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Abstract

This project investigates the various applications of theoretical positivity bounds due
to the unitarity and analycity conditions on particle physics, significantly limiting the
parameter space allowed for IR theories in the forward scattering limit. Assuming local,
unitary and causal operators results in positivity for certain EFT parameters such as
coupling constants, and explicitly calculating these constraints is the main objective of
this project. The considered theories include a U(1) scalar theory, the Proca EFT vec-
tor field and a quartic gauge boson scattering process in the Standard Model, offering
applications to numerous related fields within theoretical and experimental physics.
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Chapter 1

Introduction

It has always been the aim of particle physics to describe the matter making up our uni-
verse in a way that makes its underlying, fundamental symmetries apparent and show
the beauty of these symmetries, not only to the trained eyes of experienced physicists,
but also a much broader audience. In order to study the fundamental laws of physics
and particle theories, Quantum Field Theories (QFTs) are required to be empirically
verified by experimental methods. Due to the finite nature of such experiments, gen-
eral predictions can only be verified up to the scale of the energy involved in these
experiments. Hence, it is customary to divide all available mathematical theories into
two categories: one which perfectly describes all empiric observations at low energies,
and one which is a complete theory of the universe and includes a perfect description
of high energy physics. The former class contains the infrared (IR) theories, and the
latter all ultraviolet (UV) theories.

Due to technical energy limitations, it is impossible to construct experiments to
verify UV complete theories up to infinitely large energy scales. Therefore, it is neces-
sary to approximate these UV theories by another set of theories called Effective Field
Theories (EFTs) in the low energy limit. Hence, by definition, all EFTs are in the IR
range and correspond to the IR approximation of the underlying UV complete theory.

Not only does particle physics explain these mysteries of our universe, it also con-
nects many of the most fundamental areas of physics in a much deeper way. Given
their dependencies on energy scales, EFTs have a huge variety of applications across
all sectors of research. In fact, every field in physics that uses one QFT approach or
another - ie. any field that considers system with not conserved particle numbers - can
(and does) exploit EFTs, especially when considering a specific physical scale these
QFTs should be valid at. Hence EFTs are the perfect way of combining quantum
theories with experiments, and phenomenology with experimental limitations.

I will demonstrate the utility of EFTs with an explicit example of lepton universality
violation that have proved significant researched outcomes in recent years [1].
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1.1 Example of EFTs in particle physics: lepton

universality violation

In March 2021, reports analysing data from CERN [1] started to show relevant anoma-
lies, highlighting possible discrepancies violating lepton universality in B meson decays,
as seen in Fig. 3.2. The Standard model itself includes the electromagnetic force, whose

Figure 1.1: Reproduced from [1], showing the experimental evidence for unexplained
differences between the electron and muon channels. The left plot shows the B+ →
K++e++e− reaction, whilst the right plot visualises the results for B+ → K++µ++µ−

Note how the peaks are slightly shifted, indicating different branching ratios between
these channels.

quantum treatment of QED is described by a U(1) gauge group, the weak force being
entailed with a SU(2) doublet as well as the strong force being described by SU(3)
triplets in QCD. Naturally, three types of generations of matter were discovered in na-
ture, all leptons and quarks come in three separate families, with their only difference
being a difference in rest mass between generations whilst all other quantum numbers
are shared across generations in the SM physics. It is for this feature that electrons,
muons and taus ought to share similar reaction characteristics in scattering processes.
Whilst particles with heavier masses generally correspond to shorter life times due
to the uncertainty principle and scaling in the Feynman propagator [2], there is no
obvious reason why such heavier masses should behave in another way differently com-
pared to lighter particles of the same flavour. Nonetheless, physicists have still been
running similar experiments to measure differences in branching ratios between muon
and electron channels to infer wether an equivalent number of electrons and muons
was produced. Such an equality between observed electron and muon numbers within
the experimental errors could only mean that both flavours of this triplet 1 have to

1ignoring the tau where similar arguments could be made
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couple to the weak force in the same way. Given that scattering cross sections are
generally proportional to the corresponding coupling constants in the amplitudes and
Lagrangian, this means the only way to accommodate for such observations is for elec-
trons and muons to have the same coupling constants. Extending this to include taus,
such a lepton flavour universality (LFU) has been implicitly assumed since the the
early stages of the standard model.

However, it is clear that particle physics still cannot answer why there are only 3
generations (and if there are even more energetic ones), so this LFU has effectively
been only an assumption that has not been disproven over the last decades.

It was therefore very exciting to see experimental reports [1] indicating an anomaly
of 3.1 standard deviations in March 2021, unexplained by the SM, whose analysis
concerned the electron and muon decay channels of B mesons. Charged B mesons decay
into charged kaons and a lepton-antilepton pair [2], and the only allowed mediators
in the SM for this is the photon, the W± and some heavy quarks [1]. These SM
mediators would couple to the dileptons in the same way quantitatively. However,
the analysis showed the branching ratios differed for the two channels and was not
unity, implying there must be a fundamental reason that is beyond-the-standard-model
(BSM), explaining this discrepancy. Of course it is possible that another BSM mediator
coupled to each flavour differently, thus producing such an inequality without having
to obey the SM rules as such a mediator would have to couple to both leptons and
quarks at the same vertex[3]. These BSM gauge bosons are called leptoquarks and
have been modelled to provide additional scattering processes[3]. Some of these are
visualised in Fig. 1.2.

Figure 1.2: Reproduced from [1]. The left diagram shows Standard Model weak in-
teractions in the charged B meson decay by exchanging charged W bosons, whilst the
right diagram shows additional leptoquark mediators coupling directly to leptons and
quarks.

Given the complexity of combining QCD with the electroweak sector, it is not
suprising that a big range of possible operators to be included in the Lagrangian have to
be considered, and using an EFT approach has helped. Promising leptoquark models
obey SU(3)c × SU(2)L × U(1)Y symmetries [3] Then one can consider vector fields
transforming under SU(2)L, ie SU(2)L doublets, as well as scalar fields transforming
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under U(1)Y , i.e. U(1)L singlets. These give appropriate representations for scalar and
vector leptoquarks and some of their quantum numbers are listed in Fig. 1.3.

Figure 1.3: Reproduced from [3], this table lists the quantum numbers and properties
for relevant scalar and vector theories.

For instance, one of the terms added to the Lagrangian for the S1 operator case with
a Uµ

1 vector leptoquark [3] is Ls1 = hijLQūiγµPLνjU
µ
1 , which is clearly not contained in

the SM because it does not conserve lepton number at the vertex level. By considering
all terms of this form, it can be shown that the Wilsonian coefficients Cij

S1
is proportional

to C
qilj
S1
∝

hijLQ1

GFVqbM
2
LQ

Once these coefficients are known, experiments can be conducted to

test these theories, as in [3]. Some results are shown in 1.4 where the physical exclusion
region allowed by EFTs is visualised and compared to experimental observations. How
similar theoretical EFT bounds and constraints can be inferred shall be the main topic
of this dissertation.

1.2 Introduction to EFT

In any case, studying such EFT descriptions enables a deeper understanding of exper-
imental results, make predictions that are necessary for the unification of fundamental
forces and connect different fields in physics that usually aren’t closely related.

In practice such an EFT is often obtained by integrating out the heavier particle
fields of the UV theory, so that only the lighter particle fields remain in the IR range,
giving the EFT, and this method will be explained in more detail in later chapters.

In general, major collider experiments, such as the Large Hadron Collider at CERN,
are only provided with limited energy, which implies an upper bound on the energy
sector investigated by the collider’s particle searches. Specifically for the LHC [4],
particles have a centre-of-mass energy of

√
s = 8TeV, which is below the rest energy

of a vast number of Beyond-the-Standard-Model (BSM) particles that are predicted.
Hence, to test current predictions, it is required to narrow down the huge parameter
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Figure 1.4: Reproduced from [3], this diagram demonstrates the theoretical EFT con-
ditions, leading to an exclusion of all data outside the blue circle. The red area cor-
responds to the experimental observations, and combining both significantly narrows
down the Wilsonian coefficients, i.e. the parameter space.

space associated with experiments to ensure experimental resources are used efficiently
in searches for new physics.

As a result, this establishes the need for theoretical methods of narrowing down
what energy sector to look at. Given that ordinary SM as well as BSM physics is
described by EFTs2, we therefore need to establish generalised bounds for the corre-
sponding EFTs. Whilst there are many ways of obtaining bounds due to analyticity,
unitarity etc, most bounds are associated with positivity of the corresponding param-
eters.

Whilst the concept of positivity conditions is not new, it has only recently lead
to new results since the early 2000s, which is a relatively new approach of particle
phenomenology. This is also due to the fact that until the late 20th century, the energy
of particle colliders increased rapidly, producing a large number of particle discoveries,
so that theoretical optimisation bounds were not strictly necessary.

As EFTs are so useful in many areas of physics, and their parameters being bounded
by positivity bounds, this allows experiments in all of these fields of physics to search
for new particles or interactions described by EFTs.

Typically investigating such interactions generally involves 2 processes: scattering

2e.g. with SMEFT approaches

5



and decays, though the latter can be thought of a special form of the former. Scat-
tering processes always involve the interaction between n incoming and m outgoing
particles, where the incoming and outgoing particles are allowed to change their quan-
tum numbers (flavour, colour, charge etc) according to the dynamical constraints of
the force causing the interaction. Scattering does not only include geometric scattering
like particles bouncing off of a hard surface, but also simple repulsions and any general
interaction with other particle fields. Hence the term scattering really describes the
interaction between different quantum fields. This allows to use the standard QFT de-
scription of particle fields to associate the theoretical field interaction with experimen-
tally observable scattering processes. Hence, it is required to find a relationship between
the quantities measured in laboratories, and the theoretical predictions. Experimental
particle physics entirely evolves around scattering cross sections, that describe an effec-
tive area being a measure of the interaction probability. In QFT, on the other hand, the
interaction is described by an additional term in the Lagrangian, which pertubatively
gives raise to Feynman diagrams describing the interaction / scattering. Clearly the
interaction Lagrangian must be related to the scattering cross section, so establishing
this relationship is the purpose of particle phenomenology. There actually exist nu-
merous ways of calculating the scattering contribution of interaction Lagrangians, e.g.
canonical pertubation theory, Feynman rules, or path integrals, however, these must all
arrive at the same physical results (and do). Independently of which of these methods
is used, the Feynman diagrams corresponds to a scattering matrix, or S-matrix, and
each diagram results in a quantum mechanical scattering amplitude. Now all that is
left to do is relate that scattering amplitude to the cross section, and we have a full
relationship between QFTs and particle physics. The optical theorem describes such
a relationship, and allows to express the differential cross section in terms of the scat-
tering amplitude. In fact, as will later be shown, the optical theorem is a direct result
of the unitarity condition our theories must have.

Also, the EFT positivity bounds usually involve only the scattering amplitude.
Hence we can identify the required steps to calculate positivity bounds for any given

theory:

1. Investigate the Lagrangian and write down the scattering amplitude, using Feyn-
man rules or otherwise

2. Apply the positivity bounds on the Wilsonian coefficients / coupling constants
in the Lagrangian

3. Calculate the scattering amplitude, which already includes the positivity bounds

4. Calculate cross section from scattering amplitude using the optical theorem

Following this procedure allows the calculation of nearly every physical process
described by IR physics, as long as the corresponding Lagrangian is a priori known.
Of course, if it is not known a priori because eg a UV Lagrangian is available instead,
this can be turned into an IR / EFT Lagrangian using a low energy approximation.
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It should be noted that the following theories described in this dissertation are
EFTs, valid in the low energy region and already renormalised. Introducing a cut-off
scale Λ as a regulator in a QFT generally requires a distinction between 1) the IR
physics, which can be described by the QFT and has to result in finite observables,
and 2) the UV physics, which generally includes the very high energy range above Λ
and therefore includes singularities and infinities that cannot be described by the QFT
any more. Renormalising the QFT removes the regulator, and the singularities with it,
so that the renormalised QFT is valid across all energies. Hence by assuming that our
EFTs are already renormalised, we do not need to be concerned about the cut-off scale
of possible renormalisation, which in general, might be different to the scale we set to
be the boundary between IR and UV physics. A result of this is that we can only focus
on the tree-level physics, as the renormalisation of vacuum expectation value (vev),
mass, coupling constants etc is due to loops and quantum loop corrections. Hence
assuming we already have renormalised QFTs / EFTs across this dissertation allows
us to neglect all loop diagrams and calculations.

It also clear that one can distinguish known IR physics from the unknown UV
physics by simply choosing the energy boundary to be the biggest experimentally
available energy order of magnitude ie. 8 TeV or slightly above. However, since
the experiments (hopefully) improve all the time, this also means that the boundary
between these two regimes continuously shifts towards the unknown and a clear cut
between IR and UV physics does not always exits, and is sometimes rather smeared
out.

In the following I will rederive the basic theorems used in calculating the EFT
constraints, including the unitarity and analyticity conditions. We will see that the
unitarity constraint results in the optical theorem, and the analyticity one in the dis-
persion relation for the EFT. This is then followed by a calculation of explicit scalar
bounds to implement the steps described above. I will then apply similar methods in
deriving the vector bounds of the Proca EFT Lagrangian. Lastly, I will consider a
subset of electroweak operators to calculate the positivity bounds for quartic vector
gauge boson scattering that have implications for BSM physics.
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Chapter 2

Basics

2.1 Scattering

2.1.1 QFT

Throughout this dissertation the metric

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.1)

is used since QFT approaches for the particle physics calculations were utilised and
this convention is most frequently used in QFT / High Energy Physics. When com-
paring the numerical results to any papers using the other choice of metric ηµν =
diag(−1, 1, 1, 1), as used in research in general relativity, it should be taken into account
that tensors with odd numbers of indices, i.e. tensors of odd rank, in the presented
Lagrangian below will therefore have additional minus signs. Individual terms in the
corresponding bounds thus may or may not have different signs, so taking care of the
metric convention is crucial.

It is always possible to separate the Hamiltonian into a free part HS
0 and interacting

part HS
int so that HS = HS

0 + HS
int holds. This then allows to define the free unitary

evolution operator
U0(t) = e−itH

S
0 . (2.2)

The free Hamiltonian is then conserved as

HI
0 = U−1

0 (t)HS
0 U0(t) = U−1

0 U0H
S
0 = HS

0 .

For the interacting part HS
0 and HS

int do not commute any more, implying

HI
int = U−1

0 (t)HS
intU0(t) 6= HS

int

8



Hence it is sensible to focus on the evolution operator in the interacting picture, de-
scribing the time dependence of the states as

|Ψ(t2)〉I = Û I(t2, t1) |Ψ(t1)〉I

with
Û I(t2, t1) = e−iH

I
int(t)t.

This operator relation between Û I(t, t0) and ĤI
int is equivalently expressed as a differ-

ential equation
∂Û I(t, t0)

∂t
= −iĤI

intÛ
I(t, t0),

which can now be recursively solved to get

Û I(t, t0) = 1 + (−i)
∫ t

t0

dt1H
I
int(t1) + (−i)2

∫ t

t0

∫ t

t0

dt1dt2H
I
int(t1)HI

int(t2) + ...

or of course one can expand Û I(t2, t1) = e−iH
I
int(t)t directly to get the same result,

although with this direct method it is more difficult to see which form the integration
limits are. Now reorganising this expression by introducing time ordering T ensures
causality and one arrives at the Dyson expansion

Û I(t, t0) =
1

0!
+

(−i)
1!

∫ t

t0

dt1H
I
int(t1)+

(−i)2

2!

∫ t

t0

∫ t

t0

dt1dt2T{HI
int(t1)HI

int(t2)}+... (2.3)

This is clearly a pertubative expansion that can be approximated by truncating the
infinite sum at any given order. This is the method used for calculating evolution
operators throughout this dissertation, and the interaction picture will be implicitly
assumed.

Consider an initial state |i〉. An evolution operator will then transform it into a
final state |f〉 = Û I(tf , ti) |i〉 and the probability of measuring the final state is then
the modulus squared of

M = 〈f |f〉 = 〈f |Û I(tf , ti)|i〉
Now letting the initial and final states exist at t = ±∞ so that the plane wave approx-
imation is valid allows to define the scattering amplitude S and scattering matrix or
S-matrix Ŝ:

S = limT→∞ 〈f |T Ŝ |i〉−T
Of course one can think of the S-matrix as giving an indication of the transfer from i→
f , however, quantitatively this is the same as just directly measuring the probability
of obtaining a final state.

By including time ordering as well as normal ordering1, the scattering amplitude
can then be obtained by calculating the Fourier transforms of the n-point functions

S = limT→∞ 〈q1...qn|T Ŝ |p1...pm〉−T (2.4)

1to remove some simple singularities, more complicated divergencies will have to be treated with
regularisation and renormalisation
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= limt→∞

n∏
i=1

n∏
j=1

4EiEj

∫ ∫
d3xid

3yje
ipxe−iqy

×〈Ω|t : φ(x1)...φ(xn) :: Te
−i

∫ t
t0

t.
′
Hint(t

′)
:: φ(y1)...φ(ym) : |Ω〉−t

This correlator now allows to utilise Wick’s theorem and write down the Feynman
rules that immediately give the LHS, i.e the scattering amplitude S, in terms of the
interaction Hamiltonian, Ĥint on the RHS, of a theory.

