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Abstract

This dissertation focuses on how recent developments in holography could be applied

to the black hole evaporation process, to get closer to resolving the black hole informa-

tion paradox. We begin by presenting some of the required background on Hawking

radiation and the AdS/CFT correspondence, before focusing on the quantum extremal

surfaces prescription for holographic entanglement entropy. We show how quantum

extremal surfaces and islands recover the Page curve and show that this description

of the system is consistent with unitarity, as well as how this description suggests

information might be conserved.
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Chapter 1

Introduction

Black holes have long been of interest to theoretical physicists. Since Karl Schwarzschild

first discovered black holes as features of spherically symmetric solutions to Einstein’s

field equations, there have been questions about what insights black holes might give

in the context of the fundamental theories of physics. Hawking’s landmark publication

in 1973 showed using quantum field theory in a curved spacetime (an intermediate step

towards a theory of quantum gravity) that black holes emit radiation as a perfect black

body, and so have a defined temperature. In radiating black holes slowly “evaporate”.

This groundbreaking result was the first step towards considering black holes as quan-

tum systems, but threw up many questions in itself. One central question concerned

information. If one threw a book into a black hole which proceeded to evaporate into

Hawking radiation, what happens to the information contained in the book? This idea

forms a part of what is known as the black hole information paradox.

There are currently many competing ideas about how this paradox could be resolved.

A small minority of theorists believe that information is indeed lost; the majority of

notable ideas aim to show that the information can be recovered. Some theories, such

as the fuzzball resolution, opt to modify common understanding about the geometry

of the black hole itself in order to recover the missing entropy. However, most widely

accepted ideas about the paradox believe that in order to fully understand where the

information goes a theory of quantum gravity must be formulated. The most well-

explored candidate theories of quantum gravity is string theory. The string theory

community argue that the horizon is of great importance in understanding the black

hole system. String theorists have been looking at the paradox from a number of
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different angles. One such angle has been through the holographic principle. Recent

developments in the AdS/CFT, the most explored example of holography to date, have

had a great influence on the string theory community’s ideas about black holes. This

dissertation aims to give an overview of how AdS/CFT and the holographic principle

more generally have recently been used by theorists to understand the entropy of the

black hole system, and how this approach makes the unitarity of the black hole system

manifest. It aims to give a brief overview of the key literature, along with accompa-

nying derivations.

We begin by outlining some key results from classical considerations of black holes,

going over the development of uniqueness theorems as well as the laws of black hole

mechanics and their relation to the laws of thermodynamics. We also review some ba-

sic notions of the entropy of quantum systems. We then consider quantum field theory

on a curved spacetime, following Hawking, to arrive at his formulation of Hawking

radiation. We are then in a position to precisely frame the black hole information

paradox, and how we might go about viewing black holes as quantum systems. We

then aim to provide a brief overview of AdS/CFT and holography, before reviewing

recent literature on holographic solutions to the black hole information paradox.

Throughout the dissertation we use a mostly-plus Minkowski metric signature, ηµν =

diag(−,+, ..,+). We take the physical constants ℏ = c = kB = GN = 1.
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Chapter 2

Background

2.1 Classifying Black Holes

Throughout the 20th century, after Karl Schwarzschild’s initial discovery of black holes,

there were many efforts to expand on this and find other exact black hole solutions.

One such solution, the Kerr-Newman metric, describes a charged, rotating black hole

in a vacuum. The Kerr-Newman metric [33] in Boyer-Lindquist coordinates is

ds2 =− ∆− a2sin2θ

Σ
dt2 − 2a sin2θ

r2 + a2 −∆

Σ
dt dϕ

+
(r2 + a2)2 −∆

Σ
sin2θ dϕ2 +

Σ

∆
dr2 + Σ dθ2

where

Σ = r2 + a2cos2θ

∆ = r2 − 2Mr + a2 + e2.

Upon inspection of the metric it can be seen that the three parameters that can

describe individual black holes with this metric are M , a, and e. Here, a is the total

angular momentum J per unit mass,

a =
J

M
,

and e can be expressed in terms of electric and magnetic charges Q and P as

e =
√
Q2 + P 2 .

After the publication of this metric, many uniqueness theorems emerged. In 1967,

Israel conjectured that for static, asymptotically flat, vacuum black hole spacetimes
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that are “suitably regular” on and outside the event horizon, then the spacetime must

be isometric to the Schwarzschild solution [27]. Further theorems by Carter in 1971

[10], Robinson in 1975 [41], Bunting and Masood in 1987 [7], and Sudarsky and Wald

in 1992 [6] developed this idea. Carter and Robinson conjectured the no-hair theorem,

stating that all stationary electrovac black hole solutions can be described by the

three parameters that appear in the Kerr-Newman metric: mass M , total angular

momentum J , and electromagnetic charge e. The various uniqueness theorems have

been put together to show that the Kerr-Newman metric is the most general stationary,

asymptotically flat isolated black hole solution to Einstein’s field equations.

2.2 The Laws of Black Hole Mechanics

In 1973, Bardeen, Carter, and Hawking published a paper [3] which outlined the four

laws of black hole mechanics. Emerging only from classical general relativity, there

are clear parallels that can be drawn between the laws of black hole mechanics and

the laws of thermodynamics.

The 0th law of black hole mechanics states that for a stationary black hole space-

time with Tµν obeying the dominant energy condition1, the surface gravity κ on the

future event horizon H+ is constant. The surface gravity on H+ has parallels with

thermodynamic systems at equilibrium, which have constant temperature as stated by

the 0th law of thermodynamics.

The 1st law of black hole mechanics is an expression of the conservation of energy

in black holes. The three classical fundamental quantities of black holes are mass M ,

charge Q, and angular momentum J . The 1st law states that for stationary black hole

with these fundamental quantities perturbed to a new state with M + dM , Q + dQ,

and J + dJ , these quantities will change with respect to change in black hole area dA

as:

dM =
κ

8π
dA+ ΩHdJ + ΦHdQ,

where κ is the surface gravity on H+, ΩH is the angular velocity, and ΦH is the

electric surface potential. We see the analogy with classical thermodynamics by re-

1Let aµ be any causal 4-vector i.e. aµa
µ ≤ 0 and a0 > 0. Then the dominant energy condition

requires the stress-energy tensor Tµν to satisfy the the condition that bµ = −Tµνaν is causal.
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lating entropy with the area ofH+, and by relating the quantity κ
8π

to the temperature.

The 2nd law, Hawking’s area theorem, states that for a spacetime where the weak

energy condition and cosmic censorship holds, then the area of H+ is non-decreasing

with time, or

dA ≥ 0.

The 3rd law of black hole mechanics is the statement that it is impossible to reduce

κ to 0 by any finite number of operations. This is analogous to the third law of ther-

modynamics, which states that absolute zero temperatures cannot be obtained by a

finite number of operations.

From these laws of black hole mechanics, a notion of the thermodynamic entropy

of a black hole, known as the Bekenstein-Hawking entropy emerges. This is given as

a function of area of the future event horizon, A,

SBH(A) =
A

4GN

, (2.1)

where Newton’s gravitational constant GN is explicitly included. Alternatively, by

reintroducing Planck’s constant and the speed of light to make the right hand side

dimensionless, we may replace GN in the above with l2p, the Planck length squared.

Although we have derived this law classically, in inserting the Planck length we can

begin to see how we might start thinking about the quantum nature of black hole

entropy. Bekenstein also showed that entropy is proportional to the area of the fu-

ture event horizon in 1973 using arguments from classical information theory [4], but

Hawking precisely identified the constant of proportionality as 1/4GN .

2.3 The Generalised Second Law

Following the derivation of the Bekenstein-Hawking entropy, Bekenstein reconsidered

the second law of black hole mechanics in more depth [5]. Bekenstein was concerned

with reconciling previous notions of thermodynamic entropy with the Bekenstein-

Hawking entropy. Bekenstein considered the effect of a highly entropic system en-

tering a black hole; the entropy of spacetime outside the black hole, Sexternal would

decrease. In order to avoid violating the second and third laws of thermodynamics the
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black hole’s entropy, SBH , would have to increase enough to compensate for the loss

in Sexternal. This led to the formulation of the generalised second law: for any black

hole spacetime, the total entropy of the spacetime, which is known as the generalised

entropy, cannot decrease. More formally,

dSgen = dSBH + dSexternal ≥ 0. (2.2)

It is worth reiterating that this law has been obtained by restricting ourselves to classi-

cal general relativity. However, the generalised second law has important implications

for our consideration of black holes as quantum systems, as we will see in later chapters.

2.4 Quantum Descriptions of Entropy

We now turn to quantum formulations of entropy.

Recall that all quantum systems can be described by state vector |ψ⟩, which resides on

the Hilbert space of all states H. We can then define a density operator ρ, which acts

on H. Concretely, ρ is generally a linear combination of projections of state vectors,

given by

ρ =
∑
i

pi |ψi⟩ ⟨ψi| , (2.3)

where pi is the probability of the system being in state |ψi⟩. A pure state has only one

such possibility, so can be expressed as

ρ = p |ψ⟩ ⟨ψ| . (2.4)

If it cannot be put into this form, the state is said to be mixed. Density operators

are extremely useful in that they encode all information about the quantum system.

