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Abstract

The topic of wormholes has recently come to the forefront of theoretical research due to the

discovery of a remarkable connection between wormholes and entanglement, commonly known as

ER=EPR. This relation was realised using the AdS/CFT correspondence, a theory which equates

gravitational theories and quantum field theories under certain conditions. In this review, we will

discuss how ER=EPR arises and determine some of the properties of these wormholes. We shall

also discuss a promising resolution to a current problem of ER=EPR.
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1. Introduction

In 1972, Bekenstein pubished a revolutionary paper describing the relation between the second law

of thermodynamics and black holes. He suggested that the entropy of a black hole is proportional

to the area of its event horizon [1], providing consistency between the second law of thermody-

namics and the idea that the area of a black hole’s event horizon cannot decrease. Following this,

Bekenstein further proposed the idea of a generalised second law of thermodynamics, whereby

the entropy of the universe does not decrease if the entropy of black holes is also included. The

entropy of any object that falls into a black hole appears to be lost from the universe. However,

this is compensated for by an increase in area, or entropy, of the black hole due to the infalling

object. Hence the second law of thermodynamics is still valid if the entropy of black holes is taken

in to consideration [2]. Using the idea that black holes emit radiation, Hawking provided further

support for Bekenstein’s proposal and determined the constant of proportionality of the relation

between entropy and area [3]. This led to what is often referred to as the Bekenstein-Hawking

entropy [4], which is given by the famous expression

S =
kBA

4l2p
. (1.1)

The important interpretation of Eq. 1.1 states that a black hole can be completely described by

information contained on its surface. This was realised by ‘t Hooft, who suggested that bits of

information are defined on two dimensional regions of the order l2p on the event horizon. In other

words, the information of a black hole with three spatial dimensions can be realised on the two

dimensional event horizon in a similar manner to a hologram; this is the holographic principle

[5]. This was given mathematical foundations by Susskind who considered this concept from a

string theory perspective [6], thus revealing many possibilities for the future of quantum gravity.

One highly researched example of a holographic theory is the AdS/CFT correspondence, typically

shortened to AdS/CFT. First proposed by Maldacena, AdS/CFT relates gravitational theories in

d+1 dimensional spacetimes in asymptotically anti-de Sitter (AdS) space to specific types of quan-
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tum field theories called confomal field theories (CFT) in d dimensions [7]. Such theories which

are equivalent, i.e. they describe the same physics, are referred to as dual theories. The conformal

field theory is said to exist on the spacetime boundary, which establishes AdS/CFT as an example

of a holographic theory as the gravitational theory is said to be described by a conformal field

theory on the boundary with one less dimension. In principle, AdS/CFT can be used to calculate

quantities on one side of the correspondence using its dual theory. However, these computations

are usually intractable unless one imposes certain restrictions on the type of theories considered.

For example, AdS/CFT is extremely useful for computing quantities in strongly couplied field

theories, as classical gravitational dual theories are well understood and can therefore be used to

perform calculations that are very difficult to compute in the field theory framework [8]. To avoid

confusion, we note AdS/CFT is sometimes referred to as gauge/gravity duality. While these names

might be used synonymously, it is important to state that the term gauge/gravity duality refers

to the correspondence between quantum gauge theories and more general spacetimes. In other

words, AdS/CFT is a specific example of gauge/gravity duality involving Anti-de Sitter spaces

and conformal field theories [7]. A detailed review of the AdS/CFT correspondence is given in

section 2.

One key point of AdS/CFT is that the CFT is specified by the boundary conditions on the

gravitational theory [9]. Therefore, providing sufficient asymptotically AdS boundary conditions

are given, one can consider many different spacetime geometries. Recent interest in wormhole

geometries has been sparked due to their relevance in the AdS/CFT correspondence. These ge-

ometries are given the name ‘wormholes’ as they connect two distant regions of AdS spacetime [10].

This review will focus on the application of wormhole geometries in AdS/CFT, giving examples

where wormholes have been the focal point for much research in the last few decades. The term

‘wormhole’ is an ambiguous term that can be given many interpretations. In section 3, we will

briefly discuss the history of the wormhole and the types of geometries that are associated with

this term, providing clarity over what is meant by a ‘wormhole’. In particular, we will review

the details of the Einstein-Rosen bridge. We will then proceed by reviewing some key aspects of

quantum entanglement in section 4, which will become important in later discussions. We will also

provide a brief review of black hole thermodynamics in section 5, where we will explain how the

Bekenstein-Hawking entropy of Eq. 1.1 arises from the properties of black holes. In section 6, we

turn our attention to a simple example in which wormholes have a holographic description. It can

be shown that AdS-Schwarzschild geometry, i.e. the geometry surrounding a Schwarzschild black

hole in anti-de Sitter space, has two disconnected boundaries which are hidden from each other

behind a horizon. The holographic dual of such a gravitational theory is a system of two identical
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entangled conformal field theories at finite temperature, each existing on each of the disconnected

boundaries [11]. Due to the presence of a horizon, the conformal field theories cannot interact with

one another. In this sense, entanglement arises due to the presence of a non-traversable Lorentzian

wormhole geometry which connects the two asymptotic boundaries. Maldacena and Susskind sum-

marised this connection using the phrase ER=EPR [12]. In section 6, we introduce the properties of

AdS-Schwarzschild black holes before proceeding with a detalied description of how the ER=EPR

phenomenon arises. Following this, we use the work of Ryu and Takayanagi [13] to understand

how the entanglement entropy of the boundary CFTs affects the dual wormhole geometry. Finally,

to conclude this section, a short discussion on the future research possibilities of ER=EPR is pro-

vided. As a final remark, we will discuss how the current understanding of AdS/CFT requires

slight modification due to the presence of wormhole configurations. A promising proposal is that

on the CFT side of the AdS/CFT correspondence, one must consider an ensemble of CFTs [14].

In section 7, we explore the application of the SYK model to AdS/CFT as an example of this

proposal. We will briefly discuss the work of Garcia-Garcia and Godet, who demonstrated that at

low temperatures, the holographic dual of the SYK model is a Euclidean wormhole [15].
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2. The AdS/CFT Correspondence

In this section, we will review the basics of anti-de Sitter spacetime and conformal field theories.

Following this, we shall proceed by discussing the correspondence between these two specific the-

ories. However, since there is no formal proof of AdS/CFT, we will discuss a well known example

which was initially used to give evidence for the AdS/CFT correspondence. Once we have estab-

lished the correspondence, we will show how to relate states in the two theories in a conveniently

compact expression.

2.1 Anti-de Sitter Space

The geometry of spacetime is governed by the Einstein field equations

Rµν −
1

2
Rgµν + Λgµν = 8πTµν , (2.1)

which relates the spacetime curvature to the matter and energy content. The cosmological con-

stant, Λ, was introduced by Einstein so that a non-dynamical spacetime was predicted by the

equations. However, it was discovered by Hubble that the universe is expanding at an accelerating

rate. While the cosmological constant was subsequently disregarded, it is now widely believed that

the cosmological constant is responsible for this accelerated expansion of the universe [16]. It is

clear that the cosmological constant plays a large role in the geometry of spacetime. In particular,

there are three maximally symmetric solutions to the vacuum Einstein equations, i.e. spacetimes

of constant curvature, or constant R, that possess the maximum possible number of isometries.

The spacetime with zero curvature is the well known Minkowski spacetime, while a spacetime

with negative (positive) R is called anti-de Sitter (de Sitter) space [8]. These spacetimes are often

referred to as AdS or dS, respectively. While de Sitter space is an interesting area of discussion, we

will only discuss anti-de Sitter space in this review. By contracting Eq. 2.1 with gµν and setting

Tµν = 0, the relation R = 4Λ is obtained [17]. Therefore, we can state that AdS is a maximally

symmetric spacetime with Λ < 0.
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AdS has a complicated geometrical structure. For this reason there are many different co-

ordinate systems one can use to help uncover useful information. We start by considering the

embedding of d+ 1 dimensional AdS, or AdSd+1, into a higher dimensional space. The most intu-

itive case is the embedding of AdSd+1 into a d+ 2 dimensional psuedo-Riemannian manifold with

two time-like coordinates, denoted R2,d. The metric of R2,d is given by

ds2 = −dx0
2 + dx1

2 + ...+ dxd
2 − dxd+1

2 (2.2)

where x0 and xd+1 are timelike coordinates, xi are spacelike coordinates with i ∈ (1, 2, ..., d) and

xµ ∈ R2,d. AdSd+1 is then given by the hyperboloid

− x0
2 + x1

2 + ...+ xd
2 − xd+1

2 = −R2
AdS (2.3)

where RAdS is the radius of curvature of AdS [8]. We now proceed with a coordinate transformation

such that the new coordinates cover the full range of the AdSd+1 hypersurface. The new coordinates

(τ , ρ, Ωi), where i ∈ (1, 2, ..., d), are related to the coordinates of R2,d by

x0 = RAdS cosh(ρ) cos(τ),

xi = RAdS sinh(ρ) Ωi,

xd+1 = RAdS cosh(ρ) sin(τ),

(2.4)

where ρ ∈ R≥0, τ ∈ [0, 2π) and Ωi are the coordinates of the d sphere. Substituting the coordinates

of Eq. 2.4 into Eq. 2.2, we obtain the metric

ds2 = R2
AdS(− cosh2(ρ)dτ2 + dρ2 + sinh2(ρ)dΩ2

d−1) (2.5)

under the condition that ΩiΩi = 1 [8].

A key feature of Eq. 2.4 is that τ appears to be a periodic coordinate with an identification of

the points 0 and 2π. Taking the limit ρ� 1, where we obtain cosh2(ρ) ' 1 and sinh2(ρ) ' ρ2, we

see that Eq. 2.5 is a metric with the topology S1×Rd, where we identify the coordinate τ with S1.

Thus, as Eq. 2.5 suggests τ is a timelike coordinate, AdS manifests closed timelike curves. From

the perspective of causality, this is a problem as the future and past lightcones of causal observers

overlap. To bypass this property of AdS, the identification of the τ coordinate must be removed.

This is accomplished by extending the range of τ to τ ∈ (−∞,∞), meaning there are no closed

timelike curves. The spacetime described by Eq. 2.5 with the new range of τ is referred to as
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Figure 2.1: The geometry of AdS2 embedded into R2,1 [8]. In this visualisation, it is clear to see
the closed timelike curves which wrap around the hyperboloid.

the universal cover of AdS, denoted ÃdS [18]. Another coordinate transformation is given by the

relation sinh(ρ) = tan(θ) with θ ∈ [0, π2 ), or θ ∈ (−π2 ,
π
2 ) for the special case of AdS2. This allows

us to rewrite Eq. 2.5 as

ds2 =
R2

AdS
cos2(θ)

(−dτ2 + dθ2 + sin2(θ)dΩ2
d−1), (2.6)

which is a very useful expression of the metric as we can easily perform a conformal compactification

of AdS [18]. Before discussing this in more detail, we note a useful parametrisation (τ, r′, ψ, φ) of

AdS4 given by

x0 =
√
R2

AdS + r′2 sin

(
τ

RAdS

)
,

x1 = r′ cos(ψ),

x2 = r′ sin(ψ) cos(φ),

x3 = r′ sin(ψ) sin(φ),

x4 =
√
R2

AdS + r′2 cos

(
τ

RAdS

)
.

(2.7)

Inserting Eq. 2.7 into Eq. 2.2, one obtains the metric

ds2 = −

(
1 +

r′
2

R2
AdS

)
dτ2 +

(
1 +

r′
2

R2
AdS

)−1

dr′2 + r′2dΩ2
2 (2.8)

where dΩ2
2 = dψ2 +sin2(ψ)dφ2 [17]. It is clear to see the similarities between the form of the metric

in Eq. 2.8 and the Schwarzschild metric, with the obvious difference being the lack of an event

horizon in AdS4. We will see later that this form of the metric is useful for constructing black hole

solutions in AdS4.
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Figure 2.2: Left: Conformally compactified AdSd+1. The Poincaré patch is given by the triangular
region, where the blue lines are lines of constant r and the two singularities are shown [8]. Right:
Conformally compactified ÃdSd+1. Null radial geodesics are given by black lines, while timelike
radial geodesics are given by blue lines [19]. Each point on both diagrams is an Sd−1 sphere.

It is useful to determine the causal structure of the full AdS spacetime in order to understand

the boundary structure and the motion of particles. First, we must perform a conformal compact-

ification of AdSd+1. To conformally compactify this spacetime, we use a Weyl transformation to

remove the conformal factor, giving the metric

ds2 = −dτ2 + dθ2 + sin2(θ)dΩ2
d−1. (2.9)

Eq. 2.9 is known as the Einstein static universe, which has the topology R × Sd [18]. The origin

of AdS in these coordinates corresponds to θ = 0 (ρ = 0), while spatial infinity corresponds to

θ = π
2 (ρ = ∞). Following this, we choose to include the point θ = π

2 as part of this manifold,

which corresponds to what is known as the conformal boundary of AdS. With these conditions, it

is clear to see that the conformal boundary of AdSd+1, denoted ∂AdSd+1 with topology R×Sd−1,

is equivalent to Minkowski spacetime in d dimensions, M1,d−1 [8]. This will become important later

in the discussion of AdS/CFT. An interesting property of Eq. 2.6 and Eq. 2.9 is that radial null

geodesics are represented by straight lines with unit gradient [19]; this will be discussed later. The

Penrose diagrams of conformally compactified AdSd+1 and ÃdSd+1 are given in figure 2.2,where

each point on these diagrams is a Sd−1 sphere of radius sin(θ). Another common visualisation of

conformally compactified AdS is obtained by rotating the spacetimes of figure 2.2 around θ = 0

forming a solid cylinder. These Penrose diagrams are shown in fig 2.3.

We can now go one step further and understand the geometry of the region 0 ≤ θ < π
2 , also
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Figure 2.3: Alternative visualisation of conformally compactified AdSd+1 and ÃdSd+1, where the
blue regions are the respective diagrams from figure 2.2 [18]

known as the bulk of AdS. Consider Eq. 2.3 for d = 2

− x0
2 + x1

2 + x2
2 − x3

2 = −R2
AdS. (2.10)

By considering the surface x0 = 0, we find that Eq. 2.10 becomes a the two dimensional hyperbolic

(Lobachevsky) plane, H2. It is well understood that the hyperbolic plane can be projected onto a

disk of finite size called the Poincaré disk [19]. The metric of the Poincaré disk is given by

dsp
2 = drp

2 + rp
2dΩ1

2 (2.11)

By performing a simple coordinate transformation

rp = RAdS
sinh(ρ)

1 + cosh(ρ)
, (2.12)

Eq. 2.11 becomes [19]

dsp
2 =

R2
AdS

(1 + cosh(ρ))2
(dρ2 + sinh2 (ρ)dΩ1

2). (2.13)

Comparing this metric with a constant τ slice of Eq. 2.5 for d = 2. we see that there exists a Weyl

transformation between the Poincaré disk and the hyperbolic plane. Therefore, we can see that

the full conformally compactified AdS3, i.e. the bulk and conformal boundary, is given by Poincaré

disks stacked in the τ direction. We see that the topology of ∂ÃdS3 is R× S1, so to generalise to

AdSd+1 we simply state that the topology of ∂ÃdSd+1 to R × Sd−1, as can be seen from Eq. 2.9
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[19]. This is equivalent to stating that AdSd+1 is a tower of constant τ spatial sections which are

identical to the d dimensional hyperbolic space, Hd.

The full symmetry group of AdSd+1 is determined in a similar way to the symmetry group of

S2, i.e. the 2-sphere. S2 can be embedded into three dimensional Euclidean space, R3. This has

a similar metric to Eq. 2.2 with d = 2, apart from having a completely positive metric signature,

i.e. diag(+,+,+). We can define the symmetry group of S2 as the group of rotations that leaves

the metric of R3 invariant. This symmetry group is called the special orthogonal group, SO(3).

Therefore, we can immediately see that by embedding AdSd+1 into R2,d as before, the symmetry

group of AdSd+1 is SO(2, d), the group of rotations that leaves the the metric in Eq. 2.2 invariant

[19]. To determine the boundary symmetries, we introduce a new set of coordinates (T, r, ~X) called

the Poincaré coordinates, given by the parametrisation

x0 =
R2

AdS
2r

(
1 +

r2

R4
AdS

( ~X2 − T 2 +R2
AdS)

)
,

xi =
rXi

RAdS
,

xd =
R2

AdS
2r

(
1 +

r2

R4
AdS

( ~X2 − T 2 −R2
AdS)

)
,

xd+1 =
rT

RAdS
.

(2.14)

Here, i ∈ 1, ..., d− 1, T ∈ R, r ∈ R>0 and ~X = (X1, ..., Xd − 1) ∈ Rd−1. As r ∈ R>0, the Poincaré

coordinates only cover half of the full AdSd+1 spacetime as shown in fig 2.2. For this reason, these

coordinates are sometimes called the Poincaré patch [8]. Substituting Eq. 2.14 into Eq. 2.2 gives

the metric

ds2 =
R2

AdS
r2

dr2 +
r2

R2
AdS

(ηµνdX
µdXν), (2.15)

where Xµ = (T, ~X) and ηµν is the Minkowski metric. We can immediately see the presence of

two singularities at r → 0 and r → ∞, with the former being a coordinate singularity and the

latter being a curvature singularity. The r → 0 singularity is called the Poincaré horizon. This

horizon separates the r > 0 Poincaré patch and the r < 0 Poincaré patch, which together cover

the full AdSd+1 spacetime [8]. It is easy to see that the metric of Eq. 2.15 is invariant under

ISO(1, d − 2), the Poincaré symmetry group and SO(1, 1), the scale symmetry group which acts

on the coordinates as T → λT , ~X → λ ~X and r → λ−1r [18]. For further convenience, we can

define a new coordinate z = L2r−1 such that Eq. 2.15 becomes

ds2 =
R2

AdS
z2

(dz2 + ηµνdX
µdXν). (2.16)
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We can see that on the conformal boundary at z = 0 [8], the Poincaré symmetry is manifest. A

useful concept in AdS/CFT is to consider Euclidean AdS. This is achieved by performing a wick

rotation of the T coordinate, i.e. T → iX0, which gives us the Euclidean AdS metric [7]

ds2 =
R2

AdS
z2

(dz2 + dX0
2 + d ~X

2
). (2.17)

We will see in section 2.3 that this form of the metric is used to determine the relation between

states on either side of the AdS/CFT correspondence.

The last interesting property of AdS is the fate of future directed curves. First, let’s consider a

particle of mass m > 0 moving along a timelike geodesic in AdS. By setting dΩ2
d−1 = 0 in Eq. 2.6

and read off the Lagrangian as

L =
R2

AdS
cos2(θ)

((
dτ

dτ ′

)2

−
(
dθ

dτ ′

)2
)

(2.18)

where τ ′ is the proper time. We can determine the equations of motion by solving the Euler-

Lagrange equation for τ . Plugging the solution to the Euler-Lagrange equation back into Eq. 2.18,

we obtain
dθ

dτ ′
= ±

√
1− 1

c2R2
AdScos2(θ)

, (2.19)

which once integrated uncovers the relation

θ(τ ′) = sin−1

(√
1− 1

|cRAdS|2

)
sin(τ ′ − τ ′0). (2.20)

We can see that θ is sinusoidal in τ ′ and more importantly, the value of the inverse sine function is

restricted to the range [0, π2 ). Therefore, the maximum value of θ(τ ′) less than π
2 for the full range

of τ ′, i.e. a massive particle can never reach the boundary of AdS in finite time [19]. Now, let’s

consider how this differs from the case for a massless particle. For a null radial geodesic dΩ2
d−1 = 0

and ds2 = 0, so we have the very simple formula dθ = dτ . Therefore, if a massless particle is sent

on a radial trajectory from θ = 0 to θ = π
2 and then back to θ = 0, an observer at θ = 0 would

calculate the time taken for this journey as

∆τ ′ =
2RAdS

cos(0)
∆θ, (2.21)
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where ∆θ is the distance travelled by the massless particle on the outgoing journey. Therefore, by

plugging in ∆θ = π
2 , we obtain

∆τ ′ = RAdSπ. (2.22)

Therefore, a massless particle can be sent on a radial trajectory outwards towards the conformal

boundary at infinity, reach the boundary and return back to its origin in finite time [19]. This is

different to the massive particle case and we will see that this plays a very important role in the

thermodynamics of black holes in AdS.

2.2 Conformal Field Theories

The starting point for a quantum field theory is to specifiy the action, which encodes the full

dynamics of the system. The symmetries of the system will restrict the form of the action and

therefore, the equations of motion. In AdS/CFT, a specific set of quantum field theories called

conformal field theories, or CFTs, is considered. We will start by considering a classical field theory

which is invariant under transformaitons of the conformal group. The conformal group is defined

as the group of transformations that preserve the metric up to a Weyl scaling factor, Ω2(x) > 0,

as given by [20]

gµν(x)→ g′µν(x′) = Ω2(x)gµν(x). (2.23)

In other words, conformal transformations leave the angles at each point of the spacetime invariant,

preserving causal structure of the full spacetime [8]. Considering the infinitesimal transformation

xµ → x′µ = xµ + ξµ(x), we see that gµν transforms as

gµν(x)→ g′µν(x′) =
∂xµ

′

∂x′µ
∂xν

′

∂x′ν
gµ′ν′(x) = (δµ

′

µ − ∂µξµ
′
)(δν

′

ν − ∂νξν
′
)gµ′ν′(x), (2.24)

which to leading order in ξ is

g′µν(x′) = gµν(x)− 2∂(µξν). (2.25)

Therefore, in order for Eq. 2.25 to be consistent with Eq. 2.23 we require that

2∂(µξν) = f(x)gµν(x) (2.26)
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where f(x) is a function related to the infinitesimal expansion of Ω2(x) [20]. Now, considering

gµν = ηµν with µ, ν ∈ (0, ..., d− 1), we contract both sides with the metric and find

2∂σξ
σ = f(x)d (2.27)

for a d dimensional spacetime. After some simple algebra, we see that ξ must satisfy

(ηµν∂σ∂
σ + (d− 2)∂µ∂ν)∂ρξ

ρ = 0 (2.28)

in order for the transformation to be conformal. For d > 2, we see that the most general solution

to Eq. 2.28 is second order in xµ, i.e. [8]

ξµ(x) = aµ + ωµνx
ν + λxµ + bµxσx

σ − 2bσxσx
µ. (2.29)

Here, we have the usual translations and Lorentz transformations given by aµ and ωµν , respectively.