Derivative couplings

We quantise scalar fields by promoting φ to φ̂ and writing this in terms of creation and
annihilation operators:

φ̂(x) =

∫
dp4

(2π)4
(â(p)e−ip·x + â†(p)eip·x) (2.5)

Now it is apparent that when a specific vertex is analysed, incoming particles get de-
stroyed at the vertex and outgoing particles get created. This means that the incoming
particles must be in the annihilation mode φ̂(x) =

∫
dp4

(2π)4
â(p)e−ip·x and the outgoing

particles in the creation mode φ̂(x) =
∫

dp4

(2π)4
â†(p)eip·x at the vertex. Away from the

vertex at x, i.e. without the interaction and in free space, φ̂ is the superposition of
both modes again and particle number is conserved. At the vertex, the particle number
is not constant, so one specific operation and mode gets picked out. Similarly, at the
vertex the momenta of the particles are known, and one can at least express every mo-
mentum in terms of the other momenta due to momentum conservation. This means
that an integration over all 4-momenta is not necessary as the incoming and outgoing
particles only have one specific momentum each. Now imagine the Lagrangian included
terms proportional to ∂µφ, then this implies that for incoming particles

∂µφ = ∂µâ(p)e−ip·x = −ipµâ(p)e−ip·x = −ipµφ̂

and for outgoing particles

∂µφ = ∂µâ
†(p)eip·x = ipµâ

†(p)eip·x = ipµφ̂.

In fact, for every derivative acting on fields in the Lagrangian, the derivative can there-
fore be directly replaced by a momentum factor ±ipµ in the scattering amplitude. Here
the sign is important and distinguishes an incoming particle (−pµ) from an outgoing
one (+pµ). Vector fields are quantised in a similar manner, although have the added
complication that in addition to the creation and annihilation operators and complex
phase Fourier factors, each mode also has an additional vector factor that entails the
representation of the field in the four spacetime dimensions. This vector factor is the
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polarisation εµ, which may or may not be time-dependent i.e. non-constant. As a
result, (massless) vector fields are quantised as

φ̂(x) =

∫
dp4

(2π)4
Σi=1,2εi

(
â(p)e−ip·x + â†(p)eip·x

)
(2.6)

Here the total polarisation ε is given by the sum over the two transverse and the
longitudinal/scalar polarisation basis vectors εi. However, in Lorentz gauge, ∂µA

µ = 0,
and after removing any residual gauge freedom, only two physical degrees of freedom
remain. These correspond to the choice of the two transverse polarisation bases, with
the longitudinal mode not contributing to any physical processes any more. Hence in
the quantisation the sum only sums over i = 1 and i = 2. Note this is for massless
vectors only and massive vectors will be dealt with in chapter 4.

Hence any derivative terms in the Lagrangian, such as a rank-2 tensor ∂µA
ν or

a rank-0 tensor ∂µA
µ, will result in similar, additional momentum pre-factors in the

scattering amplitude as above for the scalar case. However, given that the polarisation
is a vector itself too, there will now also be contractions between polarisations and
momenta, and between polarisations-polarisations, requiring a complicated treatment
that will be derived for massive vector fields in chapter 4.

2.1.2 Mandelstam variables

The momentum conservation for 1 + 2→ 3 + 4 scattering is explicitly given as

pµ1 + pµ2 = pµ3 + pµ4

This is usually implemented by including a delta function such as δ(Σpµ) = δ(pµ1 +
pµ2 + pµ3 + pµ4) in all Feynman terms that when integrated over at least one momentum
ensures this conservation law. Also the on-shell condition for free particles and external
legs is

p2
i = m2

i

for i ∈ {1, 2, 3, 4}.This is the second general condition scattered particles have to
satisfy. Note that for particles on internal lines the particles are off-shell, so only
the first conservation law has to be fulfilled, which is done be ensuring momentum
conservation at each vertex separately. When analysing the tree-level diagrams of cubic
interactions, 3 specific combinations of momentum contractions appear so frequently
that the following definitions are commonly2 used:

s = (p1 + p2)2 = (p3 + p4)2

t = (p1 − p3)2 = (p4 − p2)2

u = (p1 − p4)2 = (p3 − p2)2

2these variables would have the opposite sign for (-+++)
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Adding all 3, it can easily be verified that

s+ t+ u = Σ4
i=1p

2
i = Σ4

i=1m
2
i = 4m2

In the following ~p ◦ ~q is taken for 3-vector dot products and (p · q) = pµ q
µ for denoting

4-vector contractions. In the ultra-relativistic limit E >> m0, so p ·p = E2−~p◦~p = m2

implies E2 ≈ ~p ◦ ~p. Hence these variables simplify to

s = 2m2 + 2p1 · p2 ≈ 2p1 · p2,

t = 2m2 − 2p1 · p3 ≈ −2p1 · p3

and
u = 2m2 − 2p1 · p4 ≈ −2p1 · p4.

This is also known as the Eikonal approximation. Using the equations above, any two
momentum contractions can be written as

p1 · p2 = p3 · p4 =
s− 2m2

2
,

p1 · p3 = p2 · p4 =
2m2 − t

2

and

p1 · p4 = p2 · p3 =
2m2 − u

2
.

This is particularly useful because it allows for any two momentum contractions of
different momenta to be expressed in terms of Mandelstam variables. Additionally,
this shows that due to momentum conservation there is a redundancy here since we can
reduce the initially 6 possible contractions to only 3 different combinations, simplifying
calculations significantly.

2.1.3 scattering kinematics

It is important to distinguish between elastic/inelastic collisions and elastic / inelastic
scattering. General scattering is clearly related to particles colliding, however, both can
be kinematically different. Collisions refer to the effects on the whole system, whereas
scattering considers the effects on individual particles. We hence have to distinguish
between four cases:

1. Inelastic collisions conserve the total energy of the system, but the total kinetic
energy is not conserved. The energy loss is converted into heat in classical me-
chanics, which in relativity corresponds to increased rest mass.

2. Elastic collision conserve the total kinetic energy in the system, but not the
kinetic energy of each particle individually. There is no heat so no mass increase.

12



3. Elastic scattering conserves the individual kinetic energies (and therefore the
total kinetic energy in the system as well)

4. Inelastic scattering does not conserve individual kinetic energies. This may or
may not lead to conservation of the total kinetic energy.

It is apparent that all elastic scattering is due to elastic collisions, but not all elastic
collisions cause elastic scattering. For instance, both Compton scattering and Newton’s
pendulum are examples of elastic collisions that are inelastic scattering.

Requiring elastic scattering by choosing a constant kinetic energy T , however, is not
the strictest requirement possible for such processes. This is because both classically

(T = 1
2
m|~v|2) and relativistically (T = (γ − 1)mc2 = (1− |~v|

2

c2
)−

1
2 − 1)mc2) invariant T

only implies constant speed, with no restriction on the velocity direction. Therefore one
can impose an even stronger limitation, requiring the velocity direction and magnitude
to be invariant with respect to the interaction. This is additional constraint is known as
forward scattering limit and is equivalent to requiring the Mandelstam variable t = 0.
As a result, the initial and final states can only be identical (|i〉 = |f〉) if and only if
both elastic scattering and forward scattering limited are assumed.

This allows to infer that in the forward limit, i.e. |i〉 = |f〉 the scattering angle φ
is zero in this approximation, t = 0 for φ = 0.

Scattering dynamics versus kinematics

Another aspect to note is that there are two types of conditions that have to be satisfied
in order to get physical scattering processes. Firstly, the kinematics described above,
i.e. momentum and energy conservation, has to be fulfilled. Secondly, the the dynamics
of the system has to be consistent and is described by the equations of motions, i.e.
the Euler-Lagrange-equations, both classically and in QFT prescriptions. The latter
(the dynamics) would be inferred from the specific form of the Lagrangian, whereas the
kinematics would be a priori known once the fundamental symmetries of the system
are identified (e.g. Poincaré invariance). Considering both dynamics and kinematics
give additional constraints, and their combination have very significant implications
for scattering. Suppose we consider a set of particles described by the simple Klein-
Gordon-Lagrangian for φ4 theory

L =
1

2
(∂φ)2 − 1

2
m2φ2 − λ

4!
φ4 (2.7)

and would like our theory to include inelastic collisions too. In general, real empirically
observable processes will always lead to partial energy loss via heat generation and
subsequent exchange with the environment. Therefore, we expect heat to be included in
the kinetic terms T = (1−γ)mc2 of the outgoing particles, which then must have smaller
rest mass to compensate their increased thermal energy. However, for the considered
φ4 model this is impossible because the Lagrangian only has one single species with one
specific mass m. Therefore φ4 theory can only result in elastic scattering, showing the
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importance of distinguishing the kinematics from the dynamics of a given Lagrangian.
In chapter 3 and 4 similar, albeit more complex, Lagrangians with one single mass term
will be analysed, so for these models elastic collisions is a necessary condition. Chapter
5’s treatment of the Standard Model and SMEFTs however include a vast number of
different possible mass terms, so omitting inelastic collisions for SMEFTs is in fact an
optional assumption instead as its omission is not implied by the field dynamics of the
SMEFT Lagrangians.

2.1.4 scattering cross sections

We start by defining the scattering cross section following arguments made in. Recalling
that the particle flux Φ = nv with number density n = N ′

V
and particle speed v, the

scattering cross section is defined as

σ =
1

Φ

N

T
,

where N is the number of scattered particles per unit time T . The total number of
particles in the beam is N ′ however, so clearly N ≤ N ′, and the scattering probability is
exactly PS = N

N ′
. Rewriting the flux density using average speed v = L

T
gives Φ = N ′

V
L
T

and inserting this expression into the cross section yields

σ =
N

N ′
V

L
= PSÃ,

where Ã = V
L

is the average area. Hence from this expression it is apparent that using
this definition of the cross section above, σ can be interpreted as the effective area
corresponding to the scattering / interaction probability.

Assuming N ′ =constant, we have dPS = dN
N ′

, so

dσ =
N ′dPS
TΦ

or for 1 particle beams with N ′ = 1

dσ =
dPS
TΦ

The cross section is independent of the experimental parameters and only depend
on the underlying physical scattering process. If one wishes to include experimental
dependency, it is common to rewrite this in terms of the integrated luminosity L =∫
Ldt, which is dependent on the explicit parameters. The integrated luminosity is

defined as L = dN
dσ

, yielding

dN =
L

TΦ
dPS.

14



(For a one particle beam the particle flux is clearly given by Φ = |~v|
V

) Assuming
only 2 colliding particles, we only have 2 initial states, so the incoming beam only has 2
particles3. In the Centre-of-Mass (CoM) frame4 this corresponds to Φ = | ~v2− ~v1|

V
. Hence

dσ =
V

T

dPS
|~v2 − ~v1|

.

In quantum mechanics the probability amplitude A of transition processes is given by

A =
〈f |S|i〉√
〈f |f〉 〈i|i〉

,

where f is the final state and i is the initial state. Here we consider 2-n scattering.
The same form holds in QFT for scattering processes. Thus the probability is

PS = |A|2 =
〈f |S|i〉 〈i|S|f〉√
〈f |f〉 〈i|i〉2

=
| 〈f |S|i〉 |2

〈f |f〉 〈i|i〉

Now |i〉 = |i1i2〉 and |f〉 =
⊗

j∈f |fj〉 are asymptotic states, that is they correspond
to the system for t → ∞ and t → −∞. Hence they are constant as the interaction
will be over at t = ∞ and won’t have started to affect states at t = −∞. Taking the
differential of this then results in

dPS =
| 〈f |S|i〉 |2

〈f |f〉 〈i|i〉
∏
j∈f

V

(2π)3
d3pj

for pj = 2πi
L

and taking care to only multiply the final states.
The usual quantisation of momentum states results in 〈p|p〉 = 2Ep(2π)3δ3(0). We

can rewrite δ3(0) = 1
(2π)3

∫
d3x = V

(2π)3
, where V is clearly the infinitely big space.

Similarly δ4(0) = TV
(2π)4

Now expressing the particle state normalisation as

〈p|p〉 = 2EpV,

as in [5] one therefore has

〈i|i〉 =
(
〈i1| 〈i2|

)(
|i1〉 |i2〉

)
= 〈i1|i1〉 〈i2|i2〉 = 4E1V

2E2

3We only deal with 2-2 scattering because the fields get stronger the closer the particles are to each
other, and it is nearly impossible for 3 or more particles to happen to be at exaclty the same distance
to each other. Hence the probability of all of them interacting at the same time is nearly zero, and 2-2
processes dominate. Of course in beams with millions of particles thousands of these 2-2 scatterings
happen, but they are all treated either independently of each other, or after each other. The essential
point is that 2-3 or 3-3 virtually never happen.

4Note that in the lab frame we have a 1 particle beam with speed v1, and in CoM frame we have

2 particles each with speed |~v1−~v2|2 , so ΦCoM = 2·| ~v2− ~v1|
V ·2 = | ~v2− ~v1|

V , and this particle flux is consistent
in either frame
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and

〈f |f〉 =

(⊗
j∈f

〈fj|
)(⊗

j∈f

|fj〉
)

=
∏
j∈f

2EjV.

Writing the scattering matrix as S = 1 + T , where T is the non-trivial transfer ma-
trix and 1 corresponds to the trivial scattering (free propagation and no interaction),
then neglecting the trivial part we can define the scattering amplitude 〈f |T |i〉 =
(2π)4δ4(Σp). The delta function here is due to the trivial part, since this would result
in momentum conservation. Hence adding the delta function ensures this conservation
law and entails everything we can infer from the free propagation. 5 Squaring6 this

| 〈f |T |i〉 |2 = (2π)8δ4(0)δ4(Σp)|M |2 = TV (2π)4δ4(Σp)|M |2

Putting all together into equation:

dσ =
V

T

1

|~v2 − ~v1|
| 〈f |S|i〉 |2

〈f |f〉 〈i|i〉
∏
j∈f

V

(2π)3
d3pj

=
V

T

1

|~v2 − ~v1|
TV (2π)4δ4(Σp)|M |2

4E1E2V 2
∏

j 2EjV

∏
j∈f

V

(2π)3
d3pj

=
1

|~v2 − ~v1|
(2π)4δ4(Σp)|M |2

4E1E2

∏
j 2Ej

∏
j∈f

1

(2π)3
d3pj

=
|M |2

4E1E2|~v2 − ~v1|

(
(2π)4δ4(Σp)∏

j 2Ej

∏
j∈f

1

(2π)3
d3pj

)

=
|M |2

4E1E2|~v2 − ~v1|
dΠLIPS,

where the Lorentz invariant phase space factor is ΠLIPS = (2π)4δ4(Σp)∏
j 2Ej

∏
j∈f

1
(2π)3

d3pj Of

course we set V, T from the cross section definition equal to the infinitely big V, T of
the QFT norms. However, if we have a 1 particle beam then clearly one can define it
to cover all space and lasting for infinitely long T until the interaction. Hence we can
cancel the V and T .

2-2 scattering

Taking the special case of 2-2 scattering, the CoM frame the energy is conserved accord-
ing to ECoM,before = E1 +E2 = E3 +E4 = ECoM,after. Also ~p1 = −~p2 and ~p3 = −~p4, due

5Note that this scattering amplitude is not the same as the probability amplitude A above because
A was normalised by dividing by ii and ff, whereas M is not normalised. However, the infinitely big
normalisation cancels soon, so this difference does not matter here

6Note δ8(Σp) = δ4(0)δ4(Σp)
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to momentum conservation, so we can define pf = |p3| = |~p4|. We take ECoM = E1 +E2

for now and then show that our calculations must also imply E3 + E4 = ECoM The
Lorentzian phase space becomes

dΠLIPS(p3, p4) =
δ4(Σp)

16π2E3E4

d3p3d3p4 (2.8)

Writing out the abbreviation δ4(Σpµ) = δ4(Σpiµ−Σpfµ) = δ
(

ΣEi−ΣEf
)
δ3
(

Σ~pi−Σ~pf
)

then after integrating with respect to the spatial d4p3 eqn becomes

dΠLIPS(p3) =

∫
p4

dΠLIPS(p3, p4) =
δ(E3 + E4 − ECoM)

16π2E3E4

d3p3 (2.9)

or in spherical coordinates

dΠLIPS(p3) =
δ(E3 + E4 − ECoM)

16π2E3E4

dΩp2
3dp3 (2.10)

Integrating out the radial momentum so that only the differential angular dependence
remains, we obtain

dΠLIPS(Ω3) = dΩ

∫
δ(E3 + E4 − ECoM)

16π2E3E4

p2
fdpf (2.11)

In order to compute this integral, the energies have to be expressed in terms of the

momenta, via E3 =
√
p2
f +m2

3 and E4 =
√
p2
f +m2

4.

The argument of the delta function justifies the change in variables according to
y = E3 + E4 − ECoM , which implies

dy

dpf
=

d

dpf
(E3 + E4 − ECoM) =

dE3

dpf
+

dE4

dpf

=
pf√

p2
f +m2

3

+
pf√

p2
f +m2

4

=
pf
E3

+
pf
E4

= pf
E3 + E4

E3E4

= pf
ECoM
E3E4

so

dΠLIPS(Ω3) = dΩ

∫ ∞
m3+m4−ECoM

δ(0)pf
16π2ECoM

dy

= dΩ
θ(ECoM −m3 −m4)pf

16π2ECoM

For the initial momenta we have pi = |~p1| = |~p2|, so one can rewrite [5]

|~v1 − ~v2| = pi
ECoM
E1E2

which allows to infer that the differential cross section is
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dσ

dΩ
=

1

64π2E2
CoM

pf
pi
|M |2θ(ECoM −m3 −m4) (2.12)

This holds for any masses, so in the special case of elastic scattering, where all masses
are equal, we obtain pf = pi and ECoM − 2m ≥ 0 and thus

dσ

dΩ
=

1

64π2E2
CoM

|M |2 (2.13)

Here masses means rest masses. This clearly has kinematic implications, as opposed
to the dynamic constraints due to the terms in the Lagrangian. For instance, if there
is only one field in the Lagrangian, then clearly this field can only self-interact and all
particles stem from the same Lagrangian, so the rest-masses of the scattered particles
are all the same. If there is another field with a mass term of the same mass, then
equation 2.13 can still be used. However, should the Lagrangian contain fields that
have different mass terms, then this directly implies that the scattering is not elastic
as the rest masses changes. Connecting these dynamic constraints to the kinematic
scattering considerations allows us to infer the form of the cross section, depending on
which theory is described within the Lagrangian7.