From here we can find the expectation value of some general observable Â as

⟨Â⟩ = tr(Aρ). (2.5)

2.4.1 Fine-grained Entropy

We now arrive at our first formulation of entropy, the fine-grained entropy. This is the

von Neumann entropy, which is given by

SvN = −tr(ρ log ρ) = −
∑
i

pi log pi, (2.6)
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where pi are eigenvalues of ρ. For pure states, this quantity vanishes. We may think

of this formulation of entropy as describing how little information we have about the

precise quantum system [34].

We may use quantum statistical mechanics to note that thermal states are neces-

sarily mixed states at the quantum level. This fact will be useful in our formulation

of the black hole information paradox in the next chapter.

One important property of von Neumann entropy is that it is invariant under uni-

tary time evolution, i.e. S(ρ) = S(UρU−1). Thus we see that von Neumann entropy

is constant under some time evolution of the density operator.

From the von Neumann entropy we can also define the entanglement entropy. Consider

a bipartite system with Hilbert space H = HA ⊗HB. We can find the density matrix

of HB from the density matrix of H, ρtotal, by tracing over all states in subsystem A:

ρB = trA(ρtotal). (2.7)

The entanglement entropy of subsystem B is then defined as

SE(B) = −trB(ρB log ρB). (2.8)

It can be trivially shown that for systems in a pure state, SE(A) = SE(B). Another

useful property of entanglement entropy is strong subadditivity, which states that

for some system with three subsystems A, B, and C with no overlaps, we have the

inequality relations:

SE(A+B + C) + SE(B) ≤ SE(A+B) + SE(B + C), (2.9)

SE(A) + SE(C) ≤ SE(A+B) + SE(B + C). (2.10)

Though highly involved to prove using algebra [30], these inequalities can be seen as a

requirement for any entropy to be an entanglement entropy. This point will be useful

in later discussion.

2.4.2 Coarse-grained Entropy

We now turn to a different definition of entropy. Consider a system with density op-

erator ρ, where we do not measure all variables, but a subset of macroscopic “coarse-

grained” variables Ai such that ⟨Ai⟩ = tr(ρAi). We then find all density matrices ρ̃
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which give the same result as the overall system for variables Ai, i.e. tr(ρ̃Ai) = tr(ρAi).

We then find the ρ̃ that gives the maximum von Neumann entropy and take this en-

tropy value to be the coarse grained entropy [2].

This is our usual thermodynamic entropy, which obeys the second law of thermo-

dynamics - it increases under unitary time evolution, where fine-grained entropy stays

the same. The Bekenstein-Hawking entropy of a black hole, (2.1), is a thermodynamic

formulation of entropy, so is the coarse-grained entropy of a black hole.

A useful result from the definition of coarse-grained entropy is that since by definition

ρ is the ρ̃ which minimises the coarse-grained entropy, we have the relation

SvN ≤ Scoarse. (2.11)

The coarse-grained entropy is dependent on the “coarse-grained” variables chosen, and

so will always be higher than the variable-independent fine-grained entropy.
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Chapter 3

The Black Hole Information

Paradox

Let us now formulate the problem central to this dissertation: the black hole informa-

tion paradox. We will begin by deriving Hawking radiation, a key component of the

information paradox. We will then consider this in the context of our understanding

of black hole mechanics and entropy from the previous chapter.

3.1 Quantum Field Theory in a Curved Spacetime

In order to be able to derive Hawking radiation, we must formulate Quantum Field

Theory in a curved background. This is non-trivial since QFT relies on many of the

symmetries of Minkowski spacetime. For example, a general curved background no

longer generally has Poincare symmetry. In our treatment we will be neglecting the

back-reaction of any fields on the metric.

3.1.1 Quantizing the Free Scalar

Let us begin with the most simple quantum field: the real Klein-Gordon scalar. We

consider a general globally hyperbolic spacetime (M, g), i.e. a spacetime which admits

a Cauchy surface Σ.

The general significance of the existence of a Cauchy surface is that the spacetime has

a clear causal structure: for some initial data defined on Σ, it is possible to determine

how this data evolves across all of M [44]. In the context of quantum fields, spec-
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ifying some field solution ϕ on Σ uniquely defines solutions across the whole spacetime.

We now consider a scalar ϕ = ϕ(t,x ) on (M, g) with Lagrangian

L =
1

2
gαβ∇αϕ∇βϕ− 1

2
m2ϕ2. (3.1)

Using the Euler-Lagrange equation, we obtain the equation of motion

(gαβ∇α∇β −m2)ϕ = 0, (3.2)

the Klein-Gordon equation for some general metric g. We may use the definition of

the covariant derivative to re-express this as(
1√
−g

∂α(
√
−ggαβ∂β)−m2

)
ϕ = 0, (3.3)

The canonically conjugate momentum to ϕ is

π =
∂L

∂(∇tϕ)
=

√
−g∇tϕ. (3.4)

We now proceed to quantise in the same manner as for QFT in Minkowski spacetime -

by promoting ϕ and π to operators ϕ̂ and π̂ respectively, and imposing the equal time

commutation relations:

[ϕ̂(t, x⃗), ϕ̂(t, y⃗)] = 0, (3.5)

[π̂(t, x⃗), π̂(t, y⃗)] = 0, (3.6)

[ϕ̂(t, x⃗), π̂(t, y⃗)] =
i√
−g

δ(d−1)(x⃗− y⃗), (3.7)

It is now useful to define a Hilbert space of states that these operators act on. Define

K to be the Hilbert space of complex solutions of our above generalised Klein-Gordon

equation. For α, β ∈ K, we define inner product

(α, β) ≡
∫
Σ

dΣ
√
−g(α∗∇µβ − β∇µα

∗), (3.8)

for some Cauchy surface Σ defined on the manifold. We see that

(α, α) = −(α∗, α∗), (3.9)

(α, α∗) = 0. (3.10)

Using the above we see that letting {fi} be the complete set of positive norm solutions

of the Klein Gordon equation, {f ∗
i } is manifestly the complete set of negative norm
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solutions, and hence we form a complete set of solutions {fi, f ∗
i } [14].

In Minkowski space, the set of positive norm solutions are positive frequency plane

wave modes, and negative norm solutions are negative frequency plane wave modes.

Hence the Hilbert space can be decomposed into subspaces,

K = Kp ⊕K∗
p, (3.11)

with Kp corresponding to positive frequency modes and K∗
p corresponding to negative

frequency modes [40].

We can now generalise this result for stationary spacetimes. Recall that a space-

time which is asymptotically flat at null infinity, I±, is stationary if it admits a Killing

vector field k which is timelike at I±. The Killing vector k generates a symmetry of

the spacetime, so the Lie derivative of the scalar ϕ with respect to k, Lkϕ, is a solu-

tion to the Klein-Gordon equation provided that ϕ is a solution to the Klein-Gordon

equation. In addition, using (3.11) it can be shown that the Lie derivative operator Lk

is anti-Hermitian. This implies that Lk has purely imaginary eigenvalues [48]. From

here we may fix a basis such that positive norm states fi obey

Lkfi = −iωifi. (3.12)

However, for some general space, we have no set positive or negative frequency plane

wave modes so there is no preferred way to decompose K. Instead we just chose some

basis of solutions such that

(χi, χj) = δij, (3.13)

(χi, χ
∗
j) = 0, (3.14)

(χ∗
i , χ

∗
j) = −δij, (3.15)

where we have replaced our momentum indices from Minkowski space with continuous

indices i, j. We can now expand the scalar in our chosen basis and quantise to give

ϕ =
∑
i

aiχi(x) + a†iχ
∗
i (x),

where ai and a
†
i are creation and annihilation operators obeying the usual commutation

relations and defined for our choice of basis by

ai = (χi, ϕ), (3.16)

a†i = −(χ∗
i , ϕ). (3.17)
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From here we may construct a Fock basis in the usual way. It is worth noting that due

to the arbitrary nature of choosing a basis of solutions to the equations of motion in

curved spacetime, the spacetime does not admit a preferred vacuum state. Hence the

concept of a particle is not universal, and depends on the chosen basis of solutions.

Our freedom in choosing the basis gives us a tool which is useful for problems con-

cerning QFT in curved spacetimes. Let us choose a new basis of solutions {χ̃i, χ̃
∗
i }. In

this basis, we have new creation and annihilation operators, ãi and ã
†
i , so our scalar

can be expanded as

ϕ =
∑
i

ãiχ̃i(x) + ã†i χ̃
∗
i (x),

noting that in this basis we have a new vacuum.