In addition to these, we also have two new transformations, λ and bµ [8]. The transformations

given by λ are called dilations, or dilatations, whose finite transformation scales a coordinate as

xµ → x′µ = λxµ. (2.30)

The transformations given by bµ and are called the special conformal transformations. A finite

special conformal transformation acts on a coordinate as

xµ → x′µ
′

=
xµ
′
+ bµ

′
xσx

σ

1 + 2bµxµ + bσbσxρxρ
. (2.31)

The generators of these infinitesimal parameters form the conformal algebra, of which the commu-

tation relations are given by the Poincaré commutation relations and

[Mµν ,Kσ] = i(ηνσKµ − ηµσKν),

[Kµ,Kν ] = 0,

[Kµ, Pν ] = −2i(ηµνD −Mµν),

[D,Pµ] = iPµ,

[D,Kµ] = −iKµ,

[D,Mµν ] = 0,

(2.32)
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where Pµ, Mµν , Kµ and D are the generators of translations, Lorentz transformations, special

conformal transformations and dilations, respectively [8]. Immediately, we see that for vanishing

D and Kµ, the relations of Eq. 2.32 equal zero, so we recover the Poincaré group. However for

non-vanishing D and Kµ, we can combine all four generators into a single matrix given by

J̃AB =


Mµν Jµ(d) Jµ(d+1)

−Jν(d) 0 D

−Jν(d+1) −D 0

 (2.33)

where A,B ∈ (0, ..., d+ 1) and

Jµ(d) =
Kµ − Pµ

2
,

Jµ(d+1) =
Kµ + Pµ

2
,

Jd(d+1) = D.

(2.34)

The algebra of which J̃ obeys the algebra of SO(2, d), the conformal group [18]. Therefore, any field

theory that is invariant under SO(2, d) transformations is a conformally invariant. It is important

to note that the existence of Poincaré and scale symmetry does not make a theory conformally

invariant, as the theory must also display special conformal symmetry. However in the majority

of cases, scale invariant theories naturally displays special conformal invariance. Therefore, as

is usually the case in the literature, we will assume that the combination of Poincaré and scale

symmetry is equivalent to conformal symmetry [21].

To understand how conformal symmetries restrict the dynamics of a field theory, we must first

determine the irreducible representations of SO(2, d) and how these act on classical fields. Let’s

consider a scalar field Φ(x). The action of translation and Lorentz generators on Φ are given by

[8]

P̃µΦ(x) = [Pµ,Φ(x)] = −i∂µΦ(x),

M̃µνΦ(x) = [Mµν ,Φ(x)] = −SµνΦ(x) + (xνPµ − xµPν)Φ(x).

(2.35)

To proceed, we consider the action of transformations on Φ(0) such that x = 0 remains invariant.

This subgroup of the conformal group excludes Pµ as this changes the x coordinate, leaving only

Mµν , Kµ and D. Taking x = 0 in the equation for Mµν in Eq. 2.35 we obtain

M̃µνΦ(0) = −SµνΦ(0). (2.36)
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where Sµν determines the spin of the field at x = 0. In a similar manner to Mµν , we present the

commutation relation for D as [8]

D̃Φ(0) = −i∆Φ(0). (2.37)

where ∆ is the scaling dimension of the field. This suggests that tnder the finite coordinate

transformation in Eq. 2.30, Φ transforms as [8, 18]

Φ(x)→ Φ′(x′) = λ−∆Φ(x). (2.38)

The action of D is to introduce the scaling dimension into the system as shown in Eq. 2.37. Let’s

consider the action of Pµ and Kµ on the scaling dimension of a field at x = 0. From Eq. 2.32 and

Eq. 2.37 we have [18]

D̃(P̃µΦ(0)) = [D̃, P̃µ]Φ(0) + P̃µ(D̃Φ(0)) = i(∆ + 1)P̃µΦ(0) (2.39)

and similarly,

D̃(K̃µΦ(0)) = [D̃, K̃µ]Φ(0) + K̃µ(D̃Φ(0)) = i(∆− 1)K̃µΦ(0). (2.40)

Here, we have assumed that P̃µ, K̃µ (the special conformal transformation analogue of Eqs. 2.35

& 2.37) and D̃ obey the respective commutation relations of Eq. 2.32. In fact, M̃µν along with

the aformentioned generators, form a representation of the conformal algebra [8]. Therefore, Eq.

2.32 remains valid when Mµν , Pµ, Kµ and D are replaced by M̃µν , P̃µ, K̃µ and D̃, respectively.

From Eqs. 2.39 and 2.40, we can see that P̃µ increases the scaling dimension of Φ by one and K̃µ

decreases the scaling dimension of Φ by one [18]. Given the action of K̃µ on the scaling dimension,

one might expect a lower bound on ∆. This is indeed the case and is given by

∆ ≥ d− 2

2
(2.41)

for a d dimensional field theory [8]. Therefore, we can state that a primary field is one whose scaling

dimension is equal to this lower bound. We can also define the primary operator, an operator with

the minimum value of ∆. Using primary fields, one can construct all other fields by acting on Φ

with Pµ, or equivalently by acting on Φ with ∂µ. These fields are called the conformal descendents

of Φ [8]. W define the action of Kµ on a primary field at x = 0 as

K̃µΦ(0) = [Kµ,Φ(0)] = 0, (2.42)
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where we say that Φ has been annihilated by Kµ. However, we want to understand how K̃µ and

D̃ act on fields for arbitrary x. Therefore, we use the translation operator to act on Φ as

Φ(0)→ Φ(x) = e−ix
µPµΦ(0)eix

µPµ . (2.43)

We can use this expression to find

K̃µΦ(x) = (−2xνSµν + i(−xνxν∂µ + 2xµ∆ + 2xµx
ν∂ν))Φ(x),

D̃Φ(x) = −i(∆ + xµ∂µ)Φ(x)

(2.44)

which together with Eq. 2.35 show how the all the generators of the conformal group act on a

scalar field [8].

Now we have discussed conformal symmetry at the classical level, we shall now move on to

quantum field theories that possess conformal symmetry, i.e, conformal field theories. Consider

a classical field theory with scale invariance, which is quantised in the usual way by upgrading

the field to operators. Typically, the scale invariance does not remain after quantisation due to

the presence of a renormalisation scale, µ. For a simple renormalisation procedure, one introduces

a cut-off and bare parameters such as couplings and masses. The renormalised couplings and

masses are then determined and usually depend on µ, in addition to the bare parameters and

cut-off. Therefore, the coupling depends on the scale of the theory, meaning that a scale invariant

quantum field theory is not well defined in this case. Therefore, a renormalised quantum field

theory with scale invariance must be independent of µ or equivalently, must have a vanishing beta

function, β. This places restrictions on the dynamics of a scale invariant, or conformally invariant

quantum field theory [18]. We start by considering the two-point correlation function of fields φ1

and φ2, given by

〈Φ1(x)Φ2(y)〉 =

∫
[DΦ] Φ1(x)Φ2(y)ei

∫
dtL[Φ]∫

[DΦ] ei
∫
dtL[Φ]

, (2.45)

where L is a conformally invariant lagrangian [20]. To see how this two-point function transforms

under conformal transformations, we must consider how it transforms under Poincaré, scale and

special conformal transformations individually. We recall that Poincaré invariance restricts the

form of he two-point function to

〈Φ1(x)Φ2(y)〉 = 〈Φ1(x+ a)Φ2(y + a)〉 (2.46)
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as can be seen by introducing translation operators appropriately. From this we obtain the re-

stricted from of the two-point function, given by

〈Φ1(x)Φ2(y)〉 = f(|x− y|) (2.47)

where we see that the two-point function only depends the seperation of the fields. Performing a

scale transformation on Eq. 2.45 leads to

〈Φ1(x)Φ2(y)〉 → 〈Φ′1(x′)Φ′2(y′)〉 =

∫
[DΦ′] Φ′1(x′)Φ′2(y′)ei

∫
dtL[Φ]∫

[DΦ′] ei
∫
dtL[Φ]

. (2.48)

Using Eq. 2.38, we can now write

〈Φ′1(x′)Φ′2(y′)〉 = λ−(∆1+∆2)

∫
[DΦ(x̃)] Φ1(x)Φ2(y)ei

∫
dtL[Φ(x̃)]∫

[DΦ(x̃)] ei
∫
dtL[Φ(x̃)]

(2.49)

where we identify the term on the right as Eq. 2.45 multiplied by a factor. Thus, we can rearrange

to find

〈Φ1(x)Φ2(y)〉 = λ∆1+∆2 〈Φ′1(x′)Φ′2(y′)〉 . (2.50)

By comparing Eqs. 2.47 and 2.50, we can see that for a scale invariant quantum field theory, the

two-point function must be restricted to [20]

〈Φ1(x)Φ2(y)〉 =
CΦ1Φ2

|x− y|∆1+∆2
. (2.51)

where CΦ1Φ2
is a constant. Finally, while we won’t go through the details here, we note that

the special conformal transformations impose the additional constraint on the two-point function

∆1 = ∆2 [20]. Therefore, the two-point correlation function for a conformal field theory is given

by the expression

〈Φ1(x)Φ2(y)〉 =
CΦ1Φ2

|x− y|2∆1
(2.52)

where ∆1 = ∆2. This is a highly restricted form, highlighting the contraints imposed on the

dynamics of a conformal field theory. One can go further with similar arguments and determine

the three-point correlation function, given by [20]

〈Φ1(x)Φ2(y)Φ3(z)〉 =
CΦ1Φ2Φ3

|x1 − x2|∆1+∆2−∆3 |x2 − x3|∆2+∆3−∆1 |x3 − x1|∆3+∆1−∆2
. (2.53)
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An important example of a conformal field theory is N = 4 Super Yang-Mills theory in 4 di-

mensions. Explicit details of this theory will be given in section 2.3, but we can state that the

beta function β = 0 and so the theory is scale invariant at the quantum level. However, as we

have discussed previously, invariance under special conformal transformations is also required to

be classified as a conformal field theory. For N = 4 Super Yang-Mills theory in 4 dimensions, we

find that this is true and so it is a CFT [18].

2.3 AdS/CFT

As stated in the previously, AdS/CFT is a framework that relates theories of gravity in asymp-

totically AdSd+1 with CFTs in d dimensions. One might be rightfully speculative, as a connection

between two such theories seems highly unlikely for many reasons. For example, AdS/CFT is a

direct relation between gravity and quantum theory, two theories which notoriously do not combine

easily. Additionally, each theory exists in a different number of dimesions, making the correspon-

dence even less clear. These difficulties are summarised by the fact that there is no formal proof

for AdS/CFT. However, the conjecture is widely believed to be true and there exist many exam-

ples where AdS/CFT holds [7]. The most famous example of AdS/CFT connects N = 4 Super

Yang-Mills theory in 4 dimensions and type IIB string theory compactified on AdS5 × S5 [22]. In

this section, we will provide a brief overview of these theories and identify the properties which

allows the connection between them to arise.

The CFT considered in this correspondence is N = 4 Super Yang-Mills in 4 dimensions, a

maximally supersymmetric quantum field theory with the gauge group SU(N). The lagrangian of

this theory can be obtained by performing a dimensional reduction on N = 1 Super Yang-Mills in

10 dimensions. In its most useful form, the lagrangian of N = 4 Super Yang-Mills in 4 dimensions

is given by

LSYM = Tr

(
− 1

2g2
YM

FµνF
µν +

θ

16π2
Fµν F̃

µν − i
∑
a

λ̄aσ̄µDµλa −
∑
i

Dµφ
iDµφi

+ gYM
∑
a,b,i

Cabi λa[φi, λb] + gYM
∑
a,b,i

C̄abiλ̄
a[φi, λ̄b] +

g2
YM

2

∑
i,j

[φi, φj ]2

 ,

(2.54)

where gYM is the Yang-Mills coupling, Fµν(F̃µν is the (dual) field strength tensor, θ is called

the instanton angle, λa (λ̄a) are left (right) handed weyl fermions with a ∈ (1, .., 4), φi are real

scalar fields with i ∈ (1, ..., 6) and Cabi are related to a six dimensional generalisation of the pauli

matrices. Therefore, we see that there are 6 scalar fields, 4 fermion fields and 1 gauge field, all
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of which transform in the adjoint representation of SU(N) [8, 23]. The lagrangian is invariant

under N = 4 Poincaré supersymmetry and scale symmetry. Therefore, the theory displays what

is known at superconformal symmetry, given by the supergroup SU(2, 2|4) [23]. The generators of

this group obey the superconformal algebra, a supersymmetric extension of the conformal algebra

discussed in section 2.2 [8]. This algebra combines the generators of the conformal algebra with the

fermionic supercharges Qaα and Saα, where a ∈ (1, ..., 4), in addition to their adjoints Q̄aα̇ and S̄aα̇.

The Qaα and Q̄aα̇ supercharges arise directly from the Poincaré supersymmetry, while the Saα and

S̄aα̇ supercharges arise due to the fact that the special conformal generators and the generators

of Poincaré supersymmetry have a non-vanishing commutator. The anti-commutation relations of

the fermionic algebra are given by

{Qaα, Qbβ} = {Sαa, Sβb} = {Qaα, S̄bβ̇} = 0,

{Qaα, Q̄bβ̇} = 2σµ
αβ̇
Pµδ

a
b ,

{Sαa, S̄bβ̇} = 2σµ
αβ̇
Kµδ

b
a,

{Qaα, Sβb} = εαβ(δabD + T ab ) +
1

2
δabMµνσ

µν
αβ .

(2.55)

where εαβ is the Levi-Civita tensor [23]. We also see the introduction of T ab , the components of

the R-symmetry generators TA, where A ∈ (1, ..., 15). These generate the group SO(6)R and act

by performing a global rotation of a supercharge into a different supercharge [8, 23]. Extending

the idea of a primary operator from section 2.2, it is possible to define a superconformal primary

operator. In analogy with equations 2.40 and 2.42, one can see from the relation between Saα and

Kµ, the action of Saα changes the dimension of an operator by − 1
2 . Subsequently, S

a
α annihilates a

superconformal primary operator as shown by [23]

[Saα,O] = 0. (2.56)

Continuation of this analogy suggests that we can construct all other operators by acting with the

generator that changes the dimension of an operator by + 1
2 . We can see that there exists a relation

between Qaα and Pµ, which belongs to the super-Poincaré algebra. Therefore, we can construct the

superconformal descendent operators, Õ using Qaα via the equation

Õ = [Qaα,O], (2.57)

where ∆Õ = ∆O + 1
2 [23]. The superconformal primary fields of N = 4 Super Yang-Mills theory

are constructed from the fields of Eq. 2.54 and have the property that they are invariant under
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the SU(N) gauge group. Simple operators are constructed by taking the trace of the product of

these fields. One such important example is

O(x) = Str
(
φi1(x)φi1(x)...φim(x)

)
, (2.58)

where Str means that the trace is fully symmetrised and φi = φiaTa transforms in the adjoint

representation of SO(6)R [8]. In other words, we take Eq. 2.58 and sum over all permutations of

the indices. Furthermore, we can construct multi-trace operators by taking the product of single-

trace operators like the type in Eq. 2.58 [8]. We have stated that the gauge group of N = 4 Super

Yang-Mills is SU(N). We now consider the effect of taking N →∞ on a general Yang-Mills theory

with gauge group SU(N). The beta function for such a theory is given by

µ
dgYM
dµ

= −11

3
N
g3
YM

16π2
+ ..., (2.59)

so the first term, and also higher order terms, remain the same in the N → ∞ if one keeps the

combination λ = g2
YMN fixed [22]. This is the ‘t Hooft limit. Let’s further generalise to a theory

which contains fields in the adjoint representation of SU(N), φai , where a is an SU(N) index and

i is a general index that depends on the type of field considered. The Lagrangian of this theory,

omitting terms that don’t affect our analysis, is given by

L ∼ 1

g2
YM

(
Tr(∂µφ̃∂

µφ̃) + cijkTr(φ̃iφ̃j φ̃k) + dijklTr(φ̃iφ̃j φ̃kφ̃l)
)

+ ..., (2.60)

where cijk and dijkl are constants and φ̃i = gYMφi are the rescaled fields, where the a indices

have been suppressed for convenience [22]. The Feynman diagrams for the interactions of this

theory are given in double-line notation, where the propagator for an adjoint field is equivalent

to the propagator of a fundamental anti-fundamental pair. By considering the orientation of each

line, one can compactify the Feynman diagrams and obtain compact surfaces with a topology that

depends on the interaction. It can be shown that the coefficient for a diagram with V vertices,

E propagators and F loops is of the order NχλE−V [22]. Here, χ = V − E + F = 2 − 2g is the

Euler number. In the large N limit, diagrams with χ > 0 will dominate, while diagrams with

χ ≤ 0 will be suppressed. The diagrams which dominate for large N are called planar diagrams.

We can identify this diagramatic expansion with the Feynman diagrams obtained in string theory.

Therefore, this analysis suggests that there exists a relation between Yang-Mills theory and string

theories [22]. It is important to note that this argument also holds for N = 4 Super Yang-Mills,

suggesting that there exists a dual string theory. However, we have yet to determine the details of
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Figure 2.4: Feynman diagrams of adjoint fields at the top, where the lines represent the propa-
gation of the adjoint fields and the circles represent the interaction vertices. These diagrams are
converted to double-line notation underneath, whose topology can be identified with string inter-
action diagrams. Left: The Euler number of the diagram is χ = 2. Right: The Euler number of
the diagram is χ = 0 [22].

this string theory, which we discuss in the remainder of this section.

On the other side of the correspondence we have type IIB string theory. There are two consistent

superstring theories in ten dimensions that are based on closed strings, namely type IIA string

theory and type IIB string theory. While these theories are very similar, they differ by how they

change under spacetime parity transformations which can be seen by analysing the massless closed

string spectrum. For the case of type IIA, there exists states that transform in the 8, 8’, 56

and 56’ representations of the SO(8) group. A spacetime parity transformation has the effect

of interchanging 8 with 8’ and 56 with 56’, leaving the string spectrum invariant under these

transformations and making type IIA string theory achiral [24]. Conversely, in type IIB string

theory there are no 8’ or 56 representations of the SO(8) group. Therefore, the theory is not

invariant under spacetime parity transformations and so we say that the type IIB string theory is

chiral [24]. At low energies, type IIB string theory can be described by type IIB supergravity. The

bosonic part of the type IIB supergravity action is given by

SSG =
1

(2π)7α′4gs2

(∫
d10X

√
−det(gmn)

(
e−2ϕ

(
R+ 4∂mϕ∂

mϕ− 1

2
|H(3)|

2

)
−1

2
|F(1)|

2 − 1

2
|F̃(3)|

2 − 1

2
|F̃(5)|

2
)
− 1

2

∫
C(4) ∧H(3) ∧ F(3)

) (2.61)

where X are the coordinates of the worldsheet, α′ is related to the length of the string, gs is the

string coupling constant, ϕ is the dilaton, m,n ∈ (0, ..., 9) and the field strength tensors are given
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by

H(3) = dB(2),

F(q) = dC(q−1),

F̃(3) = F(3) − C(0)H(3),

F̃(5) = F(5) −
1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F(3),

(2.62)

where B(2) is the totally antisymmetric Kalb-Ramond field and C(q−1) is totally antisymmetric

tensor [8]. Furthermore, we have the self dual condition ?F(5) = F(5) and the shorthand

|M(q)|
2

=
1

q!
gm1n1

...gmqnqM̃
m1n1 ...Mmqnq , (2.63)

for a general field strength tensor M, where M̃ is the complex conjugate of M [8]. An important

property of type IIB supergravity is the presence of unique transformations that lead to the concept

of dualities. There are two such types, namely T-duality and S-duality. T-duality, also known as

target space duality, is the term to describe the physical equivalence of two superstring theories,

each compactified on different spacetime manifolds. For example, for a superstring theory with

only closed strings and one of the nine spatial dimensions compactified on S1, one can determine

the string spectrum and find the string masses to be [8]

M2 =

(
wR

α′

)2

+
( n
R

)2

+
2

α′
(N + Ñ − 2), (2.64)

where w the winding number, i.e. how many times the closed string is wrapped around the

compactified coordinate, n is the momentum number related to the quantisation of momentum

in the direction of the compactified cordinate, N and Ñ are related to the occupation number of

states and R is the radius of S1. It is easy to notice that by replacing R with α′

R and simultaneously

exchanging w and n, we obtain the return to the same expression in Eq. 2.64 [8]. Therefore, we

see that the mass spectrum is equivalent for two superstring theories, one with a spatial dimension

compactified on S1 with radius R and the other with a spatial dimension compactified on S1 with

radius α′

R . S-duality, also known as strong-weak duality, is the term to describe the map between

weak and strong couplings in a superstring theory, in a similar way to the mapping of compactified

dimensions in T-duality [8]. The action of type IIB supergravity, given in Eq. 2.61, is invariant

under SL(2,R) transformations. By considering a complex field τ with Im[τ ] = e−ϕ, we can
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express Eq. 2.61 in such a way that it is invariant under SL(2,R) transformations given by

a b

c d

 ∈ SL(2,R), (2.65)

where ad− bc = 1. This acts on τ as [18]

τ → τ ′ =
aτ + b

cτ + d
. (2.66)

Upon quantisation, type IIB supergravity becomes invariant under a subgroup of SL(2,R) trans-

formations. Within this subgroup is the transformation given by Eq. 2.65 with a = d = 0 and

c = −b = 1. Therefore, the transformation of τ in Eq. 2.66 becomes

τ → τ ′ = −1

τ
. (2.67)

If τ has no real component then we have ϕ→ ϕ′ = −ϕ, or equivalently via the relation gs = eϕ,

gs → gs
′ =

1

gs
. (2.68)

Therfore, we can say that there is an equivalence between the weak and strong coupling regimes

of type IIB supergravity [18, 8]. We can also consider the role of D-branes, or Dirichlet-branes,

which are objects on which the ends of open strings can end to satisfy boundary conditions. It is

understood that D-branes are dynamical objects and so it is possible to understand the dynamics

of p dimensional D-branes, or Dp-branes, from the p dimensional generalisation of the Polyakov

action. This is given by

S = −Tp
∫
dp+1ξ

√
−h, (2.69)

where Tp is the tension of the p-brane and h is the induced metric on the worldvolume (or the

pull-back of the metric), given by

h = det
(
∂Xµ

∂ξa
∂Xν

∂ξb
gµν

)
(2.70)

where µ, ν, a, b ∈ (0, ..., p) [18]. Of central importance is the interaction of closed strings with

Dp-branes. Consider the action which couples a Dp-brane to gµν and the antisymmetric tensor

Bµν , given by

S = −Tp
∫
dp+1ξ

√
−det (∂aXµ∂bXν(gµν + α′Bµν)). (2.71)
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For the case of Bµν = 0 and gµν(X) = ηµν + 2κhµν(X), expanding the determinant gives the

scalar-graviton action

S = −Tp
∫
dp+1ξ

(
Tp +

1

2
∂a~φ∂a~φ+ 2κ

√
Tphai∂

aφi + ...

)
, (2.72)

where the action has reparametrisation invariance, such that we can write Xa = ξa for a ∈ (0, ..., p)

[18]. Therefore, we have φi(ξa) = Xi(ξa)
√
Tp for a ∈ (p+ 1, ..., d− 1) where d is the dimension of

spacetime, i.e. d − (p + 1) scalar fields confined to the worldvolume of the Dp-brane. We can see

from the third term in Eq. 2.72 that there are interactions of hai(X), a closed string that can exist

at an arbitrary point in spacetime, with φi(ξa), an open string mode confined to the Dp-brane.

