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1 Introduction

The majority of this work follows the construction of important geometrical structures in the gener-
alised tangent space Ẽ ≃ (detT ∗M)(TM⊕T ∗M) described in the paper Supergravity as Generalised
Geometry I: Type II Theories1. This space is an extension of the tangent bundle TM by the cotan-
gent bundle and a real dimension. It serves to describe type II supergravity, to leading order in
fermions, as a generalised geometrical analogue to Einstein gravity. The important geometrical
structures we will construct here are those that enter in this description of type II supergravity.

In a second part, we will briefly discuss the possibility of finding a generalised geometrical
analogue of the Lichnerowicz bound theorem in Einstein gravity. This presents an example of a
problem that generalised geometry enables us to pose in a type II supergravity theory, and which
could lead to physically significant conclusions.

The fields in Einstein gravity are tensor fields on a differential spacetime manifold, by definition
satisfying diffeomorphism invariance (their coordinates are covariant): the fields of this theory are
independent of the coordinates we use to describe them. Using the term structure to refer to
the combination of symmetries on a given space, we can see that Einstein gravity has an internal
structure formed of diffeomorphism invariance of its fields on the manifold.

We can express this invariance using such objects as Lie derivatives, where tangent vectors serve
as generators of active coordinate changes, and GL(d,R) - covariant connections, where GL(d,R)
corresponds to the group of diffeomorphisms. Connections parallel transport a tensor from one
tangent space to a neighbouring one; these are solely directional. With a metric on the manifold,
we can restrict this connection group to a subgroup G that is compatible with the metric, meaning
that a diffeomorphism transformation in this subgroup leaves the metric invariant. This is equiv-
alent to restricting the connections we consider to those with adjoint actions in the Lie algebra of
G, and would be giving additional structure to the manifold by imposing that the only neighbour-
ing tangent spaces are those accessible via a G-diffeomorphism. Additional geometrical elements
based on these concepts and that we use to describe an Einstein structure are: G - principal frame
bundles, composed of tangent space frames, which incorporate the diffeomorphism group structure;
the torsion of a connection, which describes how a vector orthogonal to the direction of the connec-
tion is parallel transported by the connection, or equivalently how a surface is twisted around the
curve defined by a connection; the Riemann curvature tensor of a connection, which measures the
difference between the parallel transport of a vector to the same final tangent space but along two
different paths, thus measuring the curvature of the space as defined by this connection; the Ricci
tensor and Ricci scalar which are formed of the Riemann curvature and metric.

The major perceived obstacle to describing supergravity in the same way, is the coordinate-
dependent structure of the supergravity B-field bosonic potential. This field is a local two-form,
patched as B(i) = B(j) − dΛ(ij) on overlapping coordinate patches of the manifold M , Ui ∩Uj . The
fact that this field is not globally-defined, but patch-dependent, i.e. coordinate dependent, makes its
structure non-tensorial, and therefore not incorporated in the tangent space. Due to the particular
patching of this field, it has a local symmetry transformation: B′

(i) = B(i) − dλ(i), where λ(i) = λ(j)
so λ is a globally-defined one-form. This B transformation is generated by a one-form and not a
tangent vector, defining yet another difference between B and a tensor.

The generalised tangent space we will construct here overcomes this obstacle. By extending
the tangent space by the cotangent space with a particular one-form patching, we enable diffeo-
morphisms generated both by tangent vectors v and cotangent vectors λ, and can replace local
diffeomorphism invariance by a larger symmetry group that includes the gauge transformations of

1Coimbra, A., Strickland-Constable, C. and Waldram, D. (2011) ‘Supergravity as Generalised Geometry I: Type
II Theories’. Available at: https://doi.org/10.48550/ARXIV.1107.1733.
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the NSNS two-form B. We can further extend this generalised space E to Ẽ ≃ (detT ∗M)E without
modification of this structure, to include a real dimension for the supergravity dilaton field.

In this paragraph we will list some important results. An essential property of the generalised
tangent space is its natural conformal O(d, d) × R+ structure, of which the NSNS fields define an
O(p, q)×O(q, p) = O(9, 1)×O(1, 9) substructure. We can construct a natural analogueD of the Levi-
Civita connection, torsion-free and compatible with the supergravity structure O(p, q)× O(q, p) ⊂
O(d, d). This connection is central: We can use D to write the dynamics and symmetries of
the supergravity fields in a simple Spin(9, 1) × Spin(1, 9) covariant form. However, we have the
interesting result that such a connection is not unique. We also arrive, by proceeding in analogy
with the Einstein manifold constructions, at an expression for curvature of a generalised connection.
However this curvature is not tensorial, unless we restrict it to certain subspaces. Both of these
properties may hinder certain geometrical equations and problems we try to extend to generalised
geometry, as we will see with the Lichnerowicz bound problem.

In this work, we will focus on the construction of generalised geometry structures and how the
NSNS B-field and the symmetry algebra of the NSNS sector are both reflected in the generalised
geometry. The structure of this work closely follows that of the paper, as we are following the logical
steps in the construction of generalised geometry structures to finally arrive at the expression of the
O(p, q)×O(q, p)-covariant generalised connection.

We will start by giving a brief introduction of the fields and structure of type II supergravity, as
well as of the geometrical definitions and steps in the construction of the conventional Levi-Civita
connection. We will go on to define E, discover an O(d, d) compatible metric, as well as define
the generalisations of each ingredient in the construction of the Levi-Civita connection: the frame
bundle, tensors, the Lie derivative, connections, torsion and curvature. In a third part we will
specify the O(p, q)×O(q, p) sub-structure compatible with supergravity as well as the general form
of a torsion-free, compatible connection, and briefly state the reformulated supergravity equations
of motion and symmetry variations. Finally, we will explore the Lichnerowicz bound problem in
Einstein gravity, and question its analogue in generalised geometry.
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2 Preparation elements

2.1 Type II supergravity

We will look at the structure of d = 10 type II supergravity. The paper follows mainly the conven-
tions of the democratic formalism, considers only the leading-order fermionic terms, and rewrites
the fermionic sector to better reflect the underlying generalised geometry and later calculations.
Here we will introduce the supergravity fields, the bosonic and fermionic pseudo-action and super-
symmetry variations, as well as the NSNS bosonic sector. The fields in this sector are the main
focus of this paper as these are what we aim and succeed in encoding in the generalised geometry
structure. We will merely state in section 4.2 the generalised geometry rewriting of the equations
of motion, actions and supersymmetry variations of all the other type II supergravity fields.

2.1.1 Supergravity fields and actions

The fields of d = 10 type II supergravity are:

{gµν , Bµν , ϕ,A
(n)
µ1...µn

, ψ+/−
µ , λ+/−}

where gµν is the metric, Bµν the 2-form potential, ϕ the dilaton, A
(n)
µ1...µn the RR potentials in

the democratic formalism2, ψ
+/−
µ the chiral gravitini, and λ+/− the chiral dilatini. ± distinguish

two components with opposite chiralities. The specific nature of these depends on the type of
supergravity studies: IIA or IIB.

The bosonic pseudo-action is

SB =
1

2κ

∫ √
−g[e−2ϕ(R+ 4(∂ϕ)2 − 1

12
H2)− 1

4

∑ 1

n!
(F

(B)
(n) )

2]

where H = dB and F
(B)
(n) is the n-form RR field strength, satisfying a self-duality relation that does

not follow from varying the action (hence ”pseudo” action):

F
(B)
(n) = (−1)[n/2] ∗ F (B)

(10−n),

where ∗ denotes the Hodge dual.

The fermionic action, keeping only terms that are quadratic in the fermions, can be written as

SF = − 1

2κ

∫ √
−g

[
e−2ϕ

(
2ψ̄+µγν∇νψ

+
µ − 4ψ̄+µ∇µρ

+ − 2ρ̄+��∇ρ+ − 1

2
ψ̄+µ

��Hψ+
µ

−ψ̄+
µH

µνλγνψ
+
λ − 1

2
ρ+Hµνλγµνψ

+
λ +

1

2
ρ+��Hρ+

)
+e−2ϕ

(
2ψ̄−µγν∇νψ

−
µ − 4ψ̄−µ∇µρ

− − 2ρ̄−��∇ρ− +
1

2
ψ̄−µ

��Hψ−
µ + ψ̄−

µH
µνλγνψ

−
λ − 1

2
ρ−��Hρ−

)
−1

4
e−ϕ

(
ψ̄+
µ γ

ν
��F

(B)γµψ−
ν + ρ+��F

(B)ρ−
)]
,

where ∇ is the Levi-Civita connection, and ρ± = γµψ±
µ − λ± are the natural combinations that

appear in generalised geometry, which we are using instead of λ±.

The equations of motion for the bosonic fields, setting the fermions to zero, as

Rµν −
1

4
HµλρH

λρ
ν + 2∇µ∇νϕ− 1

4
e2ϕ

∑
n

1

(n− 1)!
F

(B)
µλ1...λn−1

F
(B)λ1...λn−1

(ν = 0,

2See paper annex A
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∇µ(e−2ϕHµνλ)−
1

2

∑
n

1

(n− 2)!
F

(B)
µνλ1...λn−2

F (B)λ1...λn−2 = 0,

∇2ϕ− (∇ϕ)2 + 1

4
R− 1

48
H2 = 0,

dF (B) −H ∧ F (B) = 0,

where
F (B) =

∑
n

F
(B)
(n) =

∑
(n)

eB ∧ dAn−1,

with eB = 1 +B + 1
2B ∧B + ....

The fermionic equations of motion, keeping only terms linear in the fermions (just as we kept
only quadratic terms in the action), equate to

γν
[(

∇ν ±
1

24
Hνλργ

λρ − ∂νϕ

)
ψ∓
µ ∓ 1

2
H λ

νµψ
∓
λ

]
−
(
∇µ ± 1

8
Hµνλγ

νλ

)
ρ∓

=
1

16
eϕ

∑
n

(∓)[(n+1)/2γν��F
(B)
(n) γνψ

±
ν ,(

∇µ ± 1

8
Hµνλγ

νλ − 2∂µϕ

)
ψµ∓ − γµ

(
∇µ ± 1

24
Hµνλγ

νλ − ∂µϕ

)
ρ∓

=
1

16
eϕ

∑
n

(∓)[(n−1)/2]
��F

(B)
(n) ρ

±.

2.1.2 Supergravity symmetry variations

• Fermionic and bosonic supersymmetry variations:

The supersymmetry variations are parametrised by a pair of chiral spinors ϵ∓. Keeping only
linear terms in the fermionic fields, the supersymmetry variations for the bosons can be written

δeaµ = ϵ̄+γaψ+
µ + ϵ̄−γaψ−

µ ,

δBµν = 2ϵ̄+γ[µψ
+
ν] − 2ϵ̄−γ[µψ

−
ν],

δϕ− 1

4
δ log(−g) = −1

2
ϵ̄+ρ+ − 1

2
ϵ̄−ρ−,

(eB∧δA)(n)µ1...µn
=

1

2
(e−ϕψ̄+

ν γµ1...µnγ
νϵ−−e−ϕϵ̄+γµ1...µnρ

−)±1

2
(e−ϕϵ̄+γνγµ1...µnψ

−
ν +e

−ϕρ̄+γµ1...µnϵ
−),

where eµ is a tangent bundle frame that is orthonormal for gµν , and where here the upper
sign refers to type IIA, the lower to type IIB.

For the fermions one has

δψ∓
µ = (∇µ ± 1

8
Hµνλγ

νλ)ϵ∓ +
1

16
eϕ

∑
n

(∓)[(n−1)/2]
��F

(B)
(n) γµϵ

±,

δρ∓ = γµ(∇µ ± 1

24
Hµνλγ

νλ − ∂µϕ)ϵ
∓.

6



• NSNS bosonic symmetries and foreshadowing of generalised geometry:

The structure of the supergravity space is contained in the symmetries of the fields. We will
have a look at the symmetries of the NSNS bosonic sector; these will guide the construction
of our generalised geometry, which we want to encode the supergravity structure.

The potential B is locally defined, and given an open cover {Ui}, is patched across coordinate
patches Ui ∩ Uj via

B(i) = B(j) − dΛ(ij),

where the one-forms Λ(ij) satisfy

Λ(ij) + Λ(jk) + Λ(ki) = dΛ(ijk)

on Ui ∩ Uj ∩ Uk.

We have the NSNS sector local bosonic gauge symmetry:

B
′

(i) = B(i) − dλ(i).

Given the patching of B, dλ(i) must be patched as dλ(i) = dλ(j) on Ui ∩ Uj . Thus ω = dλ is
a 2-form. Recalling the property d2 = 0 of the exterior derivative, we can see that specifying
the gauge transformation is equivalent to specifying a closed 2-form ω = dλ.

Infinitesimally, we can summarise the structure, the symmetries, of the NSNS bosonic sector
in the following variations of the three fields:

δvg = Lvg, δvϕ = Lvϕ, δvB(i) δλB(i) = −dλ(i).

We can combine these diffeomorphism and gauge symmetries by joining the vector and one-
form symmetry generators, defining the general variations

δv+λg = Lvg, δv+λϕ = Lvϕ, δv+λB(i) = LvB(i) − dλ(i).

For the symmetry transformations of B to be consistent with its patching, i.e. for them to be
intrinsic, independent of the patch (or coordinate system), we have

δv+λ(i)B(i) = δv+λ(j)B(j) =⇒ dλ(i) = dλ(j) − LvdΛ(ij).

The Cartan formula gives the equality LXω = iX , dω for X a vector and ω a differential form.
Using this equivalence, we see that by patching λ(i) as

λ(i) = λ(j) − ivdΛ(ij),

on Ui ∩ Uj , we have

dλ(i) = dλ(j) − d(ivdΛ(ij)) = dλ(j) − LvdΛ(ij) + ivd
2Λ(ij) = dλ(j) − LvdΛ(ij)

We see that this choice of patching for λ(i) gives us the correct patching for its exterior
derivative.

