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Abstract

This dissertation contains the results of new research into flavour oscilla-

tions in strong gravitational fields. A new expression has been found for

the oscillation probability of flavour-doublet particles escaping from a low-

spin Kerr black hole. It has also been shown that an expression used in

previous works for scattering by Schwarzschild black holes is still valid in

these low-spin cases. A full investigation of flavour oscillations in more

general gravitational backgrounds requires an understanding of the 3+1 de-

composition of General Relativity, and the advanced techniques of modern

numerical relativity. These areas have been introduced, with a focus on the

necessary background for the GRChombo numerical relativity code, which

has been used here. The results of previous simulations in this area have

been reproduced and built upon, with a wide range of parameters tested for

comparison with the analytic predictions. These simulations have also been

carried out for a Kerr black hole. This work contains all the preliminaries

needed for more advanced numerical investigations, where the fixed back-

ground assumption no longer holds. An extension can also be made in the

future to consider flavour triplet fields.
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1 Introduction

1.1 Focus of this work

In this work, the phenomenon of flavour oscillation is investigated in the strong gravi-

tational field surrounding a black hole. This builds on the results obtained in [1], and

is inspired by the analytical approximations obtained in both [1, 2]. While flavour os-

cillations are an interesting phenomenon in their own right, the patterns that have been

predicted for oscillating particles scattered by black holes are particularly exciting. As

explained in detail later in this work, the oscillation pattern displayed for a simple model

of a flavour doublet depends on the absolute masses of the two mass eigenstates. This is

particularly important, since neutrinos are the prototypical example of flavour oscillating

particles, and their absolute masses are not yet known [3].

The overarching goal of this research is a more complete understanding of the effect of

curved spacetimes on flavour oscillations. This will be obtained through both analytic

approximations in the ‘particle picture’ and a number of numerical investigations. An

understanding of this effect in general spacetimes will require an exposition of the neces-

sary background, including the 3+1 formulation of General Relativity and the principles

of numerical relativity. The first numerical simulations can then be carried out, beginning

with a flavour-doublet field scattered by a single non-rotating black hole (allowing for the

approximation of a fixed background). A full numerical investigation of more complicated

scenarios, such as scattering by binary black hole systems and an extension to full three-

flavour neutrino fields, is beyond the scope of this work and will be reserved for future

investigations.

The remainder of this introduction is aimed at a wider audience than the following (more

technical) work, and will give a qualitative overview of the phenomenon being studied.

Section 2 will begin with an brief introduction to the relevant results of General Relativity,

before going on to explore the 3+1 decomposition of Einstein’s field equations, and the

various formulations that work well for numerical simulations. In section 3, analytical

approximations of flavour oscillation patters around no- and low-spin black holes will be

derived, for comparison with the numerical results in section 5. Before these results are
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given, section 4 will describe the numerical methods behind the GRChombo code.

The details given for both the 3+1 formulation and the workings of the numerical code

will go beyond what is required to understand the results provided here. This is because

these particular simulations are run on a fixed background (i.e., an unchanging metric),

which greatly simplifies the equations required and has a negligible effect on their results.

However, this deeper analysis will be essential for the development of future work on this

topic, where the fixed background assumption will no longer hold.

1.2 Overview of neutrino physics

Flavour oscillations are the result of two things — the wave-like nature of particles, and

the ‘mixing’ (i.e., mismatch) between the mass- and flavour-eigenstates of the oscillating

particles. In reality, flavour oscillations are generally considered in terms of neutrinos,

which have three distinct flavours. However, a lot of the interesting physics can be captured

by a neutrino-like particle, with just two flavours. In the particle picture, each neutrino-

like particle can be thought of as being built from two fundamental ‘types’, or flavours. If

it is entirely built from one of these flavours, a measurement of its flavour is guaranteed

to yield that one result. Otherwise, the result is fundamentally probabilistic, and depends

on the relative proportions of the two flavour states it is built from.

Forgetting flavour for a moment, another important parameter that can be measured is

the particle’s mass. It turns out that this follows the exact same story — each particle

can also be considered, with equal validity, as being built from two distinct mass states.

The complications arise in combining these two pictures. The key result is that the two

fundamental flavour states (or ‘bases’) are not aligned with the two mass bases. Therefore,

if a particle is in one flavour (mass) state, it will be in a combination of mass (flavour)

states. The relation between these two bases is well-known1, and can always be used to

change between the two descriptions.

As mentioned above, the other important cause of flavour oscillations is the wave-like

nature of particles. Fortunately, the basis states in the mass basis (the mass eigenstates)

obey a simple wave equation. This means that, as shown in the top half of figure 1, they

1In this two-flavour picture, the bases are related by a simple U(2) rotation — see section 3.1.
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oscillate sinusoidally in time (or, equivalently2, distance along their path).

Figure 1: The upper half shows the real parts of two complex waves, corresponding to the
propagation of two mass eigenstates. The lower half shows the resulting oscillation probability.

The wavelength of each basis state depends on its mass, so the two mass eigenstates

oscillate differently along their shared path. This means that when a measurement is

made further along the path, the proportions of the two mass states have changed. As a

result, the proportions of the two flavour states (which are built from these mass states)

have also changed, and the probability of a change in flavour has changed with them.

1.3 Effects of general relativity

In ordinary Newtonian physics, all processes occur on a fixed three-dimensional Euclidean

background, with a universal ‘clock’ that all observers agree on. This was implicitly as-

sumed in the calculations for figure 1, where the distance travelled along the path was as-

sumed to have a simple ‘distance = velocity× time’ relation to some observer-independent

measure of time.

In Einstein’s theory of general relativity, however, space and time are unified into one

four-dimensional spacetime. In this world, distances and times are no longer agreed on

2Assuming particles with constant velocity.
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by different observers, and what was considered the force of gravity is now an effect of

the geometry of this spacetime. As frequently quoted from John Wheeler, “Spacetime

tells matter how to move; matter tells spacetime how to curve.” — i.e., the presence

of matter changes the geometry of spacetime, and the geometry of spacetime affects the

behaviour of matter. The mathematical description of this relationship will be outlined

in later sections, but the most relevant features are these: a large concentration of mass

into a small area creates extreme curvature of this spacetime; this curvature then affects

the paths of particles passing near the mass, and thus affects the probability of flavour

oscillations further along those paths.

In all but the most simple cases, the equations that govern this (highly nonlinear) rela-

tionship between matter and curvature are not solvable by pen and paper. In these cases

the equations are often tackled numerically, using high-performace computing capabilities

to approximate the solutions, often to a very high degree of accuracy. To do this, the

equations must be put into a form that is both solvable in this way (the 3+1 decomposi-

tion of section 2.2), and ‘behaves well’ in these simulations (such as the CCZ4 formulation

of section 2.7). This will be the topic of the following section.

2 General Relativity and the 3+1 Formulation

2.1 General Relativity

Einstein’s theory of General Relativity is formulated in the language of differential geome-

try. Differential geometry gives a mathematical description of manifolds, and tensor fields

on them. The brief overview of General Relativity given here will have two key results

— the mathematical description of particle motion, which is necessary for the ‘particle

picture’ of flavour oscillations, and the full Einstein field equations. These equations can

then be decomposed, allowing for the numerical simulation of flavour oscillations in the

‘field picture’. While it is not directly relevant for this work, it is worth noting that the

equations of General Relativity can be obtained by employing an action principle, and

using the Einstein-Hilbert action (e.g., appendix E of [4]). The reader is assumed to have
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a basic knowledge of differential geometry, with an understanding of manifolds, vectors

and forms.

2.1.1 The metric

The spacetime metric gµν is a (0,2) tensor field defined over the whole manifold. As

such, it defines a map TpM × TpM → R, taking two vectors defined at a point p and

returning a real number. Given two vector fields u, v ∈ TpM, it obeys the conditions

g(u, v) = g(v, u), and g(u, v) = 0 ∀v ∈ TpM iff v = 0. This second condition means that

gµν can always be diagonalised at a point by an appropriate coordinate transformation. In

General Relativity, this diagonalised metric will have the signature (-1,1,1,1). The metric

defines an inner product between vectors at a point, and therefore the result of the metric

acting on two instances of the same vector can be interpreted as the norm of that vector.

While the specific components of these vectors depend on the coordinate frame used, the

metric tensor allows for vectors v to be categorised by the sign of their norm as timelike;

vµv
µ < 0, null; vµv

µ = 0, or spacelike; vµv
µ > 0.

An important application of the metric tensor is in calculating the line element ds, used

to define distance s along a curve C as

s =

∫
C

√
ds2 (1)

ds2 = dxµdxνgµν , (2)

where both here and above the Einstein summation convention has been assumed.

2.1.2 Differentiation on manifolds

Given just a manifold, M, and the concept of tensors fields, there is no clear way to

generalise differentiation beyond the action of vectors on scalar fields. For example, to

generalise the concept of differentiation to vector fields, a way to compare neighbouring

tangent spaces is required. There are multiple ways to define differentiation on a manifold,

and the most important for General Relativity is known as the covariant derivative.

The problem of comparing neighbouring tangent spaces can be considered in reverse —
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if differentiation is first defined (based on some reasonable requirements), it can then be

used to identify vectors in neighbouring tangent spaces (known as parallel transport).