2.2 EFTs

As mentioned before, EFTs can be thought of as set of valid theories in the low energy
limit, below a certain cut-off scale Λ that separates the corresponding UV from the IR
region. Heavy particles are particles with mass m > Λ and therefore only appear in the
corresponding UV complete theory (if such a UV completion is possible at all). Light
particles with mass m < Λ do appear in both regions and hence cannot be ignored in
either. This distinction then allows two methods of dealing with EFTs. as described
in [6]:

1. One can start with an appropriate UV complete theory, that describes the full
physics picture including heavy masses, and then focus on the low energy range
where the light particles dominate. Hence with this method the EFT is simply
an approximation of the UV theory. This is known as the top-bottom formalism.

2. Irrespective of whether a UV theory exists, one can start in the low energy
regime in the first place, determine the particle spectrum (which will consist of
light particles only) and can then try to find a UV completion without knowing
about the heavy particles a priori. This is known as bottom-up.

7In classical mechanics, the Euler Lagrange equations represent a generalised form of Newton’s
second law, describing the dynamics, and the work-energy theorem allows to connect the kinematics
with the dynamics. One could argue that the way above is the QFT equivalent of a work-energy
theorem

18



In any case, the EFT can be expressed as a sum over all operators Ô, valid up to
Λ, where this sum is parameterised by constant Wilsonian coefficients ci:

LEFT = ΣiciÔi (2.14)

Consider a toy theory like in [6]

LUV =
1

2
(∂χ)2 − 1

2
M2χ2 +

1

2
(∂φ)2 − 1

2
m2φ2 − λ

3!
φ3χ,

where χ are the heavy fields with mass M and φ are the light fields with mass m, with
M > Λ > m by definition.

Then this Lagrangian must be part of a UV complete theory because it describes the
full dynamics of the system. Now imagine one wanted to test this theory experimen-
tally, or infer any other theoretical low energy characteristics, then the IR dynamics
would not be immediately visible in this form of a UV complete theory since the heavy
and light field χ and φ are coupled via ĤI

int = λ
3!
φ3χ. Hence one way of separating

them is expressing φ in terms of χ and plugging this in back into LUV . Calculating the
Euler-Lagrange-equations, i.e. the equations of motion, for χ:

0 =
∂LUV
∂χ

− ∂µ
∂LUV
∂∂µχ

= −M2χ− λ

3!
φ3 −�χ = −(� +M2)χ− λ

6
φ3

This then allows to rewrite this as

χ = −λ
6

φ3

� +M2
,

that is the dynamics of χ is written as a function of the dynamics of φ. Plugging this
back into LUV now yields

LEFT =
1

2
(∂φ)2−1

2
m2φ2−λ

2M2

72
(�+M2)−2φ6+

λ2

72

(
∂
(
(�+M2)−2φ3

))2

− λ

36
(�+M2)−2φ6

=
1

2
(∂φ)2 − 1

2
m2φ2 − λ2M2

72
Ôφ6 +

λ2

72

(
∂(Ôφ3)

)2 − λ

36
Ôφ6,

where the operator Ô is defined as the differential operation Ô = (�+M2)−2. Note that
the label of the Lagrangian is now LEFT because this Lagrangian now only contains
light fields, so is not UV complete any more once this substitution has been made.
Given that both in the Dyson expansion of canonical QFT as well as in the path
integral formalism there will be some spacetime or momentum integrals of ĤI

int, so the
fact that χ has now disappeared entirely in LEFT and the effective version of Hint is
why this method is also known as integrating out the heavy fields. LEFT gives the full
low energy dynamics of the system and it is apparent that it now contains φ6 terms
whilst in the UV Lagrangian only φ3 terms, and along with χ, at most quartic vertices
appeared. These quartic UV vertices now appear as sextic EFT vertices. In addition,
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Figure 2.1: This sketch shows the relationship between UV and IR limits of the con-
sidered toy theory and allows to get an understanding of how these limits affect the
order of the vertices.

the coupling constant of the sextic self-interaction of φ now has an effective coupling
constant λ′ = λ2. This implies that e.g. any EFT Feynman diagrams up to the order
of only one vertex must correspond to UV Feynamn diagrams up to the order of two
vertices as in Fig. 2.1.

Hence by integrating out the heavy fields, those got absorbed into the lighter fields
and changed their dynamics, self-interaction and coupling, so even though χ is not
visible any more, it still affects the EFT in a hidden way.

Of course this argument also allows to approach any EFT that we know a priori by
asking whether there is heavier field that is not included in the Lagrangian (because
e.g. it is too heavy to be detected) and then finding out whether it is possible to
conduct a UV completion to find and separate out the heavier fields again.

In summary, it is possible to switch between UV and EFT pictures by integrating
out all heavy fields[6]. Which fields are included in the EFT is determined by choosing
a cut-off scale Λ [7][8][9] so that all particles with mass m > Λ are integrated out and
discarded, so choosing Λ carefully for any given theory allows to study any specific
particle spectrum of a UV complete theory more closely.

2.3 Bounds and constraints

2.3.1 Unitarity

One can derive the simplified optical theorem even more generally using the concept
of unitary operators in QFT. In fact, one can even derive a new set of conditions due
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to unitarity, as in [5] and [6] and then show that this constraint directly implies the
optical theorem from unitarity. Note that this holds in general, but the operator for
our scattering consideration that we require to be unitary now is clearly the Ŝ matrix.
In both QM and QFT a state transforms under an operator Â:

|i〉 → |i′〉 = Â |i〉

and
〈f | → 〈f ′| = 〈f | Â†

Hence it is immediately apparent that

〈f |i〉 → 〈f ′|i′〉 = 〈f |Â†Â|i〉

Now due to conservation of probability as well as the probability’s nature of transfor-
mation invariance the expectation values must be the same, i.e.

〈f |i〉 = 〈f |Â†Â|i〉

As this must hold for any f, i, it directly follows that

Â†Â = 1,

i.e. that Â is unitary.
For scattering the Ŝ matrix operator leaves the initial and final states invariant,

that is it transforms the initial and final states under scattering in the trivial way
〈f ′| = 〈f | and |i′〉 = |i〉. Hence the expression above directly becomes

〈f |i〉 → 〈f |i〉 = 〈f |Ŝ†Ŝ|i〉

and we need not even invoke conservation of probability8 In any case Ŝ has to be
unitary in order to qualify for a scattering operator.

Writing the S matrix as Ŝ = 1 + iT̂ and neglecting the unscattered contribution,
the T matrix elements expressed in terms of the scattering amplitude is 〈f |T |i〉 =
(2π)4δ4(pi − pf )Mi→f

Hence we can infer
1 = Ŝ†Ŝ = (1− iT̂ †)(1 + iT̂ )

= 1− iT̂ † + iT̂ + T̂ †T̂

This implies
T̂ †T̂ = i(T̂ † − T̂ ) 6= 1

8in some sense scattering seems to have an even stronger conservation of probability as it seems to
conserve it immediately due to invariance of i and f
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and therefore T̂ is not unitary. This has significant physical consequences as the cor-
responding Lie Algebra for T̂ is not hermitian any more. Hence the corresponding
observables are not real any more. Sandwiching this equality between the states yields

〈f |T̂ †T̂ |i〉 = 〈f |i(T̂ † − T̂ )|i〉

= i 〈f |T̂ †|i〉 − i 〈f |T̂ |i〉 = i 〈i|T̂ |f〉∗ − i 〈f |T̂ |i〉
= i(2π)4δ4(pf − pi)(M∗

f→i −Mi→f ))

Consider the complete basis

1 =
∑
α

∫
dΠα |α〉 〈α| =

∑
α

∫ ∏
j∈α

1

2Ej

d3pj
(2π)3

|α〉 〈α|

of the Hilbert space, where we use a similar Π as above, and we sum over all (discrete)
particle states and (continuous) momentum states. Inserting this unity into this, we
receive

〈f |T̂ †T̂ |i〉 =
∑
α

∫
dΠα 〈f |T̂ †|α〉 〈α|T̂ |i〉

= i
∑
α

∫
dΠα(2π)4δ4(pf − pa)(2π)4δ4(pi − pa)Mi→αM

∗
f→α

This gives us

(2π)4δ(pi−pf )(Mi→f−M∗
f→i) = i

∑
α

∫
dΠα(2π)4δ4(pf−pa)(2π)4δ4(pi−pa)Mi→αM

∗
f→α

Therefore the generalised optical theorem is

Mi→f −M∗
f→i = i

∑
α

∫
dΠα(2π)4δ4(pf − pa)Mi→αM

∗
f→α (2.15)

Now clearly the LHS is proportional to M , and is therefore also of order O(gn),
where n is the highest number of the vertices considered in M . However, the RHS
is proportional to |M |2 and is therefore proportional to O(g2n). For instance for φ4

theory and considering M ∝ O(g1), we have that the LHS is described by single vertex
i.e. the tree-level, but the RHS is of order O(g2), so is already at one-loop level. Hence
an important consequence of this general optical theorem, and even more generally, of
unitary, is that certain loop expressions have to match tree level amplitudes [5].

Consider general elastic scattering, where by definition the initial and final particle
and momentum states are the same because elastic scattering conserves the kinetic
energy for each particle individually. For such n-n scattering, we have |i〉 = |f〉, then
equation above reduces to

2iImMi→i = Mi→i −M∗
i→i = i

∑
α

∫
dΠα(2π)4δ4(pf − pa)|Mi→α|2 (2.16)
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Recalling the optical theorem of first kind

σi→α =
1

4ECoMpi

∫
dΠα(2π)4δ(pi − pα)|Mi→α|2

we therefore derive the optical theorem of second kind

ImMi→i = 2ECoMpiΣασi→α (2.17)

The optical theorem of first kind relates |M |2 ∼ σ and the generalised one relates
|M |2 ∼ ImM , so both combined imply the optical theorem of second kind, relating
ImM ∼ σ. One can always derive one of the three from the other two. Now consider
equation 2.17 again, here the RHS is clearly positive as ECoM ≥ 0, hence the LHS must
be too and we arrive at the positivity condition due to unitarity

Im(M) > 0. (2.18)

For M = M(s) this means that one can only focus on the upper half plane as the
amplitude cannot have a negative imaginary part for any s. However, one can of
course analytically extend the amplitude to the lower half plane by using the Schwartz
reflection principle [10]

A∗(s) = A(s∗), (2.19)

which implies that flipping the amplitude along the Re(A) axis is equivalent to the
initial amplitude at s∗.In summary

Im(M(s)) > 0 for upper half plane

Im(M(s∗)) < 0 for lower half plane
(2.20)

Note that the optical theorem of second kind only holds for elastic scattering[6][5],
whereas the other two hold for both elastic/inelastic scattering. Of course the one
of second kind can be modified to include inelastic scattering, but then the equality
becomes an inequality since there are now more scattering channels.

2.3.2 Analyticity

The second constraint that needs to be fulfilled by EFTs is analyticity. Generally an-
alyticity refers to functions converging to their Taylor expansion. If the function is
analytic everywhere, it is called an entire function. Of course there might be sepa-
rate analytic regions that are topologically disconnected, that is, the convergence to
the Taylor expansion exists inside these regions, but in between them the functions
diverge, leading to singularities. Now clearly one can still consider all converging re-
gions holistically by exploiting analytic extensions. However, the fact remains that
there are still points or regions where divergencies do occur. Requiring our scattering
amplitudes to be analytic is equivalent to requiring our amplitudes 1) the usual differ-
entiable, converging to Taylor expansion and 2) ensuring we can always analytically
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extend our amplitudes across these divergencies, which makes sure that these singu-
larities are dealt with. Hence requiring analyticity is necessary in order to consider
a theory involving singularities. Alternatively, understanding the need for analyticity
is also related to imposing theory to obey causality due to additional locality require-
ments to ensure that local operators are non-zero only inside light-cones, as explained
in [11].

In order to derive bounds due to analyticity, it is useful to derive the Källén-Lehman
representation, showing the regions where the amplitude is not analytic. Starting
with the 2 point function 〈Ω|T φ̂(x)φ̂(y)|Ω〉, one can insert a complete set of states

1 = Σα

∫
d4p

(2π)4
|α, p〉 〈α, p|, labelled by discrete state α and momentum p, to get

〈Ω|T φ̂(x)φ̂(y)|Ω〉 = Σα

∫
d4p

(2π)4
〈Ω|φ̂(x)|α, p〉 〈α, p|φ̂(y)|Ω〉

Assuming Lorentz and translation invariance, i.e. a Poincare symmetry, it can be
shown that

〈Ω|φ̂(x)|Ω〉 = e−ipx 〈Ω|φ̂(0)|Ω〉

so therefore

〈Ω|T φ̂(x)φ̂(y)|Ω〉 = Σα| 〈α, p|φ̂(0)|Ω〉 |2
∫

d4p

(2π)4
e−i(x−y)

〈Ω|T φ̂(x)φ̂(y)|Ω〉 =

∫ ∞
0

d
m2

2π
ρ(m2)PF (x, y)

This spectral representation shows the particle spectrum of a given theory. For
1 particle states there is one state with mass m = mα. This is where the Feynman
propagator has a pole, and as a result, the spectral density has a Dirac delta spike at
s = mα. One could argue this pole in the complex plane acts as the reason for particles
becoming physical because at the pole, i.e. exactly at s = p2 = m2

α the particle obeys
the on-shell condition. Particles going on-shell correspond to poles when their centre-
of-mass energy s is equal to their particle masses. For 1 particle states this is very
simple because the spectral density can only be a sum of Dirac functions, so visually
a sum of Dirac spikes. Of course there can also be other bound states from composite
particles, which would act like new 1 particle states giving additional Dirac spikes for
s > m2in the spectral representation, but the theories investigated in this dissertation
are all made from elementary, i.e. no composite, particles. The minimum rest mass
for 2 particle states clearly is (2m)2 = 4m2. Hence for m2 ≤ s ≤ 4m2 there are only
1 particle bound states, and for s ≥ 4m2 there are multiparticle states. These can
be very complicated, and would go beyond the scope of this thesis, so from now on
s ≤ 4m2 is assumed. As there are infinitely many combinations of particle masses in
multiparticle states, that means that there are infinitely many poles along the real s
axis, corresponding to a branch cut for s ≥ 4m2, so the amplitude cannot be analytic
on the real axis for this region. Since we are focusing on 1 particle states at most, here
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this branch cut is less significant but still worth noting. Similarly for t = 0, crossing
symmetry implies that there must be another pole at u = m2 for the 1 particle state,
and a branch cut for u > 4m2. In terms of s these are s = 3m2 and s < 0. To
summarise, on the real axis, there are poles at s = m2 and s = 3m2 for 1 particle
states and two branch cuts for multiparticle states, see Fig. 2.3. The poles and branch
cuts are clearly not analytic, although the region between them is, and is called the
unphysical region. However, it is very significant to see that these singularities only
lie on the real axis, so the amplitude is still expected to be analytic everywhere else
in the complex upper and lower half plane except for the physical regions on the real
axis.

For the unphysical region 0 < s < 4m2 we know that M is analytic - except for
s = m2, giving the one-particle pole corresponding to the one-particle state going on-
shell. Without this specific pole, M would be analytic everywhere for all s apart from
the two branch cuts on the real axis, so we can now proceed by either assuming that
this s = m2 pole / 1 particle state didn’t exist and then later correct the expression
by adding in the pole 9 OR one treats M as not analytic at these two poles, which
requires an additional deformation of the integration contour around these two and
then immediately arrives at the corresponding residues. Clearly both methods should
give the same result for the overall scattering amplitude. These poles/residues are due
to particles going on-shell (p2 = m2) in the momentum Feynman propagators i

p2−m2+iε
,

so this is were these poles really come from. However, this also means that for any
process that only involves the scattering of e.g. φ4 theory to one-vertex-order, no such
Feynman propagators appear in the amplitude as the external legs are simply given by
free propagators only. Hence in such cases we do not have any poles at s = m2 in the
first place, and M is analytic everywhere anyway, apart from branch cuts. For such
simple scattering, the difference between the actual amplitude and the pole-subtracted-
amplitude is trivial. For all other cases we need to distinguish between M and S. To
summarise, the positivity bounds derived above work for analytic regions only as the
Cauchy integral theorem requires analytic regions, so any poles will either have to
be subtracted before taking the derivatives, or directly taking care of by performing
additional contour integrations, yielding additional residues that correspond to these
subtractions. 10 Hence one can express

M(s0) =
1

2πi

∮
C

M(s)

s− s0

ds (2.21)

and for all s M is analytic apart from branch cuts.

9more specifically, the residue of the pole
10Also note that for multiparticle states the Dirac spikes are smeared out in the spectral representa-

tion because the particles can have arbitrary particle masses as long as s > 4m2 and have more dofs,
but when measuring a specific multiparticle state, their masses would immediately go back on-shell.
Hence even though the spectral multiparticle shape appears to be finite and is, in fact, even related to
cross sections, this does not imply the amplitude is analytic there. In some sense the spectral density
shows which states are possible
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Recalling Cauchy’s integral formula

f(s0) =
1

2πi

∮
C

f(s)

s− s0

ds (2.22)

where f(s) is analytic inside the curve C, as well as its nth derivative

f (n)(s0) =
n!