The integration of the above general symmetry variations and patchings into the geometry
are the core motivation for of the generalised geometry space, which we will now introduce.
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2.2 Differential geometry and the construction of the Levi-Civita connection

Let M be a d-dimensional manifold.

• Vector bundle

SupposeM is a differential manifold. A manifold E together with a smooth onto map π →M
(called the projection) is called a Cr vector bundle of rank k over M if the following three
conditions hold:

– There exists a k-dimensional vector space V such that, for every p ∈M , Ep = π−1(p) is
a real vector space isomorphic to V, called the fiber over p;

– Each point in M is contained in some open set U ⊂ M such that there is a Cr diffeo-
morphism

ΦU : π−1(U) → U × V,

with the property that ΦU restricted to the fiber Ep maps Ep onto {p} × V ;

– For any two such open sets U,U ′ with U ∩ U ′ ̸= 0, the map

ΦU ◦ Φ−1
U ′ : ΦU ′(U ∩ U ′) → ΦU (U ∩ U ′)

is a Cr local vector bundle isomorphism over the identity.

• Dual bundle and its fibers

Hom(E,M × R) is the dual bundle to E, its fibers are Hom(E,M × R)p = E∗
p , the vector

space of forms on Ep, isomorphic to Ep. The cotangent bundle T ∗M is the dual bundle to
TM , its fibers are T ∗Mp = TM∗

p .

• Dual to a tangent basis

Writing {êa} a basis of the tangent space (tangent bundle fibre) TxM for x ∈M , the cotangent
basis of T ∗

xM that is its dual {ea} satisfies by definition iêae
b = δ b

a .

• Frame bundle F as a G principal bundle

The frame bundle F is formed of all bases {êa} over M, that is

F = {(x, {êa}) : x ∈M, {êa} a basis for TxM}.

On each fibre of F , there is an action of Aa
b ∈ GL(d,R), that brings one basis to another:

êa 7→ ê′a = êb(A
−1)ba,

making F a GL(d,R) principal bundle. We say that F has a GL(d,R) structure. This encodes
the diffeomorphism structure of E: Given v ∈ Γ(TxM), we link the above action with the
coordinate action

va 7→ v′a = Aa
bv

b,

so that v is unchanged by the total action. This marks the equivalence between a change
of basis and a change of coordinates, and gives GL(d,R) the interpretation of the group of
possible diffeomorphisms on the tangent space.

• Lie derivative

The Lie derivative (along a vector) encodes the effect on a tensor of an infinitessimal diffeo-
morphism. On a general tensor field α and in cooridate indices, one has

Lαµ1...µp
ν1...νq = vµ∂µα

µ1...µp
ν1...νq

8



+(∂µv
µ1)α

µµ2...µp
ν1...νq + ...+ (∂µv

µq)α
µµ1...µp−1µ
ν1...νq

−(∂ν1v
µ)α

µ1µ2...µp
µν2...νq − ...− (∂νqv

µ)α
µ1µ2...µp
ν1...νq−1µ.

One can view the second- and third-line terms as the adjoint action of the gl(d,R) matrix
aµν = ∂νv

µ in the Lie algebra of the structure group, on the tensor field α. We will find an
analogous expression for the generalised Lie derivative, with the correct adjoint action. If
α = w a vector field, the Lie derivative is equal to the Lie bracket

Lvw = −Lwv = [v, w].

• Connection and its torsion

A general connection on TM is written in coordinate indices as ∇µv
ν = ∂µv

ν + ω ν
µ λv

λ.

The torsion T ∈ Γ(TM ⊗ Λ2T ∗M) of ∇ is defined by

T (v, w) = ∇vw −∇wv − [v, w]

where ∇vw = vµ∇µw, or equivalently

T (v, w) = Tµ
νλv

νwλ where Tµ
νλ = ω µ

ν λ − ω µ
λ ν

is the antisymmetrisation of the two lower coordinate indices of ω.

In a general basis where the connection reads as ∇µv
a = ∂µv

a+ω a
µ bv

b, the torsion components
are written

T a
bc = ω a

b c − ω a
c b + [êb, êc]

a.

To obtain the natural generalised analogue of the torsion, it is useful to give an equivalent
definition in terms of the Lie derivative (which we will see earlier has a natural generalised
analogue). Denoting L∇

v α the analogue of the above Lie derivative with ∂ replaced with ∇,
we have

(ivT )α = L∇
v α− Lvα,

where (ivT )
µ
ν = vλTµ

λν . From the definition of the connection ∇ and the Lie derivative, we
can view ivT as a section of the gl(d,R) adjoint bundle, acting on a given tensor field α.

• Curvature, Ricci tensor and Ricci scalar

The curvature of a connection ∇ is the Riemann tensor R ∈ Γ(Λ2T ∗M⊗TM⊗T ∗M), defined
by

R(u, v)w = [∇u,∇v]w −∇[u,v]w,

which in coordinate indices corresponds to

uµvνR λ
µν ρw

ρ = uµvν([∇µn∇ν ]w
λ − T ρ

µν∇ρw
λ).

The Ricci tensor is defined as the trace of the Riemmann curvature

Rµν = R λ
λµ ν .

If the manifold admits a metric g, then we can define the Ricci scalar by

R = gµνRµν .

9



• G-structure

A G-structure is a principal sub-bundle P ⊂ F with fibre homeomorphic to G.

As an example, for a given metric g, the G = O(d) sub-bundle is formed by the set of
orthonomal bases

P = {(x, {êa} ∈ F : g(êaêb) = δab},

related by an O(d) ⊂ GL(d,R) action by definition of the O(d) group.

At each point of the manifold x ∈M , the metric is a point in the coset space GL(d,R)/O(d).

A G-structure can impose topological conditions on the manifold since implies that the tangent
space can only be patched (a topological property) using G ⊂ GL(d,R) transition functions.
But there is no such restriction for O(d).

• Compatibility of a connection with a G-structure A connection is compatible with a G-
structure P ⊂ E if the corresponding connection on the principal bundle E reduces to a
connection on P , meaning that given a basis {êa}, one has a set of one-forms ωa

b in the Lie
algebra of G (”taking values in the adjoint representation”) given by

∇∂/∂xµ êa = ω b
µ aêb.

For a metric structure, where the group G of the principal bundle preserves the metric,
this is equivalent to the condition ∇g = 0. This stems from an element of the Lie algebra
corresponding to an infinitesimal group transformation: (1 + a)g(1 + a)T = g + ag + gaT = g
for a metric structure, and ag + gaT corresponds to the adjoint action on both indices of g.

Furthermore, if there exists a torsion-free compatible connection, the G-structure is said to be
torsion-free or (equivalently) integrable to first order. For a metric structure, this compatibility
does not imply any further conditions, and the torsion-free, compatible connection, the Levi-
Civita connection, is unique.

3 O(d, d)× R+ generalised geometry

3.1 Generalised structure bundle Ẽ

3.1.1 Definition of E

We start by defining the generalised tangent space E as an extension of the tangent space by the
cotangent space.

We construct the following exact sequence3:

0 f1−→
T ∗M f2−→

E f3−→
TM f4−→

0,

To clarify, we can rewrite this, for some atlas (Uα, ϕα) on M :

(M, 0) = {(p, α, 0), p ∈ Uα ∈M} f1 : embedding−−−−−−−−−−→
{(p, α, 0 ∈ (Tϕα(p)R

n)∗)} ⊂ {(p, α, χ ∈ (Tϕα(p)R
n)∗)}

f2 : embedding−−−−−−−−−−→
{(p, α, 0 ∈ Tϕα(p)R

n+χ ∈ (Tϕα(p)R
n)∗)} ⊂ {(p, α, ζ ∈ Tϕα(p)R

n+χ ∈ (Tϕα(p)R
n)∗)} = E

f3 : projection−−−−−−−−−−→
{(p, α, ζ ∈ Tϕα(p)R

n + 0 ∈ (Tϕα(p)R
n)∗)} ≃ TM f4 : projection−−−−−−−−−−→

(M, 0).

The combination of this sequence and the patching one-forms Λij define E and its structure:

3Exact sequence: sequence of group homomorphisms where the kernel of each is the image or the previous one:
Kerfi = Imfi−1.
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For v(i) a section of TUi and λ(i) one of T ∗Ui, V(i) = v(i) + λ(i) is a section of E over the patch
Ui and we set its patching to be

v(i) + λ(i) = v(j) + (λ(j) − iv(j)dΛij)),

on Ui ∩Uj , where the parentheses separate the covector part of the E section over Ui ∩Uj from its
vector part. We see that the vi globally define a vector: v(i) = v(j), but the λ(i) on the other hand
do not globally define a one-form. This implies that there is no canonical isomorphism between E
and TM ⊕ T ∗M , but we will see later that there does exist an isomorphism between the two.

We note that the structure of the exact sequence, and more specifically the capacity to globally
- and continuously4, by definition of a projection - project from E onto TM , requires the v(i) in
a section of E to be globally equivalent to a choice of vector in TM . Then the projection maps a
section to a section.

We further note that this patching is consistent with the capacity to embed one-forms into E:
If the vector part on each patch of E is null, the E patching of the λ(i) is that of a one-form. We
cannot however define a projection from E onto T ∗M : the cotangent part of an E section that
contains a vector part is not globally defined, but is patch-dependent (or coordinate-dependent).
There is therefore no way of extracting a section of T ∗M from a section of E.

Now that we have defined the generalised tangent space E, we would like to find a metric its
patching is consistent with.

3.1.2 A consistent O(d, d) metric

E is consistent with an O(d, d) metric given by, for V = v + λ, W = w + µ,

⟨V,W ⟩ = 1

2
(ivµ+ iwλ).

Before proving this, we recall the definitions of a metric and consistency with a metric:

Definition. Let M be a topological manifold, π : E →M a vector bundle on M . Then a metric g
on E is a bundle map

g : E ×M E →M = {(V,W ) ∈ E × E : π(V ) = π(W )} × R,

which is globally defined over M , smooth on each patch, and whose restriction to any fibre over M
gives a non-degenerate bilinear form.

Saying that a vector bundle is consistent with a map means that this map corresponds to a
metric on E. In this case:

• The bilinearity of the above-defined metric on a fibre Ep stems from the bilinearity of the
interior product i;

• The non-degeneracy of the metric is proven by:(
⟨V,W ⟩ = 1

2
(ivµ+ iwλ) = 0 ∀W = w + µ

)
=⇒

{
v = 0

λ = 0
.

4Global continuity comes from continuity on each patch combined with being globally well-defined. A continuous
map between manifolds by definition maps a continuous section to a continuous section. A section is by definition
globally defined, choosing a point in the fibre Ep for every p ∈ M . A continuous section varies differentiably across
the fibres.
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• Finally and essentially, the metric is globally defined on M , consistent with the patching of
E, since the interior product has this property: iv(i)λ(i) = iv(j)λ(j) on Ui ∩ Uj .

Proof. The patching on E gives us iv(i)λ(i) = iv(j)(λ(j)− iv(j)dΛ(ij)). Writing the local tangent
frame field as {êa} and the dual cotangent frame field {ea}, we have v(j) = va(j)êa and dΛ(ij) =
1
2(dΛ(ij))[ab]e

a ∧ eb.

iv(i)iv(j)dΛ(ij) = va(j)v
b
(i)

1

2
(dΛ(ij))[ab] = 0,

since the a, b indices are both symmetrised and anti-symmetrised by different terms of the
product.

We have defined a metric on E, which we will denote η. We will now construct a generalisation of
E to be able to include a description of the dilaton, a real field on M which requires a dimension
of its own, and transforms as a scalar density.

3.1.3 An extension of E to include the dilaton: Ẽ

Define Ẽ as E weighted by detT ∗M :

Ẽ = detT ∗M ⊗ E,

where detT ∗M is the space of real fields transforming under the determinant of matrix coordinate
transformations.

Given the E metric η, we can now define in terms of bases of E a natural principal bundle with
fibre O(d, d) × R+, where O(d, d) is defined as the largest group that preserves a specific matrix
form for η.

We recall the definition of a principal bundle.

Definition. A principal G-bundle in the context of smooth manifolds encompasses:

• a smooth bundle π : E →M , between smooth manifolds E and M ,

• a Lie group G,

• a smooth right action E ×G→ E that preserves the fibres of E,

• ∀x ∈M, ∀y ∈ Ex,

{
G→ Ex

g → yg
is a homeomorphism5.

Due to the last property of this definition, we will sometimes refer to a fibre of a principal
G-bundle as the group G itself.

In the construction of our principal O(d, d)× R+-bundle, we first define a conformal frame ÊA

on Ẽx, with A = 1, ..2d, as one satisfying〈
ÊA, ÊB

〉
= Φ2ηAB where ηAB =

1

2

(
0 1
1 0

)
AB

,

that is, a basis that is orthonormal6 up to a frame-dependent conformal factor Φ ∈ Γ(detT ∗M).

5Homeomorphism: Invertible map preserving the topology
6The definition of orthonormal here is a frame that satisfies

〈
ÊA, ÊB

〉
= ηAB with the matrix ηAB of tha above

form.
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We can now define the generalised structure bundle F̃ as the coupling of M with all possible
conformal bases for Ẽx:

F̃ = {(x, {ẼA}) where x ∈M, and {ẼA} is a conformal basis of Ẽx}.

By definition, O(d, d) is the largest group preserving the orthonormal metric.7 On the other side
of the coin, by definition of an orthonormal frame, O(d, d) is the smallest group allowing you to go
from one orthonormal frame to all the others in Ex. We can deduce that O(d, d)×R+ preserves the
conformal metric, and by definition of a conformal frame, O(d, d) × R+ can change one conformal
frame into any other in a fibre Ex: R+ allows you to change Φ2 to any other (positive) Φ2 in the
conformal metric. This can be summarised in the following equivalence:

M ∈ O(d, d)× R+ ⇐⇒ (M−1)CA(M
−1)DBηCD = σ2ηAB for some positive σ.

Furthermore, this group is a Lie matrix group acting on coordinates, so it represents a smooth
action on each fibre of F̃ .

Thus F̃ is a principal O(d, d)× R+-bundle, and we can refer to its fibre as O(d, d)× R+.