Both {χi, χ
∗
i } and {χ̃i, χ̃

∗
i } span K, so we can map between the two choices of ba-

sis by what is known as a Bogoliubov transformation:

χ̃i(x) =
∑
j

Aijχj(x) +Bijχ
∗
j(x), (3.18)

χ̃∗
i (x) =

∑
j

B∗
ijχj(x) + A∗

ijχ
∗
j(x), (3.19)

where Aij and Bij are known as Bogoliubov coefficients [40]. We may similarly relate

the annihilation operators in the two bases using

ãi =
∑
j

A∗
ijaj −B∗

ija
†
j. (3.20)

Requiring that the expansion of χ̃i(x) and χ̃
∗
i (x) satisfies (3.13) and (3.14), we obtain

the conditions ∑
k

(A∗
ikAjk −B∗

ikBjk) = δij, (3.21)∑
k

(AikBjk −BikAjk) = 0. (3.22)

3.1.2 Particle Creation in a Gravitational Background

Let us now consider a globally hyperbolic “sandwich” spacetime (M, g), where M =

M−∪M0∪M+ with M0 non-stationary and M± stationary, arranged as in Fig. 3.2.
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Figure 3.1: Sandwich spacetime with a fixed direction of time. Image source:

[40]

The stationarity of M− and M+ means that we have a preferred decomposition of the

Hilbert spaces of solutions to the Klein-Gordon equation, and hence preferred positive

frequency mode bases, on these sub-manifolds. This spacetime is globally hyperbolic,

so we can have a Cauchy surface with initial data on M± so that any solution of the

Klein-Gordon equation on M± extends to all of M [40].

Let the preferred positive frequency mode bases admitted by M± be {f±
i (x)}, with

associated annihilation operators a±i . The two bases and annihilation operators are

not generally the same, and so we can relate them by a Bogoliubov transformation:

f+
i =

∑
j

Aijf
−
j +Bijf

−∗
j ), (3.23)

a+i =
∑
j

A∗
ija

−
j −B∗

ija
−†
j . (3.24)

The two bases have different vacua, denoted |0±⟩. We may also define number operator

for the ith mode in our two bases as

N±
i = a±†

i a±i . (3.25)

Let us now consider what happens if we act with the number operator for M+ on the

vacuum of region M−. We can think about this explicitly in terms of the vacuum
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expectation value of N+
i with respect to |0−⟩:

⟨0−|N+
i |0−⟩ = ⟨0−| a+†

i a+i |0−⟩ (3.26)

= ⟨0−|
∑
j

(Aija
−†
j −Bija

−
j )

∑
k

(A∗
ika

−
k −B∗

ika
−†
k ) |0−⟩ (3.27)

=
∑
j,k

⟨0−| (−Bija
−
j )(−B∗

ika
−†
k ) |0−⟩ (3.28)

=
∑
j,k

BijB
∗
ik ⟨0−| a−j a

−†
k |0−⟩ (3.29)

=
∑
j

BijBij = tr(BB†). (3.30)

We see that we have non-zero number of particles at late times for non-zero B, i.e. for

the case where {f+
i } and {f−

i } have different bases, which is not generally the case.

Hence we arrive at the statement that dynamic gravitational fields produce particles.

3.1.3 Hawking Radiation

We are now in a position to recover Hawking’s famous result from 1973 [20]. To

begin, we consider a massless scalar ϕ in the spacetime of a radially collapsing body.

By Birkhoff’s theorem, we may describe the spacetime outside the radially collapsing

body by the Schwarzschild solution [44]. For this case let us use the form

ds2 =

(
1− 2M

r

)
du dv + r2dΩ2, (3.31)

with u = t − r∗ and v = t + r∗, where r∗ are tortoise coordinates. We now consider

some massive scalar ϕ on this metric, satisfying Eq. 3.3. The spherical symmetry

of the Schwarzschild metric admits spherical harmonic solutions to the Klein-Gordon

equation, of the form

ϕ = e−iωtRωlm(r∗)Ylm(θ, ϕ), (3.32)

where ω is the frequency of the mode, Ylm(θ, ϕ) are spherical harmonics, and Rωlm(r∗)

is a radial component satisfying the Schrodinger-style equation[
d2

dr2∗
+ ω2

]
Rωl(r∗) = Vl(r∗)Rωl(r∗), (3.33)

with potential Vl given by

Vl(r∗) =

(
1− 2M

r

)(
l(l + 1)

r2
+

2M

r3

)
. (3.34)

14



Using this form, we see that the potential vanishes at null infinities, I±, so here the

scalar has plane wave solutions. The spherical symmetry of the spacetime allows us

to decompose into ingoing and outgoing solutions, which for I− we define to be

f
(out)
lmω =

1√
2πω

e−iωuYlm
r
, (3.35)

f
(in)
lmω =

1√
2πω

e−iωvYlm
r
, (3.36)

and for I+ we define to be

g
(out)
lmω =

1√
2πω

e−iωuYlm
r
, (3.37)

g
(in)
lmω =

1√
2πω

e−iωvYlm
r
. (3.38)

Figure 3.2: Carter-Penrose diagram for a wavepacket travelling inwards from

I+ in the spacetime of a radially collapsing body. Image source: [40]

Let us now consider a wavepacket pi ≡ g
(out)
lmω coming from I+. As it approaches the

potential Vl(r∗), a part of the wavepacket p
(1)
i is reflected off the potential, and another

part p
(2)
i is transmitted. p

(1)
i does not experience any of the spherical collapse geometry

so only consists of positive frequency modes, with Bogoliubov coefficients A
(1)
ij . The

transmitted part, p
(2)
i , does enter the time-dependent collapse geometry, before ending

up at I−. This part does have positive and negative frequency modes on I+, with

Bogoliubov coefficients A
(2)
ij +B

(2)
ij .
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Let γH be a generator of H+ which is extended to I−, where we have defined v so that

γH hits v = 0 at I−. The wavepacket will be localised at some v0 < 0 on I−, with

infinitely many oscillations in the range v ∈ (v0, 0). Hence wavepackets originating at

v oscillates rapidly in the vicinity of a generator γ from I− to I+. This allows us to

use the geometric optics approximation that the scalar field has the form

ϕ = A(x)eiλS(x), (3.39)

for λ≫ 1. To leading order in λ the Klein-Gordon equation gives

(∇S)2 = 0, (3.40)

which is the statement that surfaces of constant S are null hypersurfaces, and their

generators are null geodesics. Consider the null congruence of hypersurfaces satisfying

(3.40) and H+, which is at S = ∞. Let l be a tangent vector to the congruence of null

geodesics, and introduce null vector n such that n · l = −1 and lµ∇µn
ν = 0. Spherical

symmetry implies that nθ = nϕ = 0.

Outside the collapsing body we have Schwarzschild spacetime, so in Kruskal-Szekeres

coordinates the affinely parametrised generator of H+ is given by

l =
∂

∂V
, (3.41)

and so from our condition that n · l = −1 we obtain

n = C
∂

∂U
, (3.42)

for some positive constant C. So outside matter we have deviation vector −ϵn which

connects γH to some null geodesic γ, which is located at U = −Cϵ. Using the definition
of the Kruskal-Szekeres coordinate U , we can now say that at late times γ hits I+ with

u = − 1
κ
log(Cϵ), and the phase of the wavepacket pi is hence

iω
κ
log(Cϵ) everywhere on

corresponding geodesic γ.

For I− we may follow similar arguments to show that the phase of the wavepacket is

given by iω
κ
log(−CDv), for positive constant D. Hence on I− we have

p
(2)
i ∼

0 for v > 0,

e
iω
κ
log(−v) for v < 0.

(3.43)
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We now assume that the wavepacket pi only has the positive frequency ω, for the sake

of simplifying the calculation. We want to find how p
(2)
ω relates to our basis of modes

fω, f
∗
ω. We begin by taking the Fourier transform of p

(2)
ω , which gives

p̃(2)ω =

∫ ∞

−∞
exp

[
iω′v +

iω

κ
log(−v)

]
dv. (3.44)

We can also get the inverse

p(2)ω (v) =

∫ ∞

0

dω′Nω′fω′(v)p̃(2)ω (ω′) +N∗
ω′f ∗

ω′(v)p̃(2)ω (−ω′). (3.45)

Hence comparing coefficients to (3.18) above, we haveA
(2)
ωω′ = Nω′ p̃

(2)
ω ,

Bωω′ = N∗
ω′ p̃

(2)
ω (−ω′).

(3.46)

Using properties of Fourier transforms, we may then show that

|Bωω′ | = exp
(πω
κ

)
|A(2)

ωω′ |, (3.47)

and we get an analogous result when looking at the full wavepackets. Looking at the

normalisation of p
(2)
i , we get

(p
(2)
i , p

(2)
i ) =

∑
j

(
|A(2)

ij |2 − |Bij|2
)
=

(
e2ωπ/κ − 1

)∑
j

|Bij|2 (3.48)

=
(
e2ωπ/κ − 1

)
Tr(BB†). (3.49)

Hence, for Γi ≡ (p
(2)
i , p

(2)
i ), we see that

Tr(BB†) =
Γi

e2ωπ/κ − 1
. (3.50)

If we interpret Γi to be the absorption cross-section for the fi mode, we see that

this result is exactly a blackbody spectrum with temperature TH = κ
2π
, known as the

Hawking temperature. This result shows that the particle production of black holes

is a continuous, radiative process which naturally follows from the starting point of

having a scalar field on a curved spacetime. With some work, this derivation can be

generalised to include fermions, for collapse to charged and/or rotating black holes,

for non-radial collapse among other generalisations [14].