2πi

∮
C

f(s)

(s− s0)n+1
ds, (2.23)

Now it follows that we can directly see that for n = 2 we can rewrite the equation
above as

M (2)(s0) =
1

πi

∮
C

M(s)

(s− s0)3
ds, (2.24)

or in a nicer form as

G(s0) =
M (2)(s0)

2
=

1

2πi

∮
C

M(s)

(s− s0)3
ds, (2.25)

This now allows us to express the dispersion relation in terms of partial derivatives
on the scattering amplitude. Clearly any (n) could have been chosen, but as shown
below, n = 2 is the smallest n for which convergence is guaranteed, so this case corre-
sponds to the bound of lowest order. In order to compute this integral explicitly, we
let s → s + iε and M(s) → M(s(1 + iε)), where limε→0 is assumed. We can then use
the contour in Fig. 2.2, where the epsilon ensures the curve is not on the poles and we
arrive at

G(s0) =
1

2πi

(∫ 0

−∞

M(s(1 + iε))

(s(1 + iε)− s0)3
ds︸ ︷︷ ︸

G1(s0)

+

∫ −∞
0

M(s(1− iε))
(s(1− iε)− s0)3

ds︸ ︷︷ ︸
G2(s0)

+

∫ ∞
4m2

M(s(1 + iε))

(s(1 + iε)− s0)3
ds︸ ︷︷ ︸

G3(s0)

+

∫ 4m2

∞

M(s(1− iε))
(s(1− iε)− s0)3

ds︸ ︷︷ ︸
G4(s0)

+

∫
C+
−∞

M(s(1 + iε))

(s(1 + iε)− s0)3
ds︸ ︷︷ ︸

G5(s0)

+

∫
C−∞

M(s(1− iε))
(s(1− iε)− s0)3

ds︸ ︷︷ ︸
G6(s0)

)
(2.26)

Again, this is based on the assumption that we can decompose the contour integral∮
C

as such a sum of ordinary integrals, which works as long as M(S) is analytic inside
this contour, i.e. when neglecting the s = m2 pole, and then adding the residue later
on. If we included the single particle creation poles in the first place, we would have
to deform the contour a bit more, so we would have more terms to consider in the sum
of integrals. It is these additional integrals that give us the expression for the residue
we use to add in the former case, so both approaches should give the same result.
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Figure 2.2: Reproduced and edited from [10], this sketch shows the integration contour
and also shows the two branch cuts for s < 0 and s > 4m2.
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The Froissart bound [12] [13] implies that M(s0) is bounded from above by |M(s)| <
sln2(s) in the limit lims→∞. Now integrating along the infinitely big circle C, the

integral measure is proportional to sds, so lims→∞| M
(s−s0)3

ds| = lims→∞
ln2(s)
s

= 0 Hence

this directly implies that G4(s0)→ 0 and G5(s0)→ 0, i.e. the boundary terms vanish.
At this point it is important to reconsider equation 2.23 and note that if one had chosen
n = 1, ie poles of second order in M(s0) = 1

2πi

∮
C

M(s)
(s−s0)2

ds only, then we would get

boundary terms proportional to lims→∞ln
2(s) =∞ i.e. not just boundary terms that

did not vanish, but also boundary terms that would entirely diverge! Hence n = 2 is
the smallest order state where the integral converges, and in general one could consider
any n ≥ 2 that will then give additional, higher-order bounds as explained below.

In summary one can write

G(s0) =
1

2πi

(∫ 0

−∞

M
(
s(1 + iε)

)
−M

(
s(1− iε)

)
(s(1 + iε)− s0)3

ds+

∫ ∞
4m2

M
(
s(1 + iε)

)
−M

(
s(1− iε)

)
(s(1− iε)− s0)3

ds

)
(2.27)

=
1

2πi

(∫ 0

−∞

Disc(M(s))

(s(1 + iε)− s0)3
ds+

∫ ∞
4m2

Disc(M(s))

(s(1− iε)− s0)3
ds

)
(2.28)

where the discontinuity function is defined as Disc(M) := M
(
s(1+iε)

)
−M

(
s(1−iε)

)
.

After simplifying the numerators this way, the next step is to change the integration
limits so that both terms have the same limit. Hence we conduct change of variables
in the first integral with u = 4m2 − s, so s =∞⇒ u =∞ and s = 0⇒ u = 4m2 and
du = ds. This then gives

=
1

2πi

∫ ∞
4m2

−Disc(M(4m2 − u))

((4m2 − u)(1 + iε)− s0)3
du+

∫ ∞
4m2

Disc(M(s))

(s(1− iε)− s0)3
ds (2.29)

=
1

2πi

∫ ∞
4m2

(
Disc(M(s))

(s(1− iε)− s0)3
ds− Disc(M(4m2 − u))

((4m2 − u)(1 + iε)− s0)3
du

)
(2.30)

Now we exploit crossing symmetry, which requires thatM(s) = M(u), soDisc(M(s))) =
Disc(M(u)) to get

=
1

2πi

∫ ∞
4m2

(
Disc(M(s))

(s(1− iε)− s0)3
ds− Disc(M(s))

((4m2 − u)(1 + iε)− s0)3
du

)
(2.31)

and note that the first term depends on s only, and the second term on u only. Thus
we can now relabel u→ s in the second term. Then this integral becomes

=
1

2πi

∫ ∞
4m2

Disc(M(s))

(
1

(s(1− iε)− s0)3
− 1

((4m2 − s)(1 + iε)− s0)3

)
ds (2.32)

It is clear that

2iIm(M(s(1+iε)) = M(s(1+iε))−M∗(s(1+iε)) = M(s(1+iε))−M(s(1−iε)) = Disc(M(s))
(2.33)
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so one can write

G(s0) =
1

π

∫ ∞
4m2

Im(M(s))

(
1

(s(1− iε)− s0)3
− 1

((4m2 − s)(1 + iε)− s0)3

)
ds (2.34)

Now using the optical theorem of second kind Im(M(s)) = Im(M(i → i)) =
2Ecm|~pi|Σασ(α→ i)

G(s0) =
2

π

∫ ∞
4m2

Ecm|~pi|Σασ(α→ i)

(
1

(s(1− iε)− s0)3
− 1

((4m2 − s)(1 + iε)− s0)3

)
ds

(2.35)
Here very clearlyEcm ≥ 0, |~pi| ≥ 0 and σ(α → i) ≥ 0. Considering the bracket, in the
exact limit ε = 0 the bracket is just

1

(s− s0)3
− 1

(4m2 − s− s0)3
=

1

(s− s0)3
+

1

(s+ s0 − 4m2)3
≥ 0

as the integration limits in eqn imply that integration is between 4m2 and ∞, so here
s ≥ 4m2, and the second term in the bracket is also positive. Putting all together we
get

G(s0) =
2

π

∫ ∞
4m2

Ecm|~pi|Σασ(α→ i)

(
1

(s(1− iε)− s0)3
− 1

((4m2 − s)(1 + iε)− s0)3

)
ds ≥ 0

(2.36)
Assuming we ignore the obviously trivial cases like Ecm = 0, p = 0 or σ = 0 ie assuming
the scattering process always happens, we get the even stronger bound

G(s0) =
2

π

∫ ∞
4m2

Ecm|~pi|Σασ(α→ i)

(
1

(s(1− iε)− s0)3
− 1

((4m2 − s)(1 + iε)− s0)3

)
ds > 0

(2.37)

Now recall G(s0) = M(2)(s0)
2

= ∂2M(s0)

∂s20
from eqn xx Relabelling s0 → s and given

that G(s0) > 0 we have

∂2M(s)

∂s2
> 0 (2.38)

This the positivity condition, significantly constraining the coupling conditions in the
theory. For any n ≥ 2, it was additionally shown above that convergence of the integrals
is guaranteed, and using a similar argument one derive higher-order positivity bounds
of the form

∂nM(s)

∂sn
> 0. (2.39)

It is immediately apparent that this results in an infinite number of bounds, however,
given any explicit amplitude A(s) of order O(sm) one gets exactly |m − 1| different,
non-trivial bounds11.

11One could argue that this still corresponds to infinitely many bounds, but just |m− 1| non-trivial
ones and infinitely many trivial ones of the form 0 ≥ 0
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As discussed before, this only works if M(s) is analytic for all s. For any theory to
make sense, it must always include the 1 particle state, so there must always be a pole
at s = m2. If one adds in this pole, then the contour would have to be deformed like
in Fig. 2.3.

Figure 2.3: Reproduced from [6], this sketch visualises the different integration contour
with poles at s = m2 and s = 3m2 for t = 0. µb can be chosen to be µb = 4m2 so that
this point coincides with the start of the multiparticle branch cuts.

In chapter 3 it will be shown how to calculate the corresponding residues for these
poles.
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Chapter 3

Scalar bounds

3.1 Simple example

It is best to start applying positivity bounds to scalar theories before dealing with more
complicated vector theories later, so consider a general φ4 theory with HI

int = Ô(∂4, φ4),
i.e. quartic derivative interactions. There are many ways of obtaining combinations of
derivative couplings with dimension 8, such as HI

int = λ∂µφ∂
ν∂µφ∂νφφ or

HI
int = λ∂µφ∂

µφ∂νφ∂
νφ (3.1)

It is crucial to distinguish the s−, t− and u−channels at this point and label the
particles carefully. Unlike for cubic interactions, where the definition of the channels
is obvious, for quartic vertices assigning the channels is less clear and has a certain
degree of ambiguity. However, cubic theories have extra complications due to poles
at tree-level order, so in this example only quartic interactions are studied. For the
s-channel one needs at least one factor of the Mandelstam variable s, i.e. at least one
contraction p1 · p2 or p3 · p4. Therefore it is sensible to label the momenta of the terms
with the µ contractions with 1 and 2 and the ones with the ν contractions with 3 and
4:

HI
int = λ ∂µφ︸︷︷︸

p1

∂µφ︸︷︷︸
p2

∂νφ︸︷︷︸
p3

∂νφ︸︷︷︸
p4

(3.2)

The Feynman diagram for this interaction is . Given that there are two incoming
particles (1 and 2) that have negative momenta (−ip1) and (−ip2) and two outgoing
particles (3 and 4) with positive momenta (+ip3) and (+ip4), their overall product is
positive as the signs cancel. Each channel has 8 permutations as there are 4! = 24
permutations in total and 3 channels. The scattering amplitude according to the
Feynman rules then is

M = 8λ

(
(−ip1) · (−ip2)

)(
ip3 · ip4

)
, (3.3)
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where again terms like (pi · pj) mean (pi · pj) = pi,µp
µ
j Now invoking equation 3.3 this

can be rewritten as

M s(s) = 8λ(p1 · p2)(p3 · p4) = 8λ
(s

2
−m2

)2
= 8λ

(s2

4
−m2s+m4

)
(3.4)

For the t-channel one obtains a similar expression, however, here one needs at least
one factor of t, i.e. a p1 · p3 or p2 · p4 contraction. Hence one relabel the terms so that
p1 and p3 share the µ contractions and p2 and p4 share the ν contractions, and then
derive everything again from this, or directly use the result for the s-channel and there
commit to the relabelling 2↔ 3. Either method gives

M t(t) = 8λ(p1 · p3)(p2 · p4) = 8λ
(
m2 − t

2

)2
= 8λ

(t2
4
−m2t+m4

)
(3.5)

Similarly for the u-channel, one either relabels 3→ 4 in the s-channel result, or relabels
2→ 4 in the t−channel result. Either then results in

Mu(u) = 8λ(p1 · p4)(p2 · p3) = 8λ
(
m2 − u

2

)2
= 8λ

(u2

4
−m2u+m4

)
(3.6)

Now setting t = 0 and using u = 4m2−s one can express all amplitudes as functions
of s only, giving

M s(s) = 8λ
(s2

4
−m2s+m4

)
M t(s) = 8λm4

Mu(s) = 8λ
(s2

4
− 3m2s+m4

) (3.7)

Note that there are no poles in the amplitudes, as expected, so the pole-subtracted
amplitude S is just the ordinary amplitude M = S. However, if one wishes to add in a
cubic interaction at two-vertex order, then pole-subtractions are necessary to remove
the infinities.

Hence the lowest order positivity bounds are

∂2S

∂s2
=
∂2M

∂s2
=
∂2(M s +M t +Mu)

∂s2
= 16λ > 0 (3.8)

and hence
λ > 0 (3.9)

This is a new constraint on the coupling constant λ, that was unspecified before.
One could now consider some higher-dimensional Lagrangians with a higher number
of derivatives acting on the four φ fields, giving more momentum contractions and
hence higher polynomials in s. Generally, higher order bounds ∂nS

∂sn
> 0 can then be

additionally applied for scalar terms of dimension 2n+4 with n ≥ 2 in the Lagrangian.
This is because given that both scalars and single derivatives have mass dimension +1,
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n pairs of contracted derivatives acting on 4 scalar fields then give dimension 2n + 4.
Only the 2n derivatives give momentum factors in the amplitude, so a Lagrangian
density of dimension 2n + 4 gives an amplitude of order O(p2n) = O(sn). Therefore
non-trivial, higher order bounds up to ∂nS

∂sn
> 0 are possible.

Instead of using higher-order bounds, one can also focus on the lowest order bound
∂2S
∂s2

> 0, which will be bounds in terms of s. This is not the case for the higher order
ones as the additional derivatives remove the s-dependency entirely.

3.2 Cubic and quartic Lagrangian with higher di-

mension

Consider the Lagrangian with the following cubic and quartic interactions:

L =
1

2
(∂φ)2 − 1

2
m2φ2 + g0

3(∂φ)2�φ− g0
4(∂φ)2((�φ)2 − (∂µν)

2) (3.10)

The fact that the action S =
∫

d4xL is dimensionless allows to infer from the mass
and kinetic terms that both φ and φµ have mass dimension 1 in natural units, i.e are
of order O(m1). Hence it is apparent that the mass and kinetic terms are dimension 4,
so g0

3(∂φ)2�φ has to be of order O(m4) as well. This implies that g0
3 is O(m3), so one

can then factor out the dimensionless part of g0
3 by dividing by the mass scale Λ cubed.

This motivates to explicitly write g3 =
g03
Λ3 . Similarly, this means that for the quartic

term g0
4 is of order O(m6). Therefore the dimensionless quartic coupling is g4 =

g04
Λ6

L =
1

2
(∂φ)2 − 1

2
m2φ2 +

g3

Λ3
(∂φ)2�φ− g4

Λ6
(∂φ)2((�φ)2 − (∂µν)

2) (3.11)

Whilst equation 3.10 and 3.11 are equivalent, if these Lagrangians represent an EFT,
then only the last one makes the scale dependence obvious in this form.

It also important to take into account cases with different particles masses, where
each particle i will have its own mass mi and associated energy scale Λi. Then factoring
out mass scales to make the coupling constant dimensionless allows to immediately
show which particle masses become relevant at specific energies and what the particle
spectrum below a given Λi is.

From the considerations in chapter 2.2 one expects that in the UV limit above some
cut-off Λ any quartic term would actually be described by cubic terms1. Hence this
would directly allow to assume that g3 and g4 are not independent of each other. In
fact, as will be shown below, the cubic term can actually be absorbed into the quartic
term via a field redefinition.

1This was already considered for a similar case of quartic vertices that became sextic vertices,
however, the analogy is clear.
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3.2.1 Positivity bound

In order to find the corresponding positivity bounds, an expression for the amplitude
as a function of s has to be found first. The Feynman rules for derivative couplings
as explained above still apply. Specifically, for terms like L ⊃ g�φ = g∂µ∂

µφ the
contribution to the scattering amplitude is ±i2gpµpµ = ∓gp2 = ∓gm2, depending on
whether it is incoming or outgoing.

Firstly, consider the quartic term,

L4 = − g4

Λ6
((∂φ)2(�φ)2︸ ︷︷ ︸

L4a

− (∂φ)2(∂µ∂νφ)2︸ ︷︷ ︸
L4b

, (3.12)

for L4a one has for the s-channel

M s
L4a

= −8i
g4

Λ6

(
(−ip1) · (−ip2)

)(
ip3

)2(
ip4

)2
= 8i

g4

Λ6
m4(p1 · p2) = 4i

g4

Λ6
m4(s− 2m2)

Similarly, swapping 2↔ 3 in the s channel gives

M t
L4a

= −8i
g4

Λ6

(
(−ip1) · (−ip3)

)(
ip2

)2(
ip4

)2
= 8i

g4

Λ6
m4(p1 · p3) = 4i

g4

Λ6
m4(2m2 − t)

and then swapping 3↔ 4 results in the u-channel:

Mu
L4a

= −8i
g4

Λ6

(
(−ip1) · (−ip4)

)(
ip2

)2(
ip3

)2
= 8i

g4

Λ6
m4(p1 · p4) = 4i

g4

Λ6
m4(2m2 − u)

Note that, e.g by going from the s-channel to the t channel the amplitudes do not pick
up any other signs. This is because in the s channel, 1 and 2 are incoming and have
allocated a single derivative acting on the fields, so p1 and p2 pick up a minus sign
each, and 3 and 4 have a box each. This is whilst in the t channel, now particles 1 and
3 are incoming and get directly contracted, so now particle 2 gets a box applied on its
field. Considerations like this are significant and easily overlooked, but it is very easy
to omit signs, so it is always best to write down the amplitude in terms of all fields
and then simplify it for each channel, opposed to just evaluating the s channel and
then invoking crossing symmetry and relabelling. If, however, there were only single
derivatives acting on fields in the Lagrangian (such as for cases discussed in chapter 4),
then it is a lot easier to see that the overall sign factor for 2-2 scattering with quartic
vertices is always2 going to be (+i)(+i)(−i)(−i) = +1 as there won’t be any boxes
acting on φ giving squares of some permutations any more.