3.1.4 A natural conformal frame: The coordinate frame

We will recall the meaning of a basis defined by the choice of coordinates on M .
Firstly, a natural local trivialisation for the tangent bundle is the map:

ΦUα :

{
π−1(Uα) → U × RdimM

[r, α, ξ] → (r, ξ), ξ ∈ Tϕα(r)R
dimM ,

where (Uα, ϕα) is an atlas over M . We can deduce a local frame field basis si(r) = Φ−1
U (r, êµ = ∂

∂xµ )

for TrM ; we will abuse notation and write an element of this basis as ∂
∂xµ . Similarly, for the

cotangent bundle fibre associated to the same point on M , using the same atlas over M , we can
form a fibre basis in the same way, associated to the dual of the above tangent space basis, dxµ.

We can now see how this frame plays a role in E. We know that over a given coordinate
patch of M there is a canonical isomorphism between π−1(U) ⊂ E and TU ⊕ T ∗U . Therefore
at a point p ∈ M , there is a natural basis for Ep given by {ÊA} = {∂/∂xµ} ∪ {dxµ}. Given
V ∈ Γ(E), over the patch Ui we can write this section in the coordinate frame (locally defined
basis) V = vµ( ∂

∂xµ ) + λµdx
µ, and denote the components of V in this frame by an index M :

VM =

{
vµ for M = µ,

λµ for M = µ+ d
.

This basis is conformal since we have ivλ = λν(dx
ν · ∂

∂xµ )vµ = λµv
µ: the η metric corresponds

to the trivial Rd dot product between tangent and cotangent coordinate frame components of two
E-vectors.

3.2 Generalised tensors and split frames

3.2.1 Generalised tensors

The O(d, d) metric η defines a vector bundle isomorphism over the identity between E and E∗,
meaning that it acts as a linear isomorphism between each fibre Ep and its dual E∗

p . Indeed, for a

7The group preserving this metric is in fact isomorphic to the group we would usually call O(d, d), which preserves
the diagonal matrix with d ones and d minus ones; this matrix is the diagonalisation of ηAB .
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given W ∈ E, fW : V 7→WAηABV
B is an element of the dual bundle of E, E∗. By non-degeneracy

of a metric and specifically η, the metric ηx provides an isomorphism W 7→ fW between Ex and
E∗

x.
The equivalence between E and E∗ set by the η vector bundle isomorphism allows us to write

sections of E∗ as the sections of E that this isomorphism puts them in correspondence with; we
therefore write generalised tensors as sections of vector bundle powers of only E and/or Ẽ. We
write such a vector bundle

E⊗n
(p) = (detT ∗M)p ⊗ E ⊗ ...⊗ E

for tensors with n indices, of weight p. By definition this vector bundle is constructed from fibres
equal to the vector space products

(E⊗n
(p) )x = (detT ∗

xM)p ⊗ E⊗n
x .

Given a group G, we recall that the tensor product of two G-modules V and W is a G-module with

∀a ∈ G, v ⊗ w ∈ V ⊗W,a(v ⊗ w) = av ⊗ aw;

and given a basis for each fibre, equal to a G-module with G = O(d, d) × R+, we have in terms of
representations the transformation

VMN → V
′MN = ρMN

OP V OP ≡ ρMO ρ
N
P V

OP ,

where the tensor representation ρMN
OP is unique up to representation equivalence (corresponding to

changes of basis in the different fibres of the vector space product). Thus the tensor vector bundles
are constructed from different representations of O(d, d)×R+: representations of O(d, d) of definite
weight under R+.

3.2.2 Split frames

We can define an explicit class of conformal frames via a splitting of the generalised tangent space
E.

We define a splitting to be a smooth morphism over the identity f : TM → E, that by definition
maps a smooth section of TM to a smooth section of E, with the condition that f restricted to
TxM is linear. Choosing the tangent tangent vector portion to remain unchanged, f is therefore
entirely defined by dimM = d local one-forms ba, 1 ≤ a ≤ d, such that

f(êa) = Va = V B
a ÊB = êa + babe

b, with Va globally defined,

where {ea} is the dual basis to {êa}, and {êa} are smooth sections of TM forming a basis on each
fibre. These d local one-forms can be replaced by one local two-form defined by ba = iêaB ⇐⇒
bab = Bab. Recalling the patching on E, the condition that Va be globally defined is equivalent to:

êa(i) + iêa(i)B(i) = êa(j) + iêa(j)B(j)

⇐⇒

{
êa(i) = êa(j)

iêa(i)B(i) = iêa(j)B(j) − iêa(j)dΛ(ij) = iêa(i)B(j) − iêa(i)dΛ(ij) = iêa(i)(B(j) − dΛ(ij)) ∀ 1 ≤ a ≤ d

⇐⇒
{
B(i) = B(j) − dΛ(ij).

Thus defining a splitting is equivalent to specifying a local 2-form B patched as the potential
B-field of supergravity!
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We can define a split frame ÊA for Ẽ from these globally-defined basis elements in E by com-
plementing them with a set of cotangent basis elements, which we know are globally defined on E,
and by adding a smooth common factor to all for the R+ extension:

ÊA =

{
Êa = (det e)(êa + iêaB) forA = a,

Ea = (det e)ea forA = a+ d,

where e is the matrix ebν = (eb)ν of the dual basis elements {eb} in terms of the cotangent coordinate
basis elements {dxµ}. A good candidate for a frame conformal factor, det e transforms correctly
under detT ∗M , while keeping the same expression: For ea 7→ e

′a = Aa
be

b, i.e. A a transformation
matrix for the cotangent basis, we have

det eaν 7→ det
(
Aa

be
b
ν

)
=

{
det(Aa

b) det(e
b
ν) = (detA)(det e)

det
(
(Aa

be
b)ν

)
= det e

′a
ν .

To understand why these form a basis on every fibre of Ẽ we need only consider that we know
{êa} ∪ {ea} form a basis on the corresponding fibre Ex ≃ TxM ⊕ T ∗

xM , and {iêaB}, as local
one-forms, are linear combinations of {ea}, elements of this set.

We can show that split frames are conformal:〈
ÊA, ÊB

〉
= (det e)2ηAB.

Indeed, 
〈
Êa, Êb

〉
= (det e)2iêaiêbB = 1

2 (Bab +Bba) = 0〈
Êa, Êb

〉
= 0〈

Êa, Ê
b
〉
= (det e)2 12 iêae

b = 1
2(det e)

2δba =
〈
Êb, Êa

〉
.

For V = vaÊa+λaE
a ∈ Γ(Ẽ), which we recall we can also write V = v(i)+λ(i) on a given patch

Ui (where v(i) ∈ Γ(TUi), λ(i) ∈ Γ(T ∗Ui)), we define the section of (detT ∗M)(TM ⊕ T ∗M)

V (B) := va(det e)êa + λa(det e)e
a

= V − va(i)(det e)iêa(i)B(i) = V − iv(i)B(i) = v(i) + λ(i) − iv(i)B(i).

We can see that the map V 7→ V (B) defines a smooth vector bundle isomorphism between Ẽ and
(detT ∗M)(TM ⊕ T ∗M). Noting that each element of the split frame is globally defined in Ẽ,
{ÊA} are smooth sections of Ẽ. We then have a bijection between smooth basis sections {ÊA} of
Ẽ and smooth basis sections {(det e)êa} ∪ {(det e)ea} of (detT ∗M)(TM ⊕ T ∗M), which gives an
isomorphism between the fibres of the two bundles over M , that varies smoothly over M . Indeed, a
linear isomorphism between vector spaces is equivalent to a bijection between bases combined with
the carrying of coordinates from one basis to the other, which is exactly what this mapping does
between two fibres Ẽx and (detT ∗M)(TM ⊕ T ∗M)x.

Remark. We can omit the R+ extension since the conformal factor is simply carried over in this
bundle isomorphism, and say that a B splitting defines a bundle isomorphism E ≃ TM ⊕ T ∗M .
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3.2.3 Gsplit: a frame sub-bundle with all the necessary geometry

The conformal class of split frames defines - or to be more precise, defines a bundle isomorphic to -
a sub-bundle of the principal O(d, d)×R+ - bundle F̃ . These frames are related by coordinate/basis
transformations belonging to a group Gsplit of matrices of the form:

M = (detA)−1

(
1 0
ω 1

) (
A 0
0 (A−1)T

)
,

where A is invertible and ω is a closed 2-form, i.e. dω = 0, that appears here as an antisymmetric
matrix: (ω)ab = ωab. Gsplit defines a subgroup GL(d,R)×Rd(d−1)/2 of O(d, d)×R+. We can see this
isomorphism by identifying the spaces the variables A and ω live in: A is a d× d real, non-singular
matrix, and ω, being a 2-form defined by two anti-symmetric indices each varying from 1 to d, lives
in a d(d− 1)/2-dimensional vector space.

The Gsplit matrix form is defined in split frame indices. Its action on a split frame defined by
{êa} and B carries out the transformations

êa → êb(A
−1)ba

=⇒ ea → Aa
be

b

B → B′ = B + ω,

which are exactly the transformations that bring one split frame to another.

Remark. B′ must be patched as B to be a splitting, this requires ω to be a two-form, globally defined.
Why it must be closed for B′ to be a splitting.. This is more for it to correspond to a bosonic gauge
symmetry transformation, no?

Taking ω = 0, we can show the diffeomorphism part of these transformations:

Ê′
A = ÊB(M

−1)BA = ÊB(detA)

[(
A−1 0
0 AT

)(
1 0
−ω 1

)]B
A

,

so we have

Ê′
A =


for A = a ≤ d : Ê′

a = Êb(detA)(A
−1)ba = (det(Ae))

(
êb(A

−1)ba + (A−1)baiêbB
)

= (det e′)
(
êb(A

−1)ba + iêb(A−1)ba
B
)
,

for A = d+ a : E′a = EbAa
b = ebAa

b

where e′ = e′aν .
Taking A = 1, we can show the effect of ω on B:

Ê′
A =

{
for A = a ≤ d : Êa + Eb(−ω)ba = Êa − ebωba = Êa + ωabe

b = êa + iêa(B + ω),

for A = a+ d : Ea.

Remark. Showing these separately does not suffice to prove that any combination of A ̸= 1 and
ω ̸= 0 will translate to these transformations; but a less legible calculation proves that this is true.

Thus the set of split frames defines a Gsplit structure, which from a supergravity point of view,
contains all combinations of conventional diffeomorphisms (tangent/cotangent basis/coordinate
transformations), and bosonic gauge symmetry transformations of B, B′

(i) = B(i) − dλ(i), where

ω = dλ is a closed one-form. As the patching elements in the definition of Ẽ lie entirely in the set of
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split frames (where the imposed patching of B absorbs the particular patching of E), the structure
of Ẽ lies in the Gsplit structure.

It will prove useful to define a class of conformal split frames, given by conformal rescaling of
the set of split frames by a function ϕ:

ÊA =

{
Êa,= e−2ϕ(det e) (êa + iêaB) for A = a ≤ d

Ea = e−2ϕ(det e)ea for A = a+ d,

defining a Gsplit × R+ sub-bundle of F̃ .

Remark. We know (det e) is already an element of detT ∗M as it is real and transforms correctly.
However it has no variability, it is entirely determined. The product of (det e) with a positive scalar
function transforms the same way and has the added variability that comes with the choice of scalar,
spanning all the possible positive detT ∗M elements. This puts into relation the group R+ and the
space defined by its transformation detT ∗M , R+ bringing one element of this space to another.

In analogy with the split case, for V = V aÊa + λaE
a =∈ Γ(Ẽ), we have that

V (B,ϕ) = e2ϕ
(
v(i) + λ(i) − iv(i)B(i)

)
= (det e) (vaêa + λae

a) ∈ (detT ∗M)⊗ (TM ⊕ T ∗M)

is the translation of the components of V in an {ÊA} conformal split frame basis of Ẽ, onto a
(detT ∗M)⊗(TM⊕T ∗M) frame, relating the split frame components of V to those in the coordinate
basis.

3.3 The Dorfman derivative and Courant bracket

3.3.1 The Dorfman derivative or generalised Lie derivative

The generalised tangent space admits a generalisation of the Lie derivative that encodes the bosonic
symmetries of the NSNS sector of type II supergravity as well as the diffeomorphism symmetries.
Given V = v+ λ, one can define an operator LV acting on a generalised tensor, which combines an
infinitesimal diffeomorphism transformation generated by a tangent vector v and a B-field gauge
transformation generated by a one-form λ. We recall that a bosonic gauge symmetry transformation
in type II supergravity takes the form: B′

(i) = B(i) − dλ(i) where dλ(i) = dλ(j). Thus, the closed w
seen in the Gsplit transformation matrix expression, when exact - equal to an exterior derivative,
which is indeed closed -, can be interpreted as generating a gauge transformation.

Remark. We can use infinitesimal diffeomorphisms to characterise movement from one tangent
space to a neighbouring tangent space, as moving along M is equivalent to changing the coordinates
of the point you are looking at. This puts into equivalence the action on a tensor of an infinitesimal
diffeomorphism generated by the vector field v at that point, and the change of the tensor along the
flow defined by v, which the conventional Lie derivative aims to describe. This is also equivalent
to saying that we describe the diffeomorphism with an active coordinate transformation, instead of
passive.

Here a neighbouring generalised tangent space has not only a new coordinate frame but also a
new B-field. We aim for the generalised Lie derivative to describe the effects of both of these changes
on a given tensor’s components in the coordinate frame.

We may also note that the study of the Lie derivative must be done on a given patch, as the
coordinate frame is only locally defined. However, the Lie derivative is globally defined.

We recall that conventionally, the action of an infinitesimal diffeomorphism generated by v
on a given tensor field is encoded in the Lie derivative acting on all tensor coordinate indices,
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telling us how the components of the tensor transform under an active coordinate transformation
xµ → x′µ = xµ + ϵV µ + O(ϵ2). Thus by definition the action of the Lie derivative on the the
coordinate frame itself (whose components in its own frame are of course constant) is null. The
coordinate frame is used as a reference point, the change in the tensor being expressed via the
change in its coordinate frame components. We will have the same here, LV ÊN = 0.