Let us consider some generalised metric

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2, (3.51)
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with some function f(r) with horizon at rs i.e. f(rs) = 0. In order to find the

Hawking temperature of this metric, we first employ a rule seen often in considerations

of quantum fields - we Wick rotate our time coordinate. We introduce Euclidean time

tE such that t = itE. Our metric then becomes

ds2 = +f(r)dt2E + f−1(r)dr2 + r2dΩ2. (3.52)

It can be shown from arguments of gravitational path integrals that tE becomes com-

pact when it is periodic with period β, the inverse Hawking temperature. Let us now

go to the near horizon limit, such that r = rs + ϵ for ϵ small. In this limit we have

the expansion f(r) = f(rs) + ϵf ′(rs) +O(ϵ2). Noting f(rs) = 0, we can re-express our

metric,

ds2 ≈ ϵf ′(rs)dt
2
E +

1

ϵf ′(rs)
dϵ2 + (rs + ϵ)2dΩ2. (3.53)

We now ignore the angular term in the metric, and define new variables,

R ≡ 2

√
ϵ

f ′(rs)
Θ ≡ tEf

′(rs)

2
, (3.54)

which gives us the metric

ds2 ≈ dR2 +R2dΘ2, (3.55)

which is flat space with polar coordinates R and Θ. For a smooth geometry which

avoids conical singularities, which give divergences in gravitational path integrals, we

require that Θ is periodic with period 2π. Through our definition of Θ this means that

tE must be periodic with period 4π/f ′(rs) [17]. However, we have previously argued

that tE has period β, so the Hawking temperature is given by

β =
4π

f ′(rs)
. (3.56)

3.1.4 Entropy on a Curved Background

In the last chapter, we looked at the notion of fine-grained entropy. It is worth recon-

ciling this with our consideration of quantum fields on a curved background. Almheiri

et. al. [2] refer to the fine-grained entropy of quantum fields on the curved background

on some region of spacetime Σ as the semi-classical entropy, Ssc(Σ). This is a distinc-

tion worth noticing, and in our generalised second law (2.2) replaces Sexternal when we

are considering quantum fields on a curved background [2].
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3.2 Introducing the Black Hole Information Para-

dox

We have now formalised two key properties of black holes: entropy and Hawking ra-

diation. Let us now consider how these properties compete.

We have seen that by thinking about quantum fields on black hole spacetimes, there

is a natural production of particles by the black hole as a blackbody spectrum with

Hawking temperature. We have seen in Chapter 2 that classically all black holes can

be characterised by mass, charge, and angular momentum, and the mass-energy equiv-

alence means that the radiation of energy out to infinity from black holes reduces their

mass - black holes “evaporate”.

Figure 3.3: A Carter-Penrose diagram of an evaporating black hole. (a) and

(b) are slices of the collapsed body producing entangled pairs, with one inside

the horizon and one outside the horizon. (c) is the state where the black

hole has infinitessimal horizon but still contains a spacetime singularity. (d)

shows the smooth spacetime containing no black hole but thermal Hawking

radiation. Image source: [2]

Fig. 3.3 shows how the process of black hole evaporation affects the spacetime. We

see that for the state d), when the black hole has fully evaporated, there is no evidence
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that a black hole has ever existed; the only remnant is Hawking radiation, which is

indistinguishable from any other thermal radiation. More formally, the surface (a) -

(c) are Cauchy surfaces, so for some initial data on these surfaces we would be able

to determine the evolution of that data for the entire manifold. However, (d) is not

a Cauchy surface, since with initial data on this surface we could not deterministi-

cally recover any data about the past black hole spacetime. In this way we see that

information has been lost through the evaporation of the black hole [2]. This is what

we know to be the black hole information paradox, derived using Hawking’s original

arguments [19].

3.3 The Page Curve

We will now endeavour to describe the information paradox from the perspective of

quantum mechanics and entropy.

We begin by considering a black hole spacetime formed from the gravitational col-

lapse of some pure state. At the moment the event horizon forms (i.e. before Hawking

radiation has begun), the fact that the system is in a pure state means that we have

fine-grained entropy SvN = 0. However, since there is an event horizon with non-trivial

area A, the system has coarse-grained entropy given by SBH = A/4l2p. As the black

hole radiates, the area decreases linearly with time and so the coarse-grained entropy

also decreases linearly with time, eventually reaching zero when the black hole has

fully evaporated.

Let us now follow how Hawking thought about the entropy of the outgoing radia-

tion itself [19]. The black hole radiates like a blackbody with Hawking temperature,

so as time progresses and more radiation occurs, the entropy of outgoing radiation

increases linearly. When the black hole has fully evaporated, the entropy of outgoing

radiation remains constant at some maximum value. This calculation of the entropy

outgoing radiation has a clear problem. The process of Hawking radiation was derived

just by thinking about QFT on a curved spacetime, and so the process is definitively

unitary. Hence we expect the system to evolve unitarily, and so information is ex-

pected to be conserved. However, Hawking’s calculation violates this. Since Hawking

radiation is thermal, even if the infalling matter were in a pure state the entangled
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radiation from evaporation would be mixed. The quantum information about the state

of the original matter that formed the black hole is destroyed, violating the unitarity

of the system. There is a related issue that comes by thinking about the entropy of the

system. In the previous chapter we showed (2.11), that by definition the fine-grained

entropy could never exceed the coarse-grained entropy. However, we clearly see here

that the thermodynamic (coarse-grained) entropy will at some point in the evapora-

tion of the black hole be exceeded by the (fine-grained) entropy of outgoing Hawking

radiation.

Figure 3.4: A schematic illustration of the evolution of black hole entropy,

the fine-grained entropy calculated by Hawking, and the fine-grained entropy

expected from the unitarity of the system known as the Page curve. Image

source: [2]

The curve that the entropy of outgoing radiation is expected to follow in order to

preserve the unitarity of the system is known as the Page curve [36, 37], roughly illus-

trated in Fig. 3.4. We will now follow Page’s suggestion for a qualitative explanation

for the shape of the Page curve. After the event horizon is formed, the fine-grained

entropy is expected to increase from zero as per Hawking’s calculation, emitting ther-

mal Hawking radiation that is entangled with some partner inside the black hole. This

continues until the so-called Page time tPage, where the entropy of outgoing radiation

and the Bekenstein-Hawking entropy are equal, and the black hole interior no longer

contains enough degrees of freedom for the Hawking radiation to be entangled to. At
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this point, the outgoing Hawking radiation can only be entangled with Hawking radia-

tion that was emitted before tPage, and so the state of the outgoing radiation begins to

become more pure and the fine-grained entropy decreases as the upper bound provided

by the thermodynamic entropy of the black hole. By the time the black hole has fully

evaporated, the outgoing radiation is in a pure state and the fine-grained entropy has

decreased to zero.

A non-trivial assumption in our production of the Page curve is that we have re-

quired unitarity of our black hole system. This restriction assumes that unitarity is

manifest in the underpinning theory of quantum gravity. This is not proven, and is

contested by many. However, our understanding that quantum field theories are man-

ifestly unitary provide strong evidence that, at least to semi-classical approximation,

any black hole system involving quantum fields would need to evolve unitarily.

3.4 The AMPS Paradox

An important aspect of the black hole information paradox was the AMPS paradox.

This paradox was proposed in 2012 by Almheiri, Marolf, Polchinski, and Sully (AMPS)

[1]. Generally, they stated that the fact that Hawking radiation is in a pure state vio-

lates the principle of black hole complementarity.

Black hole complementarity was a concept first conceived by Susskind, Thorlacius,

and Uglum in 1993 [46]. The concept is the combination of three postulates that are

widely accepted about black hole systems:

1. Black holes evolve unitarily.

2. At some finite distance away from the event horizon, we may consider the space-

time in a semi-classical approximation.

3. Distant observers view the black hole as a quantum system with discrete energy

modes.

In addition, there is another statement that is not as strong, but for our purposes can

be viewed as an additional postulate of black hole complementarity:

4. Free-falling observers experience nothing special when crossing the event horizon.
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AMPS assert that postulates 1., 2., and 4. cannot all hold at the same time if we take

any of our previous discussion of Hawking radiation to be true. This is what is known

as the AMPS paradox.

A resolution to the paradox presented by AMPS suggested the entanglement between

ingoing and outgoing Hawking partners must be broken immediately, releasing large

amounts of energy and creating a black hole “firewall”. However, this violates the

equivalence principle of general relativity, and so has been widely contested [11].
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Chapter 4

The AdS/CFT Correspondence

4.1 The Holographic Principle

The holographic principle is the principle that all information on the volume enclosed

by a surface is encoded on the boundary of the surface. First suggested by Gerard

’t Hooft [25], the principle was applied to theories of quantum gravity by Leonard

Susskind, who conjectured that any true theory of quantum gravity for some volume

of space should admit a full description based purely on the lower-dimensional bound-

ary of the space [45]. Originally formulated due to the the two-dimensional nature

of entropy of black holes by Hawking and Bekenstein, the principle proved to have

far-reaching consequences beyond this.