It makes intuitive sense that a derivative operator should take a vector field U , defined

over (at least) some neighbourhood of the point p, and a specific vector in the tangent

space at p, v ∈ TpM, and return another vector that can be interpreted as the derivative

of U along v. Denoting this mapping ∇, it is required to be bilinear, local (i.e., not

dependent on ve, the local extension of v around the point p), and obey the Leibniz rule.

The frame-dependent connection coefficients Γµ
αβ are then defined by the action of the

connection on the basis vectors, i.e.,

∇eαeβ = Γγ
αβeγ (3)

The infinitesimal displacement vector dl along a curve C(λ) can be defined by its action on

a scalar field f , dl : f → f(C(λ+ dλ))− f(C(λ)). A vector v is then parallelly transported

along C iff ∇dlv = 0.

The full expression for the covariant derivative of a vector field t is then,

∇µt
ν = ∂µt

ν + Γν
µαt

α (4)

which can be extended to other tensor fields by considering the action on a scalar field (a

simple partial derivative) and the Leibniz rule.

In General Relativity, the connection preserves the metric, i.e., ∇g = 0, and is torsion

free — these requirements then make this choice of connection, known as a Levi-Civita

connection, unique (for a proof, see Theorem 4.3.1 of [5]).

The other important notion of differentiation needed here is the Lie derivative. As men-

tioned above, some method of comparing vectors in neighbouring tensor fields is needed

to define a derivative of tensors, and the Lie derivative does this by infinitesimally trans-

porting one vector field along the flow defined by another, and comparing its value to the

original value it had there.

Writing the flow of a vector field u as Φ, the point p is mapped a small distance ϵ by Φ to

the point q, i.e., q = Φϵ(p). This map allows for the push-forward of the vector field v at
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p, denoted v(p), to the point q — this is written as Φϵ∗v(p). Defining the Lie derivative

then as

Luv = lim
ϵ→0

(
v(q)− Φϵ∗v(p)

ϵ

)
(5)

it is easily shown that, in components,

(Luv)
ν = uµ dv

ν

dxµ
− vµ

duν

dxν
= uµ∇µv

ν − vµ∇µu
ν = [u, v] (6)

As with the covariant derivative, the same requirements allow for a simple extension to

general tensors.

2.1.3 Curvature

Given the lack of background to compare to, and the coordinate dependence of all (non

scalar) tensors, it is not immediately clear how curvature should be defined. However, since

a key feature of curved space is the path-dependence of parallel transport (equivalently,

the non-vanishing connection coefficients), curvature can be quantified by the failure of

successive covariant derivatives to commute. The resulting tensor is called the Riemann

curvature tensor, and can be given by its action on a general vector field ω as,

Rα
βγδω

β = [∇γ,∇δ]ω
α. (7)

Two useful quantities are the Ricci tensor, given by the contraction of the Riemann tensor

on its first and third indices,

Rµν = Rα
µαν (8)

and the Ricci scalar,

R = Rµνg
µν (9)

2.1.4 Einstein Field Equations

From the Bianchi identity,

∇αR
µ
νβγ +∇γR

µ
ναβ +∇βR

µ
νγα = 0, (10)
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repeated contractions with the metric give,

∇µ(R
µν − 1

2
gµνR) = ∇µG

µν = 0 (11)

where Gµν defined here is the Einstein tensor. The full Einstein Field equations (in

geometric units) are then,

Gµν + Λgµν = 8πT µν (12)

where Λ is the cosmological constant, and T µν is the stress energy tensor containing the

contributions from non-gravitational fields.

For a thorough introduction to General Relativity, see for example [4, 6].

2.1.5 Geodesics

As mentioned in the introduction, the curvature of spacetime has a direct effect on the

motion of matter. This effect is clearest when a small, ‘freely falling’ test mass is consid-

ered. The world lines (paths through the spacetime manifold) of these test masses follow

curves called geodesics. These curves are the generalisation of straight lines to curved

space, in that they minimise the distance (see equation (1)) between two points. Geodesic

motion therefore generalises Newton’s first law to curved space, stating that a body which

is unaffected by external forces stays in uniform motion along a straight line.

The equation that governs these geodesics can be found in multiple ways. These include

minimising equation (1) with the Euler-Lagrange equations3, or requiring that the tangent

vectors to these curves are parallelly transported along themselves, i.e.,

∇vv = 0 (13)

where v = dxµ

dλ
and λ is an ‘affine parameter’ for the geodesic. This route directly gives

the geodesic equation for curves xµ(λ),

3This method is particularly convenient when generalising to include other, non-gravitational forces
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d2xµ

dλ2
+ Γµ

αβ

dxα

dλ

dxβ

dλ
(14)

where the connection coefficients Γµ
αβ are defined in equation (3).

2.2 3+1 Decomposition

While [7, 8, 9] have all been used to guide the following sections, the final forms of the

important equations have been chosen to mirror those in [8]. [8] is therefore the most

useful reference for comparisons to this work, and for detailed derivations of the results

presented here.

2.2.1 Submanifolds

Informally, the 3+1 decomposition of spacetime is just the separation of the 4-dimensional

manifold, with 3 spacelike dimensions and 1 timelike, into a stack of 3-dimensional ‘slices’,

with each point on a given slice having the same time coordinate. Figure 2 gives an

illustration of this ‘foliation’ of spacetime. In the following equations, the Greek letters

are assumed to take the values 0 to 4 inclusively, while Latin letters are assumed to

represent the (spatial) coordinate labels 1 to 3.

Figure 2: A simple illustration from [8] of spacelike hypersurfaces Σt foliating a 2+1 dimensional
manifold M, with the normal vector n and its light cone included.

More formally, the hypersurfaces (slices) Σ are 3-dimensional manifolds embedded in the

9



full manifold M. These hypersurfaces are spacelike, which is defined by their normal

vector (see below) being timelike everywhere. The maps Φ from Σ into M allow for the

push-forward of vectors into M and the pull-back of one-forms. In fact, since they are

homeomorphisms, the inverse mappings Φ−1 also allow for the reverse of these.

To specify this mapping, the first step is to assume the existence of a suitable scalar field

t, and then to define the surfaces Σ as level surfaces of t. The normal to these surfaces,

n, is proportional to the gradient of t,

nµ = −α∇µt (15)

where α may vary. If the scalar field t is used as the time coordinate, the pull-back of

vectors and one forms on M to these surfaces corresponds simply to ‘dropping’ their time

components.

For t to be a valid time coordinate, and therefore for the Σ to be spacial, n must be a

timelike vector, and for convenience it is normalised to -1.

The pull-back of the metric g to Σ is called the induced metric γ. Since the hypersurfaces Σ

are spacelike, γ is non-degenerate, and so a connection D on Σ can be defined analogously

to the connection ∇ on M. This connection has a corresponding Riemann tensor Ri
jkl,

Ricci tensor Rij, and Ricci scalar R. From here on, these symbols will refer to the tensors

on 3-dimensional hypersurfaces, and a superscript 4 will specify the 4-dimensional versions.

2.2.2 Curvature revisited

The curvature that is codified by the induced metric is referred to as the intrinsic cur-

vature, as it is intrinsic to the embedded hypersurfaces themselves. The other important

form of curvature in the 3+1 decomposition is called the extrinsic curvature, and relates to

the change in the direction of n across Σ. It is a bilinear form, defined for all u, v ∈ TpM

by,

K(u, v) = −u · ∇vn (16)

The trace of the extrinsic curvature, K = gµνKµν = γabKab, is referred to as the mean

curvature. Using equation (16) and the Lie derivative described in section 2.1.2, the
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extrinsic curvature can be re-expressed as the Lie derivative of the 3-metric γ along the

normal vector n,

Kµν = −1

2
(Lnγ)µν (17)

The orthogonal projector, denoted γ⃗, is defined by the map of a vector v ∈ TpM,

γ⃗(v) = v + (n · v)n (18)

and in components,

γα
β ≡ gαβ + nαnβ (19)

with the α index raised on the spacetime metric by the inverse spacetime metric, giving a

tensor which acts as a Kronecker delta.

Using this new tool to express Dµv
ν in terms of ∇µv

ν ,

Dµv
ν = γα

µγ
ν
β∇αv

β (20)

allows for the following relation to be shown,

Duv = ∇uv +K(u, v)n (21)

showing that the extrinsic curvature can also be thought of as the difference between the

4- and 3-dimensional covariant derivatives ∇ and D.

2.2.3 The Gauss and Codazzi relations

The orthogonal projector can now be used to project the components of various equations

onto Σ, obtaining relations between these new quantities. First, the analogue of equation

(7) for the three-dimensional Rµ
ναβ ,

Rµ
ναβv

ν = DαDβv
µ −DβDαv

µ (22)
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can be fully projected onto Σ, and using equation (21) then gives the Gauss relation;

γµ
αγ

ν
βγ

γ
ργ

σ
δ
4R

ρ
σµν = Rγ

δαβ +Kγ
αKδβ −Kγ

βKαδ (23)

Contracting this equation on γ and α and taking its trace then gives the scalar Gauss

relation;

4R + 24Rµνn
µnν = R +K2 −KijK

ik (24)

where K = Kµ
µ .

