one matter field were to be involved, one could use the Euler-Lagrange equations

to eliminate some terms, as these relate the matter fields to the curvature, but having several possible interacting

matter fields makes this more complicated.

We expand the action in terms of the background metric, and fix the gauge, keeping only those terms quadratic

in the Spin-2 quantum field hµν and the ghost fields and so schematically we have

Z[ḡ] =

∫
[dhµν ] exp

{
i

∫
d4x

√
ḡ

{
2

κ2
R̄+ hµνD

µναβhαβ

}
= detDµναβ

= expTr ln
(
Dµναβ

)
(2.130)

where we [hµν ] means it is gauge fixed, and the curvature terms gets absorbed into the generating function as a

result of the Gellman-Low theorem [40], and for the following lines we have used the usual tricks introduced in

previous sections and the fact that for bosonic path integrals we have

∫
Dϕe− 1

2
dx ddyϕ(x)M(x,y)ϕ(y) =

const√
detM

. (2.131)

’t Hooft and Veltman were able to calculate the one loop renormalisation using dimensional regularisation to be

L(div)
1loop =

1

8π2ϵ

{
1

120
R̄2 +

7

20
R̄µνR̄

µν

}
(2.132)

in d=4 − ϵ, and with additional R2 contributions from the matter fields at one loop. We notice that O(∂4h)

operators are needed to renormalise divergences at O(∂2h). Similarly, O(∂6h) will be needed to renormalise the

O(∂4h) terms, and this process will continue ad infinitum. This is the characteristic of non-renormalizable theories.

Pure gravity with Rµν = 0 is renormalizable as the higher order terms in R vanish, meaning they don’t have to be

renormalised and so it is finite at one loop [31].
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2.5.5 Quantum predictions

As we know, GR is an EFT of a quantum gravity theory, and as such it does not predict quantum divergences as

these arise when considering loop diagrams. In renormalizable theories, these do not affect the theory physically as

they get absorbed into the renormalized parameters, that are set by empirical data, and so these are not predictions

of the ETF either. In GR, we find couplings with negative mass dimension at a scale, Mpl and so this should be

treated as the cut-off of this theory [8]. The higher order derivative terms would normally give rise to Ostrogradsky’s

ghosts, nonetheless, their masses are near or above the energy threshold, and so the EFT treatment lets us ignore

them as UV completion might cure them. Each derivative power carries with them a factor of 1
Mpl

so

∂

Mpl
∼ 1

Mplr
(2.133)

and so these quantum effects only come into play at distances on the scale, or smaller distances than r = 1
Mpl

, and

thus can be ignored for longer distances.
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Figure 3: Photo credit NASA’s Solar Dynamics Observatory. Here we see the different regimes of GR (not to
scale).This is a well behaved theory in the sense that the gap between the quantum regime and the classical linear
limit is orders of magnitude away, meaning we can have a non-linear classical theory of gravity.
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3 Modern massive gravity

3.1 Extending Massive Gravity

The terms in GR are constrained by the Diffeomorphism invariance to yield GR uniquely [7] [8] as shown by

Deser [41]. Nonetheless, there is no obvious continuation to pursue in massive gravity, and so we have some more

freedom when adding terms. We have previously introduced the FP mass term around the Minkowski metric, but

this can in fact be done around any background metric g
(0)
µν .Unlike in GR, a solution of our metric cannot be altered

via a Diffeomorphism6 to obtain a second solution to the same theory, as the mass term breaks this invariance

explicitly.

3.1.1 Vainshtein radius

Vainshtein set to find the radius at which non-linearities would enter a theory of massive gravity. We know that

non-linear solutions are needed to accurately explain the results in General relativity close to the Schwarzschild

radius, setting the cut-off scale for the linear theory of linearised GR. The hope was that this calculation would

shine light on the nature of the vDVZ discontinuity, but the result was more surprising than one would initially

expect. The calculations are not particularly insightful or complicated, so we will simply state the results here.

One can work out the spherically symmetrical solution to the free Einstein equations in powers of non-linearity by

writing

gµνdx
µdxν = −B(r)dt2 + C(r)dr2 +A(r)r2dΩ2 (3.1)

one can go through the analysis at every order as prescribed in [6] or [8], but the end result for massless gravity is

B(r)− 1 = −2GM

r

(
1− GM

r
+ · · ·

)
, C(r)− 1 =

2GM

r

(
1 +

3GM

4r
+ · · ·

)
. (3.2)

where gauge freedom allows us to choose A(r)=C(r) [8] This same analysis can be performed in massive gravity,

where the calculation yields

B(r)− 1 = −8

3

GM

r

(
1− 1

6

GM

m4r5
+ · · ·

)
C(r)− 1 = −8

3

GM

m2r3

(
1− 14

GM

m4r5
+ · · ·

)
A(r)− 1 =

4

3

GM

4πm2r3

(
1− 4

GM

m4r5
+ · · ·

) (3.3)

These two results are clearly different, and we see that the massive gravity case is an expansion in the Vainshtein

radius rV :

rV ≡ (
GM

m4
)

1
5 . (3.4)

6The two theories are related as their metrics differ by a Diffeomorphism
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This is an alarming result, as the massless limit has a radius that goes to infinity, meaning that non-linearities

are nowhere trustworthy. This solves the problem with the vDVZ discontinuity; taking the massless limit means

that the theory being studied is bad at all possible radii, so one would not expect it to be smoothly deformed to

linearised GR, which is good at radii larger than the Schwarzschild radius.

3.1.2 A short note on the ADM formalism and the Boulware-Deser ghost

The ADM formalism [42] is a technique by which one can analyse the equations of motion of the metric field by

deconstructing it into functions of its components. This can be used to simplify the analysis in some particular

cases and in fully non-linear massless gravity we still find two degrees of freedom, however, in massive gravity

we have one extra ghostly degree of freedom [43] as compared to the linearised analysis. This is known as the

Boulware-Deser ghost.

3.1.3 Non-linear Stuckelberg formalism

This method was pioneered in the context of string theory [44] [45] and the formalism is covered in detail in [7] [8].

The first ingredient we require in this formalism is a reference metric that might or might not be Minkowski space.

In massless theory, we have both Poincaré symmetry and Diffeomorphism invariance, and when adding mass to

the graviton, Diffeomorphism invariance is explicitly broken. As a result, similarly to when the VEV of the Higgs

impregnates the Lagrangian in the broken phase, here an explicit Higgs mechanism for Lorentz invariant massive

gravity has not been found yet. The aforementioned reference metric can be viewed as the VEV of a Spin-2 field

that breaks the Diffeomorphism invariance. It is easy to see why this breaks Diffeomorphism invariance: once the

numbers are fixed in a reference metric, any non-trivial transformation will change it. we start by writing the gauge

symmetry of gravity, which is

gµν → ∂gα

∂xµ
∂gβ

∂xν
gαβ(g(x)) (3.5)

where g is an arbitrary Diffeomorphism. This invariance is broken by the mass term only, as the EH term is

gauge invariant. Thus, we can apply a Diffeomorphism to the metric without changing this part of the action,

additionally, we can promote the reference metric f to a full tensor by

fµν → f̃µν =
∂ϕα

∂xµ
∂ϕβ

∂xν
fαβ (3.6)

where ϕ is our Stuckelberg field, and we see that our reference metric transforms now as a tensor under coordinate

transforms as long as the Stuckelberg fields transform as scalars. We also see that in unitary gauge (setting ϕ = x),

Gµν = gµν . We also construct

Xµν = Gανg
µα =

∂ϕα

∂xµ

∂ϕβ

∂xν
gαβ (3.7)
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and in unitary gauge we have X = g−1f . We also see that when the reference metric is Minkowski, the fields will

carry Lorentz indices and their derivatives will be equivalent to tetrads.

3.1.4 Helicity decomposition

As previously, we split the Stuckelberg field into ϕ =a − 1
Mplχa where ”a” is a Lorentz index. One may further

decompose χ into its Spin-1 and Spin-0 components: χa = 1
mA

a+ 1
m2 ∂

aπ and so the Minkowski metric transforms

into

ηµν −→ f̃µν = ηµν −
2

MPl
∂(µχν) +

1

M2
Pl

∂µχ
a∂νχ

bηab

= ηµν −
2

MPlm
∂(µAν) −

2

MPlm2
Πµν

+
1

M2
Plm

2
∂µA

α∂νAα +
2

M2
Plm

3
∂µA

αΠνα +
1

M2
Plm

4
Π2
µν

(3.8)

and so we can now define the tensor version of hµν :

hµν =MPl(gµν − ηµν) → Hµν =MPl(gµν − f̃µν) (3.9)

and so we see that Hµν reduces to

Hµν = hµν + 2∂(µχν) −
1

MPl
ηab∂µχ

a∂νχ
b

= hµν +
2

m
∂(µAν) +

2

m2
Πµν

− 1

MPlm2
∂µA

α∂νAα − 2

MPlm3
∂µA

αΠνα − 1

MPlm4
Π2
µν

(3.10)

This helicity decomposition remains valid in the limit Mpl → ∞ as shown in [29] and the degrees of freedom are as

usual two from a Spin-2 massless field, a Spin-1 vector and a scalar.

3.1.5 Non-linear FP and BD ghost

We notice that given X = g−1f we can construct 1−X = 1−g−1f = g−1(g−f) which looks like the tensor version

of h we need, and so we can extend the FP term to a non-linear version

LnlFP = −m2M2
pl

√
−g([(1− X)2]− [1− X]2) (3.11)

which is invariant under non-linear Diffeomorphisms. We notice that Xµν = δµν − 2Π̃µν + Π̃µαΠ̃
α
ν where Π̃ = 1

m2Mpl

and so

1− X = 2Π̃µν − Π̃µαΠ̃
α
ν (3.12)
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which leads to

[(1− X)2] = 4[Π̃2]− 4[Π̃3] + [Π̃4], [(1− X)]2 = 4[Π̃]2 − 4[Π̃2][Π̃] + [Π̃2]2 (3.13)

and so

LnlFP = −m2M2
pl

√
−g(4([Π̃2]− [Π̃]2)− 4([Π̃3]− [Π̃2][Π̃]) + [Π̃4]− [Π̃2]2). (3.14)

The quadratic term is special as it is a total derivative; one can integrate by parts and cancel it. Nonetheless, the

other terms do not possess this desirable property, and so reminding ourselves of the form of Π this means that this

Lagrangian contains higher derivative terms, which propagate an extra degree of freedom, which by Ostrogradsky’s

theorem will be a ghost, which is the BD ghost. The resolution to this issue, and ultimately of a working theory of

massive gravity, will be to construct a mass term that when expanded yields total derivatives of π, as shown in [9].

3.2 Scale analysis

In this section we consider the scales that come in play in different theories and how they arise naturally from

considering the lowest interactions terms. Additionally, we see how the de Rham Gabadadze Tolley model (dRGT)

raises the cut-off to previous theories considered from Λ5 to Λ3.

3.2.1 Galilean symmetry

By considering the expansion of the terms in powers of the helicity decomposition of our Spin-2 field, we see that

requiring that the terms come in at least at order 3, so that they represent interactions, and that m < Mpl, one

arrives to the conclusion that the term suppressed by the lowest scale is the cubic scalar term at a cut-off of

Λ5 = (Mplm
4)

1
5 . It is easy to see that since these terms come in with two derivatives, there exists a symmetry

π → π + c+ bµxµ (3.15)

where b is a constant vector and c is a scalar. Similarly, we can shift the vector field Aµ by a constant vector, and

we will also have a symmetry, since this enters with one derivative. These are called Galilean symmetries.

3.2.2 Decoupling limit and Vainshtein screening

The decoupling limit allows us to focus on the cut-off scale, and it is set up by sending m → 0, MPl → ∞ and

fixing Λ5 and T
Mpl

. In this regime, we are left with only the cubic term in π considered above. The potential in

3.14 fails to be a total derivative by exactly a factor of ([Π3] − [Π][Π2]), which shines light on the origin of the

Vainshtein radius:

Sϕ =

∫
d4x− 3(∂π̂)2 +

2

Λ5
5

[
(□π̃)3 − (□π̂) (∂µ∂ν π̂)

2
]
+

1

MP
π̂T (3.16)
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where we are only considering the π terms, but the free graviton also survives. Consider the scalar around a

symmetric source of mass M, so π ∼ M
Mplr

. Similarly, the non-linear term will be suppressed by a factor of Λ5
5 [8]:

∂4π

Λ5
5

∼ M

MplΛ5
5r

5
(3.17)

and so the non-linear terms will become important when the scale is of order unity, at

rV ∼ M

Mpl
∼ (

GM

m4
) (3.18)

which is exactly the Vainshtein radius. In [46] it is shown that after a field redefinition π → ψ + χ the quartic in

derivatives, non-linear part of the Lagrangian can be written as

Lφ = − (∂φ)
2
+

(
∂2Φ

)
Λ5
5

(
∂2φ

)2
(3.19)

which signs to the presence of a ghost given the higher derivative terms, with a mass of scale

m2
ghost (x) ∼

Λ5
5

∂2Φc(x)
, (3.20)

but since we are dealing with ETFs, we should not worry about ghosts until they enter the regime in which the

ETF is valid, which is below the Λ5 scale. This happens at a distance ∂2Φ ∼ Λ3
5 [46], which is even greater than

the Vainshtein radius;

Rghost ∼ 1

Λ5

(
M∗

MP

)1/3

≫ R
(5)
V ∼ 1

Λ5

(
M∗

MP

)1/5

(3.21)

this means that at a radius lower than rV the field will carry a factor of

MΛ5
5

Mpl
(3.22)

which after power-counting gives us ∼ (m
4

M )
1
2 , and since mass and distance have opposite units we must have a

r
3
2 profile. We can see from this that at distances smaller than the Vainshtein radius, the second derivative of the

potential goes as r−
1
2 and so the mass of the ghost is proportional to r

1
4 and so the mass tends to zero as we get

closer to the central mass. Correspondingly, the Yukawa suppression eases as we move closer and the longitudinal

mode starts mediating a long range force, but due to the sign of the kinetic term, this force is repulsive. Our

Lagrangian can be written as

L =
1

2
π□π +

1

Λ5
(□π)3 − 1

MP
πT (3.23)
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which upon varying π gives us

□π +
3

Λ5
5

□((□π)2)− T

MPl
= 0, (3.24)

which shows us we need two phase space degrees of freedom to fix □π and two further to fix the d’Alembertian

operator of this quantity, which gives us 4 phase degrees of freedom in total which corresponds to two propagating

degrees of freedom. One can redefine the Lagrangian by introducing a new field that absorbs this degree of freedom,

so each field carries a propagating degree of freedom by introducing a new function into the Lagrangian that limits

the derivatives to second order as shown in [47]

Leq =
1

2
π□π +

1

Λ5
(□π)3 + F (λ,□π)− 1

MP
πT, (3.25)

with the equations of motion given by

□π +
3

Λ5
□
(
(□π)2

)
+□F (0,1) − T

MP
= 0, for the respective fields, with F (1,0) = 0, (3.26)

where F (i,j) corresponds to the ith and jth variations of the function with respect to the corresponding fields. The

correct ansatz for this problem is

F (λ,□π) =
2

3
√
3
Λ5/2Λ3 + Λ2□π − 1

Λ5
(□π)3 (3.27)

for which we may redefine the field as π = φ− λ2 to remove the cross terms, at the cost of one kinetic term in λ.