For the second term L4bone obtains by using these methods

2One could argue that for vertices with an odd number of external legs the additional i next to the
coupling constant would be relevant and might give the opposite sign. However, whilst e.g. quintic
vertices are possible, for one-vertex diagrams the number of derivatives has to be even because every
derivative contraction requires 2 indices, which is even, so the expression above should generally hold.
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M s
4b

= 8i
g4

Λ6

(
(−ip1) · (−ip2)

)(
ip3,µip3,ν

)(
ipµ4 ip

ν
4

)
= −8i

g4

Λ6
(p1 · p2)(p3 · p4)2 = −i g4

Λ6
(s− 2m2)3

and for the t and u channels

M t
4b

= −8i
g4

Λ6
(p1 · p3)(p2 · p4)2 = −i g4

Λ6
(2m2 − t)3

and
Mu

4b
= −8i

g4

Λ6
(p1 · p4)(p2 · p3)2 = −i g4

Λ6
(2m2 − u)3

Now consider the cubic term
L3 =

g3

Λ3
(∂φ)2�φ (3.13)

Now the tree-level diagram for 2-2 scattering has two vertices, so one needs to
calculate the scattering cross section for the Feynman diagram given in Fig. xx. In the
s - channel, 1 and 2 contract as always, however, there is now the further complication
of undetermined momenta in the propagator corresponding to virtual particles. As
explained before, these give rise to poles. Specifically, the amplitude is

Ls3 = 8
(ig3)2

Λ6

(
(−ip1)·(−ip2)(i(p1+p2))2)

)(
i

(p1 + p2)2 −m2 + iε

)(
(−i(p3+p4))2(ip3·ip4

)
(3.14)

as due to conservation of momentum, qµ = pµ1 +pµ2 = pµ3 +pµ4 Recalling that s = (p1+p2)
and p1 · p2 = p3 · p4 = s

2
−m2 this gives

M s
3 =
−8ig2

3

Λ6
(p1 · p2)(p3 · p4)

s2

s−m2 + iε
= −8i

g2
3

Λ6

s2

s−m2 + iε
(
s− 2m2

2
)2

= −8i
g2

3

Λ6

s2

s−m2 + iε
(
s2

4
− sm2 +m4)

(3.15)

For the t channel swapping the indices gives a similar result, where now conservation
of momentum implies qµ = pµ1 − p

µ
3 = pµ4 − p

µ
2 for the virtual particle’s momentum.

M t
3 =
−8ig2

3

Λ6
(p1 · p3)(p2 · p4)

t2

t−m2 + iε
= −8i

g2
3

Λ6

t2

t−m2 + iε
(
2m2 − t

2
)2

= −8i
g2

3

Λ6

t2

t−m2 + iε
(
t2

4
− tm2 +m4)

(3.16)

and finally

Mu
3 =
−8ig2

3

Λ6
(p1 · p4)(p2 · p3)

u2

u−m2 + iε
= −8i

g2
3

Λ6

u2

u−m2 + iε
(
2m2 − u

2
)2

= −8i
g2

3

Λ6

u2

u−m2 + iε
(
u2

4
− um2 +m4)

(3.17)
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Summing up all amplitudes

M =
−8ig2

3

Λ6

(
u2

u−m2 + iε
(
u2

4
− um2 +m4) +

t2

t−m2 + iε
(
t2

4
− tm2 +m4)

+
s2

s−m2 + iε
(
s2

4
− sm2 +m4

)
− ig4

Λ6

(
− 4m4(s− 2m2)− 4m4(2m2 − t)

−4m4(2m2 − u) + (s− 2m2)3 + (2m2 − u)3 + (2m2 − t)3

) (3.18)

Invoking the forward limit t = 0 as well as u = 4m2 − s and only keeping terms of
at least O(s2), then this reduces to

M =
−8ig2

3

Λ6

(
s2 − 8m2s+ 16m4

3m2 − s+ iε
(
s2

4
− sm2 +m4)

+
s2

s−m2 + iε
(
s2

4
− sm2 +m4) +O(s1)

)
+

2ig4

Λ6
((s− 2m2)3 +O(s1))

(3.19)

This very clearly has poles at s = m2 and s = 3m3. As described above, this is
because so far in the analyticity calculation, M was assumed to be analytic everywhere
on the real axis, so these 1 particle states were neglected. Now these poles have to be
subtracted from this amplitude in order to rectify this step, and ensure the positivity
bounds are applicable to this amplitude.

In general, the structure of such pole subtraction is [14]

S = M − λ

m2 − s
− λ

m2 − u
− λ

m2 − t
(3.20)

with the pole subtracted amplitude S, the full amplitude M and the residues λ .
Ignoring the third term for forward t = 0, one would expect these residues to be
related via crossing symmetry

λ = Resu=m2 = −Ress=m2 (3.21)

but it always is best to explicitly calculate each residue directly to verify this equality.
Note that λ has the opposite sign for each residue because the denominator read as

m2 − s and m2 − u = s − 3m2 so the s have opposite sign in the denominator, which
will shortly be important.

Suppose f(s) = g(s)
h(s)

is a function of s with g(s) and h(s) analytic at s0 and h(s0) = 0,

so that f(s) has a simple pole at s0. Then residues at s = s0 are calculated [16]with

Ress=s0 = lims→s0(s− s0)f(s) = lims→s0
sg(s)− s0g(s)

h(s)
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= lims→s0
g(s) + sg′(s)− s0g

′(s)

h′(s)
= lims→s0

g(s) + g′(s)(s− s0)

h′(s)
=

g(s0)

h′(s0)

with L’Hospital rule. Hence the algorithm to calculate such a residue is to take the
denominator, plug in the value of s where there is a pole, and divide it by the derivative
of the denominator at s0. For the cases above, h1(s) = m2 − s, so h′1(m2) = −1 and
h2(s) = s−3m2, so h′1(3m2) = 1. This now allows to evaluate the poles in the following
way

Ress=m2 = Ress=m2

s2

s−m2

(s2

4
− sm2 +m4

)
= (−1)(s2)

(s2

4
− sm2 +m4

)
|s=m2 =

m8

4

Ress=3m2 = Ress=3m2

s2 − 8m2s+ 16m4

3m2 − s

(s2

4
− sm2 +m4

)
=
(
s2 − 8m2s+ 16m4

)(s2

4
− sm2 +m4

)
|s=3m2 = −m

8

4

(3.22)

This shows that indeed λ = Resu=m2 = −Ress=m2 . Now that the poles are removed,
in the following one can directly set all remaining epsilon in the propagators to ε = 0,
instead of just taking the limit ε→ 0. The pole-subtracted amplitudes due to the cubic
term are then

S =
−8ig2

3

Λ6

(
s2 − 8m2s+ 16m4

3m2 − s
(
s2

4
− sm2 +m4) +

m8

4

1

s− 3m2

+
s2

s−m2
(
s2

4
− sm2 +m4)− m8

4

1

s−m2

)
− 2ig4

Λ6
((s− 2m2)3 +O(s)

(3.23)

These are finite for any s→ ±∞ now and plotting the behaviour of the amplitudes
confirms the finite and converging nature of these subtracted amplitudes S, see Fig.
3.1 and Fig. ??.

Now that analyticity is guaranteed3, the positivity bound is applicable, so calculat-
ing the second derivatives yields

−8ig2
3

Λ6

(
− 6s− 18m2

4
+

3s− 3m2

2

)
− 12ig4

Λ6
(s− 2m2) > 0

These bounds are valid for the entire region where the amplitude is analytic, so
must also hold for s = 0. Then this bound simply implies

g2
3 − g4 < 0

This is still for the (+−−−) metric.

3except for any 2 particle states, and we chose to omit those for the scope of this project.
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Figure 3.1: This plot shows the behaviour of the amplitude f(s,m) = M(s) =
s2−8m2s+16m4

3m2−s ( s
2

4
− sm2 + m4) with the pole at s = 3m2 for several different masses.

Clearly for each m there is a corresponding pole and the amplitude is not analytic
everywhere.

Figure 3.2: This plot shows the amplitude after the pole subtraction f(s,m) =
s2−8m2s+16m4

3m2−s ( s
2

4
−sm2+m4)+m8

4
1

s−3m2 . There are no poles any more and the amplitudes
are polynomial functions that are now finite and analytic at s = 3m2.
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If the other metric (− + ++) was used, then in the Lagrangian the kinetic and
quartic terms have one term with an odd number of derivative contractions (the (∂φ)2

terms4), so both would pick up a minus sign each. The cubic term has 2 index con-
tractions, picking up (−1)2 = 1, i.e. remains unchanged. For (−+ ++) the results are
then g2

3 + g4 < 0.
This is the positivity constraint corresponding to the lowest-order bound ∂2S

∂s2
> 0.

3.2.2 Field redefinition

Field redefinition invariance is a well-known symmetry physical theories should obey.
Consider making the field redefinition

φ→ φ′ = φ+
g3

Λ3
(∂φ)2 +

2g2
3

Λ6
∂αφ∂βφ∂

α∂βφ (3.24)

In the following I will then reproduce the superposition of coupling constants in the
positivity bound above by absorbing the cubic term into the quartic one with this
redefinition.

For this it is important to recall that for the lowest order positivity bound s = 0
was used. Hence the energy of the system was much smaller than any particle masses,
s ≤ m2. However, the field redefinition only works for m = 0, which is fine because
the positivity bounds should hold5 for any s and any m. Hence the mass term in the
Lagrangian can be ignored for the purpose of this field redefinition. By doing so one
clearly gives up some generality, in that the redefinition is only applicable for massless
particles, but this loss of generality gets traded in for an additional confirmation of the
coefficients in the bounds in the massless case.

Hence the Lagrangian is then taken to be

L = −1

2
(∂φ)2 + g0

3(∂φ)2�φ− g0
4(∂φ)2((�φ)2 − (∂µν)

2) (3.25)

In the following we expand in φ and then neglect all smaller terms of at least order
O(φ5) since such terms cannot be absorbed into the quartic one any more, which is
already of O(φ4).

Then the redefinition implies

(∂µφ)(∂µφ)→ (∂µφ)(∂µφ)+
g2

3

Λ6

[
∂µ(∂φ)2

] [
∂µ(∂φ)2

]
+2

g3

Λ
∂µφ∂

µ(∂φ)2+
2g2

3

Λ6
(∂µφ∂

µ
[
∂αφ∂βφ∂

α∂βφ
]
)

(3.26)

4the quadratic term technically has 3 index contractions, so still gives a (−1)3 = −1 sign
5Also recall that even for s = 0 one still has u = 4m2 in the forward limit. So at least one of the

Mandelstam variable will always be positive if two of the other ones are zero. In order to have all
Mandelstam variables set to zero, one necessarily requires m = 0. Nonetheless this is still fine because
the positivity bounds should still hold for m = 0, s = 0, and this is where the field redefinition works
and reproduces the same coefficients as in the bound.
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where only terms up to O(φ4) were kept. Then integrating by parts and neglecting any
boundary terms allows to rewrite

∂µφ(∂φ)2∂µ(∂φ)2 = −(∂φ)2�(∂φ)2

and

(∂µφ)∂µ(∂φ)2 = −�φ(∂φ)2

The cubic term transforms as

g3

Λ3
(∂φ)2�φ→ g3

Λ3
(∂φ)2�φ+

2g2
3

Λ6
(∂µφ)(∂µ(∂φ)2)�φ+

g2
3

Λ6
(φ)2�(φ)2 (3.27)

Now the first term in here is exactly cancelled by a term of the same form in the kinetic
part6. Further integration of the remaining expressions in the kinetic and cubic terms
then result in

L→ −1

2
(∂φ)2 + (g4 − g2 − 3)(∂φ)2((�φ)2 − (∂µν)

2) (3.28)

or in terms of a new coupling constant g′4 = g2
3 − g4

L→ −1

2
(∂φ)2 − g′4(∂φ)2((�φ)2 − (∂µν)

2) (3.29)

This has now showed that the cubic term is not independent of the quartic interaction,
and also the superposition g′4 = g2

3 − g4 has the same form of ag2
3 + bg4 with a = 1 and

b = −1 as in the positivity bound g2
3 − g4 < 0, confirming the coefficients in the bound

above.
Note that if the metric (− + ++) is used this result of course still holds, however,

then the Lagrangian is has opposite sing in the kinetic and quartic terms and the field
redefinition’s second term also has a negative sign,

yielding the new coupling constant g′4 = g4 + g2
3, where now a = b = 1, as in the

(−+ ++) positivity bound g2
3 + g4 > 0 above.

I therefore proved that the result from the amplitude calculations are correct and
agree with field redefinition. Also it is shown that the cubic term can in fact be
absorbed into the quartic one. The fact that the cubic term is not independent has
important consequences for the EFT because, as explained in chapter 3.1 as well as in
chapter 2.3, quartic EFT vertices correspond to cubic UV vertices, so the calculation
above directly shows the significance of such absorptions.

6Recall that the kinetic term gets multiplied by a factor of 1
2 so the factors should be the same but

with the opposite sign

40



Chapter 4

Vector bounds

4.1 Proca bounds

In the following, Proca vectors, that is massive spin=1 vector fields, shall be reviewed
first. Assuming real vector fields Aµ and defining the Maxwell tensor as Fµν = ∂µAν −
∂νAµ, one can write the Proca Lagrangian density as

L = −1

4
FµνF

µν +m2AµA
µ.

From this it is trivial to show that the equations of motion corresponding to the Euler-
Lagrange-equations are

∂µ

(
∂µAν − ∂νAµ

)
+m2Aν = 0,

or
∂µF

µν +m2Aν = 0

This is known as the Proca equation[17]. Applying ∂ν on both sides gives

∂ν

(
∂µF

µν +m2Aν
)

= 0

The first term is clearly a contraction of a symmetric and an antisymmetric tensor and
is therefore zero. Hence this implies m2∂νA

ν = 0 or

∂νA
ν = 0.

This the general Lorentz gauge condition for massive vectors. Note that this was
generally proven, which means that this not a gauge choice, but actually a necessity
for massive vectors, implying there is no gauge freedom for Proca fields any more
(unlike for massless photons).

Now substituting this Lorentz gauge condition back into the Proca equation yields

∂µ∂
µAν − ∂ν∂µAµ +m2Aν = 0
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⇔
(
� +m2

)
Aν = 0,

i.e. a Klein-Gordon-equation for 4-vectors. Hence the Proca equation reduces to 4
separate Klein-Gordon equations. This makes sense as we can decompose a 4-vector,
being a 4 dimensional tensor of rank 1, as 4 = 3

⊕
1, i.e. a direct sum of a 3 dimensional

Euclidean vector and a 1 dimensional scalar. This decomposition is trivial as long as
Aν transforms under the metric ηµν = diag(1,−1,−1,−1) in the usual way, which is
satisfied here of course as Aν has been treated as a 4 vector.

In order to motivate this, one can consider the the Stückelberg action

L = −1

4
FµνF

µν +
1

2
(∂µφ+mA′µ)(∂µ +mA′µ) (4.1)

for a massless vector field A′µ. The well-known [18] Stückelberg trick now involves
showing the correspondence between the Stückelberg Lagrangian and the Proca La-
grangian.

On the one hand one can either start with a massive vector field Aµ described by
the Proca action, take its helicity-0 mode φ and use a transformation of the form

Aµ → ∂µφ+mA′µ,

which when plugged into the Proca action directly gives the Stückelberg action. This
transformation is not a gauge transformation in the usual sense because here clearly φ
and Aµ belong to the same field, opposed to the standard gauge transformation that
couples a scalar field φ to an independent gauge field A′µ. Nonetheless, it shall be stated
that at least qualitatively the factor m does appear to act in a similar way as a usual
coupling constant since by acting with m on a massless A′µ, one receives a massive
vector Aµ, which is clearly a type of Higgs mechanism giving mass to the initially
massless A′µ. Hence it is conventionally customary [18] to write the transformation1

like Aµ → Dµφ = ∂µφ+mA′µ, despite it not being an actual covariant derivative.
On the other hand, starting with the Stückelberg action and realising it describes

a massless field A′µ means there must be some gauge freedom due to the nature of the
quantisation of a massless vector field. This usually implies the Lorentz gauge condition
∂µAµ = 0, however, unitary gauge for the helicity-0 mode can be chosen as well, that
is ∂µφ = 0 Then simply fixing the gauge in the Stückelberg action by setting ∂µφ = 0
immediately gives the Proca action. This equivalence is remarkable because it means
massive vectors can be described in terms of massless vectors. In a broader picture,
this correspondence also includes the the fact that massive vectors have 2 transverse
polarisation bases, giving 2 degrees of freedom due to gauge freedom of the massless
A′µ, whereas the massive Aµ does not have any residual gauge freedom any more. This
is beautifully manifested in the Stückelberg trick simply by showing that the reason
for the difference in the gauge freedom for each case is by explicitly choosing a gauge,
which gets rid of the residual gauge freedom when going from A′µ to Aµ.

1sometimes [15] it is even written as φµ = Dµ
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The Lagrangians above are for the full UV complete theory, for low-energy limits
however, one requires an EFT version of these actions that directly shows the scale
dependence on a scale Λ. If one were to start with the Stückelberg action, and added
operators of higher dimension, then to quartic order [15]

g2
∗L = −1

4
FµνF

µν − 1

2
(Dµφ)(Dµφ) +

g0

Λ4
φ

(Dµφ)4 +
g′

Λ3
φ

(∂µDνφ)(DνφDµφ)

+
1

Λ6
φ

(
g1Dµφ∂

µDνφ+ g2∂µDνφD
νφ+ g3DµφD

µφ∂αφβ∂
βφα)2

)

+
1

Λ4
A

(
g4FµνF

ρνFσρF
µσ + g5(FµνF

µν)2

)

+
m4

Λ6
φ

(
g6DµφD

νφFαµFαν + g7(Dµφ)2(Fµν)
2

)
(4.2)

Clearly for the Stückelberg version, Aµ and φ are effectively treated as different
fields, so it is sensible to give each mode its own mass scale, i.e. ΛA for A′µ and Λφ for
φ. It is also clear from dimensional grounds that

Λ3
φ = mΛ2

A

Consider this Lagrangian:

g2
∗LEFT = −1

4
FµνF

µν︸ ︷︷ ︸
L1

− 1

2
m2AµA

µ︸ ︷︷ ︸
L2

+
m4g0

Λ4
φ

(AµA
µ)2

︸ ︷︷ ︸
L3

+
m4

Λ6
φ

(
g2AµAν∂

µAρ∂
νAρ︸ ︷︷ ︸

L4

+ g2AµAν∂ρA
µ∂ρAν︸ ︷︷ ︸

L5

+ g3AµA
µ∂αAβ∂

βAα︸ ︷︷ ︸
L6

)
+

1

Λ4
A

(
g4FµνF

ρνFρσF
µσ︸ ︷︷ ︸

L7

+ g5FµνF
µνFαβF

αβ︸ ︷︷ ︸
L8

)
+
m4

Λ6
φ

(
g6AµA

νFαµFαν︸ ︷︷ ︸
L9

+ g7FµνF
µνAαAα︸ ︷︷ ︸
L10

)
(4.3)

Here we defined the coupling constants as g0 = a0, g1 = a3, g2 = a4, g3 = a5, g4 =
c1, g5 = c2, g6 = C1 and g7 = C2 to get the Lagrangian of [?].

