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Abstract

We construct the O(d, d) generalised geometry on a generalised tangent bundle which
is isomorphic to the sum of a tangent bundle and a cotangent bundle. We find that
the generalised version of Lie bracket known as the Courant bracket on the generalised
tangent bundle is preserved by the diffeomorphism and gauge transformations. We then
construct the generalised metric, connection, torsion and curvature on the generalised
tangent bundle. We find that the generalised metric encodes the metric and the 2-form
B-field, and there is no unique torsion-free connection or a unique curvature. We then
use the extended O(d, d) × R+ generalised geometry to reformulate 10-dimensional type
II supergravity, where the fields in the NSNS sector namely the metric g, the 2-form B

field and the dilaton ϕ are all encoded in the extended generalised metric, and the bosonic
symmetries are encoded in the symmetry group that preserves the Courant bracket. Then
by using the spinor fields, we find a unique curvature scalar which can be used to rewrite
the bosonic action and derive equations of motion which are found to be just like a
generalised geometric version of Einstein gravity. However the torsion-free connection
is still not unique. Finally, we define generalised parallelisable manifold as analogue to
local group manifold to explain consistent truncations on spheres. We show that all
spheres are generalised parallelisable, and the generalised Scherk-Schwarz reduction on
d-sphere gives a gauge group defined by the Lie algebra on the frames of generalised
tangent bundle on the sphere, namely so(d + 1). This is direct analogue to the usual
Scherk-Schwarz reduction. We then perform generalised Scherk-Schwarz reduction on S3

which gives the gauge group with Lie algebra so(4) and ansatz which are the same as
usual Scherk-Schwarz reduction.
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1 Introduction

Geometry is very important to physics for its applications in theories of gravities such
as general relativity and manifestation of symmetries through Lie groups which are dif-
ferentiable manifolds. It is particularly useful in string theory and the low energy limit
theory supergravity, as string theory is a theory of gravity with many symmetries. In
this dissertation, we give a review on a new geometry called generalised geometry and its
applications in type II supergravity.

Generalised geometry developed by Hitchin and Gualtieri [1, 2] is a new type of ge-
ometry defined on fibre bundles. It has many structures similar to the usual differential
geometry. Firstly, one can define the generalised version of Lie derivative and Lie bracket
called Dorfman derivative and Courant bracket which encode symmetries. Then the
generalised geometric objects namely the generalised metric, connection, torsion and cur-
vature can also be constructed on it as in the usual Riemannian geometry, although there
are some problems with them such as the uniqueness of a torsion-free connection and cur-
vature scalar [2, 3, 4]. Generalised geometry is not specially designed for physics or string
theory, but a key property is that it describes diffeomorphism and gauge transformation
geometrically at the same time, whereas usual geometry only describes diffeomorphism.
In the original work [2], the generalised geometry is developed on TM ⊕ T ∗M for a
d-dimensional differentiable manifold M. The symmetry transformations that preserve
the Courant bracket are diffeomorphism and a 2-form gauge transformation called B-
transform, which generate the geometric subgroup, and mathematically this structure
leads to the Courant algebroid [2, 5, 6, 7]. The B-transform then defines a generalised
tangent bundle E as an exact sequence through splitting [1, 2, 8, 9]

0→ T ∗M→ E → TM→ 0 (1.1)

and gives the isomorphism E ≃ TM⊕ T ∗M. The generalised metric constructed on E

encodes a symmetric 2-tensor and a 2-form field which can be naturally identified to the
metric and the 2-form B field in the NSNS sector of type II supergravity [2, 3, 4]. And
by extending the generalised space to detTM⊗ (TM⊕ T ∗M), the structure group is
extended to O(d, d)×R+ which provides one more degree of freedom for dilaton [10, 11],
hence all the fields in NSNS sectors are included. The geometric subgroup is also found
to be the group that encodes the bosonic symmetries in type II supergravity. More-
over, the structure group O(d, d) of the generalised geometry has another transformation
parameterised by an anti-symmetric bi-vector which describes the T-duality and non-
geometric background in string theory [10]. These all motivate the reformulation of type
II supergravity using generalised geometry.
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In fact, supergravity was already being described using two copies of tangent bundles
by Siegel [12, 13] and in the double field theory developed by Hall and Zwiebach [14, 15].
The generalised metric, structure group and connection given by them are equivalent to
those from generalised geometry [4]. However, the power of generalised geometry is that
one can define other generalised tangent bundle from other spaces, for example, an anti-
symmetric products of tangent bundles. This will be used for the exceptional geometries
and hence the geometries for M-theory and the E(d)d × R+ 11-dimensional supergravity
[3, 16, 17]. Using the generalised geometry reformulation for supergravity, one can find
the generalised versions of bosonic action and equations of motion are [4, 16, 17]

SB =

∫
volGR,　RMN = 0 (1.2)

whereG is the generalised metric, volG is the volume form associated toG, R is generalised
curvature scalar and RMN is generalised Ricci tensor. Hence, this is simply a generalised
version of Einstein gravity theory.

Generalised geometry can do more than reformulation, it can also be used for consistent
truncations. In order to cancel the conformal anomalies, string theories live in either 10 or
11 dimensional spacetime [18]. For it to describe the physical world, the extra dimensions
must be compactified, and through consistent truncation, one can obtain a theory in
the lower dimension. For supergravity, there are some consistent truncations on spheres
which are truncation on S3 near-horizon NS-fivebrane background [19], AdS7×S4 for 11-
dimensional supergravity [20, 21], AdS5×S5 for type IIB supergravity [22, 23], AdS4×S7

for 11-dimensional supergravity [24, 25]. Although there is no systematic way of finding
consistent truncations, it is known that a local group manifoldM≃ G/Γ gives consistent
truncations [26, 27], where Γ is a freely acting discrete subgroup of G and defines a global
frame {êa} on M so M a parallelisable manifold. There is then a Lie algebra on the
frame

[êa, êb] = f c
ab êc (1.3)

and if the structure constant f c
ab satisfies the unimodular condition f b

ab = 0 which is
satisfied by compact Lie group, there is a consistent truncation with gauge group defined
by the Lie algebra above [28, 29]. This implies that a parallelisable manifold which is
also a compact Lie group gives consistent truncation. It explains the truncations on S1

and S3 for they are both parallelisable and are compact Lie group. But S4, S5 are not
parallelisable, and although S7 is parallelisable it is not a Lie group, so they remain
mysterious. However, as analogue to the local group manifold, one can define generalised
parallelisable manifold in generalised geometry as

JÊA, ÊBK = X C
AB ÊC (1.4)
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where ÊA is global frame on the generalised tangent bundle, X C
AB is constant and J, K

is the Courant bracket which defines a Lie algebra on the frame [10]. And a conjecture
[30, 31, 10, 32] states that a generalised parallelisable manifold gives consistent truncation
that preserves same number of supersymmetries, and the gauge group of the truncated
theory is given by the Lie algebra defined by X C

AB . It is then proven that all spheres are
generalised parallelisable [32], hence the conjecture explains the consistent truncations on
S4, S5, S7. However, one should note that the conjecture is not proven, but the Scherk-
Schwarz reduction on spheres in generalised geometry indeed give the same ansatz as
those from usual Scherk-Schwarz reduction [32].

Furthermore, there are some other applications of generalised geometry in string theory
such as the supersymmetric flux compactification, calibrations [33] and it may also be able
to describe mirror symmetry [2]. These will not be included in this dissertation, but they
all suggest that generalised geometry is a very powerful tool in string theory.

The dissertation is structured as following. In Chapter 1, we construct the O(d, d)

generalised geometry on the TM⊕ T ∗M with a canonical inner product and Dorfman
derivative and Courant bracket. The generalised tangent bundle will also be defined
at the end. In Chapter 2, we construct the generalised metric, vielbein, connection,
torsion and curvature. Chapter 3 will reformulate the bosonic part of type II supergravity
with a slight modified O(d, d) × R+ generalised geometry. In Chapter 4, we define the
generalised parallelisability and show that spheres are generalised parallelisable, then we
give a connection between generalised parallelisability and consistent truncation to explain
the truncations on spheres.
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2 O(d, d) Generalised Geometry

Generalised geometry was first introduced by Hitchin [1] and Gualtieri [2] by consid-
ering a generalised space TM ⊕ T ∗M constructed from the tangent bundle TM and
co-tangent bundle T ∗M of a d-dimensional differentiable manifold. It admits a natu-
ral canonical inner product which defines some symmetry structures on the generalised
space. The symmetries will be described using generalised versions of Lie derivative and
Lie bracket which are also known as the Dorfman derivative and Courant brackets, and
their similarities and differences with the Lie derivative and Lie bracket will be discussed.
At the end of the chapter, the generalised tangent bundle will be formally defined from
a ‘twisted’ structure and will be shown to be isomorphic to the generalised space. The
construction mainly follows [2] and other references are [3, 34, 33].

2.1 G-structure

Before introducing the generalised geometry, we need the concept of G-structure which
will be used to define geometric structures throughout the dissertation. It is defined using
fibre bundles for which the informations can be found in Appendix C or refer to [35]. The
main reference for this section is [33].

For a d-dimensional manifold M, its tangent frame bundle FM has the structure
group GL(d,R) (Definition A.30). If the tangent frame bundle can be reduced such that
the structure group is reduced to a proper subgroup G ⊂ GL(d,R), then there exists a
G-structure.

Definition 2.1. A G-structure of a manifold M is the principle G-sub-bundle of the
tangent frame bundle FM.

Example 2.1. If the manifold is parallelisable (Definition A.33), then from Theorem
A.19 and A.18, its tangent bundle is trivial, so by Definition A.32, the structure group
of the tangent bundle reduces to the trivial group. Since the tangent frame bundle is the
associated principal bundle of the tangent bundle, then from Theorem A.16, the structure
group of the tangent frame bundle also reduces to the trivial group. Therefore, there exists
a G-structure on a parallelisable manifold.

The G-structure can be described by a globally defined non-degenerate tensor (section
of tensor product of fibre bundles) that is invariant under the transformation by G. This
tensor may not be unique, so there can be several different tensors describing the same
G-structure. An example of the G-invariant tensor is the metric in the usual geometry.

Example 2.2. The general structure group on a tangent bundle TM is GL(d,R), so
the basis {eµ} transforms as eµ = A ν

µ eν where A ∈ GL(d,R). If one defines a positive

5



definite symmetric 2-tensor g ∈ Γ(S2T ∗M) i.e. a metric, and requires that the metric is
invariant under the structure group, then one has the condition

gµν = g(eµ, eν) = g(e′µ, e
′
ν) = A µ′

µ A ν′

ν gµ′ν′ (2.1)

so A needs to be an element of O(d) ⊂ GL(d,R) hence the structure group reduces to
O(d). This can be understand as that the metric breaks the GL symmetry, and the
orthogonal group that preserve the metric is the residue symmetry group. Hence, the
metric g parametrise the coset space

g ∈ GL(d,R)/O(d). (2.2)

If one also requires an orientation by defining a volume form globally, then to preserve the
orientation, the determinant of transformation matrix needs to be positive so the reduced
structure group can be further restricted to SO(d).

One can also introduce more tensors to further reduce structure group to a sub-group
of G. Some common structure are the complex structure, symplectic structure which are
discussed in [33, 2]. Here we introduce the almost product structure which will be used
to define the generalised metric for the generalised geometry.

Definition 2.2. An almost product structure is a globally defined non-degenerate tensor
S ∈ Γ(TM⊗ T ∗M) satisfying S2 = 1.

The almost product structure has both +1 and −1 eigenvalues, and the bundle splits
into two sub-bundles C+ for +1-eigen-space and C− for −1-eigenspace with dimensions
p and d− p respectively [33]. The almost product structure reduces the structure group
from GL(d,R) to GL(p,R)×GL(d− p,R), and GL(p,R) and GL(d− p,R) are structure
groups of C+ and C− respectively. Furthermore, if there is also a metric g, and the almost
product structure satisfies the orthogonality condition

ST gS = g (2.3)

then the structure group reduces to O(p)×O(d− p) [33].

2.2 Generalised Space and Canonical Inner Product

For a d-dimensional manifoldM, the generalised space1 is defined to be the direct sum
of its tangent bundle and cotangent bundle T ⊕T ∗ which is also a fibre bundle (Definition

1The term ‘generalised tangent bundle’ will not be used at this stage, it will be formally defined in Section 2.7.
And the tangent bundle will simply be detonated as T in this chapter, so is T ∗.
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A.26). Locally, for a vector X ∈ Γ(T ) and a 1-form ξ ∈ Γ(T ∗), the section of T ⊕ T ∗ is

V = X + ξ =

(
X

ξ

)
∈ Γ(T ⊕ T ∗) (2.4)

which is called the generalised vector. One can also define the rank-n generalised tensor
as section of tensor product of generalised space T ⊕ T ∗

J ∈ Γ((T ⊕ T ∗)⊗n) (2.5)

where (T ⊕ T ∗)⊗n = (T ⊕ T ∗)⊗ · · · ⊗ (T ⊕ T ∗) (Definition A.27).
For V, V ′ ∈ Γ(T ⊕ T ∗), there is a natural symmetric bilinear form defined on T ⊕ T ∗

⟨V, V ′⟩ = ⟨X + ξ,X ′ + ξ′⟩ = 1

2
(iXξ + iX′ξ′) =

1

2
(Xiξi +X ′iξ′i) (2.6)

which is non-degenerate and can be interpreted as the inner product with signature (d, d)

and is maximally indefinite2 [2, 3, 33].
Similarly to the ordinary case, at each x ∈M, there is a generalised basis {ÊI} where

ÊI are linearly independent sections of Γ(T ⊕ T ∗) so that a generalised vector V can be
written as V = V IÊI with components [4]

V I =

Xi, I = i,

ξi, I = i+ d.
(2.7)

The inner product can then be written in components as

⟨V, V ′⟩ = 1

2

(
X ξ

)(0 1

1 0

)(
X ′

ξ′

)
= ηIJV

IV ′J (2.8)

where I, J = 1, ..., 2d, 1 is the d-dimensional identity matrix, and ηIJ is the metric
components given by

η =
1

2

(
0 1

1 0

)
. (2.9)

And the inverse metric is

η−1 = 2

(
0 1

1 0

)
. (2.10)

These can be used to raise or lower index of generalised vectors. This indefinite metric is
called the canonical metric and is to be distinguished from the generalised metric defined
later. There is also a natural volume form associated with the metric which defines a

2Indefinite means that the metric can take positive or negative value.
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canonical orientation [2].
There is a natural basis for the generalised space defined by the coordinates {xµ} of
M as [4]

ÊM =

eµ = ∂µ = ∂
∂xµ , M = µ,

eµ = dxµ, M = µ+ d,
(2.11)

satisfying
⟨ÊM , ÊN ⟩ = ηMN . (2.12)

A generalised vector V can now be written as

V = V M ÊM = Xµ ∂

∂xµ
+ ξµdx

µ. (2.13)

And one can define the generalised frame bundle

F = {(x, {EM}) : x ∈M, {EM} is basis of (T ⊕ T ∗)x}. (2.14)

2.3 Structure Group

The structure group of T ⊕ T ∗ is naturally GL(d,R) which is the same as that of the
tangent bundle T [3], but as mentioned in Section 2.1, the existence of a metric reduces
the structure group to the symmetry group that preserves the indefinite metric, so the
reduced structure group is the non-compact indefinite orthogonal group O(d, d) defined
as

O(d, d) = {M ∈ GL(2d,R) :MT ηM = η}. (2.15)

The reason for it being non-compact will be shown soon. The canonical orientation defined
by the volume form associated with the inner product can further reduce the symmetry
group to the subgroup SO(d, d) [2]. Hence, the generalised vector V = V IÊI and the
basis transform under the structure group as

V I → V ′I =M I
J V

J

ÊI → Ê′
I = (M−1)JIÊJ

,　M ∈ O(d, d). (2.16)

The Lie algebra of SO(d, d) is derived in Appendix E and is as usual,

so(d, d) = {M ∈ GL(2d,R) :MT η + ηM = 0}. (2.17)

The generator M is also derived in Appendix E and is(
A β

B −AT

)
(2.18)
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where B and β are anti-symmetric i.e. B = −BT , β = −βT . A,B, β generates three
subgroups and gives the following three transformations [2]:

•GL-action: There is no constraints on A, so A is an element of GL(d,R) which is
the structure group of the tangent bundle, and A generates the GL(d,R) subgroup
eA on the tangent bundle T . This can be extended into the T ⊕ T ∗ as

eA → eAT⊕T∗ =

(
eA 0

0 e−AT

)
. (2.19)

A generalised vector V ∈ Γ(T ⊕ T ∗) transforms under the GL-action as

V =

(
X

ξ

)
→ eAT⊕T∗V =

(
eAX

e−AT

ξ

)
, (2.20)

so A is an endomorphism A : T → T . With a slight abuse of notation, eAT⊕T∗ will
be denoted as eA.

•B-transform: B can be interpreted as a 2-form i.e. B ∈ ∧2T ∗, generating the
group of

eB =

(
1 0

B 1

)
. (2.21)

Then the generalised vector V = X+ξ transforms as V → eBV and in components
as (

X

ξ

)
→

(
X

ξ + iXB

)
(2.22)

so B is a map from T to T ∗ that maps X to iXB.

•β-transform: β can be considered as a bi-vector i.e. β ∈ ∧2T , generating the group
of

eβ =

(
1 β

0 1

)
. (2.23)

It acts on V = X + ξ as V → eβV and in components as(
X

ξ

)
→

(
X + iξβ

ξ

)
(2.24)

where the interior product is generalised so that iξ is a map from bi-vector space
∧2T to vector space T i.e. iξ : ∧2T → T . Hence β is a map from T ∗ to T that
maps ξ to iξβ = βξ.

The B and β transforms turn vectors into forms and forms into vectors, so they are
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similar to the boost transformation of the Lorentz group except that the vectors and
forms are both null with respect to the canonical metric. Since they are non-compact
transformations and are subgroups of the O(d, d) group, then the O(d, d) group is also
non-compact.

The structure group describes how generalised vectors transform. The GL-action cor-
responds to the diffeomorphism, B-transform corresponds to gauge symmetry and β-
transform is related to T-dualities [10]. The subgroup generated by A and B is particu-
larly interesting because they contain both of diffeomorphism and the gauge symmetry
that appear in supergravity. This will be discussed in Section 2.6.

2.4 The Dorfman Derivative

Dorfman derivative is an operations on two generalised vectors which is defined as a
generalisation of the Lie derivative. It combines the diffeomorphism and gauge symmetry,
which will be shown explicitly in the Section 2.6 in terms of the Courant bracket.

Definition 2.3. For generalised vectors V = X + ξ,W = Y + η ∈ Γ(T ⊕ T ∗), with
X,Y ∈ Γ(T ) and ξ, η ∈ Γ(T ∗), the Dorfman derivative is

LVW = LXY + (LXη − iY dξ) (2.25)

where L is the Lie derivative on vectors and LXY = [X,Y ].

Unlike the Lie derivative on vectors, the Dorfman derivative is not anti-symmetric
in the two generalised vectors, but it still satisfies some properties similar to the Lie
derivative. It can be easily shown that the Dorfman derivative is bi-linear: for U, V,W ∈
Γ(T ⊕ T ∗), a, b ∈ R,

LU (aV + bW ) = aLUV + bLUW

LaU+bVW = aLUW + bLVW
(2.26)

Proposition 2.1. The Dorfman derivative satisfies a Leibniz rule. For U, V,W ∈ Γ(T ⊕
T ∗),

LU (LVW ) = LLUVW + LV (LUW ). (2.27)

To see it more clearly, denote the Dorfman derivative LVW as V ◦W then

U ◦ (V ◦W ) = (U ◦ V ) ◦W + V ◦ (U ◦W ) (2.28)
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Proof. Let U = X + ξ, V = Y + η, W = Z + ζ, then

LLUVW + LV (LUW ) = [[X,Y ], Z] + L[X,Y ]ζ − iZd(LXη − iY dξ)

= [Y, [X,Z]] + LY (LXζ − iZdξ)− i[X,Z]dη
(2.29)

The anti-symmetric property and the Jacobi identity of Lie bracket gives

[[X,Y ], Z] + [Y, [X,Z]] = [X, [Y, Z]] (2.30)

and using (A.18) and (A.33) gives

L[X,Y ]ζ = LXLY ζ − LY LZζ,　i[X,Z]dη = LXiZdη − iZLXdη (2.31)

so some terms cancel and leaving

LLUVW + LV (LUW ) = [[X,Y ], Z] + LX(LY ζ − iZdη)− LY iZdξ + iZdiY dξ

= [[X,Y ], Z] + LX(LY ζ − iZdη)− i[Y,Z]dξ

= LU (LVW ).

(2.32)

And since it is not anti-symmetric, there is no Jacobi identity.

It is useful to define a projection map [2]

π : T ⊕ T ∗ → T

X, ξ → π(X + ξ) = X
(2.33)

so that the Dorfman derivative can be extended to the tangent bundle and reduced to
Lie derivative as

π(LVW ) = LXY (2.34)

where V = X + ξ. And similar to Lie derivative, for a function f , V,W ∈ Γ(T ⊕ T ∗), the
Dorfman derivative satisfies

LV (fW ) = fLVW + π(V )[f ]W (2.35)

or acts on function f purely as

LV f = π(V )[f ] = X[f ] = LXf (2.36)

where V = X + ξ.
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Proposition 2.2. The canonical inner product and the Dorfman derivative satisfy

π(U)[⟨V,W ⟩] = ⟨LUV,W ⟩+ ⟨V, LUW ⟩ . (2.37)

Proof. Let U = X + ξ, V = Y + η,W = Z + ζ, the right hand side is

⟨LUV,W ⟩+ ⟨V, LUW ⟩

= ⟨[X,Y ] + (LXη − iY dξ), Z + ζ⟩+ ⟨Y + η, [X,Z] + (LXζ − iZdξ)⟩

=
1

2
(i[X,Y ]ζ + iZ(LXη − iY dξ)) +

1

2
(i[X,Z]η + iY (LXζ − iZdξ))

(2.38)

using (A.33) and (A.30) give

⟨LUV,W ⟩+ ⟨V, LUW ⟩ =
1

2
([LX , iY ]ζ + iZLXη − iZiY dξ + [LX , iZ ]η + iY LXζ − iY iZdξ)

=
1

2
(LXiY ζ + LXiZη) =

1

2
(LXiY ζ + LXiZη)

=
1

2
(−LiY ζX − LiZηX) =

1

2
(iXdiY ζ + iXdiZη)

= iXd
1

2
(iY ζ + iZη)

= iXd ⟨V,W ⟩
(2.39)

and finally, since ⟨V,W ⟩ is a scalar, using (A.35) gives

⟨LUV,W ⟩+ ⟨V, LUW ⟩ = iXd ⟨V,W ⟩ = X[⟨V,W ⟩] = π(U)[⟨V,W ⟩] (2.40)

The Dorfman derivative can also be written in components in the coordinate basis
(2.11). For two generalised vectors V = X + ξ,W = Y + η, terms in the RHS of Dorfman
derivative (2.25) can be calculated in components,

LXY
µ = Xν∂νY

µ − Y ν∂νX
µ

LXηµ = Xν∂νηµ + ην∂µX
ν

iY dξµ = Y ν∂νξµ − Y ν∂µξν

(2.41)
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and writing in column gives

LVW
M =

(
LXY

µ

LXηµ − iY dξµ

)

=

(
Xν∂νY

µ − Y ν∂νX
µ

Xν∂νηµ + ην∂µX
ν − Y ν∂νξµ + Y ν∂µξν

)

=

(
Xν∂νY

µ

Xν∂νηµ

)
−

(
Y ν∂νX

µ

Y ν∂νξµ

)
+

(
0

ην∂µX
ν + Y ν∂µξν

) (2.42)

The partial derivative can also be embedded into the generalised space T ⊕ T ∗ as

∂M =

∂µ, M = µ,

0, M = µ+ d.
(2.43)

so Xν∂ν = V N∂N . Then using the canonical metric and its inverse metric to raise and
lower the indices in the last term gives the components of Dorfman derivative

LVW
M = V N∂NW

M −WN∂NV
M +WN∂

MV N . (2.44)

This expression is the same as the double field theory formulation [12, 13, 36]. The
action of Dorfman derivative can also be generalised to a rank-n generalised tensor J ∈
Γ((T ⊕ T ∗)⊗n) as [4]

LV J
M1...Mn = V N∂NJ

M1...Mn + (∂M1V N − ∂NV M1)J M2...Mn

N

+ · · ·+ (∂MnV N − ∂NV Mn)J
M1...Mn−1

N

(2.45)

which is an analogue of the Lie derivative action on a usual tensor (A.11), and implies
that a generalised tensor can be viewed as sections of different representations of the
structure group O(d, d).