We define the generalised Lie derivative, which we call the Dorfman derivative, as follows: For
V = v + λ a section of E (which crucially for the Lie derivative implies that v is a global tangent
vector field), W = ω + ζ ∈ Ep an E vector of weight p,

LVW = Lvw + Lvζ − iwdλ.

ω and ζ are locally a p-weighted tangent vector field and one-form respectively, so we can write
the action of the conventional Lie derivative on these explicitly as:

Lvw
µ = vν∂νw

µ − wν∂νv
µ + p(∂νv

ν)wµ,

Lvζµ = vν∂νζµ + ζν∂µv
ν + p(∂νv

ν)ζµ.

As usual we define the action on a function f to be LV f = Lvf = vµ∂µf . We can then extend
the Dorfman derivative to any tensor using the Leibniz property LV (A⊗B) = LVA⊗B+A⊗LVB.

We can obtain the explicit expression for the action of the Dorfman derivative on any tensor by
writing its action in a more O(d, d) × R+-covariant way, on a generalised coordinate frame index.
The part of the action of the generalised Lie derivative that varies the index can then be extended
to a generic tensor as the sum of this action on each index.

To find its covariant expression, one first needs to embed the partial derivative operator into the
generalised geometry of E:

∂M =

{
∂µ for M = µ ≤ d,

0 for M = µ+ d.

This is defined as an element of E∗, with the index down. To raise the index and have an element
of E we use the metric ηMN .

Rewritten in terms of generalised objects, the Lie derivative on an E vector of weight p has the
form:

LVW
M = V N∂NW

M +
(
∂MV N − ∂NVM

)
WN + p

(
∂NV

N
)
WM ,

where indices are contracted using the O(d, d) metric ηMN , and M indexes the coordinate frame
{ÊM} component.

Remark. The O(d, d) metric is constant with respect to the partial derivative ∂µ, as the coordinate
frame is orthonormal; so we can swap the heights of indices in contractions as we please.

Proof. First, we note

∂M = ηMN∂N =

{
0 forM ≤ d

2∂µ forM = µ+ d
where ηMN = 2

(
0 1
1 0

)
,

WN = ηNPW
P =

1

2

(
0 1
1 0

)
NP

WP =

{
1
2ζν for N = ν ≤ d
1
2w

ν for N = d+ ν,

and
iwdλ = iw(∂µλνdx

µ ∧ dxν) = wµ∂µλνdx
ν − wν∂µλνdx

µ = wν(∂νλµ − ∂µλν)dx
µ.
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Crucially, we have LV ÊN = 0: Indeed, ?
Thus LVW

M = (LVW )M . If can’t prove this, maybe just do everything with parentheses

We find the right-hand-side generalised expression V N∂NW
M +

(
∂MV N

)
WN −

(
∂NV

M
)
WN +

p
(
∂NV

N
)
WM to be equal to{

vν∂νw
µ + 0− (∂νv

µ)wν + p (∂νv
ν)wµ = Lvw

µ for M = µ ≤ d,

vν∂νζµ + (2∂µv
ν)12ζν + (2∂µλν)

1
2w

ν − (∂νλµ)w
ν + p(∂νv

ν)ζµ = Lvζµ − (iwdλ)µ for M = µ+ d.

The first case is indeed the tangent vector part Lvw of LVW , in the tangent coordinate basis
{ ∂
∂xµ }, and the second case is the covector part of the generalised Lie derivative, corresponding to

(Lvζ − iwdλ), in the cotangent coordinate basis {dxµ}.

3.3.2 The Dorfman adjoint action

We can rewrite the Dorfman derivative as

LVW
M = V N∂NW

M +
(
∂MVN − ∂NV

M +
(
∂PV

P
)
δMN

)
WN ,

which has the exact same form as the conventional Lie derivative acting on a conventional tensor, but
with the adjoint action −mM

N = ∂MVN − ∂NV
M +

(
∂PV

P
)
δMN living in the Lie algebra o(d, d)⊕R

instead of gl(d,R) like the conventional adjoint action aµν = ∂νv
µ.

Indeed, we can show that m is an element of this Lie algebra, being of the form:

m.W =

[(
a 0
−ω −aT

)
− ptra1

](
ω
ζ

)
where wµν = ∂µλν − ∂νλµ, and a

µ
ν = ∂νv

µ is the conventional adjoint action in the Lie algebra of
the non-singular, real d× d matrices for changes of tangent basis.

We want to verify 1) that a matrix of this form does in fact live in the Lie algebra of O(d, d)×R+,
and 2) that the action described above is in fact equal to the action of m.

1) For M ∈ O(d, d), by definition: MT ηM = η. To first order in the coefficients of m defined
by M = 1 +m, we have

MT ηM =
(
1 +mT

)
η (1 +m) = η +mT η + ηm

So gl(2d,R) ⊃ o(d, d) = {mT = −ηmη−1}, which is equivalent to saying m is of the form:

mM
N =

(
A B
C −A−T

)
with B and C antisymmetric.

These conditions are indeed satisfied by the matrix

(
a 0
−ω −aT

)
since ω is a 2-form and therefore

has antisymmetric coefficients ωµν , so(
a 0
−ω −aT

)
− ptra1 ∈ o(d, d)⊕ R.

Remark. The o(d, d) Lie algebra condition is equivalent to:

mMN = mM
P η

PN =

(
A B
C A−T

)
× 2

(
0 1
1 0

)
= 2

(
B A

−AT C

)MN

, i.e. mMN is antisymmetric.

We will use this result in a future section.
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In fact we can even be more specific about the adjoint action of the Dorfman derivative: m acts
in the Lie algebra of the Gsplit subgroup of G. Indeed, taking the corresponding form of M ∈ Gsplit,
and choosing to write −ω for the closed 2-form, we have

M = (detA)−1

(
A 0

−ωA (A−1)T

)
= (1− tra)

(
1 + a 0

−ω(1 + a) 1 − aT

)
= 1 − tra1 +

(
a 0
−ω −aT

)
to first order in (A− 1)ab = aab and ωab. This is exactly the form of the adjoint action m in LVW ,
where p = 1 (W ∈ Ẽ). Note that the fact that M ∈ Gsplit is written in a split basis, not the
coordinate basis like the adjoint action matrix m, is unimportant. A change of basis just marks an
isomorphism between equivalent groups or Lie algebras, or equivalent representations of the same
group. If we put the set of Gsplit transformation matrices in the coordinate frame, the set of Lie
algebra matrices we would find would be isomorphic to the set of adjoint action matrices m.

Remark. From the form of M ∈ Gsplit, and the derivation of the Lie algebra matrices, we can deduce
the form M would need to have for p > 1: (detA)−1 would need to be replaced with (detA)−p.

2) We will now verify that the action of m in the Lie derivative LVW
M = V N∂NW

M −mM
NW

N

is equal to this adjoint action:(
a 0
−ω −aT

) (
ω
ζ

)
− p(tra)

(
ω
ζ

)
=

(
aw − p(tra)w

−ωw − aT ζ − p(tra)ζ

)

=

(
(∂νv

µ)wν − p(∂νv
ν)wµ

−(∂µλν − ∂νλµ)w
ν − (∂µv

ν)ζν − p(∂νv
ν)ζµ

)
= −

(
Lvw

µ − vν∂νw
µ

Lvζµ − vν∂νζµ

)
= −

(
LVW

M − V N∂NW
M
)
=

(
mM

NW
N
)
.

This Lie derivative can be naturally extended to an arbitrary O(d, d)× R+ tensor α ∈ Γ(E⊗n
(p) ):

LV α
M1...Mn = V N∂Nα

M1...Mn+(∂M1V N−∂NVM1)α M2...Mn
N +...+(∂MnV N−∂NVMn)α

M1...Mn−1

N +p(∂NV
N )WM .

3.3.3 The Courant bracket

The Dorfman derivative by definition must be taken with respect to a section of E (n = 1,p = 0),
i.e. V ∈ Γ(E) in LVW , but if we also take W ∈ Γ(E), one can define the antisymmetrisation of the
Dorfman derivative: the Courant bracket. For W = w + ζ and V = v + λ, we have

JV,W K =
1

2
(LVW − LWV )

We can show that this is equal to

JV,W K = [v, w] + Lvζ − Lwλ− 1

2
d(ivζ − iwλ).

Proof.

JV,W K =
1

2
((Lvw + Lvζ − iwdλ)− (Lwv + Lwλ− ivdζ)) =

1

2
([v, w]− [w, v] + Lvζ − Lwλ+ ivdζ − iwdλ) ,

where we identified Lvw = [v, w]. We can use the Cartan formula for a differential form λ, Lvλ =
{d, iv}λ, to write

ivdζ − iwdλ = Lvζ − d(ivζ)− Lwλ+ d(iwλ),

and finally JV,W K = 1
2 (2[v, w]− d(ivζ) + d(iwλ))+Lvζ−Lwλ = [v, w]+Lvζ−Lwλ− 1

2d (ivζ − iwλ)
where we used the linearity of the exterior derivative d.
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To write the Courant bracket in an O(d, d) covariant form, we antisymmetrise the covariant
form of the Dorfman derivative for p = 0:

1

2

(
V N∂NW

M + (∂MV N )WN −
(
∂NV

M
)
WN − (V ↔W )

)
We note that the sum of the first and third terms is already antisymmetric on V and W . All we
need to do is antisymmetrise the second term:

JV,W KM = V N∂NW
M −WN∂NV

M − 1

2

(
VN∂

MWN −WN∂
MV N

)
,

giving us our covariant Courant bracket expression.

3.4 Generalised O(d, d)× R connections and torsion

We want to define generalised connections and torsion to be able to explore the possibility of defining
a generalised curvature.

3.4.1 Generalised connections

We are interested in generalised connections compatible with the O(d, d)× R+ structure.
Define a 1st-order linear differential operator D such that in frame indices, for W ∈ Γ(Ẽ),

DMW
A = ∂MW

A + Ω̃ A
M BW

B.

For D to be a compatible connection with the G = O(d, d) × R+ structure, we need Ω̃ A
M B to

live in the Lie algebra of G:
Ω̃ A
M B = Ω A

M B − ΛMδ
A
B,

where Λ is the R+ part of the connection, and Ω the O(d, d) part satisfying

Ω AB
M = −Ω BA

M ,

as we previously explained. We have a natural extension of the action of D to any generalised
tensor; for α ∈ Γ(E⊗n

(p) ) we have

DMα
A1...An = ∂Mα

A1...An +Ω A1
M Bα

BA2...An + ...+Ω An
M Bα

A1...An−1B − pΛMα
A1...An .

Given a conventional connection ∇ and a conformal split frame where we recall Φ = e−2ϕ(det e),
we have a corresponding generalised connection which we will denote D∇(1).

Writing W ∈ Γ(Ẽ) in the conformal split frame, we have

W =WAÊA = waÊa + ζaE
a,

and by construction of a split frame, w = wa(det e)êa ∈ Γ((detT ∗M)⊗ TM) and ζ = ζa(det e)e
a ∈

Γ((detT ∗M) ⊗ T ∗M). So ∇µw
a and ∇µζa are well defined, which we can use to define a gener-

alised connection whose action on Ẽ corresponds to these conventional actions on the split frame
coordinates: If M ≤ d we have

(D
∇(1)
M WA)ÊA =

{
∇µw

a for A = a ≤ d

∇µζa for A = a+ d
,

otherwise D
∇(1)
M WA = 0. We can say that the conformal split frame lifts the connection ∇ to an

action on Ẽ.
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3.4.2 Generalised torsion

In analogy to the conventional definition of the torsion, we define the generalised torsion T of a
generalised connection D as, for α a generalised tensor and LD

V α the Dorfman derivative with D
replacing ∂, we define

T (V ) · α = LD
V α− LV α,

where T (V ) acts via the adjoint representation on α. Indeed, denoting mM
P and m′M

P the adjoint
actions of LD

V α and LV α respectively, we have for W a generalised vector (to simplify we reduce
the number of indices to one)

T (V )WM = V N Ω̃ M
N PW

P +mM
PW

P −m′M
P W

P ,

where Ω̃ M
N P∀N , mM

P and m′M
P all live in the Lie algebra of G, hence so does T (V ).

So
T : Γ(E) → Γ(adF̃ )

where adF̃ represents the o(d, d)⊕ R adjoint representation bundle associated to F̃ : an element of
a fibre (adF̃ )x is a matrix element of the Lie algebra of G, the group associated to the bundle F̃ .
It is written in a basis of F̃x and acts on coordinates and basis elements of Ẽx.

We have the isomorphism ad(F̃ ) ≃ Λ2E⊕R. Indeed, we saw that the space o(d, d) was equivalent
to the space of antisymmetric matrices with E indices, and therefore to the space of antisymmetric
2-index E tensors.

We can view the torsion T as a tensor T ∈ Γ(E ⊗ ad(F̃ )), since it sends Ex to (ad(F̃ ))x and is
linear in V ∈ Γ(E). Indeed, T (V ) being an element of the Lie algebra and linear in V we have the
indices T (V )MN = V PTM

PN ; TM
PN is corresponds to the tensor T ∈ Γ(E∗ ⊗ ad(F̃ )) ≃ Γ(E ⊗ ad(F̃ )).

By definition, the action of T (V ) on each Ẽ index is the same, so it suffices to explicitly express
the action of T (V ) on a generalised vector W ∈ Ẽ to have its action on any generalised tensor.

Denoting {ÊA} a general conformal basis for Ẽ with
〈
ÊA, ÊB

〉
= Φ2ηAB, {Φ−1ÊA} is an

orthonormal basis for E. We define the different components as follows:

for V ∈ Γ(E), V = V AΦ−1ÊA, and for W ∈ Γ(Ẽ), W =WAÊA.

Given a connection DMW
A = ∂MW

A + Ω̃ A
M BW

B, one has

TABC = −3Ω̃[ABC] + Ω̃ D
D BηAC − Φ−2

〈
ÊA, LΦ−1ÊB

ÊC

〉
,

where indices are lowered with ηAB.