Additionally, we may redefine λ2 → ψ to obtain the Lagrangian

Leq =
1

2
φ□φ− 1

2
ψ□ψ − ϵ

2

3
√
3
ψ3/2Λ5/2 − 1

MP
φT +

1

MP
ψT (3.28)

where ϵ = ±1 is the sign of □(φ−ψ) as per [47]. The important finding here is that the new ghost field couples to

the trace of the stress-energy tensor in precisely the same way as our longitudinal field, but with a negative sign.

This happens to exactly cancel the attractive force of the longitudinal field, meaning we obtain no extra forces

beyond the Vainshtein radius. This mechanism is known as the Vainshtein or screening mechanism [8] [7].

3.2.3 A brief note on quantum corrections

Considering possible terms in a Lagrangian of the form,

cp,q∂
qhp (3.29)
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we aim to find a scale for the coefficients of these terms, cp,q. Since there is Gailileon symmetry to preserve, we

require that derivatives of h come in twos:

∼ ∂q(∂2π̂p)

Λ3p+q−4
5

(3.30)

remembering the normalisation π̂ we can see that

cp,q ∼ Λ−3p−q+4
5 Mp

Pm
2p =

(
m16−4q−2pM2p−q+4

P

)1/5
(3.31)

so we can write the effective action

S =

∫
d4x

M2
P

2

[√
−gR− m2

4

(
h2µν − h2

)]
+
∑
p,q

cp,q∂
qhp (3.32)

so the radius at which the higher order interaction term becomes of order (∂π)2 is

rp,q ∼
(
M

MPl

) p−2
3p+q−4 1

Λ5
(3.33)

which on the limit of large p goes as

rQ ∼
(
M

MPl

)1/3
1

Λ5
(3.34)

which is larger than the Vainshtein radius. This implies that there is no in between; we cannot have a classical

non-linear theory, contrary to GR, where the non-linearities star close to the Schwarszchild radius, far from the

quantum regime.

3.3 dRGT Massive Gravity

We have seen some strengths and downfalls of the most straightforward extensions of massive gravity , together with

some disheartening and off-putting results such as the BD ghost, the incompatibility of classical gravity with non-

linear theories of massive gravity, and other no-go theorems. Now we consider higher order terms in the Lagrangian

in powers of h, thus generalising the FP action. In what follows we will look at a special class of theories, defined

by two parameters, that were developed in the early 2010s by Claudia de Rham, Gregory Gabadadze, and Andrew

Tolley [9] in which a particular choice of terms cures the problems, at least in the decoupling limit. Later it was

show by Hassan and R. Rosen [48] that this theory is also ghost free beyond the decoupling limit. It was also shown

in [49] that if there were no self interactions between the scalar terms, then the cut-off would be raised from Λ5 to

Λ3.
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Figure 4: Credits to Pablo Carlos Budassi for the original image which was later edited. Scales for a theory with
a Λ5 cut-off scale. As mentioned in [8] this theory is not of much use empirically, as the quantum regime, beyond
where the theory is valid, is larger than the observable universe, and so we have no hope of making predictions of
the classical theory. Values for a graviton mass of the Hubble scale (10−33eV )
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3.3.1 Generalising FP and total derivatives

As just mentioned, it is possible to raise the cut-off by setting the coefficients of higher order terms to particular

values by cancelling the scalar self interactions. Since these are the problematic terms in our theory, we can safely

ignore the vector field, setting it to zero. Thus, we may write [4]

Hµν → 2Πµν −ΠµαΠ
α
ν . (3.35)

A general action may then be written as

S =
1

2κ2

∫
dDx

[
(
√
−gR)−

√
−g0 1

4
m2U

(
g(0), h

)]
, (3.36)

with

U
(
g(0), h

)
= U2

(
g(0), H

)
+ U3

(
g(0), H

)
+ U4

(
g(0), H

)
+ U5

(
g(0), H

)
+ · · · (3.37)

and

U2

(
g(0), H

)
=
[
H2
]
− [h]2

U3

(
g(0), H

)
=+ C1

[
H3
]
+ C2

[
H2
]
[H] + C3[H]3,

U4

(
g(0), H

)
=+D1

[
H4
]
+D2

[
H3
]
[H] +D3

[
H2
]2

+D4

[
H2
]
[H]2 +D5[H]4,

U5

(
g(0), H

)
=+ F1

[
H5
]
+ F2

[
H4
]
[H] + F3

[
H3
]
[H]2 + F4

[
H3
] [
H2
]
+ F5

[
H2
]2

[H]

+ F6

[
H2
]
[H]3 + F7[H]5 . . .

(3.38)

where U2 respects the FP mass term, and the rest are simply all contractions of our Spin-2 field with the background

metric, g(0) and the square bracket here means it has been traced by the background metric. We also note that

all interactions at n > D are redundant, as they are combinations of characteristic polynomials that are identically

zero [8] [4] [9]. These interactions at each order in Π are

L(2)
der = [Π]2 −

[
Π2
]

L(3)
der = [Π]3 − 3[Π]

[
Π2
]
+ 2

[
Π3
]

L(4)
der = [Π]4 − 6

[
Π2
]
[Π]2 + 8

[
Π3
]
[Π] + 3

[
Π2
]2 − 6

[
Π4
] (3.39)

To find the right coefficients, one can look at the Lagrangian in terms of tensors X to the first order and match

them to the polynomials we need:

L =− 1

2
hµν Êαβµν hαβ + hµνX(1)

µν − 1

4Λ5
5

(
(8c1 − 4)

[
Π3
]
+ (8c2 + 4) [Π]

[
Π2
]
+ 8c3[Π]3

)
+

1

Λ3
3

hµνX(2)
µν (3.40)
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with

X(1)
µν = [Π]ηµν −Πµν (3.41)

we see that

hµνX(1)
µν = (2Πµν −ΠµαΠαν)([Π]ηµν −Πµν) = 2([Π]2 −

[
Π2
]
)− ([Π]2[Π]−

[
Π3
]
) (3.42)

and hence, the cubic coefficients are as in 3.40. Now we want the coefficients to be related in such a way that they

are proportional to total derivatives. This requires

8c1 − 4 = 2α, 8c3 = α (3.43)

consequently,

c1 = 2c3 +
1

2
(3.44)

and similarly

c2 = −3c3 −
1

2
. (3.45)

We can repeat this calculation for higher order terms, and the careful calculation yields [4]

c1 = 2c3 +
1

2
, c2 = −3c3 −

1

2

d1 = −6d5 +
1

16
(24c3 + 5) , d2 = 8d5 −

1

4
(6c3 + 1)

d3 = 3d5 −
1

16
(12c3 + 1) , d4 = −6d5 +

3

4
c3,

f1 =
7

32
+

9

8
c3 − 6d5 + 24f7, f2 = − 5

32
− 15

16
c3 + 6d5 − 30f7,

f3 =
3

8
c3 − 3d5 + 20f7,

f4 = − 1

16
− 3

4
c3 + 5d5 − 20f7,

f5 =
3

16
c3 − 3d5 + 15f7,

f6 = d5 − 10f7.

(3.46)

which ensures all the terms are total derivatives [4] [7]. To see why all higher order derivatives are zero we consider

L(5)
der = 24

[
Π5
]
− 30[Π]

[
Π4
]
+ 20

[
Π3
] (

[Π]2 −
[
Π2
])

+ 15[Π]
[
Π2
]2 − 10

[
Π2
]
[Π]3 + [Π]5 ≡ 0 (3.47)

and we consider a diagonal basis. Then, [Πk] =
∑D
n=1 λ

k
n where λn are the eigenvalues of these matrices. Plugging

this result into L(5)
der gives us 0 identically. This is just to say that this is simply a statement that the higher order

terms are just linear combinations of the lower order terms. This in turn implies that f7 is redundant. This is to

say that there are two free parameters left, which is why this class of theories is referred as a two parameter family.
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The tensors X are identically conserved [7] [8] and can be written as

X(n)
µν =

1

n+ 1

δ

δΠµν
LTD
n+1 (3.48)

It was later recognised that this can be written in a succinct way as

X
(0)µ
µ′ [Π] = εµναβεµ′ναβ

X
(1)µ
µ′ [Π] = εµναβεµ′ν′αβΠ

ν′

ν

X
(2)µ′

µ′ [Π] = εµναβεµ′ν′α′βΠ
ν′

ν Πα
′

α

X
(3)µ
µ′ [Π] = εµναβεµ′ν′α′β′Πν

′

ν Πα
′

α Πβ
′

β

X
(n≥4)µ′[Π]
µ′ = 0

(3.49)

or explicitly as

X(0)
µν [Π] =3! ηµν

X(1)
µν [Π] =2! ([Π]ηµν −Πµν)

X(2)
µν [Π] =

(
[Π]2 −

[
Π2
])
ηµν − 2

(
[Π]Πµν −Π2

µν

)
X(3)
µν [Π] =

(
[Π]3 − 3[Π]

[
Π2
]
+ 2

[
Π3
])
ηµν

− 3
(
[Π]2Πµν − 2[Π]Π2

µν −
[
Π2
]
Πµν + 2Π3

µν

)
(3.50)

the former way of writing the X tensors is more intuitive as we see we are contracting Minkowski metrics with

Π matrices in every possible way such that there are four contractions. This construction can be extended to

Lagrangians [7]

Lmass =
1

4
ϵµναβϵµ′ν′α′β′

 α2

m2
δµ

′

µ δ
ν′

ν︸ ︷︷ ︸
∗

+
α3

MPlm4
δµ

′

ν Πν
′

ν︸ ︷︷ ︸
∗∗

+
α4

M2
Plm

6
Πµ

′

ν Πν
′

ν︸ ︷︷ ︸
***

+

Πα
′

α Πβ
′

β (3.51)

term-wise, we see that 7

∗ ∼ ϵµναβϵµν
α′β′

∂α∂α′π∂β∂β′π = ϵµναβϵµν
α′β′

∂α∂βπ∂α′∂β′π (3.52)

up to a total derivative, where we have integrated by parts. We see the partial derivatives are symmetric, and we

are antisymmetrising with the ϵ tensor, and so the whole term is a total derivative as this contribution is zero.

7Note the original paper [7] contains a typo and writes ν instead of µ in the δ of the first term
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Figure 5: Regimes in massive gravity with a cutoff Λ3. Image of solar system taken from James O’Donoghue. Here
we see that the quantum regime appears at a ”short” distance, while the linear theory appears at a solar system
scale of 1016km. For reference, the Milky way is approximately 1017km, so this is around a tenth of its size

Similarly,

∗∗ ∼ ϵµναβϵµ
ν′α′β′

∂ν∂ν′π∂α∂α′π∂β∂β′π = −ϵµναβϵµν
′α′β′

∂νπ(∂ν′(∂α∂α′π)∂β∂β′π+∂α∂α′π∂ν′(∂β∂β′π)) = 0 (3.53)

where, like before, we have integrated by parts and the remaining term is zero as we are anytisymetrising the prime

indices and summing over them. It is easy to show that the remaining term (***) is also zero for the same reasoning

(up to a total derivative). Thus, all these terms are total derivatives. This is also why all L(n)
der ≡ 0 for n > 4, as we

would be antisymmetrising more than four matrices in 4D, which is trivially zero. Having now removed the scalar

self-interactions, we have now found a theory that has a scale Λ3 = (Mplm
2)1/3 and the decoupling limit becomes

m→ 0, Mpl→∞, Λ3 Fixed (3.54)

3.3.2 □ root

In [9], the correct form for the potential so that there are no further terms h(∂2π)n beyond n=4 was found. Here,

we work through the main results of this paper, giving explicit calculations. The breakthrough was to introduce a
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new tensor with a square root structure:

Kµν (g,H) = δµν − (

√
g−1f̃)µν = δµν −

√
δµν −Hµ

ν =

∞∑
n=1

dn(H
n)µν , dn = − (2n)!

(1− 2n)(n! )24n
(3.55)

where dn can be found from expanding the square root 8 and f̃ is the reference metric 3.9, and rearranging we get

the equality. We also note that K can be written as

KµαKαν = (δµα −
√
δµα −Hµ

α)(δ
α
ν −

√
δαν −Hα

ν ) = δµν − 2
√
δµν −Hµ

ν δ
µ
ν −Hµ

ν

= 2(δµν −
√
δµν −Hµ

ν )−Hµ
ν = 2Kµν −Hµ

ν

(3.57)

Similarly, we have schematically

Kµν |hµν=0
= ηµν −

√
(η −Π)2µν = Πµν (3.58)

where a careful calculation shows this is indeed the case. Thus, this property allows us to extend the term found

in 4.83, replacing [Π] ↔ ⟨K⟩ where ⟨K⟩ corresponds to taking the trace with the full metric;

L(2)
dRGT(K) = ⟨K⟩2 −

〈
K2
〉

(3.59)

so

L(2)
dRGT(K)|hµν=0= [Π]2 − [Π2] (3.60)

and the full non-linear Lagrangian is

L =
M2

Pl

2

√
−g
(
R− m2

4
U(g,H)

)
(3.61)

with

U(g,H) = −4
(
⟨K⟩2 −

〈
K2
〉)

= −4

∑
n≥1

dn ⟨Hn⟩

2

− 8
∑
n≥2

dn ⟨Hn⟩
(3.62)

so varying this with respect to the variations we have

δ
(√

−gL(2)
dRGT(K)

)
δhµν

|hµν=0=

(
√
−g

(
2⟨K⟩δ⟨K⟩

δhµν
−
δ
〈
K2
〉

δh̃µν

)
+
(
⟨K⟩2 −

〈
K2
〉) δ√−g

δhµν

)
|hµν=0 (3.63)

8 (1/2
k

)
=

1
2
( 1
2
− 1)...( 1

2
− k + 1)

k!
= (−1)k−1 1× 3.̇..× (2k − 3)

2kk!

= −(−1)k
2k − 2!

2k4k(k − 1)!
= −(−1)k

2k!