2.5 The Courant Bracket

Similar to the Dorfman derivative, Courant bracket is the analogue of Lie bracket on the
generalised space T ⊕T ∗ [1, 2]. The motivation for its definition is to construct a bracket
that is anti-symmetric, so it is defined by anti-symmetrising the Dorfman derivative.

Definition 2.4. For generalised vectors V = X+ξ, Y = Y +η ∈ Γ(T ⊕T ∗), X,Y ∈ Γ(T )

and ξ, η ∈ Γ(T ∗), the Courant bracket is

JV,W K = 1

2
(LVW − LWV ). (2.46)
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The Dorfman derivatives are explicitly written as

LVW = [X,Y ] + LXη − (diY ξ − LY ξ)

LWV = −[X,Y ] + LY ξ − (diXη − LXη)
(2.47)

where LXY = [X,Y ] = −[Y,X], and the identity (A.32) gives iXd = diX − LX . Hence
substitute the Dorfman derivatives back into the definition of Courant bracket gives

JV,W K = JX + ξ, Y + ηK = [X,Y ] + LXη − LY ξ −
1

2
d(iXη − iY ξ). (2.48)

Claim 2.3. A similar calculation shows that

1

2
(LVW + LWV ) = d ⟨V,W ⟩ , (2.49)

hence JV,W K = LVW − d ⟨V,W ⟩ , (2.50)

where d is exterior derivative and ⟨,⟩ is the canonical inner product on T ⊕ T ∗.

Proposition 2.4. The Dorfman derivative and the Courant bracket has a relation similar
to (A.18)

LU (LVW )− LV (LUW ) = LJU,V KW. (2.51)

Proof. Using (2.50) and bi-linearity of Dorfman derivative, RHS can be rewritten as

LJU,V KW = LLUV−d⟨U,V ⟩W = LLUVW − Ld⟨U,V ⟩W = LLUVW (2.52)

where Ld⟨U,V ⟩W = 0 using the definition of Dorfman derivative and d2 = 0. Hence using
the Leibniz rule for Dorfman derivative (2.27) one obtains (2.51).

One can easily see that the Courant bracket inherits bi-linearity from the Dorfman
derivative and from its definition (2.46) that it is anti-symmetric. However, the Courant
bracket does not satisfy the Jacobi identity which means it is not a Lie bracket [2, 34].

Proposition 2.5. For U, V,W ∈ Γ(T ⊕ T ∗), the Courant bracket satisfies the Jacobi
identity up to an exact term

JJU, V K,W K + JJV,W K, UK + JJW,UK, V K
=

1

3
d(⟨JU, V K,W ⟩+ ⟨JV,W K, U⟩+ ⟨JW,UK, V ⟩), (2.53)

where d is exterior derivative and ⟨,⟩ is the canonical inner product on T ⊕ T ∗.
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Proof. Firstly, due to bi-linearity and anti-symmetry of Courant bracket, one has

JJU, V K,W K = J1
2
(JU, V K− JV, UK),W K

=
1

2
(JJU, V K,W K− JJV, UK,W K)

=
1

4
(JJU, V K,W K− JW, JU, V KK− JJV, UK,W K + JW, JV, UKK)

(2.54)

Also, using (2.50) and (2.51) gives

JJU, V K,W K = LJU,V KW − d ⟨JU, V K,W ⟩
= LU (LVW )− LV (LUW )− d ⟨JU, V K,W ⟩ (2.55)

and substitute into (2.54) gives

JJU, V K,W K = 1

4
(LU (LVW )− LV (LUW )− d ⟨JU, V K,W ⟩ − JW, JU, V KK
−LV (LUW ) + LU (LVW ) + d ⟨JV, UK,W ⟩+ JW, JV, UKK)

=
1

4
(LU (LVW )− LV (LUW )− d ⟨JU, V K,W ⟩
−LW (LUV ) + LW (d ⟨U, V ⟩) + d ⟨W, JU, V K⟩
−LV (LUW ) + LU (LVW ) + d ⟨JV, UK,W ⟩
+LW (LV U)− LW (d ⟨V, U⟩)− d ⟨W, JV, UK⟩)

=
1

4
(2LU (LVW )− 2LV (LUW )− LW (LUV ) + LW (LV U))

(2.56)

where all terms with inner products cancel since it is symmetric. Therefore,

JJU, V K,W K + JJV,W K, UK + JJW,UK, V K
=

1

4
(2LU (LVW )− 2LV (LUW )− LW (LUV ) + LW (LV U)

+2LV (LWU)− 2LW (LV U)− LU (LVW ) + LU (LWV )

+2LW (LUV )− 2LU (LWV )− LV (LWU) + LV (LUW ))

=
1

4
(LU (LVW )− LV (LUW ) + LV (LWU)− LW (LV U) + LW (LUV )− LU (LWV ))

=
1

4
(LJU,V KW + LJV,W KU + LJW,UKV )

=
1

4
(JJU, V K,W K + JJV,W K, UK + JJW,UK, V K
+ d ⟨JU, V K,W ⟩+ d ⟨JV,W K, U⟩+ d ⟨JW,UK, V ⟩)

(2.57)
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and rearranging the equation gives

3

4
JJU, V K,W K + JJV,W K, UK + JJW,UK, V K

=
1

4
(d ⟨JU, V K,W ⟩+ d ⟨JV,W K, U⟩+ d ⟨JW,UK, V ⟩) (2.58)

The Courant bracket can also be reduced to Lie bracket using the projection map (2.33)
so that

π(JV,W K) = [π(V ), π(W )] (2.59)

where V,W ∈ Γ(T ⊕ T ∗), π(V ), π(W ) ∈ T and [, ] is the Lie bracket. But unlike the
Dorfman derivative case (2.35), the Leibniz rule of Courant bracket on a function has an
extra exact term [2],

Proposition 2.6. For a function f , the Courant bracket satisfies

JV, fW K = fJV,W K + π(V )[f ]W − ⟨V,W ⟩ df. (2.60)

Proof. For V = X + ξ,W = Y + η,

JV, fW K = [X, fY ] + LX(fη)− LfY ξ −
1

2
d(iX(fη)− ifY ξ), (2.61)

then using Leibniz rules of Lie derivative and Lie bracket and (A.34) yields

JV, fW K =f([X,Y ] + LXη − LY ξ −
1

2
d(iXη − iY ξ))

+X[f ]Y +X[f ]η

− iY ξdf −
1

2
(iXη − iY ξ)df

=fJV,W K +X[f ]W − ⟨V,W ⟩ df.

(2.62)

Mathematically, (2.53), (2.59), (2.60) and (2.37) define a Courant algebroid [5, 6, 7].

2.6 Symmetries of Courant Bracket

The Lie derivative and Lie bracket of vectors encodes diffeomorphism in ordinary ge-
ometry. This section will explicitly show how the Courant bracket encodes both of dif-
feomorphism and gauge symmetry which makes it useful to physics.

Firstly, the Courant bracket is invariant under diffeomorphism i.e. the GL-action gen-
erated by A in (2.19).
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Proposition 2.7. For V,W ∈ Γ(T ⊕ T ∗), the Courant bracket satisfies

eAJV,W K = JeAV, eAW K. (2.63)

Proof. For a diffeomorphism f = eA on tangent bundle T , its action can be embedded
into the T ⊕ T ∗ as (2.19) and acts on generalised vector V as

V →

(
f∗ 0

0 (f−1)∗

)
V (2.64)

where f∗ and (f−1)∗ push-forward vector and form parts of V respectively. For V =

X + ξ,W = Y + η, using the fact that Lie bracket, Lie derivative, exterior derivative and
interior product all preserve diffeomorphisms (see (A.19), (A.36) and (A.37)), the LHS of
(2.63) is

f∗JV,W K
= f∗([X,Y ] + LXη − LY ξ −

1

2
d(iXη − iY ξ))

= [f∗X, f∗Y ] + Lf∗X(f−1)∗η − Lf∗Y (f
−1)∗ξ − 1

2
d(if∗X(f−1)∗η − if∗Y (f−1)∗ξ)

= Jf∗X + (f−1)∗ξ, f∗Y + (f−1)∗ηK = Jf∗V, f∗W K
(2.65)

so eAJV,W K = JeAV, eAW K.
The Courant bracket is also invariant under the B-transforms for a closed B-form,

which is linked to gauge transformation [3].

Proposition 2.8. For V,W ∈ Γ(T ⊕ T ∗) and a closed 2-form B i.e. dB = 0

eBJV,W K = JeBV, eBW K. (2.66)

Proof. Let V = X + ξ,W = Y + η then using the B-transformation (2.22) the RHS
becomes

JeBV, eBW K = JeB(X + ξ), eB(Y + η)K
= JX + ξ + iXB, Y + η + iYBK
= [X,Y ] + LX(η + iYB)− LY (ξ + iXB)− 1

2
d(iX(η + iYB)− iY (ξ + iXB))

= JX + ξ, Y + ηK + LXiYB − LY iXB −
1

2
d(iXiYB − iY iXB)

(2.67)

Using the Cartan formula (A.32) and anti-symmetry of interior product, the last term
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becomes −iXiY dB − LXiYB + iXLYB, and substitute back gives

JeBV, eBW K = JV,W K + iXLYB − LY iXB − iXiY dB (2.68)

and use (A.33) so that iXLYB − LY iXB = i[X,Y ]B yielding

JeBV, eBW K = JV,W K + i[X,Y ]B − iXiY dB (2.69)

Since [X,Y ] is the vector part of JV,W K so the first two terms is eBJV,W K so

JeBV, eBW K = eBJV,W K− iXiY dB (2.70)

and if B is closed dB = 0, then JeBV, eBW K = eBJV,W K.
Proposition 2.9. The β-transform does not preserve the Courant bracket.

Proof. For V = X + ξ,W = Y + η,

JeβV, eβW K =J(X + iξβ) + ξ, (Y + iηβ) + ηK
=[X,Y ] + LX+βξη − LY+βηξ −

1

2
d(iX+βξη − iY+βηξ)

=JV,W K + Lβξη − Lβηξ −
1

2
d(iβξη − iβηξ)

(2.71)

whereas

eβJV,W K = [X,Y ] + iLXη−LY ξ− 1
2d(iXη−iY ξ)β + LXη − LY ξ −

1

2
d(iXη − iY ξ)

= JV,W K + β(LXη − LY ξ −
1

2
d(iXη − iY ξ))

(2.72)

which are clearly different.

The propositions above show that both diffeomorphism and the 2-form B-field preserve
the Courant bracket, whereas the β-transform represents a symmetry breaking [34], but
the β-transform is related to the T-dualities [10]. Hence the only action on T ∗ ⊕ T

that preserves the Courant bracket is the semi-direct product of closed 2-forms and the
diffeomorphism diff(M) ≃ GL(d,R) [2]

GL(d,R)⋉ Ω2(M)closed (2.73)

which is called the geometric subgroup in [3] or the generalised diffeomorphism group in
[33]. The element of the group is

eAeB =

(
eA 0

0 e−AT

)(
1 0

B 1

)
=

(
eA 0

e−AT

B e−AT

)
(2.74)

18



and acts on a generalised vector V = X + ξ as

V → eAeBV =

(
eA 0

e−AT

B e−AT

)(
X

ξ

)
=

(
eAX

e−AT

(ξ + iXB)

)
. (2.75)

Semi-direct here indicates that the diffeomorphism acts on both the vector and form parts
of the generalised vector whereas the B-transform only transforms the form part as shown
in the above equation.

2.7 Twisted Courant Bracket and Generalised Tangent Bundle

In general, the 2-form field B is not closed i.e. dB ̸= 0, then one needs the H-twisted
version of Courant bracket where H is a closed 3-form which is related to the physical
3-form field strength in the NSNS sector [37, 33]. This twisted structure makes B a gerbe
connection and can also be used to modify local patching rule which leads to the formal
definition of a generalised tangent bundle [3, 2].

Definition 2.5. For a closed 3-form H, the H-twisted Courant bracket is

JV,W KH = JV,W K + iXiYH (2.76)

s.t. JeBV, eBW KH−dB = eBJV,W KH . (2.77)

If H = dB, (2.76) becomes the untwisted Courant bracket again. In this case, for open
cover {Ui}, on Ui ∩ Uj ̸= 0, the 2-form B satisfies3

dB(i) = dB(j) = H (2.78)

so that H is a globally defined closed 3-form (dH = 0). But B is not globally defined,
and B can be shifted as

B(j) −B(i) = dΛ(ij) (2.79)

where Λ(ij) is a 1-form on Ui ∩ Uj and Λ(ij) = −Λ(ji). The shift leaves H unchanged
because d2 = 0. This means that B is defined up to a cohomology, and since the shift
is a gauge transformation, B can be interpreted as a gauge field. B is also viewed as a
potential since its shift does not affect the physical field H [33]. On Ui ∩ Uj ∩ Uk ̸= 0,
using (2.79) yields

B(i) = B(j) + dΛ(ji) = B(k) + dΛ(kj) + dΛ(jk) = B(i) + dΛ(ik) + dΛ(kj) + dΛ(jk) (2.80)

3The subscript indices in () indicates different charts and not components.
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so the gauge transformation needs to satisfy

d(Λ(ij) + Λ(jk) + Λ(ki)) = 0 (2.81)

i.e. Λ(ij) + Λ(jk) + Λ(ki) is closed and hence can be written as an exact form

Λ(ij) + Λ(jk) + Λ(ki) = dρ(ijk) (2.82)

where ρ(ijk) is a 0-form on Ui ∩ Uj ∩ Uk. Similarly for four overlaps, and so on. In string
theory, the cohomological condition H ∈ H3 implies that [3, 2, 4]

Λ(ij) + Λ(jk) + Λ(kl) = g−1
(ijk)dg(ijk) (2.83)

where g(ijk) = eiρ(ijk) is a U(1) valued function4 g(ijk) : Ui∩Uj∩Uk → S1 s.t. g(ijk) = g−1
(jik)

and g(jkl)g−1
(ilk)g(ijl)g

−1
(ijk) = 1 on Ui∩Uj ∩Uk∩Ul. This defines B as a connection structure

on a gerbe [38, 1].

For the patching rule, naturally, a section V of T ⊕ T ∗ is locally patched on a chart Ui

as V = X(i) + ξ(i), so on Ui ∩ Uj ̸= 0,

X(i) + ξ(i) = X(j) + ξ(j). (2.84)

Under the GL(d,R) ⋉ Ω2
closed transformation, the vector part does not change under B-

transform so X(i) = X(j) and is globally defined, and for diffeomorphism, the vector part
transforms as

Xµ
(i) = A µ

(ij) νX
ν
(j) (2.85)

where A(ij) ∈ GL(d,R) is the local transformation matrix of the diffeomorphism eA. The
form part transforms under GL(d,R)⋉ Ω2

closed as

ξ(i)µ = A ν
(ij)µ ξ(j)ν +Xν

(j)∂[νΛ(ij)µ] (2.86)

where the B-transform is parametrised by dΛ(ij) which is closed as d2 = 0. Hence the
overall transformation under GL(d,R)⋉ Ω2

closed is(
X(i)

ξ(i)

)
=

(
A(ij)X(j)

A−T
(ij)ξ(j) + iA(ij)X(j)

dΛ(ij)

)
(2.87)

which is the patching rule for T ⊕ T ∗.

If the condition (2.79) is satisfied, then by setting the diffeomorphism to identity, the

4This structure is similar to the U(1) gauge bundle for electromagnetism and magnetic monopole (see [35]).
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patching rule becomes(
X(i)

ξ(i)

)
=

(
X(j)

ξ(j) − iX(j)
dΛ(ij)

)
=

(
X(j)

ξ(j) − iX(j)
(B(j) −B(i))

)
(2.88)

hence the B-transform can be absorbed into the local patching as(
X(i)

ξ(i) − iX(i)
B(i)

)
=

(
X(j)

ξ(j) − iX(j)
B(j)

)
. (2.89)

The generalised tangent bundle E is defined such that its section is locally patched as the
above equation on Ui ∩Uj . The fibre at a point p is still Tp⊕T ∗

p as X ∈ Γ(T ), ξ− iXB ∈
Γ(T ∗), but the structure group is restricted to the geometric subgroup GL(d,R)⋉Ω2

closed

since dΛ is a closed 2-form [3].
Formally, the generalised tangent bundle E is defined by an exact sequence implied by

the condition (2.81) [1, 2]
0→ T ∗ → E → T → 0 (2.90)

where the map E → T is the projection map π in (2.33). The map T ∗ → E is a natural
inclusion sending a 1-form λ ∈ T ∗ to ( 0

λ ) ∈ Γ(E). Originally there is no map from T to
E. Assume for contraction, if there is a map T → E, on chart Ui∩Uj ̸= 0, the map maps
a vector v ∈ T to (

v(i)
0 ) on Ui, and by using the original patching rule (2.87), v is mapped

to
(

v(j)
iv(i)dΛ(ij)

)
on Uj where the diffeomorphism is set to identity for simplification. In

general, it is clear that (
v(i)

0

)
̸=

(
v(j)

iv(i)dΛ(ij)

)
(2.91)

which gives the contradiction5. However, if the relation (2.79) is satisfied, then the patch-
ing rule can be modified to (2.89) so the contradiction disappears, and there exist a map
T → E which is defined by the inverse of B-transform as

e−B : T → E

v → v − ivB
(2.92)

Then, by the splitting lemma [8, 9], the existence of the map T → E together with the
exact sequence (2.90) imply that the generalised tangent bundle E is isomorphic the direct
sum of T and T ∗ i.e.

E ≃ T ⊕ T ∗. (2.93)

As the patching of section changes, the coordinate frame for E also needs to be updated

5For the map T ∗ → E, since the vector part is zero, then under the original patching rule, λ is mapped to
(

0
λ

)
on all charts, so there is no contraction.

21



to

ÊM =

Êµ = eµ + ieµB, M = µ

Êµ = eµ, M = µ+ d
(2.94)

where {eµ} is basis on T , {eµ} is dual basis on T ∗, and B is free to choose so there is no
canonical isomorphism [4]. This will be called as split frame and it still satisfies

⟨ÊM , ÊN ⟩ = ηMN (2.95)

where in the calculation, one needs to use that ieµieνB = 0 because B is anti-symmetric
whereas ieµieν is symmetric. The section of E, V ∈ Γ(E) is now

V = V M ÊM = XµÊµ + ξµÊ
µ =

(
X

ξ − iXB

)
(2.96)

In fact, by using the exact sequence and splitting lemma, one can define a general
generalised tangent bundle as

0→ E → E → T → 0 (2.97)

so that
E ≃ T ⊕ E (2.98)

which will be useful for M-theory and other geometry such as exceptional geometry [3,
39, 17, 16]. The generalised vector V ∈ Γ(E) is then

V = v + λ (2.99)

where v ∈ Γ(T ) and λ ∈ Γ(E). An example will be given in Section 5.2.
One can also define the dual generalised bundle E∗ using the dual of the exact sequence

(2.97)
0→ T ∗ → E∗ → E∗ → 0 (2.100)

and the splitting gives the isomorphism

E∗ ≃ T ∗ ⊕ E∗. (2.101)

For the O(d, d) generalised geometry, the dual bundle is simply

E∗ ≃ T ∗ ⊕ T ≃ E. (2.102)
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3 Generalised Metric, Connection, Torsion and Curvature

As suggested by [2, 34], one can define generalised versions of geometric objects in the
Riemannian geometry, namely the metric, vielbein, connection, torsion and curvature.
By introducing the generalised metric, the structure group shall be further reduced as
will be shown. The construction of generalised objects in this chapter follows [4].

3.1 Generalised Metric

Apart from the canonical metric defined in Section 2.2, one can also define a generalised
metric G on T ⊕ T ∗ that is symmetric and positive definite as an analogue of the usual
Riemannian metric [2]. The generalised metric is also required to be compatible with the
canonical metric η [2, 3]. The requirement is that for two generalised vectors V,W ∈ Γ(E),

⟨GV,GW ⟩ = ⟨V,W ⟩ (3.1)

and in components gives

ηMNG
M

IV
IGN

JW
J = ηIJV

IW J (3.2)

where GM
N is a map E → E sending V to GV , hence we have

ηMNG
M

IG
N

J　⇔　GT ηG = η (3.3)

which means that G ∈ O(d, d). If index of G is lowered using η so GMN = ηMNG
M

N ,
then G can be viewed as an symmetric 2-tensor i.e. a metric G ∈ Γ(S2E∗), and the
compatible requirement can be equivalently written as

ηMNG
M

IG
N

J = GNIη
MNGMJ = ηIJ (3.4)

and multiplying the inverse metric on both sides gives the matrix form

η−1Gη−1G = 1. (3.5)

Since the inverse canonical metric η−1 (2.10) is in 2 × 2 block form, the general from
of G can be written as

G =

(
a b

c d

)
, (3.6)
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and the symmetry requirement of G is

aT = a,　dT = d,　cT = b. (3.7)

Substituting η−1 (2.10) and G into the compatible condition (3.5) yields(
c2 + da cd+ db

ac+ ba ad+ b2

)
=

1

4

(
1 0

0 1

)
. (3.8)

From ac+ ba = 0 and (3.7), one has

ac = abT = (baT )T = (ba)T = −ba (3.9)

and similarly, from cd+ db = 0,

cd = −(cd)T = −dcT (3.10)

so ba and cd are anti-symmetric.
We now define d = g−1 where g−1 is symmetric, and B = d−1c is anti-symmetric as

B = d−1c = d−1cdd−1 = −d−1dcTd−1 = −cTd−1 = −(d−1c)T = −BT (3.11)

Then

c = dB = g−1B

b = cT = (g−1B)T = BT g−1 = −Bg−1
(3.12)

and from ad+ b2 = 1
4
1 or c2 + da = 1

4
1, one has

a =
1

4
g −Bg−1B (3.13)

Substitute a, b, c, d into G and rescale g → 2g, g−1 → 1
2
g−1 gives

G =
1

2

(
g −Bg−1B −Bg−1

g−1B g−1

)
(3.14)

One can also set a = g−1 and define B using ab, and the result will just be the inverse of
the above matrix. Contract G with two generalised vectors V = X + ξ,W = Y + η gives

(
X ξ

) 1

2

(
g −Bg−1B −Bg−1

g−1B g−1

)(
Y

η

)
= XgY + (ξ − iXB)g−1(η + iYB) (3.15)

If we view g as a metric with signature (p, q) on TM and g−1 is metric with signature
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(q, p) on T ∗M where p+ q = d, then the above equation can be written as

G(V,W ) = g(X,Y ) + g−1(ξ + iXB, η + iYB) (3.16)

so G can be interpreted as a metric with signature (2p, 2q) on T ⊕T ∗, i.e. the generalised
metric [3]. And since B is anti-symmetric, it will be interpreted as the 2-form gauge field
in type II theory. Hence G encodes information of both the metric g onM and the gauge
field B and is parametrised by them.