Proof. Recall for W ∈ Γ(Ẽ),
DMW

A = ∂MW
A + Ω̃ A

M BW
B,

LVW
M = V N∂NW

M + (∂MV N − ∂NVM )WN + (∂NV
N )WM ,

and by definition of the generalised connection D

LD
V ÊC = 0 ∀C.

Writing V ∈ Γ(E) with the components V = V B(Φ−1ÊB), and any quantity in Ẽ as W =WAÊA ∈
Γ(Ẽ): e.g.

(
LΦ−1ÊB

)C
ÊC , [T (V )(W )]A ÊA, we have

[T (V )W ]A =
[
T (V )(WCÊC)

]A
= T (V )(WC)Ê A

C +WC
[
T (V )(ÊC)

]A
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= V BΩ̃ A
B CW

C + (Ω̃A
CBV

B − Ω̃ A
C BV

B)WC + Ω̃ D
D BV

B(δACW
C)−WCV B(LΦ−1ÊB

ÊC)
A

= T (V )ACW
C = V BTA

BCW
C by definition of these two objects.

So, lowering the D index of TD
BC with ηDA, we have

TABC = Ω̃BAC + Ω̃ACB − Ω̃CAB + Ω̃ D
D BηAC − (LΦ−1ÊB

ÊC)
DηDA.

Knowing the 2 last of Ω’s indices are already antisymmetric by definition, we have

Ω̃[ABC] = Ω[ABC] − Λ[AηBC] = Ω[ABC] =
1

3
(ΩABC +ΩBCA +ΩCAB).

We can also note〈
Lϕ−1ÊB

ÊC , ÊA

〉
= (Lϕ−1ÊB

ÊC)
D
〈
ÊD, ÊA

〉
= (Lϕ−1ÊB

ÊC)
DΦ2ηDA.

So (LΦ−1ÊB
ÊC)

DηDA = Φ−2
〈
Lϕ−1ÊB

ÊC , ÊA

〉
, and we have the final expression

TABC = −3Ω̃[ABC] + Ω̃ D
D BηAC − Φ−2

〈
ÊA, LΦ−1ÊB

ÊC

〉
,

where Ω̃[ABC] = Ω[ABC].

Remark. The middle index B is an E index, the others are Ẽ indices.

One might expect T ∈ Γ
(
(E ⊗ Λ2E)⊕ E

)
by distributing the product of E with adF̃ ≃ Λ2E⊕R,

but fewer components actually enter the torsion. We can see this by looking at the above expression
of the torsion tensor: the first term is totally antisymmetric and lives in E, since the R part ΛMηAB

of Ω̃ disappears with antisymmetrisation. The second term has one E index, B, and the third term
acts as a constant, independent of Ω in the Dorfman derivative. The generalised torsion therefore
lives in a space isomorphic to the direct sum Γ(Λ3E ⊕ E).

We can see this more directly in the two components of the coordinate basis ÊN , where we have
LV ÊN = 0, therefore

TM
PN = (T1)

M
PN − (T2)P δ

M
N ,

with
(T1)MNP = −3Ω̃[MNP ] = −3Ω[MNP ],

(T2)M = −Ω̃ Q
Q M = ΛM − Ω Q

Q M .

3.4.3 Generalised torsion for D∇, where ∇ is torsion-free

Here we will calculate the torsion for the generalised connection D∇ associated to a torsion-free
conventional connection ∇. This explicit calculation will facilitate the writing of other generalised
connections and torsions; notably it will help us derive the form of a generalised connection that
we impose to be torsion-free.

Recall that D∇ is defined with respect to the components in the split conformal frame {ÊA},
with conformal factor Φ = e−2ϕ(dete).

We are interested in the coordinate frame components T1 and T2. To obtain these we will first
calculate

1. the torsion TA
BC in the split conformal frame, where we know the expression of D∇,

2.
(
LΦ−1ÊB

ÊC

)A
, (minus) the third term in the expression of TA

BC .
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The sum of these is equal to (T1)
A
BC + (T2)Bδ

A
C , which we will use to deduce each component

separately in the split conformal frame. We can then raise all the indices with ηAB to remove all
dual indices, and finally take êa in ÊA to be the coordinate frame { ∂

∂xµ }, and find the components

T1 and T2 in the generalised coordinate frame {ÊN}.

1. To find TA
BC , we write for V ∈ Γ(E), W ∈ Γ(Ẽ),

T (V ) ·W = LD
VW − LVW = (L∇

v w + L∇
v ζ − iwd

∇λ)− (Lvw + Lvζ − iwdλ),

which for a torsion-free conventional connection{
∇µv

a = ∂µv
a + ω a

µ bv
b

∇µλa = ∂µλa − ω b
µ aλb

in the frames {êa} and {ea},

where L∇
v w − Lvw = 0 and L∇

v ζ − Lvζ = 0, becomes

T (V ) ·W = iw(dλ− d∇λ) = iw(ω
b

c aλbe
c ∧ ea) = wcλb(ω

b
c a − ω b

a c)e
a =WCV BTA

BCÊA.

2. We have generally

LΦ−1ÊB
ÊC = (LΦ−1ÊB

Φ)Φ−1ÊC +Φ(LΦ−1ÊB
(Φ−1ÊC))

where here, in the conformal split frame,

LΦ−1ÊB
Φ =

{
−e−2ϕ(det e)(iêbiêdde

d + 2iêbdϕ) for B = b ≤ d

0 for B = b+ d

Proof. First, we note that

LΦ−1ÊB
Φ =

{
LêbΦ = (êb)

µ∂µΦ = ∂bΦ for B = b ≤ d

0 for B = b+ d

since the vector part of Eb is null, and where ∂b = (êb)
µ∂µ. We also note that the embedding

of dϕ in E is equal to

1

2
(∂Aϕ)ϕ−1ÊA =

1

2
(∂A=d+aϕ)(ϕ−1Ea) =

1

2
2(∂aϕ)e

a = (∂aϕ)e
a = dϕ,

recalling that ηAB = 2

(
0 1
1 0

)
.

Coming back to the Lie derivative of Φ we have:

LΦ−1Êb
Φ = ∂bΦ = ∂b(e

−2ϕ(det e)) = e−2ϕ(det e) tr(e−1∂be)− 2(∂bϕ)Φ,

where ebν = (eb)ν and (e−1)νb = (êb)
ν . The first term is equal to

Φê ν
a ∂b(e

a
ν) = Φê ν

a ê
µ
b ∂µ(e

a
ν) = Φiêaiêbde

a = −Φiêbiêade
a,

where in coordinate components you have d((eb)νdx
ν) = ∂µ((e

b)ν)dx
µ ∧ dxν .

The second term is equal to ∂b(e
−2ϕ)(det e) = −2(∂bϕ)Φ = −2Φiêbdϕ, hence the result

LΦ−1Êb
Φ = −Φ(iêbiêdde

d + 2iêbdϕ).

24



On the other hand,

LΦ−1ÊB
Φ−1ÊC =

(
[êb, êc] + i([êb,êc]B − iêbiêcH Lêbe

c

−Lêce
b 0

)
BC

,

where H = dB.

Proof. We will be using Cartan’s formula: Lvλ = d(ivλ) + iv(dλ) for λ a differential form.

Writing the E split conformal basis elements Φ−1ÊB = V = v+ λ and Φ−1ÊC =W = w+ ζ,
we calculate LΦ−1ÊB

Φ−1ÊC = LVW = Lvw + Lvζ − iwdλ for the different cases:

• B = d+ b, C = c+ d. V = eb, W = ec, so v = 0 and w = 0, therefore LVW = 0;

• B = b ≤ d, C = c+ d. V = êb + iêbB, W = ec, so w = 0 and LVW = Lvζ = Lêbe
c;

• B = b+ d, C = c ≤ d. V = eb, W = êc + iêcB, so v = 0 and

LVW = −iwdλ = −iêcdeb = −Lêce
b + d(iêce

b) = −Lêce
b + d(δbc) = −Lêce

b;

• B = b ≤ d, C = c ≤ d. V = êb + iêbB, W = êc + iêcB, so

LVW = Lêb êc + Lêb(iêcB)− iêcd(iêbB)

= [êb, êc] + Lêb(iêcB)− iêcd(iêbB)

We note the property i[X,Y ] = [LX , iY ], so

i[êb,êc]B = Lêb(iêcB)− iêc(LêbB) = Lêb(iêcB)− iêc(d(iêbB) + iêb(dB)),

and we conclude:

LVW = [êb, êc] + i[êb,êc]B + iêciêb(dB) = [êb, êc] + i[êb,êc]B − iêbiêcH,

since iêciêb is antisymmetric in b and c.

Summing the torsion and the third term, which we calculated in 1) and 2) respectively, with
W = w + λ and V = v + ζ, we obtain[

(T1)
A
BC + (T2)Bδ

A
C

]
V BWCÊA =

−vbWCδAC(iêbiêdde
d + 2iêbdϕ)ÊA + vbwc

(
[êb, êc]

aÊa − (iêbiêcH)aE
a
)

+(Lêbe
c)aE

avbζc + λbw
c(ω b

c a − ω b
a c − Lêce

b)aE
a.

We recognise that (T2)BV
B must be −vb(iêbiêdded + 2iêbdϕ), so

(T2)B =

{
−(iêbiêdde

d + 2iêbdϕ) for B = b ≤ d,

0 for B > d.

We can deduce that TB
2 with index raised is equal to

(T2)
B = ηBA(T2)B =

{
0 for B = b ≤ d

−2(iêbiêdde
d + 2iêbdϕ) for B > d.
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Taking {êa} to be the coordinate basis, only the dϕ term remains since ddxµ = 0, and we have that
T2 is the embedding of −4(i∂µdϕ)dx

µ = −4dϕ in E.

We deduce T1 from the remaining terms of the sum:

(T1)
A
BC =



for A = a ≤ d,

{
for B = b ≤ d,C = c ≤ d : [êb, êc]

a,

otherwise: 0,

for A = a+ d,


B = b, C = c : −(iêbiêcH)a,

B = b, C = c+ d : (Lêbe
c)a,

B = b+ d, C = c : −(Lêce
b)a + ω b

c a − ω b
a c,

B = b+ d, C = c+ d : 0.

If we take the coordinate basis, only the H term remains. Indeed, in coordinate indices the compo-
nents of the torsion are ω µ

ν λ−ω
µ

λ ν = Tµ
νλ, therefore this term cancels as we are using a torsion-free

connection. Regarding the other terms, we have [ ∂
∂xµ ,

∂
∂xν ] = 0 and L ∂

∂xµ
dxν = 0: partial derivatives

commute and L ∂
∂xµ

dxν = d(iµdx
ν) + iµ(d

2xµ) = d(δνµ) + 0 = 0.

Thus we have

(T1)
M
NP =

{
−(i∂/∂xν i∂/∂xλH)µ for M = µ+ d, N = ν ≤ d, P = λ ≤ d,

0 otherwise.

Raising the indices B and C, we obtain

(T1)
MNP =

{
−22(i∂/∂xν i∂/∂xλH)µ = −4i∂/∂xµi∂/∂xν i∂/∂xλH = −4Hµνλ for M = µ+ d, N = ν + d, P = λ+ d,

0 otherwise,

which is the embedding of −4H in E.

Finally we have the coordinate frame components of the generalised torsion of D∇ with a
torsion-free conventional connection ∇:

T1 = −4H, T2 = −4dϕ,

where we are using the embedding T ∗M → E to be able to write the E objects in terms of differential
forms.

3.4.4 The absence of generalised curvature: conditional tensoriality

We would like to introduce a form of generalised curvature on E for a given generalised connection
D in analogy to the usual definition R(u, v)w = [∇u,∇v]w − ∇[u,v]w, by replacing ∇ with D and
the Lie bracket with the Courant bracket:

R(U, V,W ) = [DU , DV ]W −D[[U,V ]]W.

Remark. (U, V ) → R(U, V, .), lives in Γ((E ⊗E)⊗ o(d, d)), since the final object acts on W via the
adjoint representation of O(d, d).

However, this object is non-tensorial.
If R were tensorial we would have R(U, V,W )M = RM

NPLU
NV PWL, making R linear in U , V

and W . Checking for linearity in the arguments U and V , we have for some scalar functions f, g

R(fU, gV,W ) = [DfU , DgV ]W −D[[fU,gV ]]W = fg
(
[DU , DV ]W −D[[U,V ]]W

)
− 1

2
⟨U, V ⟩D(fdg−gdf)W.

The curvature is not linear in U and V : In the last term, f, g don’t present themselves as scalar
factors.
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Proof.

[DfU , DgV ]W = [fDU , gDV ]W = fg[DU , DV ]W + fDU (g)DVW − gDV (f)DUW

where DUf = UM∂Mf .

D[[fU,gV ]] =

(
fUN∂N (gVM )− gV N∂N (fUM )− 1

2

(
fUN∂

M (gV N )− gVN∂
M (fUN )

))
DMW

= fgD[[U,V ]]W +

(
∂N (g)fUNVM − g∂N (f)V NUM − 1

2
(f∂Mg − g∂Mf)UNV

N

)
DMW

= fgD[[U,V ]]W + (DUg)fDVW − g(DV f)DUW − ⟨U, V ⟩Dfdg−gdfW

where the exterior derivative of a function df embedded in E is equal to df = (∂µf)dx
µ =

1
2(∂

Mf)ÊM , where {ÊM} is the coordinate basis in E. Error: supposed to be plus on last term
and factor of a half.

With additional structure, we can define more constrained objects that are tensorial measures
of general curvature: Let C1 ∈ E and C2 ∈ E be subspaces such that ⟨U, V ⟩ = 0 for all U ∈ Γ(C1)
and V ∈ Γ(C2). Then the final term in the expression of R(fU, gV,W ) vanishes and R is linear in
all arguments. It can be proven that R ∈ Γ((C1 ⊗ C2)⊗ o(d, d)) is a tensor.