(1− 2k)4kk!2

(3.56)

as required
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from [9] we have

δ⟨K⟩
δh̃µν

=
1

2
(gµν −Kµν) (3.64)

additionally, using 3.57 we have

⟨K2⟩ = 2⟨K⟩ − ⟨H⟩ (3.65)

we easily find

δ
〈
K2
〉

δh̃µν
= Hµν −Kµν (3.66)

and finally, we have 9

√
−g =

√
−Det(η)(1 + 1

2
h) (3.68)

and so we can write

δ
(√

−gL(2)
dRGT(K)

)
δhµν

|hµν=0 = (ηµν −Πµν)[Π]− (2Πµν −ΠµαΠνα −Πµν) +
1

2
ηµν([Π]2 − (2[Π]− 2[Π] + [Π2])))

= (ηµν −Πµν)[Π]−Πµν +ΠµαΠνα +
1

2
([Π]2 − [Π2])

(3.69)

which we can rearrange as

δ
(√

−gL(2)
dRGT(K)

)
δhµν

|hµν=0 = ([Π]ηµν −Πµν) +
1

2

( (
[Π]2 −

[
Π2
])
ηµν − 2

(
[Π]Πµν −Πµν2

) )
=

1

2
(Xµν (1)[Π] +Xµν (2)[Π]) ≡ 2

Λ3
3

X̄µν

(3.70)

Where X̂ is conserved as it is a linear combination of conserved tensors. In the theory with all the constants, the

terms of O(h2) carry a factor of
Λ3

3

Mpl
, which in the decoupling limit go to zero, meaning the Lagrangian in the

decoupling limit is

Llim
Λ3

= −1

4
ĥµν(Ê ĥ)µν + ĥµνX̄

µν . (3.71)

This can be extended to contain the other terms in 4.83 to generalise the FP action following a very similar

calculation, ensuring all terms appearing in the decoupling limit are total derivatives, and thus elucidating that the

decoupling limit is set by Λ3 and that all terms are healthy. An important point is that the X tensors are conserved

off-shell without involving the equations of motion, which is one of the features that makes this Lagrangian structure

so especial.

9
√
−g =

√
−η − h = e(log(

√
−η−h)) = e(1/2log(−Det(η)Det(1+η−1h))

=
√

−Det(η)e(1/2log(Det(1+η−1h))) =
√

−Det(η)e(1/2Tr(log(1+η−1h))))

=
√

−Det(η)e(1/2lTr(η−1h)+O(h2)) =
√

−Det(η)(1 +
1

2
h)

(3.67)
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4 Extensions of gravity

In this section we do a quick review of the Einstein-Cartan formalism and see how it can be applied to obtain

dRGT gravity elegantly, together with other standard results. The tetrad formalism can be found is standard texts

such as [50] [51] or in most introductory courses in Differential Geometry, so the results will simply be stated.

Additionally, some parts of this review can be found in the talk by R. Rosen [52].

4.0.1 Tetrads

The feature that made K so special was the square root structure, but there exist objects that do this for us and

have been extensively researched; tetrads. These go by different aliases; tetrads, vierbeins, vielbeins. . . but they

all refer to the same object:

gµν = eaµe
b
νηab (4.1)

we can also define eµa such that eaµeb
µ = δba and eaνea

µ = δµν and similarly we can show that

gµν = ea
µeb

νηab, ηab = gµνe
µ
ae
ν
b, ηab = gµνeµ

aeν
b. (4.2)

We see that the Latin indices do not interact with the Greek ones, and so we can build composite objects such as

eaµ = ηabe
b
µ etc. We can also write tetrads as one forms as

ea = eaµdx
µ (4.3)

similarly, we can build vectors:

ea = ea
µ∂µ (4.4)

meaning that the commutator of two dual basis tetrads does not necessarily commute:

[ea, eb] = Cdabed, Cdabed =
(
−2eµae

ν
b∂[µe

d
ν]

)
ed (4.5)

where Cdab are called objects of anholonomy. It can also be shown that

dea = −1

2
Cabce

b ∧ ec. (4.6)

One can build maps in concepts from Yang-Mills theory to the Einstein-Cartan formulation of gravity by replacing

the gauge field with a connection and the field strength with a curvature.

To make sense how to perform this map, we first note that tetrads have 16 degrees of freedom as they are

not required to be symmetric like the full metric is (in fact this would not even make sense as their indices are of
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different types as we will see soon). We also notice that under the Lorentz transform

eaµ → e′aµ = Λabe
b
µ, (4.7)

the full metric transforms as

gµν → g′µν = e′aµe
′b
νηab = Λace

c
µΛ

b
de
d
µηab = ecµe

d
νηcd = gµν , (4.8)

and so the metric is invariant under Lorentz transforms of the tetrads. This means that we can use these to fix a

further 6 degrees of freedom, recovering the 10 degrees of freedom typical from a symmetric 4D metric. We also see

that Latin indices are Lorentz indices, and tetrads are a “dictionary” to move from Lorentz to spacetime indices and

vice versa. As we will see, tetrads are more than a mathematical artefact, or curiosity, in that they are ubiquitous

when generalizing terms in modified theories of GR, making some results much more intuitive. Additionally, we

are forced to introduce them when dealing with spinors in curved space as these are defined as representations of

the Poincaré group, and we lose this invariance in curved space-time, so tetrads allow us to set up Local Inertial

Frames (LIFs) in which we can promote the Lorentz indices (for example in Dirac’s equation) to full spacetime

indices. This will be very important later on in this dissertation.

4.0.2 Cartan’s structure equations

As mentioned earlier, we treat our connection Γ as the equivalent of a gauge field, and so we can write it as a

one-form as

Γab = Γaµbdx
µ (4.9)

requiring antisymmetry in the raised ab indices to satisfy the Lorentz algebra SO(3, 1):

Γab = −Γba (4.10)

and we define the curvature two-form as

Rab =
1

2
Rabµνdx

µdxν . (4.11)

We can also define the torsion form

T̂ a ≡ 1

2
T abcê

b ∧ êc (4.12)

And finally

Γaµb = eaν∇µe
ν
b (4.13)
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which can be shown to have the right transformation rules to behave like a connection. With this, one can show

Cartan’s structure equations:

Dea = dea + Γab ∧ eb ≡ T a (4.14)

which is Cartan’s 1st equation and

Ra
b = dΓab + Γac ∧ Γcb (4.15)

which is Cartan’s 2nd equation. We can also define area forms as

Σab = ea ∧ eb (4.16)

which we see span planes when written as two-forms. There exist 6 distinct combinations of these. Similarly, we

have the identity,

DDea = Rb
a ∧ eb (4.17)

which is equivalent to the way that the Riemann tensor is defined in GR using the commutator of covariant

derivatives. The fact that the connection is antisymmetric in its Lorentz indices as a result of being a Lorentz

generator has the implication that the connection is also a metric connection:

∇ρgµν = 0 ↔ Γ(ab) = 0. (4.18)

We also have that the torsion free condition associated with the Levi-Civita connection is

T a = 0 = Dea = dea + Γab ∧ eb (4.19)

which looks more like the requirement of metricity written with the covariant derivative, and vice versa. Lastly,

the Bianchi identity can be translated to simply

DRab = 0 (4.20)

4.0.3 Lagrangians using tetrads.

As a word of caution, we will be using the notation

εµναβ =
1√
−g

ϵµναβ , εµναβ =
√
−gϵµναβ , εµναβεµ1ν1α1β1 = ϵµναβϵµ1ν1α1β1 (4.21)

throughout, with

ϵ0123 = 1 = −ϵ0123 (4.22)

47



We can now write the Einstein Hilbert Lagrangian in terms of tetrads a s

SEC =

∫
ea ∧ eb ∧Rcdεabcd =

∫
1

2
εabcde

a
µe
b
νR

cd
αβdx

µ ∧ dxν ∧ dxα ∧ dxβ (4.23)

and since there is only one possible combination of dxµ ∧ dxν ∧ dxα ∧ dxβ we can write.

SEC = −1

2

∫
d4x εµναβϵabcde

a
µe
b
νe
c
γe
d
δR

γδ
αβ (4.24)

and using

ϵabcde
a
µe
becγe

d
δ = −εµνγδDet(e) = −εµνγδ

√
−g (4.25)

then we have

SEC =

∫
d4x

√
−g(δαγ δ

β
δ − δαδ δ

β
γ )R

γδ
αβ = 2

∫
d4x

√
−gR ∼ SEH . (4.26)

This action has the important property of being Lorentz invariant [52]: under the transformation of ea → Λabe
b,

Rab → ΛacΛ
c
dRcd we see that since Λ ∈ SO(3, 1) =⇒ Det(Λ = 1) and so the term is Lorentz invariant. The

Diffeomorphism invariance comes from the transformation ea → ea + Dϕa, Rab → Rab where ϕa is built out of

four zero forms (scalars). We see that

δ(SEC) ∼
∫
Dϕa ∧ eb ∧Rcdεabcd = 0 (4.27)

via integration by parts10 using the torsion free condition, together with the Bianchi identity.

Similarly, it can be shown that one can obtain the cosmological constant term by simply wedging four tetrads

together:

SΛ ∼
∫
ea ∧ eb ∧ ec ∧ ed (4.28)

We can also write the Gauss-Bonnet term as,

SGB =

∫
Rab ∧Rcdεabcd (4.29)

which in this language it is clear that it is zero in four dimensions due to the Bianchi identity. Similarly, terms

such as

S ∼
∫
Rab ∧Rab,

∫
Rab ∧ ea ∧ eb... (4.30)

are also topological terms, for the first one we have a simple Bianchi identity trick, while for the second one, we

can use the graded Leibniz rule to show it is identically zero.

10D only ever hits Lorentz indices, so if all are contracted, D → d and so we can integrate by parts using this.
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The equations of motion can be obtained using the ”1st order form” which involves treating the spin-connection

as an independent variable with respect to the metric, but this ends up being equivalent to setting the torsion to

zero from the get-go, which is the ”2nd order form”. in first order form,

δRab = dδΓab + δΓac ∧ Γbc + Γac ∧ δΓbc = DδΓab (4.31)

and so

δSEH =

∫
DδΓab ∧ ec ∧ edεabcd = 0 (4.32)

which for a variation of the action, which implies that the equations of motion are,

Dec ∧ edεabcd = 0 =⇒ Dea = 0 (4.33)

on the other hand, varying with respect to the spin connection yields

δSEH ∼
∫

Rab ∧ ec ∧ δedεabcd =⇒ Rab ∧ ecεabcd = 0 (4.34)

which can be manipulated to obtain Einstein’s equations.

4.0.4 dRGT using vierbeins

We review the results in [53] where dRGT gravity was translated into the vierbein language, where some of its

properties become more apparent. We start by rewriting the dRGT Lagrangian as [10] [54]

S =
MD−2
P

2

∫
dDx

√
−g

[
R− m2

4

D∑
n=0

βnSn

(√
g−1η

)]
(4.35)

as this will be most convenient to us. To begin translating this term, we write [15]

eµ1,ae
2,a
α eα1,be

2,b
ν = eµ1,ae

2
α,be

α,a
1 e2,bν = gµαfαν = g−1f (4.36)

where the subscripts 1 and 2 refer to the tetrads corresponding to the full metric and the reference metric respec-

tively, which will typically be Minkowski. We can then write

√
g−1f = (e2e

−1
1 )T . (4.37)

So now we can write

(Det(e1))Sn((e2e
−1
1 )T ) =

√
−gSn

(√
g−1η

)
(4.38)
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for a flat metric the vierbeins are Ia = δaµdx
µ so the action can be written as

S =
M2
lP

2

(∫
ea ∧ eb ∧Rcdεabcd

−m
2

4

∫ 4∑
n=0

βn
n! (4− n)!

εa1a2a3a4Ia1 ∧ . . . ∧ Ian ∧ eAn+1 ∧ . . . ∧ ea4
) (4.39)

even though this Lagrangian has 16 constraints, it can be restricted to the normal 10 constraints coming from a

symmetric metric in 4 dimensions if we add the constraint [53]

eη = ηeT (4.40)

so we can write the vierbeins as this constrained vierbein times a generic Lorentz transform:

e = ēexp(w) (4.41)

which as usual gives us additional constraints. Similarly to this, one can build bi-gravity theories by adding a curva-

ture term for a second metric, fµν :

Sbi =
M2
lP

2

(∫
M2
plg

2
ea(1) ∧ e

b
(1) ∧Rcd

(1)εabcd

+
M2
plf

2
ea(2) ∧ e

b
(2) ∧Rcd

(2)εabcd

−
M2
plgf

2

m2

4

∫ 4∑
n=0

βn
n! (4− n)!

εa1a2a3a4e
a1
1 ∧ . . . ∧ ean1 ∧ ean+1

2 ∧ . . . ∧ ea42

)(4.42)

4.1 Kaluza-Klein theories

In this section we look at Kaluza-Klein (KK) theories, which have the remarkable property of describing a matter-

rich four dimensional space with both gravity and Yang Mills, starting from a completely empty five dimensional

space, with minimal coupling to the five dimensional Ricci scalar. We will follow the notes on this topic that can

be found in [55].

4.1.1 Features in Kaluza-Klein theories

The following features are common to KK models, though at least one of the following might at times be relaxed,

1. All nature is pure geometry. All phenomena in 4D results purely from the Einstein tensor in 5D, no stress-

energy tensor.

2. Minimal extensions of GR; we simply add one more number to the set of numbers indices may take. No

Lovelock terms or interactions.

3. A priori cylindrical, physics does not depend on this fifth dimension.
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Figure 6: Idea behind KK theories

While the first two conditions appear reasonable and soothing to physicists, the third one seems more convoluted.

Klein [56] [57] showed that if the fifth coordinate had a circular topology, one could expand any function in terms

of Fourier modes along this coordinate and so if the excited states were heavy enough to not be excited by any

conventional physics, the equations would be independent of this fifth coordinate.

4.1.2 D=11 Supergravity and D=10 Superstring theory

KK theories in higher dimensions only give rise to 4D gauge bosons, so to include fermionic fields too, these must

be put in by hand. D=11 is a natural setting for these theories, as Nahm [58] showed this is the maximum number

of dimensions that give rise to a single graviton. Additionally, Witten showed [59] that to unify all forces, that

is to have a model with the SU(3) × SU(2) × U(1) symmetry such as the standard model, we need a minimum

of 11 dimensions. This tremendously constrain the number of dimensions that are available for us to choose,

though one may want theories with, for example, more than one graviton. What is more, E.Cremmer, B.Julia, and

J.Scherk [60] showed that, unlike in lower dimensions, only one configuration was consistent with supersymmetry

for the extra matter fields. To further reinforce the idea that D=11 was the right theory to study, Freund Rubin

showed that one could only compactify the d=11 model in either 4 macroscopic dimensions and 7 microscopic

dimensions, or vice versa. This was compelling enough for D=11 supergravity to be taken seriously. Unfortunately,

several imperfections developed from this theory, firstly, quarks and leptons did not arise from the manifolds Witten

had proposed, and the groups SO(7) and SO(2) × SO(5) were used as replacements [55]. This could be modified

by adding more matter, at the expense of our first principle of KK theories. A more concerning one was the

fact that chirality could not be recovered in these theories. Additionally, it is difficult to remove the cosmological

constant arising in these theories, which is of sizeable dimensions [55]. Lastly, Salam and Sezgin [61] showed that the

quantised theory suffers from anomalies. Bleak as the situation might have looked at first, Green, Schwarz, Gross, et

al. showed that in D=10 superstring theory there exist two and only two models that cure the anomalies, restoring
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the uniqueness virtue. These were theories with gauge groups SO(32) and E8xE8. These originally comprised five

different theories, but Witten [62] showed that they could be unified into what we know as M-theory. Additionally,

the low energy limit of this theory is D=11 Supergravity, just as one might have wished for.

