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Abstract

The AdS/CFT correspondence is a special example of a gauge-gravity duality between
quantum field theories in d-dimensional spacetime and a gravity theory in d+ 1 spacetime
dimensions with a d-dimensional boundary. Given this correspondence, we consider black
holes in Anti-de Sitter spacetimes and how a new mechanism to reproduce the Page curve
could manifest - a crucial aspect of the information paradox. To do this we outline the

story of the entanglement entropy beginning with the Ryu-Takayanagi formula and some of
its later generalisations: HRT, FLM, and quantum extremal surfaces. This will lead us to

find emerging “islands” and notions of wormholes that are in the spirit of ER=EPR.

A dissertation submitted in fulfillment of the requirements for the degree of MSc in
Quantum Fields and Fundamental Forces in the Theoretical Physics Group.



Acknowledgements

I would like to express my appreciation for Professor Jerome Gauntlett for being patient
with me throughout the duration of this project, his guidance and insight has taught me a
great deal both for this project and beyond that. To my brother Maxwell - without your
support I would not have been able to get through the year. To my friends and colleagues
Simran, Raymond, Joey, Neha, Mary, Cathy, Austin, and Charlie for your encouragement,
intellectual discussion and enduring the proof-reading I sent your way.

1



Contents

Acknowledgements 1

Introduction 4

1 Conformal Field Theories 5
1.1 Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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Introduction

The objective of this project is to provide an outline and some examples of concepts of
the gauge-gravity duality - specifically looking at the conjectured correspondence between
conformal field theories (CFTs) and gravity theories on Anti-de Sitter (AdS) spacetime.
When We delve into the nuances of entanglement entropy and the role it plays in exploring
beyond the black hole horizon, giving rise to islands and wormholes. We explore more recent
work in the field such as the notion of quantum extremal surfaces, the potential implications
of this work beyond the information paradox, and future work that could be on the horizon
when gazing in this particular direction.

The paper begins with an introduction to the aforementioned AdS/CFT correspondence,
beginning with the key concepts and definitions of Anti-de Sitter spacetime and conformal
field theories as we explore why this correspondence has gained so much traction - especially
where studying black holes is concerned. Discussion of entanglement entropy, black holes in
AdS and the information paradox is also included here and will be intrinsic to the consequent
parts of the report.

We then delve into entanglement entropy and the derivation of the Page curve subsequent
to winding this into the holographic duality as proposed by Ryu and Takayanagi so that a
more recent formulation of this in the form of quantum extremal surfaces can be explored.
We perform some of the calculations for holographic entanglement entropy to explicitly show
some of the crucial results by Ryu and Takayanagi from their groundbreaking paper on the
AdS/CFT correspondence.

Black holes and black hole thermodynamics are introduced in the latter parts of the
discussion. We then shift the focus to black holes in AdS and perform some manipulations
that allow us to use the AdS/CFT correspondence in spacetimes containing black holes. This
then leads to discussion of the Hawking information paradox and the use of both quantum
extremal surfaces and the notion of “islands” to provide a potential mechanism in which the
Page curve can be reproduced.

4



Chapter 1

Conformal Field Theories

In order to introduce conformal field theories (CFTs) we must start with a more general
and widely used quantum field theory (QFT). Obtaining a QFT begins with some classical
field theory in which we have a some field ϕ(t, #»x) which has some dynamics depending on
degrees of freedom: time t and spatial components #»x . One can define the dynamics using a
Lagrangian encoding the equations of motion. We start with a Lagrangian density L, from
which one can define the Lagrangian L and action S. We will consider theories here defined
by a Lagrangian, allowing us to derive a Hamiltonian and conserved currents (among other
quantities). These can then be quantised to bring to life a quantum field theory, introduced
by Peskin and Schroeder [1] as the marriage of quantum mechanics (QM) and these field
dynamics we have described, levelling up QM from considering particle systems to considering
field systems.

1.1 Quantum Field Theory

1.1.1 Lorentz and Poincaré Group

Minkowski space in d+1-dimensions typically comprises of one time dimension and d spatial
dimensions. We choose some coordinate frame xµ = (t, #»x) where #»x is a spatial vector
in d-dimensions. From this we define the Minkowski metric, with typical units in which
c = ℏ = 1:

ηµν = diag(−1,+1, ...,+1), (1.1)

where diag() denotes a matrix that is non-zero only on the leading diagonal, with the values
of the leading diagonal given by the arguments. This metric defines flat spacetime and can
also be written ds2 = ηµνdx

µdxν .
On a given spacetime we can impose symmetries that reflect how the geometry we are in

is expected to behave. For example, at a point in flat spacetime we expect that if we move
ourselves by some amount (a translation) and stand at a new point, the physics here should
be identical to where we stood previously. We formally define a translation by the following,

xµ −→ xµ + aµ, (1.2)
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for some constant spacetime vector aµ.
We also expect that for a rotation or a boost our physics should not change either. The

symmetry group of rotations and boosts is known as the Lorentz group O(1, 3), and we define
the Lorentz transformations as

xµ −→ Λµ
νx

ν , (1.3)

where the Λ matrices belong to O(1, 3). This means that they form a group under matrix
multiplication such that the condition

ηµν = ηαβΛ
α
µΛ

β
ν , (1.4)

is obeyed. We can also consider infinitesimal Lorentz transformations of the form Λµ
ν =

δµν+ϵv
µ
ν+O(ϵ

2), meaning that vµν must be antisymmetric and its components represent boosts
and rotation parameters - rapidity and angles respectively. We can express this infinitesimal
transformation using a generator Mαβ and the transformation parameters encoded in ωµν as
such

Λµ
ν = δµν −

i

2
(ωαβM

αβ)µν + ..., (1.5)

where Mαβ = −Mβα. We define the proper orthochronous Lorentz transformations as the
group of Lorentz matrices within which det(Λµ

ν ) = +1, meaning that the transformation
preserves time orientation. This group is denoted SO+(1, 3) and has the form

Λµ
ν = (e−

i
2
(ωαβM

αβ))µν , (1.6)

making use of the exponential form of the matrix.
We take the generators to be,

(Mαβ)µν = iηµρ(δαρ δ
β
ν − δαν δβρ ), (1.7)

which define the Lorentz algebra.
To form the Poincaré Group we want to combine both the translation and Lorentz algebra.
Starting with translations, we know:

f̄(x) = f(x− a) = f(x)− aµ∂µf(x) + ..., (1.8)

Let the generator of translations be denoted

Pµ = −i∂µ : f̄(x) = f(x)− iaµPµf(x) + ..., (1.9)

where these Pµ obey the Abelian translation algebra

[Pµ, Pν ] = 0, (1.10)

and we may write f̄(x) = e−iaµPµf(x), or similarly for a vector field translation.
For the Lorentz algebra we start with the transformation x̄ = Λx such that

f̄(x) = f(Λ−1x), v̄µ(x) = Λµ
νv

ν(Λ−1x), (1.11)
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and we can rewrite the generator - for example, on a scalar field - using the translation
generator Pµ as

Mαβ
(scalar) = xβPα − xαP β, (1.12)

and similarly on a vector field as

(Mαβ
(vector))

µ
ν = (xβPα − xαP β)δµν + (Mαβ)µν , (1.13)

where the final term (Mαβ)µν is defined as in (1.7). Each of M , M(scalar), and M(vector) satisfy
the antisymmetry condition on the generators as well as the Lorentz algebra:

[Mαβ
(r) ,M

ρσ
(r)] = (−i)

(
ηαβMβσ

(r) − η
βρMασ

(r) − ηασM
βρ
(r) + ηβσMαρ

(r)

)
, (1.14)

with (r) simply indicating that this is a general statement. We bring both (1.10) and (1.14)
define the Poincaré algebra together with the relation

[P µ,Mσρ
(r)] = i(ηµσP ρ − ηµρP σ)I(r), (1.15)

Simply put, the Poincaré group is the union of the proper orthochronous Lorentz group and
the translation group. In (1.15), I(r) denotes the relevant identity matrix for the field theory
under consideration.