We can interpret this interaction in the following way [18]: a closed string makes contact with a

Dp-brane, which in turn excites an open string mode on the Dp-brane causing the brane to vibrate

. Furthermore, we can introduce the dilaton field, ϕ, by multiplying the integrand of Eq. 2.71 by

e−ϕ [18]. Let’s also consider the existence of other fields on the Dp-brane worldvolume. One such

example is described by the Dirac-Born-Infeld action for electromagnetism, given by

S = −Tp
∫
dp+1ξ e−ϕ

√
−det (∂aXµ∂bXν(gµν + α′Bµν) + 2πα′Fab). (2.73)

where Fab are the components of the field strength tensor for the U(1) gauge field, Aa, existing

on the Dp-brane [8]. By considering Eq. 2.73 with gµν = ηµν , vanishing Bµν , and expanding the

determinant, we obtain [8]

S = −(2πα′)2 Tp
4gs

∫
dp+1ξ FabF

ab. (2.74)

Therefore, we can see that the Dirac-Born-Infeld action for a Dp-brane reduces to an expression

that can be described by Yang-Mills theory. Note, the tension of the Dp-brane, Tp, is given by

Tp = (2π)−pα′
− (p+1)

2 . (2.75)

From this, we can define the Yang-Mills coupling constant to be

g2
YM = gs(2π)p−2(α′)

p−3
2 (2.76)

where we have inserted Eq. 2.75 into the Dirac-Born-Infeld equation given by Eq. 2.74 [8]. To

see that this is the correct way to define the Yang-Mills coupling, consider two seperate systems

of interacting open strings, where each system has the coupling constant gYM . By ‘fusing’ these

systems together at the ends of each string, one forms a single system of interacting closed strings
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with coupling gs. From this, we can intuitively see the relation g2
YM ∼ gs [18]. Furthermore, we

can consider N coincident Dp-branes, a system of N Dp-branes such that different ends of open

strings can attach to different Dp-branes. While we will omit the details, it can be shown that such

Figure 2.5: N coincident Dp-branes, where we see that it is possible for open strings to end on
different branes [22].

a system can be described by a U(N) gauge theory, a simple generalisation of the single Dp-brane

case [8].

We are starting to see a potential link between Yang-Mills gauge theories and string theories.

However, we need to be more precise and determine further details about these two theories. While

so far we have limited the discussion of Dp-branes to bosonic string theory, the main discussion for

AdS/CFT surrounds D3-branes in type IIB supergravity. For the case of D3-branes, we find that

the worldvolume contains 6 scalar fields, 4 fermions, and 1 gauge field, all of which transform in the

adjoint representation of U(N) [18]. It turns out that in this case, one can equivalently consider

the gauge group SU(N) [8]. Therefore, as these are the same fields that we discussed for N = 4

Super Yang-Mills, we can conclude that the gauge theory on N coincident D3-branes is equivalent

to N = 4 Super Yang-Mills in 4 dimensions with gauge group SU(N) [18]. Furthermore, we have

the property that Dp-branes curve spacetime. For type IIB supergravity, the relevant part of the

solution for a D3-brane are given by

ds2 =

(
1 +

R4

r4

)− 1
2

dXB
2 +

(
1 +

R4

r4

) 1
2

(dr2 + r2dΩ2
5),

R4 = 4πgsNα
′2

(2.77)

27



where XB are the coordinates of the D3-brane worldvolume [9]. To analyse this solution, we take

the limit α′ → 0 (where supergravity is valid) while keeping the quantity U = r
α′ fixed. We can

rewrite Eq. 2.77 as

ds2 = α′
(

U2

√
4πgsN

dXB
2 +

√
4πgsN

dU2

U2
+
√

4πgsNdΩ2
5

)
. (2.78)

If we also take the ‘t Hooft limit, i.e. λ = g2
YMN ∼ gsN fixed (by setting p = 3 in Eq. 2.76), then

we can see that the metric becomes that of AdS5 × S5. [9]. Rearranging the second equation of

Eq. 2.77, we obtain the radius of curvature

R2

α′
=
√

4πgsN, (2.79)

so we can alternatively say the taking the limit of large λ, i.e. we consider a strongly coupled Yang-

Mills theory, we obtain AdS5 × S5 with a large radius of curvature. Therefore, we can now state

that in the large N and λ limit, strongly coupled N = 4 Super Yang-Mills is physically equivalent

to classical type IIB supergravity in weakly curved AdS5×S5 spacetime [8]. We can also relax the

condition of large λ, i.e. we move away from the supergravity approximation of type IIB string

theory, which combined with the large N limit gives gs � 1, i.e. classical type IIB string theory.

Therefore, we can state the in the large N limit, N = 4 Super Yang-Mills is physically equivalent

to classical type IIB string in AdS5 × S5 spacetime [25]. Furthermore, we can obtain the most

general statement of the AdS/CFT correspondence by relaxing the large N limit, alleviating the

weak string coupling description and leading to the following conjecture: N = 4 Super Yang-Mills

in 4 dimensions is physically equivalent to type IIB string theory on AdS5 × S5 [9]. The power

of AdS/CFT comes from ability to choose the ‘t Hooft limit. For example, by choosing λ � 1,

we obtain the the weak form of the AdS/CFT correspondence. Here, we have a situation where a

highly understood gravitational theory is dual to a strongly coupled CFT, in which calculations are

intractable. Therefore, it is possible to use classical type IIB supergravity to compute quantities

in strongly coupled N = 4 Super Yang-Mills. Additionally, choosing λ � 1 we obtain a situation

where a weakly coupled CFT is dual to a string theory, in which calculations are also difficult.

Therefore, we can perform calculations in the weakly coupled N = 4 Super Yang-Mills to obtain

quantities in string theory. We can see that by tuning the ‘t Hooft parameter, it is possible use the

AdS/CFT to perform calculations in a dual theory that are otherwise intractable in the original

theory [7].

A rather simple check of this correspondence is to compare the symmetries of both theories.
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We have discussed that the bosonic symmetry of N = 4 Super Yang-Mills in 4 dimensions are

SO(2, 4)×SO(6), which comes from the combination of conformal symmetry and the R-symmetry.

In section 2.1, we also stated that the symmetry group of AdSd+1 is SO(2, d). Therefore, from Eq.

2.78 we can state that the symmetry group of type IIB string theory in AdS5 × S5 spacetime is

also SO(2, 4) × SO(6). Therefore, we see that the symmetries of both theories match [8]. From

this argument, we should expect a correspondence between states in the two different theories.

First, we must determine exactly where the states of N = 4 Super Yang-Mills exist within AdS5.

In section 2.1, we established that ∂AdSd+1 is equivalent to M
1,d−1, d dimensional Minkowski

space. Therefore, it is natural to consider that 4 dimesional N = 4 Super Yang-Mills exists on

the conformal boundary of AdS5, as the spacetime here is identical to 4 dimensional Minkowski

spacetime [8]. From this, we can see that there must exist a correspondence between field theory

states on the conformal boundary of AdS5 and supergravity states in the bulk of AdS5 . Consider

the Euclidean action of a massive scalar field in AdSd+1

S =

∫
ddXdz

√
g(∂ρφ∂

ρφ+m2φ2) (2.80)

where gρσ is the metric of AdS in Poincaré coordinates as in Eq. 2.17 and φ = φ(z,X) [7]. The

equation of motion, determined by varying S with respect to φ gives the usual Klein-Gordon

equation
1
√
g
∂ρ(
√
ggρσ∂σφ)−m2φ = 0. (2.81)

By substituting the metric components of Eq. 2.17 into Eq. 2.81, one obtains

1

R2
(z2∂z

2 + z2∂2
X + z(1− d)∂z)φ = m2φ. (2.82)

where ∂2
X = ∂2

X0
+ ∂2

~X
[26]. As Poincaré symmetry is manifest on ∂AdS in these coordinates, we

see that ∂AdS is translation invariant. Therfore, we can transition to fourier space and decompose

the solution into radial and boundary parts as φ(z,X) = eikµX
µ

f(k, z). Substituting this solution

into Eq. 2.82, we arrive at the radial equation [7]

∂2
zf(k, z) +

(1− d)

z
∂zf(k, z)−

(
k2 +

m2R2

z2

)
f(k, z) = 0. (2.83)
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Given that for z →∞ the field should decay, we look for the solution to Eq. 2.83 that suppresses

f(k, z) at large z. Therefore, we find that the solution to Eq. 2.83 for our boundary conditions is

f(k, z) = eikzz
d
2Kα(kz),

α =

√
d2

4
+ (mR)2,

(2.84)

where Kα is the modified Bessel function of the second kind [7]. Considering the z → 0 limit,

we find that f(k, z) ∼ zd−∆, where ∆ = d
2 + α. Therefore, we can put a boundary condition at

z = ε� 1 whereby [26]

φ(ε,X) = φ0(X)εd−∆. (2.85)

Therefore, we can determine the expression for φ̃(k, z) satisfying this boundary condition, which

is given by

φ̃(k, z) = φ̃0(k)εd−∆ f(k, z)

f(k, ε)
, (2.86)

where φ̃ denotes the Fourier transform of φ. Substituting this solution into the action of Eq. 2.80,

we can integrate by parts, use the equations of motion, take the limit ε → 0 and transform back

to real space to arrive at the important expression [7]

S = −2αΓ(∆)

π
d
2 Γ(α)

Rd−1

∫
ddXddY

φ0(X)φ0(Y )

|X − Y |2∆
. (2.87)

Therefore, if we consider the partition function of the supergravity theory, ZSG[φ0(X)] = e−SSG ,

where the saddle point approximation has been taken due to the classical nature of supergravity,

we can determine the two point correlation function of the dual CFT by

〈O(X)O(Y )〉CFT =
δ2e−SSG

δφ0(X)δφ0(Y )

∣∣∣∣
φ0=0

∼ 1

|X − Y |2∆
.

(2.88)

We can now draw the conclusion that

e−SSG = ZCFT [φ0(X)] =
〈
e
∫
ddXφ0(X)O(X)

〉
CFT

(2.89)

from the comparison between Eq. 2.52 and Eq. 2.88 [7]. This allows us to perform calculations

in AdS/CFT. We call this the field-operator map, or the AdS/CFT dictionary, for the weak form

of the AdS/CFT correspondence. We can also generalise this statement to the strong form of the

AdS/CFT correspondence, in which type IIB string theory is the gravitational theory. Therefore,
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the field-operator map for the strong form is given by [8]

ZString[φ0(X)] =
〈
e
∫
ddXφ0(X)O(X)

〉
CFT

. (2.90)

An important point is that while we have used Eq. 2.80 to arrive at this conclusion, these results

also hold for the full type IIB supergravity action, obtained by performing a dimensional reduction

on the 10 dimensional action in Eq. 2.61 [8]. Note that the term Zstring[φ0(X)] is used to describe

the partition function with the condition that φ = φ0 on the conformal boundary [22].
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3. Fundemental Aspects of Wormholes

The prediction of wormhole structures in Einstein’s General Theory of Relativity has been used

as a source of inspiration for many works of science fiction. The standard portrayal is that these

seemingly futuristic objects allow the travelling of long distances across the universe, usually in

a very short amount of time. It is natural to speculate whether this interpretation of wormholes

is indeed correct, or even to question their existence entirely. To answer these questions, we first

must describe the details of the first, well established interpretation of a wormhole, the Einstein-

Rosen bridge. Following this, we will discuss more general interpretations of wormholes and their

properties.

3.1 The Einstein-Rosen Bridge

In 1935, Einstein and Rosen published a paper where they considered a theory of particles which

only depends on the metric of spacetime and a vector potential, in the absence of singularities. To

remove any singularities, they performed a simple coordinate change to alter the gravitational equa-

tions. This gave rise to the following conclusion: physical spacetime is mathematically described

by two sheets, which are joined by a geometrical structure called a ‘bridge’. The interpretation of

this bridge is that it represents a physical particle [27]. This geometrical model does not appear to

be correct, however, the concept that two seperate sheets of spacetime are connected by a bridge

was not disregarded. The modern interpretation of Einstein and Rosen’s idea is that in some co-

ordinate systems, we are concerned about the asympototically flat regions of maximally extended

Schwarzschild spacetime [28]. Maximally extended Schwarzschild spacetime is the extension of the

Schwarzschild solution to the full spacetime manifold. Taking G = c = 1 units, the Schwarzschild

solution, in Schwarzschild coordinates (t, r, θ, φ), is given by

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2
2, (3.1)
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where the dΩ2
2 = dθ2 + sin2(θ)dφ2 is the metric on S2 of unit radius. It is important to note that

these coordinates are only defined for the region r > 2M . One can write this metric using null

coordinates u = t− r∗ and v = t+ r∗, where r∗ is the Regge-Wheeler (tortoise) coordinate defined

by

dr2
∗ =

dr2

1− 2M
r

, (3.2)

which once integrated gives the expression

r∗(r) = r + 2M ln

∣∣∣∣r − 2M

2M

∣∣∣∣ . (3.3)

Therefore, using the (u, v, θ, φ) coordinates, we can write Eq. 3.1 as

ds2 = −
(

1− 2M

r

)
dudv + r2dΩ2

2 (3.4)

where u and v are implicitly given by r = 1
2 (v−u). Due to the tortoise coordinate, this coordinate

system is not well defined at r = 2M . Therefore, we define a new coordinate system, namely the

Kruskal-Szekeres coordinates (U, V, θ, φ). These coordinates are given by

U = −e− u
4M ,

V = e
v

4M

(3.5)

where U < 0 and V > 0. We also note the important relation

V

U
= −e t

2M . (3.6)

We can now write the Schwarzschild metric in Kruskal-Szekeres coordinates, which gives

ds2 = −32M3

r
e−

r
2M dUdV + r2dΩ2

2 (3.7)

where r is given implicitly by

UV = −e r
2M

( r

2M
− 1
)
. (3.8)

From Eqs. 3.7 & 3.8, we see that the singularity at r = 2M has disappeared, meaning that the

kruskal coordinates are well defined for 0 < r < ∞. Furthermore, we can see that the ranges

of U and V can be extended to −∞ < U < ∞ and −∞ < V < ∞. The spacetime diagram

of the Schwarzschild solution in Kruskal-Szekeres coordinates, denoted the Kruskal diagram, is

shown in figure 3.1. We will refer to the spacetime described by the Kruskal diagram as Kruskal

33



spacetime. Each point on the Kruskal diagram represents a 2-sphere, i.e. we have suppressed the

metric of the 2-sphere and restricted any physics to radial motion. The Schwarzschild coordinates

Figure 3.1: The Kruskal diagram with lines of constant r and constant t shown. The jagged lines
represent the curvature singularities at r = 0. Each point of the diagram corresponds to a 2-sphere.

only cover the V > 0 portion of the Kruskal diagram (not including U = 0). We see that the

region V > 0 and U > 0 corresponds to the black hole region, while the region V > 0 and U < 0

corresponds to the exterior of the black hole. Interestingly, the Kruskal diagram gives rise to a new

section of spacetime not present in Schwarzschild coordinates. This new section, defined for V < 0

is completely isometric to the V > 0 region under the transformation U → −U and V → −V .

Therefore, we see that we obtain two new regions The region U < 0 and V < 0 is called the white

hole region, which differs from the black hole region only by the reversal of the coordinates. The

consequence of this is that, in contrast to a black hole, a causal observer cannot cross the event

horizon from the r > 2M region. Finally, the region U > 0 and V < 0 is the white hole exterior.

The common conception is that the white hole exterior region is indeed a universe of its own. For

convenience, we will split these regions of the Kruskal diagram are into 4 regions; top, bottom, left

and right. By setting r = 2M in Eq. 3.8, we find UV = 0. Therefore, the event horizon at r = 2M

in Schwarzschild coordinates corresponds to the surface at U = 0 or V = 0. We can therefore state

that each region of the Kruskal diagram is separated by a horizon. These two horizons at U = 0

and V = 0 intersect eachother at U = V = 0. This point on the Kruskal diagram is called the

bifurcation 2-sphere, as it is the only point on the Kruskal diagram that directly joins the left and

right regions. It is also referred to as the bifurcate horizon. An important property of the kruskal

diagram is that null radial geodesics are given by 45◦ lines. This can be seen from Eq. 3.7, where

setting ds2 = 0 gives one of three results; dU = 0 ∀ U, V , dV = 0 ∀ U, V or dU = 0 and dV = 0 ∀
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U, V . From this, we also see that light cones remain constant at every point on the diagram, which

makes Kruskal coordinates the perfect arena to understand the causal structure. To consider the

whole spacetime, we perform a conformal compactification of Kruskal spacetime. To accomplish

this, we define two new coordinates

U = tan Ũ ,

V = tan Ṽ

(3.9)

such that the new finite coordinate ranges are −π2 < U < π
2 and −π2 < V < π

2 . Substituting

Eq. 3.9 into Eq. 3.7 and performing a necessary Weyl transformation, one obtains the metric for

conformally compactified Kruskal spacetime

ds2 = −32M3

r
e−

r
2M dŨdṼ + r2 cos2(Ũ) cos2(Ṽ )dΩ2

2. (3.10)

where we now add the points at infinity such that the new coordinate ranges are −π2 ≤ U ≤
π
2 and

−π2 ≤ V ≤ π
2 . The diagram of conformally compactified Kruskal spacetime is given in figure 3.2.

Here, we have introduced the boundary points i±, i0 and J ±, as well as H+ and H−, the future

Figure 3.2: Conformally compactified Kruskal spacetime, where we have shown examples of con-
stant t and constant r lines. We have also introduced the notation H+ and H− to denote the
future and past event horizons of the black hole exterior, respectively. Once again, each point of
the diagram represents a 2-sphere.

and past event horizons of the black hole exterior, respectively. Considering only the right region of

the diagram, i+ labels the point with Ũ = 0, Ṽ = π
2 , while i

− labels the point with Ũ = π
2 , Ṽ = 0.

They correspond to the future and past end points of all timelike curves, respectively. As they

label points at infinity, one can see that they are singular points as they coincide with the r = 0
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singularity. Furthermore, i0 labels the point Ũ = −π2 , Ṽ = π
2 , corresponding to the end point of

all spacelike curves. This includes the constant time curve shown in figure 3.2. Finally, J + labels

the points at −π2 < Ũ < 0, Ṽ = π
2 , while J − labels the points at Ũ = −π2 , 0 < Ṽ < π

2 . One can

also define i±, i0 and J ± for the left region of the diagram. Similarly to the diagram in figure 3.1,

the light cones are bounded by 45◦ lines at each point on the diagram and each point represents a

2-sphere.

In both diagrams, we have shown lines of constant time. From Eq. 3.6 we see that a line of

constant time is given by the relation U = cV , where c is a constant. Therefore, in the Kruskal

diagram, lines of constant time are straight lines through the point U = V = 0. On the conformally

compactified Kruskal diagram, we note that lines of constant time are spacelike curves that end

on i0, as spacelike curves are mapped to spacelike curves by a conformal compactification. In

other words, the tangent vector at every point along the curve of constant time is spacelike. Let’s

investigate the geometry of a line of constant time, now including the coordinates θ and φ. One

can consider using isotropic coordinates, a valuable method as it does not require one to embed the

geometry into a higher dimensional space [29]. However, here we use an embedding technique and

consider Schwarzschild coordinates to build a more intuitive picture of the constant time geometry.

Consider Eq. 3.1 at a constant time and θ = π
2 . From this, we obtain

ds2 =

(
1− 2M

r

)−1

dr2 + r2dφ2 (3.11)

Our approach is to embed this metric into R3 in cylindrical coordinates (r, φ, z). This metric is

given by

ds2
R3 = dr2 + r2dφ2 + dz2 =

((
dz

dr

)2

+ 1

)
dr2 + r2dφ2 (3.12)

where we have taken z = z(r) [29]. Comparing Eq. 3.11 and Eq. 3.12, we can identify

dz

dr
= ±

√
2M

r − 2M
(3.13)

where by performing the substitution y = r − 2M ,we can integrate this expression to obtain

z(r) = ±
√

8M
√
r − 2M. (3.14)

Rearranging to obtain r, we arrive at the formula

r(z) = 2M +
z2

8M
. (3.15)
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We immediately see that there is a symmetry about z = 0, at which the value of r is at its

minimum value of r = 2M , i.e. at the bifurcation 2-sphere. We call this section of the geometry

the ‘throat’. We also see that as z → ±∞, r → ∞. Using Eq. 3.13, dz
dr → 0 and therefore, Eq.

3.12 approaches R2. Including the φ coordinate, we see that the geometry of a line at constant

time is that of a double trumpet as shown in figure 3.3 [29]. This is the Einstein-Rosen bridge.

We have omitted θ from this discussion by choosing a fix value of θ to examine this geometry.

Therefore, the Einstein-Rosen bridge is actually a 3 dimensional subsurface of Kruskal spacetime

and every point on the diagram in figure 3.3 is equivalent to S1. Of course, the Schwarzschild

coordinates are only defined for r > 2M and are singular at r = 2M . However, we can see that in

the limit that z → 0, r → 2M , so we use the knowledge that r = 2M is a coordinate singularity

to include this point in our discussion. Furthermore, while the Schwarzschild coordinates are only

defined for the top and right regions of the conformally compactified Kruskal diagram, we find

that they describe a three dimensional surface in the right and left regions. This can been seen

from the following perspective: due to the symmetry about z = 0 and the isometry between the

right and left regions, we can map the geometry from the right region to the left region and join

the two surfaces at the bifurcation 2-sphere. Following our previous discussion of the Kruskal

Figure 3.3: The Einstein-Rosen Bridge [29]. The throat of the double trumpet geometry has a
minimum value of r = 2M and approaches asymptotically flat space as z →∞.

diagram, we can note an important point about the Einstein-Rosen bridge. As the Einstein-Rosen

bridge is a spacelike surface as time does not pass while remaining on the bridge. Therefore, a

causal observer cannot traverse the Einstein-Rosen bridge and cross from the right region to the

left region. More specifically, the end point of a causal curve crossing the bifurcate horizon would

lie at the singularity, not at a point in the left region.
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3.2 The Concept of a Wormhole

The idea of a wormhole floated around the scientific community soon after the announcement of

Einstein’s general theory of relativity. The first contribution was by Flamm, who was the first to

discover the parabolic nature of a wormhole-like structure as shown in equation 3.15 [30]. Following

this was the work of Einstein and Rosen, which we discussed in section 3.1. We have seen that the

Einstein-Rosen bridge is a geometry that connects the left and right regions of Kruskal spacetime,

across which a causal observer cannot travel. We say that this geometrical structure is an example

of a non traversable wormhole. While the term wormhole was not used at the time, the Einstein-

Rosen bridge is widely regarded as the first example of a wormhole. Although this discovery did

not spark any immediate research, there has been a lot of interest in wormholes in the last few

decades [28]. In the years following the work of Einstein and Rosen, Wheeler revived the idea

of these geometrical structures. He introduced the concept that the physical entity of electric

charge is simply a manifestation of the geometry of spacetime coupled with electromagnetism. By

considering the Einstein-Maxwell equations, Wheeler determined that electric charge arises from

the existence of electric field lines that form closed loops by navigation through a wormhole-like

geometry [31]. This idea is depicted in figure 3.4. This concept led Wheeler, alongside Misner, to

Figure 3.4: A wormhole as depicted by Wheeler. The geometry allows a flux of electric field lines
to form closed loops. [31]

propose that all entities of classical physics, i.e. gravitation, electromagnetism, charge and mass,

are simply a manifestation of empty curved spacetime [32]. Proceeding these ideas put forth by

Wheeler, a paper published by Morris and Thorne explored the possibility of using wormholes for

interstellar travel, similar to these seen in works of science fiction. As shown in figure 3.5, these
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wormholes create a ‘shortcut’ through spacetime allowing one to effectively travel long distances in

a short amount of time. Morris and Thorne present solutions to the Einstein field equations that

could be traversed by causal observers [33]. These solutions omit the traversability issues that are

present for the Einstein-Rosen bridge and other non-traversable wormholes. For example, a causal

Figure 3.5: An interstellar wormhole as depicted by Morris and Thorne [33]. Spacetime is curved
in such a way that two different regions of the same spacetime are connected via a short path.

observer attempting to cross the Einstein-Rosen bridge will cross the event horizon of a black

hole and reach the curvature singularity. Therefore, a traversable wormhole should not possess

a horizon of any kind, which would prevent travel across the wormhole in at least one direction.