4 Supergravity in Generalised Geometry

We would now like to construct the generalised analogue of the Levi-Civita connection: the name
for the unique torsion-free conventional connection that preserves the O(d) ⊂ GL(d, (R)) structure
defined by a metric g.

Here, in generalised geometry and in the context of supergravity, we are interested in generalised
connections preserving an O(p, q)×O(p, q) ⊂ O(d, d)× R+ structure on F̃ , where p+ q = d.

We will find that it is possible to construct torsion-free connections of this type, but there is no
unique choice.

4.1 O(p, q)×O(p, q) structures and the generalised metric

Consider an O(p, q) × O(q, p) ⊂ O(d, d) × R+ principal sub-bundle P of the generalised structure
bundle F̃ .

We will see that specifying such a sub-bundle is equivalent to specifying a conventional metric
g of signature (p, q), a B-field patched as in supergravity (or as in a split frame), and a dilaton ϕ:
all the elements needed to capture the NSNS supergravity fields.

Geometrically, an O(p, q)×O(q, p) structure

• fixes a nowhere vanishing section Φ ∈ Γ(detT ∗M) since it is in fact a subgroup of O(d, d),
giving an isomorphism between weighted and unweighted generalised tangent spaces Ẽ and
E.

• defines a splitting of E into two d-dimensional sub-bundles: by property of G-modules, each
fibre vector space Ex will be split into a direct sum Ex = (C+)x ⊕ (C−)x, with the first being
an O(p, q)-module, and the second an O(q, p) module.

We can write
E = C+ ⊕ C−,

such that the O(d, d) metric η restricts to two separate metrics, one of signature (p, q) on C+

and one of signature (q, p) on C−. Each sub-bundle is isomorphic to TM .
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We can identify a special set of frames defining an O(p, q) × O(q, p) bundle, isomorphic to a sub-
bundle of F̃ as we defined it. An O(p, q)×O(q, p) sub-bundle is a subset of frames that can be entirely
accessed from one frame via O(p, q)×O(q, p) group element transformations or a representation of
these; we describe her as special a choice of one of these subsets where we have a conserved η form
which manifests the O(p, q)×O(q, p) symmetry.

To have this manifest O(p, q) × O(q, p) symmetry, we define a frame {Ê+
a } ∪ {Ê−

ā } such that
{Ê+

a } form an orthonormal frame for C+ and {Ê−
ā } for C−; the union of the two forms a frame of

E. By definition these frame elements satisfy:
〈
Ê+

a , Ê
+
b

〉
= Φ2ηab,〈

Ê−
ā , Ê

−
b̄

〉
= −Φ2ηāb̄,〈

Ê+
a , Ê

−
ā

〉
= 0,

where the inner product symbol correspond to the η metric contraction as usual, Φ ∈ Γ(detT ∗M)
is now some fixed density, and ηab and ηāb̄ represent the same flat metric with signature (p, q), with
possibly different forms due to different bases (barred and unbarred).

Remark. ηab 7→ −ηab gives an isomorphism between metrics of signature (p, q) and −(p, q) = (q, p).

O(p, q) denotes the group that preserves the form of a given metric of signature (p, q). We note
that we can be this general in our definition since different metrics of same signature are isomorphic
to one another - in the sense that you go from one form to the other with a change of basis,
A−1ηA = η′ - so the two groups defined by preserving one form and the other form respectively are
isomorphic, and you can use A to get from one set of transformation matrices to the other.

The corresponding conformal frame

ÊA =

{
Ê+

a forA = a

Ê−
ā forA = ā+ d

satisfies 〈
ÊA, ÊB

〉
= Φ2ηAB, where ηAB =

(
ηab 0
0 −ηāb̄

)
.

We note that ηAB, while being the same metric, has a different form than before; this is the
form we will be referring to throughout this section. We redefine orthonormal to be the case Φ = 1
of the above of conformal frames.

Remark. It is clear that we have ∀V ∈ Γ(C−), W ∈ Γ(C+), ⟨V,W ⟩ = 0. We will attempt to use
this result in the Lichnerowicz section.

We will use the convention of raising and lowering small indices with their corresponding metrics
ηab and ηāb̄, and 2d - dimensional capital letter indices with the O(d, d) metric ηAB. For instance,
we have

ÊA =

{
Ê+a for A = a

−Ê−a for A = ā+ d.

One can write a generic O(p, q)×O(q, p) structure explicitly as{
Ê+

a = e−2ϕ√−g(ê+a + e+a + iê+a B),

Ê−
ā = e−2ϕ√−g(ê−ā − e−ā + iê−ā

B),
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where e+a = ηabe
+b, e−ā = ηāb̄e

−b̄ and Φ = e−2ϕ√−g is the fixed conformal factor; {ê+a }, {ê−ā }
are two independent orthonormal frames for the metric g (same as their duals for the inverse of g):

g = ηabe
+a ⊗ e+b = ηāb̄e

−ā ⊗ e−b̄,

or equivalently
g(ê+a , ê

+
b ) = ηab, g(ê−ā , ê

−
b̄
) = ηāb̄.

Remark. • {ê+a } and {ê−ā } are both independent frames of TM ; these bases have nothing to do
with the isomorphism of both C+ and C− with TM , and one must be careful not to confuse

ê
+/−
a with Ê

+/−
a .

• We have e+a = ηabe
+b ∈ E∗ which we can see from the index being down but there being no hat

on the e, as we remember η brings E to its dual space. However we regard e
+/−
a as an element

of E, and more precisely as a cotangent vector embedded in E by being a linear combination
of the {eb} with coefficients ηab.

Proof. Here we will prove that this form of conformal frame corresponds to a generic O(p, q)×O(q, p)
structure. We will use the following properties:

• As metrics, ηab and ηāb̄ are symmetric;

• The interior product satisfies {iX , iY } = 0 by antisymmetry of forms;

• For {êa} a basis on the tangent fibre and {ea} its dual, (ea)b(êa)
c = δcb by definition of the

dual basis;

• The inner product is bilinear, and we already know ⟨êa + iêaB, êb + iêbB⟩ = 0 - this provides
a shortcut for the calculations in the first and second of the following cases.

We have

〈
Ê+

a , Ê
+
b

〉
= Φ2 1

2(iê+a e
+
b + iê+b

e+a ) = Φ2 1
2

(
iê+a (ηbce

+c) + iê+b
(ηace

+c))
)
= Φ2 1

2(ηba + ηab) = Φ2ηab,〈
Ê−

ā , Ê
−
b̄

〉
= −Φ2 1

2(iê−ā
e−
b̄
+ iê−

b̄
e−ā ) = −Φ2ηāb̄ in the same way,〈

Ê−
ā , Ê

+
b

〉
= iê−ā

(e+b + iê+b
B) + iê+b

(−e−ā + iê−ā
B)

= ηbc(iê−ā
e+c)− ηāc̄iê+b

e−c̄ + iê−ā
iê+b

B + iê+b
iê−ā

B = ηbc(ê
−
ā )

d(iê+d
e+c)− ηāc̄iê+b

e−c̄

= ηbc(ê
−
ā )

dδcd −
(
(ê−ā )

dηde(ê
−
c̄ )

e
)
(e−c̄)f iê+b

e+f = ηbc(ê
−
ā )

c − (ê−ā )
dηdeδ

e
fδ

f
b

= ηbc(ê
−
ā )

c − ηbc(ê
−
ā )

c = 0

By this explicit construction of an O(p, q) × O(q, p) structure using split frames, where as we
know B absorbs the particular patching on E while all other elements it is summed with can be
globally defined, we see that there is no E-patching, topological obstruction to the existence of such
structures.

One can see that specifying an O(p, q) × O(q, p) sub-bundle is equivalent to specifying a con-
ventional metric g of signature (p, q), a B-field patched as in supergravity, and a dilaton ϕ: As we
can see from their appearances in the generic structure, fixing these leaves only (and rightly so) the
freedom to go from one frame to another via a matrix M ∈ O(p, q)×O(q, p), where the first factor
acts on {ê+a } (and inversely its dual), the second on {ê−ā }.
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We can combine the invariance of B and g under this subgroup in an invariant generalised metric
G, with the form

G = Φ−2
(
ηabÊ+

a ⊗ Ê+
b + ηāb̄Ê−

ā ⊗ Ê−
b̄

)
, i.e. GAB =

(
ηab 0
0 ηāb̄

)
,

which in the coordinate frame takes the expression

GMN =
1

2

(
g −Bg−1B −Bg−1

g−1B g−1

)
MN

.

G encodes both g and B: The bottom right corner gives you g; you can then deduce B from
any other corner. Thus, by construction, G and Φ together specify a subset of F̃ with an O(p, q)×
O(q, p) structure, which is equivalent to saying that the pair (G,Φ) parametrise the coset (O(d, d)×
R+)/(O(p, q)×O(q, p)) where p+ q = d.

4.2 Torsion-free, compatible connections

A generalised connection D is compatible with the O(p, q)×O(q, p) structure P ⊂ F̃ if

DG = 0, DΦ = 0,

meaning that D acts within the (O(d, d)× R+)/(O(p, q)×O(q, p)) coset or sub-bundle, so that for
W ∈ Γ(Ẽ) given by

W = wa
+Ê

+
a + wā

−Êā− ,

we have

DMW
A =

{
∂Mw

a
+ +Ω a

M bw
b
+ for A = a

∂Mw
ā
− +Ω ā

M bw
b̄
− for A = ā

with

ΩMab = −ΩMba, ΩMāb̄ = −ΩMb̄ā, i.e. both connections have an O(d, d) adjoint action.

Indeed, we saw that an O(p, q)×O(q, p) structure is one that fixes a nowhere vanishing section Φ,
and defines a splitting of E into E = C+ ⊕ C− such that the O(d, d) metric restricts to a separate
metric of signature (p, q) on C+ and a metric of signature (q, p) on C−. This is exactly what is
encoded in this connection: the fixing of the dilaton Φ reduces the adjoint action Ω̃ to an O(d, d)
adjoint action Ω, and finally the separate O(d, d) adjoint actions on each of the two sub-bundles C+

and C− is equivalent to an O(p, q)×O(q, p) adjoint action on E.

In this subsection we will prove the following theorem:

Theorem. Given an O(p, q)×O(q, p) structure P ⊂ F̃ , there always exists a torsion-free, compatible
generalised connection D. However, it is not unique.

We will start by constructing a compatible connection.
Let ∇ be the Levi-Civita connection for the metric g: ∇ is torsion free, and ∇g = 0 or equiva-

lently, for a given basis {êa}, ∇ ∂
∂xµ

êa = ω b
µ a where the set of connection one-forms ωa

b take values

in the adjoint representation of O(p, q), the group preserving g.
In terms of the two orthonormal bases {êa} and {êā}, we get two gauge equivalent spin-

connections: if v = vaê+a = vāê−ā ∈ Γ(TM) we have

∇µv
ν = (∂µv

a + ω+a
µ bv

b)(ê+a )
ν = (∂µv

ā + ω −ā
µ b̄

vb̄)(êā−)
ν
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= (∇µv
a
+)(ê

+
a )

ν = (∇µv
ā
−)(ê

−
ā )

ν .

We can then define, similarly to before but with coefficients in a different frame,

D
∇(2)
M W a =

{
∇µw

a
+ for M = µ

0 for M = µ+ d
, D

∇(2)
M W ā =

{
∇µw

ā
− for M = µ

0 for M = µ+ d,

By property of the Levi-Civita connection, ω+
µab = −ω+

µba and ω−
µab = −ω−

µba, therefore this
generalised connection is compatible with an O(p, q)×O(q, p) structure.

However, we can calculate the torsion of D∇(2) and show that it is not torsion-free. If we choose
the two orthonormal frames to be aligned, so ê+a = ê−ā = êa and therefore e+a = e−a = ea, we have

W = wa
+Ê

+
a + wā

−Ê
−
ā = wa

+Φ(êa + ea + iêaB) + wa
−Φ(êa − ea + iêaB)

= (wa
+ + wa

−)Êa + (wa
+ − wa

−)ηabe
b = (wa

+ + wa
−)Êa + (w+a − w−a)E

a,

where {Êa} ∪ {Ea} is the conformal split frame with the same B, Φ and {êa}. This alignment also
implies that the action of a connection on a plus coordinate is equal to that on a minus coordinate:
ω+a
µ b = ω−ā

µ b̄
so ∇µw

a
+ = ∇µw

a
−, and since we have{

(∇µw
a
+ +∇µw

a
−) = ∇µ(w

a
+ + wa

−)

ηab(∇µw
b
+ −∇µw

b
−) = ∇µ(w+a − w−a) as ∇ηab = 0.

We can conclude that when we choose the two orthonormal frames to coincide, our definition of

the connection D
∇(2)
M agrees with our definition of D

∇(1)
M . Seeing as the Levi-Civita connection is

torsion-free by definition, we can therefore use our previous calculations of the generalised torsion for

D
∇(1)
M with ∇ torsion-free, to calculate the torsion here of D

∇(2)
M . We have the non-zero generalised

torsion components
T1 = −4H, T2 = −4dϕ.

Remark. As the torsion is a tensor, this is valid for any O(p, q) bases {êa} and {êā}, aligned or
not.

By definition and form of a connection, we note that a generalised connection D can always be
written as

DMW
A = D

∇(2)
M WA +Σ A

M BW
B.

If D is compatible with the O(p, q)×O(q, p) structure, then we have:

• Σ a
M b̄

= Σ ā
M b = 0, since D acting only in the sub-bundle is equivalent to the cross-terms of

Σ + Ω being null; but Ω already individually satisfies this property, which imposes that Σ
must as well.

• ΣMab = −ΣMba, ΣMāb̄ = −ΣMb̄ā, which is the O(d, d) adjoint action condition on each of the
sub-bundle connections, already satisfied by Ω.