1.2 Conformal Field Theories (CFTs)

A central theme throughout this report will be the concept of conformal invariance - a
generalisation of Poincaré invariance discussed in the previous section such that, in addition
to the theory being invariant under boosts, rotations and translations, we also have a scaling
invariance of the field theory and special conformal transformations. This is significant as it
allows for physics to be linked at several scales.

1.2.1 The Conformal Symmetry Group

Maldacena et al [2] introduce the conformal transformations as those preserving the form
of the metric up to some scaling, that is to say gµν(x) −→ Ω2(x)gµν(x), to form a group
including the Poincaré group. Here we are using gµν(x) as some arbitrary localised metric.

We can consider this group in Minkowski space, breaking it down into its constituent
transformations:

• The Poincaré transformations: Lorentz group (boosts, rotations) and the translation
group.

• The scale transformations: xµ −→ λxµ.

• The special conformal transformations: xµ −→ xµ+aµx2

1+2xνaν+a2x2 .
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Let’s say we have some relativistic quantum field theory in d dimensions with the Minkowski
metric ds2 = ηµνdx

µdxν and we initially constrain the theory to have Poincaré invariance
such that

xµ −→ xµ + aµ,

xµ −→ Λµ
νx

ν ,
(1.16)

where we now know Λ ∈ SO(1, d− 1).

Denoting our field ϕ, the action of the Poincaré generators is as follows:

[Pµ, ϕ] = i∂µϕ,

[Mµν , ϕ] = (i(xµ∂ν − xν∂µ) + Eµν)ϕ,
(1.17)

where we have used Eµν to denote the intrinsic spin, schematically identical to the final term
in (1.13) and some indices in ϕ have been suppressed. We note that the Casimir invariant
of the Lorentz group is defined by m2 = −PµP

µ, where this is just an element of the centre
of the Lorentz group, however this is not a Casimir when scale symmetry is baked into the
theory.

Now we introduce the scale symmetry (or dilation symmetry) in a similar way such that
the transformation is xµ −→ λxµ with its action on some arbitrary function f being

Df = ixµ∂µf, (1.18)

Here D can be taken as the generator of scale transformations and we find that the following
relations hold:

[Mαβ, D] = 0,

[Pµ, D] = iPµ,
(1.19)

We now define the action of the scale generator on our field as

[D,ϕ] = i(− △ +xµ∂µ)ϕ, (1.20)

with an intrinsic scale △ being introduced here. We note that (1.20) is the infinitesimal
version of ϕ −→ λ△ϕ(λx), and in doing so denote △ to be our scale dimension.

The generator for the special conformal transformations must also be defined and acts
on the field as follows,

[Kµ, ϕ] =
(
i(x2∂µ − 2xµx

ν∂ν + 2xµ △)− 2xνEµν
)
ϕ. (1.21)

We give the complete conformal algebra here:

[Mµν , Pρ] = −i(ηµρPν − ηνρPµ); [Mµν , Kρ] = −i(ηµρKν − ηνρPµ),

[Mµν ,Mρσ(r)] = (−i) (ηµρMνσ − ηνρMµσ − ηµσMνρ + ηνσMµρ) ;

[Mµν , D] = 0; [Pµ, D] = iPµ; [Kµ, D] = −iKµ;

[Pµ, Kν ] = 2iMµν − 2iηµνD.

(1.22)
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keeping in mind that all other commutation relations vanish. The conformal algebra is iso-
morphic to the algebra of SO(d, 2) and can be defined via the algebra of SO(d, 2) generators
that are linear combinations of the conformal algebra generators outlined above. These com-
mutation relations actually suggest that P is an operator that acts to raise the dimension
of the field, whereas in contrast, the operator K appears to act in such a way that the field
dimension is lowered. For the field theory to be unitary, we must bound the dimension of
fields from below, suggesting an operator of this minimal dimension exists in each repre-
sentation of the conformal group that will be annihilated by K. This is the definition of a
primary operator (or field) and we have defined their action on the field as operators already
in (1.17), (1.20), and (1.21).

The representations of the conformal group can also be classified (see [2]) in terms of
the maximal, compact subgroup SO(d) × SO(2), i.e. the SO(d) × SO(2) subgroup is not
contained by any other proper subgroup of the conformal group, and it is compact when
defined as a topological space. This will become more relevant in the radial quantisation of
the CFT on the sphere Sd−1 × R which we will do in AdS space later on.

1.2.2 Correlation Functions

One of the fundamental objects we would like to construct in quantum field theories are
correlation functions, these allow for the calculation of scattering amplitudes. Now that we
are working with CFTs and the conformal group rather than the Poincaré group, because the
former is much larger, our correlation functions of primary fields are much more restricted.
Using the conformal algebra previously specified, one can show that the 2-point function for
a scalar field is given by

⟨ϕ(0)ϕ(x)⟩ ∝ 1

|x|2△
≡ 1

(x2)△
, (1.23)

but vanishes when the fields are of different dimension. The 3-point function is constrained
similarly as

⟨ϕi(x1)ϕj(x2)ϕk(x3)⟩ =
cijk

|x1 − x2|△1+△2−△3 |x1 − x3|△1+△3−△2|x2 − x3|△2+△3−△1
. (1.24)

Maldacena et al [2] note that the correlation functions with energy-momentum tensor
Tµν can be related to correlation functions without T via the Ward identities of the confor-
mal algebra. Necessarily, the dimension of the operator Tµν must be △= d, and similarly
conserved currents of global symmetries must be operators such that △= d − 1. Because
of unitarity, a lower bound is imposed on all field’s dimensions - for example a scalar field
obeys

△≥ d− 2

2
, (1.25)

with equality if and only if the theory is a free theory.
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1.2.3 Operator Product Expansion (OPE)

Generally the OPE exists for any local field theory and is defined as taking two operators
to a single point to create a local disturbance. Taking O1(x) and O2(y) as our operators, we
write the OPE as:

O1(x)O2(y) −→
∑
n

Cn
12(x− y)On(y), (1.26)

noting that this would typically be within a correlation function for it to have meaning.
Heuristically, we are taking that local disturbance and expressing it as a sum containing all
local operators acting at that point with the same quantum numbers as O1(x)O2(y). For a
CFT the OPE coefficient functions Cn

12 can be determined by conformal invariance as

Cn
12 =

cn12
|x− y|△1+△2−△n

, (1.27)

with cn12 given by the 3-point correlation function defined previously (1.24).
It is important to then describe the radial quantisation of the theory, in which we choose

time to be the radial direction in Rd and we take the origin to correspond to past infinity.
This would imply that at any moment in fixed time our field theory lives on the sphere Sd−1.
Now that we are on the sphere it is sensible to follow [2] and map our conformal algebra to
SO(d, 2) and we can rewrite our generators (1.22) as SO(d, 2) generators Jab:

Jµν =Mµν ; Jµd =
1

2
(Kµ − Pµ); Jµ(d+1) =

1

2
(Kµ − Pµ); J(d+1)d = D, (1.28)

allowing us to study the CFT in Euclidean space. Now the Hamiltonian for this radial
quantisation is the operator J0(d+1) =

1
2
(Kµ + Pµ). We can then map an operator to a state

via the relation

|O⟩ = lim
x→0

O(x) |0⟩ , (1.29)

and we can essentially view the state as some ball with the operator O inserted at the origin
corresponding to past infinity. We can perform the inverse by taking a state which is a
functional of field values on some ball and then use conformal invariance to shrink the ball
to a point coinciding with our origin. This is equivalent to inserting a local operator at the
origin. We can then see that in the radial quantisation we have a one-to-one correspondence
between local operators O and states |O⟩.