The most developed example of the holographic principle to date is the AdS/CFT

correspondence. First conjectured by Juan Maldacena in 1997 [32] as a duality be-

tweenN = 4 Super Yang-Mills in 4 dimensions and type IIB string theory on AdS5×S5

space. It has since been generalised to many other CFTs and AdS spaces. Before dis-

cussing the correspondence in more depth, it is worth reiterating that the AdS/CFT

duality is to date still conjecture. However, since its conception in 1997, there has

been overwhelming evidence to support its arguments. This dissertation will assume

the correspondence holds, and will make use of its arguments on the basis of this

assumption.
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4.2 Conformal Field Theory

Conformal field theories are quantum field theories that are invariant under conformal

transformations. A conformal transformation is a coordinate transformation xµ →
x′µ(xµ) which transforms the metric as

gµν(x) → Ω2(x)gµν(x),

or a transformation which rescales lengths but preserves angled between vectors. The

group of transformations which satisfy this condition is the conformal group. Confor-

mal transformations are a notable “loophole” to the Coleman-Mandula no-go theorem

(the other being Supersymmetry). Restricting to D-dimensional Minkowski space, we

can now identify subgroups of the conformal group. It can be seen that for D = 2 the

conformal group is infinite-dimensional, since, after Euclidean continuation, all holo-

morphic functions on a plane satisfy the above condition (a property used extensively

in string theory). However, for D ̸= 2 the solutions are at most quadratic in x. Hence,

the most general infinitessimal conformal transformation is given by

x′µ = xµ + δxµ = xµ + aµ + ωµνxν + λxµ + (bµx
2 − 2xµbx).

Here, we notice the second and third terms to correspond to translations (generated by

Pµ) and Lorentz transforms (generated by Jµν) respectively, which together form the

Poincare group. The fourth term corresponds to scale transformations of the metric,

known as dilatations (generated by D). This indicates that all conformal fields must

be scale invariant. This scale invariance means that CFTs do not allow for the notions

of massive excitations or length scales, and so scattering is no longer relevant. The

final term corresponds to a less obvious subgroup, known as the special conformal

transformations (generated by Kµ). Finite special conformal transformations are of

the form

xµ → xµ + cµx
2

1 + 2cx+ (cx)2
.

Given we have already seen that the Poincare group is a subgroup of the conformal

group, we can begin with the Poincare algebra and find commutation relations with

generators of dilatations and special conformal transformations to construct a full con-

formal algebra. Given the dilatation and special conformal transformation generators

act on a function f(x) as

Df(x) = ixµ∂µf(x), (4.1)

Kµf(x) = −i(2xµxν∂ν − x2∂µ)f(x), (4.2)
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we can explicitly calculate the commutation relations to get the full algebra:

[Jµν , Jρσ] = i(ηµρJνσ + ηνσJµρ − ηµσJνρ − ηνρJµσ), (4.3)

[Jµν , Pρ] = i(ηµρPν − ηνρPµ), (4.4)

[Jµν , Kρ] = i(ηµρKν − ηνρKµ), (4.5)

[Pµ, Kν ] = 2i(Jµν + ηµνD), (4.6)

[Pµ, D] = −iPµ, (4.7)

[Kµ, D] = iKµ, (4.8)

with all other commutators vanishing [35]. It can be shown that this algebra is iso-

morphic to SO(2, D) [49].

Considering how the dilatation generator D acts on scalar ϕ(x), we must account

for the possibility that the field itself has some intrinsic scale. We denote this using

the scaling dimension, ∆. Hence, under some dilatation transformation xµ → λxµ, the

field transforms as

ϕ(x) → λ∆ϕ(λx). (4.9)

Using the algebra given in (4.3 - 4.8), one can show that correlation functions of

operators are constrained by conformal invariance. For example, the 2-point correlator

of a conformally invariant scalar ϕ is given by

⟨0|ϕ(x)ϕ(y) |0⟩ ∝ 1

(x− y)2∆
, (4.10)

where both ϕ(x) and ϕ(y) are required to have the same conformal dimension ∆ for

there to exist a non-vanishing correlation function.

An important property of conformal field theories is their effect on the stress-energy

tensor. It can be shown that conformal invariance restricts the stress-energy tensor to

be traceless, i.e. T µ
µ = 0. This restriction is purely classical. Introducing some curva-

ture to the manifold gives a conformal anomaly. A simple example of the conformal

anomaly is seen in bosonic string theory, where for a 2-dimensional quantum field the-

ory on a generally curved background, the expectation value becomes ⟨T µ
µ⟩ = − c

12
R,

where R is the Ricci scalar and c is the central charge [47].
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4.3 Anti de-Sitter Space

Let us now turn to the other side of the duality.

The n-dimensional Anti de-Sitter Space, AdSn, is the maximally symmetric solution

to Einstein’s equations in n dimensions with negative cosmological constant Λ (we

will set this to -1). It is best thought of as the Lorentzian analogy to the Euclidean

hyperboloid manifold,

U2 + V 2 −X iX i = ℓ2, (4.11)

where i = 1, ..., n − 1 and ℓ is the radius of the hyperboloid. Here we are embedding

AdSn in n+ 1 dimensional Euclidean space with signature R2,n−1,

ds2 = −dU2 − dV 2 + dX idX i, (4.12)

where we have 2 timelike dimensions and n − 1 spatial dimensions. Upon inspecting

(4.12) it can be seen that AdSn has an SO(2, n− 1) isometry group.

A peculiar feature of (4.11) is that it has closed timelike curves for X i = constant,

which is generally a problem for causality of dynamical spacetimes. An approach

to dealing with this problem is to unwrap the closed timelike curves and obtain a

“universal cover” for them. We do this by reparametrising the surface in terms of

dimensionless coordinates ρ and τ :

U = ℓ cosh(ρ) cos(τ), (4.13)

V = ℓ cosh(ρ) sin(τ), (4.14)

Xi = ℓ sinh(ρ) Ωi, (4.15)

where Ωi is the surface for which
∑

i ℓ
2
i = 1. It can be shown that ρ ∈ R+ and

τ ∈ [0, 2π] cover the manifold exactly once, though still admit closed timelike curves.

Hence we take the universal cover where τ ∈ R, and generally refer to this as AdSn.

The metric is now

ds2 = ℓ2
[
−cosh2(ρ)dτ 2 + dρ2 + sinh2(ρ)dΩ2

n−2

]
. (4.16)

We may now consider some limits of this metric. We can deduce that as ρ→ ∞,

ds2 → ℓ2
[
e2ρ(−dτ 2 + dΩ2

n−2) + dρ2
]
. (4.17)
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Conformally compactifying this metric in the usual way with conformal factor Z = e−ρ,

we have

ds2 → ℓ2

Z2

[
−dτ 2 + dΩ2

n−2 + dZ2
]
. (4.18)

We see that the conformal boundary metric has topology R×Sn−2. This AdS boundary

is where we may locate the CFT. The topology of AdS spacetime is schematically

shown in Fig. 4.1.

Figure 4.1: Diagram of AdS spacetime. The boundary is a solid cylinder.

Timelike geodesics (solid line) and null geodesics (dashed line) are shown in

(b). Image source: [31]

Setting r = ℓ sinh(ρ) and t = ℓτ gives us

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
n−2, (4.19)

where we have defined

f(r) ≡ r2

ℓ2
+ 1.

We see that in the limits r → 0 or ℓ → ∞, the metric is Minkowski space. If we

transform t to Euclidean time, tE = it, we have the Euclidean AdS metric,

ds2 = f(r)dt2E + f−1(r)dr2 + r2dΩ2
n−2, (4.20)

where we now have the identification

tE ∼ tE + β,

where β is the inverse temperature. This identification is worth considering further.

From quantum field theory, we know that Euclidean path integrals with identification
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tE ∼ tE + β make the field thermal. So in the above case Euclidean path integrals on

Euclidean thermal AdS makes fields on the Lorentzian AdS thermal.

An alternative coordinate chart used to considerAdS is the Poincare chart {V,X i, U} →
{t, xa, Z}:

U =
Z

2

[
1 +

1

Z2

(
ℓ2 + (xa)2 − t2

)]
, (4.21)

V =
ℓ

2
t, (4.22)

Xa =
ℓ

Z
xa, (4.23)

Xn−1 =
Z

2

[
1− 1

Z2

(
ℓ2 − (xa)2 + t2

)]
, (4.24)

where a = 1, ..., n − 2. This chart covers half of the hyperboloid; it is not a global

coordinate chart. For this chart, the induced metric is given by

ds2 =
ℓ2

Z2

(
−dt2 + dxadxb + dZ2

)
, (4.25)

which is the n − 1 dimensional Minkowski metric on the conformal boundary. The

Poincare chart makes manifest a group of isometries of the metric: the Poincare group,

the group of dilatations, and the special conformal group. It becomes clear that the

isometries of the metric are isomorphic to the conformal group described in the previous

section.

4.4 The AdS/CFT Correspondence

Having addressed both sides of the duality, we can now state it explicitly. The

AdS/CFT correspondence states that any spacetime that is asymptotically AdSn that

can be described by some theory of quantum gravity is dual to (i.e. physically equiva-

lent to) an n− 1 dimensional conformal field theory living on the conformal boundary

of the AdSn bulk, which has topology R× Sn−2.

The correspondence initially seems very specific, and it might be reasonable to ques-

tion its practical utility. After all, most field theories we know of in nature are not

conformal, and there is no evidence to suggest that we live on an asymptotically AdS

universe. Instead, the correspondence can be viewed as an extremely powerful tool.
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The nature of the correspondence means that where there is a strongly interacting

theory on one side of the duality, the other side is necessarily weakly interacting.