Second, applying equation (7) to n and projecting the resulting relation onto Σ gives the

Codazzi relation,

γγ
ρn

σγµ
αγ

ν
β
4R

ρσ
µν = DβK

γ
α −DαK

γ
β (25)

and again contracting on α and γ gives the contracted Codazzi relation,

γµ
αn

ν4Rµν = DαK −DµK
µ
α (26)

Finally, again applying equation (7) to n, but now projecting twice along Σ and once along

n, gives the Lie derivative of the extrinsic curvature along m := αn,

LmKαβ = mµ∇µKαβ − 2αKαµK
µ
β −KαµD

µαnβ −KβµD
µαnα (27)

Projecting this equation fully onto Σ, and finding that this has no effect on LmKαβ (which

is tangent to Σ) gives the Ricci equation,

γαµn
ργν

βn
σ4R

µ
ρνσ =

1

α
LmKαβ +

1

α
DαDβα +KαµK

µ
β (28)

the final non-trivial decomposition of equation (7).
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2.2.4 ADM decomposition of the Einstein equations

Einstein’s field equation (equation (12)) can now be projected on its two indices, with

important equations coming from all of the full projection onto Σ, the full projection

along n, and the mixed projection. It is more convenient in some cases to use the trace-

reversed form of (12),

4Rµν = 8π

(
Tµν −

1

2
Tgµν

)
(29)

where T := gµνTµν is the trace of the stress-energy tensor Tµν .

First, projecting this form of the Einstein equations fully onto Σ (and using equations (23)

and (28)) gives,

LmKij = −DiDjα + α
[
Rij +KKij − 2KijK

k
j + 4π[(S − E)γij − 2Sij]

]
(30)

where

E := T (n, n) = Tµνn
µnν (31)

is the stress-energy tensor applied to the normal vector n (equivalently, projected along

n) twice, Sµν is the projection onto Σ of the stress-energy tensor,

Sµν = Tαβγ
α
µγ

β
ν (32)

and S := gµνSµν is its trace. The remaining (mixed) projection of Tµν is given by,

pµ = −Tαβγ
α
µn

β (33)

Second, projecting equation (12) fully along n (and using equation (24)) gives the Hamil-

tonian constraint,

R +K2 −KijK
ij = 16πE (34)

The third and final projection of the Einstein equations is the mixed projection of equation

(12), giving (with equation (26)) the momentum constraint,
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DiK
i
j −DjK = 8πpj (35)

Equations (30), (34), and (35) (together with (17)) are often referred to as the ADM

equations, and make up a complete reformulation of the Einstein equations. To express

these equations as a system of coupled PDEs (partial differential equations), a coordinate

system must be chosen. As expected in General Relativity, there is no unique choice for

these coordinates, and different choices may favour different physical situations.

Taking the scalar function t to be the time coordinate, the vector ∂t will in general differ

from the vector m defined previously. While the vector m is always perpendicular to the

spacial hypersurfaces Σ, the vector ∂t corresponds to the direction of no change in the xi

coordinates. The difference between these vectors is known as the shift vector β⃗, which

lies along Σ and can be interpreted as the freedom to (smoothly) define the coordinate

axes on each spacial hypersurface.

Figure 3: A demonstration of the vectors ∂t, m = Nn (where N = α) and β on a spacial slice,
from [8].
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The spacetime metric in these coordinates is then,

gµν =

−α2 + βαβ
α βν

βµ γij

 (36)

Writing the components of β in the xi directions as βi, the normal vector n can then be

specified as n = 1
α
(1, β⃗). Also, using that ∂t = m+β (see figure 3), Lm can be decomposed

into Lm = L∂t − Lβ.

Furthermore, since

(L∂tK)ij = (∂t)
a∂aKij +Kaj∂i(∂t)

a +Kia∂j(∂t)
a = (∂tV )β (37)

for a general tensor V , and

LβKij = βa∂aKij +Kaj∂iβ
a +Kia∂jβ

a (38)

in these coordinates, the LHS of equation (30) can be rewritten as

LmKij = ∂tKij − βa∂aKij −Kaj∂iβ
a −Kia∂jβ

a (39)

This completes the decomposition of the Einstein equation into a system of coupled partial

differential equations.

2.3 Stress energy tensor of scalar fields

In this work, the only form of matter is a pair of massive scalar fields4. The equation of

motion for a scalar field ϕ with mass m is the Klein-Gordon equation,

∂µ∂
µϕ+m2ϕ = 0 (40)

This can be decomposed (as in [10]) into two first-order differential equations in the vari-

4In the numerical simulations presented later, the masses of these fields are low enough that the effect
of Tµν on the metric can be neglected.
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ables ϕ and ΠM := Lnϕ,

∂tϕ− βi∂iϕ = αΠM (41)

∂tΠM − βi∂iΠM = γij(α∂i∂jϕ+ ∂iα∂jϕ) + α
(
KΠM − γijΓk

ij∂kϕ+m2ϕ
)

(42)

The stress energy tensor for scalar fields is also needed, and is found from the Klein-Gordon

Lagrangian to be

Tµν = ∇µϕ∇νϕ− 1

2
gµν(∇ρϕ∇ρϕ−m2ϕ2) (43)

Once Tµν has been calculated, it can be decomposed (as in section 2.2.4) into the tensors

Sij, pi, S, and E.

2.4 Partial differential equations and hyperbolicity

With the equations of General Relativity fully decomposed in the preceding sections, it

may appear that the task of 3+1 decomposition is fully completed. However, it has long

been known that the ADM equations are not suitable for use in numerical relativity. The

reason for this relates to the ‘weak hyperbolicity’ of these equations, and will be explored

in this section. This discussion follows the arguments made in [7], with a more detailed

discussion given in [11].

A general second-order partial differential equation in the variables x and y can be written

as5

A∂2
xϕ+B∂x∂yϕ+ C∂2

yϕ = f(ϕ) (44)

where f(ϕ) can contain up to first-order derivatives of ϕ. These equations can initially be

classified according to the following requirements,

5B here is 2 × the B in [7]

16



Equation (44) is =


Hyperbolic if B2 − 4AC > 0

Parabolic if B2 − 4AC = 0

Elliptic if B2 − 4AC < 0

(45)

For the purposes of numerical simulations, hyperbolic equations are very desirable. Ellip-

tic equations require boundary conditions at the spacial edges of the simulation, and only

specify data for a given spacial slice. The Hamiltonian constraint (equation (34)) is an

elliptic equation. Hyperbolic and parabolic equations, however, require a suitable initial

state, but then determine how this state evolves in time.

The desirability of hyperbolic equations is further explained by the notion of ‘well-posedness’.

All hyperbolic equations can be arranged into the form,

∂2
t ϕ− v2∂2

xϕ = ρ (46)

where v is a constant (corresponding to the wave-speed), and ρ may contain up to first-

order derivatives of ϕ. This second-order equation can be decomposed into first-order

equations in the variables ϕ, k = −∂tϕ, and l = ∂xϕ. The state of ϕ and its derivatives

can be contained in a vector u = (ϕ, k, l), and with a source vector S = (−k,−ρ, 0) these

first-order equations can be written together as

∂tu+ A · ∂xu = S (47)

where the velocity matrix A is given by,


0 0 0

0 0 v2

0 1 0

 (48)

By considering equation (47) in an eigenbasis of A, it is clear that the eigenvalues of this

velocity matrix correspond to speeds, known as ‘characteristic speeds’. These are the

speeds with which the components of u in this basis propagate. In spaces with more than

1 spacial dimension, the term A · ∂xu in equation (47) becomes Ai · ∂iu, and the solution
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vector gains additional spacial derivatives.

An equation is considered well-posed if some norm of the solution vector u can be defined

that obeys,

|u(x, t)| ≤ αeβt|u(x, 0)| (49)

for all times t, where α and β are constants. It is clear that this is a necessary (but not

always sufficient) requirement for good behaviour in simulations, since solutions that grow

faster than exponentially would be greatly undesirable.

To determine which hyperbolic equations obey this condition, it is useful to classify them

as weakly, strongly, or symmetric hyperbolic (a subset of strongly hyperbolic equations).

Strongly hyperbolic equations (and therefore symmetric hyperbolic also) automatically

satisfy condition (49).

In [7], this further classification is carried out by considering a matrix P formed by the

product of Ai with an arbitrary unit vector ni. If, for all possible choices of ni, the

eigenvectors of P are complete (and have real eigenvalues), the equations are strongly

hyperbolic. If the eigenvalues are real but the eigenvectors are not complete, they are

weakly hyperbolic. Finally, if P can be symmetrised in a way that is independent of ni

(for example by all the M i being symmetric already), they are symmetric hyperbolic.

As mentioned previously, the ADM equations are only weakly hyperbolic. However, they

can be reformulated into systems of equations that are strongly hyperbolic. This will be

the topic of the following sections.