1.2.4 Superconformal Algebras

We can consider another generalisation of the Poincaré algebra - the supersymmetry (SUSY)
algebra. We want to combine supersymmetry with the conformal algebra to give a full
superconformal algebra description. We add in fermionic operators Q and we include two
more generator types:

• S: the fermionic generator (one per SUSY generator),
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• R: R-symmetry generators that may appear to form some Lie algebra.

This can give the full superconformal algebra in addition to (1.22),

[D,Q] = − i
2
Q; [D,S] =

i

2
S; [K,Q] ≃ S; [P, S] ≃ Q;

{Q,Q} ≃ P ; {S, S} ≃ K; {Q,S} ≃M +D +R,
(1.30)

with exact forms determined by the dimensions and exists only for d ≤ 6, see [2].
For a free field without gravity we know that the maximum number of supercharges is 16,

implying that the maximum number of fermionic generators in a field theory superconformal
algebra is 32. These superconformal CFTs with the maximal amount of supercharges exist
for d = 3, 4, 6 only;

d = 3: the R-symmetry group is Spin(8), with fermionic generators in SO(3, 2)×Spin(8),
d = 4: the R-symmetry group is SU(4), with fermionic generators in the (4,4) + (4̄, 4̄)

representation of SO(4, 2)× SU(4),
d = 6: the R-symmetry group is Sp(2) ≃ SO(5) with fermionic generators in the (8,4)

representation of SO(6, 2)× Sp(2).

It is apparent that the conformal algebra is indeed a sub-algebra of the superconformal
algebra, meaning that we can divide our representations of the superconformal algebra into
representations of the conformal algebra. A primary field of the superconformal algebra
(which will be annihilated at x = 0 by the Kµ and S generators) will include primary fields
of the conformal algebra.

Superconformal algebras have special representations corresponding to chiral primary
operators which are annihilated by combinations of the supercharges. These special rep-
resentations are typically smaller than generic representations and contain fewer conformal
primary fields, with the dimension of the chiral primary operators being determined uniquely
by their R-symmetry representation such that, for a given representation, dim(non-chiral
primary) > dim(chiral primary).
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Chapter 2

Anti-de Sitter Spacetime

2.1 The Einstein Equations

We start with the Einstein equations including the cosmological constant Λ, which are

Gµν + Λgµν = 8πTµν , (2.1)

where Gµν =
(
Rµν − 1

2
gµνR

)
is the Einstein tensor, gµν is the metric, Rµν is the Ricci tensor,

R is the Ricci scalar, and Tµν is the energy-momentum tensor. With a bit of work one
can see that the Einstein equations come from the Einstein-Hilbert action adjusted for the
cosmological constant:

SEH =
1

16π

∫
M
d4x
√
−g(R− 2Λ) + ..., (2.2)

noting that g =det(gµν) andM is manifold we are concerned with. Before we can introduce
the Anti-de Sitter spacetime we take a brief interlude into some of the context behind this.
The cosmological geometry can be understood from the left hand side of the Einstein equa-
tions (2.1), and the matter content from the right hand side. Bringing these together we will
better understand the dynamics of such gravitational systems.

2.1.1 Cosmological Geometry

Define our manifold to be M = R(t) × Σ(xi), which can be thought of as a foliation with
slices indexed by t. Taking Σ to be space-like and t to be time-like we state the general form
of the ADM (Arnowitt, Deser, Misner) metric to be

ds2 = gµνdx
µdxν = −N2dt2 + hij(dx

i +N idt)(dxj +N jdt), (2.3)

where N and N i are the lapse and shift functions respectively, and hij is the induced or
intrinsic metric on each of our foliation slices. Note that for convenience we will set N i = 0
throughout as we expect our metric to be isotropic (which a vector field violates by defini-
tion). But we also expect homogeneity, telling us that N must only be a function of the time
coordinate. We manipulate the metric given in (2.3) as follows
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ds2 = (−N2 + hijN
iN j)dt2 + 2Nidx

idt+ hijdx
idxj,

= −N2dt2 + hijdx
idxj,

= −dt2 + hij(t, x
i)dxidxj,

(2.4)

where in the last line we absorb N into dt by redefining the time coordinate, whilst also
making it explicit that the intrinsic metric is not restricted to depend solely on xi. Whilst it
is unclear what homogeneity implies for our intrinsic metric, we know that for a scalar, for
example the Ricci scalar associated with hij should be uniform, that is to say:

R > 0 =⇒ Closed,

R = 0 =⇒ Flat/Euclidean,

R < 0 =⇒ Open,

(2.5)

where “closed”, “flat” and “open” refer to the geometry. It is both convention and convenient
to define a unit K such that

K = 1 =⇒ Closed,

K = 0 =⇒ Flat/Euclidean,

K = −1 =⇒ Open,

(2.6)

with R = 6K. Now the Ricci scalar may have some time dependence we can absorb this by
taking dxi −→ a(t)dxi such that

hij(t, x
i) = a(t)2γij(x

i) =⇒ dΣ2
f = γijdx

idxj. (2.7)

And so, we come to the definition of the flat FLRW (Friedman-Lemâıtre-Robertson-Walker,
may also be seen as FRW) metric:

ds2 = dt2 + a(t)2dΣ2
f . (2.8)

2.1.2 Maximally Symmetric Spaces - Minkowski, de Sitter and
Anti-de Sitter

For the space to be both homogeneous and isotropic we must define a Riemann tensor on our
d− 1 dimensional foliation slice Rijkl that satisfies these constraints. Given the symmetries
of the Riemann and the homogeneity and isotropy only allow for the metric to make up the
tensorial structure, our only viable solution would be

Rijkl = C(γikγjl − γilγjk), (2.9)

for C constant. By considering contractions, we see the implications for the Ricci scalar R:

Ricci tensor: Rik = Rijklγ
jl = C(3γik − δji γjk) = 2Cγik,

Ricci scalar: R = Rikγ
ik = 6C,

=⇒ C = K.

(2.10)
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We will work off of the loose definition that a maximally symmetric space can be specified
by one obeying

Rijkl = K(γikγjl − γilγjk). (2.11)

We choose to define the full metric and intrinsic metric as such, with χ as the proper distance
coordinate:

ds2 = −dt2 + a(t)2γijdx
idxj,

= −dt2 + a(t)2
[
dχ2 + f(χ)2(dθ2 + sin2(θ)dϕ2)

]
,

=⇒ γ11 = 1, γ22 = f(χ)2, γ33 = sin2(θ)f(χ)2,

(2.12)

with all other values of γij vanishing. Using our understanding of the Riemann tensor and
(2.11) we can formulate a relationship between f and K. Begin with the Riemann but
lowered and only using spatial coordinates, as well as the Christoffel symbols,

Rijkl = ∂kΓilj − ∂lΓikj + ΓikmΓ
m
lj − ΓilmΓ

m
kj,

Γijk =
1

2
(∂jγik + ∂kγij − ∂iγjk) .