The generalised metric transform under O(d, d) as

G→ G′ = OTGO,　O ∈ O(d, d) (3.17)

If O is the GL-action (2.19), the transformation is parameterised as

g → AT gA,　B → ATBA (3.18)

where A is the matrix of diffeomorphism. And if O is the B-transform, then g is invariant,
but B is shifted

B → B +Θ (3.19)

where Θ is used as the generator of B-transform to avoid confusion. However, if O is not
in the geometric subgroup diff ⋉ Ω2

closed, it will mix g and B [3].

3.2 Splitting Frame and O(p, q)×O(q, p) Structure

One can also define
S = η−1G (3.20)

so that the compatible condition (3.5) becomes

S2 = 1 (3.21)

which defines an almost product structure (see Definition 2.2). For the generalised space
T ⊕ T ∗ and a d-dimensional manifold M with signature (p, q) where p + q = d, the
generalised tangent bundle E splits into (see Section 2.1)

E ≃ C+ ⊕ C− (3.22)

where C+ and C− are d-dimensional sub-bundles with signature (p, q) and (q, p) respec-
tively. The almost product structure reduces the structure group from O(d, d) to its
maximal compact subgroup O(p, q)×O(q, p) [33, 3, 2], and O(p, q)×O(q, p) is the group
that preserve both the canonical metric and the generalised metric. Also, O(p, q) and
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O(q, p) are structure groups of C+ and C− respectively (see Definition A.26 and (A.69)),
and C+, C− are orthogonal complement to each other [3]. Then the generalised metric G
parametrises the coset space

G ∈ O(d, d)

O(p, q)×O(q, p)
(3.23)

as an analogue of that the usual metric g parametrise the coset GL(d,R)/O(d) (Example
2.2). One can also check that the difference between the dimensions of O(d, d) and
O(d)×O(d)

1

2
(2d)(2d+ 1)− 2× 1

2
d(d+ 1) = d2 (3.24)

equals to the sum of degrees of freedom of symmetric tensor gµν and the anti-symmetric
tensor Bµν on a d-dimensional manifold

1

2
d(d+ 1) +

1

2
d(d− 1) = d2. (3.25)

Since the canonical inner product of any generalised vectors that consist of pure vector
or pure form is zero, the sections of C+ or C− must be a mix of vector and form. For C+,
its section V+ has a general form [10]

V+ = X +MX (3.26)

where X ∈ Γ(TM) and M is a general metric s.t. MµνX
ν gives the form part. This also

defines an isomorphism from C+ to TM since X is the only parameter. As any type (0, 2)

tensor can be decomposed into symmetric and anti-symmetric parts, M can be written
as

Mµν = gµν +Bµν (3.27)

where gµν is symmetric, Bµν is anti-symmetric, so

V+ = X + (g +B)X. (3.28)

Using (2.86) and g is symmetric, one has that on the overlap of two charts Ui ∩ Uj ̸= 0,

g(i) = g(j),　B(i) = B(j) − dΛ(ij) (3.29)

so g is interpreted as the metric and B is the 2-form B-field in the NSNS sector. Similarly,
one finds that the section of C− is [10]

V− = X + (B − g)X (3.30)

so C− is also isomorphic to TM. One can check that the inner product of sections from
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C+ and C− is

⟨V+, V−⟩ =
1

2
[iX(g +B)X + iX(B − g)X] = iXiXB = 0 (3.31)

since B is anti-symmetric whereas iXiX is symmetric, so it agrees with that C+ and C−

are orthogonal complement. Then the section of the generalised tangent bundle E is

V = V+ + V− = X + iXB. (3.32)

We now define orthonormal frames {Ê+
a } for C+ and {Ê−

ā } for C− satisfying [4]

⟨Ê+
a , Ê

+
b ⟩ = ηab

⟨Ê−
ā , Ê

−
b̄
⟩ = −ηāb̄

⟨Ê+
a , Ê

−
b̄
⟩ = 0

(3.33)

where a, ā = 1, ..., d are used to distinguish the two sub-bundles, and both of ηab, ηāb̄ are
flat metrics with signature (p, q). The first two conditions indicate that O(p, q) associated
with the metric ηab acts on {Ê+

a } and is the structure group of C+ whereas O(q, p)

associated with the metric −ηāb̄ acts on {Ê−
ā } and is the structure group of C−. The

third condition means that C+, C− are orthogonal complement to each other, and O(p, q),
O(q, p) acts on C+, C− separately. Thus, the overall structure group is O(p, q)×O(q, p).
The sections of C+ and C− are written in components as

V+ = V a
+Ê

+
a ,　V− = V ā

−Ê
−
ā (3.34)

where indices are raised and lowered using ηab, ηāb̄ respectively.
The frame of the generalised tangent bundle is then defined to be {ÊA} = {Ê+

a }∪{Ê−
ā }

i.e.

ÊA =

Ê+
a , A = a,

Ê−
ā , A = ā+ d,

(3.35)

However, the orthonormal condition is now

⟨ÊA, ÊB⟩ = ηAB,　ηAB =

(
ηab 0

0 −ηāb̄

)
(3.36)

where ηAB is different from the canonical metric (2.9). This is because {Ê+
a } and {Ê−

ā }
cannot be purely vectors or forms as discussed before, so {ÊA} is different from the one
used in Section 2.2 or the coordinate basis {ÊM} in (2.94). In fact, {ÊA} is defined so
that the metric ηAB is diagonalised as in (3.44) by using the generalised vielbein which
will be defined in Section 3.3, so this frame will be called the non-coordinate frame. In the
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rest of the dissertation, the indices A,B, ... will be used for this frame where as M,N, ...

are used for the split frame (2.94) defined using coordinate basis. The dual basis is also
defined by raising the indices of ÊA using ηAB giving

ÊA =

Ê+a, A = a,

−Ê−ā, A = ā+ d.
(3.37)

Thus, using the frame {ÊA}, a generalised vector V ∈ Γ(E) is

V = V AÊA = V a
+Ê

+
a + V ā

−Ê
−
ā = V+ + V−. (3.38)

The splitting of frames can also be found by defining two projection operators [40]

P± =
1

2
(12d ± S). (3.39)

It can be easily shown that
P+ + P− = 12d

P 2
± = P±

P+P− = P−P+ = 0

(3.40)

so P± are projectors and are maps P± : E → C± s.t.

P+(V ) = V+ = V a
+Ê

+
a ,　P−(V ) = V− = V ā

−Ê
−
ā . (3.41)

Therefore, the generalised tangent bundle splits into two sub-bundles C+ and C−.

3.3 Generalised Vielbein

In usual Riemannian geometry (Appendix D), for a manifold with signature (p, q), the
vielbein diagonalises the metric gµν to the constant flat metric ηµν with signature (p, q).
The idea can be generalised in the generalised geometry to define a generalised vielbein
so that both of the canonical metric and the generalised metric are diagonalised.

Given the split frame {ÊM} defined in (2.94), the non-coordinate frame {ÊA} defined
in (3.35) can be written as

ÊA = Ê M
A ÊM , (3.42)

i.e. a change of basis, and the letters A,B are used for the non-coordinate frame whereas
M,N are used for the split frame. This defines the generalised vielbein Ê M

A which
satisfies

ÊA
M Ê N

A = δ N
M ,　ÊA

M Ê M
B = δAB (3.43)
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as an anologue of (A.92). The vielbein is required to diagonalise the canonical metric

ηAB = ⟨ÊA, ÊB⟩ = ηMN Ê
M

AÊ
N
B =

(
ηab 0

0 −ηāb̄

)
(3.44)

which gives the condition (3.33), and the generalised metric G is also diagonalised as

GAB = G(ÊA, ÊB) = GMN Ê
M

AÊ
N
B =

(
ηab 0

0 ηāb̄

)
(3.45)

so that
G(Ê+

a , Ê
+
b ) = ηab,　G(Ê−

ā , Ê
−
b̄
) = ηāb̄,　G(Ê+

a , Ê
−
b̄
) = 0 (3.46)

and
G = ηabÊ+

a ⊗ Ê+
b + ηāb̄Ê−

ā ⊗ Ê−
b̄
. (3.47)

To find the expression of the generalised vielbein, we first introduce two set of ordinary
vielbein ê± and dual e± for the two TM spaces isomorphic to C± respectively. The usual
vielbein satisfy

ê±e± = e±ê± = 1

g = e±T e± = ηabe
+a ⊗ e+b = ηāb̄e

−ā ⊗ e−b̄

g(ê+a , ê
+
b ) = ηab,　g(ê−ā , ê−b̄ ) = ηāb̄

g−1 = ê±ê±T

(3.48)

Then using the general form of sections of C+ (3.28) and C− (3.30), the non-coordinate
frame can be explicitly written as

ÊA =

Ê+
a = ê+a + (e+a + iê−a B), A = a,

Ê−
ā = ê−ā − (e−ā + iê−ā B), A = ā+ d.

(3.49)

Using this expression and the definition (3.42), the expression of the generalised vielbein
is found to be

Ê =
1√
2

(
e+ − ê+TB ê+T

−e− − ê−TB ê−T

)
=

1√
2

(
ê+T (g −B) ê+T

−ê−T (g +B) ê−T

)
. (3.50)

It transforms under M ∈ O(d)×O(d) as

E →ME,　M =

(
O+ 0

0 O−

)
,　O± ∈ O(d) (3.51)

i.e. each vielbein rotates under O(d) separately. In type II string theory, the sub-bundles
C± can be interpreted as left and right moving sectors, and one can choose e+ = e− = e
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by the O(d)×O(d) transformation to have same spin-connections in both sectors [10].

From (3.45), one can also have the matrix version

G = ÊT Ê (3.52)

and substitute (3.50) into the above equation gives

G =
1

2

(
g −Bg−1B −Bg−1

g−1B g−1

)
(3.53)

which is the same expression as (3.14).

Moreover, one can define another generalised vielbein Ê such that

⟨ÊA, ÊB⟩ =

(
0 ηab

ηab 0

)
,　G(ÊA, ÊB) =

(
ηab 0

0 ηāb̄

)
(3.54)

i.e. the canonical metric is the same as its original form. This generalised vielbein is [10]

Ê =
1

2

(
(e+ + e−) + (ê+T − êT )B ê+T − ê−T

(e+ − e−)− (ê+T + ê−T )B ê+T + ê−T

)
(3.55)

and transforms under M ∈ O(d)×O(d) as

Ê →M Ê ,　M =
1

2

(
O+ +O− O+ −O−

O+ −O− O+ +O−

)
,　O± ∈ O(d). (3.56)

By making a suitable transformation, one can set e+ = e− = e yielding a triangular form

Ê =

(
e 0

−êTB êT

)
(3.57)

which is invariant under the geometric subgroup GL(d,R) ⋉ Ω2
closed, and gives the same

generalised metric G using G = ÊT Ê . This actually corresponds to the original split frame
(2.94) as the component of canonical metric η is in off-diagonal form.

3.4 Generalised Connection

The generalised connection is constructed as analogue of the usual connection in Rie-
mannian geometry (Definition A.36) following [41].

30



Definition 3.1. For a generalised tangent bundle E, the generalised connection is a map

D : Γ(E)× Γ(E) → Γ(E)

V,W → DVW
(3.58)

that satisfies the same condition as the usual connection, so it is bi-linear

DU (V +W ) = DUV +DUW

D(U+V )W = DUW +DVW
(3.59)

∀U, V,W ∈ Γ(E). For a function f ,

DfVW = fDVW (3.60)

and has the Leibniz rule
DV (fW ) = V [f ]W + fDVW. (3.61)

On the split frame {ÊM} (2.94), the generalised connection is defined as

DM ÊN = DÊM
ÊN = Γ I

M N ÊI (3.62)

where Γ I
M N is called components of the generalised affine connection. Then D acts on

V = V N ÊN ∈ Γ(E) as

DM (V N ÊN ) = (∂MV
N + Γ N

M IV
I)ÊN . (3.63)

It can be extended to a generalised rank n tensor α ∈ Γ(E⊗n) as

DMα
N1...Nn = ∂Mα

N1...Nn + Γ N1

M Iα
I...Nn + · · ·+ Γ Nn

M Iα
N1...Nn−1I . (3.64)

Similarly to the usual connection where we are interested in the metric connection
(Definition A.38), the generalised connection is also required to be compatible with both
of the canonical metric η and the generalised metric G so

Dη = DG = 0. (3.65)

For the canonical metric, since it is the metric of the O(d, d) structure, we can simply
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use the split frame {ÊM}, and the generalised connection acts on η = ηIJ Ê
I ⊗ ÊJ as

DMη = DM (ηIJ Ê
I ⊗ ÊJ)

= (∂MηIJ)Ê
I ⊗ ÊJ + ηIJ [(DM Ê

I)⊗ ÊJ + ÊI(DM Ê
J)]

= ηIJΓ
I

M N Ê
N ⊗ ÊJ + ηIJΓ

J
M N Ê

I ⊗ ÊN

= (ΓMJI + ΓMIJ)Ê
I ⊗ ÊJ = 0

(3.66)

where ∂MηIJ = 0 since η is constant, so

ΓMJI = −ΓMIJ (3.67)

which means (ΓM )IJ is an element of Lie algebra o(d, d) as a result of the O(d, d) structure.

For the compatibility with the generalised metric G, as G reduce the structure group
to O(p, q)×O(p, q), it is necessary to use the non-coordinate frame {ÊA} that describes
this structure. The generalised connection on the non-coordinate frame is now defined as

DM ÊA = Ω B
M AÊB (3.68)

where Ω B
M A is components of generalised spin connection [4] and on each sub-frame

DM ÊA =

Ω b
M aÊ

+
b +Ω b̄

M aÊ
−
b̄
, A = a

Ω b̄
M āÊ

−
b̄
+Ω b

M āÊ
+
b , A = ā

(3.69)

The actions of D on a generalised vector V ∈ Γ(E) shall take the same form as before
but with the generalised connection component in split frame Γ I

M N replaced by Ω A
M B

in non-coordinate frame, so

DMV
A = ∂MV

A +Ω A
M BV

B (3.70)

or write V = V a
+Ê

+
a + V ā

−Ê
−
ā gives

DMV
A =

∂MV a
+ +Ω a

M bV
b
+ +Ω a

M b̄
V b̄
−, A = a,

∂MV
ā
− +Ω ā

M b̄
V b̄
− +Ω ā

M bV
b
+, A = ā.

(3.71)

And D acts on a generalised tensor α ∈ Γ(E⊗n) as

DMα
A1...An = ∂Mα

A1...An +Ω A1

M Iα
I...An + · · ·+Ω An

M Iα
A1...An−1I . (3.72)
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The compatibility with the canonical metric η = ηabÊ+
a ⊗ Ê+

b − ηāb̄Ê
−
ā ⊗ Ê−

b̄
gives

DMη = DM (ηabÊ+
a ⊗ Ê+

b − η
āb̄Ê−

ā ⊗ Ê−
b̄
)

= (∂Mη
ab)Ê+

a ⊗ Ê+
b + ηab[(DM Ê

+
a )⊗ Ê+

b + Ê+
a (DM Ê

+
b )]

− (∂Mη
āb̄)Ê−

ā ⊗ Ê−
b̄
− ηāb̄[(DM Ê

−
ā )⊗ Ê−

b̄
+ Ê−

ā (DM Ê
−
b̄
)]

= (ηcbΩ a
M c + ηacΩ b

M c)Ê
+
a ⊗ Ê+

b − (ηc̄b̄Ω ā
M c + ηāc̄Ω b̄

M c)Ê
−
ā ⊗ Ê−

b̄

+ (ηcbΩ ā
M c − ηāc̄Ω b

M c̄)Ê
−
ā ⊗ Ê+

b + (ηacΩ b̄
M c − ηc̄b̄Ω a

M c̄)Ê
+
a ⊗ Ê−

b̄

= (Ω ab
M +Ω ba

M )Ê+
a ⊗ Ê+

b + (Ω āb̄
M +Ω b̄ā

M )Ê−
ā ⊗ Ê−

b̄

+ (Ω āb
M − Ω bā

M )Ê−
ā ⊗ Ê+

b + (Ω b̄a
M − Ω ab̄

M )Ê+
a ⊗ Ê−

b̄

= 0

(3.73)

so
Ω ab

M = −Ω ba
M ,　Ω āb̄

M = −Ω b̄ā
M ,　Ω āb

M = Ω bā
M (3.74)

For the generalised metric G = ηabÊ+
a ⊗ Ê+

b + ηāb̄Ê−
ā ⊗ Ê−

b̄
, there is a sign change, and

following the same procedure gives a similar result

DMG = (Ω ab
M +Ω ba

M )Ê+
a ⊗ Ê+

b + (Ω āb̄
M +Ω b̄ā

M )Ê−
ā ⊗ Ê−

b̄

+ (Ω āb
M +Ω bā

M )Ê−
ā ⊗ Ê+

b + (Ω b̄a
M +Ω ab̄

M )Ê+
a ⊗ Ê−

b̄

= 0

(3.75)

And the condition on spin connection is

Ω ab
M = −Ω ba

M ,　Ω āb̄
M = −Ω b̄ā

M ,　Ω āb
M = −Ω bā

M (3.76)

Together with the condition found from η (3.74), one has

ΩMab = −ΩMba,　ΩMāb̄ = −ΩMb̄ā (3.77)

which means that (ΩM )ab is element of Lie algebra o(p, q) and (ΩM )ā
b̄
∈ o(q, p). And also

that
ΩMāb = ΩMbā = 0 (3.78)

indicates that the connection shall act on the two sub-bundles C± separately as a result
of the O(d)×O(d) structure. Therefore, the action of D on V = V a

+Ê
+
a +V ā

−Ê
−
ā is simply

DMV
A =

∂MV a
+ +Ω a

M bV
b
+, A = a,

∂MV
ā
− +Ω ā

M b̄
V b̄
−, A = ā.

(3.79)

Furthermore, as suggested in [4], the generalised connection can be constructed from
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an ordinary Levi-Civita connection ∇ with a metric g. A generalised vector V in the split
frame {ÊM} (2.94) is

V = X + ξ = XµÊµ + ξµÊ
µ. (3.80)

Since X ∈ Γ(TM), ξ ∈ Γ(T ∗M), ∇ can acts on them and gives a generalised connection
denoted as D∇

M . The action of D∇
M on V is simply [4]

D∇
MV

M ÊM =

(∇µX
ν)Êν + (∇µξν)Ê

ν , M = µ

0, M = µ+ d.
(3.81)

For the spin connection, we introduce two sets of vielbein ê± for the two TM spaces
that are isomorphic to C± as before. Then a vector v ∈ Γ(TM) can be written in two
bases as

v = vaê+a = vāê−ā . (3.82)

The Levi-Civita connection acts on v as (A.119)

∇µv
ν = (∂µv

a + ω+ a
µ bv

b)ê+ ν
a = (∂µv

ā + ω− ā
µ b̄

)ê− ν
ā (3.83)

where ω+
µab, ω

−
µāb̄

are two spin connections for the O(d) structure, each satisfies

ω+
µab = −ω

+
µba,　ω

−
µāb̄

= −ω−
µb̄ā

(3.84)

manifesting the O(d)×O(d) structure. It is now natural to identify

Ωµab = ω+
µab,　Ωµāb̄ = ω−

µb̄ā
. (3.85)

For M = µ + d, since both of D∇
M and ∂M vanish, ΩMab and ΩMāb̄ must also be zero.

Therefore, the generalised spin connection (3.79) can be written as

DMV
A =


D∇

MV
a
+ =

∇µV
a
+ , M = µ

0, M = µ+ d
, A = a

D∇
MV

ā
− =

∇µV
ā
− , M = µ

0, M = µ+ d
, A = ā

(3.86)

By performing a O(d) × O(d) transformation, one can set e+ = e− = e as in Section
3.3, so

V = V a
+Ê

+
a + V ā

−Ê
−
ā = (V a

+ + V a
−)Êa + (V+a − V−a)Ê

a (3.87)

and substitute into (3.81) gives same expression as (3.86), so the two generalised connec-
tions match.
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3.5 Generalised Torsion and Torsion-free Connection

The generalised connection defined before is not generally torsion-free. For the usual
geometry, a torsion free connection i.e. the Levi-Civita connection is uniquely determined
by the metric (Definition A.40), so an analogue, we want to construct the generalised con-
nection that is torsion free and preserve the O(p, q)×O(q, p) structure. The construction
follows [12, 13], however, the resultant generalised connection is not unique.

Firstly, we need to define the generalised torsion as an analogue of usual torsion using
Definition A.37 and Claim A.26 [4, 41].

Definition 3.2. The generalised torsion tensor is a map

T : Γ(E)× Γ(E) → Γ(E)

V,W → T (V,W ) = LD
VW − LVW

(3.88)

where the partial derivative ∂ in the Dorfman derivative is replaced by the generalised
connection D.

The generalised torsion in component is

T (V,W )I = T I
M N V MWN = (LD

VW )I − (LVW )I

= V MDMW
I −WMDMV

I +WMD
IV M

　− V M∂MW
I +WM∂MV

I −WM∂
IV M

= V MΩ I
M NW

N −WMΩ I
M NV

N +WMΩIM
NV

N

= (Ω I
M N − Ω I

N M +ΩI
NM )V MWN

(3.89)

Using the canonical metric to lower the I index and ΩIMN = −ΩINM gives

TMIN = ΩMIN +ΩNMI +ΩINM = 3Ω[MIN ] (3.90)

so T ∈ Γ(∧3E).
On the non-coordinate frame {ÊA}, the components of generalised torsion can also be

defined as the usual case (A.107) so

TABC = ⟨ÊC , T (ÊA, ÊB)⟩ (3.91)

where ⟨,⟩ is the canonical inner product.
Similar to the Levi-Civita connection, we want the spin connection to be torsion free.