By definition and tensor linearity, the generalised torsion components of D are given by

(T1)ABC = −4HABC − 3Σ[ABC], (T2)A = −4dϕA − Σ C
C A,

where dϕA, and HABC are the components in frame indices of the corresponding forms dϕ and H
under the embeddings T ∗M → E and Λ3T ∗M → Λ3E∗ respectively. Their indices are lowered by
ηAB as usual, bringing these objects into E∗. We want to write the covariant derivative in terms of

small-index a, ā components of its different elements. To do so, we first write dxµ embedded in E∗,
in the dual frame:

dxµ =
1

2
Φ−1(ê+µ

a Ê+a − ê−µ
ā Ê−ā).
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Proof. The right-hand side is equal to

1

2
ê+µ
a (ηabê+b + e+a + ηabiê+b

B) +
1

2
ê−µ
ā (−ηāb̄ê−

b̄
+ e−ā − ηāb̄iê−

b̄
B).

Writing êa for either of the orthonormal bases, we have

êµaη
ab(êνb

∂

∂xν
) = ηµν

∂

∂xν
,

êµaη
abêνb i ∂

∂xµ
B = ηµνi ∂

∂xµ
B,

êµaη
ab(eaνdx

ν) = δµν dx
ν = dxµ.

Replacing the terms in our expression we find that the right-hand side is indeed equal to 1
2 ×2dxµ =

dxµ.

Now we can easily express dϕ in the dual frame Φ−1ÊA =

{
Φ−1Ê+a for A = a

−Φ−1Ê−ā for A = ā+ d
.

Using (∂µϕ)ê
µ
a = ∂aϕ for a generic tangent frame {êa}, we have

dϕ = ∂µϕdx
µ = dϕ =

1

2
∂aϕ(Φ

−1Ê+a)− 1

2
∂āϕ(Φ

−1Ê−ā),

giving us the dual frame components

dϕA =

{
1
2∂aϕ A = a
1
2∂āϕ A = ā+ d.

We can similarly write H in frame indices, with the embedding and decomposition

Λ3T ∗M → Λ3E = Λ3(C+ ⊕ C−) ≃ Λ3C+ ⊕ (Λ2C+ ⊗ C−)⊕ (C+ ⊗ Λ2C−)⊕ Λ3C−.

Remark. There is no antisymmetry in an E wedge product of an element of C+ with an element
of C−, since the two indices run over two distinct subsets of E indices, and therefore can never be
exchanged. Thus, only the above terms remain in the decomposition of Λ3E = Λ3(C+ ⊕C−) into a
direct sum.

We want to solve

H = (H)µνλdx
µ ∧ dxν ∧ dxλ = HABCÊ

A ∧ ÊB ∧ ÊC .

Inserting the expression for dxµ, we find

Hµνλê
+µ
a ê+ν

b ê+λ
c (

1

2
)3(Φ−1Ê+a) ∧ (Φ−1Ê+b) ∧ (Φ−1Ê+c)

+Hµνλe
+µ
a e+ν

b e−λ
c̄ (

1

2
)3(Φ−1Ê+a) ∧ (Φ−1Ê+b) ∧ (−Φ−1Ê−c̄) + ...,

where the other terms follow the same pattern with respect to barred versus unbarred indices. Note
that for a given cotangent frame {ea}, we have (êa)

µ(ea)ν = δµν by definition of the dual basis,
which implies (êa)

µea = dxµ. So for some one-form v we have v = vµdx
µ = vµ(êa)

µea, and its
frame components are va = vµ(êa)

µ. This extends of course to any differential form, and we have
Hµνλê

µ
a êνb ê

λ
c = Habc, where each index can belong to a different frame, be barred or unbarred, and

its frame element is marked with the corresponding sign +/−.
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Finally, we have the components

HABC =


1
8Habc (A,B,C) = (a, b, c)
1
8Habc̄ (A,B,C) = (a, b, c̄+ d)
1
8Hab̄c̄ (A,B,C) = (a, b̄+ d, c̄+ d)
1
8Hāb̄c̄ (A,B,C) = (ā+ d, b̄+ d, c̄+ d).

Due to the form of Σ in the connection, we set its natural components to be defined with the
middle index up, the other two down:

Σ C
A BÊ

A =


Σ b
a c for A = a ≤ d,B = b ≤ d,C = c ≤ d,

Σ b
ā c for A = a+ d,B = b ≤ d,C = c ≤ d,

etc.

with Σ b
A c̄ = Σ b̄

A c = 0. So we have

ΣABC =

{
ΣAbC for B = b, A = a or ā, C = c or c̄,

−ΣAb̄C for B = b, A = a or ā, C = c or c̄.

Now that we have the dual conformal frame components of dϕ, B and Σ, we want to deduce
what setting the torsion of D to zero translates to in terms of these components.{

(T1)ABC = −4HABC − 3Σ[ABC] = 0

(T2)A = −4dϕA − Σ C
C A = 0

⇐⇒


Σ[abc] = −4

3(
1
8Habc) = −1

6Habc,

Σ[āb̄c̄] = +1
6Hāb̄c̄,

Σābc = −1
2Hābc,

Σab̄c̄ = +1
2Hab̄c̄

{
Σ ā
ā b +Σ a

a b = 0− 4(12∂bϕ) = −2∂bϕ,

Σ a
a b̄

+Σ ā
ā b̄

= 0− 2∂b̄ϕ.

We can always find a Σ to satisfy these conditions: Σ a
a b = ηacΣacb = ηacΣ(ac)b only depends

on the symmetric part of Σabc, therefore the two conditions are independent! We can always find a
torsion-free compatible connection. These conditions however do not determine D uniquely.

In the aim of writing the components of D, we recall the form of D∇(2) in our frame
D

∇(2)
a wb

+ = ∇aw
b
+

D
∇(2)
ā wb

+ = ∇āw
b
+

D
∇(2)
a wb̄

− = ∇aw
b̄
−

D
∇(2)
ā wb̄

− = ∇āw
b̄
−.

We can finally write the components of a generic torsion-free compatible connection:

Daw
b
+ = ∇aw

b
+ +

(
−1

6H
b

a c

)(1)
wc
+ +

(
− 2

d−1(δ
b
a∂cϕ− ηac∂

bϕ)
)(2)

wc
+ +

(
A+b

a c

)(3)
wc
+,

Dāw
b
+ = ∇āw

b
+ +

(
−1

2H
b

ā c

)(1)
wc
+

Daw
b̄
− = ∇aw

b̄
− +

(
1
2H

b̄
a c̄

)(1)
wc̄
−,

Dāw
b̄
− = ∇āw

b̄
− +

(
1
6H

b̄
ā c̄

)(1)
wc̄
− −

(
2

d−1(δ
b̄
ā∂c̄ϕ− ηāc̄∂

b̄ϕ)
)(2)

wc̄
− +

(
A−b̄

ā c̄

)(3)
wc̄
−,

where:
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• We separated Σ into three parts: (·)(1) which cancels the T1 component of the D∇ torsion,
(·)(2) which cancels the T2 component, and (·)(3) which does not contribute to the torsion.

• For all derivatives, the (·)(1) part is equal to (·)(1) = ηbdΣ[adc]. We used here the unbarred
notation for simplicity’s sake; the form of this equality is valid for all combinations of indices.

• For the derivatives with crossed indices (unbarred acting on barred or vice-versa), Σ[ab̄c] and

Σ[ab̄c̄] encapsulate all of Σab̄c and Σab̄c̄ respectively. Thus only the (·)(1) terms appear in these
two connections.

• For the derivatives with uncrossed indices (barred acting on barred, or unbarred acting on
unbarred), the first two parts of Σ b

a c are explicitly (·)(1) = ηbdΣ[adc], (·)(2) = t b
a c any tensor

such that the trace on its first two indices is t a
a c = −2∂bϕ. In this paragraph, we used

the unbarred notation for simplicity’s sake; these equalities are also valid for three unbarred
indices.

We can verify that t b
a c = − 2

d−1(δ
b
a∂cϕ− ηac∂

bϕ) is valid for (·)(2):

t a
a c = − 2

d− 1
(δaa∂cϕ− ηac∂

aϕ) = − 2

d− 1
(d∂cϕ− ∂cϕ) = − 2

d− 1
(d− 1)∂cϕ = −2∂cϕ.

Note that in the supergravity context which we are interested in, we have d = 10, so d−1 = 9.

• The undetermined tensors A+/− satisfy

A+
abc = −A+

acb,

{
A+

[abc] = 0,

A+a
a b = 0,

A−
āb̄c̄

= −A−
āc̄b̄
,

{
A−

[āb̄c̄]
= 0,

A−ā
ā b̄

= 0,

so as to fit the connection compatibility criteria (left side), without contributing to the torsion
(right side).

Remark. The two cross derivatives are uniquely determined. The two others are not, however their
contractions are:

Daw
a
+ = ∇aw

a
+ − 1

6
H a

a bw
b
+ − 2

d− 1
(δaa∂bϕ− ηab∂

aϕ)wb
+ +A+a

a bw
b
+ = ∇aw

a
+ − 2(∂aϕ)w

a
+,

where we use H a
a b = ηacHacb = η(ac)H[acb] = 0 and A+a

a b = 0. The same result follows for barred
indices:

Dāw
ā
− = ∇āw

ā
− − 2(∂āϕ)w

ā
−.

We will use these results in the second part of the following section.

4.3 Supergravity equations of motion and symmetry variations

4.3.1 Supersymmetry variations

The supersymmetry variations can be written in a locally Spin(9, 1) × Spin(1, 9) covariant form
using the torsion-free compatible connection D.
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The supersymmetry fermionic variations can be written in the simple forms
δψ+

ā = Dāϵ
+ + 1

16F#γāϵ
−,

δψ−
a = Daϵ

− + 1
16F

T
#γaϵ

+,

δρ+ = γaDaϵ
+,

δρ− = γāDāϵ
−,

where F# = Λ+
��F

(B,ϕ)(Λ−)−1, where Λ∓ are the Spin(9, 1) transformations corresponding to the

Lorentz transformations e∓a = Λ∓b
a ea, and ��F

(B,ϕ) =
∑

n
1
n!F

(B,ϕ)
a1...anγ

a1...an with F (B) = eB(i) ∧ F(i) =

eB(i) ∧
∑

n dA
(n−1)
(i) . F(i) = dA(i) is patched as F(i) = edΛ(ij) ∧ F(j).

Remark. As we assume the underlying manifold M possesses a spin structure, we can promote
O(9, 1)×O(1, 9) to Spin(9, 1)× Spin(1, 9).

For the bosonic fields, we have the variation of a generic Spin(9, 1)×Spin(1, 9) frame (O(p, q)×
O(q, p) structure): {

δ̃Ê+
a = (δ log Φ)Ê+

a − (δΛ+
ab̄
)Ê−b̄,

˜̂
E−

ā = (δ log Φ)Ê−
ā − (δΛ−

āb)Ê
+b,

where 
δΛ+

aā = ϵ̄+γaψ
+
ā + ϵ̄−γāψ

−
a ,

δΛ−
aā = ϵ̄+γaψ

+
ā + ϵ̄−γāψ

−
a ,

δ log Φ = −2δϕ+ 1
2δ log(−g) = ϵ̄+ρ+ + ϵ̄−ρ−.

The corresponding variations of the frames ê∓ are

δ̃e+a
µ = ϵ̄+γµψ

+a + ϵ̄−γaψ−
µ ,

δ̃e−ā
µ = ϵ̄+γāψ+

µ + ϵ̄−γµψ
−ā,

which both give the metric variation

δ̃gµν = 2ϵ̄+γ(µψ
+
ν) + 2ϵ̄−γ(µψ

−
ν),

as required. This can also be expressed in terms of the generalised metric GAB as

δGaā = δGāa = 2(ϵ̄+γaψ
+
ā + ϵ̄−γāψ

−
a ).

The variation of the RR potential A can be written as

1

16
(δA#) = (γaϵ+ψ̄a

− − ρ+ϵ̄−)± (ψ+
ā ϵ̄

−γā + ϵ+ρ̄−,

where the upper sign corresponds to type IIA and the lower sign to type IIB.

4.3.2 Equations of motion

We will state how the paper finds we can rewrite the supergravity equations of motion with local
Spin(9, 1)× Spin(1, 9) covariance using the following generalised notions of curvature:

• the generalised Ricci tensor, defined asRab̄w
a
+ = [Da, Db̄]w

a
+ or equivalentlyRābw

ā
+ = [Dā, Db]w

ā
+.

• the generalised scalar curvature S such that −1
4Sϵ

+ = (γaDaγ
bDb−DāDā)ϵ

+, or alternatively

−1
4Sϵ

− = (γāDāγ
b̄Db̄ −DaDa)ϵ

−.
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We have the equations of motion

Rab̄ +
1

16
Φ−1 ⟨F,Γab̄F ⟩ = 0 for g and B,

S = 0 for ϕ,

1

2
ΓADAF = dF = 0 for the RR fields.

The bosonic pseudo-action is given by the simple expression

SB =
1

2κ2

∫
(ΦS +

1

4

〈
F,Γ(−)F

〉
),

where Φ is a density.
The fermionic action takes the form

SF = − 1

2κ2

∫
2Φ

[
ψ̄+āγbDbψ

+
ā + ψ̄−āγ b̄Db̄ψ

−
a + 2ρ̄+Dāψ

+ā + 2ρ̄−Daψ
−a

−ρ̄+γaDaρ
+ − ρ̄−γāDāρ

− − 1

8
(ρ̄+F#ρ

− + ψ̄+
ā γ

aF#γ
āψ−

a )
]
.

Varying this action with respect to the fermionic fields gives us the generalised geometry version
of the fermionic equations of motion:

γbDbψ
+
ā −Dāρ

+ = + 1
16γ

bF#γāψ
−
b ,

γ b̄Db̄ψ
−
a −Daρ

− = + 1
16γ

b̄F T
#γaψ

+
b̄
,

γaDaρ
+ −Dāψ+

ā = − 1
16F#ρ

−,

γāDāρ
− −Daψ−

a = − 1
16F

T
#ρ

+,

These supergravity equations are written in terms of torsion-free generalised connections, and
therefore are manifestly covariant under local Spin(9, 1)× Spin(1, 9) transformations.