(2.13)

We can calculate the non-zero Christoffel symbols (omitting the vanishing symbols and
noting that we have lowered the usual “up” index to the first “down” index position) to get:

Γ122 = −f(χ)f ′(χ), Γ133 = − sin2(θ)f(χ)f ′(χ),

Γ212 = f(χ)f ′(χ), Γ233 = − sin(θ) cos(θ)f(χ)2,

Γ313 = sin2(θ)f(χ)f ′(χ), Γ323 = sin(θ) cos(θ)f(χ)2.

(2.14)

We don’t include all of the details here but it is quite easy to show, given (2.14), that most
of the equations specified by (2.11) will be trivial, however the non-trivial ones all give the
same system of equations. We demonstrate this with one of the straightforward examples,

R1212 = ∂1Γ122 − ∂2Γ112 + Γ11mΓ
m
22 − Γ12mΓ

m
12,

= ∂1Γ122 − Γ122Γ
2
12,

= −∂χ (f(χ)f ′(χ))− f(χ)f ′(χ)γ2nΓn12,

= −f ′(χ)2 − f(χ)f ′′(χ) + f(χ)f ′(χ)γ22Γ212,

= −f ′(χ)2 − f(χ)f ′′(χ) + f ′(χ)2,

= −f(χ)f ′′(χ),

(2.15)

leading us to the following differential equation for f and K:

R1212 = −f(χ)f ′′(χ), R1212 = K(γ11γ22) = Kf(χ)2,

=⇒ f ′′(χ) +Kf(χ) = 0.
(2.16)

Now we are equipped to introduce some spaces; Minkowski that we know and love, but also
de Sitter and Anti-de Sitter, the latter of which will be crucial to our discussion later. First
we take our maximal symmetry solution (2.9) and enlarge this to include the entire space
rather than an instance of foliation, before performing a similar manipulation:
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Rµνρσ = R0(gµρgνσ − gµσgνρ) =⇒ Rνσ = 3R0gνσ =⇒ R = 12R0,

=⇒ Rµνρσ =
R

12
(gµρgνσ − gµσgνρ).

(2.17)

We want to be able to evaluate this in a similar way to the above and so (given our enlarge-
ment to the entire spacetime) we redefine the metric to be of a suitable form, starting with
the FRW metric from (2.12),

ds2 = −dt2 + a(t)2
[
dχ2 + f(χ)2(dθ2 + sin2(θ)dϕ2)

]
. (2.18)

We want to move to a coordinate system that permits an area, thus defining f(χ) = r to
rewrite the metric. Begin with (2.16)

f ′′(χ) +Kf(χ) = 0, f(χ) −→ r,

=⇒ d2r

dχ2
+Kr = 0,

d

dr

(
dr

dχ

)2

+Kr = 0,

=⇒ dr2

1−Kr2
= dχ2,

(2.19)

where we have used the chain rule and solved as an ODE, rescaling for convenience where it
is permitted. Our metric now reads

ds2 = −dt2 + a(t)2
[

dr2

1−Kr2
+ r2dΩ2

2

]
. (2.20)

Now in a similar fashion to (2.14), (2.15) we may find similar equations to (2.16) but for our
enlarged solution. We compute the (lowered, as before) Christoffel symbols,

Γ011 = −
aȧ

1−Kr2
, Γ022 = −aȧr2, Γ033 = −aȧr2 sin2(θ),

Γ111 = −
Kra2

(1−Kr2)2
, Γ122 = −a2r, Γ133 = −a2r sin2(θ), Γ110 = Γ101 =

aȧ

1−Kr2
,

Γ233 = −a2r2 sin(θ) cos(θ), Γ212 = Γ221 = a2r, Γ202 = Γ220 = aȧr2,

Γ313 = Γ331 = a2r sin2(θ), Γ323 = Γ332 = a2r2 sin(θ) cos(θ), Γ303 = Γ330 = aȧr2 sin2(θ),
(2.21)

where any vanishing symbols have been omitted. Following the same calculation as above
we obtain
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R1212 =∂1Γ122 − ∂2Γ112 + Γ11µΓ
µ
22 − Γ12µΓ

µ
12,

=∂1Γ122 + Γ110g
00Γ022 + Γ111g

11Γ122 − Γ122g
22Γ212,

=∂r(−a2r) +
aȧ

1−Kr2
(−1)(−aȧr2),

− Kra2

(1−Kr2)2

(
1−Kr2

a2

)
(−a2r)− (−a2r)

(
1

a2r2

)
a2r,

=(ȧ2 +K)

(
a2r2

1−Kr2

)
.

(2.22)

But from (2.17) we can show the following

R1212 = R0g11g22 =
R0a

4r2

1−Kr2
,

=⇒ R0 =

(
ȧ

a

)2

+
K

a2
.

(2.23)

Due to the 0 component of the metric being in play this time around, we get an additional
equation,

R0101 = −
aä

1−Kr2
,

R0101 = R0g00g11 = −
R0a

2

1−Kr2
,

=⇒ R0 =
ä

a
,

(2.24)

using (2.17). It is worth noting that (2.23) is the only equation that arises from computing
Rjikl, and that (2.24) is the only equation that arises from computing R0i0i (other equations
from Rµνρσ are trivial).

Minkowski Spacetime, R0 = 0:

For R0 = 0, we have two cases for K’s value, the first being K = 0:(
ȧ

a

)2

= 0 =⇒ a(t) = a0 constant ∀t, (2.25)

giving a constant expansion factor in the FLRW metric which can just be absorbed into (for
example) a radial coordinate in dΣ2

f to obtain the usual flat space metric.
Our second case is K = −1, giving:(

ȧ

a

)2

− 1

a2
= 0 =⇒ a(t) = ±t. (2.26)

This appears to be curved space, but upon closer inspection we have intrinsic curvature
within flat space due to our choice of foliation. We do not actually have extrinsic curvature
here - one can show this via a coordinate transformation - however we have defined our
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Position

Time

Figure 2.1: Minkowski space in curved coordinates where we’ve divided flat space into four
wedges. The upper wedge is the expanding Milne universe with a(t) = t. Blue dotted lines
indicate foliation slices. The lower wedge is the contracting Milne universe with a(t) = −t.
The left and right wedges are the usual Rindler wedges. Red dashed lines indicate Rindler
observer trajectories.

foliation slices in such a way that they are intrinsically curved. Diagrammatically, the a = t
corresponds to the upper wedge of a Rindler diagram (an expanding Milne universe), a = −t
corresponds to the lower wedge (contracting Milne universe), and the left and right wedges
are the typical Rindler wedges (see Carroll [4]) as shown in Figure 2.1.