The condition T = 0 in the non-coordinate frame {ÊA} is

TABC = ⟨ÊC , T (ÊA, ÊB)⟩ = ⟨ÊC , L
D
ÊA
ÊB − LÊA

ÊB⟩ = 0 (3.92)
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so
⟨ÊC , L

D
ÊA
ÊB⟩ = ⟨ÊC , LÊA

ÊB⟩ (3.93)

which shall give constraints on spin connection component ΩMAB. For the LHS, the
Dorfman derivative reads

(LD
ÊA
ÊB)

M = Ê N
A DN Ê

M
B − Ê N

B DN Ê
M

A + ÊBND
M Ê N

A

= Ê N
A Ω D

N BÊ
M

D − Ê N
B Ω D

N AÊ
M

D + ÊBNΩMD
AÊ

N
D

= Ω D
A BÊ

M
D − Ω D

B AÊ
M

D +ΩM
BA

(3.94)

where contracting the first index of spin connection with the generalised vielbein simply
transfer it from a coordinate index to the non-coordinate index as it is a generalised tensor
index. Then contract with ÊC using (3.44) gives

⟨ÊC , L
D
ÊA
ÊB⟩ = ηMN Ê

N
C (LD

ÊA
ÊB)

M

= ÊCM (Ω D
A BÊ

M
D − Ω D

B AÊ
M

D +ΩM
BA)

= Ω D
A BηCD − Ω D

B AηCD +ΩD
BAηCD

(3.95)

where for the last term, ÊCMΩM
BA = ηCDÊ

D
MΩM

BA = ΩD
BAηCD. However, unlike

the torsion component in the coordinate basis (3.90), one cannot directly write down an
anti-symmetrised expression by lowering indices using η since η in the non-coordinate
frame (3.36) has a different sign for the two sub-frames {Ê+

a } and {Ê−
ā }. Explicitly, one

finds four different cases

⟨Êc, L
D
Êa
Êb⟩ = Ω d

a bηcd − Ω d
b aηcd +Ωd

baηcd = 3Ω[acb]

⟨Êc̄, L
D
Êā
Êb̄⟩ = −Ω d̄

ā b̄ηc̄d̄ +Ω d̄
b̄ āηc̄d̄ − Ωd̄

b̄āηc̄d̄ = −3Ω[āc̄b̄]

⟨Êc, L
D
Êā
Êb⟩ = Ω d

ā bηcd − Ω d
b āηcd +Ωd

bāηcd = Ωācb

⟨Êc̄, L
D
Êa
Êb̄⟩ = −Ω d̄

a b̄ηc̄d̄ +Ω d̄
b̄ aηc̄d̄ − Ωd̄

b̄aηc̄d̄ = −Ωac̄b̄

(3.96)

where we used ηab̄ = 0 and ΩMab = −ΩMba,ΩMāb̄ = −ΩMb̄ā,ΩMb̄c = ΩMcb̄ = 0, and so
there is no terms with last two indices from different sub-frames.

Next, for the RHS of (3.93), the Dorfman derivative has component

(LÊA
ÊB)

M = Ê N
A ∂N Ê

M
B − Ê N

B ∂N Ê
M

A + ÊBN ∂
M Ê N

A (3.97)
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and contract with ÊCM gives

⟨ÊC , LÊA
ÊB⟩ = Ê N

A (∂N Ê
M

B )ÊCM − Ê N
B (∂N Ê

M
A )ÊCM + ÊBN (∂M Ê N

A )ÊCM

= Ê N
A (∂N Ê

M
B )ÊCM + Ê N

B (∂N Ê
M

C )ÊAM + Ê M
C (∂M Ê

N
A )ÊBN

= Ê N
[A (∂|N |Ê

M
B )ÊC]M

(3.98)

where for the second term, we used ∂NηAC = 0 = (∂N Ê
M

C )ÊAM + Ê N
B (∂N Ê

M
A )ÊCM .

Hence the RHS is also cyclic A,B,C and can be anti-symmetrised. As the LHS has four
cases, the RHS shall also have and only have four cases. To avoid redundant calculation,
we only consider the easiest case with A = a,B = b, C = c as an example. Using the
expression for ÊA (3.49) and (3.48), one has

Ê N
a (∂N Ê

M
b )ÊcM =

(
ê+ ν

a ∂ν ê
+ µ
b

ê+ ν
a ∂ν(e

+
bµ + ê+ ρ

b Bρµ)

)T

1

2

(
0 1

1 0

)(
ê µ
c

e+cµ + ê+ ρ
c Bρµ

)
=

1

2
[2ê+ ν

a (∂ν ê
+ µ
b )e+cµ + ê+ ν

a (∂νgρµ)e
+ ρ
b ê

+ µ
c + (∂νBρµ)ê

+ ν
a ê

+ ρ
b ê

+ µ
c ]

(3.99)

Then, by anti-symmetrising a, b, c, the middle term with the metric vanishes since gµν is
symmetric in ρ, µ whereas e+ ρ

b ê
+ µ
c is anti-symmetric in ρ, µ. The last term becomes

1

2
(∂νBρµ)ê

+ ν
[a ê

+ ρ
b ê

+ µ
c] =

1

2
(
1

3
dBνρµ)ê

+ ν
[a ê

+ ρ
b ê

+ µ
c] =

1

6
Habc (3.100)

where H = dB is interpreted as the 3-form field strength. The first term will become the
Levi-Civita connection on a vielbein after anti-symmetrisation. Consider

ê+ ν
[a (∂ν ê

+ µ
b )e+c]µ =

1

6
[ê+ ν

a (∂ν ê
+ µ
b )e+cµ − ê+ ν

b (∂ν ê
+ µ
a )e+cµ

+ê+ ν
b (∂ν ê

+ µ
c )e+aµ − ê+ ν

c (∂ν ê
+ µ
b )e+aµ

+ê+ ν
c (∂ν ê

+ µ
a )e+bµ − ê

+ ν
a (∂ν ê

+ µ
c )e+bµ]

=
1

6
[ê+ ν

a (∂ν ê
+ µ
b + Γ µ

ρν ê ρ
b )e+cµ − ê+ ν

b (∂ν ê
+ µ
a + Γ µ

ρν ê ρ
a )e+cµ

+ê+ ν
b (∂ν ê

+ µ
c + Γ µ

ρν ê ρ
c )e+aµ − ê+ ν

c (∂ν ê
+ µ
b + Γ µ

ρν ê ρ
b )e+aµ

+ê+ ν
c (∂ν ê

+ µ
a + Γ µ

ρν ê ρ
a )e+bµ − ê

+ ν
a (∂ν ê

+ µ
c + Γ µ

ρν ê ρ
c )e+bµ]

(3.101)

where the extra Levi-Civita connection terms Γ cancel in each line as it is symmetric in
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the first two indices, hence, using (A.121), one has

ê+ ν
[a (∂ν ê

+ µ
b )e+c]µ =

1

6
[ê+ ν

a (∇ν ê
+ µ
b )e+cµ − ê+ ν

b (∇ν ê
+ µ
a )e+cµ

+ê+ ν
b (∇ν ê

+ µ
c )e+aµ − ê+ ν

c (∇ν ê
+ µ
b )e+aµ

+ê+ ν
c (∇ν ê

+ µ
a )e+bµ − ê

+ ν
a (∇ν ê

+ µ
c )e+bµ]

=
1

6
[ê+ ν

a ωνbc − ê+ ν
b ωνac + ê+ ν

b ωνca − ê+ ν
c ωνba + ê+ ν

c ωνab − ê+ ν
a ωνcb]

=
1

6
(ωabc − ωacb + ωbca − ωbac + ωcba − ωcab)

(3.102)

where ω is the Levi-Civita spin connection component with metric g. Since Levi-Civita
connection is torsion-free, so ωabc = −ωacb then

ê+ ν
[a (∂ν ê

+ µ
b )e+c]µ =

1

3
(ωacb + ωbac + ωcba) = ω+

[acb] (3.103)

where the spin connection is denoted as ω+ for it is calculated on {êa}. Then anti-
symmetrise (3.99) and substitute the results of (3.100) and (3.103) into it gives

⟨Êc, LÊa
Êb⟩ = 3Ê N

[a (∂|N |Ê
M

b )Êc]M = 3ω+
[acb] +

1

2
Habc (3.104)

Hence by comparing with (3.96), the torsion-free condition (3.93) for A = a,B = b, C = c

becomes
Ω[abc] = ω+

[abc] −
1

6
Habc. (3.105)

Note there is a switching in indices b, c giving the extra minus sign in front of H and the
whole equation is divided by 3. The other cases shall be considered in a similar way by
brutal calculations giving [42]

Ω[āb̄c̄] = ω−
[āb̄c̄]

+
1

6
Hāb̄c̄

Ωābc = ω+
ābc −

1

2
Hābc

Ωab̄c̄ = ω−
ab̄c̄

+
1

2
Hab̄c̄

(3.106)

where ω− is calculated in the {Ê−
ā } frame.

However, for the two conditions with indices all from the same sub-frame, the anti-
symmetrisation implies that one can freely add another rank 3 tensor which vanishes
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under anti-symmetrisation i.e. for A+
[abc] = A−

[āb̄c̄]
= 0, the following conditions still hold

Ω[abc] = ω+
[abc] −

1

6
Habc = ω+

[abc] −
1

6
Habc +A+

[abc]

Ω[āb̄c̄] = ω−
[āb̄c̄]

+
1

6
Hāb̄c̄ = ω−

[āb̄c̄]
+

1

6
Hāb̄c̄ +A−

[āb̄c̄]

. (3.107)

Also, for the connection to be compatible with the generalised metric, A± also need to
satisfy A+

abc = −A
+
acb, A−

[āb̄c̄]
= −A−

[āc̄b̄]
. Therefore, unlike the Levi-Civita connection, the

compatible torsion-free generalised connection is not unique due to these extra tensors.

In conclusion, the conditions for the compatible and torsion-free generalised connection
are

Ω[abc] = ω+
[abc] −

1

6
Habc = ω+

[abc] −
1

6
Habc +A+

[abc]

Ω[āb̄c̄] = ω−
[āb̄c̄]

+
1

6
Hāb̄c̄ = ω−

[āb̄c̄]
+

1

6
Hāb̄c̄ +A−

[āb̄c̄]

Ωābc = ω+
ābc −

1

2
Hābc

Ωab̄c̄ = ω−
ab̄c̄

+
1

2
Hab̄c̄

(3.108)

where
A+

[abc] = A−
[āb̄c̄]

= 0,　A+
abc = −A

+
acb,　A

−
āb̄c̄

= −A−
āc̄b̄
. (3.109)

Furthermore, from the calculation for ⟨ÊC , LÊA
ÊB⟩ i.e. (3.101) to (3.102), one can see

that

⟨ÊC , LÊA
ÊB⟩ ∼ Ê µ

A (∇µÊ
M

B )ÊCM + cyclic terms +Hterm

∼ Ê M
A (D∇

M Ê
M

B )ÊCM + cyclic terms +Hterm
(3.110)

using the definition of D∇ (3.86). Then one can find the torsion of D∇ denoted as Σ is

ΣABC = ⟨ÊC , L
D∇

ÊA
ÊB − LÊA

ÊB⟩ = ⟨ÊC , L
D∇

ÊA
ÊB⟩ − ⟨ÊC , LÊA

ÊB⟩

∼ [Ê M
A (D∇

M Ê
M

B )ÊCM − Ê M
A (D∇

M Ê
M

B )ÊCM ] + cyclic terms−Hterm

∼ −Hterm

(3.111)

Explicitly, it is [4]
Σ = −4H,　H = dB (3.112)

and in component is
3Σ[ABC] = −4HABC . (3.113)
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Hence, by subtracting the torsion from D∇, one can construct a torsion-free connection

Dfree
M V A = D∇

MV
A +Σ A

M BV
B (3.114)

where the index of Σ is raised using η so there are some changes in sign.

The torsion-free conditions can also be written using Σ. Firstly, the 3-form H can be
written in components as

H =
1

3!
Hµνρdx

µ ∧ dxµ ∧ dxρ (3.115)

and using the non-coordinate basis,

dxµ =
1

2
(ê+µ

a Ê+a − ê−µ
ā Ê−ā) (3.116)

we have

H =
1

6

1

8
(HabcÊ

+a ∧ Ê+b ∧ Ê+c − 3HābcÊ
+ā ∧ Ê+b ∧ Ê+c

+3Hab̄c̄Ê
+a ∧ Ê+b̄ ∧ Ê+c̄ −Hāb̄c̄Ê

+ā ∧ Ê+b̄ ∧ Ê+c̄)
(3.117)

where minus signs come from switching indices. Σ is also decomposed to Σabc,Σābc,Σab̄c̄

and Σāb̄c̄, and using (3.113) one has

Σ[abc] = −
1

6
Habc,　Σ[āb̄c̄] =

1

6
Hāb̄c̄

Σābc = −
1

2
Hābc,　Σab̄c̄ =

1

2
Hab̄c̄

(3.118)

and similar to Ω, one can add A± satisfying (3.109) to the two terms in the first line, so
the connection is not unique. These conditions on Σ differ from (3.108) by the usual spin
connection ω which comes from ∇ and is absorbed into D∇ as

Dfree = ∂ +Ω = ∂ + ω +Σ = ∇+Σ = D∇ +Σ. (3.119)

Therefore, one can find a torsion-free compatible connection but is not unique. In terms
of D∇, it is given by

DaV
b
+ = ∇aV

b
+ −

1

6
H b

a cV
c
+ +A+ b

a cV
c
+

DāV
b
+ = ∇āV

b
+ −

1

2
H b

ā cV
c
+

DaV
b̄
− = ∇aV

b̄
− +

1

2
H b̄

a c̄V
c̄
−

DāV
b̄
− = ∇āV

b̄
− +

1

6
H b̄

ā c̄V
c̄
− +A− b̄

ā c̄V
c̄
−

(3.120)
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where
A+

[abc] = A−
[āb̄c̄]

= 0,　A+
abc = −A

+
acb,　A

−
āb̄c̄

= −A−
āc̄b̄
. (3.121)

3.6 Generalised Curvature

The Riemann curvature can also be generalised as direct analogue of Definition A.42,
with the affine connection replaced by the generalised connection and Lie bracket replaced
by Courant bracket.

Definition 3.3. The generalised Riemann curvature tensor is a map

R : Γ(E)× Γ(E)× Γ(E) → Γ(E)

U, V,W → R(U, V,W )
(3.122)

where
R(U, V,W ) = DUDVW −DVDUW −DJU,V KW (3.123)

and satisfies symmetry properties as the ordinary curvature.

However, the generalised curvature is not tensorial since it is not multi-linear [41]. For
functions f, g, h,

R(fU, gV, hW ) = DfUDgV hW −DgVDfUhW −DJfU,gV KhW
= fghR(U, V,W )− 1

2
h ⟨U, V ⟩Dfdg−gdfW

(3.124)

where JfU, gV K is expanded using (2.60). For it to be tensorial, the extra term

1

2
h ⟨U, V ⟩Dfdg−gdfW (3.125)

needs to vanish. It is zero if ⟨U, V ⟩ = 0 which means U, V need to be elements of two sub-
spaces that are orthogonal with respect to the canonical inner product, for example the
sub-bundles C±. Therefore, the O(d)×O(d) structure can define a generalised curvature
that is tensorial i.e. for U ∈ Γ(C+), V ∈ Γ(C−), then R ∈ Γ((C+ ⊗ C−) ⊗ o(d, d)) is a
tensor [4]. But since the generalised connection is not unique, there is also no unique
generalised curvature.
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4 Type II Supergravity

It is known that for type II supergravity, the bosonic fields in the NSNS sector are the
metric, a 2-form gauge field and a dilaton. From the previous chapters, one sees how a
non-degenerate symmetric 2-tensor g and a 2-form B are encoded in the generalised metric
of the O(d, d) generalised geometry. It is natural to identify them with the metric and
the gauge field for they have same properties correspondingly as discussed before. Also,
the Courant bracket or the Dorfman derivative encodes the symmetries of diffeomorphism
and gauge symmetry which are the bosonic symmetries in type II supergravity. Then it
is natural to use the O(d, d) generalised geometry to formulate type II supergravity, at
least for the bosonic NSNS sector. Moreover, the extra dilaton can also be included by
adding one more degree of freedom to the generalised tangent bundle. The reformulation
of type II supergravity will follow [4], and spinors and RR fields will be briefly introduced
at the end for completeness of curvature scalar and the equations of motion.

4.1 Bosonic Symmetries

This section provides some basic informations for type II supergravity. Type II su-
perstring theory is a 10-dimensional theory with N = 2 supersymmetry [18]. Using the
democratic formalism [43], the bosonic ‘pseudo’-action is

SB =
1

2κ2

∫ √
− det g

[
e−2ϕ

(
R+ 4(∂ϕ)2 − 1

12
H2

)
− 1

4

∑
n

1

n!
(F

(B)
(n) )

2

]
(4.1)

where gµν is the metric, H = dB is the 3-form field strength, Bµν is the 2-form potential,
ϕ is the dilaton, and F

(B)
(n) is the n-form RR field strength where explicit expressions can

be found in [4]. The NSNS sector only contains the metric g, 2-form B-field and the
dilaton ϕ, so the action for NSNS sector is

SNS =
1

2κ2

∫ √
− det ge−2ϕ

(
R+ 4(∂ϕ)2 − 1

12
H2

)
(4.2)

which is invariant under diffeomorphism

δgµν = LXgµν ,　δBµν = LXBµν ,　δϕ = LXϕ, (4.3)

where X is a vector. It is also invariant under gauge transformation as the field strength
H = dB is not changed after shifting the B-field by an exact term

B(i) = B(j) − dΛ(ij) (4.4)
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which is same as the patching (2.79) for the B field in O(d, d) generalised geometry and
Λ(ij) is a 1-form satisfying (2.82). Hence, B is a gauge field and is only locally defined. As
the gauge transformation is parameterised by the 2-from dΛ which is closed, and gauge
transformations do not commute with the diffeomorphism, so the overall symmetry group
is [4]

Diff(M)⋉ Ω2
closed(M) (4.5)

which is the geometric subgroup that preserves the Courant bracket. Then, combine the
diffeomorphism and gauge transformation gives

δX+ξgµν = LXgµν ,　δX+ξBµν = LXBµν − dξ,　δX+ξϕ = LXϕ, (4.6)

where ξ is a 1-form, and the patching of B (4.4) implies that

ξ(i) = ξ(j) − iX(j)
dΛ(ij) (4.7)

which is same as in (2.88) for the patching of the form part of the generalised vector in
O(d, d) generalised geometry.

Therefor, one sees clearly that the bosonic symmetries of NSNS sector of type II su-
pergravity namely the diffeomorphism and gauge transformation can be described using
the O(d, d) generalised geometry.

4.2 O(p, q)×O(q, p)× R+ Generalised Geometry

As mentioned before, diffeomorphism and gauge transformations are encoded in the
Courant bracket, and the metric g with signature (p, q) and B-field are encoded in the
generalised metric of the O(p, q)×O(q, p) generalised geometry. However, to describe the
full NSNS sector of type II supergravity, we also need to include the dilaton by extending
the structure group from O(d, d) to O(d, d)× R+ where R+ provides one more degree of
freedom for the dilaton [10, 11].

Firstly, the tangent bundle E defined before is extended by weighting by detT ∗M,
where M is a d-dimensional spin manifold [4] (see Definition A.34). Then the extended
tangent bundle is

Ẽ ≃ detT ∗M⊗ E ≃ detT ∗M⊗ (TM⊕ T ∗M). (4.8)

The significance of M being a spin manifold is that it is orientable, so from Claim A.21,
detT ∗M is a trivial bundle so detT ∗M≃ R×M where R provides the degree of freedom
for the dilaton, and detT ∗M can have any power i.e. (detT ∗M)p is well-defined where
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p gives the weight for the element. Thus, a rank-n generalised tensor is now a section of

E⊗n
(p) = (detT ∗M)p ⊗ E ⊗ · · · ⊗ E (4.9)

with weight p [4].

The split frame of Ẽ needs to be a conformal basis {ÊM} including a conformal factor
Φ ∈ Γ(detT ∗M) for the weighting, so that

⟨ÊM , ÊN ⟩ = Φ2ηMN = Φ2

(
0 1

1 0

)
(4.10)

where Φ2 ∈ R+. This condition manifests the structure group O(d, d) × R+. Under a
change of frame, the generalised vector V and basis ÊA transform as before

V A → V ′A =MA
B V

B,　ÊA → Ê′
A = (M−1)BAÊB, (4.11)

where M ∈ O(p, q)×O(q, p)×R+ satisfying (M−1)CA(M
−1)DBηCD = σ2ηAB for some σ

from the extra weighting and this means that the transformation preserves the metric up
to a conformal factor. The transform that preserve the Courant bracket is

M = (detA)−1

(
A 0

0 (A−1)T

)(
1 0

Θ 1

)
(4.12)

where A ∈ GL(d,R) generates the diffeomorphism and Θ is generator of the B-transform
and is closed, so this still defines the geometric subgroup GL(d,R)⋉Ω2

closed ⊂ O(d, d)×R+

as before. The extra factor (detA)−1 is to cancel the detA term from transformation
of V ∈ Γ(Ẽ) under diffeomorphism V M → (detA)AM

N Ṽ
N where Ṽ ∈ Γ(E) is the

unweighted section.