Furthermore, the tidal forces acting on a causal observer woul have to be small enough, such

that the the journey through the wormhole leaves the observer unharmed [33]. Another obvious

point is that an observer must be able to cross the wormhole in finite proper time, otherwise the

wormhole does not serve its purpose. Of course, only the Einstein-Rosen bridge is understood

to arise naturally. Conversely, traversable wormholes have to be created and sustained. Morris

and Thorne discovered that to sustain the wormhole structure, the tension of the throat must be

equivalent to the pressure at the centre of neutron stars. Subsequently, the matter necessary to

form the wormhole appears to have negative energy density for a sufficiently fast-moving observer.

This matter is labelled as ‘exotic’, as it violates the weak energy condition [33]. Once such a

traversable wormhole has been constructed, an observer must be able to pass through without

affecting the geometry in such a way that the structure collapses or deformes. Therefore, it is also

required that the wormhole geometry must remain stable in the presence of perturbations, either

from external objects or from the observer [33]. Perhaps the most important of these conditions to

achieve is the violation of the weak energy condition.. Classically this is not possible, however, the

discovery of Hawking radiation revealed that quantum fields can violate the weak energy condition

[33]. In fact, one can consider the use of the Casimir effect. As the Casimir vacuum violates the

weak energy condition, it may be possible to form a wormhole by manipulating such an effect [34]

All of the wormholes that we have considered so far are known as Lorentzian wormholes. These

are wormholes which have been created from the deformation of Minkowski space, meaning that the
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metric of such a geometrical structure has Lorentzian signature. Having discussed these wormholes,

we can see that there are two types: inter-universe wormholes and intra-universe wormholes [28].

The former are wormholes that connect two universes together, which if traversable allow travel or

exchange of information between two different universes. The Einstein-Rosen bridge is an example

of an inter-universe wormholes and is depicted in figure 3.3. The latter are wormholes that connect

two spatially separated points in the same universe. We have seen two different examples of an

intra-universe wormholes. The Wheeler wormhole simply allows the flow of electric field lines

between two points in spacetime, meaning that these points can interact with eachother as seen

in figure 3.4. From a different perspective, we have also seen the Morris and Thorne wormhole

which simply allows a causal observer to travel from one point in spacetime to another in a very

short amount of time, as shown in figure 3.5. As we will see later, we present recent examples of

both inter-unverse and intra-universe wormholes in the context of AdS/CFT. While we have not

discussed such wormholes so far, we will also turn our attention to the Euclidean wormholes, a

highly active and modern area of research in the realm of AdS/CFT. These wormholes are obtain

by performing a wick rotation of the time component of the spacetime from which the wormhole

is formed.
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4. Quantum Entanglement

Quantum mechanics gives rise to various phenomena of which the properties are very mysterious.

One of these phenomena is quantum entanglement, often shortened to entanglement. In this

section, we review the basic properties of entanglement and discuss how the famous EPR paradox

arises from these properties. We will see that at first glance, entanglement appears to violate

the fundamental relativistic property of locality, the inability to send information faster than the

speed of light [12]. While we will not provide any formal proof of this in a general case, we will

examine the specific situation of quantum teleportation and see that entanglement does not lead

to faster than light communication. Of vital importance to our later discussions is the concept of

entanglement entropy. Hence, we finish this section by discussing the properties of this quantity

and how it measures the entanglement of a system.

4.1 A Review of Entanglement

4.1.1 Entangled States

Let us consider a multipartite system with n subsystems. Classically, the total state of a system

is described by the Cartesian product of the individual subsystems [35]. However in quantum

mechanics, the total state of the system is a vector in the Hilbert space H =
⊗n

j=1Hj , which is

a tensor product of the Hilbert spaces of the n individual subsystems. In general, we can use the

principle of superposition to write the total state as

|Ψ〉 =
∑

i1,...,in

αi1...in |φi1〉 ⊗ |φi2〉 ⊗ ...⊗ |φin〉 , (4.1)

where |φij 〉 is a basis vector which belongs to the Hilbert space of subsystem j, Hj [35]. In

contrast to the classical case, this means that we cannot write |Ψ〉 as a tensor product of states of
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the individual subsystems, i.e it is not possible to write |Ψ〉 as

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψn〉 , (4.2)

where the jth subsystem is in the state |ψj〉. Therefore, we cannot describe any of the individual

subsystems with a single state vector [35]. We say that states of the form in Eq. 4.1 are entangled,

while states of the form in Eq. 4.2 are not entangled. In each case, as the total state of the

system is known, we call these pure states [36]. In other words, we have complete knowledge of

the state and can represent it as a state vector. It is very difficult to understand the dynamics of a

multipartite system with large n, so we now restrict our discussion to the simplest situation where

n = 2, i.e. a bipartite system with particles A and B. Let us further restrict our system such that

each subsystem only contains two degress of freedom, i.e. each particle can only exist in one of two

states, |0〉 or |1〉. Therefore, our Hilbert space is now H = HA⊗HB , where dimHA = dimHB = 2

[35]. Therefore, the Hilbert space HA/B is spanned by the two basis vectors, |0〉A/B or |1〉A/B .

From these states, one can construct the 4 orthonormal basis vectors of the bipartite Hilbert space

H, which are given by

|Ψ±AB〉 =
1√
2

(|0〉A ⊗ |1〉B ± |1〉A ⊗ |0〉B) ,

|Φ±AB〉 =
1√
2

(|0〉A ⊗ |0〉B ± |1〉A ⊗ |1〉B) .

(4.3)

We call these the Bell states and they form a complete basis of the bipartite Hilbert space H [35].

A key point of these states is that we cannot describe either of the subsystems individually. In

other words, one cannot determine information about subsystem A without disturbing subsystem

B and vice versa. It is in this sense that the subsystems are entangled. We will now consider the

properties of entanglement of this bipartite system in the context of the EPR paradox.

4.1.2 The EPR Paradox

To understand the EPR paradox, we shall now consider the measurement of spin 1
2 particles in a

bipartite system. Such a system is equivalent to the bipartite system described in section 4.1.1,

where we interpret the two degrees of freedom as the two possible spin states, spin 1
2 (spin up) and

spin − 1
2 (spin down). We denote these states |↑〉 and |↓〉, respectively. Let’s create a state with a

total spin of zero. By the principle of superposition, the state of the bipartite system is given by

[37]

|Ψ−AB〉 =
1√
2

(|↑〉A ⊗ |↓〉B − |↓〉A ⊗ |↑〉B) . (4.4)
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We now proceed to move these particles a large distance apart in such a way that does not affect

the spin of each particle. Now, if we perform a measurement of the spin of particle A such that

the measurement has no effect on particle B, knowing that the total spin of the two particle

state is zero, we immediately know the spin of particle B. Classically, there is no issue with

the previous statement as the spin of each particle is well defined at all times, regardless of any

measurements [37]. However, in a quantum system, Einstein, Rosen and Podolsky (EPR) noted

that this statement gives rise to a paradox. Initially, we had no exact knowledge of which spin

state particle B was in, only that it could be either |↑〉A or |↓〉A with equal probability. However,

by performing a spin measurement on A, we have seemingly gained knowledge of the spin state

of particle B without disturbing it. Therefore, EPR stated that the spin of particle B must be a

well defined property that is not affected by any measurement. In contrast, the laws of quantum

mechanics state that the spin state of particles A and B are ill-defined before measurement [38]. As

such, so we arrive at a paradox, namely the EPR paradox. At the time of publishing, EPR’s solution

was that there exists local hidden variables, or elements of reality, that carry the information that

had seemingly travelled faster than the speed of light. However, if one believes the principle of

locality is a fundamental property of nature, then this solution is proven incorrect by the violation

of the Bell inequalities [38]. Here we note that EPR did not consider the discrete case of spin

1
2 particles, but considered the continuous variables of position and momentum [39]. However,

the outcome of both arguments is the same. In fact, it is not possible to use entanglement to

send information faster than the speed of light [12]. We will not provide any formal proof of the

principle of locality. However, we will proceed by discussing why locality is not violated in quantum

teleportation, a phenomenon which relies entirely on quantum entanglement.

4.1.3 Locality in Quantum Teleportation

Let’s consider the scenario whereby observer A wants to send a particle to observer B. The

trivial way to accomplish this would be to directly send the particle. However, we shall describe an

alternative way of transfering the particle, using the properties of quantum entanglement. Consider

a 3 particles system containing particles a, b and c, which is given by [40]

|ψ〉 = |φc〉 ⊗ |Ψ−ab〉 . (4.5)

Here, we see that we have created an entangled state |Ψ−ab〉, where particle a belongs to observer

A and particle b belongs to observer B. Proceeding this, we introduced a new particle c that is

not entangled with |Ψ−ab〉, which observer A wishes to send to observer B. To teleport particle
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c to observer B, we must entangle the state |φc〉 with |Ψ−ab〉. To do this, observer A performs a

measurement on their particles, i.e. on the subsystem containing particles a and c [40]. Let us

consider the outcomes of this measurement. If we consider that particle c is also a spin 1
2 particle,

like particles a and b, then we can write

|φc〉 = α |↑c〉+ β |↓c〉 . (4.6)

Therefore, the full state of the 3 particle system as a quantum superposition of the 4 possible

outcomes of the measurement is [40]

|ψ〉 =
1√
2

(α |↑c〉 ⊗ |↑a〉 ⊗ |↓b〉 − α |↑c〉 ⊗ |↓a〉 ⊗ |↑b〉

+β |↓c〉 ⊗ |↑a〉 ⊗ |↓b〉 − β |↓c〉 ⊗ |↓a〉 ⊗ |↑b〉) .
(4.7)

Now, we can re-write Eq. 4.7 in terms of the newly entangled subsystem containing particles a

and c, |Ψca〉. Of course, we see that there are 4 possible states in which observer A may find this

subsystem. These are given by the Bell states [40]

|Ψ±ca〉 =
1√
2

(|↑c〉 ⊗ |↓a〉 ± |↓c〉 ⊗ |↑a〉) ,

|Φ±ca〉 =
1√
2

(|↑c〉 ⊗ |↑a〉 ± |↓c〉 ⊗ |↓a〉) .
(4.8)

Re-writing Eq. 4.7 in terms of these bell states, we find

|ψ〉 =
1

2

(
|Φ−ca〉 ⊗ (α |↓b〉+ β |↑b〉) + |Φ+

ca〉 ⊗ (α |↓b〉 − β |↑b〉)+

|Ψ+
ca〉 ⊗ (−α |↑b〉+ β |↓b〉)− |Ψ−ca〉 ⊗ (α |↑b〉+ β |↓b〉)

)
.

(4.9)

Therefore, if observer A performs a measurement, they will find the subsystem of particles a and

c to be in one of the bell states with equal probability. Let’s say that the after this measurement,

|ψ〉 collapses into the state

|ψ〉 = |Φ+
ca〉 ⊗ (α |↓b〉 − β |↑b〉). (4.10)

Observer A will therefore obtain knowledge of the state of particle b. Here we see that the state of

particle b differs from that of particle c by the sign of the coefficient β. Therefore, observer A must

send a classical message to observer B, informing them to perform a unitary operation on particle

b such that the sign of β becomes positive [40]. In doing so, the state of particle b becomes that of

Eq. 4.6, meaning that observer A has successfully teleported particle c. If the wavefunction had

collapsed into any of the other 3 states, observer A would simply send a different classical message,
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directing observer B to perform the relevant unitary operation on particle b such that the state in

Eq. 4.6 is obtained. The important point in this example is the use of a classical message to enable

this teleportation. While the properties of entanglement are of central importance to this process,

the particle was not transferred from one location to another at a speed faster than the speed of

light. In a more general sense, we can say that the information of particle c was not transferred

faster than the speed of light.

4.2 Measuring Entanglement

4.2.1 The Density Matrix Formalism

In section 4.1.1, we considered pure states. Such states can be expressed by a single state vector.

However, we can also use the density matrix formalism to express pure states. The density matrix

of a pure state is defined as

ρ = |Ψ〉 〈Ψ| . (4.11)

Taking the trace of this expression we find [36]

Tr(ρ) =
∑
i

〈Ψi|Ψ〉 〈Ψ|Ψi〉 =
∑
i

〈Ψ|Ψi〉 〈Ψi|Ψ〉 = 〈Ψ|Ψ〉 = 1, (4.12)

where |Ψi〉 fully span the Hilbert space of the multipartite system, H. Furthermore, we can see

that

ρ2 = |Ψ〉 〈Ψ|Ψ〉 〈Ψ| = ρ, (4.13)

so we find the relation [36]

Tr(ρ2) = Tr(ρ) = 1. (4.14)

However, if we do not have full knowledge of a state, we call this a mixed state. Mixed states

cannot be represented by a single state vector, so we must use the density matrix formalism. Let’s

consider an ensemble of pure states {pi, |Ψi〉}, where pi is the probability that the quantum state

is in the state |Ψi〉 [36]. Using this ensemble, we define the density matrix of a mixed state as

ρ =
∑
i

pi |Ψi〉 〈Ψi| =
∑
i

piρi, (4.15)

where we have identified ρi = |Ψi〉 〈Ψi| as the density matrix for the ith pure state in the ensemble.

We can therefore say that a mixed state is a statistical ensemble, or mixture, of pure states [36].
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We can now calculate the trace of the mixed density matrix as

Tr(ρ) =
∑
i,j

pi 〈Ψj |Ψi〉 〈Ψi|Ψj〉 =
∑
i,j

piδjiδij =
∑
i

pi = 1, (4.16)

as the probability that the state exists in one of the states in the ensemble is equal to 1. Further-

more, we see that

ρ2 =
∑
i,j

pipj |Ψi〉 〈Ψi|Ψj〉 〈Ψj | =
∑
i,j

pipj |Ψi〉 δij 〈Ψj | =
∑
i

pi
2 |Ψi〉 〈Ψi| 6= ρ. (4.17)

Therefore, we can calculate

Tr(ρ2) =
∑
i,j

pi
2 〈Ψj |Ψi〉 〈Ψi|Ψj〉 =

∑
i,j

pi
2δjiδij =

∑
i,j

pi
2 < 1. (4.18)

Here, we note that if pk = 1 and pi = 0 ∀i 6= k then our ensemble reduces to a single state such that

our mixed state becomes a pure state. In this case, we find that Eq. 4.18 becomes Tr(ρ2) = p2
k = 1.

Therefore, we can see that for all states, the density matrix must obey the conditions Tr(ρ) = 1

and Tr(ρ2) ≤ 1, where pure states satisfy Tr(ρ2) = 1 and mixed states satisfy Tr(ρ2) < 1 [36].

4.2.2 Reduced Density Matrices and the Entanglement Entropy

Finally, we discuss how to quantify the degree of entanglement between two systems. For our

discussion, the most natural way to measure entanglement is via a quantity called the von Neumann

entropy [41]. Let us consider a quantum mechanical system with multiple degrees of freedom, for

example a bipartite system. We can describe this system with the wavefunction of Eq. 4.1, where

n = 2, given by

|Ψ〉 =
∑
i,j

αij |φi,A〉 ⊗ |φj,B〉 , (4.19)

which belongs to the Hilbert space HAB , meaning that our system is in a pure state. Let us also

assume that we can split our system into two subsystems, A and B, such that HAB is decomposed

into the tensor product of the Hilbert spaces of the two subsystems. Therefore, we write HAB =

HA ⊗ HB , where HA and HB are the Hilbert spaces of subsytems A and B, respectively. The

dynamics of such a system are encoded in the denstiy matrix [42]

.ρAB = |Ψ〉 〈Ψ| =
∑
i,j,k,l

αijα
∗
kl |φi,A〉 〈φk,A| ⊗ |φj,B〉 〈φl,B | . (4.20)
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From this, we can compute what is known as the reduced density matrix, which allows us to

understand the dynamics of one of the subsystems, A and B. We compute the reduced density

marix of subsystem A in the following way [36]

ρA = TrB(|ψ〉 〈ψ|) =
∑
i,j,k,l

αijα
∗
kl |φi,A〉 〈φk,A|Tr(|φj,B〉 〈φl,B |), (4.21)

which performing the trace operation gives us [42]

ρA =
∑

i,j,k,l,m

αijα
∗
kl |φi〉A 〈φk,A| 〈φm,B |φj,B〉 〈φl,B |φm,B〉

=
∑

i,j,k,l,m

αijα
∗
kl |φi,A〉 〈φk,A| δmjδlm

=
∑
i,j,k

αijα
∗
kj |φi,A〉 〈φk,A| .

(4.22)

Similarly, we can compute the reduced density matrix of subsytem B as follows

ρB = TrA(|ψ〉 〈ψ|) =
∑
i,j,k,l

αijα
∗
klTr(|φi,A〉 〈φk,A|) |φj,B〉 〈φl,B | , (4.23)

where taking the traces gives us [42]

ρB =
∑

i,j,k,l,m

αijα
∗
kl 〈φm,A|φi,A〉 〈φk|φm,A〉 |φj,B〉 〈φl,B |

=
∑

i,j,k,l,m

αijα
∗
klδmiδkm |φj,B〉 〈φl,B |

=
∑
i,j,l

αijα
∗
il |φj,B〉 〈φl,B | .

(4.24)

Therefore, we have obtained a way to solely describe each of the subsystems individually. Using

the reduced density matrices, we can now define the von Neumann entropy for subsystem A as [43]

SA = −Tr(ρA ln(ρA)). (4.25)

Similarly, for susbystem B we define

SB = −Tr(ρB ln(ρB)). (4.26)

We call the von Neuman entropy of a reduced matrix the entanglement entropy [43]. To understand

why we use this quantity to measure the entanglement entropy, we now note some of key properties.
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The von Neumann entropy of a state ρ is [44]

Stot = −Tr(ρ ln ρ) = 0, (4.27)

if and only if ρ is a pure state. If ρ is a mixed state, one finds that [44]

Stot = −Tr(ρ ln ρ) > 0. (4.28)

Furthermore, we see for a pure state that the entanglement entropies of each subsystem are equal,

i.e. [43]

SA = −Tr(ρA ln(ρA)) = −Tr(ρB ln(ρB)) = SB . (4.29)

From Eq. 4.27, we see that if ρA and ρB are pure states, then Eq. 4.29 is equal to zero. This means

that there is no entangled degrees of freedom between the two subsystems. However, if ρA and ρB

are mixed states, then SA and SB are non-zero, meaning that the number of entangled degrees of

freedom between subsystems A and B is also non-zero. This allows us to say that a total state is

entangled if both subsystems A and B are in mixed states. However, if both subsystems A and B

are in pure states, then the total state is not entangled [45]. For example, we see that |Ψ〉 from

Eq. 4.19 is an entangled state, as ρA and ρB are mixed states of the form in Eq. 4.15. We can

also consider the maximum entanglement entropy that a subsystem can have. For a Hilbert space,

H of dimension d, it is possible to determine that the von Neumann entropy is bounded by

S ≤ ln(d). (4.30)

Here, we have S = ln(d) if and only if ρ is a maximally mixed state, i.e. a state that is propertional

to the identity matrix. Using this, we say that the state ρAB is maximally entangled if it is pure

and the two subsystems ρA and ρB are maximally mixed [44].

An interesting quantity to consider is the mutual information of ρAB . Let’s consider the von

Neumann entropy of the system ρAB , obtained by the equation [36]

SAB = Tr(ρAB ln(ρAB)). (4.31)

Using this, we define the mutual information as [44]

IAB = SA + SB − SAB , (4.32)
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which is bounded from below by

IAB ≥ 0. (4.33)

Here, we see IAB = 0 if and only if ρAB = ρA ⊗ ρB . Mutual information is simply a measure of

how much information system A has about system B and vice versa [44]. Let’s consider what this

means for an entangled system . Let’s say that ρAB is a pure state while the subsystems ρA and

ρB are mixed states. We can immediately see, using Eqs. 4.27, that the von Neumann entropy

SAB = 0. Furthermore, we can see that SA = SB where both entropies are non-zero as ρA and ρB

are mixed states. Therefore, we find

IAB = 2SA, (4.34)

so the mutual information of such a system arise purely from entanglement [44].
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5. Black Hole Thermodynamics

Among the most successful and funamental laws of physics are the 4 laws of classical thermo-

dynamics. These laws state the following principles [46]: 0th Law - If a body exists in thermal

equilibrium, then the temperature T throughout the body must be constant, 1st Law - The change

of energy of a system obeys ∆E = p∆V + T∆S, 2nd Law - The entropy S of a system never de-

creases moving forward in time, i.e. ∆S ≥ 0, 3rd Law - It is not possible to reach the temperature

of absolute zero T = 0K in a finite number of processes.

As stated in the introduction, the area theorem states that the area of a black hole never

decreases with time, i.e. ∆A ≥ 0. We can compare this to the 2nd law of thermodynamics as

stated above, showing that the area theorem is the black hole analogue of the 2nd law of classical

thermodynamics. From this analogy, we should expect that the three other thermodynamic laws

should have black hole counterparts. Indeed, this is the case as we will now discuss [46]. The 0th

law states that the surface gravity κ of a stationary black hole is constant over the event horizon.

We clearly see here that κ is analogous to T . The 1st law states that the change in mass of a black

hole is given by the expression κ∆A = 8π(∆M − Ω∆J). Here, we note that the term −Ω∆J)

corresponds to p∆V , the work term of the 1st law of thermodynamics, while we see that ∆A cor-

responds to ∆S. The 2nd law states that the area of a black hole’s event horizon never decreases,

i.e. ∆A ≥ 0. Here, see that A and S are analogous, c.f. Eq. 1.1. Finally, the 3rd law states that

the surface gravity κ cannot be reduced to zero in a finite number of processes. Once again, we

see the analogous relation between κ and T .