Without going into too much detail, we obtain the Rindler wedges through reversing the
non-angular spatial and temporal coordinates from those used in the Milne universe wedges.
Following the red dashed lines in Figure 2.1 maps out the trajectory of a Rindler observer
(one with constant acceleration in their frame).

de Sitter (dS) Spacetime, R0 > 0:

In this case, we can have FLRW foliations such that K = 0,±1 (and more outside of
FLRW foliations, but not to be discussed here). For K = 0:(

ȧ

a

)2

= R0 =⇒ a(t) = a0e
√
R0t, (2.27)

indicating exponential expansion and constant Hubble parameter ȧ
a
= R0 = H(t). This is

the steady state expanding model of the universe.
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Let us also consider the K = 1 case:

ȧ2 + 1

a2
= R0 =⇒ a(t) =

1√
R0

cosh(
√
R0t). (2.28)

From this we can rewrite the metric for de Sitter space as

ds2 = −dt2 + cosh2(
√
R0t)

R0

(
dχ2 + sin2(χ)dΩ2

2

)
. (2.29)

Anti-de Sitter (AdS), R0 < 0:

We briefly give a view of AdS from an FLRW perspective before delving into the spacetime
in the next section. In this case, only the K = −1 foliations are permitted in the FLRW
representation (again, many others exist and some will be discussed presently). Within the
current confines we have(

ȧ

a

)2

− 1

a2
= −|R0| =⇒ a(t) =

sin(
√
−R0t)√
−R0

. (2.30)

While it is true that we can get a = 0 periodically, this is merely a coordinate singularity
and not an issue. We obtain the FRW metric for AdS:

ds2 = −dt2 + sin2(
√
−R0t)

R0

(
dχ2 + sin2(χ)dΩ2

2

)
. (2.31)

2.2 AdS Spacetime

Having given some cosmological background for the Anti-de Sitter space, namely in the con-
text of the FRW metric, we now look to unpack the AdS geometry in much wider generality
as we build towards the correspondence itself.

2.2.1 Conformal Compactification and AdS Geometry

One of the main tools that will make up this discussion is conformal compactification -
one might recognise this from studying Penrose diagrams [38] - which essentially allows an
infinite space to be mapped to a finite space. Take the Euclidean metric for example, which
compactifies to the n-sphere Sn. An easy way to visualise this compactification would be
to consider the projection of the sphere to flat space, where we compactify by assigning the
singular point in the sphere (e.g. the “north pole”) to spatial infinity.

We first present a very basic example of 2-dimensional Minkowski space described by the
metric

ds2 = −dt2 + dx2, (−∞ < t, x <∞). (2.32)

We first transform to lightcone coordinates u± = t± x, before performing another transfor-
mation to conformally compactify:
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τ

θ
π−π

Figure 2.2: Conformally compactified Minkowski space in (τ, θ); the blue dashed line shows
the trajectories of lines of constant t, the red dashed lines are lines of constant x.

ds2 = −du+du−,

=
1

4 cos2(ũ+) cos2(ũ−)
(−dτ 2 + dθ2),

(2.33)

with the following redefinitions u± = tan(ũ±) where ũ± = (τ+θ)
2

. We can see that we have
conformally mapped (2.32) to a metric defining a compact region |ũ±| < π

2
; the confor-

mal scaling preserves any null trajectories and our coordinates (τ, θ) are well-defined at the
aymptotic regions of flat space. We have asymptotic flatness - the spacetime has the same
boundary structure as that of the original flat space after we perform conformal compactifi-
cation.

In Figure 2.2 we can see the points that we’ve assigned to spatial infinity; (τ, θ) = (0,±θ)
correspond to x = ±∞.

By identifying the points θ = ±π one sees that we can essentially wrap our space to form
a region of a cylinder, see Figure 2.3. It can be shown that correlation functions of a CFT
on our R1,1 Minkowski can be analytically continued to the entire cylinder.

From this point, the same logic can be used to extend the above to higher dimensional
Minkowski space R1,d, where d ≥ 2. Following the procedure above as outlined by [2] we
obtain the conformally compactified metric:

ds2 = −dt2 + dr2 + r2dΩ2
d−1,

=
1

4 cos2(ũ+) cos2(ũ−)
(−dτ 2 + dθ2 + sin2(θ)dΩ2

d−1),
(2.34)

where we have defined τ , θ, u± and ũ± exactly as in the R1,1 case. This allows us to define
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τ

θ
π−π

θ = 0

θ = ±π

Figure 2.3: Identifying points θ = ±π to “wrap” and analytically continue to a cylinder.

the conformally scaled metric

ds′2 = −dτ 2 + dθ2 + sin2(θ)dΩ2
d−1. (2.35)

This, as before, can be analytically continued to give the Einstein static universe geometry
R× Sd. In doing so we have that 0 ≤ θ ≤ π with θ = 0, π corresponding to Sd’s north and
south poles respectively, and −∞ ≤ τ ≤ +∞.

Taking a quick detour to consider the generators of the symmetry group in this case, one
can see that

∂τ =
1

2
(1 + u2+)∂u+ +

1

2
(1 + u2−)∂u− , (2.36)

which allows us to specify the generator of global time translations H to be identified with

H =
1

2
(P0 +K0) = J0,d+2 (2.37)

The generators Jµν are as defined in (1.28), P0 = 1
2
(∂u+ + ∂u−) generates translations and

K0 =
1
2
(u2+∂u+ + u2−∂u−) generates the special conformal transformations on R1,d. We know

that our conformal symmetry group is SO(2, d+1), and thatH is the generator for the SO(2)
component of the maximally compact subgroup SO(2) × SO(d + 1). Taking the universal
cover of this subgroup we know saw earlier that it can be identified with the Einstein static
universe’s symmetry group. As pointed out in [2], the fact that H exists implies that one
can always analytically extend correlation functions of a CFT on flat space R1,d to the full
Einstein static universe R× Sd.

We move swiftly on to present the anti-de Sitter space in (d + 2)-dimensions, AdSd+2,
which we can write as a hyperboloid embedded in (d + 3)-dimensional flat space. This set

20



τ

ρ =∞ρ =∞

Figure 2.4: AdSd+2 hyperboloid embedded in (d+ 3)-dimensional flat space.

up has been constructed such that we have a space obeying homogeneity and isotropy, while
possessing the SO(2, d+ 1) isometry.

The hyperboloid for AdSd+2 is:

X2
0 +X2

d+2 −
d+1∑
i=1

X2
i = R2. (2.38)

We also define the flat space metric:

ds2 = −dX2
0 − dX2

d+2 +
d+1∑
i=1

X2
i . (2.39)

Solving for the hyperboloid (2.38) we set

X0 = R cosh(ρ) cos(τ),

Xd+2 = R cosh(ρ) sin(τ),

Xi = R sinh(ρ)Ωi,

(2.40)

in which i = 1, ..., d+ 1 and
∑

i Ω
2
i = 1. This allows us to rewrite the metric on AdSd+2 as

ds2 = R2(− cosh2(ρ)dτ 2 + dρ2 + sinh2(ρ)dΩ2). (2.41)

The coordinate ranges ρ ≥ 0 and 0 ≤ τ ≤ 2π covers the hyperboloid exactly once, and hence
we may think of (τ, ρ,Ωi) as the global coordinates of AdS space. In the limit as ρ −→ 0,
this has the topology of S1×Rd+1, with S1 representing closed time-like curves in τ . In this
scenario the metric reduces to

ds2 ≃ R2(−dτ 2 + dρ2 + ρ2dΩ2). (2.42)

To obtain a universal covering of AdS without any closed time-like curves we can “un-
wrap” the hyperboloid in S1 - we refer to this universal cover from here on as AdSd+2. To
see the conformal structure of AdSd+2 we introduce a coordinate θ : tan(θ) = sinh(ρ) with
range 0 ≤ θ ≤ π

2
, resulting in the metric
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ds2 =
R2

cos2(θ)
(−dτ 2 + dθ2 + sin2(θ)dΩ2),

=⇒ ds2 = −dτ 2 + dθ2 + sin2(θ)dΩ2,

(2.43)

where, in the second line, we have used the scale invariance of causal structure. This final
metric we have obtained is the Einstein static universe we saw in the previous section. More
specifically, given the ranges of the coordinates we actually have a space-like hypersurface
of constant τ corresponding to a (d+ 1)-dimensional hemisphere. The equator lies at θ = π

2

and is the boundary with Sd topology.
Generally speaking, one has an asymptotically AdS spacetime if at the large spatial limits

the metric approaches (2.43). To ensure we have a well-defined Cauchy problem on AdS we
must specify boundary conditions at θ = π

2
. Essentially, we require that the boundary of our

conformally compact AdSd+2 space is identical to the conformally compactified Minkowski
space - crucial for the AdS/CFT correspondence.