As Ẽ ≃ (detT ∗M) ⊗ (TM⊕ T ∗M), we can use the generic basis {êµ} for TM, dual
basis {eµ} for T ∗M and det e for basis of detT ∗M to construct the conformal split frame
for Ẽ, and it is also useful to rescale it by a function ϕ to include the dilaton [4], so

ÊM =

Êµ = e−2ϕ(det e)(êµ + iêµB), M = µ

Eµ = e−2ϕ(det e)eµ, M = µ+ d
(4.13)

satisfying
⟨ÊM , ÊN ⟩ = e−4ϕ(det e)2ηMN ,　Φ = e−2ϕ(det e) (4.14)

and the patching of a generalised vector V ∈ Γ(Ẽ) in this conformal split frame is also
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weighted from (2.89), so on a chart Ui,

V = e2ϕ

(
X(i)

ξ(i) − iX(i)
B(i)

)
(4.15)

For the Dorfman derivative, although the definition remains the same as before, but
since the components of generalised vectors are weighted, the component of the Dorf-
man derivative changes. Following the procedure in Section 2.4, we first need the Lie
derivative on a weighted vector X ∈ Γ((detT ∗M)p ⊗ TM) and a weighted 1-form
ξ ∈ Γ((detT ∗M)p ⊗ TM) each with weight p, which are [4]

LvX
µ = vν∂νX

µ −Xν∂νv
µ + p(∂νv

ν)Xµ

Lvξµ = vν∂νξµ + (∂µv
ν)ξν + p(∂νv

ν)ξµ
(4.16)

where v ∈ Γ(TM) is an unweighted vector. Then for a unweighted generalised vector
V ∈ Γ(E) and a weighted generalised vector W ∈ Γ((detT ∗M)p) ⊗ E, substituting the
above equations into the definition of Dorfman derivative (2.25) as in (2.42) gives the
component of Dorfman derivative with an extra term

LVW
M = V N∂NW

M −WN∂NV
M +WN∂

MV N + p(∂NV
N )WM (4.17)

and extend the action to a weighted tensor J ∈ Γ(E⊗n
(p) ) also gives an extra term

LV J
M1...Mn = V N∂NJ

M1...Mn + (∂M1V N − ∂NV M1)J M2...Mn

N

+ · · ·+ (∂MnV N − ∂NV Mn)J
M1...Mn−1

N + p(∂NV
N )WM

(4.18)

After introducing the generalised metric G, the structure group reduces to O(p, q) ×
O(q, p) × R+, and as for the O(p, q) × O(q, p) case, we can define the conformal non-
coordinate frame {ÊA} = {Ê+

a } ∪ {Ê−
ā } where {Ê+

a } and {Ê−
ā } are bases for C+ and C−

respectively, satisfying

⟨Ê+
a , Ê

+
b ⟩ = Φ2ηab

⟨Ê−
ā , Ê

−
b̄
⟩ = −Φ2ηāb̄

⟨Ê+
a , Ê

−
b̄
⟩ = 0

(4.19)

This fixes the choice of Φ ∈ Γ(detT ∗M) and gives an isomorphism between the weighted
bundle Ẽ and the unweighted bundle E so apart from the canonical metric η and the
generalised metric G, we have another structure associated with Φ. Then from (4.19) the
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conformal non-coordinate frame satisfies

⟨ÊA, ÊB⟩ = Φ2ηAB = Φ2

(
ηab 0

0 −ηāb̄

)
, (4.20)

and with respect to the generalised metric as

G(ÊA, ÊB) = Φ2

(
ηab 0

0 ηāb̄

)
(4.21)

By using the usual vielbein ê± and dual e± that satisfy conditions in (3.48), the con-
formal non-coordinate frame is

ÊA =

Ê+
a = e−2ϕ

√
− det g(ê+a + e+a + iê−a B), A = a,

Ê−
ā = e−2ϕ

√
− det g(ê−ā − e−ā + iê−ā B), A = ā+ d.

(4.22)

i.e. conformally scaled version of (3.49), and

Φ = e−2ϕ
√
− det g (4.23)

where
√
− det g is the new basis for detT ∗M. The generalised metric is now

G = Φ−2(ηabÊ+
a ⊗ Ê+

b + ηāb̄Ê−
ā ⊗ Ê−

b̄
). (4.24)

Hence the generalised metric G is parameterised by g,B, ϕ and so the coset space is also
parametrised by

{g,B, ϕ} ∈ O(d, d)

O(p, q)×O(q, p)
× R+ (4.25)

where d = p+ q.

4.3 Extended Generalised Connection and Torsion

The introduction of Φ and the conformal frame also modifies the constructions of other
generalised geometric objects. These objects associated with the extended bundle Ẽ will
be called ‘extended generalised’.

Starting with the connection, for W ∈ Γ(Ẽ), the extended generalised connection D is
defined as

DMW
A = ∂MW

A + Ω̃ A
M BW

B (4.26)

and on the conformal frame {ÊA} as

DM ÊA = Ω̃ B
M AÊB. (4.27)

47



As the structure group is extended to O(p, q)×O(q, p)×R+, it is reasonable to require
that the extended generalised connection is not only compatible with η and G but also
with Φ, so the compatible conditions are now

Dη = DG = DΦ = 0. (4.28)

Since components of both η and G have the extra Φ factor (4.20) and (4.21), this gives
extra terms from Φ when calculating Dη and DG as in (3.73) and (3.75). However, by
imposing DΦ = 0 ensures these extra terms from Φ vanishes so that the conditions on
the spin connections remain the same as before (3.77) (3.78) i.e.

Ω̃Mab = −Ω̃Mba,　Ω̃Māb̄ = −Ω̃Mb̄ā,　Ω̃Māb = Ω̃Mbā = 0 (4.29)

For the extended generalised torsion, as the Dorfman derivative includes an extra term
from weighting (4.17), the component of torsion (A.107) takes a different form. The
Dorfman derivative LVW in (4.17) has V ∈ Γ(E) whereas W ∈ Γ(Ẽ), so V,W are in
different basis. Given {ÊA} is the frame of Ẽ, the frame of E is simply {Φ−1ÊA}, so
we have the Dorfman derivative acts on basis as LΦ−1ÊA

ÊA. Then the components of
generalised torsion is defined as

TABC = Φ−2 ⟨ÊC , L
D
Φ−1ÊA

ÊB − LΦ−1ÊA
ÊB⟩ (4.30)

where the factor Φ−2 is introduced to cancel the Φ2 factor from the inner product (see
later in (4.35)). For LΦ−1ÊA

ÊB, since ∂NΦ ̸= 0, we need to write ÊB = ΦΦ−1ÊB and
using Leibniz rule gives

LΦ−1ÊA
ÊB = (LΦ−1ÊA

Φ)Φ−1ÊB +ΦLΦ−1ÊA
(Φ−1ÊB)

= [(Φ−1ÊA)
N∂NΦ+ ∂N (Φ−1ÊA)

NΦ]Φ−1ÊB +ΦLΦ−1ÊA
(Φ−1ÊB)

= (∂N Ê
N

A )Φ−1ÊB +ΦLΦ−1ÊA
(Φ−1ÊB)

(4.31)

where LΦ−1ÊA
Φ is calculated using (4.17) with weight p = 1 and Φ does not contract

with index N , and from second line to third, we used Leibniz rule again on ∂(ΦΦ−1Ê).
Contracting with ÊC gives

⟨ÊC , LΦ−1ÊA
ÊB⟩ = Φ(∂N Ê

N
A )ηBC +Φ2 ⟨Φ−1ÊC , LΦ−1ÊA

(Φ−1ÊB)⟩ (4.32)

note that ⟨ÊC , ÊB⟩ = Φ2ηBC has extra Φ2 factor. We also moved one factor Φ−1 into the
inner product to indicate that the inner product part is the same as (3.97) except that
the notation of the frame is changed, so, as before, this term can be written as an anti-
symmetrisation of a rank 3 object i.e. ⟨Φ−1Ê[C , LΦ−1ÊA

(Φ−1ÊB])⟩. For the LD
Φ−1ÊA

Ê M
B
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term, as DΦ = 0, we can simply expand it

LD
Φ−1ÊA

Ê M
B

= (Φ−1ÊA)
NDN Ê

M
B − Ê N

B DN (Φ−1ÊA)
M + ÊBND

M (Φ−1ÊA)
N +DN (Φ−1Ê N

A )Ê M
B

= Φ−1(Ê N
A Ω̃ I

N BÊ
M

I − Ê N
B Ω̃ I

N AÊ
M

I + ÊBN Ω̃MI
AÊ

N
I + Ω̃ I

N AÊ
N

I Ê M
B )

(4.33)

where the weight of ÊB is 1. Then contract with ÊC gives

⟨ÊC , L
D
Φ−1ÊA

ÊB⟩ = Φ(Ê N
A Ω̃ I

N BηIC − Ê N
B Ω̃ I

N AηIC + Ω̃MI
AηBIÊCM + Ω̃ I

N AÊ
N

I ηBC)

= Φ2(Ω̃ACB + Ω̃BAC + Ω̃CBA + Ω̃ I
I AηBC)

= Φ2(3Ω̃[ACB] + Ω̃ I
I AηBC)

(4.34)

also note that ⟨ÊC , ÊB⟩ = Φ2ηBC , Ω̃MAB = −Ω̃MBA, and the generalised vielbein trans-
fers the coordinate indices M,N to the conformal non-coordinate indices A,B,C and
gives an extra factor Φ. Therefore, the component of generalised torsion is

TABC = Φ−2 ⟨ÊC , L
D
Φ−1ÊA

ÊB − LΦ−1ÊA
ÊB⟩

= Φ−2 ⟨ÊC , L
D
Φ−1ÊA

ÊB⟩ − Φ−2 ⟨ÊC , LΦ−1ÊA
ÊB⟩

= −3Ω̃[ABC] + Ω̃ I
I AηBC − Φ−1(∂IÊ

I
A )ηBC − 3 ⟨Φ−1Ê[C , LΦ−1ÊA

(Φ−1ÊB])⟩

(4.35)

where we switched indices BC for the first term and get a minus sign and the last term
can be anti-symmetrised as discussed above. We then see that the component has two
terms that are anti-symmetric in A,B,C and two terms that are symmetric in B,C.
Writing out explicitly, they are

−3Ω̃[ABC] − 3 ⟨Φ−1Ê[C , LΦ−1ÊA
(Φ−1ÊB])⟩ ∈ Γ(∧3Ẽ)

Ω̃ I
I A − Φ−1(∂IÊ

I
A ) ∈ Γ(Ẽ)

(4.36)

therefore, the torsion can be seen as

T ∈ Γ(∧3Ẽ ⊕ Ẽ). (4.37)

For the torsion-free condition, as the torsion component splits into two sub sections,
we have two equations

Ω̃[ABC] = −⟨Φ−1Ê[C , LΦ−1ÊA
(Φ−1ÊB])⟩ (4.38)

Ω̃ B
B A = Φ−1(∂BÊ

B
A ) (4.39)
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The first one is exactly the same as the un-extended one, giving conditions (3.108). For
the second one, using the vielbein expression (4.22) gives

Ω̃ b
b a = Φ−1(∂µÊ

+µ
a ) = Φ−1∂µ(e

−2ϕ
√
− det gê+ µ

a )

= Φ−1[(−2∂µϕ)e−2ϕ
√
− det gê+ µ

a + e−2Φ∂µ(
√
− det gê+ µ

a )
(4.40)

where ∂µ+d = 0 so only vector part of Ê+
a is considered, and due to Ω̃Mbā = 0 the other

index on Ω̃ must be in the same sub-frame. Then using (A.123) for the second term gives

Ω̃ b
b a = Φ−1[(−2∂µϕ)e−2ϕ

√
− det gê+ µ

a + e−2Φ
√
− det g∇µê

+ µ
a ]

= Φ−1e−2ϕ
√
− det g[−2(∂µϕ)ê+ µ

a +∇µê
+ µ
a ]

= −2∂aϕ+ ω b
µ a ê

+ µ
b

= ω b
b a − 2∂aϕ

(4.41)

where ω is the usual Levi-Civita spin connection and note that Φ = e−2ϕ
√
− det g by

definition (4.23) and the vielbein transfer coordinate indices to non-coordinate indices.
Similarly one has

Ω̃ b̄
b̄ ā = ω b̄

b̄ ā − 2∂āϕ. (4.42)

One may also follow the method at the end of Section 3.5 using (3.114). The torsion
component of D∇ also splits into two parts Σ[ABC] and Σ̂ B

B A where Σ[ABC] satisfies the
same condition as before (3.118) and [4]

Σ̂ B
B A = −4(dϕ)A =

 1
2
∂aϕ, A = a

1
2
∂āϕ, A = ā+ d

(4.43)

implying
Σ̂ b

b a = −2∂aϕ,　Σ̂ b̄
b̄ ā = −2∂āϕ. (4.44)

Again, the usual Levi-Civita spin connection ω that comes from ∇ is absorbed into D∇.

However, same as the un-extended case, the two anti-symmetrised conditions are free to
add a rank-3 tensor that vanishes under anti-symmetrisation. Therefore, the torsion-free
compatible connection is still not unique. Also, the new condition (4.44) needs to be added
to the connection in the form ∂aϕηbc (see the second term in the last line of (4.35)), and
with two of indices anti-symmetrised so that the connection component satisfies (4.29).
Since the metric η is symmetric, the only way to anti-symmetrise indices is

∂[bϕηc]a =
1

2
(∂bϕηca − ∂cϕηba) (4.45)
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so setting
Σ̂abc = k(∂bϕηca − ∂cϕηba) (4.46)

gives the term that is anti-symmetric in last two indices b, c, and we introduce a coefficient
k so that when the first two indices of Σ̂ are contracted, it gives correct result as (4.44).
Explicitly, we have

Σ̂ a
a c = kηab(∂bϕηca − ∂cϕηba) = k(∂cϕ− ∂cϕδ a

a ) = k(1− d)∂cϕ = 2∂cϕ (4.47)

where d is the dimension of flat metric ηab so δ a
a = d, then

k =
2

1− d
. (4.48)

For type II supergravity, d = 10, so

Σ̂abc = −
2

9
(ηab∂cϕ− ηac∂bϕ). (4.49)

Therefore, the component of connection is updated to

DaV
b
+ = ∇aV

b
+ −

1

6
H b

a cV
c
+ −

2

9
(δ b

a ∂cϕ− ηac∂bϕ)V c
+ +A+ b

a cV
c
+

DāV
b
+ = ∇āV

b
+ −

1

2
H b

ā cV
c
+

DaV
b̄
− = ∇aV

b̄
− +

1

2
H b̄

a c̄V
c̄
−

DāV
b̄
− = ∇āV

b̄
− +

1

6
H b̄

ā c̄V
c̄
− −

2

9
(δ b̄

ā ∂c̄ϕ− ηāc̄∂ b̄ϕ)V c̄
− +A− b̄

ā c̄V
c̄
−

(4.50)

where the middle index of Σ̂ is raised using ηab or ηāb̄. Apart from the condition (3.121)
on A±, it is also required that

A+ a
a b = A− ā

ā b̄
= 0 (4.51)

so that when the indices a, b contract, A± does not give any contribution which violates
the condition (4.44).

4.4 Generalised Ricci Tensor, Scalar and Equations of Motion

Even though the generalised curvature is not unique, one can still construct a unique
Generalised Ricci tensor, hence gives the equations of motion [4]. From (4.50) we see that

DāV
b
+ = ∇āV

b
+ −

1

2
H b

ā cV
c
+

DaV
b̄
− = ∇aV

b̄
− +

1

2
H b̄

a c̄V
c̄
−

(4.52)
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are uniquely defined. For the other two cases, due to the new condition (4.51), by con-
tracting the a, b indices, one finds that

DaV
a
+ = ∇aV

a
+ − 2(∂aϕ)V

a
+

DāV
ā
− = ∇āV

ā
− − 2(∂āϕ)V

ā
−

(4.53)

are also uniquely defined. Then using (4.52) and (4.53) one can construct the generalised
Ricci tensor which are unique [4]

Rab̄V
a
+ = [Da, Db̄]V

a
+

RābV
ā
− = [Dā, Db]V

ā
−

. (4.54)

But since the indices are from different sub-frames, we cannot construct a curvature scalar
from it. In fact, we must introduce spinors. The O(p, q) × O(q, p) structure defines the
splitting E ≃ C+ ⊕ C−, and implies the Spin(p, q) × Spin(q, p) structure for Spin(p, q)
spinors. C± gives spin bundles S(C±) with corresponding gamma matrices γa, γā. For
ε± ∈ Γ(S(C±)), following same procedure as before, we have Ricci tensors [4]

1

2
Rab̄γ

aε+ = [γaDa, Db̄]ε
+

1

2
Rābγ

āε− = [γāDā, Db]ε
−

(4.55)

which are also equivalent to (4.54) and the Ricci tensor is unique. These two equations
can be used to define the generalised curvature scalar

−1

4
Rε+ = (γaDaγ

bDb −DāDā)ε
+

−1

4
Rε− = (γāDāγ

b̄Db̄ −DaDa)ε
−

(4.56)

and again are two equivalent definitions and gives a unique curvature scalar.

By setting e+a = e−a , one finds that

Rab = Rab −
1

4
HacdH

cd
b + 2∇a∇bϕ+

1

2
e2ϕ∇c(e−2ϕHcab) (4.57)

so it is a tensor, and
R = R+ 4∇2ϕ− 4(∂ϕ)2 − 1

12
H2 (4.58)

is a scalar [4]. Substitute S into the bosonic ‘pseudo’-action (4.1) gives

SB =
1

2κ2

∫ (
ΦR−

√
− det g

4

∑
n

1

n!
(F

(B)
(n) )

2

)
(4.59)
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where Φ = e−2ϕ
√
− det g, and ignoring the RR fields, the action for NSNS sector (4.2) is

SNS =
1

2κ2

∫
ΦR (4.60)

where Φ ∼ volG , so it is in the same form as the Einstein-Hilbert action (A.131). The
equations of motion for the metric g and 2-form B is then found by varying the action
with respect to G giving

Rab̄ = 0 (4.61)

which looks like the vacuum field equation (A.132), and if the RR fields are also included,
then the equations of motion becomes

Rab̄ +
1

16
Φ−1 ⟨F,Γab̄F ⟩ = 0 (4.62)

so the RR fields are like source terms. And for dilaton, the equation of motion is

R = 0. (4.63)

Hence, the reformulation of type II supergravity using O(d, d)×R+ generalised geometry
can be thought as a generalised geometric Einstein gravity theory. See [4] for a detailed
discussion.
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5 Generalised Parallelisability and Consistent Truncation

String theories have either 10 or 11 dimensions whereas our physical world only has
4 dimensions, so the extra dimensions need to be compactified. For string theories to
describe the physical world, we need to be able to extract a low dimensional theory from
it, which is called dimensional reduction. A very strong condition is consistent truncation
where truncation means that one requires the fields to be independent of higher dimensions
hence give a reduced theory in low dimensions, and consistent requires that the solution of
the reduced theory is still the solution of the full theory. The first example is Kaluza-Klein
reduction on a 5-dimensional theory which unifies electromagnetism and gravity [44, 45].
The fifth dimension is compactified on a circle S1, and after consistent truncation, the
5-dimensional diffeomorphism becomes a 4-dimensional diffeomorphism for gravity and
a U(1) gauge symmetry from the compactified dimension S1 for electromagnetism. This
can be generalised to d-dimensional compactified manifold i.e. a d-dimensional torus T d,
giving gauge group [U(1)]d. But the KK reduction truncates all the massive mode, hence
by modifying it, one has the Scherk-Schwarz reduction which gives the gauged and massive
supergravities [28, 29]. Later on, Pauli developed the coset reduction onM = G/H which
is a coset space and the gauge group of reduced theory is G, and De Witt developed the
group reduction on a compact Lie group manifold M≃ G which is also the gauge group
of reduced theory [26].

However, there is no systematic way of finding consistent truncation, although some of
them can be explained by parallelisability of a manifold. We first notice that the coset
reduction and group reduction can be combined into the consistent truncations on a local
group manifold [27] which is defined below.

Definition 5.1. A manifold M is a local group manifold if M ≃ G/Γ where G is a Lie
group and Γ is a discrete subgroup of G that acts freely (Definition A.12).

Note that a Lie group itself is a local group manifold, and there is a relation between
local group manifold and parallelisable manifold.

Claim 5.1. For a parallelisable manifold M, if the Lie bracket of its frame {êa}

[êa, êb] = f c
ab êc (5.1)

has constant f c
ab then this is a Lie algebra, and the manifold is a local group manifold

with the discrete subgroup Γ defining the left or right invariant vector fields which give
the globally defined frame.

If the structure constant of Lie algebra (5.1) satisfies the unimodular condition f b
ab = 0

which is satisfied by compact Lie groups, then there is a consistent truncation on M
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[28, 29]. This implies that if a parallelisable manifold is also a compact Lie group then
there is consistent truncation. This quickly explains the consistent truncation on S1 for it
is parallelisable and also a compact Lie group S1 ≃ U(1), and also explains the consistent
truncation on S3 for the NSNS sector of type II supergravity [19] as S3 ≃ SU(3) and is
parallelisable. However, there are other consistent truncations on spheres which cannot
be explained which are

•S4 reduction on AdS7 × S4 for 11-dimensional supergravity [20, 21]

•S5 reduction on AdS5 × S5 for type IIB supergravity [22, 23]

•S7 reduction on AdS4 × S7 for 11-dimensional supergravity [24, 25]

since S4, S5 are not parallelisable, and although S7 is parallelisable, it is not a Lie group.
But as an analogue to the relation between parallelisability and consistent truncation, one
may guess if there is a generalised parallelisability which gives consistent truncations. In
fact, this conjecture is implied in [30, 31, 10], and from [32] that all round sphere Sd are
generalised parallelisable, hence may explain consistent truncations on S1, S3, S4, S5, S7.

In this chapter, we first define generalised parallelisability as in [10], then construct
the generalised geometry for spheres and and show that all spheres are generalised par-
allelisable following procedures in [32]. Finally, we sketch the link between generalised
parallelisability and Scherk-Schwarz reduction, and use the consistent truncation on S3

as an example [32].

5.1 Generalised Parallelisability

In ordinary geometry, if a manifoldM is parallelisable, then there is a globally defined
frame {ea} for TM, and TM is trivial (see Theorem A.19). This then implies a G-
structure as discussed in Example 2.1, and the G-structure can be described by a globally
defined non-degenerated tensor (see Section 2.1), hence the manifoldM can have a metric
g = gabe

a ⊗ ea where gab is constant and the frame {ea} is known as consistent absolute
parallelism [46, 47, 48]. As an analogue, to define the generalised parallelisability, one
requires that the generalised tangent bundle E has a global frame {ÊA} and the canonical
metric can be written as

η = ηABÊA ⊗ ÊB. (5.2)

where ηAB is constant and ⟨ÊA, ÊB⟩ = ηAB [10]. Moreover, in order to use generalised
parallelisability in consistent truncation, we require the generalised parallelisable manifold
to be an analogue to the local group manifold, so we impose a further condition from Claim
5.1, and gives the definition below.
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Definition 5.2. Given a differentiable manifold M and its generalised tangent bundle
has a global frame {ÊA}, M is generalised parallelisable if

LÊA
ÊB = X C

AB ÊC (5.3)

where X C
AB is constant. And {ÊA} is called generalised parallelisation.

One should notice that unlike Lie derivative and Lie bracket, the Dorfman derivative
and Courant bracket are not the same, but differed by an exact term as in (2.50). However,
for basis {ÊA}, since we require that ⟨ÊA, ÊB⟩ = ηAB then (2.50) gives

JÊA, ÊBK = LÊA
ÊB + d ⟨ÊA, ÊB⟩ = LÊA

ÊB + dηAB = LÊA
ÊB (5.4)

as dηAB = 0 for constant ηAB. Hence the condition for generalised parallelisability can
be equivalently written as

JÊA, ÊBK = LÊA
ÊB = X C

AB ÊC . (5.5)

Proposition 5.2. For a d-dimensional generalised parallelisable manifold M, with D-
dimensional generalised tangent bundle E, the Courant bracket on its generalised paral-
lelism {ÊA} defines a D-dimensional Lie algebra g ⊂ o(D).