4.1.3 Kaluza mechanism

We follow [55] for part of this subsection, but we work out the equations of motion using the method presented

in [63] working through the results shown from scratch with the explicit calculations. Einstein’s equations in 5D

are

ĜAB = 0 =⇒ R̂AB = 0 (4.43)

where the indices A,B now run from 0 to 4. Similarly, the 5 dimensional Einstein action is

S = − 1

16π

∫ √
−g(5)R̂d4xdy (4.44)

The Christoffel symbols and Ricci tensors are defined analogously to 4 dimensional theory. We can now be imagi-

native choosing our metric, but the specific choice

(ĝAB) =

 gαβ + κ2ϕ2AαAβ κϕ2Aα

κϕ2Aβ ϕ2

 (4.45)

where A is the EM vector potential and ϕ is a scalar field. We can alternatively write a metric such as

ds2 = e2βϕγijdx
idxj + e2αϕ

(
dx5 +Aidx

i
)2

(4.46)

where now ϕ is a new field. This has invariance under the transformation Ai → Ai+ ∂iΛ and x5 → x5 −Λ, similar

to the transformations performed when dealing with the Stuckelberg trick and in EM, a gauge transform will be

the same as a coordinate transformation in 5D. One can find a tetrad basis in 5D defining

ds2 = e2βϕγijdx
idxj + e2αϕ

(
dx5 +Aidx

i
)2

(4.47)

and regard γij as the 4D metric, which can be decomposed into a normal tetrad basis, further defining Ei = eβϕei

so we can write the full metric as a sum of tensor products of the tetrads:

ds2 = E5 ⊗ E5 + ηijE
i ⊗ Ej (4.48)
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which we can spell out to ensure it is right as

E5 ⊗ E5 = e2αϕ(dx5 ⊗ dx5 + 2dx5 ⊗A+A⊗A) (4.49)

which corresponds with our previous metric. We now proceed to calculate connection one-forms. Since we are

working with a theory that we would like to resemble GR in the 4D limit, we can set torsion to zero. Firstly, we

can calculate

dEi = βdϕeβϕ ∧ ei + eβϕdei

= βdϕeβϕ ∧ ei − eβϕΓij ∧ ej
(4.50)

where we have used T i = dei + Γij ∧ ej = 0 in the second line. Similarly,

dE5 = αdϕ ∧ eαϕ
(
dx5 +A

)
+ eαϕdA (4.51)

which remembering that

F =
1

2
Fije

i ∧ ej = 1

2
(∂iAj − ∂jAi) e

i ∧ ej (4.52)

then writing dϕ = ∂iϕe
i and remembering our definitions for EiandE5 we have

dEi = βe−βϕ∂jϕE
j ∧ Ei − Γ̂ij ∧ Ej

dE5 = αe−βϕ∂jϕE
j ∧ E5 +

1

2
e(α−2β)ϕ

(
FijE

i ∧ Ej
) (4.53)

where Γ̂ refers to the 4D connection one-form. With this, one can find the connection one-form components as

follows;

dE5 = −Γ5
i ∧ Ei =⇒ (−αe−βϕ∂iϕE5 ∧ Ei − 1

2
E(α−2β)ϕFijE

j ∧ Ei) = −Γ5
i ∧ Ei (4.54)

and so, one can remove one of the tetrads to obtain

αe−βϕ∂iϕE
5 +

1

2
e(α−2β)ϕFijE

j = Γ5
i (4.55)

one can similarly obtain

dEi = −Γij ∧ Ej − Γi5 ∧ E5 = −Γij ∧ Ej +
1

2
e(α−2β)ϕF ijE

j ∧ E5 (4.56)

Γij = Γ̂ij − βe−βϕ
(
∂iϕEj − ∂jϕE

i
)
− 1

2
e(α−2β)ϕF ijE

5 (4.57)
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where the first part of Γ involves a E5 and so becomes zero when we wedge it with itself. Now using dEi =

βe−βϕ∂jϕE
j ∧ Ei − Γ̂ij ∧ Ej we can repackage 4.57into

ωij = ω̂ij − βe−βϕ
(
∂iϕEj − ∂jϕE

i
)
− 1

2
e(α−2β)ϕF ijE

5 (4.58)

We can now proceed to calculate the curvature two-form using these results:

Rzi = dΓzi + Γzρ ∧ Γρi (4.59)

tackling the first part of this expression we have

dΓzi = α∂i∂jϕe
−2βϕEj ∧ E5 − βα∂iϕ∂

−2βϕ
j Ej ∧ E5

+ α2∂iϕe
−−2βϕ∂jϕE

j ∧ E5 +
1

2
(α− 3β)e(α−3β)ϕ∂kϕFijE

k ∧ Ej

+
1

2
e(α−3β)ϕ∂kFijE

k ∧ Ej + 1

2
e(α−2β)ϕFij(βe

−βϕ∂kϕE
k ∧ Ej − Γ̂jk ∧ E

k)

(4.60)

from which we can collect terms as

= Ej ∧ E5(α∂iϕ∂jϕe
−2βϕ − βα∂iϕ∂jϕe

−2βϕ + α2∂iϕ∂jϕe
−2βϕ)+

e(α−3β)ϕEk ∧ Ej(α∂iϕFkj +
1

2
(α− 3β)Fi[j)∂k]ϕ− 1

2
∂[kFj]i +

1

2
βFi[j∂k]ϕ

− 1

2
e(α−2β)ϕFijΓ̂

j
k ∧ E

k

(4.61)

similarly, for the second component we find

Γzρ ∧ Γρi = (α∂jϕe
−βϕE5 +

1

2
e(α−2β)ϕFjkE

k) ∧ (Γ̂ji − βe−βϕ(∂jϕEi − ∂ji )−
1

2
eα−2βϕF ji E

5)

= α∂jϕe
−βϕE5 ∧ Γ̂ + Ej ∧ E5(βα∂kϕe

−2βϕ∂kϕηji − βαe−2βϕ∂jϕ∂iϕ− 1

4
e−2(α−2β)ϕFkjF

k
i)

+
1

2
e(α−2β)ϕFjkE

k ∧ Γ̂ji

(4.62)

we can put all these together to finally obtain

Rzi =e
−2βϕ

(
α(α− 2β)∂iϕ∂jϕ+ α∂j∂iϕ+ ηijαβ∂kϕ∂

kϕ− 1

4
e2(α−β)ϕFkjF

k
i

)
Ej ∧ Ez

+ e(α−3β)ϕ

(
1

2
(α− β)∂iϕFkj −

1

2
(α− β)∂[kϕFj]i −

1

2
∂[kFj]i +

1

2
βηi[jFk]l∂

lϕ

)
Ek ∧ Ej

− 1

2
e(α−2β)ϕ

(
FijΓ̂

j
k ∧ Ek + FjkΓ̂

j
i ∧ Ek

)
+ α∂jϕe

−βϕEz ∧ Γ̂ji

(4.63)
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A similarly tedious calculation yields

Rij =r
i
j + Ez ∧ Eke(α−3β)ϕ

(
(α− β)F ij∂kϕ+

1

2
∂kF

i
j −

1

2
(α− β)

(
∂iϕFjk − F ik∂jϕ

)
+
1

2
β
(
∂nϕF

n
j δ

i
k + F il∂

lϕηjk
))

+ Ek ∧ Ele−2βϕ
(
β
(
∂j∂[kϕδ

i
l] − ∂[k∂

iϕηl]j
)

−1

4
e2(α−β)ϕ

(
F ij jFkl + F i[k|Fj|l]

)
+ β2

(
∂iϕ∂[kϕηl]j − ∂pϕ∂

pϕδikkηl]j − ∂jϕ∂[kϕδ
i
l]

))
+ βe−βϕ

(
∂kϕE

i ∧ Γ̂kj − ∂kϕΓ̂ik ∧ Ej
)
− 1

2
βe(α−2β)ϕ

(
F kj Γ̂

i
k ∧ Ez − F ikΓ̂

k
j ∧ Ez

)
(4.64)

where rij is the usual 4D Riemann tensor in tetrad language. One can use these two results to work out the

Ricci scalar;

R = Rαβαβ = R55
55 +R5i

5i +Rij ij +Ri5i5 = 2R5i
5i +Rij ij (4.65)

Firstly, for Ri5i5 we have

R5i
5i = −e2βϕ(α(α− 2β)(∇ϕ)2 + α□ϕ+ dαβ(∇ϕ)2 − 1

4
e(α−β)ϕF 2) + α∂jϕe

−βϕΓ̂iji (4.66)

meanwhile,

Rij ij = re−2βϕ + 2e−2βϕ
[β
2
(1− d)□ϕ− 1

4
e2(α−β)ϕ

F 2

2
+ (∇ϕ)2(d− 1

2
− d(d− 1)

2
− 1− d

2
)
]

+ 2(d− 1)βe−βϕ∂kϕΓ̂
jk
j

(4.67)

which yields

R =e−2βϕr − 2e−2βϕ(∇ϕ)2
(
α2 + (d− 2)αβ +

1

2
(d− 2)(d− 1)β2

)
− 2e−2βϕ□ϕ(α+ β(d− 1))

+
1

4
e(2α−4β)ϕF 2 + 2e−βϕ∂kϕΓ̂

ik
i(α+ β(d− 1)).

(4.68)

we can remove the α parameter by fixing it as α = −(d− 1)β which gets rid of the connection factor in the Ricci

tensor, which can be resummed to

R = e−2βϕr − e−2βϕ(d− 1)(d+ 2)β2(∇ϕ)2 + 1

4
e(2α−4β)ϕF 2 (4.69)

additionally, using g = e2(α+dβ)ϕ det γ we can simplify this expression to

√
−gR =

√
γe−βϕ

(
r(γ) +

1

4
e−β(2d+1)ϕF 2 − (∇ϕ)2(d− 1)(d+ 2)β2

)
(4.70)
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which through a simple field redefinition we may write as

√
−gR =

√
γe−βϕ

(
r(γ) +

1

4
e−β(2d+1)ϕF 2 − (∇ϕ)2

)
(4.71)

Which we can see looks like the Lagrangian density for a 4D GR theory with YM and a scalar field.

Gαβ =
κ2ϕ2

2
TEMαβ − 1

ϕ
[∇α (∂βϕ)− gαβ□ϕ] ,

∇αFαβ = −3
∂αϕ

ϕ
Fαβ , □ϕ =

κ2ϕ3

4
FαβF

αβ ,

(4.72)

where Gαβ is the usual 4D Einstein tensor, TEMαβ ≡ gαβFγδF
γδ/4 − F γαFγβ . Setting ϕ=0 recovers the Einstein

equations coupled to EM, and Maxwell’s equations. However, this suffers from the issue that the fourth equa-

tion can only be satisfied if FαβF
αβ = 0. In spite of this issue, the remarkable takeaway is that one can build

electromagnetism in 4D out of pure geometry in one more dimension when the right metric is used.

4.1.4 Mach’s principle and Brans-Dicke theory

This model arose when considering Mach’s principle; Newtonian mechanics had three basic absolute pillars ; time,

space, and motion [64]. Nonetheless, Mach would criticize this view, ascertaining that “No one is competent to

predicate things about absolute space and absolute motion; they are pure things of thought, pure mental constructs,

that cannot be produced in experience”, holding the view that it is through the synergies between physical objects

that we develop our theories. It is this principle that guided Einstein to the principles of relativity, which would

ultimately demolish two of Newton’s absolute pillars; time and space are no longer absolute. Nonetheless, there

was still one pillar standing: motion. To argue why motion must be absolute, Newton came up with the following

thought experiment: Take a bucket of water and rotate it. Due to the “centrifugal” force, the water gets pushed

against the walls of the bucket and rises on the edges, causing the water surface to become curved. It is easy to

see why the height of the water would go as roughly the inverse of the gravitational force; in an extremely heavy

gravitational field the water would be pushed downwards so vigorously that high revolutions per second would be

needed to exert enough force to resist gravity and rise as high as it would have risen in a weak field. Conversely,

a small gravitational field would have the opposite effect, and taking the limit as we go in the vacuum, where

no gravitational field is present, we would see the height of the water rise to infinity, in other words, it would

all eventually leave the bucket. Careful analysis of this basic problem shows this heuristic view to be correct.

In turn, this implies that one can tell the difference between a bucket that is not in motion, and one that is by

simply looking at the shape of the water. Nonetheless, this falls prey to Mach’s principle, in that this system is

intertwined with earth; you cannot fail to account for the effect that being in Earth’s gravitational field would

have since this is a phenomenon mediated by gravity, and so to solve this, one should decouple gravity from the

problem. A corollary of this problem is that of skaters in a circular rink. As the rink starts spinning, you will
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tangentially slide towards the edge of the rink and hit the wall. On the other hand, for a bird’s-eye point of view,

you would be rotating while the rest of the world would be stationary. You would see the stars rotating as you

spun in circles and feel the “centrifugal force” pushing you against these walls. Alternatively, one might imagine

the whole world rotating together with the stars. This is, physically, quite a different picture, and indeed, we would

expect the observer in the rink to remain stationary. These views are, therefore, not equivalent, and Einstein was

adamant that Mach’s principle, which is that the small scale dynamics are determined by the large scale mass

distribution. This can in fact be seen in GR when considering rotating black holes; the Kerr metric demands that

the ϕ coordinate changes, meaning that we are forced to rotate along the black hole if we do not accelerate in the

opposite dimension. This can be thought of as the black hole twisting the fabric of space and dragging it while

doing so, which results in the name ”frame-dragging”. Newton offered a further example, of two masses linked

together by a piece of rope (or spring, as this is more visual). As the objects started spinning, the rope (spring)

would stretch, meaning that by measuring the distance it has stretched, one would be able to tell whether one finds

oneself in either a rotating frame or not. Mach’s response to this argument is that one would need to first measure

the unstretched length of the rope (spring) in a laboratory, where you know that the spring is in an inertial frame,

as there would be no other way to tell what this length is in an empty vacuum as you could not check whether the

spring was rotating. Thus, to draw any conclusions we would need knowledge from an inertial frame elsewhere,

meaning that one still has to take into account the ”greater picture”. Because of this, this experiment also fails to

be proof of an experiment that shows absolute motion as it requires from an external system. There seems to be

a field communicating information about the matter distribution in the universe, a transmitter of causality, which

to avoid coordinate dependent issues, should also be a scalar field, coupled in some way to gravity. Similarly, in

the 1930s, Dirac pointed out that GM
R ∼ 1 where M and R are the masses of the universe respectively. While this

observation would not immediately bear a great significance, Dicke observed that if written as 1
G

M
R = ρ we could

treat 1
G = □ϕ where ϕ is a scalar field, leading to a theory where the gravitational constant is treated as an extra

field. Brans considered the Lagrangian

S
∫ √

−g (Rϕ+ 16πLmatter + Lϕ (ϕ, ϕ,µ)) d4x (4.73)

on dimensional grounds, we require two derivatives and a factor of ϕ, leading to the trial Lagrangian [13] [55]

SBD =

∫
d4x

√
−g
(
Rϕ+ ω

∂αϕ∂αϕ

ϕ

)
+ Sm (4.74)

setting ω = 0 recovers the action we would get if we wrote the Kaluza-Klein model out in components and let A=0.