We now move to the Poincaré chart as we will see later that some calculations will
be easier to conceptualise and perform in these coordinates. Begin by first defining the
coordinates

X0 =
1

2u
(1 + u2(R2 + #»x 2 − t2)),

X i = Ruxi, (i = 1, ..., p),

Xd+1 =
1

2u
(1− u2(R2 − #»x 2 + t2)),

Xd+2 = Rut,

(2.44)

with u, #»x > 0 and u, #»x ∈ Rd, covering one half of the hyperboloid (2.38). We then substitute
this into the flat space metric (2.39) to find a new AdSd+2 metric:

ds2 = R2

(
du2

u2
+ u2(−dt2 + d #»x 2)

)
. (2.45)

This is AdS in Poincaré coordinates, it is clear here that the subgroups ISO(1, d) and
SO(1, 1) of the AdS isometry group SO(2, d + 1) are manifest. The former encode the
Poincaré transformations on (t, #»x ) and the latter being the tranformations (t, #»x , u) −→
(ct, c #»x , c−1u) with c > 0 a constant. The SO(1, 1) transformation we just outlined is identi-
fied with the dilation in the conformal symmetry group of R1,d via the AdS/CFT correspon-
dence.

For theories on AdS space with that have a positive definite Hamiltonian with respect to
τ , the correlation functions of fields on the Euclidean space can be related to time-ordered
correlation functions in Minkowski space via a Wick rotation. The metric of AdSd+2 is static
with respect to our global coordinate τ , meaning that we can take eiτH −→ e−τEH , where
the Wick rotation is τ −→ τE = −iτ . This redefines the hyperboloid given in (2.40) as

X2
0 −X2

E −
#»

X2 = R2,

ds2E = −dX2
0 + dX2

E + d
#»

X2,
(2.46)
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where we have usedXd+2 −→ XE = −iXd+2. In flat Minkowski space, the Euclidean rotation
of t in the Rindler space ds2 = −r2dt2 + dr2 gives the flat Euclidean plane R2 despite the
Rindler coordinates only covering a quarter (one wedge) of Minkowski R1,1. We can obtain
the same space as (2.46) by rotating the time coordinate t of Poincaré coordinates (2.45)
using t→ tE = it (despite this only covering half of the hyperboloid (2.38)).

Starting with the rotated global coordinate metric we can transform to Euclidean AdSd+2

space to better perform field theory computations;

ds2E = R2(cosh2(ρ)dτ 2E + dρ2 + sinh2(ρ)dΩ2
p),

= R2

(
du2

u2
+ u2(dt2E + d #»x 2)

)
,

=
R2

z2
(
dz2 + dx21 + ...+ dx2d+1

)
.

(2.47)

This holds in AdS space if the theory has a positive-definite Hamiltonian with respect to the
global coordinate τ ; that is, correlation functions ⟨ϕ1...ϕn⟩ of fields in Euclidean space when
Wick rotated correspond to T-ordered correlation functions ⟨0|T (ϕ1...ϕn) |0⟩ in Minkowski
space. For Euclidean AdSd+2 we essentially have a map to the (d+2)-dimensional disk. For
example, in our (u, tE,

#»x ), u =∞ is Sd+1 at the boundary with a single point removed. For
the full sphere we simply add the removed point back in and identify this with u = 0 (x =
∞). This is our compactification of Euclidean space to the Poincaré disk.

If we consider Euclidean AdS2 this is the upper-half plane with the Poincaré metric and
maps to the disk in such a way that the ∞ of the upper-half place correspondes to the
boundary of the disk. If one were to instead take Lorentzian coordinates, u = 0 would
represent a Killing horixon that acts as the boundary of our (u, t, #»x ) space. Note that in
this case u = 0 is a null plane, but in the Euclidean case it is merely a single point.

2.2.2 Particles and Fields

Now that we have briefly introduced the geometry of the AdS spacetime, we want to explore
the consequences of that geometry on the particles and fields residing within. There is
actually quite a sizeable difference in the behaviour of massive particles on AdS geodesics
compared to a massless particle like a photon. A massive particle for example will never reach
the AdS boundary following a geodesic trajectory, whereas for a photon it can “bounce” back
off of the boundary in finite time under the correct conditions.

Speaking with a bit more precision about the photon, consider the Penrose diagram of
AdS - the cylinder we saw ealier (Figure 2.3), photons are able to reflect at the boundary
(as seen by an observer on an AdS geodesic) with the appropriate boundary conditions set
on the fields propagating in AdS.

Consider a scalar field propagating in our AdSd+2 space, the field equation and stationary
wave solutions are given by:

(△ −m2)ϕ = 0,

ϕ = eiωτG(θ)Yl(Ωp).
(2.48)

G(θ) is a hypergeometric function with θ defined as in (2.43), fully defined as:
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G(θ) = sinl(θ) cosλ±(θ)2F1(a, b, c; sin(θ)),

a =
1

2
(l + λ± − ωR),

b =
1

2
(l + λ± + ωR),

c = l +
1

2
(d+ 1),

λ± =
1

2
(d+ 1)± 1

2

√
(d+ 1)2 + 4(mR)2.

(2.49)

Yl(Ωd) is a spherical harmonic function and an eigenstate of the Laplacian on Sd with eigen-
value l(l + d− 1).

We can also define the energy-momentum tensor :

Tµν = 2∂µϕ∂νϕ− gµν((∂ϕ)2 +m2ϕ2) + β(gµν △ −DµDν +Rµν)ϕ
2, (2.50)

which is conserved for β =constant. β itself is determined by the choice of coupling of the
scalar curvature to the field ϕ2 (it has the same effect on AdS as the mass term in the wave
equation) - this choice depends on the theory being considered for the scalar field.

The total energy of the scalar field fluctuation is

E =

∫
dd+1x

√
−gT 0

0 (2.51)

and is conserved if and only if the flux of energy-momentum through the boundary (θ = π
2
)

is equal to zero, ∫
Sd

dΩd
√
gniT

i
0|θ=π

2
= 0, (2.52)

which can then be reduced to a boundary condition:

tand(θ)[(1− 2β)∂θ + 2β tan(θ)]ϕ2 = 0 (θ −→ π

2
). (2.53)

This is only satisfied if for our stationary wave solutions, specifically in G(θ) (2.49), we have
a ∈ Z or b ∈ Z. Demanding the energy ω ∈ R we find that

|ω|R = λ± + l + 2n (n = 0, 1, 2, ...), (2.54)

implying that we must have λ ∈ R. We conclude from this that our mass is bounded from
below such that,

m2R2 ≥ −1

4
(d+ 1)2. (2.55)

This is called the Breitenlohner bound and interestingly, this bound actually permits a
(slightly) negative mass - sometimes this is referred to as being “slightly tachyonic”. The
Compton wavelength for these possible tachyons is comparable to the curvature radius of
AdS.
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2.2.3 Brief Overview of Supersymmetry in AdS