The analogy between the laws of thermodynamics and the laws of black hole mechanics forms

the basis of what is known as black hole thermodynamics. Of course, our discussion until now

has been restricted to classical mechanics. We know from Hawking that black holes radiate due

to quantum effects, causing the black hole to eventually evaporate. Thus, we see that the black

hole counterpart of the 2nd law is violated once quantum mechanics is considered. From this

example alone, one might assume that by considering quantum mechanics, that there should be

many interesting deviations from the predictions of classical black hole thermodynamics. In this
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section, we will consider quantum mechanical effects and discuss the thermodynamic properties

Schwarzschild black holes.

5.1 The Rindler Decomposition of Minkowski Spacetime

To understand the dynamics of quantum field theories in AdS-Schwarzschild, we first restrict our

discussion to the dynamics in Minkowski spacetime and Schwarzschild spacetime. To proceed,

we consider the Rindler decomposition of Minkowski space as shown in figure 5.1. The Rindler

coordinates (η, ξ) are given via

t = ξ sinh η,

x = ξ cosh η

(5.1)

where t and x are the usual coordinates for two dimensional Minkowski spacetime. Then by

substitution, the two dimensional Minkowski metric ds2 = −dt2 + dx2 becomes

ds2 = −ξ2dη2 + dξ2. (5.2)

where 0 < ξ < ∞ and −∞ < η < ∞. As none of the metric components depend on η, we can

identify the killing vector ∂η. Transforming back to Minkowski coordinates, we find that the Killing

vector is

∂η =
∂

∂η
=
∂t

∂η

∂

∂t
+
∂x

∂η

∂

∂x
= x∂t + t∂x. (5.3)

Therefore, we can see that ∂η is equivalent to the Killing vector associated with Lorentz boosts in

the x direction [47]. Noting that xµ∂µ = ∂η and therefore xt = x and xx = t, we can determine

||∂η||2 = xµxνgµν = t2 − x2. (5.4)

where gµν is the Minkowski metric. Therefore, we see that ∂η is timelike in regions where |x| > |t|

and spacelike in regions where |x| < |t|. Furthermore, we can determine the direction of the orbits

of ∂η directly from Eq. 5.3. The Lorentz boost operator, ζ generates symmetries such that the

Killing vector orbits are the same as the orbits of ∂η, as stated before. This allows us to decompose

Minkowski spacetime into four regions, separated by Rindler horizons, where ζ is well-defined: left,

right, top and bottom (c.f. Kruskal spacetime) [44]. As before, we note that the Killing vector

corresponding to ζ is timelike in the left and right regions where |x| > |t|, but spacelike in the top

and bottom regions where |x| < |t|. Furthermore, from Eq. 5.3, we can determine the direction of
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Figure 5.1: The Rindler decomposition of Minkowski spacetime [44]. The dotted lines represent
the Rindler horizons, while the curved solid lines represent orbits of the Killing vector, ∂η. In red,
we show specific values of ∂η.

each orbit using Eq. 5.3. For example, in the right region we have 0 < x < ∞ and −∞ < t < ∞

along an orbit of ∂η. Therefore, we have

∂η|x>0, t<0 = |x|∂t − |t|∂x,

∂η|x>0, t>0 = |x|∂t + |t|∂x,
(5.5)

which requires the orbit of ∂η to be directed forward in time, as depicted in figure 5.1. This

prodedure works similarly for the left, top and bottom regions.

We now seek to express the vacuum state in terms of the states |φL〉 and |φR〉, the general

eigenstates of the Lorentz boost operator in the left and right regions, respectively. Using the

Euclidean path integral, we can write the overlap of a state |φ〉 with the vacuum as [44]

〈φ|Ω〉 ∝
∫ Φ(τ=0)=φ

Φ(τ=−∞)=0

DΦe−SE [Φ] (5.6)

where the Euclidean action SE is obtained by taking t→ −iτ in the original Lorentzian action S

[44]. It is also important to note that Φ = Φ(τ, ~x) and φ = φ(~x). The action of ζ in Minkowski

spacetime is to perform hyperbolic rotations, in accordance with its definition. Therefore, by

taking time to be imaginary, we see that the action of ζ in the Euclidean spacetime is to perform

rotations. Using this property of ζ, we can take the convenient approach whereby we evaluate

the path integral along the angle generated by ζ, rather than along the time coordinate generated

by the Hamiltonian H [44]. As we are integrating from τ = −∞ to τ = 0, this corresponds to
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the lower half of the Euclidean plane. Therefore, the new integration is evaluated from 0 to π.

Therefore, we can re-write our path integral from Eq. 5.6 as

∫ Φ(τ=0)=φ

Φ(τ=−∞)=0

DΦe−SE [Φ] H→ζ−−−→
∫ Φ(θ=π)=φR

Φ(θ=0)=φL

DΦ̃e−S̃E [Φ̃], (5.7)

where we have transformed to Rindler coordinates, such that S̃E and Φ̃E are the action and fields,

respectively, in Rindler coordinates [48]. These two methods of integration are shown in figure 5.2.

Therefore, we can see that our integration requires us to decompose |φ〉 into fields on the left and

Figure 5.2: Left: Schematic of Eq. 5.6, where we perform the Euclidean path integral along the τ
direction. Along each line, we perform a spatial integration so that we cover the whole lower half
plane. Right: The new method of integration, whereby we integrate along the angle generated by
ζ. Here, we see that to cover the full lower half plane, we must perform our integration along the
lines shown [44].

right sections, i.e. |φ〉 = |φL〉 ⊗ |φR〉 = |φLφR〉. Using this, we can now write our path integral as

〈φLφR|Ω〉 ∝ 〈φR| e−πζRÂ |φL〉 , (5.8)

where we have introduced the anti-unitary operator Â, which is called the CPT operator and ζR

is the restriction of the Lorentz boost operator to the right region [44]. We now have a simple

expression which we can calculate by introducing a complete set of states which are eigenstates of

the ζR operator, i.e. 1 =
∑
i |ki,R〉 〈ki,R|. This gives us

〈φLφR|Ω〉 ∝
∑
i

e−πki 〈φR|ki,R〉 〈ki,R|Â|φL〉 , (5.9)

where ki are the eigenvalues of the ζR operator in the |ki,R〉 basis, i.e. ζR |ki,R〉 = ki |ki,R〉. We

denote ki the Lorentz boost energies. Proceeding, we can use the action the anti-unitary operator
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on an eigenstate of ζR, Â† |ki,R〉 = |k∗i,L〉, to obtain

〈φLφR|Ω〉 ∝
∑
i

e−πki 〈φL|k∗i,L〉 〈φR|ki,R〉 , (5.10)

where we note that as ki,R/L is a scalar, we have used the complex conjugate instead of the

hermitian conjugate. Now we can clearly see that we have an expression for the vacuum state in

Minkowski spacetime

|Ω〉 =
1√
Z

∑
i

e−πki |k∗i,L〉 ⊗ |ki,R〉 , (5.11)

which is given in terms of eigenstates of the Lorentz boost operator [44]. We also note that the

normalisation constant involves Z, the partition function. We see that in the vacuum state, entan-

glement between the right and left regions of Minkowski space is completely manifest. Furthermore,

we can compute the reduced density matrix of the vacuum state, by performing a partial trace

over the states in the left or right region of Minkowski spacetime. For example, the density matrix

for states in the right region is given by

ρR = TrL(ρ) = TrL(|Ω〉 〈Ω|), (5.12)

which using Eq. 4.24 evaluates to [44]

ρR =
1

Z

∑
i

e−2πki |ki,R〉 〈ki,R| . (5.13)

Therefore, we can identify β = T−1 = 2π, in units where kB = 1. This identification allows us to

write Eq. 5.11 for a general temperature, given by

|Ω〉 =
1√
Z

∑
i

e−
βki
2 |ki,L〉 ⊗ |ki,R〉 . (5.14)

This state is called the thermo-field double state [45]. This state reveals that in a Rindler frame

in Minkowski spacetime, the vacuum appears to have a finite temperature, T .

5.2 The Unruh Effect

Up to this point, our argument has avoided any realistic scenarios. Therefore, we will now arrive at

this result by considering the more realistic picture of a quantum field theory in Minkowski space.

Generalising the metric in Eq. 5.2 to 4 dimensional Minkowski space in both Rindler coordinates
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(η, ξ, y, z) and Minkowski coordinates (t, x, y, z), we have

ds2 = −ξ2dη2 + dξ2 + dy2 + dz2 = −dt2 + d~x2 (5.15)

where η and ξ are defined as in Eq. 5.1 and ~x = (x, y, z), so they only cover the right region of

Minkowski. In Minkowski coordinates, one can execute the canonical quantisation procedure and

arrive at the expression for a scalar field Φ in terms of normal modes φE,p ∝ e−i(Et+~p·~x), which is

given by [49]

Φ =
∑
E,~p

aE,~pφE,~p + a†E,~pφ
∗
E,~p, (5.16)

which is a solution to the Klein-Gordon equation in Minkowski spacetime. Here, the creation and

annihilation operators, a†E,~p and aE,~p, respectively, create and destroy states with energy E and

momentum ~p in the spatial directions. The Minkowski vacuum, |ΩM 〉, is defined by the fact that

it must annihilated by a, i.e. a |ΩM 〉 = 0. We now change to Rindler coordinates, where the

write Φ in terms of normal modes with the form ϕk,p ∝ e−i(kη+p1y+p2z)g(ξ), where p is the two

dimensional momentum vector in Rindler coordinates (not to be mistaken by ~p) [49]. By inserting

this ansatz for into the Klein-Gordon equation, one can determine the form of g(ξ). Furthermore,

we would also prefer to separate ϕ into fields in the left and right regions of Minkowski space in

figure 5.1, ϕL and ϕR, which requires us to extend the Rindler coordinates to cover the left region

of Minkowski spacetime. Performing the canonical quantisation procedure, we obtain [49]

Φ =
∑
k,p

(
bRk,pϕ

R
k,p + bRk,p

†
ϕRk,p

∗
+ bLk,pϕ

L
k,p + bLk,p

†
ϕLk,p

∗)
. (5.17)

In Rindler coordinates, we find that the canonical quantisation procedure does not form the same

creation and annihilation operators as in Minkowski coordinates. Instead, we have the operators

b†k,p and bk,p, which create and annihilate states with Lorentz boost energy k and momentum p.

Therefore, we define the Rindler vacuum |ΩR〉 by the fact that it must be annihilated by b, i.e.

b |ΩR〉 = 0. As we want to determine the form of the Minkowski vacuum |ΩM 〉 in terms of Rindler

states, we must relate the the the operators a and a† with b and b†. Specifically, we seek expressions

for a |ΩM 〉 = 0 in terms of b and b†. With some work, we find that [50]

1√
1− e−2πk

(
bRk,p − e−πkbLk,p

†) |ΩM 〉 = 0,

1√
1− e−2πk

(
bLk,p − e−πkbRk,p

†) |ΩM 〉 = 0.

(5.18)
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From this, we can arrive at the expression

|ΩM 〉 =
∏
k,p

(
1√

1− e−2πk

∑
n

e−πnk |nLk,p〉 ⊗ |nRk,p〉

)
, (5.19)

where |nR/Lk,p 〉 is a state of n particles in the right or left regions of Minkowski spacetime with

Lorentz boost energy k and momentum p [50]. Once again, to determine the reduced matrix of the

left or right regions we can take the partial trace of this expression as in Eq. 4.22. For the right

region, we obtain the expression

ρR = TrL(|ΩM 〉 〈ΩM |) =
∏
k,p

(
1

1− e−2πk

∑
n

e−2πnk |nRk,p〉 〈nRk,p|

)
. (5.20)

From this expression, we can identify β = T−1 = 2π as before [50]. This is the Unruh effect.

An accelerating observer will observe the vacuum of Minkowski spacetime as a thermal state with

temperature T , whereas an inertial observer would not. In our argument, we have not explictily

included the acceleration, ξ−1, to maintain consistency with our previous discussion. Including

this parameter and returning to SI units, we find that

TU =
~ξ−1

2πckB
, (5.21)

which is called the Unruh temperature [44].

5.3 A Heuristic View of Hawking Radiation

Of course, we would like to understand the thermodynamic properties of black holes, so one might

wonder why we have focused our discussion on Minkowski and Rindler space so far. In fact, the

thermodynamics in Schwarzschild spacetime and Rindler spacetime show a remarkable similarity.

As we have understood, observers in the Rindler frame move with constant acceleration, ξ. In

this frame, one views the Minkowski vacuum as a thermal state with temperature, T . We now

invoke the equivalence principle, which states that the Rindler frame is identical to a non-inertial

frame in Schwarzschild spacetime, which maintains its position at r = constant > 2M . This

explains the large resemblance between figures 5.1 and 3.1. Therefore, we must be able to perform

a similar computation for black holes. The main difference between the calculations is the choice

of coordinate system. In the Rindler frame, we choose to used Rindler coordinates which naturally

lead to the use of the Lorentz boost operator to generate translations in η. In the Schwarzschild

case, we will use Kruskal-Szekeres coordinates U and V , as this gives rise to the Kruskal diagram
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whose right region resembles our Rindler spacetime. Furthermore, it is no longer natural to consider

the Lorentz boost operator ζ , but to consider the generator of time translations in Kruskal-Szekeres

coordinates. In Schwarzschild coordinates, the Hamiltonian generates translations in time t, so we

define the orbits of the Killing vector ∂t as the lines of constant r, as shown in figure 5.3. In

Figure 5.3: Kruskal spacetime with orbits of the Killing vector ∂t represented by solid black lines
in the left and regions [51]. Again, we show specific values of ∂t.

Kruskal coordinates, we find that ∂t is given by

∂t =
∂U

∂t

∂

∂U
+
∂V

∂t

∂

∂V
=

1

4M

(
V

∂

∂V
− U ∂

∂U

)
. (5.22)

Noting that xµ∂µ = ∂t, we see that xU = − U
4M and xV = V

4M . Therefore, we have

||∂t||2 = xµxνgµν = −
(

1− 2M

r

)
(5.23)

where gµν is the metric of Kruskal spacetime. Hence, we see that ∂t is timelike for r > 2M , i.e.

the left and right regions, but spacelike for r < 2M , i.e. the top and bottom regions. Furthermore,

we see that in the right region we have U < 0 and V > 0. Therefore, we can write Eq. 5.22 as

∂t =
1

4M

(
|V | ∂

∂V
+ |U | ∂

∂U

)
. (5.24)

so we see that ∂t is directed forward in time in the right region as shown in figure 5.3. Similar

arguments exist for the other three regions. By comparing Eqs. 5.22 and 5.3, we can see that the

Lorentz boost operator in Minkowski spacetime is analagous to the Hamiltonian in Schwarzschild

spacetime. Therefore, we can see that one can formulate a similar argument as for the Rindler
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and Minkowski spacetime comparison, but this time we are comparing an inertial frame in Kruskal

coordinates with a non-inertial frame in Schwarzschild coordinates which does not cross the event

horizon [51]. As before, one can consider a scalar field Φ in both Kruskal coordinates and non-

inertial Schwarzschild coordinates. Quantising the scalar field in Kruskal coordinates we find that

in analogy with Eq. 5.16, we decompose Φ into outgoing and ingoing normal modes, which are

weighted by creation and annihilation operators c† and c, respectively. Similarly, one can quantise

Φ in the non-inertial coordinates and obtain an expression analogous to Eq. 5.17. In this case,

Φ is decomposed into ingoing and outgoing normal modes in the left and right regions of Kruskal

spacetime, weighted by creation and annihilation operators, d† and d, respectively [49]. Here, it

is important to understand the meaning of these ingoing and outgoing modes. Consider the right

region of Kruskal spacetime as in figure 5.4. We define the outgoing modes as waves that propagate

Figure 5.4: Kruskal diagram showing the ingoing and outgoing modes in red. We see that the
ingoing modes are directed towards the future event horizon, H+, whereas the outgoing modes are
directed towards J + [44].

from the past event horizon H− towards J +, i.e. they have no data on H+. Similarly, we define

the ingoing modes as waves that propagate from J − towards the future event horizon H+, i.e.

they have no data on J + [49, 3]. Proceeding, we must relate the two different sets of ladder

operators via a Bololiubov transformation. This allows us to write the annihilation of the Killing

vacuum in terms of the Kruskal ladder operators, which in turn leads to the expression for the

Kruskal vacuum [51, 49]

|ΩK〉 =
1

Z

∏
ω,i

∑
n

e−4πn |nLω,i〉 ⊗ |nRω,i〉 . (5.25)

in terms of states in the left and right regions of Kruskal spacetime. Here, we can see that the

temperature of the state is TH = 1
4π , half of the Unruh temperature. Including all the relevant
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parameters, we can write this as

TH =
~c3

8πkBGM
. (5.26)

which is known as the Hawking temperature [44]. The Hawking temperature is often given in

terms of the surface gravity, κ, in the form TH = κ
2π . Therefore, the link between temperature and

surface gravity is completely manifest and so Hawking’s result supports the analogy between these

two quanities [3]. A simple description was put forth by Hawking that the particles of Eq. 5.25

are formed in virtual pairs just outside the event horizon H+. One of these particles has negative

energy and cannot exist in the right region. However, it can tunnel with some probability across

H+ into the top region, i.e. the black hole, where the particle can be real due to the spacelike

nature of ∂t. The other particle has positive energy and so it is real in the right region, i.e. outside

the black hole. Therefore, it can escape to J + and it is in fact this particle that contributes to the

non-zero temperature observed in the right region [49, 3]. This explaination give us an intuitive

picture for the relation TH = TU
2 and how black holes emit radiation.

From classical thermodynamics, we understand that temperature and entropy are linked by the

expression [44]
dS

dE
=

1

T
. (5.27)

Therefore, expect that a black hole with temperature TH should also have an entropy governed by

Eq. 5.27. For this discussion, we will deviate from our use of natural units and use SI units where

~, G, kB and c are all restored. Given the famous relation E = Mc2 and the temperature of the

black hole, TH , we can write Eq. 5.27 as

S =

∫ M

0

8πkBGM
′

~c
dM ′ =

4πkBGM
2

~c
. (5.28)

Noting that the area of the event horizon A = 4πrs, where rs = 2GM
c2 , we can write [4, 44]

S =
kBc

3A

4~G
=
kBA

4l2p
(5.29)

where lp =
√

~G
c3 is the Planck length. We find that this is the same expression as Eq. 1.1

that we discussed in the introduction. This is the entropy of a black hole. As a final remark of

the thermodynamics of Schwarzschild black holes, we return to Bekestein’s idea of a generalised

second law of thermodynamics, where the combined entropy of black holes and objects in the black

hole exterior never decreases. Consider the scenario whereby the exterior of a non-emitting black

hole has a lower temperature than that of the black hole. Here, the generalised second law of
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thermodynamics is violated. However, if we take Hawking’s idea that black holes emit radiation

to be true, then the generalised second law holds [3].

5.4 Black Hole Information

Following our discussion of black hole entropy, it is natural to discuss the exchange of information

throughout the lifetime of a black hole. To proceed, now turn our attention to black holes that

are formed from collapsing matter. Before the start of the collapse, the matter system exists in a

specific state, i.e. it will have a unique distribution of mass, charge, energy etc. Then, as the matter

collapses beyond its event horizon, all the information about this system is seemingly lost from

the universe, as the causal structure of black hole spacetimes do not permit any communication

between points on either side of the event horizon [16]. However, we find that some information

remains. To determine this, one must extremise the action

S =

∫
d4x
√
−g(R+ L) (5.30)

whereR is the Ricci scalar of the curved spacetime and L is the Lagrangian describing the dynamics

of the collapsing matter with constraints determined by mass M , charge Q, angular momentum,

J and the presence of an event horizon. This complicated calculation shows that the solution

to this equation is the Kerr-Newman metric, the metric outside a rotating, charged black hole.

Therefore, we see that despite the specific dynamics encoded in L, the only information accessbile

to an observer outside a black hole in its final state are the parameters M , Q and J ; this is the no

hair theorem [16]. In other words, all black holes with the same parameters M , Q and J appear

exactly the same to observers outside the event horizon. However, we have discussed that black

holes have an entropy given in Eq. 5.29. The interpretation of this is that information is stored

across the event horizon in regions of the size ∼ l2p [5]. Therefore, it is reasonable to postulate that

information about the collapsed matter is stored on the event horizon. Let us assume that this is

in fact true. We can consider the black hole to be in some pure quantum state that contains all

the information about the matter that formed it. As Hawking concluded, this black hole should

emit radiation and begin to evaporate. However, as we can see from Eq. 5.25 that the radiation

is in a completely thermal, i.e. statistically determined, state. Furthermore, due to the causal

structure of black holes spacetimes, the radiation cannot be causally connected to any information

inside the black hole. Therefore, there is no direct correlation between Hawking radiation and the

dynamics of the collapsed matter that formed the black hole. Eventually, the black hole should
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completely evaporate and disappear, meaning that the radiation is now all that is left. Knowing

the statistical nature of the radiation, the final state of this process is a mixed state. In summary,

we have evolved a pure state of a black hole, encoding the information of the collapsed matter,

into a mixed state describing the radiation from the fully evaporated black hole. Therefore, it is

not possible to recover the information of the pure state from the radiation. This is the black hole

information paradox [52]. In other words, the map from the inital state of the collapsing matter and

the radiation from the fully evaporated black hole it not unitary [44]. Let’s see the consequences

of this statement on the entropy during black hole evaporation. At the start of the evaporation

process, we expect to find the black hole in a pure state and so we have a vanishing entanglement

entropy. As the black hole evaporates, the state loses its ‘purity’ and becomes slightly mixed,

meaning that we now have a small, but non-vanishing entanglement entropy. Eventually, the black

hole completely evaporates and the final state is mixed with a maximum entanglement entropy.

So we see that black hole information loss is equivalent to a black hole evaporation system gaining

entanglement entropy. Therefore, we can state that for information to be conserved, at some point

during black hole evaporation the entanglement entropy must start to decrease and vanish once

the final state has been reached [44]. This is known as the Page curve and is shown in figure 5.5.

Figure 5.5: A comparison of the Page curve, represented by the solid line, with the predicted curve
of Hawking, represented by the dashed line [44].
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6. Holography in AdS-Schwarzschild

Having finished our discussion of Schwarzschild black holes, we now turn our attention to Schwarzschild

black holes in an anti-de Sitter spacetime, also known as AdS-Schwarzschild black holes. Specif-

ically, we seek to determine the Kruskal and Penrose diagrams of AdS-Schwarzschild, which will

be widely used throughout the rest of this section. Furthermore, we will use our results from sec-

tion 5 to investigate the thermodynamics properties of AdS-Schwarzschild spacetime. Proceeding

this, we will review the conjectured relation between wormholes and entanglement, denoted ER =

EPR. Naturally, this leads to our discussion on the holographic dual theories of AdS-Schwarzschild

spacetime, where we will analyse the role of wormholes in the dual theories.