This attempt to specify one of the fundamental constants of nature, however, introduces yet another constant that

one must experimentally measure ω and cannot be predicted theoretically, meaning that the efforts of introducing ϕ

to remove a constant simply introduce another one. Nonetheless, what this theory does allow us to do is to explain

57



the gravitational constant as the value of a field in a position and at a time. Varying the equation of motion with

respect to ϕ yields

□ϕ− ∂µϕ∂
µϕ

2ϕ
+

ϕ

2ω
R = 0 (4.75)

while doing so with respect to the metric yields

Rµν −
1

2
gµνR− ω

ϕ2
(∂µϕ∂νϕ− 1

2
gµνϕ∂

α∂αϕ)−
1

ϕ
(ϕ,µ;ν − gµν□ϕ) =

8π

ϕ
T ′
µν (4.76)

where T’ is the usual stress energy tensor but now containing no matter. This equation can be rearranged as

Rµν −
1

2
gµνR =

8π

ϕ
Tµν +

ω

ϕ2
(ϕ,µϕ,ν −

1

2
gµνϕ,αϕ

,α) +
1

ϕ
(ϕ,µ;ν − gµν□ϕ). (19)

While all we have done has been to change which side of the equation the scalar terms appeared, conceptually

there is a great difference between the two equations. We know how GR beautifully discerns between geometry

and matter, and relates them on both sides of Einstein’s equation. Here, we have the dilemma of whether the

scalar field ϕ should be seen as matter or as geometry, which henceforth changes some assumptions made, such as

restricting the sign of the energy term of the field to be positive. Taking the trace of this equation yields

−R =
8π

ϕ
Tµν −

ω

ϕ2
(ϕ,µϕ

,µ)− 3

ϕ
□ϕ (4.77)

plugging back yields

□ϕ =
8π

2ω + 3
T (4.78)

which now resembles the 1
G = ρ = □ϕ equation. Conformal rescaling While the Lagrangian arising from dividing

5D in 4+1D resembles the gravitational potential, the ϕ field either implies that we do not get a minimal coupling

to gravity, or that the ϕ field is not dynamical; many authors set it to one canonically, so it is constant through

spacetime, and we can achieve minimal coupling. Nonetheless, we can mend this issue by introducing a Weyl or

conformal rescaling

gµν → g′µν = Ω2gµν , (4.79)

using ω2 = ϕ−1/3 we have for the Brans-Dicke action with A=0. This gives a Lagrangian

S′ =

∫
d4x
√
−g′

(
R′

16πG
+

1

6κ2
∂′αϕ∂′αϕ

ϕ2

)
(4.80)

and transforming to the dilaton field σ ≡ ln(ϕ)√
3κ

we might rewrite it as

S′ =

∫
d4x
√
−g′

(
R′

16πG
+

1

2
∂′ασ∂′ασ

)
. (4.81)
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The original unrescaled metric is referred to as the Jordan metric, while the one after the conformal transformation

is dubbed the Pauli metric, as he was the first to question whether we should consider the original or the rescaled

metric as the ”real” metric. It has also been suggested [65] [55] that normal matter could couple to the Jordan

metric, while dark matter couples to the rescaled metric. As we can see, different variations of KK theories bring

about exciting and thought-provoking frameworks for new physics to be explored, at least theoretically.

4.1.5 Compactification of the extra dimension

The assumption that no physics depends on the fifth dimension as put forward by Kaluza is a rather peculiar and

puzzling one. What is the point of this extra fifth dimension, if for all practical purposes it is as though it did not

exist? Klein came up with an explanation for this under two assumptions,

1. The extra dimension had a circular topology.

2. The scale of this manifold was to be small (e.g. a circle with a small radius).

Property 1 implies that we can expand quantities in the fifth dimension using Fourier modes as they will be periodic;

f(x, y) = f(x, y + 2πr) where r is the radius of this extra dimension

gαβ(x, y) =

n=∞∑
n=−∞

g
(n)
αβ (x)e

iny/r , Aα(x, y) =

n=∞∑
n=−∞

A(n)
α (x)einy/r,

ϕ(x, y) =

n=∞∑
n=−∞

ϕ(n)einy/r,

(4.82)

one can quantise the momentum in the y direction on the order of |n| r (akin to the angular momentum quantisation

of the hydrogen atom). If the radius of this dimension is small enough, it will be impossible to excite any mode

other than n=0 as the energy will be too large, and this mode is independent of the y coordinate, meaning we

would recover the desired y coordinate independence for the low energy effective theory. The empirical evidence

constraints this radius to be of a very small scale, smaller than 10−18 [66] [55] although it is often assumed to be

of Planck scale. This mechanism, however, gives rise to a natural way of charge quantisation, and actually gives

a “close” estimate of the fine structure constant, something that Dirac often emphasised was imperative of any

GUT. One can imagine a matter field in five dimensions, minimally coupled to the metric as

Sψ̂ = −
∫

d4xdy
√

−ĝ∂Aψ̂∂Aψ̂ (4.83)

and then one could expand the field ψ̂ in Fourier modes as

ψ̂(x, y) =

n=∞∑
n=−∞

ψ̂(n)einy/r (4.84)
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one can invert the metric to obtain

ĝαβ = ϕ1/3

 gαβ −κAβ

−κAα ϕ−1 + κ2A2

 (4.85)

plugging this into 4.83 we obtain

Sψ̂ = −
(∫

dy

)∑
n

∫
d4x

√
−g
[(

∂α +
inκAα

r

)
ψ̂(n)

(
∂α +

inκAα
r

)
ψ̂(n) − n2

ϕr2
ψ̂(n)2

]
(4.86)

which we see looks like a charged particle in electrodynamics, together with a mass term, which we can read off as

qn =
nκ

r

(
ϕ

∫
dy

)−1/2

=
n
√
16πG

r
√
ϕ

(4.87)

where we have used κ = 4
√
πG and G = Ĝ∫

dy
Additionally, the mass can be read off from the Lagrangian as |n|√

ϕr
.

If we take
√
ϕr ∼ lp where lp is the Plank mass. The problem with this theory is that it predicts that for the

electron (n=1) we will have a mass of ∼ 1019GeV while the actual value is 0.5MeV [55]. This can be solved by

setting n=0 so the Kaluza mechanism give electrons zero mass, and the small mass observed is explained by the

Higgs mechanism and charge can be given by extending the gauge group in higher dimensions so that the massless

representations are no longer singlets of the gauge group [55]. This can be seen directly more easily by looking at

the KG equation [63]; [
□D+1 −m2

]
ϕ =

[
□D +

(
∂

∂y

)2

−m2

]
ϕ = 0 (4.88)

as we have just seen, we can expand the solutions in Fourier modes, resulting in infinite towers of states with

different masses corresponding to the nth Fourier mode. This means we can rewrite 4.88 as

[
□D +

(n
r

)2
−m2

]
ϕ = 0 (4.89)

4.1.6 Dimensional reduction in spinors

We want to extend the results we just found to more fields. For this, we consider the option of a Spinor field as

vector fields are straightforward to derive. We know our field should follow the Dirac equation for a Spin- 12 field;

[/∂D −m]Ψ = 0 (4.90)

Additionally, we can redefine our field as Ψ̃ = e−βγ∗Ψ where γ∗ acts as the equivalent of γ5 in 4D but in D

dimensions. First we note that since Γ2
∗ = I we can expand eβγ∗ = Icosβ+iγ∗sinβ and noting that γ∗ anticommutes

with all other matrices we find this is equivalent to

[/∂D(Icosβ − iγ∗sinβ)−m(Icosβ + iγ∗sinβ)]Ψ = 0 (4.91)
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and extracting a factor of e−βγ∗Ψ we are left with

[
/∂D −m (I cos 2β + iγ∗ sin 2β)

]
Ψ̃ = 0 (4.92)

we see that by simply choosing β = π
2 we can change the sign of the mass term without affecting the equations

of motion! [67] This will also be important when realising that the fermionic field doesn’t have to be 2π periodic

as we can have Ψ → −Ψ but the observables will always come as bilinear quantities [67] such as T 00 = −Ψ̄γ0∂0Ψ

which is 2π periodic. That means that our Fourier expansion will change slightly to

Ψ (xµ, y) =
∑
k

eiky/LΨk (x
µ) (4.93)

where k are now half-integers. Plugging this back into the original Dirac equation, we find

[
/∂D −

(
m− iγ∗

k

L

)]
Ψk (x

µ) = 0 (4.94)

We thus see that we simply have an extra mass term for the Dirac spinor, with a γ∗ contribution. Through this

section, we have seen how the power of KK theories; one can almost miraculously obtain a theory with matter

and geometry in 4D starting from a theory with only geometry in 5D. The power of KK theories doesn’t stop

there, expanding the extra dimension in modes means that one can make a prediction, albeit not an accurate one,

of the fine structure constant from a theoretical standpoint. Dirac would famously ask anyone brave enough to

claim they have a theory of everything whether their theory could predict the value of the fine structure constant

theoretically, going as far as calling this “the most fundamental unsolved problem of physics”. One can’t help but

wonder what his reaction would be if he knew this still stands as one of the mysteries in physics, with new, perhaps

even shocking mysteries such as the eery fine-tuning of the cosmological constant. In addition to this, KK theories

also build infinite towers (or truncated, depending on the energy threshold) of massive states for different particles,

and obtains this mass with a process other than the Higgs mechanism, though, as we will shortly see this could

perhaps be seen as the discretisation, and thus symmetry breaking of a fifth dimension. However, KK theories

make several wrong predictions such as the mass of electrons, and so, as they stand, need to be modified, or further

explored to be able to accurately describe the world we live in.
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Figure 7: In the DGP set-up a brane containing matter partitions the continuous fifth dimension into two equal
halves.

5 Dvali–Gabadadze–Porrati (DGP) model

A section on extensions of gravity would not be complete without a short review of DGP models [68] [69], which

are a beautiful construction of gravity in 4+1D where matter is localised in a 3+1D brane. Their initial aim was

to find an explanation for cosmic acceleration without introducing dark energy. As we will see, this model has very

particular properties, including a Källén–Lehmann spectral representation for the mass of the graviton. The idea

behind the model is that the curvature induced by the matter in the 3+1D brane would make gravity appear 4D

at short distances, but on cosmic scales we would see gravity leak through this extra dimension, diminishing its

strength and therefore making it seem as though there was an accelerating force. We will follow the cited papers

and [7] through this section.

The set-up for this model, as previously anticipated, consists of a 3+1D (4D here onwards) brane embedded

in 5D. the location in the 5th dimension can be set at y=0, with a symmetry between the regions in the extra

dimension where y > 0 and y < 0. This extra dimension, contrary to the case in KK theories, is non-compact and

extends infinitely. The Lagrangian for this model is

S =

∫
d4x dy

(
M3

5

4

√
−(5)g(5)R+ δ(y)

[√
−gM

2
Pl

2
R[g] + Lm (g, ψi)

])
(5.1)

whereM5 is the 5 dimensional Plank scale and ψi are the matter fields living in our 4D brane. We see the equations

of motion are

M3
5
(5)GAB = 2δ(y)(5)TAB (5.2)

with

(5)TAB =
(
−M2

PlGµν + Tµν
)
δµAδ

ν
B (5.3)
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so we see there is no matter for y ̸= 0 and regular GR in the 4D brane. The metric takes the same form as the

linearised metric and the de Donder gauge in 5D is also imposed ;

∂Ah
A
B =

1

2
∂Bh

A
A (5.4)

In analogy to the 4D case 2.34 (and since these equations were derived without reference to dimensions) we have

(5)GAB = −1

2
□5

(
hAB − 1

2
hCCηAB

)
(5.5)

with □5 = □ + ∂2y . Additionally, as we have no source along the y direction, this imposes (5)Tµy = (5)Tyy = 0

Taking the µy component of the equations we have that □5(hµy) = 0 as ηµy = 0. This means that hmuy satisfies

the wave equation in 5D, and we can set it to zero up to a homogeneous solution. Similarly, for the yy component

we find that □5(hyy − 1
2 (h + hyy)) = 0 so □5(hyy − h) = 0 where h is the trace of over the 4D spin-2 field hµν .

This in turn implies that hyy − h = 0 up to a homogeneous solution.

In 5D de Donder gauge, choosing B = µ we have ∂yh
y
µ + ∂νh

ν
µ = 1

2∂µ(h + hyy) =⇒ ∂νh
ν
µ = ∂µh due to

the relations just derived. From this we can immediately see that □h = hµν,µν . Thus, the Einstein tensor in 4D

becomes

Gµν =
1

2
(2hα(µ,ν)α −□hµν − h,µν − ηµν(h

αβ
,αβ −□h)) =

1

2
(2h,µν −□hµν − h,µν) =

1

2
(h,µν −□hµν) (5.6)

and so now it is easy to see that the µν components of5.2 become

1

2
M3

5

[
□+ ∂2y

]
(hµν − hηµν) = −δ(y)

(
2Tµν +M2

Pl (□hµν − ∂µ∂νh)
)

(5.7)

which admits a solution

hµν(x, y) = e−|y|
√
−□hµν(x) (5.8)

as we require this solution to tend to zero as y → ∞. It is clear this is a solution, as when y ̸= 0 the left-hand side

vanishes as
[
□+ ∂2y

]
→ [□−□] = 0 and the right-hand side vanishes due to the delta function. When y = 0, the

left-hand side vanishes all the same, but the right-hand side satisfies Einstein’s equations on shell, so it’s equal to

zero. Integrating over y from y = −ϵ to y = ϵ sets y=0 on the right hand side and we must use Israel [70] [7] [71]

matching conditions on the right-hand side which lead to ∂y(hµν − hηµν)
∣∣∣ϵ
−ϵ

→ −2
√
□(hµν − hηµν) meaning that

we can rewrite 5.7 as 11

M2
Pl

[
(□hµν − ∂µ∂νh)−m0

√
−□ (hµν − hηµν)

]
= −2Tµν (5.9)

11For a brane embedded in a higher dimensional space such as in DGP models, the Israel matching conditions reduce to the derivative
in the extra dimension along the boundary being equal to the extrinsic curvature of the brane
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where we define m0 =M3
5 /M

2
Pl. Additionally, the FP massive gravity emerges in the form of (hµν−hηµν). Tracing

over 5.9 we find

M2
pl[□h−□h−m0

√
−□(h− 4h)] = −2T =⇒ h =

−2T

3M2
Plm0

√
−□

(5.10)

and so we can rewrite 5.9 as

M2
pl[□−m0

√
−□]hµν = −2Tµν −

2

3m0

√
−□

T,µν +
2

3
Tηµν (5.11)

so we can finally write our field as

hµν = − 2

M2
Pl

1

□−m0

√
−□

(
Tµν −

1

3
Tηµν +

1

3m
√
−□

T,µν

)
(5.12)

which we recognise as the same relation as that for the FP theory, but with m2 = m0

√
−□. However, we see that

now our mass is not determined but takes a range of different values as it involves the D’Alambertian operator.