Proof. Substitute (5.5) into (2.53) gives

JJÊA, ÊBK, ÊCK + JJÊB, ÊCK, ÊAK + JJÊC , ÊAK, ÊBK ∼ d ⟨ÊD, ÊC⟩ = 0 (5.6)

since d ⟨ÊA, ÊB⟩ = 0, so the Courant bracket satisfies Jacobi identity on {ÊA}. Therefore,
together with the fact that X C

AB is constant as M is generalised parallelisable, the
generalised parallelisable condition

JÊA, ÊBK = X C
AB ÊC (5.7)

defines a Lie algebra g with dimension D. Moreover, from (2.37) one has

⟨LÊA
ÊB, ÊC⟩+ ⟨ÊB, LÊA

ÊC⟩ = π(ÊA)[⟨ÊB, ÊC⟩] = iÊA
d ⟨ÊB, ÊC⟩ (5.8)

where π : E → TM is the projection map defined in (2.33), and again using d ⟨ÊA, ÊB⟩ =
dηAB = 0 we have

⟨LÊA
ÊB, ÊC⟩+ ⟨ÊB, LÊA

ÊC⟩ = 0. (5.9)

Using the condition (5.3) and ⟨ÊA, ÊB⟩ = ηAB gives

X D
AB ηDC +X D

AC ηBD = 0 (5.10)
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which means that (XA)
B
C is an element of the Lie algebra o(D) of the structure group

O(D) defined by the canonical metric η, hence the Lie algebra g generated by X C
AB is

a sub-algebra g ⊂ o(D). For the O(d, d) generalised geometry, we have (XA)
B
C ∈ o(d, d)

and g ⊂ o(d, d).

Proposition 5.3. A generalised parallelisable manifold M is a coset space.

Proof. Use the projection map π : E → TM, the Courant bracket reduces to Lie bracket
as in (2.59), so

π(JÊA, ÊBK) = [vA, vB] = X C
AB vC (5.11)

where vA = π(ÊA) ∈ TM, and {vA} forms a basis for TM. However, since the dimension
of TM is d, there must be d non-vanishing vA that are linearly independent, whereas the
other D − d vectors are either linearly dependent or zero. Thus, the set {vA} is linearly
dependent, and one can always construct V = V AÊA ∈ g such that π(V ) = V Aπ(ÊA) =

V AvA = 0. The set of these V forms a (D − d)-dimensional Lie sub-algebra

h = {V ∈ g : π(V ) = 0}. (5.12)

Also, if π(V ) = π(W ) = 0, them [π(V ), π(W )] = 0, hence h is closed. Therefore, by
exponentiating the Lie algebra, one has

M≃ G/H,　H ⊂ G ⊂ O(D) (5.13)

where G is D-dimensional Lie group with Lie algebra g, H is Lie sub-group of G with Lie
sub-algebra h ⊂ g.

This proposition provides a constraint on possible generalised parallelisable manifold.
As the spheres are all coset spaces

Sn ≃ SO(n+ 1)/SO(n) (5.14)

it is natural to make the conjecture that at least some spheres are generalised paral-
lelisable. In Section 5.3, we will prove that all spheres are generalised parallelisable.
Furthermore, there are other coset spaces in string theory such as de Sitter and Anti-de
Sitter space with isomorphisms given in Example A.7 which may also be considered for
generalised parallelisability.
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5.2 GL+(d+ 1,R) Generalised Geometry

For a d-dimensional theroy with a metric g and d-from field strength F = dA, the
equations of motion (4.62) are written as [32]

Rµν =
1

d− 1
F 2gµν ,　F =

d− 1

R
volg (5.15)

where Rµν is Ricci tensor, R = gµνRµν is Ricci scalar volg is volume form associated with
g and F 2 = 1

d!
F µ1...µdFµ1...µd

. A solution is a round sphere Sd with radius R [32].

To construct the geometry with the d-sphere background, we notice that the d-form
F and (d − 1)-form A correspond to the H flux and 2-form B field in the O(d, d) case
respectively, so as an analogue, the generalised tangent space is now defined as

TM⊕∧d−2T ∗M (5.16)

so that its section V = v + λ ∈ Γ(TM⊕∧d−2T ∗M) in coordinate basis is

V M =

(
vµ

λµ1...µd−2

)
(5.17)

where v ∈ Γ(TM) is a vector and λ ∈ Γ(∧d−2TM) is a (d − 2)-form. One can easily
check that the dimension is

dim(TM) + dim(∧d−2T ∗M) = d+
1

2
d(d− 1) =

1

2
d(d+ 1). (5.18)

Formally, the generalised tangent bundle E is defined by the exact sequence as (see Section
2.7)

0→ ∧d−2T ∗M→ E → TM→ 0. (5.19)

The splitting defined by the B-transformis now parametrised by the (d− 1)-form A, and
will be called A-shift. On chart Ui ∩ Uj , A needs to be patched similar to (2.79) as

A(j) = A(i) + dΛ(ij) (5.20)

so that the section Ṽ of E is patched similar to (2.89) as

v(i) + λ(i) − iv(i)A(i) = v(j) + λ(j) − iv(j)A(j). (5.21)

Then one can see a relation between the section V ∈ Γ(TM⊕∧d−2T ∗M) and Ṽ ∈ Γ(E)

Ṽ = e−AV = v + λ− ivA (5.22)
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hence the A-shift defines an isomorphism

E ≃ TM⊕∧d−2T ∗M. (5.23)

To find the structure group, we notice that the section of E can be written as a 1
2
d(d+1)-

dimensional bi-vector [49]. An example of d = 4 case is given in [3]. To see this explicitly,
we first use the isomorphism from (A.85)

∧2TM× detT ∗M≃ ∧d−2T ∗M (5.24)

to rewrite the form part as (A.86)

λmn =
1

(d− 2)!
εmnµ1...µd−2λµ1...µd−1

, (5.25)

so that the form part of sections of E can be equivalently written as a section of ∧2TM⊗
detT ∗M i.e. anti-symmetric rank 2 tensor density. Then, the section of E can be written
as

V M = V mn =

V m,d+1 = vm ∈ TM

V mn = λmn ∈ ∧2TM⊗ detT ∗M≃ ∧d−2T ∗M
(5.26)

where mn is an anti-symmetric pair, so the section is a 1
2
d(d+ 1)-dimensional bi-vector.

Or roughly in a ‘matrix’ form, it is

(
vµ

λµ1...µd−2

)
∼



0 λ · · · λ v1

−λ . . . . . . ...
...

... . . . . . . λ
...

−λ · · · −λ . . . vd

−v1 · · · · · · −vd 0


(5.27)

and it is clear that the degrees of freedom of both sides are 1
2
d(d + 1). Then, as a

(d + 1)-dimensional matrix, the natural action on the section V mn is GL(d,R) group,
and since the background manifold is sphere which is orientable, the determinant of the
transformation needs to be positive to preserve orientation, therefore, the structure group
is GL+(d+ 1,R).

For the partial derivative, we need to define the dual generalised tangent bundle by the
dual of the exact sequence (5.19) as in the end of Section 2.7

0→ T ∗M→ E∗ → ∧d−2TM→ 0 (5.28)
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giving the isomorphism
E∗ ≃ T ∗M⊕∧d−2TM (5.29)

and the partial derivative is embedded into E∗ using the map T ∗M→ E∗ so

∂M = ∂mn =

∂m,d+1 = ∂m,

∂mn = 0.
(5.30)

The contraction between elements of E and E∗ is given by

V ·W = V MWM =
1

2
V mnWmn (5.31)

where the 1
2

comes from when contracting p anti-symmetric indices, there is a weight 1
p!

.

Since both of the sections of E and E∗ are in the 1
2
d(d + 1)-dimensional bi-vector

representation, the structure group acts on them in the adjoint representation, hence we
have the adjoint generalised frame bundle. By calculating the Lie algebra of GL+(d+1,R)
group, one finds that [32]

adF ≃ R⊕ (TM⊗ T ∗M)⊕ ∧d−1TM⊕∧d−1T ∗M. (5.32)

Also, as

E ⊗ E∗

≃ (TM⊕∧d−2T ∗M)⊗ (T ∗M⊕∧d−2TM)

≃ (TM⊗ T ∗M)⊕ (TM⊗∧d−2TM)⊕ (T ∗M⊗∧d−2T ∗M)⊕ (∧d−2T ∗M⊗∧d−2TM)

≃ (TM⊗ T ∗M)⊕ (TM⊗∧d−2TM)⊕ (T ∗M⊗∧d−2T ∗M)⊕ detT ∗M
(5.33)

where we used the isomorphism (5.24) for the last term so it equals ∧2TM⊗ detT ∗M⊗
∧d−2TM = detT ∗M, then we have

adF ⊂ E ⊗ E∗. (5.34)

Then the section R of adF can be written as

R = RA
BÊA ⊗ ÊB (5.35)

where {ÊA} is basis of E and {ÊB} is the dual basis for E∗, and there is a projection
map [17]

×ad : E ⊗ E∗ → adF (5.36)
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so that for V ∈ Γ(E),W ∈ Γ(E∗) [32]

(V ×ad W )mn = V mpWnp −
1

4
V pqUpqδ

m
n . (5.37)

Therefore the Dorfman derivative can now be written down as [17]

LVW
M = (V · ∂)WM − (∂ ×ad V )MNW

N (5.38)

where the second term indicates that the transformation is in adjoint representation
of the structure group. The Courant bracket is still defined as anti-symmetrisation of
Dorfman bracket, and as the O(d, d) case, the Dorfman derivative can be extended to any
generalised tensors i.e. on any representations of GL+(d+ 1,R).

Similar to the O(d, d) × R+ case, one can introduce the generalised metric G which
is parametrised by the metric g, the (d − 1)-form field A and a scale factor ∆ which
comes from compactification of extra dimensions i.e. for dilaton [17, 16]. By introducing
the generalised metric, the structure group reduces to the maximal compact subgroup
SO(d+ 1) ⊂ GL+(d+ 1,R) (see Example 2.2) and agrees with the sphere background.

By definition, the generalised metric on E is given by

G(V, V ) = GMNV
MV N (5.39)

where V is in its original form (5.17) as a section of E. However, similar to the O(d, d)×R+

case, the basis for the generalised bundle E is different from the basis for TM⊕∧d−2T ∗M
by A-shift and a scaling e∆, so, in order to express G using the usual metric g on TM,
the section V needs to be transferred back to the basis of TM⊕∧d−2T ∗M by

Ṽ = e−∆e−AV (5.40)

and in component is(
ṽm

λ̃m1...md−2

)
= e−∆

(
vm

λm1...md−2
+ ivmAmm1...md−2

)
(5.41)

62



so

G(V, V ) = GMN Ṽ
M Ṽ N

= gmnṽ
mṽn +

1

(d− 2)!
gm1n1 · · · gmd−2nd−2 λ̃m1...md−2

λ̃n1...nd−2

= e−2∆
(
gmnv

mvn +
1

(d− 2)!
A p1...pd−2

m Anp1...pd−2
vmvn

　　　　+ vmA n1...nd−2
m λn1...nd−2

+ vnA m1...md−2
n λm1...md−2

　　　　+
1

(d− 2)!
gm1n1 · · · gmd−2nd−2λm1...md−2

λn1...nd−2

)
= V T · e−2∆

(
gmn + 1

(d−2)!
A

p1...pd−2
m Anp1...pd−2

A
n1...nd−2

m

A
m1...md−2

n
1

(d−2)!
gm1n1 · · · gmd−2nd−2

)
· V

(5.42)

One can also find the generalised metric for the bi-vector representation. We first
define another bundle whose transformation is in the (d + 1)-dimensional fundamental
representation of GL+(d+1,R), and anti-symmetrise this bundle shall give the 1

2
d(d+1)-

dimensional bi-vector representation. This bundle is defined as1 [16, 32]

W ≃ (detT ∗M)
1
2 ⊗ (TM⊕∧dTM)

≃ (detT ∗M)
1
2 ⊗ TM⊕ (detT ∗M)−

1
2

(5.43)

where we used the isomorphism (detT ∗M)−
1
2 ≃ (detT ∗M)

1
2 ⊗ ∧dTM which is a gener-

alisation of (A.85) with weight. Then the section K = q + t ∈ Γ(W ) is given by [32]

Km =

V m = qm ∈ (detT ∗M)
1
2 ⊗ TM

V d+1 = t ∈ (detT ∗M)−
1
2

(5.44)

which is (d+ 1)-dimensional. By considering the basis for W , roughly, one has

∧2[(det g)
1
4 ⊗ e⊕ (det g)−

1
4 ] ∼ [(det g)

1
2 ⊗ (e ∧ e)]⊕ e⊕ 0 (5.45)

where (det g)−
1
4 , e, (det g−

1
4 ) are bases of (detT ∗M)

1
4 , TM, (detT ∗M)−

1
4 respectively,

and ∧2 det g = 0 since det g is a density. Therefore

∧2W ≃ detT ∗M⊗∧2TM⊕ TM≃ E (5.46)

where we used the isomorphism (5.24) again. Thus, from anti-symmetrisation of W , one
has that the degrees of freedom of sections of E is 1

2
d(d+1) which agrees with the bi-vector

1The advantage of this bundle is that the weight (detT ∗M)
1
2 cancels the weight of the spin bundle of original

tangent bundle S±(E) ≃ (detT ∗M)−
1
2 ⊗ ∧even/oddT ∗M [4]. This will not be discussed further here.
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representation.

However, unlike the section V ∈ Γ(E), the corresponding ‘A-shift’ transformation for
K ∈ Γ(W ) is not clear, so instead of using G(K,K), one can find the frame {Ẽi} of W ,
and use G = ẼT Ẽ to find the generalised metric on W . Since E ≃ ∧2W , the frame for
W is defined as [16]

Êij = Ẽi ∧ Ẽj (5.47)

where {Êij}, i, j = 1, ..., d + 1 is the frame of E in the bi-vector representation, and is
labelled by an anti-symmetric pair as the indices of bi-vectors are anti-symmetric. The
orthonormal condition implied by the structure group SO(d+ 1) is

G(Êij , Êkl) = δikδjl − δilδjk. (5.48)

And similar to the O(d, d) splitting frame, as E ≃ TM⊕∧d−2T ∗M, one can construct
two sub-frames for TM and ∧d−2T ∗M. For TM the basis is as usual {êa} with its dual
{êa} and the usual metric g, and the basis transform under SO(d) ⊂ SO(d + 1). The
wedge product of {êa} gives the basis for the form part. Then as analogue to (4.13), the
split frame is given as [16, 3, 32]

Êij =

Êa,d+1 = e∆(êa + iêaA)

Êab =
1

(d−2)!
e∆εabc1...cd−2

êc1 ∧ · · · ∧ êcd−2

(5.49)

where the form part is identified to a 2-form density using (5.24). Hence, the frame of W
is defined using (5.47), and the dual frame is given by [32]

Ẽi =

Ẽa = e−
1
2∆(det g)−

1
4 (êa + êa ∧A)

Ẽd+1 = e−
1
2∆(det g)−

1
4 volg

(5.50)

where volg can be identified to
√
det g using the isomorphism in (A.85). Also, note that

the scaling factor is now 1
2
∆ and also (

√
det g)

1
2 because the weighting of W is (detT ∗M)

1
2

instead of detT ∗M for the O(d, d)×R+. For ê∧A, it is a d-from, hence can be identified
to a tensor density using (A.85) so

êa ∧A = êamA
m ∈ Γ(detT ∗M) (5.51)

where Am is a vector density defined as

Am =
1

(d− 1)!
εmp1...pd−1Ap1...pd−1

∈ Γ(detT ∗M⊗ TM) (5.52)

using the isomorphism detT ∗M⊗ TM ≃ ∧d−1TM and Am1...md−1
is the (d − 1)-form
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field of E. Then by definition, the generalised metric is given by

Gmn = δijẼ
i
mẼ

i
n =

e−∆

√
det g

(êamê
a
n + êamê

a
nA

n + êanê
a
mA

m + êamê
a
nA

mAn + det g)

(5.53)
and using g = êT ê, one has

G =
e−∆

√
det g

(
gmn gmpA

p

gnpA
p det g + gpqA

pAq

)
(5.54)

Thus, the generalised metric acts on K ∈ Γ(W ) as

G(K,K) = GmnK
mKn (5.55)

and using that E ≃ ∧2W , one also has the generalised metric on V ∈ Γ(E) as

G(V, V ) =
1

2
GmpGnqV

mnV pq (5.56)

where the 1
2

factor comes from summing anti-symmetric indices.

Finally, both of (5.42) and (5.54) show explicitly that the generalised metric is param-
eterised by the degrees of freedoms g,A,∆, and hence the coset space is parameterised
by

{g,A,∆} ∈ GL
+(d+ 1,R)
SO(d+ 1)

. (5.57)

5.3 Generalised Parallelisability of Spheres

In this section, we will show all spheres are generalised parallelisable following [4]. A
d-dimensional sphere Sd with radius R can be embedded into Rd+1 as

xi = Ryi,　δijyiyj = 1 (5.58)

where xi is coordinate of Rd+1 and yi is coordinate for a unit d-sphere. The metric g on
the sphere is

ds2 = R2δijdy
idyj (5.59)

and the volume form on Sd is given by

volg =
Rd

d!
εi1...id+1

yi1dyi2 ∧ · · · ∧ dyid+1 . (5.60)

By definition, Sd has symmetry group SO(d+ 1), so there are d+ 1 conformal Killing
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vectors ki given by [32]

ki(yj) = iki
dyj = δij − yiyj ,　Lki

g = −2yjg (5.61)

giving 1
2
d(d+ 1) rotation Killing vectors

vij = R−1(yikj − yjki) (5.62)

which generates Lie algebra so(d+ 1)

[vij , vkl] = R−1(δikvlj − δilvkj − δjkvli + δjlvki) = X
[mn]

[ij][kl] vmn (5.63)

where
X

[mn]
[ij][kl] = R−1(δikδ

m
l δ n

j − δilδ m
k δ n

j − δjkδ m
l δ n

i + δjlδ
m
i δ n

i ). (5.64)

The Killing vectors can be used to define the global frame Êij according to (5.49) as

Êij =

(
vij

σij − ivijA

)
(5.65)

where
σij = ∗(R2dyi ∧ dyj) =

Rd−2

(d− 2)!
εijk1...kd−1

yk1dyk2 ∧ · · · ∧ dykd−1 (5.66)

and satisfies [32]
Lvijσkl = R−1(δikσlj − δilσkj − δjkσli + δjlσki) (5.67)

Since vij = 0 when yi = yj = 0 whereas dyi ∧ dyj = 0 when y2i + y2j = 1, the upper part
and lower part of Êij cannot be zero at same time, hence Êij is globally defined. Also,
one has from [32] that

G(Êij , Êkl) = vijvkl + σijσkl = δikδjl − δilδjk (5.68)

so it is indeed a frame for the SO(d+ 1) structure.
Using the definition of Doefman derivative (2.25), one find explicitly that

LÊij
Êkl = [vij , vkl] + Lvij (σkl + ivkl

A)− ivkl
d(σij + ivij

A)

= [vij , vkl] + Lvijσkl + Lvij ivkl
A− ivkl

(dσij + LvijA− ivijdA)

= [vij , vkl] + Lvijσkl + i[vij ,vkl]A− ivkl
(dσij − ivijF )

(5.69)

where we used (A.32) from first to second line, then dA = F and (A.33) to the third line.
Then from [32] one has

ivijvolg =
R

d− 1
dσij (5.70)
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so substitute into F (5.15) gives

ivijF =
d− 1

R
ivijvolg =

d− 1

R

R

d− 1
dσij = dσij (5.71)

hence the last term vanishes and substitute (5.63) (5.67) into the equation gives

JÊij , ÊklK = LÊij
Êkl = R−1[δik(vlj + σlj + ivljA)− δil(vkj + σkj + ivkj

A)

　　　− δjk(vli + σli + ivliA) + δjl(vki + σkj + ivkj
A)]

= R−1(δikÊlj − δilÊkj − δjkÊli + δjlÊki)

= X
[mn]

[ij][kl] Êmn

(5.72)

where X
[mn]

[ij][kl] is given in (5.64) and is the structure constant that defines the Lie
algebra so(d + 1) of the structure group SO(d + 1) which agrees with Theorem 5.2.
Therefore, by Definition 5.2, all round spheres are generalised parallelisable.

5.4 Generalised Scherk-Schwarz Reduction on Sd

Consider for example, the 10-dimensional type II supergravity with d dimensions being
compactified, the spacetime is

M10 ≃ N ×M (5.73)

where M is the d-dimensional compactified manifold and N is a (10 − d)-dimensional
manifold for reduced theory. We assign coordinate xµ with greek indices for N and use
latin or capital letters for indices onM. After Scherk-Schwarz reduction, the fields in the
NSNS sector g,B, ϕ give three types of fields for the reduced theory on N

1. gmn, Bmn, ϕ which are encoded in the generalised metric

GMN = ϕIJ(x)Ê M
I Ê N

J (5.74)

and transform as a scalar ϕ(x) on N for they have no indices of N

2. g m
µ , B m

µ transform as vectors on N , and can be gathered into a single vector V N
µ

V N
µ = A I

µ (x)Ê N
I (5.75)

which gives the gauge field Aµ(x)

3. gµν(x) which is a metric on N
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so the action for the reduced theory on N generally depends on ϕ(x), Aµ(x), gµν(x) as
S = S[ϕ,A, g]. One can find the field strength for the gauge field A I

µ is

F I
µν = 2∂[µA

I
ν] +X I

JK A J
µ A K

ν (5.76)

where X C
AB is the structure constant that defines the Lie algebra

[ÊA, ÊB] = X C
AB ÊC (5.77)

of the gauge symmetry group from compactified manifoldM after Scherk-Schwarz reduc-
tion. Similar to the usual Scherk-Schwarz reduction (Appendix F) where the Lie algebra
of the gauge group in the reduced theory is the same as the Lie algebra on the global
frame of the manifold, [32] suggests that for the generalised version, the structure con-
stant X C

AB for the gauge group is also equivalent to the structure constant that defines
the Lie algebra of the structure group of the generalised tangent bundle

JÊA, ÊBK = X C
AB ÊC (5.78)

where {ÊA} is the global frame of the generalised tangent bundle. Hence, for M is a
d-sphere background, the Lie algebra of the gauge group after Scherk-Schwarz reduction
is so(d + 1) from (5.72), and the gauge group is SO(d + 1) i.e. the structure group of
generalised tangent bundle.

Then we define the generalised Scherk-Schwarz reduction on spheres as analogue to
the usual Scherk-Schwarz reduction in Appendix F. We first define a new global rotated
generalised frame. For the bi-vector representation, the new frame is [32]

Ê′
ij = U k

i (x)U l
j (x)Êkl,　U j

i (x) ∈ GL+(d+ 1,R) (5.79)

giving the inverse of generalised metric

G′MN =
1

2
T ik(x)T jl(x)ÊM

ij Ê
N
kl (5.80)

where T kl = δijU k
i U

l
j ∈ GL+(d+1,R) and 1

2
is to cancel the factor from (5.48). By set-

ting the determinant of transformation matrix to 1, the structure group can be restricted
to SL(d+ 1,R). The scalar field of reduced theory is then

ϕ(x) =
1

2
T ik(x)T jl(x) (5.81)
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and parameterises the coset space

SL(d+ 1,R)
SO(d+ 1)

(5.82)

where SO(d+ 1) is the gauge group of reduced theory.
One can then find the inverse metric from (5.42), and by comparing the two expressions,

the ansatz for sphere consistent truncations is found to be [32]

ds′2 = R2(T klykyl)
− 2

d−1T−1
ij dy

idyj

A′ = −1

2
(T klykyl)

−1 Rd−1

(d− 2)!
εi1...id+1

(T i1jyj)y
i2dyi3 ∧ · · · ∧ dyid+1 +A

e2∆
′
= (T klykyl)

d−3
d−1

(5.83)

A final notice is that for a manifold that is generalised parallelisable, the frame of
generalised tangent bundle is global and hence it is trivial, so the spinor bundle is also
trivial and there are globally defined spinors. Then the truncated theory should have
same number of supersymmetries as original theory [32].