6.1 AdS-Schwarzschild Black Holes

6.1.1 AdS-Schwarzschild Spacetime

Having discussed AdS in section 2.1, we now turn our attention to Schwarzschild black holes in

an AdS background, denoted AdS-Schwarzschild black holes. One way to write the metric for

AdS-Schwarzschild spacetime is given by [17]

ds2 = −
(

1− 2M

r
− Λr2

3

)
dt2 +

(
1− 2M

r

Λr2

3

)−1

dr2 + r2dΩ2. (6.1)

However, we will focus on a more suitable metric for our discussion. As with the modification of

the Minkowski metric to obtain the Schwarzschild metric, we modify the AdS metric given in Eq.

2.8 by

ds2 = −
(

1− 2M

r
+
r2

R2

)
dt2 +

(
1− 2M

r
+
r2

R2

)−1

dr2 + r2dΩ2 (6.2)

where M is the mass of the black hole [53]. Note, we will now use R to refer the curvature of AdS

(previously we used RAdS) to avoid making our expressions difficult to read. We can clearly see

that like Schwarzschild black holes, there is a singularity at r = 0. Furthermore, we can determine

the remaining singularities by considering the roots of grr, given by r3 + R2r − 2MR2 = 0. We
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find that there exists a single root of this equation, given by

rAdS =
2

3

√
3R sinh

(
1

3
sinh−1

(
3
√

3
M

R

))
(6.3)

Expanding Eq. 6.3 by taking R�M , we obtain

rs ≈ rAdS +
8M3

R2
+ ... (6.4)

where we can see that rAdS is smaller than rs, so the event horizon of an AdS-Schwarzschild black

hole is closer to the singularity compared to Schwarzschild black holes [53]. We can also see that

by taking R → ∞, i.e. approaching asympotically flat space, Eq. 6.4 becomes rs = rAdS , while

Eq. 6.2 becomes the Schwarzschild metric. In an analogous manner to the Schwarzschild case, it is

preferable to analyse the AdS-Schwarzschild spacetime in Kruskal-Szekeres coordinates. Defining

the tortoise coordinate as

dr2
∗ =

dr2(
1− 2M

r + r2

R2

)2 , (6.5)

we can integrate this expression to find the tortoise coordinate, given by [19]

r∗(r) =
R2

3r2
AdS +R2

(
rAdS ln

∣∣∣∣1− r

rAdS

∣∣∣∣− rAdS
2

ln

(
1 +

r(r + rAdS)

r2
AdS +R2

)
+

3r2
AdS + 2R2√

3r2
AdS + 4R2

tan−1

(
r
√

3r2
AdS + 4R2

2(r2
AdS +R2) + rrAdS

))
.

(6.6)

Using the tortoise coordinate, we can define the new coordinates

U = −exp
(
−
(

M

r2
AdS

+
rAdS
R2

)
(t− r∗(r))

)
,

V = exp
((

M

r2
AdS

+
rAdS
R2

)
(t+ r∗(r))

)
,

(6.7)

where, as before, U < 0 and V > 0. With some calculcations, one finds the AdS-Schwarzschild

metric in Kruskal-Szekeres coordinates

ds2 = −4

(
1− 2M

r + r2

R2

)
(

2M
r2AdS

+ 2rAdS
R2

)2 exp

((
2M

r2
AdS

+
2rAdS
R2

)
r∗(r)

)
dUdV + r2dΩ2

2, (6.8)

where the radial coordinate is defined implicitly, i.e. r = r(U, V ) [19]. The Kruskal diagram for

AdS-Schwarzschild is given in figure 6.1. We note there exists a symmetry U → −U , V → −V ,

allowing us to extend the range of coordinates to −∞ < U <∞, −∞ < V <∞. This allows us to

introduce the bottom and left regions of the Kruskal diagram, forming the maximal extension for
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Figure 6.1: AdS-Schwarzschild spacetime in Kruskal coordinates [19]. Here, we show constant t
and r lines as the straight solid lines and curved dashed lines, respectively. We also present curved
solid lines which represents the boundary of the spacetime.

AdS-Schwarzschild spacetime. We also have the relation

UV = −exp
((

2M

r2
AdS

+
2rAdS
R2

)
r∗(r)

)
, (6.9)

in addition to
V

U
= −exp

((
2M

r2
AdS

+
2rAdS
R2

)
t

)
, (6.10)

which are both defined for V > 0 [19]. Therefore, in a similar way to the Schwarzschild black

hole case, lines of constant t are straight lines through the origin, while lines of constant r are

hyperbolae. Furthermore, we can also see that the light cones at each point are bounded by 45◦

using the same argument as for the Schwarzschild case. We can clearly see the numerous similar-

ities between the Kruskal diagrams of Schwarzschild spacetime and AdS-Schawrschild spacetime.

One noteable difference is the location of the boundary at spatial infinity on the diagrams. The

line of constant r at r = ∞ is given by a hyperbola with a finite semi-major axis, using Eq. 6.9

where we note that r∗(∞) < ∞. This relates to the discussion in section 2.1 where we noted

that massless particles on outwards radial trajectories can reach the boundary of AdS and return

in finite time. Before performing a conformal compactification, we note that for Eqs. 6.5 - 6.10,

by taking R → ∞, we recover the corresponding expressions for the Schwarzschild black hole in

Kruskal-Szekeres coordinates, as in section 3.1. Specifically, for Eq. 6.6, one must taylor expand

the second and third terms using ln(1 + x) ≈ x+ ... and tan−1(x) ≈ x+ ... .
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To construct the Penrose diagram, we compactify the space in a similar manner to section 3.1,

introducing new coordinates that bring infinity to a finite coordinate. We define the coordinates θ

and τ via

U = −exp
((

M

r2
AdS

+
rAdS
R2

)
r∗(∞)

)
tan

(
θ − τ

2

)
,

V = exp

((
M

r2
AdS

+
rAdS
R2

)
r∗(∞)

)
tan

(
θ + τ

2

) (6.11)

where −∞ < θ <∞ and −∞ < τ <∞ [19]. Taking r =∞ in Eq. 6.9, we find

tan

(
θ + τ

2

)
= cot

(
θ − τ

2

)
, (6.12)

which implies θ = ±π2 and subsequently −π2 < τ < π
2 . Taking r → 0, we have UV = 1 so therefore

exp

((
2M

r2
AdS

+
2rAdS
R2

)
r∗(∞)

)
tan

(
θ + τ

2

)
= − cot

(
θ − τ

2

)
. (6.13)

By considering θ = 0 and θ = π
2 , we find that 0 < τ < π

2 and τ = ±π2 , respectively [19]. The

Penrose diagram for AdS-Schwarzschild spacetime is given in figure 6.2. Here, we see a large

Figure 6.2: The Penrose diagram of AdS-Schwarzschild spacetime [19, 17]. As with the
Schwarzschild case, the jagged line represents a curvature singularity and the dashed line rep-
resents a line of constant r.

resemblance with the Penrose diagram of AdS, as shown in figure 2.2. We define i+ (i−) as in

the Schwarzschild case, as the future (past) endpoint of all timelike curves. Shown in figure 6.2 is

a constant r > rAdS line, which is determined in the same way as for the Schwarzschild Penrose

diagram. Also note that the similarity with the lines of constant r in the Poincaré patch coordinates
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as shown in figure 2.2. It is important to note here that null radial geodesics don’t necessarily end

at r =∞. This is due to the discussion in section 2.1 where we showed that null radial geodesics

take a finite amount of proper time to reach the conformal boundary at r = ∞ and return the

origin. Qualitatively speaking, we can see that we have somewhat ‘reshaped’ the Kruskal diagram

for Schwarzschild spacetime to fit inside conformally compactified ÃdS.

6.1.2 Thermodynamics of AdS-Schwarzschild Black Holes

Here, we will briefly comment on a few aspects of the thermodynamics of AdS-Schwarzschild

black holes, as this will become very important later on in our discussion. We have shown how

Schwarzschild black holes emit radiation, meaning black holes are objects that have a temperature

given by the Hawking temperature in Eq. 5.26. From classical thermodynamics, this means that

they have an entropy given by Eq. 5.29. Therefore, we expect that AdS-Schwarzschild black holes

must also possess similar thermodynamic properties to Schwarzschild black holes; this is indeed

the case. Unsuprisingly, we find different properties compared to Schwarzschild black holes due to

the unusual nature of AdS. One can identify the temperature of an AdS-Schwarzschild black hole

as [54]

T = β−1 =
R2 + 3r2

AdS

4πR2rAdS
, (6.14)

which by taking the limits R → ∞ and rAdS → rs, is equal to the Hawking temperature, TH .

Using this, we consider the canonical ensemble and construct the Euclidean path integral

Z(β) =

∫
D[gµν ]e−SE [gµν ]. (6.15)

where we sum over all metrics, gµν , that are asymptotically AdS whose time coordinate is periodic

in β. Here, Z is the partition function and SE is the Euclidean action given by

SE =
1

16π

∫ β

0

dtE

∫
d3~x
√
g(R− 2Λ), (6.16)

where R = Rµνgµν and t = itE is the analytic continuation of Lorentzian time to Euclidean time

[19]. While we have not previously mentioned the semi-classical nature of Hawking’s calculation,

it becomes important here. By semi-classical, we mean that we have considered a quantum field

theory on a non-dynamical, i.e. classical, spacetime background. Therefore, we can approximate

the path integral to

Z ≈ e−SE . (6.17)
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From section 2.1, we determined that for AdS, R = 4Λ. Therfore, we can write Eq. 6.16 as [19]

SE = − Λ

8π

∫ β

0

dtE

∫
d3~x
√
g. (6.18)

To compute the entropy of an AdS-Schwarzschild black hole, we consider the difference between

the Euclidean action of the AdS-Schwarzschild black hole SAdS−S
E and the Euclidean action of AdS

SAdS
E , both with imaginary time periodic in β [54] . We denote this difference I = SAdS-S

E − SAdS
E .

To compute the former, we take the metric of Eq. 2.8 with t = itE . From this we can conclude
√
g = r2 sin(θ). Therefore, we can evaluate Eq. 6.18

SAdSE = − Λ

8π

∫ βAdS

0

dtE

∫ C

0

drr2

∫ π

0

dθ sin(θ)

∫ 2π

0

dφ = −ΛβAdSC
3

6
, (6.19)

where the radius of S2 is C. Here, C is a cutoff to regulate the infinite volume one would obtain if

we took the upper limit of the r integral to r →∞ [19]. To compute the latter SAdS-S
E , we use the

metric of Eq. 6.2. However, it is important to only integrate from r = rAdS as the r coordinate is

only defined for r > rAdS. Therefore, we obtain the expression for SAdS-S
E [19]

SAdS-S
E =− Λ

8π

∫ β

0

dtE

(∫
VolS2(r = c)−

∫
VolS2(r = rAdS)

)
= −Λβ(C3 − r3

AdS)

6
.

(6.20)

Here we note that by comparing Eqs. 6.1 and 6.2, Λ = − 3
R2 . Of course, we want an expression

only involving β, so we must find a way to relate this parameter to βAdS. This is accomplished

by considering the fact that upon removing the cutoff C, i.e. C → 0, the metrics of Eqs. 2.8 and

6.2 should be equal as the AdS-Schwarzschild metric is asymptotically AdS. Therefore, at spatial

infinity, we should find that the intervals of proper time are equal, such that [19]

∆tAdS
E

√
1 +

C2

R2
= ∆tAdS−S

E

√
1− 2M

C
+
C2

R2
. (6.21)

Given our integration ranges, we can identify ∆tAdSE = βAdS and ∆tAdS−SE = β. Therefore, we can

write

βAdS = β

√
1 + C2

R2

1− 2M
C + C2

R2

, (6.22)

which leads to

I =
β(MR2 − r3

AdS)

2R2
, (6.23)

67



where we can see that removing the cuttoff leaves I to be finite [19]. Now, to calculate the entropy,

we recall the result from statistical mechanics [54]

S = −β ∂

∂β
(lnZ) + lnZ, (6.24)

or equivalently

S = β
∂

∂β
(I)− I. (6.25)

To evaluate this expression, we must re-write I in terms of rAdS only. To do this, we must determine

β and M in terms of rAdS . Of course, this expression for β is given in Eq. 6.14. To determine M ,

we note that at the event horizon, the grr component of the AdS-Schwarzschild metric in Eq. 6.2

must tend to infinity, i.e. 1− 2M
rAdS

+ rAdS
R2 = 0. Rearranging, we find that [19]

M =
rAdS

2

(
1 +

r2
AdS

R2

)
. (6.26)

Using Eqs. 6.14 & 6.26, we can rewrite Eq. 6.25 as

S = β
∂rAdS
∂β

∂

∂rAdS
(I) + I. (6.27)

It turns out that this expression evaluates to [19]

S = πr2
AdS =

A

4
, (6.28)

which, when expressed in SI units, is the same expression for entropy as we found for the Schwarzschild

black hole. One of the main differences we find with AdS-Schwarzschild black holes is the ability

to maintain thermal equilibrium. As we have seen in section 2.1, massless particles can reach the

conformal boundary at spatial infinity and return to its original position in finite proper time.

Therefore, we can expect that Hawking radiation will be emitted from a black hole, reach the con-

formal boundary and return to be reabsorbed by the black hole. However, if a black hole is small

enough, it will evaporate before the radiation is reflected back. Subsequently, for a black hole to

remain at thermal equilibrium, a black hole must be of a certain size such that the flux of radiation

emitted from the black hole and reflected back from the conformal boundary are equal. We refer

to these black holes as ‘big’ and ‘small’ [44]. It was also determined by Hawking and Page that

there exists a phase transition at a temperature T1 between two systems, an AdS-Schwarzschild

black hole with a thermal exterior and a thermal AdS spacetime. To find this temperature, we
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consider the Helmholtz free energy

F = −T ln(Z), (6.29)

where T is the temperature of the system [54]. Specifically, we consider the free energy difference

between an AdS-Schwarzschild black hole and AdS spacetime, given by

∆F = FAdS−S − FAdS = T (IAdS−S − IAdS) = (R2 − r2
AdS)

Tπr2
AdS

R2 + 3r2
AdS

, (6.30)

where we see that ∆F = 0 for R = rAdS [19]. Therefore, Eq. 6.14 becomes

Tc =
1

πR
. (6.31)

In fact, this is a very simple analysis of the phase transitions and the calculations by Hawking and

Page shows there are 3 characteristic temperatures to consider as we will now discuss [54]. One can

show that black hole configurations cannot exist below a temperature T0 =
√

3
2πR , so the thermal

AdS spacetime is the only stable state below T0. Conversely, one can show that thermal AdS

configurations cannot exist above a temperature T2 = 3
1
4√
R
, meaning that black hole configurations

are the only stable states above T2. The subtlety of our simple calculation arises between the

temperature range T0 < T1 < T2. In the range T0 < T < T1, one finds that while black holes of low

mass can form, the thermal AdS spacetime configuration is still more likely to form. Meanwhile,

between T1 < T < T2, one finds that both black hole and thermal AdS states are stable, but black

holes are more likely to form. It is in thise sense that we denote T1 as the Hawking-Page transition

temperature, whereby black holes are no longer the energetically favourable state of the spacetime.

6.2 Holographic Description of Wormholes

6.2.1 The ER = EPR Conjecture

In section 5.1, we discussed the construction of the vacuum state of Minkowski spacetime from

the perspective of a uniformly acceleration observer. This can be accomplished by performing a

path integral evaluated along the Euclidean time, generated by the Hamiltonian, H. However, we

discussed a different, but natural approach whereby the path integral was performed along the angle

generated by Lorentz boost operator, ζ, in Euclidean signature. Such a calculation leads to the

entangled nature of the Minkowski vacuum state, which we call the thermo-field double state due

to the identification β−1 = T . We would now like to use this result to understand the ground state

of AdS-Schwarzschild spacetime. Let us consider the descrpition of AdS-Schwarzschild spacetime
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as we laid out in section 6.1.1. We have determined that the hyperbolae describing r = ∞ in

the left and right regions of Kruskal spacetime both have a finite semi-major axis, meaning that

we can include such hyperbolae on a Kruskal diagram as shown in figure 6.1. Transforming from

Lorentzian time to Euclidean time, i.e. t→ iτ , we find Eq. 6.10 becomes of the form

V

U
= −exp

(
i
2π

β
τ

)
, (6.32)

where we have written the exponential in this form such that the range of Euclidean time is

0 ≤ τ < β [11]. Therefore ,we see that the hyperbolae at r = ∞ are now replaced by a circle of

finite radius as shown in figure 6.3, where we identify τ as an angular coordinate. Now, we see that

Figure 6.3: Schematic demostrating how Kruskal spacetime transforms from Lorentzian time to
Euclidean time [11]. Here we make the identification τ ∼ τ + β.

to define the ground state wavefunction of AdS-Schwarzshild, we perform a path integral along the

angle generated by H, on the r = ∞ boundary in the lower half of the circle. We notice that at

t = τ = 0, Eq. 6.32 becomes V
U = −1, which is satisfied for the points V = 1, U = −1 and V = −1,

U = 1, i.e. at the vertices of both hyperbolae in the left and right regions of Kruskal spacetime.

Therefore, we see that we can analytically continue the spacetime from the Euclidean signature to

Lorentzian signature at the constant t = 0 hypersurface. In other words, we can attach the lower

semi circle of the Euclidean spacetime to the t > 0 region of Kruskal spacetime at t = 0 as shown

in figure 6.4 [11]. Performing the path integral along the boundary of the Euclidean section of

figure 6.4, with angular length β
2 , we find that the wavefunction at t = 0 is given by

|Ψ〉 =
1√
Z

∑
i

e−
βEi
2 |Ei,L〉 ⊗ |Ei,R〉 , (6.33)

where |Ei〉L/R are the energy eigenstates of the CFT defined on the conformal boundary at r =∞

in the left and right regions, respectively [11]. We can make the comparison with Eq. 5.14, where
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Figure 6.4: Kruskal diagram of AdS-Schwarzschild showing the analytic continuation at t = 0 from
Euclidean time to Lorentzian time [11].

by taking the partial trace over the left region gives us the reduced density matrix in the right

region

ρR =
1

Z

∑
i

e−βEi |Ei,R〉 〈Ei,R| . (6.34)

Similarly, by taking the partial trace over the right region we obtain the reduced density matrix

in the left region

ρL =
1

Z

∑
i

e−βEi |Ei,L〉 〈Ei,L| . (6.35)

We see that |Ψ〉 is constructed from two identical copies of the CFT with finite temperature from

Euclidean signature [11]. However, from Eqs. 6.34 and 6.35, we can see that the dynamics of each

CFT evolve independently of one another, which reflects the fact that both conformal boundaries

are hidden from eachother by the event horizon. From the viewpoint of AdS/CFT, we can evidently

state that the gravitational dual theory of |Ψ〉 is AdS-Schwarzschild spacetime [11]. Now, let us

consider a more detailed viewpoint of this duality. Consider a state divided into two subsystems

A and B

|Ψ′〉 = |ψA〉 ⊗ |ψB〉 , (6.36)

where there is no entanglement between subsystems. Due to this lack of entanglement, the states

are non-interacting and evolve independently of one another. Now, let’s say that |ψA〉 is dual

to an asymptotically AdS spacetime A and |ψB〉 is dual to an asymptotically AdS spacetime B.

Then, as |Ψ′〉 describes two independent quantum systems, the dual theory of the wavefunction

|Ψ′〉 is the disconnected spacetimes A and B. Using this, we can build a picture for the dual

theory of |Ψ〉. We can immediately see that |Ψ〉 is a normalised, weighted sum of states with the

form of |Ψ′〉. From this we can argue that |Ψ〉 is dual to a quantum superposition of disconnected
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asymptotically AdS spacetimes Ai and Bi, where the state |Ei,L〉 is dual to Ai and |Ei,R〉 is dual

to Bi. We now have a situation where two gravitational theories are dual to the same CFT. If

we believe both of these dualities to be true, then we can state that the quantum superposition

of disconnected asymptotically AdS spacetimes is equivalent to the connected AdS-Schwarzschild

spacetime as shown in figure 6.5. From this, we arrive at the remarkable conclusion: connectivity

Figure 6.5: Demonstration of the equivalence between the quantum superposition of disconnected
asymptotically AdS spacetimes with AdS-Schwarzschild [55].

of the AdS-Schwarschild spacetime arises from the entanglement of the degrees of freedom in Eq.

6.33 [55].

Interestingly, we can also consider another interpretation of our AdS-Schwarzschild spacetime.

Up to this point, the Killing vectors corresponding to the time translation symmetry, generated

by ∂t, have been oriented upwards in the right region and downwards in the left region. However,

in our second interpretation, we re-orient the Killing vector in the left region such that it points

upwards as shown in figure 6.6. In this new interpretation, each CFT has a common time, t, for

Figure 6.6: AdS-Schwarzschild with a re-orientation of time in the left region and an Einstein-Rosen
bridge, given by the red line. This gives rise to the second interpretation of AdS-Schwarzschild
[12].
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t ≥ 0. Therefore, we can write the evolution of the state in Eq. 6.33 as

|Ψ(t)〉 =
1√
Z

∑
j

e−
βEj
2 e−2iEjt |Ej,L〉 ⊗ |Ej,R〉 (6.37)

where the reduced matrices are the same as in Eqs. 6.34 and 6.35 as the complex factors cancel out

[12]. Note here that we have changed our summation label to avoid confusion with the imaginary

number. The intepretation is that this state represents two black holes in disconnected spacetimes

[12]. We say that the degrees of freedom present within the disconnected spacetimes are non-

interacting. However, using our previous argument, the geometry is actually connected (c.f figure

6.5). We say that the two black holes are entangled with eachother, where the entanglement entropy

is equal to the entropy of either black hole [12]. We can see from figure 6.6 that the conformal

boundaries are only connected via spacelike hypersurfaces, i.e. wormholes with the geometry of an

Einstein-Rosen bridge. Therefore, we can state that the entanglement between the two black holes

arises due to the presence of an Einstein-Rosen bridge. As we can also describe Schwarzschild

spacetime using the thermo-field double state, we note that our this discussion also applies for

Schwarzschild black holes [12]. In this case, we see that the Einstein-Rosen bridge that gives rise

to entanglement has the geometry as discussed in section 3.1.

Figure 6.7: Kruskal diagram of Schwarzschild spacetime with an Einstein-Rosen bridge shown in
red [12].

In fact, there is a third interpretation of the black hole spacetimes, whereby we consider two

black holes in the same spacetime as long as they are sufficiently far apart [12]. It is important to

note that our entire discussion has centered around eternal black holes, i.e. black holes that have

existed since the start of time. However, one can also consider non-eternal black holes, under the

condition that they are created in an entangled state at t = 0. [12]. For example, let us create a

large number of entangled pairs of particles and separate them into two subsystems, such that the
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two subsytems are completely entangled with each other. Then, by collapsing both subsystems

into black holes, we will form two entangled black holes connected by an Einstein-Rosen bridge.

This concept can be further extended to a single pair of entangled particles. However, the Einstein-

Rosen bridge for such an entangled system would be extremely small in size, meaning that the

wormhole would have a quantum geometrical structure that could not be described classically [12].