This gives rise to a Källén–Lehmann spectral representation instead of the definite single mass for the graviton

that we had before for FP models.
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6 Dimensional deconstruction in dRGT

We have seen that gravity models can be written in terms of tetrads in a natural and elegant way that allow us to

see the properties that different theories might have in an intuitive sense. We have also seen that we can construct

higher dimensional theories with just geometry that give rise to theories in lower dimensions with both matter and

geometry. This begs the question, can we relate these two concepts in any way? As it turns out, dRGT gravity

emerges naturally when discretising the fifth dimension. In what follows, we will deviate from what was considered

in KK style theories, and treat the fifth dimension as a flat extra dimension (not wrapped).This technique was

pioneered by Arkani-Hamed et al. in the early 2000s [14] [72] where Moose diagrams (nowadays quivers) were

used to show how a four dimensional theory can dynamically generate theories that look five dimensional at bigger

scales. Later, it was also shown by in [14] how dimensional deconstruction could be used in the context of gravity

to recover FP-like mass terms [14], and additionally, how adding some interactions could raise the cut-off scale to

Λ3, as we saw in previous sections. We will follow the prescription given in [15] and [73].

6.1 Curvature tensor

To begin we consider the extrinsic curvature, typically given by Kµν = 1
2nρg

ρσ∂σgµν which in the present case

reduces to Kµν = 1
2∂ygµν . We now replace the new dimension by two sites at y1 and y2 such that gµν(y1) = gµν

and gµν(y2) = fµν . If f is dynamical, the result will be bigravity [15] [48].Introducing this reference metric endows

the theory with an extra 6 degrees of freedom coming from the Lorentz invariance that f enjoys, meaning we can

use these to gauge fix certain quantities as we shall see, in particular we will fix Ωaby = 0 By approximating the

derivative as Kµν = m(fµν − gµν) we introduce the well known BD ghost. What we can instead do is to discretise

the tetrads as opposed to the metric in the following way;

Kµν =
1

2
∂ygµν =

1

2

(
eaµ
(
∂ye

b
ν

)
ηab +

(
∂ye

a
µ

)
ebνηab

)
(6.1)

discretising the tetrads as ∂ye
a
µ → m(e2,aµ − e1,aµ ) the curvature transforms to

Kµν → Kµν =
m

2

(
e1,aµ

(
e2,bν − e1,bν

)
ηab + e1,aν

(
e2,bµ − e1,bµ

)
ηab
)

= −m
(
gµν −

1

2

(
e1,aµ e2,bν + e1,aν e2,bµ

)
ηab

)
.

(6.2)

Using the usual definition of the metric in terms of tetrads and remembering that at the first site the metric is g.

Additionally, working in a torsion free environment in the y direction, we have TA = deA + ΓAB ∧ eB = 0. As

previously anticipated, we can use the remaining Lorentz symmetry to fix the spin connection Γaby = eaµ∂ye
b
µ −

ebµ∂ye
a
µ = 0 [15]. Focusing on one site and discretising the tetrads we see, Γaby = 1

2 (e
1,aµ(e2,bµ − e1,bµ )− e1,bµ(e2,aµ −

e1,aµ )) = 0 this in turn implies e1,aµe2,bµ = e1,bµe2,aµ. Additionally, the torsion free condition implies the Deser-van
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Nieuvenhuizen condition e1,aµ e2,bν ηab = e1,aν e2,bµ ηab [15] [74]. With this we then have Kµν = −m(gµν − e1,aµ e2,bν ηab) so

we can write Kµν = −m(δµν − e1,µa e2,aν ) we also notice that gµαfαν = e1µae
1,α

bη
abηcde

2,c
αe

2,d
ν = e1µbe1αb e2αce

2,d
ν

from this we can compute

K2µ
ν = m2(δµν − 2e1,µa e2,aν + gµαfαν) (6.3)

which means that Kµν = −m(δµν −
√
g−1fµν), which surprisingly corresponds to the K of dRGT.

6.2 Generating dRGT gravities from 5D gravity

Since the discretisation procedure transforms the extrinsic curvature into the dRGT tensor K, it is straightforward

to build new theories of gravity:

S5d
ADM =

M3
5

2
y d4x

√
−g
(
(4)R[g] + [K]2 −

[
K2
])

(6.4)

now discretising the vielbeins yields as previously seen,

yL(x, y) −→ m−1L (x, y1)

Kµ
ν −→ mKµν (g, f)

(6.5)

so

S4d =
M2

P

2

∫
d4x

√
−g
(
(4)R[g] +m2

(
[K]2 −

[
K2
]))

(6.6)

and by replacing the equivalent terms to those in the dRGT potential one can translate the 5D theory into a 4D

one.

6.3 GB term interactions

We can now start looking at the interplay between intrinsic curvature given by the Riemann tensors, and extrinsic

curvature, given by the dRGT tensors K by looking at the different combinations of these terms. First we have a

look at the Gauss-Bonnet term introduced earlier, allowing the indices to run from 0 to 4 as usual in 5D theories.
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SGB =
M3

5

m2

5

x
√
−g
(
(5)R2

ABCD − 4(5)R2
AB + (5)R2

)
=
M3

5

4m2

5

x
√
−gEµναβEµ

′ν′α′β′
[
Rµνµ′ν′Rαβα′β′ − 1

12
Kµµ′Kνν′Kαα′Kββ′

+Kµµ′Kνν′Rαβα′β′ ]

(6.7)

The first term is the 4D GB term, while the others are new interactions. In fact, one rewrite this using the dual

of the Riemann tensor

⋆Rµνµ
′ν′

= EµναβEµ
′ν′α′β′

Rαβα′β′ (6.8)

and further adding the shift Kµν → gµν +Kµν we can obtain yet another interaction term

S4d
KG = −M

2
Pl

4

∫
d4x

√
−ggµνKαβ⋆Rµανβ (6.9)

which we can explicitly compute as

S4d
KG = −M

2
Pl

4

∫
d4x

√
−g
[
δαβ [δµ

′ν′
δα

′β′
− δµ

′β′
δν

′α′
]

− δαν
′
[δµ

′βδα
′β′

− δµ
′β′
δβ

′α′
]

+ δαβ
′
[δµ

′βδα
′ν − δµ

′ν′
δβα

′
]
]
KαβRµ′α′ν′β′

= −M
2
Pl

4

∫
d4x

√
−g
[
K[Rµ

′α′

µ′α′ −Rµ
′α′

α′µ′ ]

−Kµ
′ν′
Rµ′

ν′

ν′α′ +Kα
′ν′
Rβ

′

α′ν′β′ +Kµ
′β′
Rµ′

ν′

ν′β′ −Kβ
′α′
Rν

′

αν′β′

]
= −M

2
Pl

4

∫
d4x

√
−g
[
− 4Kµν [Rµν −µν

R

2
]
]

= −M
2
Pl

4

∫
d4x

√
−g
[
− 4KµνGµν

]

(6.10)

one can analyse this kind of theory in minisuperspace 12 as

g00 = −N2(t), g0i = 0, gij = a2(t)δij (6.11)

Then in this metric we have g = −N2a6 =⇒
√
−g = Na3 and since g−1 = Diag(− 1

N2 ,
1
a2 ,

1
a2 ,

1
a2 ) we have√

g−1f = Diag( 1
N ,

1
a ,

1
a ,

1
a ) from this we can easily work out

Kµν = Diag(
1

N3
+N,− 1

a3
+ a,− 1

a3
+ a,− 1

a3
+ a) (6.12)

12Minisuperspace is an approximation used in theories with infinite dimensional phase spaces to cut off all modes larger than the size
of the observable universe.
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while the Ricci tensor is, defining κ =
aa′N ′+N(−5a′2+2aa′′)

4a3

Rµν = Diag
(3 (aa′N ′ +N

(
−3a′2 + 2aa′′

))
4a2N

,κ, κ, κ
)

(6.13)

from this, one can calculate the Einstein tensor and work out that

KµνGµνNa3 =
3aa′2

N2
+

3a′2

N
− 6aa′2

N
− 6aa′N ′

N2
+

6a2a′N ′

N2
+

6aa′′

N
− 6a2a′′

N
(6.14)

remembering this is inside of an integral, meaning we can integrate by parts, and doing so in the last term yields

KµνGµνNa3 =
3aa′2

N2
+

3a′2

N
+

6aa′2

N
− 6aa′N ′

N2
+

6aa′′

N
(6.15)

and integrating by parts again yields

KµνGµνNa3 =
3aa′2

N2
− 3a′2

N
+

6aa′2

N
(6.16)

yielding

S4d
KG = −M

2
Pl

4

∫
d4x
(3aa′2
N2

− 3a′2

N
+

6aa′2

N

)
(6.17)

in agreement with [73]. This is an issue as the Lapse appears non-lineary, and one of the conditions for the theory

to propagate 5 degrees of freedom is that the Hessian’s ( Lµν = δH
δNµδNν ) determinant vanishes [73], which requires

the Lagrangian to depend on the variables linearly, which this theory fails to display. A similar calculation for the

KK term yields [73]

SKK⋆R = 24

∫
dt d3xa3N

(
ȧ2

a2N2
− ȧ2

a3N2
+

ȧ2

a2N3
− ȧ2

a3N3

)
(6.18)

which suffers from the same pathology. In [73] it was shown that no other kinetic terms are possible for massive

gravity, further reinforcing dRGT as an extremely special theory. As we will see, the mathematical curiosities don’t

end up here, as we will find dRGT models also appeart when discretising extra dimensions.

6.4 dRGT dimensional deconstruction in tetrad language

This section is inspired by [15], which was inspired by [68]. Here, the authors consider discretising an extra

dimension into two, or generally N sites. By discretising the tetrads instead of the metric, they recover ghost-free

massive gravity. We remind ourselves of the conditions under which we are carrying this calculation;

Ea = ea +Na dy, E5 = Ndy (6.19)
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Figure 8: Set up for our theory, one could generalise this to N sites in the lattice. Note that the 4D space is
represented as a brane here instead of as a line as for KK, but both represent 4D space.

we can use our Diffeomorphism gauge symmetry to set Na = 0 and N = 1, fixing 5 degrees of freedom in

total. Additionally, we use 4 Local Lorentz transformations to set E5
µ = 0 and a further 6 to set Ωaby = 0,

bringing the total to 5 Diffeomorphisms and 10 local Lorentz transforms. In this gauge, Ωab = Γab, Ω5a = Ka,

Ka = 1
2

(
eνb∂ye

a
ν + eνa∂ye

b
ν

)
eµb dx

µ satisfying Ka
µ = eaνKµν with Kµν defined as before.

With this we can now write

RAB = dΩAB +ΩAC ∧ ΩC
B (6.20)

and so

Rab = ¯dΓab + ∂yΓ
ab
cdy ∧ ec + Γac ∧ Γc

b +Ωa5 ∧ Ω5
b = Rab − ∂yΓ

ab ∧ dy −Ka ∧Kb (6.21)

similarly for R5a;

R5a = d̄Ka − ∂yK
a ∧ dy + Γ5C ∧ ΓC

a = d̄Ka − ∂yK
a ∧ dy +Kb ∧ Γba (6.22)

Finally, we have the discretisation procedure as per [15]

∂ye
a
µ → m

(
e2,aµ − e1,aµ

)
on site 1

→ m
(
e1,aµ − e2,aµ

)
on site 2∫

fµ(x, y)dx
µ ∧ dy → 1

m

2∑
j=1

∫
fj,µ(x)dx

µ

(6.23)

for a theory with two sites, although this procedure can easily be generalised to N different sites [15]. We start by

writing the EH action in 5D:

S
(5)
EH =

M3
5

12

∫
εABCDERAB ∧ EC ∧ ED ∧ EE (6.24)
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since we are antisymmetrising five indices, y must appear in one of them. For one of them to appear in R we have

two options, and forces the other four indices to take values in the 4D spacetime, so the contribution to the total

Lagrangian from this is

C1 =
M3

5

6

∫
ε5abcd(R5a ∧ Eb ∧ Ec ∧ Ed) = M3

5

6

∫
ε5abcd((d̄K

a − ∂yK
a ∧ dy +Kb ∧ Γba) ∧ eb ∧ ec ∧ ed) (6.25)

acknowledging that only the dy terms in R5a contribute, and bearing in mind the order of the tetrads with respect

to the epsilon tensor we find

C1 = −M
3
5

6

∫
εabcd((−∂yKa ∧ dy) ∧ eb ∧ ec ∧ ed) = M3

5

2

∫
εabcd(K

a ∧ ∂yeb ∧ ec ∧ ed ∧ dy) (6.26)

now turning our attention to the term where dy appear as one of the vierbeins, we find

C2 =
M3

5

4

∫
εabcd(R

ab ∧ dy ∧ ec ∧ ed) = M3
5

4

∫
εabcd((R

ab − ∂yΓ
ab ∧ dy −Ka ∧Kb) ∧ dy ∧ ec ∧ ed)

=
M3

5

4

∫
εabcd((R

ab −Ka ∧Kb) ∧ dy ∧ ec ∧ ed)
(6.27)

so the total Lagrangian is

S
(5)
EH =

M3
5

4

∫
εabcd((R

ab −Ka ∧Kb) ∧ ec ∧ ed + 2Ka ∧ ∂yeb ∧ ec ∧ ed) ∧ dy (6.28)

proceeding with our usual discretisation we see that

Ka =
m

2
[e1,bν(e2,aν − e1,aν) + e1,aν((e2,bν − e1,bν))]e

1
µbdx

µ (6.29)

which we can simplify to Ka = m(e2,a − e1,a) and so we can write the Lagrangian as

S
(5)
EH =

M3
5

4

∫
εabcd((R

1,ab + (e2,a − e1,a) ∧ (e2,b − e1,b)) ∧ e1,c ∧ e1,d ∧+1 ↔ 2 (6.30)

which is a specific example of ghost-free massive bi-gravity [15] [53]. In [15] it is explained how this approach

is equivalent to dimensional deconstruction in KK theories, with a more sophisticated approach to defining the

derivative.