2.5 BSSN equations

To make the 3+1 equations strongly hyperbolic, and therefore more suitable for numerical

evolution, various changes can be made. In the BSSN formalism, these changes include

a conformal rescaling of the metric, and the addition of multiples of the constraint equa-

tion. This latter change is automatically allowed by the requirement that the constraint

equations be equal to zero everywhere. The conformally related metric is given by,
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γ̃ij = e−4ϕγij (50)

The extrinsic curvature Kij can also be re-expressed, by splitting it into its trace K and

a traceless part Ãij,

Ãij = e−4ϕAij = e−4ϕ

(
Kij −

1

3
Kγij

)
(51)

The evolution equation forK can then be found by contracting equation (30) on its indices,

giving (bearing in mind equation (39))

∂tK − βi∂iK = −γijDiDjα + α

(
ÃijÃ

ij +
1

3
K2 + 4π(E + S)

)
(52)

Subtracting this from equation (30) then gives the evolution of the traceless (or TF, trace-

free) part,

∂tÃij − βa∂aÃij − Ãia∂jβ
a − Ãaj∂iβ

a = e−4ϕ
(
−(DiDjα)

TF + α(RTF
ij − 8πSTF

ij )
)

+ α(KÃij − 2ÃilÃ
l
j)−

2

3
Ãij∂aβ

a
(53)

The same contraction and subtraction on equation (17) gives

∂tϕ− βi∂iϕ = −1

6
αK +

1

6
∂iβ

i (54)

and

∂tγ̃ij − βa∂aγ̃ij − γ̃ia∂jβ
a − γ̃aj∂iβ

a = −2αÃij −
2

3
γ̃ij∂aβ

a (55)

The remaining equations of the BSSN formulation are found by decomposing the Ricci

tensor Rij into a conformal part, R̃ij, and the rest, Rϕ
ij. These can then be given in terms

of the conformal connection functions Γ̃i = γ̃abΓ̃i
ab and ϕ as

Rϕ
ij = −2(D̃iD̃jϕ+ γ̃ij γ̃

lmD̃lD̃mϕ) + 4((D̃iϕ)(D̃jϕ)− γ̃ij γ̃
lm(D̃lϕ)(D̃mϕ)) (56)
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and

R̃ij = −1

2
γ̃lm∂m∂lγ̃ij + γ̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k + γ̃lm(2Γ̃k
l(iΓ̃j)km + Γ̃k

imΓ̃klj) (57)

with the conformal connection

Γ̃i
jk =

1

2
γ̃ia(γ̃aj,i + γ̃ia,j − γ̃ij,a) (58)

The connection functions themselves evolve as

∂tΓ̃
i − βj∂jΓ̃

i + Γ̃j∂jβ
i = − 2Ãij∂jα + 2α

(
Γ̃i
jkÃ

kj − 2

3
γ̃ij∂jK − 8πγ̃ijpj + 6Ãij∂jϕ

)
+

2

3
Γ̃i∂jβ

j +
1

3
γ̃li∂l∂jβ

j + γ̃lj∂j∂lβ
i

(59)

This system of equations can then be shown to be strongly hyperbolic [12].

2.6 Z4 system

An alternative strongly hyperbolic formulation of the Einstein equation is the Z4 system

[13]. To obtain these equations, the Einstein equations (29) are modified to include the

variables Za, as

Gµν +∇µZν +∇νZµ − κ1[tµZν + tνZµ − (1 + κ2)gµνtσZ
σ] = 8π

(
Tµν −

1

2
gµνT

)
(60)

where tµ is a timelike vector field, and can simply be chosen to equal nµ, the normal vector

field to the spacelike hypersurfaces. Zµ clearly quantifies the deviation from the Einstein

equations, and as such it is important that any non-zero components of Z are (at least)

damped. This is the case when κ1 > 0 and κ2 > −1 [13].

While equations (34) and (35) make up four constraint equations on the spacelike hyper-

surfaces, in the Z4 system these equations are replaced by evolution equations for Zi and
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Θ := nµZ
µ = αZ0 (in these coordinates). These equations are given in [13] and [14] as

(∂t − Lβ)Kij =−DiDjα + α(Rij +DiZj +DjZi − 2K l
i Klj + (K − 2Θ)Kij

− κ1(1 + κ2)Θγij)− 2πα

(
Sij −

1

2
(S − E)γij

) (61)

(∂t − Lβ)Θ =
α

2

(
R + 2∇jZ

j + (K − 2Θ)K −KijKij − 2ZjDj lnα

− 2κ1(2 + κ2)Θ− 16πE)

(62)

(∂t − Lβ)Zi = α
(
∇j(K

j
i − δ j

i K) + ∂iΘ− 2K j
i Zj −Θ

αi

α
− κ1Zi − 8πpi

)
(63)

together with equation (17). The Lie derivatives have been left in these equations (for

brevity), but can be expanded by equation 6 (as they were in the previous sections).

2.7 CCZ4

The GRChombo code uses a system known as CCZ4 (conformal covariant Z4) [14]. This

is a combination of the Z4 system in section 2.6 above with a conformal transformation,

as in section 2.5. This is seen in the following results6, where setting Zµ = 0 returns

the BSSN equations of section 2.5 with no modifications. Equations (54) and (55) are

unchanged, while equation (53) gains the term

e−4ϕα(DiZj +DjZi)− 2αÃijΘ (64)

on the RHS. Similarly, the RHS of equation (52) gains the terms

2α(DiZ
i −KΘ)− 3ακ1(1 + κ2)Θ (65)

Equation (62) is also unchanged, while equation (59) becomes the evolution equation for

Γ̂i := Γ̃i + 2γ̃ijZj, with Γ̃i → Γ̂i and the terms

6If comparing these results with the references, it is useful to note that from equation (51), ÃijÃ
ij =

KijK
ij − 1

3K
2
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2γ̃ij

(
α∂jΘ−Θ∂jα− 2

3
αKZj − ακ1Zj

)
+ 2κ3

(
2

3
γ̃ijZj∂kβ

k − γ̃jkZj∂kβ
i

)
(66)

added to the RHS, including a new damping term controlled by κ3. Equations (56) and

(57) are also unchanged.

Together with the matter evolution equations of section 2.3, this gives the full CCZ4 for-

mulation of General Relativity as equations (54), (55) and (62) as they are, and equations

(52), (53) and (59) with the relevant modifications. The dynamical variables that evolve

by these equations are (respectively) ϕ, γ̃ij,Θ, K, Ãij, and Γ̂i. Equations (56) and (57)

then give the Ricci tensor in this scheme.

2.8 Choices of foliation

Up until this point, no specific choice has been made for the lapse α or the shift βi.

These four degrees of freedom represent the general (diffeomorphism) covariance of general

relativity, i.e., the invariance of the field equations under coordinate transformations. In

this section, various possible choices will be explored, and their benefits/drawbacks will

be described and compared.

The most obvious choice for the lapse and shift is known as geodesic slicing, and is given

by setting α = 1 and βi = 0 everywhere. It is instructive to consider the perspectives of

‘coordinate observers’ in these various schemes, who move with velocities vµ equal to the

vector ∂t, which corresponds to the infinitesimal dispacement vector dl between points with

the same spacial coordinates on neighbouring slices. Clearly, in this case, their velocity

is equal to nµ (which is also equal to mµ since α = 1), which also makes them ‘normal

observers’.

It turns out that these observers have vanishing acceleration, and therefore correspond to

geodesics. While this may also seem usefully simple, it poses a significant problem if these

coordinate choices are used in numerial simulations — since geodesics often converge to

coordinate singularities in finite proper time (e.g., falling ‘into’ a black hole singularity),

these coordinates correspondingly become singular.

An alternative choice that avoids this issue is known as maximal slicing. By requiring
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that the mean curvature K = 0, and that normal observers neither converge nor diverge,

it can be shown that the lapse α must obey the condition,

D2α = α(KijK
ij + 4π(E + S)) (67)

The name ‘maximal slicing’ illustrates the fact that this choice maximises the volume of

spacial foliations, as shown in section 10.2.2 of [8].

A common category of conditions for the lapse is known as harmonic slicing [15], where

the time coordinate is required to obey ∇µ∇µt = 0. This gives the following condition on

the lapse,

(∂t − Lβ)α = −Kα2 (68)

Following the work in [16], generalising the RHS of equation (68) to −Kα2f(α) encapsu-

lates both this harmonic slicing condition (f(α) = 1) and the geodesic slicing condition

(f(α) = 0). Taking f(α) = 2
α
gives the very common ‘1+log’ slicing, so named for a

solution to this condition with vanishing shift; α = 1 + ln γ. This choice is particularly

useful for avoiding these coordinate singularities, and as a result it is regularly chosen in

numerical simulations.

A popular combination of conditions is this 1+log condition for α with the ‘hyperbolic

gamma-driver’ condition for the shift β,

∂2
t β

i = k∂tΓ̂
i − (η − ∂t ln k)∂tβ

i (69)

where the Γ̂i were defined in section 2.7, and both k, η > 0. This is equivalent to the

following pair of first-order PDEs,

∂tβ = kBi (70)

∂tB
i = ∂tΓ̂

i − ηBi (71)

This combination of conditions is known as the moving-punctures method [17].
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3 Flavour Oscillations

Reference has already been made to the particle and field pictures of flavour oscillations.

In the particle picture, the primary objects of interest are small test masses, travelling

along (approximately) null geodesics and picking up a phase change along these paths.

The oscillation probability for a 2-flavour particle travelling along these geodesics can then

be found by comparing the phases of the two mass eigenstates. In the field picture, the

flavour fields are evolved indirectly as a doublet of massive complex scalar fields, which are

then rotated back to the flavour basis at each point to give the probability of oscillation

there. In this section, both pictures will be used. First, an expressions will be found (in

the field picture) for the oscillation probability of a plane wave travelling though flat space.

Then, an expression will be obtained through the particle picture for the phase change

along geodesics in the Kerr spacetime. This result can then be compared to the field

picture by considering an infinite plane of particles coming in from infinity and scattering

past the black hole. This comparison to the field picture will allow for the equations

derived here to guide the numerical investigations of both this work and future research.