5.5 Truncation on S3

According to [50], the type II supergravity with near-horizon NS fivebrane background
has solution of S3 × Rt × R5,1 where Rt is a linear dilaton background, and gives

ds2 = ds2(R5,1) + dt2 +R2ds2(S3)

H = 2R−1volg

ϕ = −R−1t

(5.84)

where R is the radius of the 3-sphere, and the d-form F = dA becomes 3-form H = dB.
For 3 dimensions, the generalised tangent bundle is simply E ≃ TM⊕ T ∗M. Note that
the dilaton is not in the S3 background and the factor ∆ is set to zero. As S3 is orientable,
the structure group GL+(4,R) can be restricted to SL(4,R) by setting the determinant
of transformation to 1, and the generalised metric is preserved by SO(4)/Z2 [32], so the
structure group which gives the gauge group is

SO(4)/Z2 ⊂ SL(4,R) (5.85)

which agrees with the result in [19] that the consistent reduction on S3 gives the SO(4)

gauge group for the reduced theory. Then using the Lie group isomorphism

SO(4)/Z2 ≃ SO(3)× SO(3),　SL(4,R) ≃ SO(3, 3) (5.86)
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one see explicitly that the structure of the tangent bundle E ≃ TM⊕ T ∗M is

SO(3)× SO(3) ⊂ SO(3, 3) (5.87)

so the geometry simply becomes the O(3, 3) generalised geometry.

From Section 5.3, the Lie algebra on the frame defined by the generalised parallelisable
condition is so(4), and using Lie algebra isomorphisms one has

so(4) ≃ so(3)× so(3) (5.88)

which implies that there are two copies of so(3) Lie algebra. To see this explicitly, we
notice that the generalised tangent bundle E can be split into two sub-bundles E ≃
C+ ⊕ C− as in Section 3.2. The sub-frames for C+ and C− can be constructed using
self-dual and anti-self-dual decomposition of Êij = vij + σij − ivijB as in Example A.6
which are

Ê±
ij =

1

2
Êij ±

1

4
ε kl
ij Êkl. (5.89)

This gives 6 independent basis vectors

Ê±
1 = Ê±

12 =
1

2
(Ê12 ± Ê34)

Ê±
2 = Ê±

13 =
1

2
(Ê13 ± Ê24)

Ê±
3 = Ê±

14 =
1

2
(Ê14 ± Ê23)

(5.90)

and the sets of basis vectors labelled by + and − are identified to the bases Ê+
a for C+

and Ê−
ā for C− respectively where a, ā = 1, 2, 3 in 3 dimensions. Their expressions are

given in terms of left and right invariant vector fields on S3 which can be found in [32],
and one can check that they satisfies the orthogonal conditions (3.44) and (3.45) with the
canonical metric and generalised metric. Then, under the Courant bracket they give [32]

JÊ+
a , Ê

+
b K = R−1εabcÊ

+
cJÊ−

ā , Ê
−
b̄

K = R−1εāb̄c̄Ê
−
c̄JÊ+

a , Ê
−
b̄

K = 0

(5.91)

so there are two copies of su(2) Lie algebra that is closed on each sub-frames {Ê+
a } and

{Ê−
ā }. Therefore, the overall Lie algebra is

su(2)× su(2) (5.92)

and using the Lie algebra isomorphism su(2) ≃ so(3), one obtains (5.88) which is expected
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from the O(3)×O(3) structure from splitting frames.
For the Scherk-Schwarz reduction, the frame is transformed to

Ê′
A(x) = U B

A (x)ÊB,　U B
A ∈ SO(3, 3) ≃ SL(4,R) (5.93)

giving the new inverse metric

G′MN = ϕAB(x)Ê M
A Ê N

B (5.94)

where
ϕAB(x) = δCDU A

C U B
D (5.95)

is the scalar field of the reduced theory, and parametrise the coset space

SL(4,R)
SO(4)/Z2

≃ SO(3, 3)

SO(3)× SO(3)
. (5.96)

Then using (5.83) gives the ansatz

ds′2 = R2(T klykyl)
−1T−1

ij dy
idyj

B′ = −1

2
R2(T klykyl)

−1εi1i2i3i4(T
i1jyj)y

i2dyi3 ∧ dyi4 +B

e2∆
′
= 1

(5.97)

which matches the results from [23, 19].
However, since we only included bosonic fields and there are more fields in the theory,

we cannot prove that the truncation is consistent here.
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6 Conclusion

In this dissertation, we constructed the O(d, d) generalised geometry on a generalised
space TM⊕ T ∗M where M is a d-dimensional differentiable manifold. The generalised
space admits a natural canonical inner product which defines the O(d, d) structure group.
By considering the Lie algebra of the structure group, we found three different transfor-
mations, the diffeomorphism described by the GL(d,R) group, the B-transform where
B is a closed 2-form gauge field, and also a β-transform. The diffeomorphism and B-
transform are given by the geometric subgroup GL(d,R) ⋉ Ω2

closed and is encoded in the
Courant bracket or Dorfman derivative which are the generalised versions of Lie bracket
and Lie derivative. The β-transform was not discussed here since it does not preserve the
Courant bracket, but it is related to the T-duality in string theory and non-geometrical
background [10]. We then defined the generalised tangent bundle E by a short exact
sequence with a splitting defined by the B-transform and we identified the isomorphism
between E and T ⊕ T ∗. This definition using exact sequence implies that there are more
general generalised tangent bundles we can consider [3], for example, replace the cotangent
bundle with the anti-symmetrised cotangent bundle gives the GL+(d+ 1,R) generalised
geometry for d-sphere in Chapter 5. Other geometries such as exceptional generalised
geometries can also be defined for 11-dimensional supergravity and M-theory [3].

We then constructed the generalised metric which is compatible with the canonical
inner product and further reduces the structure group to O(d) × O(d). This also splits
the generalised tangent bundle into two orthogonal sub-bundles. Then we constructed
the generalised vielbein, connection, torsion and curvature as analogue to the usual Rie-
mannian geometry. However, even though we constructed a torsion-free connection that
is compatible with both the generalised metric and the canonical metric, it is not unique,
so is the curvature scalar. But since the generalised metric encodes the metric and the
2-form B-field which is identified as a gauge field, and the Courant bracket encodes the
symmetries of diffeomorphism and gauge transformation, we were still motivated to use
generalised geometry to reformulated the type II supergravity. The generalised tangent
bundle is extended to detT ∗M⊗(TM⊕T ∗M) so that the structure group is O(d, d)×R+

and provides one more degree of freedom for the dilaton. Then we showed that the new
generalised metric encodes all of the metric, the 2-form B-field and the dilaton, and the
bosonic symmetries are encoded in the Courant bracket. Moreover, with the help of spinor
fields, we were able define a unique curvature scalar, although there is still no canonical
uniquely defined torsion-free connection. The resultant generalised connection was found
to be the equivalent to the results in [12, 13] and the double field theory [14]. The cur-
vature scalar then allows us to write down the action and hence the equations of motion
using the generalised geometry language. For the metric and the 2-form B, it is just like
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the vacuum field equation, and if one includes the RR fields, it can be viewed as a source
term to the equations of motion. Hence, one has a generalised version of Einstein gravity
theory from the reformulation of type II supergravity using O(d, d)× R+ generalised ge-
ometry. One remaining task is that the fermionic fields are not included. Furthermore,
one can construct the exceptional generalised geometry Ed(d) × R+ for 11-dimensional
supergravity as in [17, 16], and also for geometries of M-theory [3].

In the last chapter, we applied the generalised geometry to the consistent truncation
problem. We noticed that the usual parallelisable Lie group manifold gives consistent
truncation and can explain the consistent truncations on S1 and S3, but there are still
truncations on S4, S5 and S7 in supergravity theories which cannot be explained. Hence,
we defined the generalised parallelisable manifold as analogue to the local group manifold
as JÊA, ÊBK = X C

AB ÊC (6.1)

where X C
AB is constant and {ÊA} is a global frame on the generalised tangent bundle

and the Courant bracket on frames defines a Lie algebra. Then, as implied by [30, 31,
10], there is a conjecture that a generalised parallelisable manifold gives a consistent
truncation which also preserves the number of supersymmetry, and the gauge group of
the reduced theory has the same Lie algebra as (6.1). Even though there is no proof
to the conjecture, we showed that all round spheres are parallelisable by constructing
a GL+(d + 1,R) generalised geometry for d-sphere, and generalised the Scherk-Schwarz
reduction indeed gives a gauge group with the Lie algebra on the frame, namely so(d+1).
Hence the conjecture may explain the truncations on S4, S5 and S7. We then used the
3-sphere as an example, the generalised geometry of which is simply the O(d, d) one,
and the Lie algebra of the gauge group is found to be so(4) which agrees with the usual
Scherk-Schwarz reduction. The ansatz for generalised Scherk-Schwarz reduction on S3

was also found to be the same as the usual results in [23, 19]. However, we were not able
to show that the truncation is consistent since there are other fields such as fermionic
fields which were not included. One can further show that for the truncations on S4, S5

and S7 with exceptional geometries, the ansatz agree with the usual Scherk-Schwarz
reduction [32]. In fact, it is proven in [51] that there is consistent truncations on any
supersymmetric solutions of 10 or 11-dimensional supergravity with AdSD×M whereM
is compactified. However, even if one proved the conjecture, it is still very hard to find a
manifold that is generalised parallelisable, although Proposition 5.3 provides a constraint
on possible generalised parallelisable manifold. And, one may also expect to explain the
Pauli truncation on M≃ G×G/G using generalised parallelisability.

The applications of generalised geometry do not stop here, it can be further extended to
M-theory, supersymmetric flux compactification, calibrations for D-branes and potentially
the reformulation of AdS/CFT correspondence, and even mirror symmetries.
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Appendices

A Differential Geometry

In this section, we consider a m-dimensional smooth manifoldM with coordinate basis
∂µ = ∂

∂xµ and dual basis dxµ. Detailed derivations and proofs can be found in [35].

Definition A.1. For a map f :M→N , there is an induced map called push-forward

f∗ : TpM → Tf(p)N
v → f∗v

,　f∗v = vµ
∂xν

∂xµ

∣∣∣
p

∂

∂xν
(A.2)

and another map called pull-back

f∗ : T ∗
pM ← T ∗

f(p)N
ω ← ω

,　f∗ω = ωµ
∂xµ

∂xν

∣∣∣
f(p)

dxν (A.3)

Definition A.2. For a vector field V , one can define flow which is a map

σV : R×M → M
(λ, p) → p′ = σV (λ, p) = σV (λ)p

. (A.4)

Definition A.3. For two vector fields X,Y , The Lie derivative is defined as

LXY |p = lim
ε→0

σX(−ε)∗Y |p′ − Y |p
ε

∈ TpM (A.5)

where p′ = σX(ε)p and σX(ε) : M → M is a diffeomorphism that takes Y |p′ ∈ Tp′M
to Y |p ∈ TpM, hence the Lie derivative encodes the infinitesimal diffeomorphism. On a
coordinate basis, it can be written in component as

LXY
µ = Xν∂νY

µ − Y ν∂νX
µ. (A.6)

Claim A.1. From (A.6), it is easy to see that the Lie derivative is anti-symmetric

LXY = −LYX. (A.7)

Claim A.2. The Lie derivative satisfies a Leibniz rule on two vectors X,Y ,

LX(LY Z) = LLY XZ + LY (LXZ). (A.8)

And due to anti-symmetry, the above equation can be rewritten as

LX(LY Z) + LY (LZX) + LZ(LXY ) = 0 (A.9)
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which is the Jacobi identity.

Definition A.4. The action of Lie derivative can be extended to a tensor field A as

LX [A]|p = lim
ε→0

σ(ε)∗A|p′ −A|p
ε

. (A.10)

and in coordinate basis, for a (p, q)-tensor A, the components are [4]

LXA
µ1...µp
ν1...νq

= Xµ∂µA
µ1...µp
ν1...νq

+ (∂µX
µ1)Aµµ2...µp

ν1...νq
+ · · ·+ (∂µX

µp)Aµ1...µp−1µ
ν1...νq

− (∂ν1
Xµ)Aµ1...µp

µν2...νq
− · · · − (∂νq

Xµ)Aµ1...µp
ν1...νq−1µ

.

(A.11)

The terms in the second and third lines can be thought as the transformation under the
adjoint representation of Lie algebra gl(d,R) with elements aµν = ∂nX

µ [4], which is the
infinitesimal diffeomorphism, hence the Lie derivative generates a diffeomorphism. This
also implies that tensors can be viewed as representations of the GL(d,R) group.

Example A.1. The Lie derivative of a co-vector field ω in components is

LXωµ = Xν∂νωµ + ων∂µX
ν , (A.12)

and for a function f , Lie derivative is the directional derivative

LXf = X[f ]. (A.13)

Claim A.3. The Lie derivative satisfies Leibniz rule. For a function f and tensor field
A,

LX(fA) = X[f ]A+ fLXA, (A.14)

Definition A.5. The Lie bracket is a map that takes two vector fields to another vector
field

[·, ·] : TpM× TpM → TpM
X,Y → [X,Y ]

(A.15)

s.t. for a function f ,
[X,Y ][f ] = X[Y [f ]]− Y [X[f ]]. (A.16)

The Lie bracket can be written in components on a coordinate basis as

[X,Y ]µ = Xν∂νY
µ − Y ν∂νX

µ = LXY
µ (A.17)

so Lie bracket and Lie derivative of two vectors are the same.

Claim A.4. For X,Y, Z ∈ TpM, the Lie bracket satisfies three properties
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• bi-linear: [aX + bY, Z] = a[X,Z] + b[Y, Z], [X, aY + bZ] = a[X,Y ] + b[X,Z]

• anti-symmetric: [X,Y ] = −[Y, Z]

• Jacobi identity: [[X,Y ], Z] + [[Y, Z], X] + [[Z, Y ], Z] = 0

Claim A.5. It can be shown from (A.8) that

L[X,Y ] = [LX ,LY ] (A.18)

Claim A.6. For a diffeomorphism f :M→M, vector fields X,Y are pushed forwards
to f∗X, f∗Y , then Lie bracket is invariant under diffeomorphisms i.e. diffeomorphisms
preserve Lie bracket

f∗[X,Y ] = [f∗X, f∗Y ]. (A.19)

Definition A.6. A differential form ω of order r is a totally anti-symmetric tensor in J 0
r

and is given in components is defined as

ω =
1

r!
ωµ1...µr

dxµ1 ∧ · · · ∧ dxµr . (A.20)

The space of r-form is denoted as Ωr(M) with dimension

dim(Ωr(M)) =
m!

(m− r!)r!
(A.21)

and hence
dim(Ωr(M)) = dim(Ωm−r(M)) (A.22)

Example A.2. A top form is a m-form

V = v(x)dx1 ∧ · · · dxm =
1

m!
v(x)ε̃µ1...µm

dxµ1 ∧ · · · dxµm (A.23)

and a volume element

volg =
√
|g|dx1 ∧ · · · ∧ dxm =

1

m!
εµ1...µm

dxµ1 ∧ · · · ∧ dxµm (A.24)

where εµ1...µm
=
√
|g|ε̃µ1...µm

, and g is a metric on M and |g| is its determinent.

Definition A.7. The exterior derivative maps r-form to (r + 1)-form

d : Ωr(M) → Ωr+1(M)

ω → dω
(A.25)

In coordinate basis, ω = 1
r!
ωµ1...µr

dxµ1 ∧ · · · ∧ dxµr and

dω =
1

r!
(∂αωµ1...µr

)dxα ∧ dxµ1 ∧ · · · ∧ dxµr (A.26)
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Example A.3. For a function f ∈ Ω0(M), df = ∂µfdx
µ is a 1-form.

Claim A.7. The exterior derivative is nilpotent i.e. d2 = 0 which can be shown by
symmetry argument of indices.

Definition A.8. An r-form ω is

• closed if dω = 0,

• exact if ω = dβ, where β is a (r − 1)-form.

Claim A.8. Since d2 = 0, any exact form is also closed.

Definition A.9. The interior product is a map induced by a vector field X and is defined
as

iX : Ωr(M) → Ωr−1(M)

ω → iXω
(A.27)

s.t.
(iXω)(· · · ) = ω(X, · · · ). (A.28)

In a coordinate basis, ω = 1
r!
ωµ1...µr

dxµ1 ∧ · · · ∧ dxµr so

iXω =
1

(r − 1)!
Xνωνµ1...µr−1

dxµ1 ∧ · · · ∧ dxµr−1 . (A.29)

Example A.4. If ω is a 1-form, then iXω = ω(X) = ⟨ω,X⟩ is the inner product.

Claim A.9. For two vectors X,Y , the interior product satisfies

iXiY = −iY iX (A.30)

due to symmetry of indices, hence it is also nilpotent

i2X = 0. (A.31)

Claim A.10. The Lie derivative or Lie bracket, exterior derivative and interior product
satisfy the following identities

LX = iXd+ diX (A.32)

which is called the Cartan formula in this dissertation, and,

i[X,Y ] = [LX , iY ], (A.33)

LfX = fLX + dfiX . (A.34)

Claim A.11. For a function f ∈ Ω0, since there is no (−1)-form, so iXf = 0, and using
(A.32) gives

LXf = iXdf + diXf = iXdf. (A.35)
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Claim A.12. For a diffeomorphism f :M→ N , an r-form ω can be pulled back using
f∗, and satisfies

d(f∗ω) = f∗(dω). (A.36)

And a vector X can be pulled to f∗X, and satisfies

if∗Xf
∗ω = f∗(iXω). (A.37)

And similarly for push forward f∗.

Definition A.10. Hodge star is a map ∗ : Ωr(M)→ Ωm−r(M), and for a general r-form
ω = 1

r!
ωµ1...µr

dxµ1 ∧ · · · ∧ dxµr

∗ω =
1

r!(m− r)!
ωµ1...µr

εµ1...µr
µr+1...µm

dxµr+1 ∧ · · · ∧ dxµm (A.38)

Example A.5. For volume element, volg = ∗1.

Example A.6. On a 4-dimensional manifold, any 2-form ω ∈ Ω2 can be decompose into
self-dual and anti-self-dual as

ω = ω+ + ω− (A.39)

where ω+ is self-dual and ω− is anti-self-dual i.e.

∗ω+ = ω+,　 ∗ ω− = −ω− (A.40)

and one finds that
ω± =

1

2
(1± ∗)ω (A.41)

and in components is
ω±
µν =

1

2
ωµν ±

1

4
ε ρσ
µν ωρσ. (A.42)

B Lie Group and Lie Algebra

Definition A.11. For a Lie group G, Lie subgroup H ⊂ G, and an equivalence relation

∼: g ∼ g′ if ∃h ∈ H s.t. g′ = gh (A.43)

which defines an equivalence class

[g] = {gh : h ∈ H} (A.44)

then the coset space is group G with its elements identified under ∼

G/H = {[g]} (A.45)
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which is a manifold but may not be a Lie group. If G/H has differential structure, then
it is called homogeneous space. One has a relation for dimensions

dim(G/H) = dimG− dimH. (A.46)

Example A.7.

Sn ≃ SO(n+ 1)/SO(n)

dSn ≃ SO(1, n)/SO(1, n− 1)

AdSn ≃ SO(2, n− 1)/SO(1, n− 2)

(A.47)

Definition A.12. An action of group G on a manifold M is a differentiable map

Φ : G×M → M
g, p → Φ(g, p) = Φg(p)

(A.48)

s.t. Φ(e, p) = p, ∀p ∈M and Φ(g1,Φ(g2, p)) = Φ(g1g2, p) preserve group structure.

Definition A.13. The action Φ : G×M→M is transitive if ∀p ̸= p′ ∈M, ∃g ∈ G s.t.
p′ = Φgp.

Definition A.14. The action Φ : G ×M → M is free if for all non-trivial g ̸= e ∈ G,
∄p ∈ M s.t. Φg(p) = p. In other word, Φp(g) ̸= p, ∀p ∈ M, so if ∃p ∈ M s.t. Φg(p) = p,
then g = e.

Definition A.15. Left and right actions are action of Lie group on itself

left action Lg : G×G → G

(g, h) → Lgh = gh

right action Rg : G×G → G

(g, h) → Rgh = hg

(A.49)

they are transitive, as, for example, if g = g1g
−1
2 then Lgg2 = g1.

Definition A.16. Since left action Lg is diffeomorphism on G and transitive, it can be
used to push-forward vector V ∈ TeG to Lg∗V ∈ TgG, V then defines a vector field over
G XV |g = Lg∗V . The left-invariant vector field is defined by V = X|e ∈ TeG

X|g = Lg∗X|e = Xµ|e
∂xν(g)

∂xµ(e)

∂

∂xν

∣∣∣
g
= Xν ∂

∂xν

∣∣∣
g

(A.50)

Theorem A.13 (Lie theorem). The Lie algebra g of a Lie group G is uniquely determined
by structure i.e.

[Xa, Yb]|g = f c
ab Zc|g (A.51)
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where X,Y, Z are left-invariant vector fields on G, and f c
ab is structure constant.

C Fibre Bundle

This section gives formal definitions of fibre bundles. More details can be found in [35].

Definition A.17. A coordinate bundle (E, π,M, F,G, {Ui}, {ϕi}) contains

1. three differentiable manifolds: total space E, base space M and fibre F .

2. a surjection π : E →M which is called the projection. The inverse map gives the
fibre at p ∈M

π−1(p) = Fp (A.52)

and implies that F ⊆ E.

3. open covering {Ui} of M with local diffeomorphism

ϕi : Ui × F → π−1(Ui)　 s.t. 　π ◦ ϕi(p, f) = p (A.53)

ϕi is called local trivialisation as π−1(Ui) ∼ Ui × F . The map ϕi(p, f) can also be
denoted as

ϕi,p(f) : F → Fp = π−1(p) (A.54)

4. a Lie group G called structure group acts on F on the left.

5. transition function tij which is element of the structure group G. For p ∈ Ui ∩ Uj

and fi, fj ∈ F , the transition function is defined as

tji(p) = ϕ−1
j,p ◦ ϕip (A.55)

so that fj = tji(p)fi and π−1(p) = ϕi(p, fi) = ϕj(p, fj).

For two coordinate bundles (E, π,M, F,G, {Ui}, {ϕi}), and (E, π,M, F,G, {Vi}, {ψi}), if
(E, π,M, F,G, {Ui} ∪ {Vi}, {ϕi} ∪ {ψi}) is also a coordinate bundle, then they are said
to be equivalent. A fibre bundle is then defined as the equivalence class of coordinate
bundles, and is denoted as (E, π,M, F,G) or simply E.