6.4.1 Adding matter

One can add matter through a KG Lagrangian in curved spacetime. The action for this in differential geometry

form is simply

Smatter = −1

2

∫
dϕ ∧ ⋆dϕ (6.31)
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for which the variation is simply

δSmatter = −
∫
dδϕ ∧ ⋆dϕ =

∫
δϕ ∧ ⋆d†dϕ = 0 (6.32)

or simply d†dϕ = 0 which in components yields

− 1√
−g

∂µ(
√
−g∂µϕ) = 0. (6.33)

We can write it in a coordinate basis in 4D as this will be good practice for what’s to follow;

Smatter = −1

2

1

3!

∫
∂µϕ∂νϕε

ν
µ1µ2µ3

eµ ∧ eµ1 ∧ eµ2 ∧ eµ4 =
1

12

∫
d4x

√
−g∂µϕ∂νϕενµ1µ2µ3

εµµ1µ2µ3

=
3!

12

∫
d4x

√
−g∂µϕ∂νϕδµν =

1

2

∫
d4x

√
−g∂µϕ∂µϕ

(6.34)

Now we perform the equivalent calculation in 5 dimensions;

4! dϕ⋆dϕ = ∂Aϕ∂
BϕεBCDEFE

A ∧ EC ∧ ED ∧ EE ∧ EF∧ (6.35)

we can first sum over spacetime indices and the discretised dimension y for b;

4! dϕ⋆dϕ = ∂Aϕ∂
bϕεbCDEFE

A ∧ EC ∧ ED ∧ EE ∧ EF ∧+∂Aϕ∂
yϕεyCDEFE

A ∧ EC ∧ ED ∧ EE ∧ EF (6.36)

and doing the same over A

4! dϕ⋆dϕ = ∂aϕ∂
bϕεbCDEFE

a ∧ EC ∧ ED ∧ EE ∧ EF + ∂yϕ∂
bϕεbCDEFdy ∧ EC ∧ ED ∧ EE ∧ EF

+ ∂aϕ∂
yϕεyCDEFE

a ∧ EC ∧ ED ∧ EE ∧ EF + EF ∧+∂yϕ∂
yϕεyCDEFE

y ∧ EC ∧ ED ∧ EE ∧ EF
(6.37)

the antisymmetry of the wedge products and of the epsilon tensor makes the second and third terms drop out, so

the whole action is

Smatter = −1

2

1

4!

∫
[∂aϕ∂

bϕεbCDEFE
a ∧ EC ∧ ED ∧ EE ∧ EF + ∂yϕ∂

yϕεycdefE
y ∧ Ec ∧ Ed ∧ Ee ∧ Ef ] (6.38)

we must choose one and only one index in the Levi-Civita tensor to be equal to the fifth coordinate for a non-zero

contribution. Since the first term is symmetric, we can choose any of them and get the same result, and as there

are four to choose from we must add a factor of four to this calculation;

Smatter = −1

2

1

4!

∫
[∂aϕ∂

bϕεbycdee
a ∧ dy ∧ ec ∧ ed ∧ ee + ∂yϕ∂

yϕεycdefdy ∧ ec ∧ ed ∧ ee ∧ ef ]13 (6.39)

13We ascertain that the remaining tetrads to be summed over must be from the regular 4D spacetime so we can change E → e
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and we can relabel the dummy indices to have it in a more appealing form

Smatter = −1

2

1

4!

∫
εabcd[4∂eϕ∂

aϕee ∧+∂yϕ∂
yϕea] ∧ eb ∧ ec ∧ ed ∧ dy (6.40)

In components, and discretising the vierbeins, we can tackle the first term first;

εabcd4∂eϕ∂
aϕee ∧ eb ∧ ec ∧ ed ∧ dy = −4 ∗ 3!

√
−g∂eϕ1∂aϕ1δead4x+ 1 ↔ 2 (6.41)

where the 1 superscripts denote the field in one of the two y locations. For the second field, we find under

∂yf(y) → m(f(y2)− f(y1))

εabcd∂yϕ∂
yϕea ∧ eb ∧ ec ∧ ed ∧ dy = −4!

√
−gm2(ϕ2 − ϕ1)

2d4x+ 1 ↔ 2 (6.42)

This is an interesting result because the discretisation of the field in 5D gives us a mass dynamically, the same as

the one we get for the massive graviton. One can diagonalise the mass matrix

M = m2

 1 −1

−1 1

 (6.43)

to find that we have two orthogonal propagating modes ϕ1+ϕ2√
2

with mass
√
2m and ϕ1−ϕ2√

2
which is massless. One

can easily add a mass in 5D with a term like M2ϕ∧⋆ϕ which would generate scalars with masses M and M +
√
2m

in 4D.

6.4.2 Spin- 12

The book Supergravity by Freedman and Van Proeyen [67] was the main resource used for this section and provides

a good introduction to spinors in curved spacetime. To add Fermionic matter, we need to first introduce the Dirac

equation in curved spacetime. The usual Dirac Lagrangian in Minkowski spacetime is

L = Ψ̄(i/∂ −m)Ψ (6.44)

with /∂ = γµ∂µ. This equation can also be gauged by replacing the derivative into a covariant derivative, where we

add iqAµ to the normal partial derivative. These indices are really Lorentz indices and to transform this equation

into curved spacetime, we need real spacetime indices. To translate one into the others, as aforementioned, we

require from tetrads. Additionally, we need to include the spin connection one-form. This will need some explaining.

One can regard the spin connection one-form as the gauge field generated by local Lorentz transformations.

This comes a long way to explaining why an addition to the normal partial derivative is needed in the same way as
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we do with any other gauge field. On vector fields, the Christoffel symbols are the representation of this, but when

dealing with quantities with spinor indices such as Dirac spinors, we need to introduce the spin connection. This

is nothing other than what we found before when dealing with tetrads, as these too have a Lorentz index and so it

was needed to write the structure equations. We derive some other useful results here that allows us to understand

them better, together with their transformation laws. Firstly, we remind ourselves of the definition of a covariant

derivative acting on a tetrad;

Dea = dea + Γabe
b = T a (6.45)

if we require the covariant derivative to transform like a Lorentz vector then Dea → Λ−1a
bDe

b, then one can readily

see that the connection Γ must transform as

Γ′a
b = Λ−1a

c dΛ
c
b + Λ−1a

cΓ
c
dΛ

d
d (6.46)

which has the usual A → MAM−1 + (∂M)M−1 structure of the transformation of a gauge field. In components,

we have

Γ′a
µ = Λ−1a

c∂µΛ
c
b + Λ−1a

cΓµ
c
dΛ

d
b (6.47)

and so we see that it also transforms as a one form (as the name spoiled) under coordinate transformations

(spacetime indices). We now see that for Lorentz vectors such as V a with transformation V a → V ′a = Λ−1a
bV

b,

the covariant derivative

DµV
a = ∂µV

a + Γµ
a
bV

b (6.48)

transforms as a Lorentz vector (this is the exact same calculation as we did to show that Deb has the right

transformation properties, but in components!). Similarly, since both Γ, ∂ transform as vectors under coordinate

transforms, so do the covariant derivatives. This can easily be extended to Lorentz covectors and tensors in general.

Additionally, we have

∇µV
ρ = eρaDµV

a = eρaDµe
a
νV

ν = ∂µV
ρ + eρa

(
∂µe

a
ν + Γµ

a
be
b
ν

)
V ν (6.49)

but also we have, as usual,

∇µV
ρ = ∂µV

ρ + ΓρµαV
α (6.50)

from which we can see that

Γρµν = eρa
(
∂µe

a
ν + Γaµbe

b
ν

)
(6.51)

which gives us a dictionary between the two connections via tetrads. In curved spacetime, one needs to transform

the indices in gamma matrices into spacetime indices. For this, we use tetrads to change these indices; γµ = γaeµa.
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It is important to remember that Gamma matrices also carry suppressed Spinor indices in their rows and columns.

The transformation of a Dirac bispinor under infinitesimal local Lorentz transformations can be derived from the

canonical example ΨαΨ̄β where δΨα = − 1
4λabγ

abΨα ,

δΨ̄β =
1

4
λabΨ̄βγ

ab

. We then see (suppressing indices again)

δ(ΨΨ̄) = −1

4
λabγ

abΨΨ̄ +
1

4
λabΨΨ̄γab = −1

4
λab[γ

ab,ΨΨ̄] (6.52)

Thus, and bearing in mind gamma matrices have also a spacetime index, we find that the covariant derivative for

a Gamma matrix in curved spacetime is

∇µγν = ∂µγν +
1

4
Γabµ [γab, γν ]− Γρµνγρ (6.53)

we can use the standard results

1

2
[γα, γβ ] = γαγβ − ηαβ (6.54)

and

1

4
[[γµ, γν ], γρ] = γµηνρ − γνηρµ14 (6.55)

which we can use to rewrite

∇µγν = γa[∂µe
a
ν − Γρµνeaρ] +

1

2
Γµ

abecν(γaηbc − γbηac)

= γa
(
∂µeaν + Γµabe

b
ν − Γρµνeaρ

)
= 0

(6.56)

15 Meaning that multiplication by gamma matrices commutes with the covariant derivative, which is an extremely

useful result when manipulating quantities. We now introduce Dirac’s Lagrangian in curved spacetime;

LDirac =
∫

d4x
√
−giΨ̄γµ∇µΨ (6.57)

which for our interests can be promoted to five dimensions through the use of a new Gamma matrix γ4 = −iγ5 =

γ0γ1γ2γ3. Then the 5D Lagrangian is

LDirac =
∫
d5x

√
−giΨ̄γA∇AΨ (6.58)

14Here the indices are normal Lorentz indices and not spacetime indices
15From 6.51
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where A ∈ {0, 1, 2, 3, 4} we can start dissecting this equation as follows;

γA∇A = γµ∇µ + γ4(∂y + Γ5abγ
ab) (6.59)

Luckily, we previously made the gauge choice of Γ5 = 0, tremendously simplifying our quest for a finalised equation.

We can therefore rewrite our Lagrangian as

LDirac =
∫

d4xe1iΨ̄1γ1µ∇1µΨ
1 + imΨ̄1γ1,4(Ψ2 −Ψ1) + 1 ↔ 2

=

∫
d4xe1iΨ̄1γ1µ∇1µΨ

1 −mΨ̄1γ5(Ψ1 −Ψ2) + 1 ↔ 2

(6.60)

this interaction splits the Lagrangian into right and left-handed Weyl spinors and generating the same kind of mass

term as that of the scalar field16. We see that each fermionic field couples to the tetrads at each site, but only

minimally for the mass term, as given our choice of gauge, γ5 is the same in spacetime and Lorentz indices. We

see that this also makes the interaction chiral as it separates right and left handed spinors, and also mixes spinors

at both sites. This also agrees with our result from dimensional deconstruction. The fact that this theory becomes

chiral should not alert us, as when introducing dimensional discretisation for spinors, we saw that we may perform

a field redefinition that satisfies a modified equation where the field becomes chiral. Performing a rotation by β = π
2

would get us back to Dirac’s equation in its usual form. Nonetheless, it is curious that the chirality is imposed in

such a suggestive way through these procedures, and it would be nice to find a physical explanation for this.

6.4.3 Yang-Mills

We can now think of adding the other matter familiar in the standard model; Yang-Mills theories. This computation

is more straightforward conceptually, although lengthier in practice. It is well known that we can write the

Lagrangian for Yang-Mills theories in curved space in differential form notation, as

LYM = −1

2

∫
Tr(F ∧ ⋆F ) (6.61)

Here F is a two form F = dA + A ∧ A. A ∧ A would typically be identically zero, but we need to remember that

for YM, A is a matrix of forms and so it doesn’t vanish. We can get down directly to the 5D theory where we can

write

LYM = −1

2

∫
Tr
(
[
1

2
F aABT

aeA ∧ eb] ∧ [
1

6
εCDEFGF

FGbT beC ∧ eD ∧ eE ]
)

(6.62)

16Since both the covariant derivative and the gamma matrices are defined in terms of the tetrads at each site, they also pick up 1
and 2 labels
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Using the usual orthogonality relation among generators Tr(T aT b) = δab/2

LYM = − 1

48

∫ (
[F aABεCDEFGF

FGaeA ∧ eB ∧ eC ∧ eD ∧ eE ]
)

= − 1

48

∫ (
2F aybF

aFGεCDEFGdy + F aabF
aFGεCDEFGe

a) ∧ eb ∧ eC ∧ eD ∧ eE

= − 1

48

∫ (
4F aybF

aygεcdeygdy ∧ eb ∧ ec ∧ ed ∧ ee + 2F aybF
afgεCDEfgdy ∧ eb ∧ eC ∧ eD ∧ eE

+ 2F aabF
aygεcdeyge

a ∧ eb ∧ ec ∧ ed ∧ ee + F aabF
afgεCDEfge

a ∧ eb ∧ eC ∧ eD ∧ eE
)

(6.63)

At this point only the first and last terms survive yielding

LYM = − 1

48

∫ (
4F aybF

aygεcdeygdy ∧ eb ∧ ec ∧ ed ∧ ee + 3F aabF
afgεydefge

a ∧ eb ∧ dy ∧ eD ∧ eE
)

=
1

48

∫
εabcd

(
4F aykF

aydek ∧ ea ∧ eb ∧ ec − 3F akmF
acdek ∧ em ∧ ea ∧ eb

)
∧ dy

(6.64)

we can now do our usual trick to contract the antisymmetric Levi-Civita symbol from the tetrads with the epsilon

tensor;

LYM =
1

48

∫
εabcd

(
4F aykF

aydek ∧ ea ∧ eb ∧ ec − 3F akmF
acdek ∧ em ∧ ea ∧ eb

)
∧ dy

= − 1

48

∫
d4xdy

√
−g
(
− 4F aykF

aydϵkabcϵdabc − 3F akmF
abcϵabcdϵ

abkm

= − 1

48

∫
d4xdy

√
−g
(
4!F aykF

aykϵkabcϵdabc + 6F akmF
acd(δkc δ

m
d − δmc δ

k
d)

= −1

4

∫
d4xdy

√
−g
(
2F aykF

ayk + F acdF
acd
)
.

(6.65)

Examining the term F aykF
ayk we see that

F ayk = ∇yA
a
k −∇kA

a
y − gAbyA

c
kf

abc = ∂yA
a
k − ∂kA

a
y − gAbyA

c
kf

abc (6.66)

in a torsion free theory, so the connection is symmetric. Now we gauge fix to set Ay = 0 which sets this as a mass

term. To do this we look at the usual gauge freedom

AaA → AaA − fabcθbAcA − i

g
∂Aθ

a (6.67)

taking the A = y component of this equation, we find that we have a quantities to set to zero, coming from A.