Both types of wormhole are shown in figure 6.8. Having described numerous situations where the

entanglement of a system arises due to the presence of an Einstein-Rosen bridge, we are in a position

to make a general statement and conjecture the following: wormholes generate entanglement. This

conjecture has been given the name ’ER = EPR’ , where for completeness we note that ER stands

for Einstein and Rosen, while EPR stands for Einstein, Podolsky and Rosen [12]. Of course, we

see that the property of locailty is consistent as both entanglement and the Einstein-Rosen bridge

geometry do not violate locality (see section 4.1.3 and section 3.1, respecitvely) [12]. Despite these

strong comparisons, there is no formal proof for the statement of ER = EPR. However, we will

discuss an example supporting the idea of ER = EPR in section 6.2.2.

Figure 6.8: Left: Two black holes sufficiently far apart in the same spacetime, connected by
a wormhole [56]. Right: Two particles in the same situation, connected by a highly quantum
wormhole.

The scientific community is well acquainted with the idea that general relativity and quantum

mechanics do not fit together easily. As such, this conjecture raises some important questions. One

such question is the following: Does the presence of an Einstein-Rosen bridge allow observation of

entanglement? It is well understood from quantum mechanics that one cannot observe a system

and determine whether it is entangled or not. However, we understand from ER = EPR that

entanglement is generated by wormholes. Therefore, if one could detect this difference in geometry,

then the entanglement of the system could be observed, which would violate quantum mechanics

[57]. To investigate this, let’s consider what an observer in the right and top regions of AdS-

Schwarzschild spacetime, as shown in figure 6.9, can measure. As an Einstein-Rosen bridge is a

spacelike hypersurface, no observer can traverse this geometry and detect it directly. Therefore,

the only means of detecting an Einstein-Rosen bridge is by detecting any affect that the bridge
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may have on the geometry that is accessible to the observer [57]. The easiest way to determine this

is to compare the geometry of a one-sided AdS-Schwarzschild black hole as shown in figure 6.9, i.e.

a black hole formed by the collapse of matter, with the AdS-Schwarzschild spacetime in section

6.1.1, also known as the spacetime of a two-sided AdS-Schwarzschild black hole or an eternal AdS

black hole. Consider the metric in Eq. 6.8. For convenience, let us introduce the coordinates

Figure 6.9: Kruskal spacetime in both Kruskal coordinates and light-cone coordinates. The blue
region is equivalent to the spacetime of a one-sided black hole [57].

T =
V + U

2
,

X =
V − U

2
.

(6.38)

Substituting these coordinates into Eq. 6.8 gives us [57]

ds2 = 4

(
1− 2M

r + r2

R2

)
(

2M
r2AdS

+ 2rAdS
R2

)2 exp

((
2M

r2
AdS

+
2rAdS
R2

)
r∗(r)

)
(−dT 2 + dX2) + r2dΩ2

2. (6.39)

Therefore, in addition to the (U, V ) → (−U,−V ) isometries of AdS-Schwarzschild, we also have

(T,X) → (T,−X) and (T,X) → (−T,X) from the new form of the metric in Eq. 6.39. We now

note that the geometry of a one-sided AdS black hole covers the region V > 0, X > 0 [57]. We see

that no Einstein-Rosen bridge is present in this geometry, as there is no left region of the spacetime.

Therefore if one could perform a measurement that would distinguish between two-sided and one-

sided AdS black holes, they would be informed of the presence or absence of an Einstein-Rosen

bridge, respectively. In this sense, the Einstein-Rosen bridge and hence entanglement could be

observed. Due to the (U, V ) → (−U,−V ) symmetry of the metric, we see that the top and right

regions are completely isomorphic to the bottom and left regions, respectively. Furthermore, due

to the (T,X)→ (T,−X) symmetry, we see that the X < 0 portion of the top region, which is not
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accessible to an observer in the one-sided AdS black hole, is isomorphic to the X > 0 portion of the

top region. Therefore, we can state that an observer in either a one-sided or two-sided AdS black

hole cannot perform any local measurement of the geometry that would inform them of which

spacetime they are measuring. We can therefore claim that it is not possible for an observer to

detect the presence of an Einstein-Rosen bridge [57].

Let’s now consider wormholes that connect the conformal boundaries at different times. From

figure 6.10, we see that one can construct an infinite number of different wormhole configurations

that connect the same two boundary points. In fact, we can summarise this by the region in which

all spacelike curves can exist as shown in the blue regions. Of course, this means that each region

is bounded by lines parallel to the horizons and is different for states at different times. Therefore,

we conclude that a wormhole between two entangled states at specific times is unique [12]. As

shown in figure 6.10, we can evolve states on each conformal boundary indepedently of the other to

obtain various wormhole configurations. For example, on the left we have three possible wormholes

that connect the conformal boundaries at t = 0. By performing the same time evolution operation

on each state, we obtain the configuration as shown in the center. Alternatively, we can evolve one

state while leaving the other state at time t = 0 a shown on the right. The states considered in figure

Figure 6.10: Kruskal diagrams showing the possible wormhole configurations [12]. The blue region
covers the spacetime in which we can consider such wormholes. Left: Wormholes configurations
connecting the asypmtotic boundaries at t = 0. Centre: The same configurations considered at
t > 0. Right: Configurations connecting the asymptotic boundaries at different times, i.e. t > 0
and t = 0.

6.10 are called maximally entangled states, meaning that each CFT is in a maximally mixed state

[12]. Furthermore, we know that the reduced matrices in Eqs. 6.34 & 6.35 are time independent, so

each state remains maximally mixed irrespective of any time evolution. Therefore, all wormholes

in the eternal AdS black hole spacetime connect states that are maximally entangled. We can also

consider wormholes that connect states that are not maximally entangled. To accomplish this, we

must consider unitary transformations that alter the density matrices of the CFTs, such that they
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are no longer maximally mixed. Consider the penrose diagram of figure 6.4, given by figure 6.11.

As we have discussed, performing a path integral along the Euclidean section creates our entangled

state |Φ〉. This state descibes the physics in the bulk, i.e. the vacuum spacetime of an AdS black

hole. Therefore, if we modify our Euclidean path integral to achieve different boundary states, we

can alter the physics in the bulk. Specifically, by inserting operators on the boundary as shown

Figure 6.11: Penrose diagram of figure 6.4 [12]. Inserting operators, represented by crosses, on the
Euclidean boundary adds particles to the bulk spacetime.

in figure 6.11, we are adding particles to the bulk [11]. In doing so, we subsequently modify the

density matrices of each boundary CFT [12]. Therefore, we can add particles to the bulk such that

the density matrices are no longer maximally mixed and the CFTs are not maximally entangled.

Note, we can add particles such that only one of the density matrices is affected by only acting

with the operator one side [12]. It is natural to assume that adding particles to the bulk affects the

wormhole geometries of the spacetime, but one may question how wormhole configurations differ

when considering different degrees of entanglement, i.e. different entanglement entropies. We will

examine this is section 6.2.4.

Let’s now discuss what this means for our other interpretations of AdS-Schwarzschild spacetime.

As we have discussed, the eternal AdS black hole gives rise to maximal entanglement between states

on the conformal boundary at all times. Therefore, if we take the double black hole interpretation

of AdS-Schwarzschild to behave similarly, then we conclude that the two black holes are in fact

maximally entangled [12].

6.2.2 Wormhole Description of an EPR Pair

Having used the AdS/CFT correspondence to formulate the ER=EPR conjecture, we now proceed

to briefly discuss a physical example. Let’s consider a colour-neutral quark-antiquark pair. Being

colour-neutral, the quark-antiquark pair is naturally entangled. A single quark in Super Yang Mills
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theory is dual to a string extending from the Poincaré horizon to the conformal boundary of AdS,

where the quark is represented by the endpoint of the string on the conformal boundary [58]. For

our quark-antiquark pair, the holographic dual is an open string where the endpoints representing

the quarks are on the conformal boundary as shown in figure 6.13. Recall the metric of AdS5

metric in Poincaré coordinates from Eq. 2.16. By defining u = z−1, we rewrite Eq. 2.16 as

ds2 = R2

(
u2ηµνdX

µdXν +
du2

u2

)
, (6.40)

where µ, ν ∈ {0, 1, 2, 3} [59]. To determine the string dynamics, we also recall the Polyakov action

from Eq. 2.69. For the case of a string, the Polyakov action reduceds to

S = −T1

∫
d2ξ
√
−det(hab) = −T1

∫
d2ξ

√√√√−det(∂X̃ρ

∂ξa
∂X̃σ

∂ξb
gρσ

)
, (6.41)

where ξa are the worldsheet coordinates with a, b ∈ {0, 1}, T1 is the tension of the string, gρσ is the

metric of AdS5 in Poincaré coordinates and X̃ρ = (Xµ, u) where ρ, σ ∈ {0, 1, 2, 3, 4} and so X4 = u.

To assist our calculation, we can choose the static gauge where we set (ξ0, ξ1) = (t, u) and ignore

the transverse spatial directions, i.e. set X2 = X3 = 0. In doing so we have X̃ρ = (t, x(t, u), 0, 0, u)

[59]. From this, a simple calculation shows that

hab =

h00 h01

h10 h11

 =

R2u2(ẋ2 − 1) ẋx′R2u2

ẋx′R2u2 R2( 1
u2 + x′2u2),

 (6.42)

which leads to

det(hab) = −R4(1− ẋ2 + u4x′2). (6.43)

Variation of the action gives the equation of motion [59]

∂

∂u

(
u4x′√
−h

)
− ∂

∂t

(
ẋ√
−h

)
. (6.44)

One can find that the exact solution to this equation which is given by

x = ±
√
t2 + c2 − 1

u2
= ±

√
t2 + c2 − z2, (6.45)

where c is an integration constant [59]. As the quarks are positioned on the conformal boundary

of AdS5, we find that the motion of the quarks obeys x = ±
√
t2 + c2, which is equivalent to the

hyperbolic motion that we find for Rindler spacetime as shown in figure 6.12. In terms of the causal
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Figure 6.12: Spacetime diagram showing the hyperbolic trajectories of the quark-antiquark pair
[58].

structure of the string worldsheet, one can show from the induced metric hab that all null geodesics

trace out straight lines with a gradient equal to or greater than 1 [58]. From this we determine

that there exists a horizon at z = c from Eq. 6.45. Due to the causal structure, we notice that the

only geometries that connect the regions beyond the horizons are spacelike. In this sense, we see

that the causal structure of the string worldsheet is identical to that of the eternal AdS black hole.

Hence, we conclude that the holographic dual of the accelerating entangled quarks is a spacetime

which is connected by spacelike geometries, i.e. an Einstein-Rosen bridge [58]. In the setup we

Figure 6.13: Schematic showing the string connecting the quark-antiquark pair at different values
of z [58].

have been discussing, the quark-antiquark pair are forever out of causal contant, meaning that for

all t no signal can be sent from one quark to the other. However, this restriction is not a defining

property of entanglement. As such, we should expect that the holographic wormholes should exist

between entangled quarks for more general trajectories, where they are now allowed to come into

causal contact. In fact, holographic wormholes do exist for more general trajectories in AdS5 [60],

which provides further evidence of ER=EPR in a general setting.
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6.2.3 The Ryu-Takayanagi Formula

Having previously discussed the entanglement entropy of CFTs on the conformal boundary of

AdS, we now proceed to discuss how to calculate this in the context pf holography. In other

words, we seek a way of calculating the entanglement entropy of the boundary theory from the

dual bulk theory. To do this, we use the Ryu-Takyanagi formula. We will now proceed to derive

the Ryu-Takyanagi formula as in [18] [43] [13]. To construct such a method, let’s consider a 1+1

dimensional quantum field theory which we can separate into two subsytems A and B. We calculate

the entanglement entropy of subsystem A the quantum field theory using the replica trick where

we have [43]

SA = −TrA(ρA ln(ρA)) = − ∂

∂n
(TrAρnA)|n=1. (6.46)

Therefore, we see that we need to calculate TrAρnA for our quantum field theory to determine the

entanglement entropy. To do this, we return to the Euclidean path integral formalism. As we

have only 1 spatial dimension, x, we define the region of subsytem A as the interval x ∈ [u, v] at

tE = 0. We can construct the ground state wavefunction as before by performing the Euclidean

path integral from tE = −∞ to tE = 0 as

Ψ(φ0(x)) =

∫ φ(tE=0,x)=φ0(x)

φ(tE=−∞,x)

Dφe−S[φ], (6.47)

where φ(tE , x) is the field that we are considering for our quantum field theory [43]. The density

matrix of the full quantum field theory is given by

ρφ0φ′0
= Ψ(φ0(x))Ψ∗(φ′0(x)), (6.48)

where Ψ∗(φ′0(x)) denotes the complex conjugate of Ψ(φ′0(x)) (c.f ρ = |Ψ〉 〈Ψ|). To calculate the

Ψ∗(φ′0(x)), we perform the integral in Eq. 6.47 from tE = 0 to tE =∞ [43]. However, we would like

to calculate the reduced density matrix of subsystem A. To accomplish this, we set φ0(x) = φ′0(x)

in the region that defines subsystem B and integrate over this interval, which leaves us with the

expression

(ρA)φ1+φ1− =
1

Z1

∫ φ(tE=∞)

φ(tE=−∞)

Dφe−S[φ]
∏
x∈A

δ(φ(ε, x)− φ1+(x))δ(φ(−ε, x)− φ1−(x)), (6.49)

where ε� 1 and Z1 is the partition function that is required in this expression so that TrAρA = 1

[18]. Now that we have a copy of the reduced density matrix (ρA)φ1+φ1− , we can make n copies
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Figure 6.14: Schematic showing the integration ranges of Eq. 6.49 [13].

and determine

TrA(ρnA) = TrA((ρA)φ1+φ1−(ρA)φ2+φ2− ...(ρA)φn+φn−), (6.50)

where we have taken the product of the n copies of our quantum field theory [43]. In terms of the

path integral, we join the n copies via the identification φi−(x) = φ(i+1)(x) where i ∈ {1, 2, ..., n}

to form a Riemann surface, Rn, as shown in figure 6.15. This gives us [43]

TrA(ρnA) =
1

Zn1

∫
Rn

Dφe−S[φ] =
Zn
Zn1

. (6.51)

An important point about Rn is that there are conical singularities at x = u and x = v. In other

Figure 6.15: Left: Visualisation of the full integration over R3, which is represented by the blue
region [61]. Right: A demonstration of how the phase difference arises from the integration over 3
sheets [13].

words, the boundary of A, ∂A is singular. Therefore, going round a singularity leads to a phase

difference of 2π. Of course, as we have n sheets which form Rn, a phase difference of 2π(1− n) is

picked up [13]. This is shown in figure 6.15.
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Now, by pluggin Eq. 6.51 into Eq. 6.46, we obtain

SA = −
(
∂

∂n
(
Zn
Zn1

)

)
|n=1. (6.52)

Note that while we derived this expression in 2 dimensions, it is easily generalised to higher dimen-

sions [43]. From Eq. 6.52, we see that to obtain an expression for the entanglement entropy, we

must compute the partition function Zn. To do this, we use the AdS/CFT dictionary as discussed

in section 2.3. Let’s now construct the AdS/CFT setup in Poincaré coordinates. Consider a CFT

in d dimensions, which we now choose to exist on the conformal boundary of an asymptotically AdS

spacetime in d+ 1 dimensions. We now take timeslice of this spacetime and divide the CFT into

two subsystems, A and B as shown in figure 6.16, separated by the boundary ∂A. As discussed in

section 2.1, a timeslice of AdSd+1 is equivalent to the hyperbolic plane Hd; we denote this surface

M. To represent ∂A in the bulk spacetime, we form a surface, γA, which extends intoM with the

condition that γA|z=0 = ∂γA = ∂A [43]. Assuming we have a weakly curved spacetime, we can

Figure 6.16: An example of a minimal surface in the bulk, separating the regions containing two
subsystems A and B [43].

use Eq. 2.89 from the AdS/CFT dictionary to compute the partition function of the CFT. Using

this, we write

Zn = exp(−SSG) = exp(
1

16πG(d+1)

∫
M
dXd+1√g(R+ Λ + ...)), (6.53)

where G(d+1) is the gravitational constant in d+1 dimensions and we have omitted all other terms

from the supergravity action as they cancel out in the fraction in Eq. 6.51 [43]. To determine

R, we seek a bulk AdS spacetime that, as z → 0, asymptotically approaches Rn with the phase
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difference of 2π(1− n) on ∂A. It turns out that this restricts the form of R to [43]

R = 4π(1− n)δ(γA) + ..., (6.54)

where we have omitted a further term as it is independent of n and therefore does not contribute

to the entanglement entropy [18]. Plugging Eq. 6.54 into Eq. 6.53, we obtain

Zn = exp(−SSG) = exp(
1

16πG(d+1)

∫
M
dXd+1√g(4π(1− n)δ(γA) + Λ + ...)

= exp(
(1− n)Area(γA)

4Gd+1
+ ...),

(6.55)

where we have once again omitted terms that are independent of n [18]. Interestingly, if we set

n = 1, we find that Z1 = 1 + ... . Therefore, we can now use this to evaluate the entanglement

entropy as

SA =−
(
∂

∂n
exp(

(1− n)Area(γA)

4Gd+1

)
|n=1

= −
(
−Area(γA)

4Gd+1
exp(− (1− n)Area(γA)

4Gd+1

)
|n=1,

(6.56)

which when evaluated for n = 1 becomes

SA =
Area(γA)

4Gd+1
. (6.57)

Furthermore, by taking the supergravity action SSG on shell, we require that γA is a surface of

minimal area. Taking this into account, we slightly adjust our formula to read [18]

SA =
Area(γA,min)

4Gd+1
. (6.58)

This is the Ryu-Takyanagi formula. In summary, this formula allows us to compute the entangle-

ment entropy of a CFT using a surface, γA, in the bulk AdS spacetime with the conditions that

∂γA = ∂A and the surface area of γA is minimised [13]. Intuitively, we can think of this formula

in the following way. The entanglement entropy of subsystem A is obtained by tracing out the

degrees of freedom in subsystem B. In other words, the entanglement entropy of subsystem A is

equal to the entropy that is only accesible to an observer in region A. We can relate this to our

discussion by noticing that the surface γA hides region B from an observer in region A [43]. In

this sense, the degrees of freedom of subsystem B are not accesible to an observer in region A.

A well established demonstration of the Ryu-Takyanagi formula is the application to the

AdS3/CFT2 correspondence [62]. To begin, consider the Poincaré metric in 3 dimensions from
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Eq. 2.15

ds2 =
R2

z2
(dz2 − dT 2 + dX2

1 ). (6.59)

The CFT exists on the conformal boundary at z = 0, parametrised by the coordinates T and X1.

Now, we must define a region on the boundary that contains subsystem A. We choose this region

to be X1 ∈ [− l
2 ,

l
2 ]. We now seek to determine the entanglement entropy between subsystems A

and B at a certain time, so we must take a timeslice of the AdS3 spacetime. In this timeslice,

the surface with a minimised area, γA, is given by the geodesic X1 =
√

l2

4 − z2 joining the two

points at X1 = − l
2 and X1 = l

2 on the boundary [62]. Therefore, the metric on γA is obtained by

plugging this into Eq. 6.59 and taking dT = 0, which gives

ds2
γA =

R2l2

4z2( l
2

4 − z2)
dz2. (6.60)

We equate Area(γA,min) to the length of γA for the case of AdS3, such that Eq. 6.58 becomes [62]

SA =
1

4G(3)

∫
dsγA =

R

4G(3)

∫ l
2

a

dz
l

z
√

l2

4 − z2
. (6.61)

This integral evaluates to

SA =
R

2G(3)
ln

(
l

a

)
, (6.62)

which is the same expression obtained in the CFT framework [62]. Note, we introduced a UV

cutoff, a, near z = 0 to avoid the divergence of the metric at z = 0. We can identify this UV cutoff

as the lattice spacing in the CFT [63].

As we discussed in section 6.2.1, the presence of entanglement between two disconnected bound-

ary CFTs at finite temperature in AdS-Schwarzschild spacetime generates a wormhole connect-

ing the two boundaries. Therefore, we can clearly see that the Ryu-Takyanagi formula pro-

vides a method of relating the entanglement entropy to the geometry of the wormhole in AdS-

Schwarzschild. Before we apply this reasoning, let’s discuss this formula in the context of black

holes in 3 + 1 dimensions. Let’s define region A to be outside the event horizon, while region B

defines the region inside the event horizon. As discussed before, we now seek a surface that hides

region B from an observer in region A. Clearly, this surface coincides with the event horizon, H+,

of the black hole [13, 43]. Therefore, our formula becomes

SA =
Area(H+)

4G(4)
(6.63)
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which is equal to the usual Bekenstein-Hawking entropy in 3 + 1 dimensions.

6.2.4 The Effect of Entanglement Entropy on Lorentzian Wormholes

So far, we have determined the holographic dual of a pair of maximally entangled CFTs with

finite temperature at specific times on the conformal boundary of AdS-Schwarzschild spacetime.

We discussed that this is equivalent to a non-traversable wormhole in the bulk AdS-Schwarzschild

spacetime that connects the boundaries at the specific times as in figure 6.10. Furthermore, we

have discussed how to relate the entanglement entropy of the CFTs to the bulk asymptotically AdS

spacetime via the Ryu-Takyanagi formula in Eq. 6.58. Combining these two ideas, we now proceed

to use the Ryu-Takyanagi formula to understand how the geometry of holographic wormholes in

AdS-Schwarzschild spacetime change by varying the entanglement entropy of the CFTs.

Using the Euclidean path integral formalism, we can construct a pair of maximally entangled

states at t = 0 where each state exists on one of the disconnected boundaries. As these states

are entangled, the t = 0 region of each boundary is connected by spacelike hypersurfaces, which

we call Lorentzian wormholes, as shown in figure 6.10. Let’s consider the wormhole configuration

that connects the boundaries at t = 0 as shown in figure 6.17. For Schwarzschild spacetime we

Figure 6.17: Kruskal diagram of AdS-Schwarzschild, where an Einstein-Rosen bridge, shown by
the red line, connects the asymptotically AdS boundaries which contain subsystems A and B [64].

have determined the geometry of such wormholes as in figure 3.3. We found that the minimum

radius of the wormhole is r = 2M , which occurs at the bifurcation 2-sphere. While we haven’t

explicitly determined the structure of a wormhole in AdS-Schwarzschild, we can make some as-

sumptions regarding its geometry due to the vast similarities between AdS-Schwarzschild spacetime

and Schwarzschild spacetime. We expect that the wormhole should resemble the double trumpet

geometry, in the sense that the surface of the wormhole asymptotically approaches R2 as r → ∞

and has a minimal radius at the bifurcation 2-sphere. Furthermore, we see that the bifurcation
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2-sphere of AdS-Schwarzschild has a radius of rAdS , as it is the point on the spacetime diagram that

joins the two horizons at rAdS. Importantly, we note that by taking the R → ∞ limit, the AdS-

Schwarzschild wormhole should approach the geometry of the Schwarzschild wormholes. Therefore,

while the geometries of wormholes differ between AdS-Schwarzschild spacetime and Schwarzschild

spacetime, we will consider the case of large R where the geometries are approximately identical. As

such, we will continue our discussion using the embedding diagram of a wormhole in Schwarzschild

spacetime, noting that the geometry approximates to an AdS-Schwarzschild wormhole in weakly

curved AdS. Fortunately, we will see that our discussion soley focuses on the section of the worm-

hole with minimal radius, which is a spatial section of the geometry that we understand well. As

such, our discussion should also be applicable to AdS-Schwarzschild wormholes in strongly curved

AdS spacetime.