4.1.1 polarisation contractions

As there is no gauge freedom any more cant set any of the 4 to zero but 2 are still
dependent on each other, usually taken to be scalar and longitudinal mode.

For any given particle the coordinate system can be chosen so that the z-axis aligns
with the total 3-momentum vector. Then the particle’s 4-momentum is given by

pµ = (E, 0, 0, p)
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Given that for the Proca vector field there is no gauge freedom any more, all 4 spacetime
components are non-zero in general. However, there are still 3 degrees of freedom, and
usually the 2 modes taken to be dependent on each other are the scalar and longitudinal
modes. Therefore we are allowed to define 3 linearly independent polarisation bases,
constructing all 4-dimensional polarisations. For instance, we may take

ε1µ = (0, 1, 0, 0),

ε2µ = (0, 0, 1, 0)

ε3µ =
1

m
(p, 0, 0, E).

From the Lorentz condition we expect the momentum to be orthogonal to all polari-
sation vectors, and explicit calculation verifies that

pµε
i,µ = 0 ∀i ∈ {1, 2, 3}

for the basis above. The total polarisation can thus be expressed as a superposition of
the basis vectors as

pµ = ap1
µ + bp2

µ + cp3
µ =

( c
m
p, a, b,

c

m
E
)

with parameters a, b and c. The usual normalisation condition requires

|a|2 + |b|2 + |c|2 = 1

which allows to express one parameter in terms of the other 2.

momentum-momentum contraction

All momentum contractions can be trivially expressed in terms of Mandelstam variables
using the equations in chapter 2.

polarisation-momentum contraction

Contractions of momenta with polarisations can be simplified in the following way. For
contractions of the form (pi · εj) we have to distinguish two cases:

1. The polarisation and momentum vectors lie on the same side of the scattering,
that is, both ingoing or both outgoing. In other words i, j ∈ {1, 2} OR i, j ∈
{3, 4}. Now with the elastic condition we have in the CoM frame ~pi = −~pj and
Ei = Ej. This means we can express s as

s = (pi,µ + pj,µ)2 =

(
Ei
0
0
pi

+


Ej
0
0
pj


)2

=

(
Ei + Ej

0
0
0


)2

= 4E2
i = 4E2

j
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This implies that Ei = Ej =
√
s

2
Now evaluating (pi · εj) immediately gives

(pi · εj) =
cj
m
pjEi −

cj
m
piEj =

cj
m

(pjEi − piEj) =
2cj
m
pjEj =

cj
m
pj
√
s

Now we need to express pj in terms of s. We know that E2
j = m2 + ~p2 = m2 + p2

j

and E2
j = s

4
, so therefore s

4
= m2 + p2

1, which is

pj =

√
s

4
−m2

after rearranging. Note that of course in the range of s < 4m2, corresponding
to the unphysical region, we have a non-real value, however, this is fine since we
allow amplitudes to be complex and take the modulus squared which is real and
positive. Putting everything together yields

(pi · εj) =
cj
m

√
s2

4
−m2s

It is important to see that the root is entirely given in terms of s and the polari-
sation constant cj has the label of the polarisation vector, not of the momentum
vector.

2. The polarisation and momentum vectors lie on different sides of the scattering,
that is, one ingoing and one outgoing. In other words, one of them is labelled
by {1, 2} and the other is labelled by {3, 4}. For this case we need to invoke the
second assumption on only focusing on the forward scattering limit. This then
additionally gives

t = (p1,µ − p3,µ)2 =

(
E1

0
0
p1

−

E3

0
0
p3


)2

= 0,

implying that the 4-vectors have to be the same i.e. p1,µ = p3,µ, so that the
energies and linear momenta are the same for particles 1 and 3, so E1 = E3 and
p1 = p3 (and likewise for particles 2 and 4). Invoking the usual elastic conditions
for the CoM A) p1 = −p2, B) p3 = −p4, C) E1 = E2 and D) E3 = E4 then results
in

p1 = p3 = −p2 = −p4

and
E1 = E2 = E3 = E4.

From these it is now clear that there is a crossing between incoming and outcom-
ing particle momenta, which we did not have in case 1.
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Hence, for pi = −pj with i, j belonging to different crossing sides we can then
summarise

(pi · εj) =
cj
m

(pjEi − piEj) =
2cj
m
pjEj =

cj
m

√
s2

4
−m2s

which is the same result as above. It is not trivial to see that these two cases
are in fact the same because in case 1 we exploit symmetry in the centre of mass
frame, however, if we consider a contraction between a particle that has already
scattered and a particle that will scatter e.g. particle 1 and particle 3, then we no
longer have an obvious choice for the CoM frame because those particles will only
exist at different times. Now when taking the forward scattering limit, we make
the choice that all four particles have the same energies and their momenta may
only differ by a sign, so this now ensures that a contraction between e.g. particle
1 and particle 3 gives the same kinematics as a contraction between particle 1
and particle 2, given by case 1.

Note that here we still require i 6= j because otherwise the contraction is directly
zero due to orthogonality, as demonstrated above.

polarisation-polarisation contraction

Focusing on the last possible contraction for vector fields, we now investigate contrac-
tions of the form εi · εj. This is rather straight forward, despite some minor subtleties.
We begin by explicitly showing that

εi · εj =
(
ci
m
pi ai bi

ci
m
Ei
)

cj
m
pj
−aj
−bj
− cj
m
Ej

 (4.4)

=
cicj
m2

pipj − aiaj − bibj −
cicj
m2

EiEj

= −cicj
m2

(pi · pj)− aiaj − bibj

= −cicj
m2

(pi · pj)− ξi,j

where for simplicity the abbreviation ξi,j = aiaj+bibj is used and we recalled (pi ·pj) :=
pi,µp

µ
j = EiEj − pipj.

4.1.2 Significance of polarisation

It is important to consider the question as to why the polarisation parameters are
necessary to be of this general form, and cannot be simplified further. We know that
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due to conservation of momentum we can always express functions, that are written
in terms of sums or products of momenta pairs, in terms of complimentary momenta
pairs. For instance (p1 · p2) = (p3 · p4) and p1,µ + p2,µ = p3,µ + p4,µ so

f(p1p2) = f(p3p4)

All we have to do is focus on two particles and we can infer the kinematics of the other
directly from the first consideration.

Given this, one could consider the same scenario for the polarisation parameters
above and finds that such simplifications do not exist. There is no physical or mathe-
matical reason why expressions like c1 + c2 = c3 + c4 should hold in general, opposing
the naive initial guess that complimentary pairs of parameters exist for every quantity.
This is naturally related to the fact that polarisations (more specifically the basis of po-
larisation) of particles are not conserved. We can always pick out an initial polarisation
basis for the two incoming particles by choosing specific values for the corresponding
a,b and c. Experimentally this would be done by adding polarisers to the scattering
experiments, selecting particles with only a specific polarisation basis. However, the
entire point of QFT is that an interaction may (and will) create every type of par-
ticles described by the Lagrangian, which is why the plethora of particles produced
will include every single particle type and one usually sums over all particle states,
including all polarisation states. That means that after the scattering new particles
with different polarisation will appear, so the initial choice of the basis and using a
polariser does not have an effect on the particle spectrum at all. This implies that the
polarisation on its own is not an invariant quantity. Using a polariser for incoming
particles would only be relevant when one uses a second polariser for outgoing parti-
cles. Then, and only then, will a specific subset of states be measured, corresponding
to the amplitude. This is referred to as definite polarisation, where the polarisations
of all particles are known. Of course in such a case one picks specific numbers for
a,b and c for calculations so there are no degrees of freedom left. Opposed to this is
the concept of indefinite polarisation, where no polariser experimentally picks out any
specific basis, all states are summed and averaged over and in calculations no choice
is made for a,b,c experimentally. Therefore, for 2-2 scattering, one ends up with 20
degrees of freedom corresponding to the 20 parameters that are left after considering
the 3 · 4 = 12 possible complex parameters a, b and c for each particle (so 24 real
dofs) and subtracting the four normalisation conditions. One can even refer to classi-
cal Electromagnetism, admitting circular and elliptical polarisations that are evolving
with time. This is another example of how polarisation is not invariant with respect to
time without having to analyse scattering process altogether. We can summarise this
discussion by the simple rule There is no conservation of polarisation in scattering

4.1.3 EFT amplitude

It is now the goal to explicitly calculate the amplitude of the Proca EFT - a lengthy
process that requires a lot of bookwork.
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Starting with the first term L1 we consider two separate, free propagator and all
its permutations. This yields

A1 = −c1c2(
s

2
−m2 − ξ12 − c3c4(

s

2
−m2)− ξ34)

+(2
c2c1 + c3c4

m2
+ 2

c1c3 + c2c4

m2
+ 2

c1c4 + c3c2

m2
)(
s2

4
−m2s)

The first line is of order O(s) and will therefore vanish in the second derivatives, so
only the second line is relevant.

For L2 we also consider 2 free propagators and see that the result is

A2 = (c1c4 +c2c3)(2m2−u)+(c1c3 +c4c2)(2m2− t)+(c1c2 +c3c4)(s−2m2)+2m2Σi,jξi,j

For L3: one has 2 polarisation contractions such as

As3 =
8m4g0

Λ4
φ

(
−c1c2

m2
(
s

2
−m2)− ξ12)(−c3c4

m2
(
s

2
−m2)− ξ34)

For L4 one has one polarisation-momentum contraction and one polarisation-polarisation
contraction

As4 =
8g1m

2

Λ6
φ

c1c2(
s2

4
−m2s)(

−c3c4

m2
(
s

2
−m2)− ξ34)

For L5 one has 2 polarisation contractions and an additional momentum-momentum
contraction

As5 =
8g2m

4

Λ6
φ

(m2 − t

2
)(
−c3c4

m2
(
s

2
−m2)− ξ34)(

−c1c2

m2
(
s

2
−m2)− ξ12)

For L6 one has two polarisation-momentum contractions and one polarisation-
polarisation one

As6 =
8g3m

2

Λ6
φ

c3c4(
s2

4
−m2s)(

−c1c2

m2
(
s

2
−m2)− ξ12)

For L7a there are 16 different cases, which are all stated in the appendix.
For L8b one has 4 polarisation-momentum contractions

A8b = A8b = As8b + At8b + Au8b =
96g5

Λ4
A

c1c2c3c4(
s2

4
−m2s)2

L9 and L10 both have many combinations as well and are listed.
As the Lagrangian we are interested in is

LEFT = Σi∈{1,2,...,9,10}Li

we now sum over all of these amplitudes in every channel and get

M = Σj=s,t,uΣi∈{1j ,...,10j}Mi (4.5)

The appendix explicitly lists the result for each channel and each term.
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4.1.4 Positivity bound

Differentiating all expressions for the amplitudes above and in the appendix is cumber-
some, but straight forward, and the results are listed in the appendix. Then invoking
the positivity bound of lowest order yields the following results.

Due to linearity
∂2MEFT

∂s2
=
∂2ΣiMi

∂s2
= Σi

∂2Mi

∂s2
> 0

so all individual terms above have to be added and their sum is positive.
This is achieved by setting t = 0 in the forward limit. In addition, since the bound

has to hold for any s, it also has to be true for exactly s = 0, which significantly
simplifies the bounds above.

This is the most general result for indefinite polarisations.

Definite polarisation bounds

One can use these results to also pick a specific basis by selecting the parameters with
the 20 degrees of freedom. Now in the helicity basis, + and − are assigned to the two
transverse bases, and 0 to the longitudinal mode. This notation is different from the
basic helicity representation, where one usually picks out a specific spin and projects
this spin onto the momentum, giving +/− states corresponding to right-handed and
left-handed states. Here, however, we label the transverse states as +/−. So these two
notations are the same:

〈1| = α+ 〈+1|+ α0 〈0|+ α− 〈−1|

and
ε1 = a · εtransverse1 + b · εtransverse2 + c · εlongitudinal

Now picking any specific ai, bi, ci gives a definite bound of the form

n0
g0

Λ6
φ

+ n1
g1

Λ6
φ

+ n2
g2

Λ6
φ

+ n3
g3

Λ6
φ

+ n4
g4

Λ4
A

+ n5
g5

Λ4
A

+ n6
g6

Λ6
φ

+ n7
g7

Λ4
φ

> 0.

There infinitely many definite positivity bounds, but choosing methodically which val-
ues to pick and polarisation states to consider greatly reduces the set of physically
distinct amplitudes.

One can then consider incoming and outgoing states that entirely lie along one of
the three polarisation states. For 2-2 scattering, this then covers 4 particles, with 3
polarisation possibilities (+/0/−) each, i.e. 12 different processes. However, due to
crossing symmetry there is a further redundancy and only the following 4 bases will be
evaluated.

For (+ + ++) = (++→ ++) then the incoming and outgoing particles are in the
|++〉 state, so

∀i ∈ {1, 2, 3, 4} : ai = 1, bi = 0
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and
ci = 0.

This sets any terms that are mutliplied by any ci to zero and sets all ξij to 1. Now it
is apparent that physically, (- - - -) should give the same result as this would set the bi
to 1 and ai to 0, but both transverse directions are equivalent and indistinguishable,
so focusing on (++++) is sufficient. Plugging in these parameter choices into the
indefinite bounds yields

−4
g3

Λ6
φ

− 96
g5

Λ4
A

− 16
g6

Λ6
φ

> 0

Assuming Λ2
A >>

Λ3
φ

m
, this then reduces to

−4
g3

Λ4
φ

> 0↔ g3 < 0.

For (0000) all particles are entirely polarised along the momentum direction, i.e.
along the longitudinal basis, so

∀i ∈ {1, 2, 3, 4} : ai = bi = 0

and
ci = 1.

This implies ξij = 0 and the definite bound is then

8
g0

Λ6
φ

+ 40
g1

Λ6
φ

− 24
g2

Λ6
φ

+ 28
g3

Λ6
φ

+ 12
g6

Λ6
φ

+ 68
g7

Λ6
φ

> 0

For (−+−+) the particles have opposite transverse polarisation without any lon-
gitudinal components, giving

∀i ∈ {1, 2, 3, 4} : a1 = b2 = a3 = b4 = 0,

a2 = b1 = a4 = b3 = 1

and
ci = 0.

This is equivalent to setting all ci to zero and ξ12 = ξ14 = 0, ξ13 = 1, so effectively the
only terms that do not vanish correspond to a subset of the t-channels. The bound is

−4
g3m

2

Λ6
φ

− 4
g4

Λ4
A

> 0

or
g4 < 0
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For (0 + 0+) we similarly have

∀i ∈ {1, 2, 3, 4} : a1 = c2 = a3 = c4 = 0,

a2 = c1 = a4 = c3 = 1

and
bi = 0.

Hence the only terms that do not vanish are the ones that contain ξ24 and c1, c3 and
the bound is the same as above for

g4 < 0

so in this particular case two bounds are accidentally redundant.
Naturally these bounds are quite weak, but this is because the elastic, forward limit

was chosen, although this still allows to impose certain properties on coupling constants.
For stronger bounds, probing beyond the forward will have to be implemented, as done
in [15]. Recalling that g3 = a5 and g4 = c1 was defined, one can compare the results
above to this paper, which implies the general bounds in the forward limit are g0 > 0
and g1 + g6 > 0 when assuming g4 << 1. The (-+-+) bound above gives g4 < 0, so
agrees with g4 << 1 The (0000) bound above gives g0 > 0 when the couplings g1 to g7

are turned off, and the (0000) bound also gives 40g1 +12g6 > 0 when all other couplings
are turned off, or 10

3
g1 + g6 > 0. This is a slightly weaker statement of g1 + g6 > 0 as

long as g6 < 0. Hence the positivity bounds agree for g6 < 0.
It shall be pointed out that any bounds determining the sign of one coupling con-

stant reduce the parameter space by 50%. Hence knowing that g3 < 0 and g4 < 0 is
reduces the parameter space by a factor of 4, or 75%, showing the significance of such
positivity considerations.
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Chapter 5

Electroweak bounds for Quartic
Vector Boson Scattering

I will now apply these results to SM EFTs. While there are 18 different dimension-8
operators contributing to the scattering processes [19], calculating all bounds for all
Wilson coefficients for the 18 operators with indefinite bases is beyond the scope of
this project. Instead I will focus on a limited subset of specific operators with definite
polarisation states, which will still greatly reduce the parameter space. In the following,
the methods and conventions of [19], [21], [22] and [23] will be used.

5.1 Standard Model as an EFT

Historically, the Standard Model has always been described by a Lagrangian that is a
collection of terms obeying the required and observed symmetries. The SM Lagrangian
therefore represents a brute-force method of creating a universal model that sums up
all the different interactions possible. By definition, all terms admitted to the Standard
Model have to be experimentally verifiable, which can only be tested up to an associated
scale Λi. This means that all SM operators have an intrinsic scale at which their
behaviour becomes important and the Standard Model can be written as

LSM =
∑
i

4∑
d=0

ciÔi,d =
∑
i

4∑
d=0

c′i
Λd−4
i

Ôi,d

and the Wilson coefficients act as effective coupling constants for each term. The
direct scale dependence Λi for each term encourages the EFT nature of the SM. This
means the SM is not complete, and so far mostly operators up to dimension 4 have
been accessible. Historically the terms in the SM EFT have changed with every new
experimental discovery that required new theoretical guidance.

For instance, the Dirac Lagrangian is applicable for Dirac fermions and therefore
an early model of the SM directly included such a Dirac term. However, as most
leptons are left-handed except for right-handed neutrinos, the Dirac term in the SM
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Lagrangian must be replaced by terms that separately treat left- and right-handed
elementary particles.