3.1 Flat space

A particle is considered with two flavour eigenstates, labelled a and b. The two mass

eigenstates, labelled + and −, do not correspond directly to the two flavour eigenstates,

and are instead related by the mixing matrix,

ϕ+

ϕ−

 =

 cos(α) sin(α)

− sin(α) cos(α)

ϕa

ϕb

 (72)

which is clearly just a regular U(1) rotation.

As the mass eigenstates obey the Klein-Gordon equation (equation 40), the probability of

a plane-wave state |A⟩ evolving into a state |B⟩ at position r⃗j in a time t is given by

PA→B = | ⟨B|UA(t, r⃗)|A⟩ |2, (73)
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where UA(t, r⃗) is the evolution operator for state A, given in the |±⟩ basis by,

UA(t, r⃗) =

ei(−ω+t+k⃗·r⃗) 0

0 ei(−ω−t+k⃗·r⃗)

 (74)

where wA is the energy of some state |A⟩, and k⃗ is its momentum. As usual, wA and k⃗

obey the energy-momentum relationship w2
A = |⃗k|2 +m2

A, where mA is the mass of state

|A⟩. It has already been assumed implicitly that the momenta of the two mass eigenstates

are equal, an assumption that is justified if they are highly relativistic and produced by

the same source. If state |A⟩ corresponds to flavour a and state |B⟩ corresponds to flavour

b, this probability is given simply by,

PA→B = sin2(2α) sin2

(
w+ − w−

2
t

)
. (75)

3.2 Curved space

3.2.1 Non-radial escape from black hole region

In the particle picture, the expression for the phase change of each mass eigenstate trav-

elling along a geodesic C is found from the exponenents in equation (74), which can be

suggestively written as,

ϕ =

∫
C
pµdx

µ (76)

In the flat space case, this reduces simply to −ω+t+ k⃗ · r⃗, but in a gravitational field it is

more complicated to analyse. As in [2], this can be analytically evaluated for geodesics in

the Schwarzschild metric when some approximations are made.

In this work, the result in [2] will be extended from the Schwarzschild case to include black

holes with spin. However, for the analytic approximation, it will be assumed that both a

and M are small (i.e., low angular momentum per unit mass and low total mass) compared

to r along the geodesics followed by the neutrinos. Once the paths have been integrated,

it will then be assumed that the beginning and end points are far from the black hole,

specifically in comparison to the impact parameter. This limits the applicability of the
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resulting equations to regions far from the black hole, but the full (strong gravity, high

rotation) case will be evaluated numerically in later sections.

It has been shown in [18] that in Kerr spacetimes, unlike Schwarzschild, the effect of

spin-flip on flavour oscillations is important. This occurs because neutrino-like particles

should, in principle, be modelled by spinor fields, with a non-trivial interaction between

their intrinsic angular momentum and the angular momentum of the black hole. However,

as shown in [18], the conditions under which this effect is important are very restrictive in

cases of low a, and therefore this effect is not considered here. With these approximations,

the Kerr metric in Boyer–Lindquist coordinates is simplified to

gµν ≈


−B(r) 0 0 −4Ma sin2(θ)

r

0 B(r)−1 0 0

0 0 r2 0

−4Ma sin2(θ)
r

0 0 r2sin2(θ)

 (77)

where B(r) = 1− 2M
R
.

The (approximate) inverse metric, which will be needed later, is also given as,

gµν =



r2 sin2(θ)
|gred|

0 0 4Ma sin2(θ)
r|gred|

0 B(r) 0 0

0 0 r−2 0

4Ma sin2(θ)
r|gred|

0 0 −B(r)
|gred|

 ≈


−B(r)−1 0 0 −4Ma

r3B(r)

0 B(r) 0 0

0 0 r−2 0

−4Ma
r3B(r)

0 0 1
r2 sin2(θ)

 (78)

where |gred| in the first term is the modulus of the reduced matrix (which excludes the

middle four values),

|gred| = r2
(
−B(r) sin2(θ)− 16M2a2 sin2(θ)

r4

)
(79)

However, the second term in equation (79) is of order (a
2

r4
) and so has been dropped.

Since highly relativistic neutrinos are assumed, the path C will be taken along null

geodesics. It will also be assumed from here on that θ is fixed at π
2
, so dθ = 0. The path
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will be parameterised by the r coordinate, and the following quantities will be needed,

E0 ≡ gtν
dxν

ds
, J0 ≡ gϕν

dxν

ds
, p0(r) ≡ grν

dxν

ds
(80)

From the absence of t and ϕ in the metric, it is clear that dt and dϕ are Killing vector

fields. As a result, the quantities E0 and J0 are conserved along these geodesics.

From this set of coupled equations, the following differentials are found on the null

geodesics, as needed to express dxµ as dxµ

dr
dr,

(
dr

ds

)
0

= B(r)p0(r) (81)

(
dϕ

ds

)
0

=

J0r
4Ma

− E0

B(r)

4Ma
rB(r)

+ r3

4Ma

≈ 1

r2

(
J0 −

4MaE0

rB(r)

)
(82)

(
dt

ds

)
0

= − E0

B(r)
− 4Ma

rB(r)

dϕ

ds
≈ − E0

B(r)
− 4MaJ0

r3
(83)

where the subscript ‘0’ refers to the null geodesic.

These quantities are also related by the condition,

gµνpµpν = 0, (84)

allowing for the quantity p0(r) to be given in terms of the conserved quantities E0 and J0

as,

B(r)p0(r) = E0

√
1− B(r)b2

r2
+

8Mab

r3
(85)

where the relation J0 = E0b has been used, defining b as the impact parameter.

Similarly, defining

p(k)µ = mkgµν
dxν

ds
(86)

gives the conserved quantities Ek ≡ p
(k)
t and Jk ≡ p

(k)
t , and the constrained quantity

pk(r) ≡ p
(k)
r (with Jk and pk(r) therefore the negative of those in [2]).
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The constraint for pk(r) contains the mass,

gµνp(k)µ p(k)ν = m2
k (87)

giving the approximate expression,

B(r)pk(r) ≈ Ek

√
1− B(r)b2

r2
+

8Mab

r3

[
1− m2

kB(r)(1− b2/r2)

2E2
k(1 + 8Mab/r3 −B(r)b2/r2

]
(88)

where the assumption of relativistic particles allows for an expansion in
m2

k

E2
k
. The full

expression for the phase,

Φk =

∫ rB

rA

[
Ek

(
dt

dr

)
0

+ pk(r) + Jk

(
dϕ

dr

)
0

]
dr (89)

can now be evaluated, using equations (81) to (83) for the differentials in (89),

(
dt

dr

)
0

=
1

B(r)p0(r)

(
dt

ds

)
0

(90)

(
dϕ

dr

)
0

=
1

B(r)p0(r)

(
dϕ

ds

)
0

(91)

and finding,

Φk =

∫ rB

rA

E0

B(r)p0(r)

[
− Ek

B(r)
− 4MabEk

r3
+

B(r)po(r)

E0

pk(r) + Jk

(
b

r2
− 4Ma

r3B(r)

)]
dr

(92)

Then, using equations (85) and (88),

B(r)p0(r)pk(r) =
E0Ek

B(r)

(
1 +

8Mab

r3
− B(r)b2

r2
− m2

kB(r)

2E2
k

(
1− b2

r2

))
(93)

By substituting in for Jk with the velocity at infinity, where the metric is approximately

Minkowski,

Jk ≈ Ekb

(
1− m2

k

2E2
k

)
(94)
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and employing the weak-field limit, M
r
<< 1, the phase becomes (after lots of cancellation),

Φk =

∫ rB

rA

E0Ek

B(r)p0(r)

[
− m2

k

2E2
k

+
2Mabm2

k

E2
kr

3

]
dr (95)

The numerator B(r)p0(r), given in equation (85), can now be expanded as,

1

B(r)p0(r)
≈ 1

E0

√
1− b2

r2

(
1− Mb(4a+ b)

r(r2 − b2)

)
(96)

With this, breaking up the phase in equation (95) gives the following terms,

Φ1
k = − m2

k

2E0

∫ rB

rA

r√
r2 − b2

(97)

Φ2
k =

m2
k

2E0

∫ rB

rA

Mb(4a+ b)

(r2 − b2)3/2
(98)

Φ3
k =

2Mabm2
k

E0

∫ rB

rA

1

r2
√
r2 − b2

(99)

and a term of order M2

r2
that can be discarded.

The integrals in equations (97) to (99) all have known solutions, giving the integrated

phase as,

Φk ≈
[
− m2

k

2E0

(√
r2 − b2 +

M(4a+ b)r

b
√
r2 − b2

)
+

2Mam2
k

E0

√
r2 − b2

br

]rB
rA

(100)

This expression is valid for neutrinos generated in the vicinity of a Kerr black hole, escaping

outwards non-radially.