We give a brief overview of supersymmetry in AdS following [2], from which we know that
AdSd+2 has a AdS supergroup - a supersymmetry generalisation of the SO(2, d+1) isometry
group. For d = 4 and N = 1 (the number of supercharges we have a simple supergravity
theory:

S =

∫
d4x

(
−√g(R− 2Λ) +

1

2
ϵµνρσψ̄µγ

5γνD̃ρψσ

)
, (2.56)

where we have the usual γ-matrices and Levi-Civita tensor, gravitino (spinor field) ψ, and
standard covariant derivative Dµ which defines:

D̃µ = Dµ +
i

2

√
Λ

3
γµ. (2.57)

We also define the supersymmetry variations of the gravitino and vierbein respectively as
follows:

δψµ = D̃µϵ(x),

δVaµ = −iϵ̄(x)γaψµ.
(2.58)

By requiring that the gravitino variation in annihilated δψµ = 0, we can determine the
global supersymmetry of a given background. This is the only requirement we need as a
bosonic configuration requires δψµ = 0, implying that the variation of the vierbein vanishes
immediately. This results in the condition for ϵ(x)

D̃µϵ =

(
Dµ +

i

2

√
Λ

3
γµ

)
ϵ = 0, (2.59)

formally known as the Killing spinor equation. Note that to be integrable, one also requires
that

[D̃µ, D̃ν ] =
1

2

(
Rµνρσσ

ρσ − 2

3
Λσµν

)
ϵ = 0, (σµν =

1

2
γ[µγν]). (2.60)

Due to AdS being a maximally symmetric space, we know the curvature obeys (in conjunction
with the definition of the hyperboloid in the previous section)

Rµνρσ =
1

R2
(gµρgνσ − gµσgνρ). (2.61)

By choosing Λ = 3
R2 , one finds that (2.60) is satisfied for any ϵ. The Killing spinor equation

is first order, meaning that there are as many solutions to the equation (2.59) as there are
independent components of ϵ. This implies that AdS space preserves supersymmetry to the
same extent that flat space does. With appropriate boundary conditions, our supergravity
theory on AdS will be stable with energy bounded from below.

In theories where the number of supercharges are N > 1 we have what is called an
extended supersymmetry. For d < 6 these have been classified into AdS supergroups as
follows by Nahm [5],
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AdS4 : OSp(N|4), N = 1, 2, ...,

AdS5 : SU(2, 2|N /2), N = 2, 4, ...,

AdS6 : F (4),

AdS7 : OSp(6, 1|N ), N = 2, 4.

(2.62)

AdSd+2 has no simple AdS supergroup for d > 5. Extended supersymmetries manifest
as global symmetries of gauged supergravity on AdSd+2. A crucial point of the AdS/CFT
correspondence will be that these extended supersymmetries are identified with the conformal
superalgebras.

Something to note but that won’t be discussed here is that the gauged supergravities
are supergravity theories with non-abelian gauge fields in the supermulitplet of the graviton.
Typically Λ < 0, and AdSd+2 is a natural background geometry. Many are related to Kaluza-
Klein compactifications of supergravities in 10− and 11−dimensions.

We now take a deeper look into AdS5 specifically, which has N = 2, 4, 6, 8 gauged super-
gravities with supersymmetry SU(2, 2|N /2).

Gauged N = 8 in AdS5:

The gauge group is SU(4) ≃ SO(6) with the global symmetry group being the E6

group. One can derive this by truncating the compactification of the 10-dimensional type-
IIB supergravity on S5 via the Freund-Robin ansatz [39]. The Einstein equations imply that
the self-dual 5-form field strength F (5) determines the radius of S5 and cosmological constant
Λ = 1

R2 .

N = 4 in AdS5:

The AdS/CFT correspondence conjectures that AdS5 with N = 4 is dual to the large N
limit of the N = 4 supersymmetric SU(N) gauge theory in 4-dimensions.

The complete Kaluza-Klein mass spectrum of the type-IIB supergravity theory on AdS5×
S5 is of particular interest as it quantises the frequency ω of stationary wave solutions,
meaning that scalar field masses are of the form

(mR)2 = l̃(l̃ + 4), (2.63)

with l̃ bounded from below. As p = 3 in this case, we have that

λ± = 2± |l̃ + 2|,
|ω|R = 2± |l̃ + 2|+ l + 2n, (n = 0, 1, 2, ...).

(2.64)

Hence we gather that all scalar fields in the supergravity multiplet are periodic in τ with
period 2π, so before we take the universal cover of the hyperboloid, scalar fields are singled
valued on the hyperboloid. The quantisation of ω is rooted in supersymmetry. Supergravity
particles in 10-dimensions are BPS [17] and they preserve half of the supersymmetry. Having
BPS particles in AdS supergravity like this has been shown to lead to this frequency quanti-
sation in the case of 4-dimensions. Within the AdS/CFT correspondence this identifies with
the notion that chiral operators have no anomalous dimensions.
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Chapter 3

AdS/CFT: The Gauge-Gravity
Duality

We have now outlined suffiecient prerequisites regarding conformal field theories (CFTs) and
Anti-de Sitter (AdS) spacetime to begin talking about the AdS/CFT correspondence. We
will begin with a brief introduction to the AdS/CFT correspondence itself - this “special
case” of the gauge gravity duality - before taking a short interlude to discuss entanglement
entropy. This will set us up to use the correspondence to make calculations of entanglement
entropy using the procedure set out by Ryu and Takayanagi.

3.1 The Correspondence

Paraphrasing Maldacena [6] the gauge/gravity duality is a conjectured equality between a
quantum field theory in d-dimensional spacetime and a gravity theory on a d+1-dimensional
spacetime that has a d-dimensional asymptotic boundary. The AdS/CFT correspondence
refers to a subset of examples of this that have been easiest to understand, and more specif-
ically one writes this conjecture as:

Any gravity theory on (d+1)-dimensional AdS spacetime with a d-dimensional
asymptotic boundary is dual to a conformal field theory in d-dimensional space-
time

We interpret the CFT to live on the boundary of the AdS space. The boundary of AdS
is given by R×Sd−1 with the AdS isometry group behaving in such a way that points on the
boundary are mapped to points on the boundary - this is just the action of the conformal
group SO(2, d). Consider the AdS metric as defined by (2.45). Taking u = 1

z
we may rewrite

the metric as such:

ds2 =
R2

z2
(−dt2 + d #»x 2 + dz2), (3.1)

noting that #»x is a (d− 1)-dimensional vector in the context as outlined here. This metric is
invariant under rescaling, corresponding to a dilation symmetry on the boundary meaning
we have a scale invariant boundary theory. Typically one can take this as an implication
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that the boundary theory is conformally invariant - crucially we note that this implies the
energy-momentum tensor for this theory is traceless classically. Note that more generally we
obtain the conformal anomaly for even dimensional theories.

Recalling that the boundary is R × Sd−1 and combining this with the knowledge that
the boundary has conformal invariance, we set the radius of the boundary Sd−1 to 1. The
tracelessness of the energy-momentum tensor tells us that field theories with a metric gµν on
the boundary is practically equivalent to a field theory with a boundary metric ω2(x)gµν up
to a conformal anomaly.

To explore this correspondence and why it seems to hold between theories of dimension
that differ by one, we consider counting the degrees of freedom of theories on both sides of
the conjecture. In a large energy limit we consider the microcanonical ensemble and expect
the entropy to behave as S ∝ Vd−1T

d−1 for massless fields, where V denotes gravitational
potential. We have a CFT on the boundary R×Sd−1 with the radius of Sd−1 being 1, so for
a temperature much greater than the boundary radius (T ≫ 1) we expect

S ∝ cT d−1, (3.2)

for c a dimensionless constant which Maldacena [6] notes as a measure of the effective number
of fields a theory contains.