This is exactly how EFTs work; they theoretically correspond to a low energy
approximation of a UV complete theory, however, in practise they simply allow experi-
ments to be conducted up to the scale (eg Λ1) of a given collider, where the mass scale
Λm1 of the particles produced in such colliders is Λ1 ≥ Λm1). Every time a new collider
upgrade reaches higher energies (eg Λ2), (hopefully) new particles with mass scale Λm2

get created that were inaccessible before. This then naturally describes a hierarchy

Λ2 � Λm2 � Λ1 � Λm1

etc that can only be decoded step by step.
If such discoveries are then made, new terms with operators up to Λm2 are then

added to the Standard Model1

This then allows to introduce the following schematics for an SM EFT:

1. Choosing the desired particle spectrum by selecting a specific energy cut-off Λ

2. Integrating out all particles above Λ

3. Choosing the vertex order (number of vertices) to be considered

4. Calculating amplitude (and possible positivity bounds)

An example for this is on how this is exactly implemented in the Standard Model
is for e.g. the muon decay µ− → e−ν̄eνµ. In the SM this weak decay is mediated by
the exchange of a weak boson W−, and the corresponding terms in the SM Lagrangian
are [24]

LSM ⊃
g

2
√

2
(JµW+

µ + Jµ†W−
µ )

where Jµ is the charged lepton current. Here the mass of the mediator is related to the
decay time as well as the Feynman propagator as it is a virtual particle. In any case,
it is clear that the mass of the W− vector boson mW sets the scale of the scattering.
Hence if one then considers a model that has a cut off below mW , then integrating out
this gauge boson results in the new Lagrangian

LEFT ⊃ −
GF√

2
Jµ†Jµ

with the Fermi constant GF and the new EFT Lagrangian is now independent of the
W±. Also GF ∝ g2

m2
W

so the new EFT coupling constant (i.e. Wilson coefficient) GF is

1technically the boundary between what is SM and what is BSM is very thin, if new particles are
detected and then added to the SM Lagrangian one can argue that either the SM got extended, or
the SM simply got replaced by another BSM model. Both interpretations should be equivalent.
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now expressed in terms of a UV coefficient g, and for mW much bigger than the EFT
cut-off, g2

m2
W
� 1 and hence GF � 1 This is a low energy approximation of the full SM

Lagrangian. It is then apparent that similar arguments can be made to call the SM in
its current form an EFT, which only includes particles with mass up to the maximum
SM scale.

5.2 Beyond Standard Model EFT for Vector Boson

Scattering

For the scope of this project only the Higgs and electroweak sector shall be focused on,
so the hadronic sector and QCD will be neglected in the investigated scattering. Vec-
tor Boson Scattering (VBS) plays an important role in understanding and confirming
scattering theory and searches for new physics [25].

It is for this reason that the for VBS relevant part of the Standard Model LSM is
added to the higher dimensional, Beyond-the-Standard-Model (BSMEFT) operators.
Without loss of generality, one can therefore write the Lagrangian to be investigated
as

LBSM−EFT = LSM +
∑
d

∑
i

ci,d
Ôi,d

Λd−4
, (5.1)

where Ôi,d are d dimensional operators with the required BSM properties and ci,d
are the corresponding Wilsonian coefficients in the EFT expansion. Here i labels the
number of the operator, so here for 18 different dimension-8 operators the labels very
clearly are within 1 ≤ i ≤ 18 and d = 8.

Vector Boson Scattering is due to the interaction of vector gauge bosons such as
the W±, the Z0 and the photon γ as well as the interaction of these vector bosons
with scalars, as the Higgs field φ. For vector-vector interactions the Standard Model
Lagrangian allows two types of interactions: cubic vertices, also known as Tri Gauge
Coupling (TGC) and quartic vertices, also known as Quartic Gauge Coupling (QGC).
It turns out that cubic vector interactions can be constrained with WW measurements
[19], so focusing on the QGC diagrams is sufficient at this level. It shall also be
mentioned that it is very significant that for QGC the vector fields are massive. This is
due to the fact that gauge freedom is not residual any more for massive vectors, a fact
that has become a theme throughout this dissertation. While gauge freedom prevents
massless vector fields like photons from having terms in the Lagrangian like m2AµA

µ,
for massive ones such terms are allowed. This allows the more complex QGC vertices
that do not violate gauge.

In addition, dimension-6 operators contribute to the total amplitudes too, but their
anomalous BSM behaviour can be experimentally measured in different reactions, from
which dimension-6 characteristics can be inferred and the VBS correspondingly cor-
rected [19] so that only the dimension-8 operators looked at in this dissertation are
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relevant.
The motivation for a higher-rank Higgs field is due to the fact that the discovery

of the Higgs boson manifested fundamental assumptions of the Standard Model and
understanding how particles acquire mass, nevertheless this does still not resolve all
research questions in particle physics. For instance, given that the electroweak sector
is determined by a SU(2)L × U(1)Y gauge symmetry (and its spontaneous symmetry
breaking), one might use a general approach utilising a 2×2 matrix representation Hfor
the Higgs field. Another way of representing this would be a 2 × 1 complex column

vector φ(x) =

(
φ1(x)
φ2(x)

)
, which has 2 complex, i.e. 4 real components and therefore 4

degrees of freedom. Clearly representing these 4 components via a SU(2) doublet (the
column vector representation) or the direct representation as 4 entries in the Higgs
matrix is equivalent. Explicitly the Higgs matrix is

H =
1

2

(
v + t− iw3 −i

√
2w+

−i
√

2w− v + h+ iw3

)
and transforms linearly under SU(2) symmetries, as required[21]. That is

H → XHY †

with X ∈ SU(2)L and y ∈ SU(2)R.
SU(2) has n2 − 1 = 22 − 1 = 3 degrees of freedom, i.e. 3 symmetry generators,

and therefore requires 3 gauge fields W i
µ with i = 1, 2, 3 to couple to the scalar field

and make the Lagrangian invariant under SU(2) transformations by replacing ordinary
partial derivatives with the covariant derivative ∂µφ → Dµφ. Similarly, the U(1) field
has 1 degree of freedom, corresponding to global phase shift transformations, and hence
only offers one generator. Hence the U(1) group only has one single vector field Bµ

acting as a gauge field turning the global symmetry into a local one. As a result,
SU(2)×U(1) has 4 generators, of which 3 give rise to the W i

µ fields and one Bµ vector
field. Physically, in the SM the Wµ vector gauge fields are the W+, the W− and the
Z0 vector gauge bosons, and the Bµ is the electromagnetic photon field.

This discussion of electroweak unification then implies that the total covariant
derivative for the whole SU(2)×U(1) group then is

Dµφ = ∂µφ− igW ′
µφ− ig′Bµφ

with W ′
µ = 1

2
W i
µτ

i where the τ i are the SU(2) matrix generators.
and the SM Lagrangian is

L ⊃ (Dµφ)†(Dµφ)− µ2φ†φ− h(φ†φ)2

Naturally if the matrix representation is used, then the covariant derivative is

DµH = ∂µH − igW ′
µH − ig′HBµ
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and

L ⊃ −1

2
[BµνB

µν ]− 1

2
[WµνW

µν ] + tr
[
(Dµφ)†(Dµφ)

]
+ µ2tr(H†H)− h

2
tr(H†H)2

where now the field strength tensors used are

Bµν = ∂µBν − ∂νBµ,

being the Maxwell field strength tensor, and

Wµν = ∂µWν − ∂νWµ − ig [Wµ,Wν ] .

The literature has several sign conventions, [22] uses one with −g and −g′ in the
covariant derivative, whereas [19] makes use of −g and +g′. Whichever one is chosen
does not matter since the signs can always be absorbed into the coupling constants,
however, this does have implications for any positivity bounds later on. In the following,
[19]’s convention is chosen.

Whilst these gauge fields apply to the electroweak sector in the SM, for EFTs be-
yond the SM one adds operator structures with higher dimension to the SM Lagrangian
as discussed above. The full list of dimension-8 operators is found in [19], and here S0

is looked at in particular. Then

L ⊃ Fs0Tr
[
(DµH)†DνH

]
Tr
[
(DµH)†DνH

]
with Wilson coefficient fS0 and there are 17 more operators that are similar. S1 and
S2 have the same structure as S1 except for permutations of the indices, giving slightly
different contractions.

The Lagrangian for S0 contains terms like

L ⊃ −g′2Tr [(HBν)(HB
ν)]
[
(B†µH

†)(Bµ†H†)
]

here the trace sums over the indices of the 2 by 2 matrix H, so is not affecting the
vector contractions. Then expressions like this can be simplified using

Tr [(HBν)(HB
ν)] = Tr

[∑
i

(HBi)(HB
i)

]
=
∑
i

BiB
iTr [HH] = BµB

µTr
[
H2
]

Directly calculating Tr [H2] gives

Tr
[
H2
]

= 2(v2 + h2 − (w3)2 + hv − 2w+w−)

Similar expressions are then obtained for Tr
[
H†H

]
and Tr

[
H†H†

]
These are the

terms that are multiplied by any of the vector contractions of Wµ or Bµ. However, in
the amplitude the vertices get additional factors only from momenta or polarisation
contractions. For the vector contraction, the same frame work is used as in chapter

56



4, and for the momenta contractions, these stem from the partial derivative ∂µH in
the covariant derivatives, each giving a Mandelstam variable of order O(s). S0 has 4
covariant derivative terms containing 5 terms with 3 scattering channels, each with 5
polarisation parameters2, giving 60× 5 different cases one could consider.

Explicitly calculating for L ⊃ −g′2Tr [(HBν)(HB
ν)]
[
(B†µH

†)(Bµ†H†)
]

and (++++)
the contribution to the positivity bound is then positive, i.e 24g′2 > 0 or

g′ > 0

For L ⊃ −g′2Tr [(∂µH)(∂µH)]Tr
[
(B†µH

†)(Bµ†H†)
]

and (++) it is 16g′2 > 0 and one
can similarly conduct this for all remaining terms in the Lagrangian to show the total
bound is indeed positive[19]

g′2 > 0

This then determines the sign of the overall coupling constant FS0 for S0, and similar
analysis can be applied to S1 and S2.

For S1 and S2 their exclusion region is given by Fig. 5.1, comparing the bound to
empiric results. Assuming a rescaling

α4 =
v4

8Λ4
fs0

and

α5 =
v4

16Λ4
fs1

then the bounds calculated in [19] imply the different exclusion zone in Fig. 5.2.
Both plots imply that the allowed parameter space is greatly reduced since the overlap
between the empiric results and the positivity bounds is very small. Hence, just like
in chapter 4, positivity bounds have significant consequences for unitary EFTs.

2the 3 complex a,b,c minus 1 dof due to normalisation as in chapter 4
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Figure 5.1: Reproduced from [19], this plot visualises the EFT exclusion zone for f .and
f , showing the overlap between experimental results and theoretical constraints.

Figure 5.2: Reproduced from [19], here the bounds on α4 and α5 are shown and allow to
infer that there is significant overlap between experimental data, including uncertainties
due to measurement errors, and the positivity bounds on the superposition of coupling
constants.
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Chapter 6

Conclusion

Throughout this dissertation, multiple applications and direct calculations of positiv-
ity bounds for low energy EFTs were explicitly shown. For the scalar Lagrangian, the
bound was shown to be g2

3 − g4 < 0 and confirmed by directly redefining the particle
fields to absorb the cubic interactions into quartic ones. Being able to absorb the cu-
bic terms showed that the coupling constants were not independent, and showed that
the amplitude calculations, including the pole subtractions to receive finite polyno-
mial terms in the amplitude, were consistent. The bounds associated with the Proca
EFT were explicitly calculated and resulted in proving that the first order positivity
constraints on the Wilsonian coefficients are g4 < 0 and g5 < 0. In order to do so,
indefinite polarisation states have been considered, having yielded the most general
form for these scattering bounds. Several finite states were then calculated to be in
the elastic forward limit. The fact that these results are very different compared to
massless vector fields was explained by the Stückelberg mechanism that is separately
expressing fields in terms of their helicity-0 modes.

The methods derived for scalar and vector fields was then applied to VBS scattering,
presenting a general approach for calculating SMEFT bounds for the 18 dimension-8
operators. Two of these operators were directly considered and some definite polarisa-
tion states used to get the corresponding positivity bounds, and subsequently compared
to publications on experimental data. It shall be noted that in the literature several
different conventions and notations are used. For instance, depending on whether au-
thors use the (+−−−) or (−+++) metric tensor signature, some signs of the coupling
constants in the bound will differ. However, it is usually not all terms that are affected,
but only those terms in the Lagrangian that have an odd number of index contrac-
tions. Other conventions include F ν

µF
µ
ν , such as in [15], which are slightly ambiguous

and may or may be taken to be1. Hence when comparing the signs of the bounds in
this dissertation, these conventions should be carefully taken into account. Nonethe-
less, these would only affect the signs in front of the coupling constants. The moduli
of the coefficients in the superpositions should be unaffected.

1In any case the difference would result in a different sign at most from FµνF
µν
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6.1 Outlook

Whilst this project has resulted in useful results in this limited time frame, the calcula-
tions and methods might be used for even broader applications and generalisations as
well. The two most important assumptions made were the fact that forward scattering
(t = 0) and elastic scattering could be exploited. Of course in general, these are not
necessarily true, and it may be more difficult to compare elastic, forward bounds to
experimental results that are based on empiric data from all types of scattering. How-
ever, in theory, experimental data could from general scattering at particle colliders
could be searched for scattering events that lie in a small angular cone around

Alternatively, one could focus on generalising the bounds, as in [15], to go beyond
the forward limit. This requires using the transversitiy basis, opposed to the helicity
basis. In this case, it is much more difficult to obtain the theoretical bounds, however,
this would require a more simplified experimental data analysis to compare to. Going
beyond the forward limit and the transversity basis requires the use of explicit, def-
inite polarisation states, as indefinite states might have too many free parameters to
consider.

Moreover, only the lowest-order bounds were considered, though one could calculate
any higher derivatives from these bounds as well. Differentiating generally is trivial,
so once a specific positivity bound of lower order is known by direct calculation, this
can be used to acquire the higher bounds up to any arbitrary order2

In addition to scalars (tensors of rank 0) and vectors (tensors of rank 1) it might
be possible to investigate EFTs with spin-2 fields that have a much more elaborate,
algebraic structure than simple momenta or polarisation contractions. Usually spin-2
fields are described by the Pauli-Fierz action, and are most frequently used in theories
of gravity. This shows another application of EFTs and positivity bounds that could
be used in both particle physics and gravity. Of course this entire discussion is also
closely related to the question on whether it is possible to generically quantise higher
spin fields in the most general way and remains an open topic for research [11].

2Although as mentioned in chapter 2, the amplitude being of order O(sn) would bring about at
most n− 1 non-trivial bounds, and an arbitrary number of trivial ones.
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Appendix A

Amplitudes for Proca EFT

Starting with the first term L1 we consider two separate, free propagator and all its
permutations. This yields

A1 = −c1c2(
s

2
−m2 − ξ12 − c3c4(

s

2
−m2)− ξ34)

+(2
c2c1 + c3c4

m2
+ 2

c1c3 + c2c4

m2
+ 2

c1c4 + c3c2

m2
)(
s2

4
−m2s)

The first line is of order O(s) and will therefore vanish in the second derivatives, so
only the second line is relevant.