This “dictionary” is extremely useful for studying strongly interacting QFTs, as well

as strongly interacting gravitational theories, since the correspondence means we need

only consider weakly interacting QFTs and gravitational theories respectively to study

them. As we will later see, the holographic nature of the correspondence (i.e. the cor-

respondence between theories of different dimensions) provides a promising avenue to

understand the fine-grained entropy of black holes.

4.5 AdS/CFT at Finite Temperature

Now we have given a rough overview of AdS/CFT, it is worth looking at the AdS

black hole. This is a black hole solution which is asymptotically AdS as opposed

to the usual asymptotically flat black holes. For n ≥ 4, we have a uniquely defined

spherically symmetric solution to the Einstein equations with negative vacuum energy,

given by

ds2 = −h(r)dt2 + h−1(r)dr2 + r2dΩ2
n−2, (4.26)

where

h(r) = r2 + 1− C

rd−2
, (4.27)

for constant C proportional to the AdS version of the ADM mass [16]. Using (3.56),

the temperature of this black hole is computed to be

β =
4πrs

d− 3 + (d− 1)r2s
. (4.28)

This is the second time we are seeing thermal properties of metrics in AdS - recall

that the Euclidean AdS metric has identification with period β, and Euclidean path

integrals in this space give thermal fields. In 1983, Hawking and Page showed using

Euclidean path integrals that the stability of AdS black holes depends on the tem-

perature [21]. For temperatures below some critical temperature, T < TC , the black

hole solution is unstable, and so generally the metric of the spacetime is the thermal

AdS solution given in (4.20). At TC there is a first order phase transition, such that

for T > TC the AdS black hole solution becomes stable, and is in thermal equilibrium

with Hawking radiation. This transition is known as the Hawking-Page transition.

An interesting difference to asymptotically flat metrics is that black holes here have
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positive heat capacity, so become more massive as their temperature increases.

In the context of the AdS/CFT correspondence, a useful point is that any AdS black

holes are dual to CFT states. The fact that we have quantum gravity in AdS dual to

a unitary quantum field theory means that we may identify the temperature and en-

tropy of AdS black holes with the temperature of the CFT and the number of excited

CFT states at said temperature, respectively [28]. This unlocks many possibilities for

further study of AdS black holes.
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Chapter 5

A Gravitational Description of

Entropy

We now have the toolset to begin working towards recovering the Page curve. Let us

begin by looking at gravitational formulations of entropy.

5.1 Ryu-Takayanagi Formula

The idea of a gravitational approach to fine-grained entropy was first formalised by Ryu

and Takayanagi in 2006 [42, 43]. Using the AdS/CFT correspondence, they related

the entanglement entropy of an n dimensional CFT on the conformal boundary of

AdSn+1 spacetime with an extremal surface on the AdSn+1 dual. Restricting to a

static spacetime, Ryu and Takayanagi restrict to static AdS spacetimes, and think

about some subsystem A of both the CFT conformal boundary of AdSn+1 and of the

AdSn+1 bulk. A is required to be a Cauchy surface. Ryu and Takanagi then propose

that in order to find the entanglement entropy of this subsystem, SA, one must find

the minimal area surface γA which extends into the bulk with boundary ∂γA = ∂A,

the boundary of the subsystem. Then the holographic entanglement entropy (HEE)

is given by

SA =
Area(γA)

4GN

, (5.1)

where GN is an n + 1 dimensional form of Newton’s gravitational constant. This is

known as the Ryu-Takayanagi (RT) formula for HEE. We may note that A and γA are

n− 1 dimensional, and the boundary ∂A is n− 2 dimensional.
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In 2013, the RT formula was proven by Lewkowycz and Maldacena [29] using ar-

guments of gravitational path integrals. The derivation is non-trivial, so is omitted

from this dissertation.

5.1.1 Application to AdS3/CFT2

Though presented as conjecture, Ryu and Takanagi calculated the HEE for the example

of AdS3/CFT2, a case for which the entanglement entropy was already known. Let us

follow this calculation. For the case of AdS3/CFT2, the 1+1 dimensional field theory

has central charge given by

c =
3ℓ

2GN

. (5.2)

In AdS3, referring to (4.16), we have metric given by

ds2 = −cosh2(ρ)dτ 2 + dρ2 + sinh2(ρ)dθ2, (5.3)

where we have ρ ≥ 0 and θ periodic with period 2π. Since this metric is divergent in

the limit ρ → ∞, we introduce some cutoff ρ0 and restrict our spacetime to ρ ≤ ρ0

to regulate the physics. This corresponds to the introduction of a UV cutoff in the

corresponding CFT. In the AdS, we have the circumference of the cylinder given by

L, corresponding to the length of the CFT system. Since our CFT is divergent in the

continuum limit, we also introduce a the lattice spacing of the CFT system as a way

of regularizing this divergence. We can now start to see the emergent relation between

UV cutoff, length and lattice spacing of the CFT given as

eρ0 ∼ L/a. (5.4)

The region of subsystem A with length r, is restricted to 0 ≤ θ ≤ 2πr/L, where we

have set dϕ = 0. Our extremal surface γA for some time slice t is then simply the

geodesic travelling through the AdS bulk which connects θ = 0 to θ = 2πr/L. We can

find the HEE by finding the length of this geodesic, LγA . Taking our UV cutoff ρ0 into

account, we can calculate this geometrically.

In general, geodesics in AdSn are given by the intersection of 2 dimensional hyper-

planes and AdSn in the surrounding R2,n−1, with the hyperplanes orientated such that

such that they include the normal vector at points of intersection.
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For the case of AdS3 we may embed the space into Euclidean space with signature

R2,2. For this case, we have the minimum surface as a spacelike geodesic constrained to

the hypersurface. In our action, this takes the usual form but we apply the constraint

with the inclusion of a Lagrange multiplier. Hence our action is

S =
1

2

∫ λ1

λ0

dλ
[
gµν ẋ

µẋν + η
(
gµνx

µxν + ℓ2
)]
, (5.5)

where λ is some generally non-affine parameter, η is the Lagrange multiplier, ẋµ ≡ dxµ

dλ
,

and λ0 and λ1 are the boundaries of the geodesic. Varying this action we eventually

obtain the equation of motion

ẍµ − xµẋ2 = 0. (5.6)

Since our parameter λ is not, in general, affinely parametrised, we are free to transform

it such that we have the condition ẋ2 = 1, which allows for us to define the length of

the geodesic as

LγA =

∫
ds =

∫
dλ = λ1 − λ0. (5.7)

Our equation of motion is then reduced to a simple differential equation, and is gen-

erally solved by

xµ = Aµeλ/ℓ +Bµe−λ/ℓ, (5.8)

with constants Aµ and Bµ which are constrained by A2 = B2 = 0 and 2A · B = −ℓ2

[9]. A useful expression we may gain from this form of the equation of motion:

x(λ0) · x(λ1) = 2A ·B cosh

(
LγA

ℓ

)
= −ℓ2cosh

(
LγA

ℓ

)
(5.9)

In AdS3 the universal cover can be expressed as

U = ℓ cosh(ρ) cos(τ), (5.10)

V = ℓ cosh(ρ) sin(τ), (5.11)

X = ℓ sinh(ρ) cos(θ), (5.12)

Y = ℓ sinh(ρ) sin(θ). (5.13)

Here we have ρ and θ are spatial coordinates and τ is a temporal coordinate. Specifi-

cally, ρ is a polar coordinate of the two spatial dimensions as a function of the param-

eter λ, such that the curve has endpoints at θ(λ0) = 0 and θ(λ1) = 2πr/L. Taking

some constant time slice τ0 and plugging these coordinates into our expression (5.9)

above, we get the expression

cosh

(
LγA

ℓ

)
= 1 + 2 sinh2(ρ0)sin

2
(πr
L

)
. (5.14)
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For some large UV cutoff eρ0 ≫ 1, we may plug the above length of the minimal

surface into (5.1) to get the holographic entanglement entropy,

SA =
ℓ

4GN

log
[
e2ρ0sin2

(πr
L

)]
=
c

3
log

[
eρ0sin

(πr
L

)]
, (5.15)

where we have used the central charge given in (5.2). Noting (5.4), we recover the

CFT entanglement entropy that was calculated by Cardy and Calabrese in 2004 [8].

A similar analysis can be done using the AdS metric in Poincare chart.

5.1.2 Recovering Strong Subadditivity

After the proposal of the Ryu-Takayanagi formula, a natural next step was to recover

the strong subadditivity condition from it. First proven by Hirata and Takayanagi

[24], the arguments were greatly simplified by Headrick and Takayanagi in 2007 [23].

Let us now follow Headrick and Takayanagi’s derivation. Noting that the proofs of

(2.9) and (2.10) follow very similar arguments, we will focus on recovering (2.9).