3.2.2 Scattering by black holes

To evaluate the phase for null geodesics passing by the black hole (see figure 4), the phase

can be separated into two terms, either side of the point of closest approach r0,

ϕ =

∫ rA

r0

pµdx
µ +

∫ rB

r0

pµdx
µ (101)
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The value of r0 can be found by requiring that dr
ds

∣∣
r0
= 0. This corresponds to the condition,

1 +
8Mab

r30
−B(r0)

b2

r20
= 0 (102)

In the weak field limit, this gives (by solving to a first approximation, then substituting

back in),

r0 ≈ b

(
1− M

b

(
4a

b
+ 1

))
(103)

However, the expansion in equation (96) no longer works in this case, as the path contains

a region where r < b. This not only leads to a negative square root (which could be dealt

with by separating the integral around r = b and including an i where necessary), but also

leads to the integral going over the divergent point r = b. This problem is not described in

[2], where only the previous derivation is provided, but can be accounted for by rewriting

equation (96) as,

1

B(r)p0(r)
≈ r

E0

√
r2 − r20

√
1 +

(
r20 − b2 +

2Mb(b+ 4a)

r

)
1

r2 − r20

≈ r

E0

√
r2 − r20

[
1− 1

2

(
r20 − b2 +

2Mb(b+ 4a)

r

)
1

r2 − r20

]
=

r

E0

√
r2 − r20

(
1 +

M(4a+ b)

r2 − r20
− Mb(4a+ b)

r(r2 − r20)

) (104)

using equation (103) and the weak field condition to approximate

r20 − b2 ≈ −2M(4a+ b) (105)

This gives new terms in the expression for the phase,
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Φ1
k = − m2

k

2E0

∫ rB

rA

r√
r2 − r20

(106)

Φ2
k =

Mb(4a+ b)m2
k

2E0

∫ rB

rA

1

(r2 − r20)
3/2

(107)

Φ3
k =

2Mabm2
k

E0

∫ rB

rA

1

r2
√

r2 − r20
(108)

Φ4
k =

−M(4a+ b)m2
k

2E0

∫ rB

rA

r

(r2 − r20)
3/2

(109)

This gives the phase again as,

Φk ≈

[
− m2

k

2E0

(√
r2 − r20 +

M(4a+ b)br

r20
√

r2 − r20
− M(4a+ b)√

r2 − r20

)
+

2Mam2
k

E0

√
r2 − r20
br

]rA
r0

+

[
...

]rB
r0

(110)

which, using that r0 ≈ b at first order, can be written out as,

Φk ≈

[
− m2

k

2E0

(√
r2 − r20 +

M(4a+ b)

b

√
r − r0
r + r0

)
+

2Mam2
k

E0

√
r2 − r20
br

]rA
r0

+

[
...

]rB
r0

(111)

Each of the resulting terms can then be expanded out as follows,

√
r2A/B − r20 ≈ rA/B − b2

2rA/B

+
M(4a+ b)

rA/B

(112)

M(4a+ b)

b

√
rA/B − r0
rA/B + r0

≈ M(4a+ b)

b

(
1− b

rA/B

)
(113)

2Mam2
k

E0b

√
r2 − r20
r

≈ 2Mam2
k

E0b
(114)

Bringing these together gives the fully integrated phase as,

Φk = − m2
k

2E0

(
rA + rB − b2

2ra
− b2

2rB
+

2M(4a+ b)

b

)
+

4Mam2
k

E0b
(115)
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The two terms containing a cancel out, and rearranging gives the same expression found

for the Schwarzschild case in [2],

Φk = − m2
k

2E0

(rA + rB)

(
1− b2

2rArB
+

2M

(rA + rB)

)
(116)

In [1], this final result (which is considered there for just the Schwarzschild case) has been

used to find the equivalent expression to equation (75) for a plane wave of particles, scat-

tered by a non-rotating black hole. The phase difference at a point beyond the black hole

is then affected by both the phase difference of two mass eigenstates travelling along each

geodesic, and the interference of two different geodesics meeting there. The coordinates

of each point beyond the black hole are related to the impact parameters of the two null

geodesics (coming in from infinity) that intersect there, and these impact parameters then

allow for the phase difference to be calculated (using equation (116)) at the intersection

point. Using this phase difference then gives an expression for the oscillation probability,

P∞ = sin2(2α)

[
sin2

(
∆m2

4k

(
r − Σb2

4r

))
cos

(
m2

+∆b2

8kr

)
cos

(
m2

−∆b2

8kr

)
+sin2

(
Σm2∆b2

16kr

)
sin2

(
∆m2∆b2

16kr

)] (117)

where for any variable v, ∆v2 = v21 −v22 and Σv2 = v21 +v22. The two impact parameters b1

and b2 correspond to the impact parameters of the two geodesics meeting at the given point,

m+ and m− correspond to the mass eigenstate masses, and k corresponds to their (roughly

equal) momenta. Figure 4 shows two example geodesics, with the impact parameters and

points of closest approach displayed.

3.3 Conclusions from analytic expressions

Before going on to consider the full numerical simulation of this scenario, it it useful to

consider what has been found, and what is to be expected from the results in this section.

The first equation to consider is equation (75), which gives the probability of oscillation

in flat space. While the flat space scenario is not directly of interest here, it is known that
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Figure 4: A depiction of two geodesics with impact parameters b1 and b2, meeting at a point
with radial coordinate r (in Boyer-Lindquist coordinates centred on the black hole). The points
of closest approach r0 are also included, with red and green corresponding to the two different
geodesics.

both the Schwarzschild and the Kerr geometries are asymptotically flat [19]. This means

that equation (75) can be used to predict the probability oscillation length far from the

black hole. Assuming relativistic particles (so ∆t ≈ ∆L along their paths), the oscillation

length is given by

L ≈ 2π

ω1 − ω2

=
2π√

k2 +m2
1 −

√
k2 +m2

2

(118)

This can serve as a simple check for the validity of the simulations in section 5.

Equation (100) with a → 0 clearly becomes equation (55) in [2], implying that this ex-

pression is valid for particles created in the vicinity of a black hole and escaping outwards

non-radially. However, as discussed in section 3.2.2, this expression is not valid for neu-

trinos passing by a black hole. In this case, equations (111) and (116) are valid, and

again taking a → 0 reduces these to equations (58) and (59) in [2]. The derivation here

also serves as a derivation for the results in [2], where they are not proved in the case of

scattering.

As mentioned in the section 1, one of the most interesting features of this phenomenon

is its relation to the absolute particle masses (rather that just their difference). Equation

(117) makes manifest this connection. The oscillation pattern is clearly dependent on both

the sum of the squared masses and their difference. This means that by observing the

oscillation pattern, one could (in principle) deduce the masses of these two fields.
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4 Numerical Methods

In this work, the GRChombo numerical relativity code has been used — much of the

information presented here can be found (in more detail) in reference [10].

The fundamental ‘object’ in the numerical simulation is a grid of points, discretised in

both space and time. The 3+1 formulation of section 2.2 allows for the full 4-dimensional

spacetime to be modelled as a 3-dimensional space that is evolved in the time direction,

based on the evolution equations. As described in section 2.2, there are many possible

formulations of General Relativity that could be used for this method. Here, the CCZ4

formulation has been used, with the gauge conditions set by the choice of Kerr-Schild

coordinates [20].

In the simulations presented in section 5, a fixed background has been used (i.e., no

backreaction on the metric). This means that most of the numerical capabilities of the

GRChombo code have not been used. However, the full workings of the GRChombo

code will be outlined in this section, as they will be needed for the future investigations

described earlier and in section 6.

4.1 Runge-Kutta 4

The standard technique for evolving first-order time differentials of the form ∂tv = f(v)

is known as 4th-order Runge-Kutta, or RK4 (see section 2.8 of [21] for details). This

algorithm allows for an accurate approximation of the value v|t+δt, provided that v and

its derivatives are known at time t, with a global error of order O(∆t4). This means that

the error across many steps of length ∆t reduces quartically with a reduction in ∆t.

In this case, the evolution is of the CCZ4 equations in section 2.7. To find the necessary

differentials of the dynamical variables listed in section 2.7, the stencils of equations (2.2)

to (2.6) of [22] are used. These stencils require that, for the derivative of f along the ei

direction, the values of f at the points p, p± hei, and p± 2hei are known, where h is the

spacing between grid points. This then gives approximations of these spatial derivatives

with an error that is order O(h4) in the grid spacing.
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4.2 Adaptive mesh refinement

While the finite-difference method described above is fairly robust, the use of these schemes

for a large uniform grid in 3 dimensions would be extremely computationally expensive.

This is particularly important where the function f varies significantly over some small

area of its domain (as the variables of GR simulations do near black holes), since this

would require a finer grid over the whole domain. In d spatial dimensions, the computa-

tional cost clearly goes as 1/hd.

The solution to this problem used in GRChombo is called AMR (Adaptive Mesh Refine-

ment), which, as described in [23], involves two main steps; the flagging of regions with

insufficient resolution, and the regridding of these regions.

For each regridding, the cells in the grid are tagged according to the variation of selected

fields ϕ across each cell. If the norm of the variation of these fields across a cell is greater

than some chosen value σ(ϕ), the cell is tagged for regridding.

Tagged =

 True (1) for |∆ϕ| > σ(ϕ)

False (0) otherwise
(119)

where in d dimensions,

|∆ϕ(p)| =

√√√√ d∑
i=1

(ϕ(p+ hei)− ϕ(p− hei))2 (120)

Once the cells have been tagged, the grid must be partitioned for regridding. The primary

goal of this partitioning procedure is to maximise the efficiency, i.e., the ratio of tagged to

total cells in the regions that are to be regridded. GRChombo uses block-structured AMR,

where the partitioned regions are rectangular (in cell coordinates). Clearly, regridding into

smaller regions increases the efficiency.