For L2 we also consider 2 free propagators and see that the result is

A2 = (c1c4 +c2c3)(2m2−u)+(c1c3 +c4c2)(2m2− t)+(c1c2 +c3c4)(s−2m2)+2m2Σi,jξi,j

For L3:

As3 =
8m4g0

Λ4
φ

(
−c1c2

m2
(
s

2
−m2)− ξ12)(−c3c4

m2
(
s

2
−m2)− ξ34)

At3 =
8m4g0

Λ4
φ

(
−c1c3

m2
(m2 − t

2
)− ξ13)(−c2c4

m2
(m2 − t

2
)− ξ24)

Au3 =
8m4g0

Λ4
φ

(
−c1c4

m2
(m2 − u

2
)− ξ14)(−c2c3

m2
(m2 − u

2
)− ξ23)

For L4

As4 =
8g1m

2

Λ6
φ

c1c2(
s2

4
−m2s)(

−c3c4

m2
(
s

2
−m2)− ξ34)

At4 =
8g1m

2

Λ6
φ

c2c4(
s2

4
−m2s)(

−c1c3

m2
(m2 − t

2
)− ξ13)
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Au4 =
8g1m

2

Λ6
φ

c2c3(
s2

4
−m2s)(

−c2c4

m2
(m2 − u

2
)− ξ24)

For L5:

As5 =
8g2m

4

Λ6
φ

(m2 − t

2
)(
−c3c4

m2
(
s

2
−m2)− ξ34)(

−c1c2

m2
(
s

2
−m2)− ξ12)

At5 =
8g2m

4

Λ6
φ

(
s

2
−m2)(

−c1c3

m2
(m2 − t

2
)− ξ13)(

−c2c4

m2
(m2 − t

2
)− ξ24)

Au5 =
8g2m

4

Λ6
φ

(
s

2
−m2)(

−c1c4

m2
(m2 − u

2
)− ξ14)(

−c2c3

m2
(m2 − u

2
)− ξ23)

For L6:

As6 =
8g3m

2

Λ6
φ

c3c4(
s2

4
−m2s)(

−c1c2

m2
(
s

2
−m2)− ξ12)

At6 =
8g3m

2

Λ6
φ

c2c4(
s2

4
−m2s)(

−c1c3

m2
(m2 − t

2
)− ξ13)

Au6 =
8g3m

2

Λ6
φ

c2c3(
s2

4
−m2s)(

−c1c4

m2
(m2 − u

2
)− ξ14)

For L7a:

As7a =
8g4

Λ4
A

(m2 − u

2
)2(
−c1c2

m2
(
s

2
−m2)− ξ12)(

−c3c4

m2
(
s

2
−m2)− ξ34)

At7a =
8g4

Λ4
A

(m2 − u

2
)2(
−c1c3

m2
(m2 − t

2
)− ξ13)(

−c2c4

m2
(m2 − t

2
)− ξ24)

Au7a =
8g4

Λ4
A

(m2 − t

2
)2(
−c1c4

m2
(m2 − u

2
)− ξ14)(

−c2c3

m2
(m2 − u

2
)− ξ23)

For L7b:

As7b =
8g4

Λ4
A

c3c4

m2
(
s2

4
−m2s)(

s

2
−m2)(

−c1c2

m2
(
s

2
−m2)− ξ12)

At7b =
8g4

Λ4
A

c2c4

m2
(
s2

4
−m2s)(m2 − t

2
)(
−c1c3

m2
(m2 − t

2
)− ξ13)

Au7b =
8g4

Λ4
A

c2c3

m2
(
s2

4
−m2s)(m2 − u

2
)(
−c1c4

m2
(m2 − u

2
)− ξ14)

For L7c:

As7c =
−8g4

Λ4
A

c3c4

m2
(
s2

4
−m2s)(m2 − u

2
)(
−c1c2

m2
(
s

2
−m2)− ξ12)
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At7c =
−8g4

Λ4
A

c2c4

m2
(
s2

4
−m2s)(m2 − u

2
)(
−c1c3

m2
(m2 − t

2
)− ξ13)

Au7c =
−8g4

Λ4
A

c2c3

m2
(
s2

4
−m2s)(m2 − t

2
)(
−c1c4

m2
(m2 − u

2
)− ξ14)

For L7f :

As7f =
8g4

Λ4
A

(m2 − t

2
)2(
−c1c2

m2
(
s

2
−m2)− ξ12)(

−c3c4

m2
(
s

2
−m2)− ξ34)

At7f =
8g4

Λ4
A

(
s

2
−m2)2(

−c1c3

m2
(m2 − t

2
)− ξ13)(

−c2c4

m2
(m2 − t

2
)− ξ24)

Au7f =
8g4

Λ4
A

(
s

2
−m2)2(

−c1c4

m2
(m2 − u

2
)− ξ14)(

−c2c3

m2
(m2 − u

2
)− ξ23)

For L7g:

As7g =
−8g4

Λ4
A

c3c4

m2
(
s2

4
−m2s)(m2 − t

2
)(
−c1c2

m2
(
s

2
−m2)− ξ12)

At7g =
−8g4

Λ4
A

c2c4

m2
(
s2

4
−m2s)(m2 − t

2
)(
−c1c3

m2
(m2 − t

2
)− ξ13)

Au7g =
−8g4

Λ4
A

c3c2

m2
(
s2

4
−m2s)(m2 − t

2
)(
−c1c4

m2
(m2 − u

2
)− ξ14)

For L7i:

As7i =
−8g4

Λ4
A

c3c4

m2
(
s2

4
−m2s)(m2 − u

2
)(
−c1c2

m2
(
s

2
−m2)− ξ12)

At7i =
−8g4

Λ4
A

c2c4

m2
(
s2

4
−m2s)(m2 − u

2
)(
−c1c3

m2
(m2 − t

2
)− ξ13)

Au7i =
−8g4

Λ4
A

c2c3

m2
(
s2

4
−m2s)(m2 − t

2
)(
−c1c4

m2
(m2 − u

2
)− ξ14)

For L7j:

As7j =
−8g4

Λ4
A

c3c4

m2
(
s2

4
−m2s)(m2 − t

2
)(
−c1c2

m2
(
s

2
−m2)− ξ12)

At7j =
−8g4

Λ4
A

c2c4

m2
(
s2

4
−m2s)(

s

2
−m2)(

−c1c3

m2
(m2 − t

2
)− ξ13)

Au7j =
−8g4

Λ4
A

c2c3

m2
(
s2

4
−m2s)(

s

2
−m2)(

−c1c4

m2
(m2 − u

2
)− ξ14)
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For L7k:

A7k =
24g4

Λ4
A

c1c2c3c4

m4
(
s2

4
−m2s)2

For L7l:

As7l =
−8g4

Λ4
A

c3c4

m2
(
s2

4
−m2s)(

s

2
−m2)(

−c1c2

m2
(
s

2
−m2)− ξ12)

At7l =
−8g4

Λ4
A

c2c4

m2
(
s2

4
−m2s)(m2 − t

2
)(
−c1c3

m2
(m2 − t

2
)− ξ13)

Au7l =
−8g4

Λ4
A

c2c3

m2
(
s2

4
−m2s)(m2 − u

2
)(
−c1c4

m2
(m2 − u

2
)− ξ14)

For L8a:

As8a =
32g5

Λ4
A

(
s

2
−m2)2(

−c1c2

m2
(
s

2
−m2)− ξ12)(

−c3c4

m2
(
s

2
−m2)− ξ34)

At8a =
32g5

Λ4
A

(m2 − t

2
)2(
−c1c3

m2
(m2 − t

2
)− ξ13)(

−c2c4

m2
(m2 − t

2
)− ξ24)

Au8a =
32g5

Λ4
A

(m2 − u

2
)2(
−c1c4

m2
(m2 − u

2
)− ξ14)(

−c2c3

m2
(m2 − u

2
)− ξ23)

For L8b:

A8b = A8b = As8b + At8b + Au8b =
96g5

Λ4
A

c1c2c3c4(
s2

4
−m2s)2

For L8c:

As8c =
−32g5

Λ4
A

c1c2

m2
(
s2

4
−m2s)(

s

2
−m2)(

−c3c4

m2
(
s

2
−m2)− ξ34)

At8c =
−32g5

Λ4
A

c1c3

m2
(
s2

4
−m2s)(m2 − t

2
)(
−c2c4

m2
(m2 − t

2
)− ξ34)

Au8c =
−32g5

Λ4
A

c1c4

m2
(
s2

4
−m2s)(m2 − u

2
)(
−c2c3

m2
(m2 − u

2
)− ξ23)

For L8d:
For L9a:

As9a =
8g6m

4

Λ6
φ

(m2 − t

2
)(
−c3c4

m2
(
s

2
−m2)− ξ34)(

−c1c2

m2
(
s

2
−m2)− ξ12)

At9a =
8g6m

4

Λ6
φ

(
s

2
−m2)(

−c2c4

m2
(m2 − t

2
)− ξ24)(

−c1c3

m2
(m2 − t

2
)− ξ13)
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Au9a =
8g6m

4

Λ6
φ

(m2 − u

2
)(
−c1c4

m2
(m2 − u

2
)− ξ14)(

−c2c3

m2
(m2 − u

2
)− ξ23)

For L9b:

As9b =
8g6m

2

Λ6
φ

c3c4(
s2

4
−m2s)(

−c1c2

m2
(
s

2
−m2)− ξ12)

At9b =
8g6m

2

Λ6
φ

c2c4(
s2

4
−m2s)(

−c1c3

m2
(m2 − t

2
)− ξ13)

Au9b =
8g6m

2

Λ6
φ

c2c3(
s2

4
−m2s)(

−c1c4

m2
(m2 − u

2
)− ξ14)

For L10a:

As10a =
16g7m

4

Λ6
φ

(
s

2
−m2)(

−c3c4

m2
(
s

2
−m2)− ξ34)(

−c1c2

m2
(
s

2
−m2)− ξ12)

At10a =
16g7m

4

Λ6
φ

(m2 − t

2
)(
−c1c3

m2
(m2 − t

2
)− ξ13)(

−c2c4

m2
(m2 − u

2
)− ξ24)

Au10a =
16g7m

4

Λ6
φ

(m2 − u

2
)(
−c1c4

m2
(m2 − u

2
)− ξ14)(

−c2c3

m2
(m2 − u

2
)− ξ23)

For L10b:

As10b = −16g7m
2

Λ6
φ

c3c4(
s2

4
−m2s)(

−c1c2

m2
(
s

2
−m2)− ξ12)

At10b = −16g7m
2

Λ6
φ

c2c4(
s2

4
−m2s)(

−c1c3

m2
(m2 − t

2
)− ξ13)

Au10b = −16g7m
2

Λ6
φ

c3c2(
s2

4
−m2s)(

−c1c4

m2
(m2 − u

2
)− ξ14)

As the Lagrangian we are interested in is

LEFT = Σi∈{1,2,...,9,10}Li

we now sum over all of these amplitudes in every channel and get

M = Σj=s,t,uΣi∈{1j ,...,10j}Mi (A.1)
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Appendix B

Positivity bounds for Proca EFT

Invoking the positivity bound of lowest order yields the following results:
The L2 term is of order O(s), so

∂2A

∂s2
= 0.

Differentiating L3 twice gives

∂2A

∂s2
=

4g0

Λ4
φ

(
c1c2c3c4

2
+ 0 +

c1c2c3c4

2
) =

8g0

Λ4
φ

c1c2c3c4

For the s, t and u channels of L4 we obtain

∂2As
∂s2

=
−g1

Λ6
φ

c1c2 ·
(
6c3c4s+ 4m2ξ34 − 12c3c4m

2
)

∂2At
∂s2

=
−4g1m

2

Λ6
φ

c2c4(c1c3 + ξ13)

∂2AU
∂s2

=
−4g1

Λ6
φ

c2c3(3c1c4s+ (−8c1c4 + 2ξ14)m2))

For L5:

∂2As5
∂s2

=
4c1c2c3c4g2m

2

Λ6
φ

∂2At5
∂s2

= 0

∂2Au5
∂s2

=
g2 · (6c1c2c3c4s+ 4m2 · (c1c4ξ23 + c2c3ξ14 − 7c1c2c3c4))

Λ6
φ

For L6:

66



∂2As5
∂s2

= −c3c4g3 · (6c1c2s+ 4m2 · (ξ12 − 3c1c2))

Λ6
φ

∂2As5
∂s2

= −4c2c4g3m
2 · (ξ13 + c1c3)

Λ6
φ

∂2As5
∂s2

= −c2c3g3 · (6c1c4s+ 4m2 · (ξ14 − 5c1c4))

Λ6
φ

For L7a:

∂2As7a
∂s2

=
2g4 · (3c1c2c3c4s

2 + 3m2 · (c1c2ξ34 + c3c4ξ12 − 4c1c2c3c4) s)

Λ4
Am

4

+
2g4 (2m4 · (ξ12 − 3c1c2) ξ34 − 6c3c4m

4ξ12 + 12c1c2c3c4m
4)

Λ4
Am

4

∂2At7a
∂s2

=
4g4 · (ξ13 + c1c3) (ξ24 + c2c4) (s− 2m2)

Λ4
A

∂2Au7a
∂s2

=
4c1c2c3c4g4

Λ4
A

For L7b:

∂2As5
∂s2

= −c3c4g4 · (6c1c2s
2 + 6m2 · (ξ12 − 4c1c2) s− 4m4 · (3ξ12 − 5c1c2))

Λ4
Am

4

∂2At7b
∂s2

= −4c2c4g4 · (ξ13 + c1c3)

Λ4
A

∂2Au7b
∂s2

= −c2c3g4 · (6c1c4s
2 + 6m2 · (ξ14 − 4c1c4) s− 4m4 · (3ξ14 − 5c1c4))

Λ4
Am

4

For L7c:

∂2As7c
∂s2

=
c3c4g4 · (6c1c2s

2 + 6m2 · (ξ12 − 4c1c2) s− 4m4 · (3ξ12 − 5c1c2))

Λ4
Am

4

∂2At7c
∂s2

=
c2c4g4 · (ξ13 + c1c3) (6s− 12m2)

Λ4
Am

2

∂2Au7c
∂s2

=
c2c3g4 · (6c1c4s+ 4m2 · (ξ14 − 3c1c4))

Λ4
Am

2

For L7f :
∂2As7f
∂s2

=
4c1c2c3c4g4

Λ4
A
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∂2At7f
∂s2

=
4g4 · (ξ13 + c1c3) (ξ24 + c2c4)

Λ4
A

∂2Au7f
∂s2

=
2g4 · (3c1c2c3c4s

2 + 3m2 · (c1c4ξ23 + c2c3ξ14 − 4c1c2c3c4) s)

Λ4
Am

4

+
2g4 (2m4 · (ξ14 − 3c1c4) ξ23 − 6c2c3m

4ξ14 + 12c1c2c3c4m
4)

Λ4
Am

4

For L7g:
∂2As7g
∂s2

=
c3c4g4 · (6c1c2s+ 4m2 · (ξ12 − 3c1c2))

Λ4
Am

2

∂2At7g
∂s2

=
4c2c4g4 · (ξ13 + c1c3)

Λ4
A

∂2Au7g
∂s2

=
c2c3g4 · (6c1c4s+ 4m2 · (ξ14 − 3c1c4))

Λ4
Am

2

For L7i:

∂2As7i
∂s2

=
c3c4g4 · (6c1c2s

2 + 6m2 · (ξ12 − 4c1c2) s− 4m4 · (3ξ12 − 5c1c2))

Λ4
Am

4

∂2At7i
∂s2

=
c2c4g4 · (ξ13 + c1c3) (6s− 12m2)

Λ4
Am

2

∂2Au7i
∂s2

=
c2c3g4 · (6c1c4s+ 4m2 · (ξ14 − 3c1c4))

Λ4
Am

2

For L7j:
∂2As7j
∂s2

=
c3c4g4 · (6c1c2s+ 4m2 · (ξ12 − 3c1c2))

Λ4
Am

2

∂2At7j
∂s2

=
c2c4g4 · (ξ13 + c1c3) (6s− 12m2)

Λ4
Am

2

∂2Au7j
∂s2

=
c2c3g4 · (6c1c4s

2 + 6m2 · (ξ14 − 4c1c4) s− 4m4 · (3ξ14 − 5c1c4))

Λ4
Am

4

For L7k:
∂2A7k

∂s2
=

6c1c2c3c4g4 · (3s2 − 12m2s+ 8m4)

Λ4
Am

4

For L7l:

∂2As7l
∂s2

=
c3c4g4 · (6c1c2s

2 + 6m2 · (ξ12 − 4c1c2) s− 4m4 · (3ξ12 − 5c1c2))

Λ4
Am

4

∂2At7l
∂s2

=
4c2c4g4 · (ξ13 + c1c3)

Λ4
A
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∂2Au7l
∂s2

=
c2c3g4 · (6c1c4s

2 + 6m2 · (ξ14 − 4c1c4) s− 4m4 · (3ξ14 − 5c1c4))

Λ4
Am

4

For L8a:

∂2As8a
∂s2

=
8g5 · (3c1c2c3c4s

2 + 3m2 · (c1c2ξ34 + c3c4ξ12 − 4c1c2c3c4) s)

Λ4
Am

4

+
8g5 (2m4 · (ξ12 − 3c1c2) ξ34 − 6c3c4m

4ξ12 + 12c1c2c3c4m
4)

Λ4
Am

4

∂2At8a
∂s2

= 0

∂2Au8a
∂s2

=
8g5 · (3c1c2c3c4s

2 + 3m2 · (c1c4ξ23 + c2c3ξ14 − 4c1c2c3c4) s)

Λ4
Am

4

+
8g5 (2m4 · (ξ14 − 3c1c4) ξ23 − 6c2c3m

4ξ14 + 12c1c2c3c4m
4)

Λ4
Am

4

For L8b:
∂2As8b
∂s2

=
24c1c2c3c4g5 · (3s2 − 12m2s+ 8m4)

Λ4
A

For L8c:

∂2As8c
∂s2

=
4c1c2g5 · (6c3c4s

2 + 6m2 · (ξ34 − 4c3c4) s− 4m4 · (3ξ34 − 5c3c4))

Λ4
Am

4

∂2At8c
∂s2

=
16c1c3g5 · (ξ34 + c2c4)

Λ4
A

∂2Au8c
∂s2

=
4c1c4g5 · (6c2c3s

2 + 6m2 · (ξ23 − 4c2c3) s− 4m4 · (3ξ23 − 5c2c3))

Λ4
Am

4

For L9a:
∂2As9a
∂s2

=
4c1c2c3c4g6m

2

Λ6
φ

∂2At9a
∂s2

= 0

∂2Au9a
∂s2

=
g6 · (6c1c2c3c4s+ 4m2 · (c1c4ξ23 + c2c3ξ14 − 3c1c2c3c4))

Λ6
φ

l9c

For L9c:
∂2As9c
∂s2

= −c3c4g6 · (6c1c2s+ 4m2 · (ξ12 − 3c1c2))

Λ6
φ

∂2At9c
∂s2

= −4c2c4g6m
2 · (ξ13 + c1c3)

Λ6
φ
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∂2Au9c
∂s2

= −c2c3g6 · (6c1c4s+ 4m2 · (ξ14 − 3c1c4))

Λ6
φ

For L10a:

∂2As10a

∂s2
=

2g7 · (6c1c2c3c4s+ 4m2 · (c1c2ξ34 + c3c4ξ12 − 3c1c2c3c4))

Λ6
φ

∂2At10a

∂s2
= 0

∂2Au10a

∂s2
=

2g7 · (6c1c2c3c4s+ 4m2 · (c1c4ξ23 + c2c3ξ14 − 3c1c2c3c4))

Λ6
φ

For L10b:
∂2As10b

∂s2
=

2c3c4g7 · (6c1c2s+ 4m2 · (ξ12 − 3c1c2))

Λ6
φ

∂2At10b

∂s2
=

8c2c4g7m
2 · (ξ13 + c1c3)

Λ6
φ

∂2Au10b

∂s2
=

2c2c3g7 · (6c1c4s+ 4m2 · (ξ14 − 3c1c4))

Λ6
φ

Now due to linearity

∂2MEFT

∂s2
=
∂2ΣiMi

∂s2
= Σi

∂2Mi

∂s2
> 0

so all individual terms above have to be added and their sum is positive.
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