Figure 6.18: The geometry of the Einstein-Rosen bridge in figure 6.17.

We wish to understand how the geometry of the AdS-Schwarzschild wormhole is affected by

the entanglement entropy. To use the Ryu-Takyanagi formula, we must identify the surface of

minimal area, γA, which ‘hides’ region A from region B. In figure 6.18, we identify γA as the

circle that wraps around the wormhole at the bifurcation 2-sphere [64]. However, recall that to

generate this embedding diagram we supressed the angular coordinate, θ. Therefore, the circle

actually represents a 2-sphere of radius rAdS. Trivially, we find the area of this surface is 4πr2
AdS.

Therefore, the entanglement entropy of this system is given by

SA =
4πr2

AdS
4G

. (6.64)

As the state of the total system AB is pure, we see that SA = SB . Recall the second interpreta-

tion of AdS-Schwarzschild spacetime, whereby two black holes are maximally entangled and the

86



entanglement entropy is equal to the entropy of either black hole. Using the Bekenstein-Hawking

formula, one can calculate the entropy of either black hole whose event horizon has an area of

4πr2
AdS. Indeed, this result matches with the one produced by the Ryu-Takyanagi formula.

Now, let’s consider a system at t = 0 such that systems A and B now have a smaller entan-

glement entropy than in Eq. 6.64. This can be achieved in a number of ways. For example, we

could add particles to the bulk as in figure 6.11, making the entanglement between the CFTs less

than maximal. Alternatively, we can decrease the temperature of the system so that entropy of the

system also decreases [55]. Note, however, that in this case the states are still maximally entangled.

In either case, we find that

SA <
4πr2

AdS
4G

. (6.65)

Clearly, we see that the area of the minimal surface is has decreased. Eventually, by decreasing

the entanglement entropy to zero, the area of the minimal surface also decreases to zero. Hence,

decreasing the entanglement entropy of the CFTs causes the wormhole to ‘pinch off’ [55], discon-

necting the two conformal boundaries completely (c.f. figure 6.5).

Another useful quantity to analyse is the mutual information between subsytems A and B,

given by Eq. 4.32. We showed that for a pure system AB, where the subsystems A and B are

mixed, that the mutual information of AB is IAB = 2SA. Therefore, as the entangledment entropy

of a system decreases so does the mutual information. Interestingly, one can relate the mutual

information to correlation functions of general operators between the two subsytems A and B as

[55]

IAB ≥
(〈OAOB〉 − 〈OA〉 〈OB〉)2

2|OA|2|OB |2
, (6.66)

where OA and OB are any operators acting on subsystems A and B, respectively. Now, we recall

the discussion of correlation functions of scalar fields in section 2.2. We found the form to be that

of Eq. 2.52. Clearly, if the correlation function between the scalar field at two different spacetime

points goes to zero, the proper distance between the two points becomes infinite if CΦ1Φ2
remains

non-zero. In fact, this holds similarly for operators that are dual to massive particles in the

bulk spacetime [55], as in figure 6.11. Therefore, we find that if the mutual information between

subsystems A and B becomes zero, then all the correlation functions in Eq. 6.66 also become zero.

As such, we find that decreasing the entanglement entropy has the affect of increasing the distance

between points in regions A and B.

Combining these two effects, we conclude the following: decreasing the entanglement entropy

between our two subsytems A and B causes the wormhole connecting these regions to elongate

and ‘pinch off’. This process is depicted in figure 6.19, where we see that the effect of decreasing
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the temperature of the CFTs causes the distance of the wormhole to increase and the minimal area

to decrease [55].

Figure 6.19: Schematic showing the effect of decreasing entanglement entropy, moving from left to
right. We see that the wormhole elongates and ‘pinches off’ [55].

6.2.5 The Future of ER=EPR

To conclude our discussion of the holographic description of Lorentzian wormholes, we will now

briefly discuss the future of ER=EPR as well as an apparent failure of the ER=EPR proposal. As

such, it appears that the curent state of the ER=EPR proposal needs some modifications, despite

the promising ideas we have discussed.

Recall our previous discussion of black hole information in section 5.4. We concluded that the

evolution of the collapsed matter to Hawking radiation is non-unitary, as the state evolves from an

initial pure state to a final mixed state. This implies that information regarding the initial system

of collapsing matter is lost during the evaporation of a black hole. However, let’s consider the

evaporation of a black hole in the context of AdS/CFT. We can create an infalling shell of matter

in the bulk AdS spacetime using CFT operators on the boundary and let it collapse. Proceeding, we

can evolve the dual CFT state forward in time using a unitary operator. Therefore assuming that

our AdS/CFT bulk to boundary relation is correct, the bulk theory of black hole evaporation must

also be unitary, suggesting that information is preserved [44]. If this concept is in fact true, then we

should expect the Page curve to correctly determine the entanglement entropy of the system. As

ER=EPR suggests a relation between wormholes and entanglement entropy, one might speculate

that there exists a relation between the Page curve and the evolution of wormholes. Among other

possible open questions, this could certainly be an avenue of future research in ER=EPR. For

speculation on the relation between wormholes and black hole evaporation, see [12].

While our discussion surrounding ER=EPR has been positive so far, there exists arguments

against such a proposal. It has been suggested that the correspondence between the thermo-field

double state and the eternal AdS-Schwarzschild black hole is incorrect, which in turn suggests that
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the ER=EPR relation is also incorrect. One of the main reasons this correspondence is believed

to be true is the causal structure of AdS-Schwarzschild spacetime. It is impossible for observers

in the right and left regions to communicate with each other while remaining in their respective

regions. Thsi reflects the fact that the dual CFTs on the conformal boundaries are non-interacting.

However, should at least one of the observers in the bulk AdS-Schwarzschild spacetime cross their

horizon, communication between the observers becomes possible [12]. It has been suggested that

this requires an interaction term in the gravitational theory which allows interactions between

degrees of freedom in the right and left regions. However, the dual CFT is non-interacting and so

does not contain such an interaction term. Therefore, if we take this point of view to be correct, the

proposed duality between the thermo-field double state and the eternal AdS-Schwarzschild black

hole must not be true [65].
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7. Euclidean Wormholes in AdS

Until now, we have only considered the holographic description of Lorenztian wormholes, those

that exists in a spacetime with Lorentzian signature. In particular, we have discussed the spe-

cific example whereby the thermo-field double state is holographically dual to AdS-Schwarzschild

spacetime. As a final remark, we will now comment the Euclidean wormholes in the context of

AdS/CFT. We will review the factorisation problem in AdS/CFT and its possible resolution, lead-

ing to the application of the SYK model to holography. Specifically, we will review the work by

Garcia-Garcia and Godet, who showed that the statistical averaging of the SYK model leads to

Euclidean wormholes in the dual theory [15].

7.1 The Factorisation Problem in AdS/CFT

Let’s explore the AdS/CFT dictionary, as discussed in section 2.3, in further detail. Recall Eq.

2.90, which states that the partition function of a string theory on an asymptotically AdS spacetime

background evaluated at the boundary is equivalent to the partition function of a CFT that exists

on the boundary. For a general string theory, we can write the partition function as

ZString =

∫
DXDgµνe−SE , (7.1)

where SE is the Euclidean action of the theory [66]. Applying this to the AdS/CFT dictionary, we

see that the string theory partition function is a functional integral which sums over all geometries

with the boundary conditions that match the boundary CFT. Therefore, if we consider the partition

function, Z, of a CFT that exists on a single boundary of an asymptotically AdS spacetime, then the

dual theory should be represented by the path integral which sums over such geometries with only

one boundary and repects the conditions on that boundary [14]. An issue arises when a product of

CFT partition functions are considered. We expect that for the product of CFT partition functions

which exist on separate boundaries, say Z2, the dual theory should be represented by the path

integral which sums over geometries with two disconnected boundaries [14]. We give a pictoral
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representation of this in figure 7.1. From the bulk point of view, we see that the CFTs cannot

communicate in any way through the bulk as the spacetimes are disconnected, so the CFTs are

completely decoupled [10]. If we only consider disconnected geometries, then our current view of

AdS/CFT is remains consistent, as the square of our single boundary theory is exactly the same

as the double boundary theory. However, we are also aware of geometries that connect the two

Figure 7.1: The relation between the partition function and the gravitational dual spacetimes.
Clearly, we see that if we consider Z2, we must have two disconnected asymptotically AdS space-
times (Adapted from a figure in a presentation of [14] given by J. Santos, given online on 26/04/21).

boundaries via the bulk spacetime, i.e. wormholes. Therefore, these geometries also contribute to

the construction of Z2. By including these geometries, we see that Z2 no longer the square of the

single boundary partition function, Z [14]. For this reason, we need to modify our current view of

AdS/CFT and assign a new meaning to these partition function dualities. One resolution which

Figure 7.2: The new interpretation of AdS/CFT, where if wormhole configurations are present in
the gravitational theory, then the dual theory is equivalent to the statistical average of the partition
function [14].

has been recently researched is the possibility that the bulk asymptotically AdS path integrals are

actually equivalent to a statistical average of CFTs, i.e. an ensemble of CFTs [14]. In this new

picture, which is shown in figure 7.2, we use the notation 〈Z〉 and 〈Z2〉 to denote the statistical
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averaging of the CFTs. Clearly, we see that the wormhole contributions are given by the expression

δZ2 = 〈Z2〉 − 〈Z〉2, which can be interpreted as the difference between picking out any CFT in

the ensemble and the full statistical averaging over all CFTs in the ensemble [14]. If we consider

the case where δZ2 = 0, then 〈Z2〉 = 〈Z〉2, this implies that there are no contributions from

bulk spacetimes which connect the two boundaries [14], so we have returned to our previous

interpretation of AdS/CFT.

7.2 The Role of The SYK Model in Holography

In our newly modified version of AdS/CFT, we now have a correspondence between asymptotically

AdS gravitational theories and an ensemble of CFTs. In recent years, a new avenue of research

has opened up surrounding a particular quantum field theory, namely the SYK model, for its

applications in the context of our new interpretation of AdS/CFT. We will now briefly discuss

this model in further detail before moving on to the proposed holographically dual gravitational

theories.

7.2.1 An Brief Introduction to The SYK Model in AdS/CFT

The Sachdev-Ye-Kitaev Model, shortened to the SYK model, is an exactly solvable quantum

mechanical model of N Majorana fermions with random interactions between an even number of

fermions, q, at a given time [67]. The interaction Hamiltonian of the SYK model is given by [68]

H =
i
q
2

q!

∑
i1i2...iq

Ji1i2...iqψi1ψi2 ...ψiq . (7.2)

The distribution of these interactions among the fermions is given by a Gaussian distribution with

zero mean and variance

〈J2
i1i2...iq 〉 =

J2(q − 1)!

Nq−1
, (7.3)

where J is a parameter that can be identified with the characteristic energy scale of the quantum

field theory [68]. In later discussions, we will consider a system of with 4 interacting Majorana

fermions at a given time. Setting q = 4 we find that the interacting Hamiltonian becomes

H = − 1

4!

N∑
i,j,k,l=1

Jijklψiψjψkψl, (7.4)

92



where the Majorana fermions obey the usual anticommutation relations {ψa, ψb} = δab [68]. Fur-

thermore, we find the variance of J becomes

〈J2
ijkl〉 =

6J2

N3
. (7.5)

In this sense, we see that the SYK model appears to suit the requirements of a CFT in our new

interpretation of AdS/CFT due to the statistical averaging of the interaction couplings.

The original purpose of the SYK model was to describe condensed matter systems, specifically

the properties of quantum magnets with total spin S and infinitely long range random exchange

interactions that obey a Gaussian probability distribution [69]. However, the SYK model has

recently sparked interest for its applications in AdS/CFT due to the interesting property that it

is nearly invariant under conformal transformations at low energies [67]. For this reason, the SYK

model is usually referred to as a nearly conformally invariant theory, denoted NCFT1. To find

a dual gravitational theory, it is important that it displays the same symmetries as the CFT. It

turns out that there exists a gravitational theory in 2 dimensions with a nearly extremal black hole

which displays similar symmetry properties. The near extremal black hole produces a background

spacetime that is nearly AdS2, denoted NAdS2 [67].

To further understand why it is possible to obtain the correspondenceNAdS2/NCFT1, consider

the action of Jackiw-Teitelboim (JT) gravity

SJT = − 1

16πG

(∫
d2xφ

√
g(R+ 2) + 2

∫
∂M

φ0K
)
, (7.6)

where φ is the dilaton, whose value at the boundary is φ0, ∂M is the boundary of the spacetime

and K is the extrinsic curvature [70]. Clearly, we see that the equation of motion by varying SJT

with respect to the dilaton shows that the metric leaves us with the familiar Einstein gravity with

a negative cosmological constant, meaning that the metric is that of AdS2. Furthermore, one can

derive the equation of motion for the metric, which restricts the form of the dilaton to [70]

φ =
α+ γt+ δ(t2 + z2)

z
. (7.7)

It turns out that this solution for the dilaton causes an explicit breaking the conformal symmetry of

the theory [70]. While we won’t discuss the calculations, it is possible to show that this symmetry

breaking leads to the equivalence of the JT gravity theory and the SYK theory at low energies [70]

[71].
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7.2.2 Euclidean Wormholes in JT Gravity

Now that we have identified the correspondence between the SYK model and JT gravity, we shall

construct a specific set up of the SYK model whose gravitational dual theory manifests Euclidean

wormholes as in the work by Garcia-Garcia and Godet [15]. Let’s consider left and right copies of

the SYK model with complex couplings as given by

HL =
1

4!

N
2∑

i,j,k,l=1

(Jijkl + iκMijkl)ψL,iψL,jψL,kψL,l,

HR =
1

4!

N
2∑

i,j,k,l=1

(Jijkl − iκMijkl)ψR,iψR,jψR,kψR,l,

(7.8)

where κ ∈ R>0 and the Majorana fermions obey the anticommutation relation {ψA,a, ψB,b} =

δABδab. As before, the real and imaginary components of the complex coupling obey a Gaussian

probability distribution with zero mean and variance

〈J2
ijkl〉 = 〈M2

ijkl〉 =
96

N3
. (7.9)

By looking at HL and HR, we see that there are no terms that explicitly couple the two systems,

so they are completely non-interacting. Clearly, we see that the two Hamiltonians, HL and HR,

are complex conjugates of each other. Therefore, denoting the full Hamiltonian of the system as

H = HL + HR, we see that the full system exhibits complex conjugation symmetry, i.e. H =

HL+HR = H∗R+H∗L = H∗. Due to this symmetry, we find that the partition function of the total

system, Z(β) = Tre−βH , is a real parameter of the theory [15].

The work of Garcia-Garcia and Godet was to numerically compute the statistically averaged

free energy of the theory, 〈F (T )〉 = −T 〈ln(Z(β))〉, for different values of κ and N to analyse

any phase transitions that may occur. They found that for large values of N the averaged free

energy is constant at low values of T , followed by a sharp decrease, indicating the presence of a

first order phase transition. Furthermore, they found that the temperture at which this phase

transition occured increases with increasing κ [15]. In other words, as the total system becomes

more ‘complex’, the phase transition occurs at higher temperatures.

It turns out that the low temperature phase only occurs for large N . As the Hamiltonians are

complex, the eigenvalues are also complex and so have the form En = an + ibn, where an, bn ∈ R.
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Using this, it is possible to write the partition function for a particular state in the ensemble as

Z(β) = eβE0 + 2
∑
n

cos(βbn)e−βan , (7.10)

where we note that E0 is real [15]. The importance of this expression arises by taking low and

high temperature limits. In the high temperature limit, we see that the imaginary component,

bn, is suppressed and has very little effect on the system. Therefore, only the real components

of the system contribute, so we see that HL = HR. Therefore, we see that the system at high

temperature behaves like that of two identical, non-interacting SYK systems. Now, taking the low

temperature limit, the cosine term becomes rapidly oscillatory as β behaves like a frequency term

in the cosine argument [15]. Here, we see the importance of statistically averaging of the system.

Computing the averaged free energy

〈F (T )〉 = −T

〈
ln

(
e−βE0 + 2

∑
n

cos(βbn)e−βan

)〉
, (7.11)

for N = 1, i.e. no statistical averaging as there is only one Majorana fermion in consideration for

each subsystem, the oscillatory behaviour of the free energy is prominent in the low temperature

regime. However, by considering larger N , the effect of the statistical averaging is to suppress

the eigenvalues with n > 0 and thus leveling off the free energy in the low temperature limit.

Therefore, we see that at large N , the system has a gap between the ground state, E0, and the

first excited state, E1, that is not present at low N [15].

It turns out that similar phase transitions occur in JT gravity with matter. In fact, the low

temperature gapped phase of the SYK model is actually dual to a Euclidean wormhole in JT

gravity with matter. To see this, let’s consider the example of a massless scalar field in JT gravity

[15]. The wormhole solution we would like to consider is a double trumpet with two asymptotic

boundaries connected through the bulk. We can describe this with the metric (c.f Eq. 2.6)

ds2 =
1

cos2(θ)
(dT 2 + dθ2), (7.12)

where T = iτ is the Euclidean time which has the identification T ∼ T +b. As we discussed before,

the SYK model in Eq. 7.4 is holographically dual to JT gravity. In this setup, the Euclidean

wormhole is not a solution of the gravitational theory. However, if we consider the SYK model

with complex couplings, as in Eq. 7.8, then it turns out that the imaginary components allow the

Euclidean wormhole to be a solution [15]. We see that by changing the original SYK Hamiltonians
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by

δHL =
iκ

4!

N
2∑

i,j,k,l=1

MijklψL,iψL,jψL,kψL,l,

δHR = − iκ
4!

N
2∑

i,j,k,l=1

MijklψR,iψR,jψR,kψR,l,

(7.13)

we obtain the equations of Eq. 7.8 and it is indeed these terms which contribute to the wormhole.

Due to the correspondence, we expect this change to deform the JT gravity theory. This is

accomplished by introducing dual operators into the JT gravity action with coefficients ik and

−ik, where the conformal dimensions of the operators respect the massless scalar field [15]. We

will not proceed with the details of the calculation, but it can be shown that the free energy of

the gravitational system has two regimes. In the high temperature limit, the free energy of the

gravitational system obeys

FBH = −2CT − 4π2T 2, (7.14)

where C is a constant. This expression is the free energy of two black holes in JT gravity [15].

Furthermore, in the low temperature limit the free energy becomes

FW = −k
4

π2
, (7.15)

which does not vary with temperature. It turns out that this expression is the free energy of a large

Euclidean wormhole, where large simply means that b is large [15]. Clearly, we see a resemblance

between the free energy of the JT gravity system and the SYK model with imaginary interaction

couplings. In the high temperature regimes, both systems exhibit a decrease in free energy with an

increase in temperature, while in the low temperature regime both expressions for the free energy

are constant up to the phase transition. Therefore, we can identify the holographic gravity dual of

the low energy non-interacting SYK model with a Euclidean wormhole and the holographic dual

of the high energy non-interacting SYK model with two black holes [15].

The point of our discussion so far has been that the statistical averaging in the SYK model gives

rise to Euclidean wormholes in the holographic gravitational dual theory. As such, we have found

a promising example of our new interpretation of AdS/CFT. However, it has also been shown that

Euclidean wormholes can still arise when removing the statistical averaging of the SYK interaction

couplings and fixing them to a particular value [72].
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8. Discussion

The holographic principle has certainly created a new era of modern theoretical physics, possibly

taking us one step closer to a quantum theory of gravity. Furthermore, the discovery of AdS/CFT

and the specific correspondence between N = 4 Super Yang Mills theory in 4 dimensions and type

IIB String Theory compactified on AdS5 × S5 by Maldacena has allowed physicists to understand

the relationship between gravitational and quantum field theories in greater detail than in previous

times. In recent times, this realisation of the holographic principle has been applied to the realm

of wormholes, a concept in theoretical physics which has been seemingly dormant in recent times.

However, the introduction of AdS/CFT has allowed the topic of wormholes to move towards the

forefront of scientific research, with some of the great intellects of our time making great strides in

this area. Specifically, the work of Maldacena and Susskind to develop the ER=EPR conjecture,

uncovering the relation between Lorentzian wormholes and entanglement, could completely change

the way we currently view both gravity and quantum mechanics. While there is no current proof

of the connection between wormholes and entanglement, there have been attempts to demonstrate

ER=EPR in physical systems.

Following our discussion of black hole thermodynamics, we gave evidence to support the claim

that two identical, non-interacting copies of a CFT at finite temperature is holographically dual

to an eternal AdS-Schwarzschild black hole. Here, the entanglement between the CFTs generate

a Lorentzian wormhole connecting the two asymptotically AdS boundaries. Having determined

this duality, we focused our discussion around the thermodynamic quantitiy of entropy. The

generalisation of the Bekenstein-Hawking entropy formula by Ryu and Takayanagi allows one to

relate the entanglement entropy of the CFTs to the bulk asymptotically AdS spacetime. Using this,

we were able to understand the effect of entanglement entropy on the Lorentzian wormhole. We

demonstrated that by decreasing the entanglment entropy of the CFTs, the wormhole elongated and

‘pinched off’, having the effect of disconnecting the AdS-Schwarzschild spacetime. This conclusion

is consistent with our understanding that entanglement generates wormholes. Furthermore, we

have discussed the role of entropy in black hole evaporation. Among the big unanswered questions
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in physics is the black hole information paradox, which states that information that falls into a

black hole is lost from the universe. There is speculation that wormholes may be related to black

hole evaporation, signaling that ER=EPR may assist progress towards a solution to the black hole

information paradox. However, despite the promising arguments supporting ER=EPR, there have

been suggestions that this relation between entanglement and wormholes is not correct.

Despite the strong evidence in favour of AdS/CFT, there is one particular issue which has

been addressed in the last few years. The original understanding of AdS/CFT does not appear

to be consistent due to the possibility of wormhole configurations in the gravitational theory,

suggesting that AdS/CFT in its current form must be modified. One proposal that has been

explored is that on the CFT side of the correspondence, one must consider the statistical average

of an ensemble of CFTs. The SYK model, an exactly solveable quantum mechanical model whose

interaction couplings obey a Gaussian probability distibution, has recently be used in AdS/CFT

as it can effectively be treated as an ensemble of CFTs. It has been shown by Garcia-Garcia and

Godet that a two site SYK model with complex interaction couplings is holographically dual to a

Euclidean wormhole in JT gravity. They demonstrated that the free energy of the gapped phase

at low temperatures in the SYK model correlates to the free energy of a large wormholes in JT

gravity. However, it has also been demonstrated that the statistical averaging of the couplings is

not necessary to form wormholes. Therefore, it appears that there are some unanswered questions

surrounding the SYK model in AdS/CFT that could be explored in the near future.
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