Simultaneously, we decompose θ in the basis of the Lie algebra meaning we can gauge fix a components. This

means that we can guarantee that Aay = 0 at the expense of fixing our gauge. In the case of Maxwell, the constraint

reduces to

Ay → Ay −
i

g
∂yθ = A1

y −
im

g
(θ2 − θ1) = 0. (6.68)
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It would seem like we have run out of luck as now there are two quantities to fix, A1
y, A

y
2, however, we see that

because we have discretised the 5th dimension, we have also added a second U(1) symmetry that remains intact

even after gauge fixing, as this constraint only depends on the difference of θ in both sites, meaning we may

arbitrarily add a function to it, and it would still satisfy 6.68. We can now use this second U(1) to make the A2
y

field zero in the second site too. We could have also first discretised, and then fixed the gauge, in this case our

symmetry pattern would go from a U(1) before discretisation, to U(1)2 after, and then fixing our gauge. This is

completely equivalent to what we have seen previously in the case of gravity, when 5D gravity gets discretised to

ghost-free bi-gravity. In the process, we use the gauge (Diff) invariance to fix our vierbeins, retaining one copy of

Diffeomorphism invariance (Diff ×Diff → Diff). After all this is said and done, we are rewarded with our mass

term,

LYM =

∫
d4xdy

√
−g
(
− 1

4
F acdF

acd − 1

2
∂yA

a
k∂

yAak
)

(6.69)

which we discretise in our usual way;

LYM =

∫
d4xdye1

(
− 1

4
F 1,a
cd F

1,acd − 1

2
m2(A2,a

k −A1,a
k )2

)
+ 1 ↔ 2. (6.70)

6.5 The Rarita-Schwinger field

Previously, we have pondered upon the results of performing dimensional discretisation on different every-day fields,

inspired by the results of discretising tetrads in 5D massless gravity to obtain ghost-free dRGT gravity. Now we

take a theoretical leap considering a field that has not yet been observed but that it is predicted by SUSY theories,

and completes the classification of fields with half integer spin lower or equal to 2. This section will follow the

theory presented in [67]. The Rarita-Schwinger field defines a particle with a spinor index and a spacetime index.

This is to say, it describes a Spin- 32 field. This field carries the name Gravitino, as it is the SUSY superpartner of

the graviton field. Our field has two indices Ψµα where µ is a spacetime index as usual and α is a spinor index.

This field, having a vector index, inherits the gauge transformation of a vector field, but the field it transforms by

must be a spinor to preserve the index structure;

Ψµ → Ψµ + ∂µϵ(x) (6.71)

where ϵ is our spinor field, and we suppress the spinor indices as usual. The restrictions of our action immediately

suggest a possible action. Firstly, it must be gauge invariant. Secondly, as usual, it must be Lorentz invariant.

Lastly, we are dealing with a Fermionic field, meaning that our Lagrangian should preserve structure of Dirac;

space and time derivatives must appear on the same footing, and it should be first order in derivatives. In an effort
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to make this effort transparent, we introduce some notation for Gamma matrices.

γµ1µ2...µr = γ[µ1 ...γµr]. (6.72)

So for example

γµν =
1

2
[γµ, γν ] (6.73)

additionally, we can show that

γµνρ =
1

2
{γµ, γνρ} (6.74)

we first consider

γ[µγνγρ] =
1

6
[γµγνγρ − γµγργν + γνγργµ − γνγµγρ + γργµγν − γργνγµ]

=
1

6
[γµ[γν , γρ] + [γν , γρ]γµ + γνγργµ − γνγµγρ]

=
1

6
[γµ[γν , γρ] + [γν , γρ]γµ +

1

2
[2ηµνγρ + 2γνηµρ − γµγργν − γργνγµ]

− 1

2
[2ηµνγρ + 2γνηµρ − γµγνγρ − γνγργµ]]

=
1

6
[γµ[γν , γρ] + [γν , γρ]γµ +

1

2
[γµ[γν , γρ] + [γν , γρ]γµ]]

=
1

4
[γµ[γν , γρ] + [γν , γρ]γµ] =

1

2
[γµ, γν ].

(6.75)

The Rarita-Schwinger Lagrangian is

S = −
∫

dDxΨ̄µγ
µνρ∂νΨρ. (6.76)

To see the gauge invariance we expand the action as

S ′ = −
∫

dDx(Ψ̄ + ∂µϵ̄)γ
µνρ∂ν(Ψρ + ∂µϵ) = S −

∫
dDx∂µϵ̄γ

µνρ∂νΨρ + Ψ̄γµνρ∂ν∂µϵ+ ∂µϵ̄γ
µνρ∂ν∂µϵ (6.77)

the second and third terms drop out because of the antisymmetry of γ while the first can be integrated out and

drops out because of this same reason, so the total action is the same up to a total derivative ∂µ(ϵ̄γ
µνρ∂νΨρ).

Varying the action with respect to Ψ̄µ yields the equation of motion,

γµνρ∂νΨρ = 0. (6.78)

This equation can be expressed in several ways. Firstly, one can show that γµγ
µνρ = (D − 2)γνρ and that

γµvρ = γµγvρ − 2ηµ[vγρ]. Using the former relation, we can immediately see that γνρ∂νΨρ = 0. Additionally, we

also see that because of this

(γµγvρ − 2ηµ[vγρ])(∂νΨρ) = 0 (6.79)
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so

ηµ[νγρ]∂νΨρ = 0 (6.80)

and so

γρ∂[µΨρ] = 0. (6.81)

We use the conventional jargon for on-shell (number of propagating degrees of freedom) vs off-shell (number of

components - gauge transformations) degrees of freedom. A normal spinor will have 2[D/2] degrees of freedom where

D is the dimension of the space. On the other hand, a vector has D components. We also have one spinorial gauge

symmetry which lets us fix on vector-spinor component or 2[D/2] degrees of freedom. This means that in total we

have (D − 1)2[D/2] off-shell degrees of freedom. It is customary to impose the gauge condition γiΨi = 0, however,

as we might expect, this gauge freedom will have to be spent fixing Ψy = 0.

6.6 Gravitino mass from dimensional deconstruction

As we saw before, scalars, vectors and spinors can all acquire a mass through dimensional reduction. The gravitino

is no different. Following the same process as before, we have

γABC∂BΨC = 0 =⇒
[
γµνρ∂ν − i

k

L
γ∗γ

µρ

]
Ψρk = 0 (6.82)

we can redefine the field like in 4.92 as Ψρk = e(−iπγ∗/4)Ψ′
ρk to remove the gamma matrix and be left with the

equation

(γµvρ∂ν −mγµρ)Ψρ = 0. (6.83)

6.7 Gravitino action in curved spacetime and dimensional deconstruction

We are now in a position to extend the Rarita-Schwinger Lagrangian to curved spacetime without many complica-

tions. we have

SRS = − 1

2κ2

∫
dDxeΨ̄µγ

µνρDvΨρ. (6.84)

Where the gamma matrices now carry spacetime indices as in the Dirac equation in curved spacetime, and the

covariant derivative is defined as

DνΨµ ≡ (∂νΨµ +
1

4
Γvabγ

abΨµ) + ΓανµΨα (6.85)

as it carries both vector indices and spinor indices. However, since we are contracting with a gamma matrix which

is antisymmetric in the µ, ν indices, the last term drops out for a symmetric connection such as the Levi-Civita
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connection. Thus, since we are considering torsion-free theories, we will omit this term in what follows. In five

dimensions, we follow our now usual prescription;

Ψ̄Aγ
ABCDBΨC = Ψ̄µγ

µνρDvΨρ + Ψ̄yγ
yνρDvΨρ + Ψ̄µγ

µyρDyΨρ + Ψ̄µγ
µνyDvΨy (6.86)

the second and last terms fall out because, as advertised before, we will use our gauge freedom to set the Ψy term

equal to zero. Additionally, we used the Lorentz invariance from the tetrads to set Ωaby =0 and so this reduces to

Ψ̄Aγ
ABCDBΨC = Ψ̄µγ

µνρDvΨρ + Ψ̄µγ
µyρDyΨρ (6.87)

now

γµyν =
i

4
{γµ, [γ5, γν ]} =

i

2
{γµ, γ5γν} = −γ5γµν (6.88)

and so we find that the Lagrangian becomes

SRS = − 1

2κ2

∫
d4dxyeΨ̄µγ

µνρDvΨρ − iΨ̄µγ
5γµν∂yΨν (6.89)

which matches 6.82 with γ5 ∼ γ∗. Finally, we discretise our fifth dimension as usual to obtain

SRS = − 1

2κ2

∫
d4xdye1Ψ̄1

µγ
1,µνρD1

vΨ
1
ρ − imΨ̄1

µγ
1,5γ1,µν(Ψ2

ν −Ψ1
ν) + 1 ↔ 2. (6.90)

With this, we conclude our effort to explore the effect of discretising a fifth dimension for all matter fields with

spin equal or less than 2. Non surprisingly, this resulted in the different fields acquiring different mass terms,

as [15] already pointed out the relationship between KK towers and our discretisation procedure. Nonetheless,

some non-trivial results were found, such as a massless and a massive propagating mode made out of a linear

superposition of fields living in both lattices. Similarly, our fermionic fields couple to the specific tetrads of their

respective braneworld through the gamma matrices, which acquire spacetime indices in curved space. In addition

to this, there is also mixing between the fermionic fields living at both sites, and the interaction term is now chiral

due to the γ5. Similar results were found for both Yang-Mills and Rarita-Schwinger fields, although the scalar

and the Fermionic field are arguably the two archetypal examples when studying these theories, as they in a way

encapsulate many of the results in higher spin fields. The author takes a brief moment to remind the reader that

this section has not been peer reviewed and these results should be taken with a pinch of salt! All these results

can easily be extended to N sites by introducing a
∑
j and using nearest neighbour interactions for the fields;

∂yϕ
j → m(ϕj+1 − ϕj).
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7 Conclusion and further scope for research

Through this dissertation, we have looked at the development of massive gravity, from the original FP action, to the

breakthrough in ghost-free massive gravity in dRGT gravity. Nonetheless, the journey was far from finished here.

We saw how these theories are extremely rich and arise very naturally in the tetrad formalism. This approach

allowed us to look at the different terms that could arise in these theories, and to understand their emergence

through discretisation of extra dimensions. We also found that this mechanism gives rise to massive particles in 4D

for all fields with spin lower or equal to 2. It remains to be seen whether these interactions are also ghost-free or

whether they might lead to pathologies. This disseration focused on the developments in the field from 2008-2015,

nontheless, there have been several exciting developments since, such as using the techniques developed in massive

gravity used to generalise the FP theory, to do the equivalent procedure in the Proca Lagrangian [75] [76]. Other

recent developments have been pushing the cut-off scale to Λ2 [77] Research has also been recently carried out on

an old concept; partially massless (PM) gravity [78], where we consider gravity in de Sitter space, and for which

a specific choice of mass gives extra gauge symmetries and a wide array of appealing properties. With the success

of the dRGT mass term, non-linear extensions to the mass term have been investigated [79] [80] and more effort is

being put into understanding these theories. Finally, future extensions of the work presented in this dissertation

could include finding more sophisticated ways of discretising this extra dimension, making mixed models with extra

discretised dimensions, and extra continuous dimensions, or performing this analysis in spacetimes with different

kinds of asymptotic spacetimes (dS or AdS for example).
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A Useful results

A.1 Variation of δ
√
−g

Consider

eA = B =⇒ A = ln(B) (A.1)

using the identity

Det(eA) = eTr(A)Det(B) = Tr(ln(B)) (A.2)

schematically,

δDet(B)

Det(B)
= Tr(

δB

B
) (A.3)

and so for our specific case

δg

g
= gµνδgµν (A.4)

and so

δ
√
−g =

1

2

√
−ggµνδgµν (A.5)

Another useful relation will be

δ(gµαgαν) = δ(δµν ) = 0 =⇒ gµαδ(gαν) = −δ(gµα)gαν (A.6)

and so

gρνgµαδ(gαν) = −gρνδ(gµα)gαν

gρνgµαδ(gαν) = −δ(gµρ)
(A.7)

A.2 Ricci tensor variation

Rρσµν = Γρνσ,µ − Γρµσ,ν + ΓρµλΓ
λ
νσ − ΓρνλΓ

λ
µσ

(A.8)

so

δRρσµν = δΓρνσ,µ − δΓρµσ,ν + δ(Γρµλ)Γ
λ
νσ + Γρµλδ(Γ

λ
νσ)− δ(Γρνλ)Γ

λ
µσ − Γρνλδ(Γ

λ
µσ) (A.9)

and so

δRσν = δΓρνσ,ρ − δΓρρσ,ν + δ(Γρρλ)Γ
λ
νσ + Γρρλδ(Γ

λ
νσ)− δ(Γρνλ)Γ

λ
ρσ − Γρνλδ(Γ

λ
ρσ) (A.10)

since a difference of two connections is a tensor, we can calculate its covariant derivative:

∇ρδΓ
ρ
νσ = Γρνσ,ρ + Γρρλδ(Γ

λ
νσ)− Γλρνδ(Γ

λνσ)− Γλρσδ(Γ
ρ
λν) (A.11)
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expanding

∇ρδΓ
ρ
νσ −∇νδΓ

ρ
ρσ = Γρνσ,ρ + Γρρλδ(Γ

λ
νσ)−�����Γλρνδ(Γ

ρ
λσ) − Γλρσδ(Γ

ρ
λν)

−
(
Γρρσ,ν + Γρνλδ(Γ

λ
ρσ)−�����Γλρνδ(Γ

ρ
λσ) − Γλνσδ(Γ

ρ
λρ)
)

= δ(Rσν)

(A.12)

This is also known as the Palatini identity

A.3 Ricci tensor in EH

Consider

∫
d4x
(√

−g(δRαβ)gαβ =

∫
d4x
(√

−g(∇ρδΓ
ρ
αβ −∇αδΓ

ρ
ρβ)g

αβ =

∫
d4x
(√

−g(∇ρ(Γ
ρ
αβg

αβ − Γνναg
αρ) (A.13)

we now use

Γµµν =
1

2
gµα(gαµ,ν + gαν,µ − gνµ,α =

1

2
gµαgαµ,ν =

1

2
Tr(g−1g,v) =

1

2
Tr(log(g),v) (A.14)

using

Tr(log(A)) = log(Det(A)) (A.15)

we find

Γµµν =
1

2g
∂νg (A.16)

we may construct the vector

Aρ = Γραβg
αβ − Γνναg

αρ (A.17)

thus we have

∇ρA
ρ = Aρ, ρ+ ΓρραA

α = Aρ,ρ +
1

2g
(∂αg)A

α (A.18)

and so

∫
d4x
(√

−g(∇ρA
ρ) =

∫
d4x
(√

−g(Aρ,ρ +
1

2g
(∂αg)A

α)
)
=

∫
d4x
(
∂α(A

α√−g)
)

(A.19)

which is a total derivative and so it vanishes.
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