Definition A.18. For a fibre bundle E, its local section is a smooth map s : U ⊂M→ E

s.t. π ◦ S = idM, and s(p) ∈ Fp ≃ π−1(p). Some fibre bundles have global section, and
the space is denoted as Γ(E).

Definition A.19. A vector bundle is a bundle whose fibre is a vector space. For F = Rk,
the structure group is GL(k,R). For vector bundles, sections are globally defined. One
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can define fibre metric hµν(p) s.t. for sections s, s′, there is an inner product

(s, s′)p = hµν(p)s
µ(p)s′ν(p). (A.56)

Definition A.20. For a vector bundle E →M, with fibre F ≃ Rk, on chart Ui of M,

π−1(Ui) ≃ Ui × Rk ≃ s(Ui) (A.57)

hence one can choose k linearly independent sections over Ui: {e1(p), ..., ek(p)} which
defines a local frame over Ui. Given a frame over Ui, there exists a natural map Fp →
F ≃ Rk

V = V αeα(p) ∈ Fp → {V α} ∈ F (A.58)

One can also define a change of frame from e1(p), ..., ek(p) to e′1(p), ..., e
′
k(p) under the

structure group
e′β(p) = Gα

βeα(p) (A.59)

where Gα
β ∈ GL(k,R) is the transition function, and for V ∈ π−1(p) require V =

V αeα(p) = V ′βe′β(p) so
V ′β = G−1(p)βαV

α. (A.60)

Definition A.21. Dual bundle of a vector bundle E with fibre F is defined as E∗ →M
with fibre F ∗ which is a set of linear maps from F to R. The projection is still π. Given
a basis {eα(p)} of Fp, there is a dual basis {eα(p)} for F ∗

p s.t.

⟨eα(p), eβ(p)⟩ = δαβ . (A.61)

Definition A.22. Tangent bundleM on m-dimensional manifoldM is a vector bundle,
with fibre F ≃ Rm. It is defined as

TM =
⋃

p∈M

TpM. (A.62)

The sections of tangent bundle are vector fields, and its structure group is GL(m,R). For
V ∈ TpM,

V = V µ
(i)

∂

∂xµ(i)

∣∣∣
p
= V µ

(j)

∂

∂xµ(j)

∣∣∣
p

(A.63)

so the vector components transformation as

V µ
(j) =

∂xµ(j)
∂xν(i)

V ν
(i),　

∂xµ(j)
∂xν(i)

∈ GL(m,R). (A.64)

Since the fibre of tangent bundle at a point p ∈M is the tangent space TpM, so there is
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a natural coordinate basis { ∂
∂xµ } over chart Ui which can be used as frame.

Definition A.23. Co-tangent bundle is the dual bundle of tangent bundle. It is defined
as

T ∗M =
⋃

p∈M

T ∗
pM (A.65)

so the sections of cotangent bundle are 1-forms. The natural frame for cotangent bundle
is the dual basis of ∂

∂xµ i.e. dxµ s.t.

⟨dxµ, ∂

∂xν
⟩ = δµν . (A.66)

The structure group is still GL(m,R), so the section ω = ωµdx
µ transform as

ω(j)µ =
∂xν(i)
∂xµ(j)

∣∣∣
p
ω(i)ν ,　

∂xν(i)
∂xµ(j)

∈ GL(m,R). (A.67)

Definition A.24. For two fibre bundles E →M with projection π and E′ →M′ with
projection π′, a smooth map f̄ : E′ → E is a bundle map if f̄ maps each fibre F ′

p of E′

onto Fq of E. On a commutative diagram it is

E′ E

M′ M

f̄

π′ π

f

Definition A.25. Product bundle of two vector bundles E →M with fibre F , projction
π and E′ →M′ with fibre F ′, projection π′ is defined as

E × E′ M×M′π×π′

with fibre F ⊕ F ′ i.e. ( V
W ) ∈ F ⊕ F ′, V ∈ F , W ∈ F ′.

Definition A.26. Whitney sum bundle of two bundles E with projection π1 and E′ with
projection π2 is defined as

E ⊕ E′ B

M M×M

π2

π π×π′

f

where E ⊗ E′ = {(u, u′) ∈ E × E′ : (π × π′)(u, u′) = (p, p)}, and fibre is F ⊕ F ′ so

(π × π′)−1(p, p) ≃ π(p)⊕ π′−1(p) = Fp ⊕ F ′
p. (A.68)
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The transition function Tij of E ⊕ E′ is

Tij(p) =

(
tij(p) 0

0 t′ij(p)

)
(A.69)

acts on F ⊕ F ′ on the left.

Definition A.27. For two vector bundles E →M with fibre F , projection π and E′ →
M with fibre F ′, projection π, tensor product bundle E⊗E′ is defined by assigning each
p ∈M with a fibre Fp⊗F ′

p. Given basis {eα} for F , {e′β} for F ′, then the basis of F ×F ′

is {eα ⊗ e′β}, so
dim(E ⊗ E′) = dimE × dimE′. (A.70)

Also, using the wedge product on basis of F

eα ∧ eβ = eα ⊗ eβ − eβ ⊗ eα (A.71)

one can define anti-symmetric tensor product of vector bundles E ∧ E′ s.t. its fibre is
spanned by {eα ∧ eβ}.

Example A.8. An r-form can be defined as the section of anti-symmetric products of
co-tangent bundle [33]

Ωr(M) = Γ(∧rT ∗M) (A.72)

where ∧rT ∗M = T ∗M∧ · · · ∧ T ∗M.

Claim A.14. For vector bundles E,E1, E2, ⊗ is distributive

E ⊗ (E1 ⊕ E2) = (E ⊗ E1)⊕ (E ⊗ E2). (A.73)

Definition A.28. A principal bundle or G-bundle P is a fibre bundle whose fibre F is
structure group G. It is denoted as P (M, G).

Theorem A.15. For a Lie group G and a closed Lie sub-group H, then G is a principal
bundle with fibre H, and the base space is M≃ G/H.

Theorem A.16. A vector bundle naturally induces a principal bundle. For vector bundle
E →M with fibre F ≃ Rk, the induced principal bundle is P (E) = P (M, G) with same
structure group G = GL(k,R).

Definition A.29. Given a principal bundle P (M, G), G acts on the fibre F on left,

g : P × F → P × F
(u, f) → (ug, g−1f)

(A.74)
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where g ∈ G, which defines an equivalence relation (u, f) ∼ (ug, g−1f). The equivalence
class (P × F )/G defines associated fibre bundle (E, π,M, G, F, P ). For a vector bundle,
fibre F is a k-dimensional vector space V . Assume ρ is k-dimensional representation of
G, then G acts on P × V as

g : P × V → P × V
(u, v) → (ug, ρ−1(g)v)

(A.75)

where g ∈ G. By identifying (u, v) ∼ (ug, ρ−1(g)v), one has associated vector bundle
P ×ρ V .

Definition A.30. For a tangent bundle TM over m-dimensional manifold M, its asso-
ciated bundle is tangent frame bundle defined as

FM =
⋃

p∈M

FpM = {(p, {ea})|p ∈M, {ea} is basis of TpM} (A.76)

where FpM is set of frames at p ∈M. On chart Ui ofM with coordinate {xµ}, the basis
of TpM is { ∂

∂xµ }, the section at p is the frame u = {X1, ..., Xm} where

Xα = X µ
α

∂

∂xµ

∣∣∣
p
,　X µ

α ∈ GL(m,R) (A.77)

so the fibre is GL(m,R). And a ∈ GL(m,R) acting on u gives a new frame

ua = {Y1, ..., Ym},　Yβ = Xαa
α
β (A.78)

therefore, GL(m,R) acts onM transitively. The structure group is found by considering

Xα = X µ
α

∂

∂xµ(i)

∣∣∣
p
= X̃ µ

α

∂

∂xµ(j)

∣∣∣
p
,　X µ

α , X̃ µ
α ∈ GL(m,R) (A.79)

and the transition function is

tij =
∂xµ(i)
∂xν(j)

∈ GL(m,R) (A.80)

so the structure group is GL(m,R) and is the same as that of TM. Therefore, since one
has the identification (u,X) ∼ (ua, t−1

ij X) and both of fibre and structure group are GL,
so the tangent frame bundle is an associated principal bundle of tangent bundle.

Definition A.31. Spin bundle ofM is a fibre bundle whose section is spinor field. Since
the GL(k,R) group does not have spinor representation, one need to use the orthonormal
frame bundle with structure group SO(k) as the spin manifold is orientable. The SO(k)

bundle also needs to be lifted to Spin(k) bundle over M since Spin(k) is universal cover
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of SO(k).

Definition A.32. A fibre bundle E is trivial if the transition function is the identity
map everywhere i.e. the structure group is the trivial group, and hence the fibre bundle
can be globally written as direct product of base space and fibre i.e.

E ≃M× F. (A.81)

Theorem A.17. A principal bundle is trivial iff it admits a global section.

Theorem A.18. A vector bundle E is trivial iff its associated principal bundle P (E)

admits a global section. For tangent bundles, since its associated principal bundle is the
tangent frame bundle, so if the tangent bundle has global sections, the tangent frame
bundle also has global sections, so a tangent bundle is trivial if it has global sections.
Similarly for co-tangent bundles.

Definition A.33. A d-dimensional smooth manifold M is parallelisable if there exists
a global defined smooth vector field {V1, ..., Vm} s.t. at ∀p ∈ M, {V1(p), ..., Vm(p)} is a
basis of TpM. The set of vector fields is call parallelisation or absolute parallelism.

Example A.9. Lie groups are parallelisable [33]. The only spheres that are parallelisable
are S0, S1, S3, S7 [52]. S0 is trivial. S1 ≃ U(1) and S3 ≃ SU(2) are both Lie group so
are parallelisable. For S7, see [53]. S2 is not parallelisable due to the hairy ball theorem.

Theorem A.19. A d-dimensional manifold M is parallelisable iff its tangent bundle is
trivial.

Proof. For tangent bundle, sections are vector fields which are globally defined on a
parallelisable manifold M. Hence its associated principal bundle admits a global section
and from Theorem A.18 the tangent bundle is trivial.

Theorem A.20. The definition of parallelisable implies that any parallelisable manifold
is orientable.

Definition A.34. The determinant bundle detT ∗M constructed from cotangent bundle
T ∗M of a smooth manifoldM is defined so that the tensor density is an element of it. In
usual geometry, for a metric g on d-dimensional manifoldM,

√
− det g is a tensor density

that transforms as
√
− det g → det(a)

√
− det g under gµν → aρµa

σ
νgρσ. One can use

det e =
√
− det g (A.82)

as thee basis of detT ∗M, where e is a generic basis on M.
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Claim A.21. If the manifold M is orientable, such as a spin manifold, then there are
non-vanishing global sections, so from Theorem A.18, detT ∗M is a trivial bundle

detT ∗M≃ R×M (A.83)

then one can take any real power of detT ∗M i.e. (detT ∗M)p. However, if M is not
orientable, there can be a sign change in the determinant after a transformation, so, for
example, it makes no sense taking the square root of detT ∗M.

Claim A.22. Using the hodge star (A.38), one can find the isomorphism detT ∗M ≃
∧dT ∗M given by

detλ =
1

d!
εµ1...µdλµ1...µd

(A.84)

where detλ ∈ Γ(detT ∗M) and λµ1...µd
∈ Γ(∧dT ∗M), hence the bundle is denoted as

detT ∗M. In general
detT ∗M⊗∧rTM≃ ∧d−rT ∗M (A.85)

given by
λµ1...µr =

1

(d− r)!
εµ1...µrν1...νd−rλν1...νd−r

(A.86)

where λµ1...µr ∈ Γ(detT ∗M⊗∧rTM) is a tensor density, λν1...νd−r
∈ Γ(∧d−rT ∗M) is a

(d− r)-form, and εµ1...µm
=
√
|g|ε̃µ1...µm

gives the density.

D Riemannian Geometry

We consider a m-dimensional manifoldM that admits a metric g with signature (p, q).
On a chart U forM with coordinate xµ, there are coordinate bases

{
eµ = ∂

∂xµ

}
for TpM

and {eµ = dxµ} for T ∗
pM at a point p ∈ U . Derivations and proofs can be found in [35].

Definition A.35. At p ∈ U , the non-coordinate basis is a set of smooth vector fields
{êa(p)} that forms a basis for TpM, where a = 1, ...,m, and

êa = ê µ
a (x)eµ,　ê µ

a (x) ∈ GL(m,R). (A.87)

ê µ
a is called vielbein for a general m-dimensional manifold, and its inverse is defined as

(ê µ
a )−1 := êaµ. (A.88)

If the manifold is orientable, then the non-coordinate basis needs to have same orientation
as coordinate basis hence require

det(ê µ
a ) > 0. (A.89)
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Unlike the coordinate basis, the Lie bracket of non-coordinate basis is

[êa, êb] = c c
ab êc (A.90)

and does not vanish in general. The dual basis {êa} is defined s.t. ⟨êa, êb⟩ = δab , so

êa = êaµe
µ (A.91)

The metric g on a manifold with signature (p,m − p) has component gµν = g(eµ, eν).
If the vielbein satisfy

êaµê
ν

a = δ ν
µ ,　êaµê

µ
b = δab (A.92)

then the metric g can be diagonalised to a constant flat metric with signature (p,m− p)

gab = g(êa, êb) = gµν ê
µ

a ê ν
b = ηab (A.93)

and
gµν = êaµê

b
νηab (A.94)

or in matrix form
g = êT ê. (A.95)

To take directional derivative of a vector field on Riemannian manifold, Lie derivative
is not enough, and we need to define the covariant derivative.

Definition A.36. Affine connection or covariant derivative is a map

∇ : Γ(TM)× Γ(TM) → Γ(TM)

X,Y → ∇XY
(A.96)

where TM is a tangent bundle defined on a d-dimensional manifoldM and Γ(TM) is its
section i.e. vector field. It is bi-linear so that ∀X,Y, Z ∈ Γ(TM)

∇X(Y + Z) = ∇XY +∇XZ

∇(X+Y )Z = ∇XZ +∇Y Z
(A.97)

The connection on a coordinate basis {eµ} =
{

∂
∂xµ

}
is

∇µeν = ∇eµeν = Γ α
µν eα (A.98)

where Γ α
µν is connection components. The connection on a vector X can be found to be

∇µX
ν = ∂µX

ν +XαΓ ν
µα . (A.99)
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Claim A.23. For a function f ,

∇fXY = f∇XY (A.100)

so it is directional i.e. only depends on X, and also has a Leibniz rule

∇X(fY ) = X[f ]Y + f∇XY (A.101)

Claim A.24. Similar to Lie derivative, the action of affine connection can be extended
to tensor, so for a (p, q)-tensor A = A

α1...αp

β1...βq
eα1
⊗· · ·⊗eαp

⊗eβ1⊗· · ·⊗eβq , the component
is

∇µA = ∂µA
α1...αp

β1...βq
+ Γ α1

µν A
να2...αp

β1...βq
+ · · ·+ Γ αp

µν A
α1...αp−1ν
β1...βq

− Γ ν
µ β1

A
α1...αp

νβ2...βq
− · · · − Γ ν

µ βq
A

α1...αp

β1...βq−1ν

(A.102)

Claim A.25. The connection can be decompose into symmetric and anti-symmetric parts
as

Γ ρ
µν = S ρ

µν +
1

2
T ρ
µν (A.103)

where T ρ
µν = Γ ρ

µν − Γ ρ
νµ and is called torsion tensor.

Definition A.37. Torsion tensor is a map

T : Γ(TM)× Γ(TM) → Γ(TM)

X,Y → T (X,Y )
(A.104)

where
T (X,Y ) = ∇XY −∇YX − [X,Y ] (A.105)

is

• anti-symmetric T (X,Y ) = −T (Y,X)

• bi-linear T (fX, gY ) = fgT (X,Y ) for all functions f, g

On coordinate basis {eµ}, one can define a (1,2)-tensor with component

T ρ
µν = ⟨eρ, T (eµ, eν)⟩ = Γ ρ

µν − Γ ρ
νµ . (A.106)

On non-coordinate basis {êa}, the component is

T a
bc = ⟨êa, T (êb, êc)⟩ = Γ a

bc − Γ a
cb − [êa, êb]

a. (A.107)
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Claim A.26. For two vectors X,Y , on coordinate basis,

T (X,Y ) = L∇
XY − LXY (A.108)

where L∇
X is usual Lie derivative with ∂ replaced by ∇ [4]. This can be easily proven using

(A.107) and writing RHS out explicitly.

Definition A.38. For a metric g on the manifold M, the connection ∇ is metric con-
nection if it is compatible with the metric i.e. ∇Xg = 0, for any vector X.

Definition A.39. In coordinate basis, g = gαβe
α ⊗ eβ, and the compatible condition is

∇µg = (∂µgαβ − Γ ρ
µα gρβ − Γ ρ

µβ gαρ)e
α ⊗ eβ = 0 (A.109)

giving
Γ ρ
(αβ) gρµ − Γ ρ

[µα] gρβ − Γ ρ
[µβ] gρα = C ρ

αβ gρµ (A.110)

where C ρ
αβ = 1

2
gρσ(∂αgβσ+∂βgασ−∂σgαβ) is Christoffel symbol determined by g. Denote

the symmetric term as S ρ
αβ = Γ ρ

(αβ) and the anti-symmetric terms give the torsion

T ρ
(αβ) = Γ ρ

[αβ] + Γ ρ
[βα] (A.111)

so we have
S ρ
αβ = C ρ

αβ + T ρ
(αβ) . (A.112)

Only the torsion tensor T is un-constrained, so the metric connection is determined by
the torsion tensor T and the metric g that gives the Christoffel symbol.

Definition A.40. If the torsion tensor T = 0, then the metric connection is completely
determined by the metric g and is unique. This connection is known as the Levi-Civita
connection

Γ ρ
µν = C ρ

µν =
1

2
gρσ(∂αgβσ + ∂βgασ − ∂σgαβ) (A.113)

which is symmetric Γ ρ
µν = Γ ρ

νµ . And since it is torsion-free, using (A.105) one has

∇XY −∇YX = [X,Y ]. (A.114)

On a non-coordinate basis, i.e. using a vielbein {êa} and dual {êa}, the component of
connection is defined as

∇aêb = ∇êa êb = Γ c
ab êc. (A.115)
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Claim A.27. For metric connection, by imposing the condition ∇ag = 0, one finds that

∇ag = ∇a(ηbcê
b ⊗ êc)

= ηbc(Γ
b

ad ê
d ⊗ êc + Γ c

ad ê
b ⊗ êd)

= (Γabc + Γabc)ê
b ⊗ êc = 0

(A.116)

so
Γabc = −Γacb (A.117)

hence (Γa)
b
c is element of Lie algebra o(d) which matches the fact that to preserve the

metric g, the structure group of the d-dimensional manifold M is O(d).

Definition A.41. One can also define the spin connection as

∇µêa = ω̂ b
µ a êb (A.118)

where ω̂ b
µ a is spin connection component. On a vector field V = V̂ aêa,

∇µV
a = ∂µV̂

a + ω̂ a
µ bV̂

b. (A.119)

And using the same procedure as before, it can be easily checked that the torsion-free
condition is

ω̂µbc = −ω̂µcb (A.120)

which is also an element of o(d). It can also be written using Levi-Civita connection as

ω̂µab = (∇µê
ν

a )êbν = (∂µê
ν

a + Γ ν
ρµ ê ρ

a )êbν (A.121)

Claim A.28. The Levi-Civita connection on tensor density
√
− det g where g is the metric

on a manifold satisfies
Γ µ
µν =

1√
− det g

∂µ
√
− det g (A.122)

and for a vector V ,
∇µV

µ =
1√
− det g

∂µ(
√
− det gV µ). (A.123)

Definition A.42. The Riemann curvature tensor is a map

R : Γ(TM)× Γ(TM)× Γ(TM) → Γ(TM)

X,Y, Z → R(X,Y, Z)
(A.124)

where
R(X,Y, Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (A.125)

and is
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• anti-symmetric R(X,Y, Z) = −R(Y,X,Z)

• tri-linear R(aX, bY, cZ) = abcR(X,Y, Z), for any functions a, b, c.

One can define a (1,3)-tensor on a coordinate basis {eµ} with components

Rα
ρµν = ⟨eα, R(eµ, eν , eρ)⟩ = ∂µΓ

α
νρ − ∂νΓ α

µρ + Γ β
νρ Γ α

µβ − Γ β
µρ Γ α

νβ (A.126)

and from the anti-symmetry, one has

Rα
ρµν = −Rα

ρνµ. (A.127)

Definition A.43. Ricci tensor is a (0,2) tensor defined as

Ric(X,Y ) = ⟨eµ, R(eµ), Y,X⟩ (A.128)

and its component is
Rµν = Ric(eµ, eν) = Rλ

µλν . (A.129)

Definition A.44. For a manifold with a metric g, the Ricci scalar is

R = gµνR(eµ, eν) = gµνRµν . (A.130)

Using the Ricci scalar, one can write the Einstein-Hilbert action as

S =
2

κ

∫
d4x
√
− det gR =

2

κ

∫
volgR (A.131)

and by varying the action, one has the vacuum field equation

Rµν = 0. (A.132)

E Lie Algebra of O(d, d)

The Lie algebra of O(d, d) or SO(d, d) can be found by expending an element g ∈ O(d, d)

near the identity
g = 1+ εM + · · · ,　ε≪ 1 (A.133)

where M is the generator. Then imposing the condition in (2.15)

gT ηg = η + ε(MT η + ηM) + · · · = η (A.134)

leads to
MT η + ηM = 0. (A.135)
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Since the metric is in block form, it is convenient to write the generator M in block form
as well

M =

(
a b

c d

)
, (A.136)

so (A.135) becomes(
aT cT

bT dT

)(
0 1

1 0

)
+

(
0 1

1 0

)(
a b

c d

)
=

(
cT aT

dT bT

)
+

(
c d

a b

)
= 0 (A.137)

yielding the conditions
aT = −d,　bT = −b,　cT = −c. (A.138)

Relabelling A = a = −dT , β = b,B = c gives the components of the generator

M =

(
A β

B −AT

)
(A.139)

which is the expression in (2.18).

F Usual Scherk-Schwarz Reduction

Consider a theory lives in Md+k ≃ Mk ×Md where Md is compactified and Mk is
uncompactified with coordinate x. If Md is a parallelisable manifold with parallelisation
{êa} satisfying the Lie algebra

[êa, êb] = f c
ab êc (A.140)

there is consistent truncation if f b
ab = 0 known as unimodular condition [28, 29]. The

truncated theory is gauged by the group defined by the Lie algebra above. The reduction
is defined by rotating the frame as

ê′a(x) = U b
a (x)êa,　U b

a ∈ GL(d,R) (A.141)

so that the inverse metric is

g′mn = δabU c
a (x)U d

b (x)ê m
c ê n

d (A.142)

giving the scalar field in the reduced theory

ϕ(x) = δabU c
a (x)U d

b (x) (A.143)
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which parameterises the coset space

GL(d,R)/O(d) (A.144)

where O(d) is the gauge group of reduced theory. The ansatz for the reduced theory on
Mk is found by comparing the original inverse metric with the scalar ϕ.
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