However, since the different regions are (in general) handled by different processors, di-

viding into a large number of regions may be less computationally efficient when load-

balancing (the distribution of work between processors) is considered, and with the need
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for ghost cells along boundaries to exchange information between processors.7

To regrid a particular region, the first step is to look for ‘holes’, where the plane Πpi ,

perpendicular to the direction given by ei at the point pi, contains only untagged cells.

Boundaries are first drawn along these lines. To draw a boundary across a direction with

no holes, each coordinate xi is first associated with the (technically discrete) functions,

Xi(xi) =
∑
p∈Πpi

Tagged|p (121)

and the Laplacians ∂2
xi
Xi. The zero crossings of these Laplacians can then be used to

identify the inflection points in the functions Xi, which correspond to local extrema in the

rate of change of Xi. This makes intuitive sense, since a grid like that in figure 5 would

be divided along the obvious choice, the red line, which corresponds to one of these zero

crossings. If there are multiple inflection points, the one with the largest change in ∂2
xi
Xi

is selected, as this corresponds to the narrowest peak in ∂xi
Xi, i.e., the sharpest change

in the gradient of tagged-cell density.

The efficiency ϵ =
tagged cells
total cells

is then compared to a pre-defined ‘fill-factor’, and if it is

higher than this the partitioning of that box is stopped. If not, it is partitioned further

until either all boxes satisfy the fill-factor condition, or further partitioning is impossible.

The grid within each partitioned box containing tagged cells is then refined by a chosen

ratio, and the whole process is repeated until no unrefined cells pass the tagging criterion

of equation (120).

4.3 Instabilities and Kreiss-Oliger dissipation

In practice, finite difference schemes used in numerical simulations are very prone to

instabilities. This renders many schemes, that in theory should approximate the true

evolution of a system, useless. Numerical errors may, for example, be caused by spurious

reflections at the boundaries, or along regridding lines. In unstable schemes these errors

are then propagated forwards in time, or even amplified exponentially. Provided that the

7As mentioned in [23], the inclusion of vectorisation in one particular direction also skews the ideal
regridding procedure.
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Figure 5: The left hand side shows an example grid, with values of X and ∂2
xi
Xi shown (X

running from left to right, tagged cells in grey). The red and green lines show zero crossings of
∂2
xi
Xi, with the red line chosen as the boundary due the largest change in ∂2

xi
Xi.

The right hand side shows the same grid but ‘stacked’, with a curve drawn on top to show the
inflection points more clearly.

evolution scheme is conditionally stable (i.e., stable for small enough ∆t), many causes of

numerical error can be solved by simply increasing the resolution. However, as mentioned

previously, this is computationally very expensive in higher dimensional systems.

There are many alternative methods for dealing with these errors. Many spurious field

excitations occur in very high frequency modes, and these can be damped out by the

introduction of a dissipative term. This term corresponds to the addition of a diffusive

term in the original equation, which goes to zero as ∆t
∆x

→ 0. In GRChombo, 3rd order

Kreiss-Oliger dissipation is used, as described in [24]. While this artificial dissipation may

appear to affect the physics, it only affects higher frequency modes. These modes are not

captured well at lower resolutions and therefore should not be trusted regardless.
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4.4 Boundary conditions

The simplest and safest way to avoid issues at the boundaries of the simulation is to keep

them out of causal contact with the system being studied. However, certain choices of

boundary conditions may be preferable, not least for the sake of reducing the area needing

simulation.

As mentioned previously, ghost cells exist at all boundaries (internal boundaries as well as

the outer boundaries of the simulation). These cells are needed for the 4th-order stencils

at points on the boundaries. The choice of boundary conditions dictates how the outer

ghost cells should be filled, enforcing the desired conditions along the boundary.

Common choices include periodic, fixed, extrapolating, Sommerfeld, and reflective bound-

ary conditions. Periodic conditions are useful where the simulation’s domain can be con-

sidered as a small part of a large, repeating (periodic) system. The values of the ghost

cells on one side are then filled by the values of the cells on the opposite side — this

requires that the domain is large enough for no feature to directly interact with itself.

Fixed/Dirichlet boundary conditions enforce some predetermined values of the relevant

variables along the boundary. Extrapolating boundary conditions may be implemented

up to (in principle) any order, where the outermost layers of cells are used to predict the

form of each extrapolating variable for the ghost cells outside the boundary. Reflective

boundary conditions are used for variables with a clear symmetry in one direction, and

fills the ghost cells with a reflection of the cells inside the boundary (with the parity of

these variables also accounted for). This gives stencils near and along the boundary that

are indistinguishable from idealised systems with perfect symmetry that are simulated

over twice the domain. As a result, these boundary conditions are frequently used (as

they are in this work) to reduce the computational cost of highly symmetric simulations.

Sommerfeld boundary conditions enforce the dissipation of outgoing radiation. For a field

ϕ with Sommerfeld boundaries, the condition

∂tϕ = −vxi

r
∂iϕ− v

ϕ− ϕ0

r
(122)

is enforced at the boundaries, where r is the radius and ϕ0 is the desired value ‘at infinity’.
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5 Simulations of Neutrino Oscillations

5.1 Geometrized units

It is common in physics to choose systems of units based on the fundamental constants

of nature; such units are described as ‘natural’. In this work, geometrized units are used.

This is often described as ‘setting’ the speed of light c and the gravitational constant G to

1. While true, the meaning of this statement (particularly dimensionally) is often unclear,

so an alternate (but entirely equivalent) interpretation will be given here.

In the standard SI system of units, these constants have units of [ms−1] and [m3kg−1s−2]

respectively. This system of units leaves factors of c and G in many equations. To remove

these factors, it is useful to equate certain units. For example, if it is chosen that 3× 108

metres will be considered equivalent to 1 second, the speed of light becomes 1 second per

second, or 1 metre per metre — i.e., just 1. This fixes the relationship between units

of time and length, and must be remembered when amounts of time (now measured in

metres) are desired in seconds8. Velocities, such as the speed of light itself, can now be

considered dimensionless in these units. This reparametrisation of time (or equivalently

of length) also affects the relative dimensions of other physical quantities. For example,

take the energy-momentum relation; E2 = m2c4 + p2c2. In SI units, c is required here

to relate the different dimensions of energy, mass, and momentum. In geometric units,

where velocities are now dimensionless, the dimensions of mass, energy and momentum

must clearly be the same.

In a similar spirit, the constant G can be removed from equations by equating one kilogram

with G
c2

metres (where c and G are just the numerical values of these constants in SI units).

This then fixes the relationship of mass to both length and (via length) to time9.

To recover the dimensions of length, time, and mass, units of length must be converted

into their ‘equivalent’ quantities in these units. Table 1 shows some useful conversions

between quantities in SI units and geometrized units.

8This makes intuitive sense in the context of general relativity, where length and time are considered
to be truly equivalent. The constant c can then be considered an artifact of an obfuscating system of
units. Alternatively, this can all be considered as just a useful tool for decluttering equations.

9In particle physics literature, the reduced Planck constant h̄ is often set to one, rather than the
gravitational constant G. This causes energy and mass to have dimensions of inverse length (/time).
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Dimensions and conversions
Quantity Standard

dimension
Geometrized
dimension

Conversion factor

Length [L] [L] 1
Time [T ] [L] c
Velocity [LT−1] 1 c−1

Mass [M ] [L] Gc−2

Energy [LT−2M ] [L] Gc−4

Angular Momentum [L2T−1M ] [L2] Gc−3

Table 1: The dimensions of various quantities in standard (SI) units and geometrized
units. To convert from the latter into the former, a given quantity should be multiplied
by the factor in the rightmost column (e.g., 1 [second] = c [metres]).

An equation written in geometrized units can be converted into SI units by multiplying

each quantity with its conversion factor. These conversion factors are then dimensionful,

as required for consistency.

Most values given for the simulations in this section will be given in terms of geometrized

length units. The scale of these units is not fixed, so they be chosen to represent any

length. A useful scale comes from setting the black hole mass equal to 0.5 [L], so that

each unit of length corresponds to one Schwarzschild radius (RS = 2M in geometrized

units). For a solar mass black hole, the Schwarzschild radius is roughly 1.5km. However,

the particle masses are the exception. These will be given in units of inverse length, such

that 1 [particle mass unit] = 1
λC

, where λC is the Compton wavelength corresponding to

the particle mass. With length scales measured in Schwarzschild radii and a solar mass

black hole, this means that masses of 1 correspond to ∼ 4× 10−10eV. This conversion can

be done more generally by m[J ] = hc3MP

2GMB
, where m[J ] is the mass in Joules, MP is the

particle mass in inverse Schwarzschild radii, and MB is the black hole mass in kg.

5.2 Simulated physical system

The physical system under investigation is essentially the same as that in section 3. How-

ever, while the viewpoint of that section was of a 2-dimensional ‘sheet’ of particles travel-

ling along trajectories past the black hole, the numerical set-up is of 2 superposed flavour

fields, evolved indirectly as a rotation from their mass eigenstates.
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The mass eigenstate fields being directly simulated are each set up as a complex plane

wave. At each point, the state in the flavour basis is a rotation of these two mass states,

as the inverse of equation (72). The initial state is purely in one flavour, and at later times

the oscillation probability at a point can be calculated as the square of the overlap of the

fields with the other flavour eigenstate.