We begin by redefining the subsystem configuration from (2.9). Consider two over-

lapping subsystems, A and B, with A ∩ B ≡ C. We may then express (2.9) in the

form

S(A) + S(B) ≥ S(A ∪B) + S(A ∩B) (5.16)

For some AdS spacetime, we now consider two overlapping regions of the boundary,

A and B. We then have two minimal generally overlapping hypersurfaces in the bulk

mA and mB enclosing regions rA and rB respectively, intersecting the boundary at ∂A

and ∂B respectively. Hence we have ∂rA = A ∪ mA and ∂rB = B ∪ mB. Defining

rA∪B = rA∪ rB and rA∩B = rA∩ rB, we may show that by cutting mA and mB up into

new surfaces mA∪B and mA∩B, we have

∂rA∪B = (A ∪B) ∪mA∪B, (5.17)

∂rA∩B = (A ∩B) ∪mA∩B. (5.18)

These relations can be interpreted as showing that mA∪B intersects the boundary at

∂(A∪B). However, there is no information about whether it is the minimal hypersur-

face with this boundary, and so it can be presented as an upper bound on the area of

the minimal hypersurface, and hence on the holographic entanglement entropy. Sim-

ilar arguments follow for mA∩B We see that the combined areas of mA∩B and mA∪B
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Figure 5.1: Diagram of two overlapping regions A and B on the boundary,

with minimal surfaces in the bulk mA enclosing region rA and mB enclosing

region rB respectively. Image source: [23]

are equal to the combined areas of mA and mB. Hence (5.16) has been proven, and

the strong subadditivity condition has been recovered from geometric arguments that

follow from the RT formula.

5.2 Generalised Holographic Entanglement Entropy

In 2007, Hubeny, Rangamani, and Takayanagi (HRT) provided a covariant generali-

sation to the RT formulation of HEE [26]. This formulation removes the restriction

to stationary spacetimes present in the RT formulation, replacing the minimal area

surface γA with a more general extremal surface ΣA. In general, ΣA is not the shortest

distance between spatial points, but additionally requires variation in time so results

in a spacelike geodesic. The boundaries of γA and ΣA are the same. There are various

approaches to finding ΣA. One intuitive approach, known as the maximin method,

was proposed by Engelhart and Wall in 2014 [12]. This roughly works as follows. One

begins by choosing some Cauchy surface, and varying to find the minimal surface on

the boundary ∂A. This is repeated for many different Cauchy surfaces. Finally, of

these minimal surfaces, the one with the maximum surface area is chosen. The max-

imin method greatly simplifies the process of finding extremal surfaces for many cases.
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However, the HRT prescription is only part of the picture of HEE, and is insuffi-

cient for the purposes of reproducing the Page curve. In 2013, Faulkner, Lewkowycz

and Maldacena (FLM) recognised that the RT and HRT descriptions give only a lead-

ing order saddle-point term as part of a more general expansion [13]. They propose

that quantum corrections should be added to this expression to account for quantum

mechanical effects in the bulk, most notably the coupling of quantum fields to the

spacetime. Accounting for quantum processes in the bulk is of great importance when

considering Hawking radiation, so these quantum corrections are of great value when

working to recover the page curve. If we treat the bulk theory as some perturbative

quantum theory of gravity with expansion in GN , FLM showed the most general HEE

expansion is of the form:

SA = Ssaddle
A + S1−loop

A +O(GN) (5.19)

The natural issue now concerns where these quantum corrections might come from.

FLM proposed that S1−loop
A is given by

S1−loop
A = Sbulk−ent +

δ(Area)

4GN

+ ⟨∆SW−like⟩+ Sc.t.. (5.20)

The first term corresponds to the bulk entanglement entropy between the region en-

closed by the minimal surface and the rest of the bulk. The next two terms give a much

smaller contribution, and correspond to contributions from quantum fluctuations in

the background metric and fields. The final term accounts for counter-terms required

to make S1−loop
A finite. Of these, only the first term obeys the strong subadditivity

condition. This, combined with the small contribution of the second and third terms,

means that to O(G0
N) we only require the bulk entropy term and counter-terms. FLM

considered only systems in a pure state, and so in this case the bulk entropy is the

entropy of the spacetime outside the minimal surface, which is treated semi-classically

so we label it Ssc. Neglecting our counter-terms, we have for some extremal Cauchy

surface ΣA:

Sgen =
Area(ΣA)

4GN

+ Ssc. (5.21)

This expression looks very similar to the generalised second law, with black hole area

begin replaced by the area of the extremal Cauchy surface ΣA.

The FLM proposal was extended by Engelhardt and Wall (EW) in 2014 [12] to higher

order corrections. EW noted that the FLM formulation ignores graviton fluctuations,
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and that the semi-classical approximation only holds in their case because they re-

strict to considering terms up to O(G0
N). They introduced the notion of the minimal

quantum extremal surface (QES), a sort of quantum corrected version of an RT/HRT

surface. The minimal QES is defined as the surface with minimal extremal generalised

entropy. For some set of QESs Ω, the generalised entropy is given by

Sgen(R) = min

{
extΩ

[
Area(Ω)

4GN

+ Ssc(ΣΩ)

]}
, (5.22)

where ΣΩ is the region bound by the QES Ω and boundary R. The mechanics of

this formula are almost exactly the same as done for our HRT prescription, with

the exception that we are now considering QESs instead of Cauchy slices, and in the

process are taking the quantum nature of the spacetime into account. We note that the

maximin method can also be applied to the above formula to find the minimal QES.

We will now interchangably refer to the minimal QES as the quantum RT surface, as

it is referred to in the majority of the literature.

5.3 The Entanglement Wedge

The notion of the entanglement wedge is central to reconciling our understanding of

generalised HEE with the AdS/CFT framework. So far, we have been considering

how we might extremise some surface in the AdS bulk with a given surface on the

boundary to get the generalised entropy of the system. In extremising a surface in the

bulk, this methodology has for the most part been considering the AdS side of the

AdS/CFT correspondence. We know from the nature of the AdS/CFT correspondence

that any information in the AdS bulk can be equivalently reconstructed on the CFT

boundary, so a natural line of inquiry might be to question how one might reconstruct

the bulk operators given some data on the boundary. A promising solution is given

by introducing the entanglement wedge.

Let us first recall that the domain of dependence of some Cauchy slice Σ on a man-

ifold M, D(Σ), is the set of all points p ∈ M for which there exists some timelike

curve beginning or ending at p that intersects Σ. Then for some boundary region B

and some region ΣΩ bound by QES Ω and B , the entanglement wedge is given by

D(B) ∩ ΣΩ. In other words, the entanglement wedge is the domain of dependence of

the boundary region, bounded by and homologous to the QES in the bulk [2, 39].
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Chapter 6

Recovering the Page Curve

Let us now consider how our treatment of gravitational descriptions of entropy thus

far can be applied to our understanding of black hole entropy.

6.1 Entropy of the Evaporating Black Hole

We consider a black hole in an asymptotically flat universe, with a cutoff surface at a

suitable distance away from the event horizon that beyond the cutoff surface we may

stop thinking of the black hole as a quantum system.

Our first consideration of the system is the time at which the black hole has just

been formed from a collapsing shell of matter in a pure state, before any evaporation

has begun. In this case, the only QES is of zero size; no deformation of the QES

towards the event horizon produces any other extremization, so this is taken to be the

minimal QES. Hence it is immediately apparent that the fine-grained entropy of the

system at this stage is zero.

As the black hole starts evaporating, the system stays in a pure state since the outgo-

ing Hawking radiation and its ingoing partner are both enclosed by the cutoff surface.

Once the outgoing Hawking radiation escapes the cutoff surface, the Ssc term in (5.22)

begins to increase, but the area term does not increase since the quantum RT surface

has not changed through the evaporation process.

Soon after the evaporation process begins, there appears another QES. It has al-
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ready been shown that by definition the entanglement wedge of a QES is causal, so it

is easy to argue that any non-vanishing QES must lie inside the event horizon of the

black hole. Penington showed in 2019 that the non-vanishing QES lies inside the black

hole close to the event horizon [39]. The argument is that as the black hole radiates,

the size of the non-vanishing QES shrinks. At the Page time, the generalised entropy

of the non-vanishing QES becomes smaller than that of the vanishing QES, so the

non-vanishing QES is the new quantum R-T surface, and so the entropy of the system

follows that of the non-vanishing QES.

Figure 6.1: Carter-Penrose diagram of the black hole evaporation process

with cutoff surface (purple) shown, alongside a graph showing the change in

generalised entropy of the vanishing (orange) and non-vanishing (green) QES

regimes. The Page curve is shown in black. Image source: [2]

In ingoing Eddington-Finkelstein coordinates, the non-vanishing QES lies at infalling

time

v = − β

2π
log(SBH) +O(β), (6.1)

where β is the inverse temperature of the black hole. The leading order term here is

known as the scrambling time, which was first recovered by Hayden and Preskill in 2007

as part of their proposed Hayden-Preskill decoding criterion [22]. Derived based on

principles of quantum information and assuming unitary black hole dynamics, Hayden

and Preskill proposed that a diary thrown into a black hole before the Page time can

be recovered assuming we have sufficient information about the state of the black hole.