5 The Lichnerowicz bound

We will introduce the restriction of the eigenvalue spectrum of the Laplacian ∆f = ∇2f = −λf on
an Einstein manifold, and try to find a similar result with our generalised tangent space, replacing
∇ with our generalised connection D, and contracting the connections with one of the generalised
metrics we encountered.

5.1 Theorem for Einstein manifolds

Theorem. For a compact Riemannian manifold8 (M, g) of dimension d where Rpm = (d− 1)gpm,
If λ is a non-zero eigenvalue of the positive Laplacian, −∇2f = λf , then λ ≥ d.

8

Definition. Riemannian manifold: Real, smooth manifold M equipped with a positive-definite inner product gp on
each fibre TpM of the tangent bundle TM .

Definition. Einstein manifold: Riemannian or pseudo-Riemannian differentiable manifold whose Ricci tensor is
proportional to the metric.
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Proof. To prove this inequality, we can use Bochner’s identity:

1

2
∇p∇p(∇mf∇mf) = (∇m∇pf)(∇m∇pf)−∇m(∇2f)∇mf +Rmn(∇mf)(∇nf).

We will name the left-hand side H(f).

Remark. We use a connection compatible with the contraction metric, so we can swap index heights
in a contraction with a covariant derivative without worrying about a derivation of the metric.

We have

H(f) =
1

2
∇p∇p(∇mf∇mf) = ∇p(∇p(∇mf)∇mf) = (∇p∇mf)(∇p∇mf) + (∇p∇p∇mf)∇mf,

where

∇p∇p∇mf = ∇p∇m∇pf = ([∇p,∇m] +∇m∇p)∇pf = (R p
pm n∇n +∇m∇p∇p)f

= (R p
pm n∇n − λ∇m)f = (Rmn∇n − λ∇m)f = ((d− 1)gpm∇p − λ∇m) f = (d− 1− λ)∇mf,

where use the fact that we are in coordinate indices, so R p
pm nvn = [∇p,∇m]vp. Therefore we have

H(f) = (∇p∇mf)(∇p∇mf) + (d− 1− λ)∇m∇mf.

We can separate ∇m∇nf into a traceless part and a part containing its trace. Its trace is equal
to

gmn∇m∇nf = ∇m∇mf = −λf,

the same as

gnm(−λ
n
gmnf) = −λf.

By defining ∆pm such that

∇p∇mf = −λ
n
gpmf +∆pm,

then ∆pm is traceless, gpm∆pm = 0, and consequently

(∇p∇mf)(∇p∇mf) =
λ2f2

d
+∆pm∆pm.

Integrating H(f) = 1
2∇

p∇p(∇mf∇mf) over spacetime, we have∫ √
−gH(f) = 0,

seeing as H is a total derivative; we are using the assumption that all quantities tend to zero on
the edges of spacetime. This integral is equal to∫ √

−gH(f) =

∫ √
−g [(∇m∇nf)(∇m∇nf) + (d− 1− λ)∇mf∇mf ]

=

∫ √
−g(λ

2f2

d
+∆mn∆

mn) +

∫ √
−g(d− 1− λ)∇mf∇mf

By integrating by parts λ
d (∇mf∇mf), we obtain∫ √

−gλ
d
(∇mf∇mf) =

∫ √
−gλ

d
∇m(f(∇mf))−

∫ √
−gλ

d
f(−λf) =

∫ √
−gλ

2f2

d
,
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where the left term is null because of the total derivative. We recognise the first term in our
integration of H(f); we can write∫ √

−gH(f) = 0 =

∫ √
−g(d− 1− λ+

λ

d
)(∇mf)(∇mf) +

∫ √
−g∆mn∆

mn,

Since the metric is positive-definite, the second integral is positive, and (∇mf)(∇mf) also, which
implies

(d− 1− λ+
λ

d
) ≤ 0

⇐⇒ λ(1− 1

d
) ≥ d− 1

⇐⇒ λ ≥ d− 1

1− 1
d

=
d2 − d

d− 1
= d,

which marks the end of the proof.

Modelling this build-up to the Lichnerowicz eigenvalue spectrum on an Einstein manifold, can
we find a similar result replacing the tangent space with the generalised tangent space?

5.2 Lichnerowicz in generalised geometry?

In analogy to the setting of the Ricci tensor to be proportional to the metric on the tangent space
of an Einstein manifold, we will set RMN = GMN in our generalised tangent space.

Choosing the Ricci tensor to be proportional to the metric G implies, in the {Ê+
a }∪{Ê−

ā } frame,

RAB =

(
Rab Rab̄

Rāb Rāb̄

)
= κGAB = κ

(
ηab 0
0 ηāb̄

)
,

so the Ricci tensor must satisfy {
Rab = κηab, Rāb̄ = κηāb̄,

Rab̄ = Rāb = 0.

We want to see if we can use an identity similar to Bochner’s on an Einstein manifold, to find
a similar restriction on the eigenvalue spectrum in the Laplacian equation

−DMDMf = λf.

There are several equations of this form we could try to solve, since we have two choices of
metric we could contract with, one of which can be decomposed into two separate metrics: we
could contract two O(p, q)× O(q, p) - covariant derivatives with the generalised metric ηAB or the
additional structure metric GAB; we could also contract two O(p, q)-covariant derivatives D+ or
D− with the metric g. We will focus here on the first two. We have

GAB =

(
ηab 0

0 ηāb̄

)
, ηAB =

(
ηab 0

0 −ηāb̄

)
.

and the following two possible equations:{
ηMNDNDMf = −λf contracted with η,

GMNDNDMf = −λf contracted with G.
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We will name these cases 1 and 2 respectively.

DMDMf = DADAf = (ηabD+
a D

+
b ± ηāb̄D+

ā D
+
b̄
)f

= D+
a (∂

af)±D−
ā (∂

āf) = ∇a(∂
af)− 2(∂aϕ)(∂

af)±∇ā(∂
āf)∓ 2(∂āϕ)(∂

āf)

= ∇a(∂
af)− 2(∂aϕ)(∂

af)± (∇a(∂
af)− 2(∂aϕ)(∂

af)) ,

where the lower sign corresponds to case 1 (ηAB), the upper sign to case 2 (GAB), and where both
barred and unbarred indices are contracted with the same metric g. We can see that if we use ηAB

to contract the connections, we have DMDMf = 0. We can say that the spectrum of the eigenvalue
λ is {0}, but this is not very interesting. We can discard case 0.

If we use GAB (case 1), we obtain

GABDADBf = 2∇a(∂
af)− 4(∂aϕ)(∂

af).

To obtain Bochner’s identity on an Einstein manifold, we use the tensorial curvature equal-
ity [∇p,∇m]vp = R p

pm nvn in coordinate indices. However in generalised geometry the curvature
R(U, V,W ) is not always a tensor; we recall this is the case only for ⟨U, V ⟩ = 0. By following
Bochner’s steps, we will uncover conditions that might need to be imposed for a tensorial measure
of the curvature to appear in our equality.

We write

1

2
DBD

B(DAfD
Af) = DB((D

BDAf)D
Af) = (D2DAf)D

Af + (DADBf)(D
AfDBf).

It is from D2DAf that we would normally obtain our RAB Ricci tensor:

D2DAf = DBDA(D
Bf) = ([DB, DA] +DADB)D

Bf,

where we use [DB, DA]f = 0. This expression only makes sense if [DB, DA] is a tensor, which
is equivalent to the curvature R(ÊB, ÊA,W ) being a tensor. Therefore, for all indices we are

summing over, we need
〈
ÊB, ÊA

〉
= 0, where ⟨, ⟩ represents an ηAB contraction. This is verified

for A ≤ d, B > d, or vice-versa, as we can see from the block-diagonal form of the ηAB matrix.
If we sum only over {A ≤ d,B > d} ∪ {A > d,B ≤ d}, we have ([DB, DA]D

Bf)DAf =
RB

CBAD
CfDAf , which is then equal to RcāD

cfDāf +Rc̄aD
c̄fDaf . However this is zero due to the

condition of the Ricci tensor being proportional to the metric G.

For a tensorial measure of curvature to appear in this equation, which we hope to use to impose
a boundary on the eigenvalue spectrum, we would need some combination of derivatives to form
the scalar curvature S and for this to be non-zero. This is not the case of full type II supergravity.
However we could consider compactifications of the ten-dimensional theory of the form:

ds210 = ds2(R9−d,1) + ds2d

where the first term is a flat metric on R9−d,1 and the second term a general metric on the d-
dimensional internal manifold. This would be equivalent to adding a term of the form e−2ϕC in the
supergravity action, similar to a cosmological constant.

The field equations of motions on the internal space would then have the same generalised
geometry form, but with the structure O(p, q)×O(q, p) = O(d)×O(d) ⊂ O(d, d)×R+. One crucial
difference would be in the dilaton equation of motion, which would be changed from S = 0 to
S = C ̸= 0, some non-zero constant dependent on the constant curvature of the flat space.
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The motivation for this is the following. An eigenvalue λ for the restriction of D2 to the internal
space translates a wave equation D2f = 0 on the ten-dimensional space, into a four-dimensional
equation on the flat space with mass term λ. Thus, if we find in analogy to the Lichnerowicz
bound, a bound for the eigenvalue spectrum on the restriction of D2 to the internal space, this
would give restrictions on the mass term in flat space, which has a physical meaning, as the flat
space is observable!
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6 Conclusion

Following the generalised geometrical constructions in the Supergravity as Generalised Geometry I
paper, we defined a generalised tangent space that geometrises the NSNS bosonic sector, incorporat-
ing the patching and symmetry algebra of the potential B into the generalised geometry. We were
able to construct an algebra (Courant bracket) of generalised Lie derivatives (Dorfman derivatives),
combining the usual symmetry algebra of diffeomorphisms with the B-field gauge transformations.

One way of seeing this is with a globally-defined split frame, from which we can deduce the iso-
morphism E ≃ TM⊕T ∗M,V 7→ V (B). This enables us to translate a conventional, diffeomorphism-
reflecting connection ∇ acting on components of sections of TM ⊕ T ∗M , to a corresponding gener-
alised connection D∇(1) on E, which encodes these conventional symmetry operations while being
compatible with the structure of E described in the next paragraph. The patching of B lies in the
split frame itself, and a B-field gauge transformation marks the passage from one split frame in E
to another.

We found that the definition of the generalised tangent space is consistent with an O(d, d) metric
which admits an O(p, q) × O(q, p) sub-structure; this is crucial to be able to relate this space to
type II supergravity.

Indeed, regarding the NSNS bosonic fields, we have shown that an O(9, 1)×O(1, 9) ⊂ O(10, 10)×
R+ generalised structure is parametrised by a metric g of signature (9, 1), a two-form B patched

as in supergravity, and a dilaton ϕ: At each point x ∈ M , {g,B, ϕ} ∈ O(10,10)×R+

O(9,1)×O(1,9) . Thus this
substructure captures the NSNS bosonic fields, which are packaged into the generalised metric and
conformal factor (G,ϕ). We note that we wrote a generic O(p, q) × O(q, p) structure explicitly;
it resembles the split frame for the corresponding B but is further conformal, thus encoding the
dilaton ϕ and living in Ẽ, while encoding a metric g on the tangent space through the added
one-form terms factored by the metric coefficients. Thus these frames encode all of the NSNS
bosonic fields and the symmetries of ϕ and B, and a generalised connection D∇(2) corresponding
to conventional connections on the TM ⊕ TM components in this frame, enables us to compatibly
express the conventional diffeomorphism symmetries.

Regarding the other type II supergravity fields, as we assume the underlying manifold possesses
a spin structure, we are able to promote O(10, 10) to Spin(10, 10) and the subgroup to Spin(9, 1)×
Spin(1, 9); the RR fields transform as Spin(10, 10) spinors, and the type II fermionic degrees of
freedom are spinor and vector-spinor representations of Spin(9, 1)× Spin(1, 9). In the final results
of the paper, the bosonic and fermionic actions, leading equations of motion and supersymmetry
variations are all rewritten in generalised, simple, Spin(9, 1) × Spin(1, 9)-covariant form using the
torsion-free compatible connection D we arrive at in this work.

Defining the torsion of a generalised connection in analogy to the conventional definition, the
nature ofD∇ enables us to explicitly calculate the generalised torsion for a connection corresponding
to a torsion-free ∇. Having these explicit calculations, we were able to deduce the form of a torsion-
free generalised connection, as a generic generalised connection can always be written DMW

A =
D∇

MW
A +Σ A

M BW
B. In the substructure O(p, q)×O(q, p) ⊂ O(d, d)×R+, i.e. with the connection

in the adjoint action of this group and acting within the corresponding sub-bundle, a compatible
torsion-free connection D corresponds to what we call the generalised analogue of the Levi-Civita
connection. As the O(p, q)×O(q, p) sub-bundle is a direct sum C+ ⊕C−, we find that D is divided
into four O(p, q)×O(q, p) covariant operators, two of which are not unique. Though this could pose
a problem for applications to supergravity, which is what we are ultimately interested in, we can
form unique operators for instance from contracting their indices.

In analogy to the conventional construction, we were also able to define a generalised curvature
R(U, V,W ), though we found this is not always tensorial: We need ⟨U, V ⟩ = 0. This requires the
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generalised Ricci tensor and scalar curvature to be defined differently than conventionally. This
divergence from the conventional curvature was encountered as a problem when we explored the
Lichnerowicz problem in generalised geometry: where we needed the curvature to be tensorial and
contract into the Ricci tensor, it could not. An avenue to explore in this particular problem but also
more generally to avoid this issue, would be to find combinations and contractions of generalised
connection operators that form the scalar curvature, which we would want to be non-zero. As this
measure of generalised curvature is null in type II supergravity, which we can see in the equation of
motion for the dilaton, our analysis of the problem would need to be reduced to the internal space of
a compactification of the full ten-dimensional supergravity theory, where the metric is decomposed
into a flat metric on R9−d,1 and a general internal metric on the d-dimensional internal manifold.
Such an analysis could still lead to interesting physical results, as an eigenvalue on the internal
space equation would correspond to a mass in the physical flat space.
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