As mentioned in the previous section, these simulations are carried out in Cartesian Kerr-

Schild coordinates, given in section 2 of [20]. As expected on a fixed background, the

gauge choices for the lapse and shift (equations (13) to (15) of [20]) are constant, i.e.,

∂tα = ∂tβ
i = 0.

Figure 6: This image shows the initial state of the real part of a mass eigenstate field, with the
black hole in the centre. The total amplitude of the field is initially constant everywhere, but
the real and imaginary components oscillate sinusoidally in the x direction.

5.3 Initial conditions

Since the mass eigenstates obey the Klein-Gordon equation (equation (40)), the initial

state of each mass eigenstate field is given by the diagonal values of equation (74) with

time t = 0. This corresponds to the real and imaginary parts of each field oscillating
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sinusoidally along the direction of propagation, with the wavelength given by 2π/km. The

two momenta are assumed to be roughly equal, i.e., km1 ≈ km2 = km. This would be

expected of highly relativistic states produced by the same source. An example for this

initial state is shown in figure 6.

To obtain an initial state entirely of one flavour, the amplitude of the two massive fields,

ϕm1 and ϕm2 , are proportional to cos(α) and − sin(α) respectively. This state is clearly

orthogonal to the flavour eigenstate b (again of equation (72)).

5.4 Parameters

The main parameters that can be altered in these simulations are the black hole mass and

angular momentum, and the mass eigenstate fields’ momenta and masses. The mixing

angle can also be varied, but as implied by equations (75) and (117) this only changes the

amplitude of the probability oscillations.

In numerical simulations it is important to consider the various length scales involved in

the problem. These scales correspond roughly to the sizes of the important features, and

if they differ significantly it becomes computationally expensive to resolve all the features

simultaneously. In this case, there are four important scales — the black hole Schwarzschild

radius RS ≈ 2M , the scalar field wavelength, the flat-space oscillation length (equation

(118)), and the oscillation length in the orthoradial direction — this is best seen in the

various figures in section 5 below.

As mentioned in section 5.1, the length scale in the units used here is not fixed. As a result,

the physical interpretation of the following results is usefully ambiguous. This makes them

equally valid, for example, for any reasonable black hole mass — provided that all other

values are scaled accordingly. In this work, the black hole’s mass has been fixed at a value

of 0.5, so that each unit of length corresponds to one Schwarzschild radius.

5.5 Previous results

The first target of the numerical simulations is to reproduce the general features in the

results of [1]. This is both to ensure that the simulation is functioning as expected, and to
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give a starting point for comparisons with new findings. Unlike in [1], where masses have

been chosen that differ by 1%, masses have been chosen here that differ by 10%. While

this precludes the possibility of a direct comparison, it leads to oscillation patterns with

much greater variation, and flat-space oscillation lengths much closer to the other length

scales involved. Figure 7 shows a comparison of the results found here with the results in

[1]. Here, RS = 1, which is equivalent to the length scales in this simulation being half

those used in [1].

Figure 7: The left hand side shows the new oscillation pattern obtained for a percentage mass
difference of 10%. The right hand side shows the pattern found in [1] for a mass difference of
1%.

These figures clearly show a similar pattern, with a parabolic structure along lines of equal

probability. Observation of the radial oscillations in the analytic results is not expected

here, as the whole field (far from the black hole) oscillates roughly ‘together’ in time. This

is in contrast with the particle picture, where the (proper) distance from the source is

correlated with the time a particle has taken to get there.

While these general features have already been analysed in the previous work, the aim

of the following sections is to evaluate the numerical results more closely — to study a

wider range of parameters, and to isolate the effects of varying these parameters. This

will be guided by the analytic results of section 3, but those results are not expected to

directly predict the patterns observed here, due to the fundamental differences between
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the particle and field pictures. Finally, results will be given for black holes with non-zero

angular momentum.

5.6 Isolation of mass variables

By rewriting the product of cosines in equation (117) as

cos

(
m2

+∆b2

8kr

)
cos

(
m2

−∆b2

8kr

)
=

1

2

(
cos

(
∆m2∆b2

8kr

)
+ cos

(
Σm2∆b2

8kr

))
(123)

it becomes clear that the effect of the particle masses on the oscillation pattern is best

understood through ∆m2 and Σm2, rather than the individual masses. As a result, the

following sets of simulations have been chosen to isolate each of these variables.

Figure 8 shows these results for a fixed Σm2 and different values of ∆m2, while figure 9

shows the reverse. In both figures, subfigure (a) corresponds to Σm2 = 0.75 and ∆m2 =

0.75. Both figures also have fixed black hole masses of 0.5 and momenta k = π
2Rs

.

It is clear that in both of these figures, the patterns are very similar. The only non-trivial

difference in figure 8 (with ∆m2 varied) is a change in the scale of the oscillation pattern,

with the amplitudes in (c) roughly a tenth of those in (a). The difference in the background

(far-distance) probability is likely due to the expected change in oscillation time, leading

to different phases in the background probability at a given time.

The lack of variation in the orthoradial oscillations implies that these oscillations have a

fundamentally different origin to those predicted analytically. This may be a result of the

approximations made in calculating the analytic results, or of the differences between the

particle and field pictures.
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(a) ∆m2 = 0.75 (b) ∆m2 = 0.25

(c) ∆m2 = 0.05

Figure 8: Oscillation patterns for a fixed Σm2 = 1.25 and different values of ∆m2. In all figures,
time T = 40, the black hole mass M = 0.5 and the particle momentum k = π

2Rs
.
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(a) Σm2 = 1.25 (b) Σm2 = 2.75

(c) Σm2 = 0.85

Figure 9: Oscillation patterns for a fixed ∆m2 = 0.75 and different values of Σm2. In all figures,
time T = 40, the black hole mass M = 0.5 and the particle momentum k = π

2Rs
.
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5.7 Isolation of momentum

Referring again to equation (117), it is expected that varying the momentum k (or, equiv-

alently, the width of the initial wave) will greatly affect the oscillation pattern. Since the

momentum appears in the denominator of all the terms, increasing the momentum should

decrease the oscillation lengths in both the radial and orthoradial directions. Figure 10

shows the oscillation pattern for three values of the momentum.

Evidently, the expectation described above is strongly supported by these results — a de-

crease in the momentum leads to an increase in at least the orthoradial oscillation length.

While the results of the previous section suggest an alternative, unknown origin for these

orthoradial oscillations, this result at least shows that they are inversely dependent on the

particle momentum. This finding agrees with that in Figure 3 of [1], where two different

momenta are compared.

5.8 Results for Kerr black holes

The final parameter to be adjusted is a, which describes the angular momentum per unit

mass of the black hole. The value of a cannot exceed M (the black hole mass) [4], so with

M = 0.5 here, a is chosen to equal 0.4. The oscillation pattern for these parameters is

shown at various scales in figure 11.

While it has been shown in section 3 that the first-order contribution of the spin to the

phase difference cancels out, the relationship between the two impact parameters and the

intersection point has not been investigated in the Kerr case. However, it is intuitively

expected that increasing a will ‘rotate’ the intersection point of two incoming particles,

with respect to these coordinates. This effect is also expected to drop off sharply as the

radius increases, which is clearly observed in figure 11.
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(a) k = π
Rs

(b) k = π
2Rs

(c) k = π
4Rs

Figure 10: Oscillation patterns for various values of the particle momentum k. In all figures, the
particle masses are fixed as ∆m2 = 0.75 and Σm2 = 1.25, with time T = 40 and the black hole
mass M = 0.5
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Figure 11: The oscillation pattern for a black hole with spin per unit mass a = 0.4, black hole
mass M = 0.5, and particle masses with ∆m2 = 0.75 and Σm2 = 1.25. The time T = 40, and
two different scales are shown (with the figure on the right having half the side length of that on
the left.

6 Conclusions and future developments

The background, analysis and results presented here have laid the groundwork for future

numerical research into flavour oscillations. The 3+1 decomposition has been explored,

with various formulations culminating in the CCZ4 equations that are used in the GR-

Chombo code. The general features of numerical relativity codes have also been explored,

and some specific features of the GRChombo code (such as AMR) that are used for effi-

cient simulations of dynamical backgrounds have been described.

While the full simulation of flavour oscillations on dynamical backgrounds has not yet been

carried out, the first results have been obtained for simpler fixed background scenarios,

and comparisons have been made with previous work.

Analytic results for this scenario in [2] have been extended to include low-spin Kerr black

holes, and the expression for black hole scattering has been fully derived with the ambi-
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guities in [2] clarified. This has allowed for a comparison between these equations and the

results of the aforementioned simulations. The oscillations patterns obtained here and in

[1] do not appear to have the mass dependencies predicted by the analytic expressions,

but do appear to depend strongly on the momentum (as predicted).

This mismatch between the predictions and results calls for further investigations of this

scenario. A remodelling of the initial conditions could be used to study an incoming wave

packet rather than an infinite plane wave, and this may mitigate some of the differences

between the field and particle pictures. This would also allow for a more thorough inves-

tigation of the radial oscillations, which are not clearly captured by the current results.

Beyond this, the CCZ4 formalism and the GRChombo numerical relativity code can now

be used to consider more exotic physical scenarios, such as scattering by black hole binary

systems. A more realistic comparison to neutrino oscillations could also be obtained by

introducing a third flavour (mass) field.
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