In addition, any diary thrown after the Page time can be recovered a scrambling time
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after the diary is thrown. Penington shows that the Hayden-Preskill decoding criterion

comes naturally from the QES formulation. Before the Page time, the vanishing QES is

the RT surface. Any information thrown into the black hole is immediately enclosed by

its entanglement wedge, and so its information is recoverable on the boundary. After

the Page time, the non-vanishing QES is the RT surface. Any information thrown into

the black hole is not immediately recoverable - time must elapse until the information

is enclosed by this non-vanishing QES, which lies a scrambling time inside the event

horizon.

6.2 Entropy of Hawking Radiation

In the previous section, we introduced a new framework for how we might consider the

fine-grained entropy of black holes to recover the Page curve. However, we have yet

to consider a key aspect of the black hole information paradox: the entropy growth of

Hawking radiation. We have so far restricted our discussion to the region enclosed by

the cutoff surface, ignoring that there is an increasing entropy of Hawking radiation ac-

cumulating outside it. By some finite time after the black hole has fully evaporated, we

may consider all of the Hawking radiation to be outside of this cutoff surface. From

the way the cutoff surface was constructed, we may assume that there is negligible

gravity and hence can approximate a static spacetime. However, since our radiation

has been obtained through gravitational treatment of fine-grained entropy in (5.22),

we may not describe the entropy of this radiation in terms of the usual density matrix.

Our quantum extremal surfaces description of the HEE in (5.22) has until now been

used for black hole spacetimes. However, this prescription is formulated more gen-

erally - there is no requirement for the presence of black holes for the formula to be

valid. The notion of a minimal QES holds for any general spacetime. In addition, we

previously only considered connected minimal QESs, since disconnected surfaces by

their nature have a larger area, increasing their entropy. However, in the case that

Ssc(ΣΩ) decreases, one can see that disconnected QESs could plausibly be minimal.

Indeed, since Hawking radiation is entangled to the black hole interior, if we include

a portion of the black hole interior in our Ssc(ΣΩ) such that the decrease in Ssc(ΣΩ)

is more than the increase in the area term, then we have a new QES. This portion of

the black hole interior can be many different disconnected regions, which are known
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as islands. Hence our formula for the full entropy of Hawking radiation is given by

Srad = min

{
extΩ

[
Area(Ω)

4GN

+ Ssc(Σrad ∪ Σisland)

]}
, (6.2)

known as the island rule. Here Σrad is the region outside the cutoff surface out to

infinity and Ω is now the boundary surface of the island. The relation to our QES

formalism in (5.22) is evident. We are still extremising and minimising, except now

we are considering disconnected QESs and we are no longer restricting to the interior

of the cutoff surface.

Now that we have a proposed framework for thinking about the entropy of Hawk-

ing radiation, let us try to understand how black hole evaporation and the Page curve

fit into it.

One possibility that is allowed by (6.2) is to have no islands. This formulation gives

the same result as Hawking’s original calculation: the entropy of radiation increases

linearly as the black hole evaporates due to the increasing mixed state of the outgoing

Hawking radiation.

Figure 6.2: (left) Carter-Penrose diagram of the black hole evaporation process

for the case of one island. Σisland is represented by blue curves and Σrad is

represented by black curves. (right) Graph showing the change in generalised

entropy of the regime with islands (orange) and without islands (green). The

Page curve is shown in black. Image source: [2]

The other possibility is non-vanishing islands. A non-vanishing island that gives some
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contribution to (6.2) appears at some finite time after the evaporation process begins.

For this case, the area term in (6.2) dominates, and is roughly equal to our Bekenstein-

Hawking entropy. The semi-classical entropy term remains small since it is assumed

that most of the outgoing Hawking radiation in Σrad has its ingoing partner in Σisland,

so is purified and so gives trivial contribution to the semi-classical entropy.

The minimising function in (6.2) means that we take the minimum of the regimes

with vanishing and non-vanishing islands. This accurately reproduces the Page curve.

6.3 Returning to EntanglementWedge Reconstruc-

tion

So far we have looked at two different ways of thinking about the quantum information

of black hole evaporation: the quantum extremal surfaces prescription for the entropy

of black holes, and the the island rule for the entropy of Hawking radiation. We have

seen that both reproduce the Page curve accurately, and both come from some extrem-

isation of surfaces while exercising the holographic principle. A useful way to consider

the interaction of these two principles in the context of the system as a whole is using

entanglement wedge reconstruction, introduced earlier.

Fig. 6.3 schematically shows the three cases and the entanglement wedges in each

case. Before the Page time, looking at black hole entropy the vanishing QES inside

the cutoff surface is the quantum RT surface. Looking at the Hawking radiation

entropy the minimal surface does not have any island, so the semi-classical entropy

contribution is from Σrad. After the Page time before the black hole has completely

evaporated, the non-vanishing QES that lies a scrambling time behind the event hori-

zon is the minimal QES. In addition, we now have minimal contribution coming from

a surface with a non-vanishing island. Finally, after the black hole has fully evapo-

rated, we assume the cutoff surface is just flat space. The entanglement wedge of the

radiation now includes the whole black hole interior, and the entanglement wedge of

the black hole vanishes [39].

This picture has important implications for our consideration of the degrees of freedom
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Figure 6.3: Carter-Penrose diagrams showing the entanglement wedges of the

black hole (green) and Hawking radiation (blue) systems in the black hole

evaporation process. Image source: [2]

in black holes. The entanglement wedges combined should provide a full picture about

the information of the original black hole, before evaporation begun. An important

insight here is that the “black hole degrees of freedom”, shown by the green regions,

are usually only given by a section of the black hole interior. This section changes in

size, shape, and location as the black hole evaporates. Eventually all the degrees of

freedom of the system are transferred to the radiation, but the island rule means that

by the end of the evaporation process a large proportion of the radiation degrees of

freedom are contained in the original black hole interior. Another key takeaway from

this prescription is the effect that causality has on which parts of our surfaces are to

be considered.

6.4 Resolving the AMPS Paradox

In our formulation of the black hole information paradox, we introduced the related

AMPS paradox. The paradox has one important assumption: that the decrees of

freedom of the black hole are described by the entire black hole interior, and no other

region. However, the HEE picture views the degrees of freedom of black holes entirely

differently. As illustrated in Fig. 6.3, this picture presents the degrees of freedom

of the black hole system as much more fluid. The black hole’s degrees of freedom
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are dependent on causal structure in the form of entanglement wedges, and Hawking

radiation is considered to be able to contain degrees of freedom. The HEE picture

hence contradicts an assumption of the AMPS paradox, which in turn means that the

paradox needs not be considered for this formulation.
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Chapter 7

Conclusion

We have now shown how a holographic consideration of entanglement entropy is a step

towards a solution to the black hole information paradox. As the quantum extremal

surfaces formulation is still in its early stages, there are many avenues for further

exploration. This dissertation has omitted calculations of QESs for specific cases.

For example, the holographic entanglement entropy of the toy model of 2-dimensional

Jackiw-Teitelbohm (JT) gravity has been computed explicitly [38]. This theory is a

specific case of AdS3/CFT2 in which 1 + 1 dimensional dilaton gravity is coupled to

a CFT2. Although unphysical, this model provides a good continuation of Ryu and

Takayanagi’s derivation of the classical HEE for AdS3/CFT2 as recovered in (5.15).

A key issue with this model, as well as all models for which Page curve computations

have thus far been carried out, is that they include massive gravitons [15]. In physical

situations, gravitons are massless. Hence in order to begin working towards computing

Page curves for astrophysical black holes, the theory will need some major modification.

The QES and island formulations of HEE have some problems and limitations which

present avenues for further research. We will now present a few of them.

Firstly, it is important to note that this formulation treats gravity as an effective

field theory which has an action that may be expanded perturbatively. In order to

get an exact picture of QESs and islands, one would require a full theory of quantum

gravity.

Another point, mentioned by Almheiri et al. [2], is that the cutoff surface with which
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we encapsulate our black hole system is ambiguous in its nature. It is unclear where

the spacetime begins to be static, or indeed from where we may stop considering the

quantum nature of the black hole system, if anywhere. Almheiri et al. [2] posit that

a full understanding of this picture would require a formulation for a fully dynamical

spacetime, a feature of a theory of quantum gravity.

A central problem of this formulation of HEE is that although able to recreate the

Page curve and give a unitary description of the fine-grained entropy of Hawking ra-

diation, it does not provide density operators. This is an active field of research, and

work is being done to align ideas about replica wormholes as a way of considering

entanglement with the QES and island prescription.

An active avenue of further work is in considering whether the HEE prescription

can be applied to cosmological horizons. Hawking and Gibbons showed in 1977 that

flat spacetimes expanding with positive Hubble parameter have cosmological hori-

zons which radiate analogous to Hawking radiation from black hole event horizons

[18]. They extended the analogy and posited the Gibbons-Hawking entropy for cos-

mological horizons. It is very possible that the geometric and quantum considerations

used by the QES and island formulation could be of use in computing a fine-grained

Gibbons-Hawking entropy for cosmological horizons. However, the nature of cosmo-

logical horizons is not as well understood as that of black hole event horizons. The

field of quantum cosmology is also still in its early stages of research, and so it is un-

clear whether the consideration of cosmological horizons as quantum systems is valid,

or indeed useful. However, by beginning to consider cosmological horizons in these

terms there may be some interesting insights to help develop our understanding of the

quantum nature of these systems.
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