Now consider this from the point of view of the bulk - in our AdS and no longer at the
boundary. Our theory on AdS appears to have massless particles (gravitons). Assuming
for now that we have a theory with just gravitons we obtain a lower bound on the entropy
possessed by this graviton gas:

Sgraviton > T d, (3.3)

with the power law simply coming from the d spatial dimensions. Clearly this entropy is
much greater than that of (3.2), but we must recall that the bulk theory is a gravitational
theory containing black holes which put bounds on entropy. Consider the AdS black hole
described by:

ds2 = R2

[
−
(
r2 + 1− 2gm

rd−2

)
dt2 +

(
r2 + 1− 2gm

rd−2

)−1

dr2 + r2dΩ2
d−1

]
, (3.4)

where m relates to the mass and g is defined with respect to Newton’s constant

g ∝ G
(d+1)
N

Rd−1
. (3.5)

The graviton gas extends up to r ∼ T with a mass m ∼ T d+1, which is roughly T d in the
large T -limit. Therefore we obtain for the Schwarzschild radius that

rds ∼ gm ∼ gT d+1. (3.6)

From (3.4) we know that the Schwarzschild radius obeys r2s + 1− 2gm

rd−2
s

= 0 as this gives our

coordinate singularity at the horizon. A bit of rearranging, taking the large temperature
limit and noting that rs ∼ T will tell us that rds ∼ gm. We then simply apply m ∼ T d+1 to
obtain the final part of (3.6).
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Interestingly what this means is that the Schwarzschild radius is greater than the allowed
size of the system for large temperatures T > 1

g
, invalidating (3.3). As the energy grows

beyond a certain amount we must compute the entropy with respect to the black hole

entropy which obeys an area law for the horizon S ∼ rd−1
s

g
. For a large black hole we have

THawking ∝ rs. Therefore the black hole entropy is SBH ∼ T d−1

g
, which takes the form of

(3.2) as we would have hoped, with

c ∝ 1

g
∝ Rd−1

Gd+1
N

. (3.7)

This result is somewhat profound. The entropy of a black hole is connected with the thermal
entropy of a field theory through the AdS/CFT correspondence. Maldacena [6] listed two
important implications of this,

• Firstly, we have a statistical interpretation for the entropy of a black hole, and these
black holes appear to adhere to quantum mechanics and unitarity. This is because we
see the black hole here as a thermal state of a unitary QFT.

• Secondly, we are able to compute thermal properties in QFTs that have a dual gravity
theory.

From (3.7) we also see that the number of degrees of freedom c scales inversely to the
effective gravity coupling g, implying that to have a weakly coupled theory of gravity in the
bulk one must have a large number of fields. The advantage of having a weakly coupled
theory lies in the Fock space struture that comes with it, meaning one can discuss discrete
particle states. Similarly in the dual CFT we see such a structure emerge in the large N
limit.

For a gauge theory with large N that is based on gauge group SU(N) with fields in the
adjoint representation, one can find gauge invariant operators by tracing over fundamental
fields. For example,

Tr(FµνF
µν), or Tr(FµνDρDσF

µν). (3.8)

Additionally one can have double trace operators that are just products of the above,

Tr(FµνF
µν)× Tr(FµνDρDσF

µν), (3.9)

where acting with one on a vacuum of our QFT will create a state. For any CFT we know
that there exists a map:

R× Sd−1 −→ Rd (3.10)

in which our states on the cylinder (left hand side) are mapped to operators on the plane
(right hand side) in such a way that the energy of a given state is equal to the dimension
of the corresponding operator. One can see this as we saw earlier that the plane can be
mapped to the Euclidean cylinder (Figure 2.3). This equivalence holds in any CFT.

As mentioned in Chapter One when discussing Operator Product Expansions (OPEs),
such an operator at the origin creates a “disturbance” - this can be seen as creating a state at
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some radius r and thus a state of the field theory on the cylinder. In terms of the AdS/CFT
correspondence, the equivalence is between such a state of the CFT on the cylinder and a
state of the bulk theory in the global coordinates of AdS. As both have the same isometries,
one can group states (operators) by how they transform in the conformal group. These
representations are determined by both the operator’s spin and scaling dimension.

Maldacena also refers to an argument made by ’t Hooft [12] that taking the large N limit
of a gauge theory results in a string theory. The argument allows one to organise diagrams
in terms of those that can be drawn on topologies of increasing genus (a sphere, then a
torus, etc). Increasing the genus increases the power of the 1

N2 coefficient of the Feynman
diagrams, but one could interpret this as a string coupling with gs ∼ 1

N
. If one were to

do this, it would quickly become apparent that the string theory in the bulk is exactly the
string theory postulated by this argument, implying that in our weakly coupled gravitational
theory we must also have the large N limit.

Gravitons have been discussed a few times now - these are simply the lowest string
oscillation modes. In gravity, these gravitons are treated as a point particle and all massive
string states of the theory are ignored, but to ignore the states in this way we require:

RAdS

ls
≫ 1, (3.11)

where ls is the graviton size and RAdS is the AdS radius. Maldacena [6] puts it as having
a typical size of space that is much greater than the intrinsic graviton size means we have
obtained a valid approximation of gravity. One can also relate this condition on gravitational
coupling to the interaction strength between strings in the theory, namely that for the gravity
approximation to be valid we must have a strongly interacting field theory.

3.1.1 Dynamics in AdS

To clarify further this relationship between operators on the boundary and fields within
the bulk we consider the computation of the scalar field theory path integral, specifying
appropriate fixed boundary conditions. Our understanding of quantum gravity right now
really lies in the semiclassical and so we will take the semiclassical contribution, beginning
with the metric,

ds2 =
R2

z2
(ηµνdx

µdxν + dz2). (3.12)

This is the metric defined in (3.1), out of convenience we will work in Euclidean space,
selecting the Poincaré coordinates. As before we know that the conformal boundary lies at
z = 0 and as z →∞ approaches a “horizon” (a Cauchy horizon). Consider a massive scalar
field obeying the Klein-Gordon equation but in our curved space,

∇2φ−m2φ = 0, (3.13)

with ∇ being the covariant derivative and the action defined as

S = −1

2

∫ √
|g|
(
gAB∂Aφ∂Bφ+m2φ2

)
. (3.14)
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Note here that our intrinsic metric ηµν is just the Minkowski metric, and we have denoted
our extrinsic metric to be gAB. Due to our Poincaré isometry in the metric we take the
ansatz,

φ(xA) = eikµx
µ

f(z), (3.15)

forming a basis for a general solution. Plugging our ansatz into (3.13) we evaluate as follows,
starting with the second order covariant derivative

∇2φ =gAB∇A(∂Bφ),

=gAB(∂A(∂Bφ)− ΓC
AB(∂Cφ)),

=g
#»x #»x (∂ #»x (∂ #»xφ)− Γz

#»x #»x (∂zφ)) + gtt(∂t(∂tφ)− Γz
tt(∂zφ)) + gzz(∂z(∂zφ)− Γz

zz(∂zφ)),

=
z2

R2

[
−k2eikµxν

f(z) + eikµx
ν

f ′′(z)− d− 1

z
eikµx

ν

f ′(z)

]
.

(3.16)
Plugging this into (3.13) and dividing through by z2

R2 e
ikµxν

we obtain:

f ′′(z)− d− 1

z
f ′(z)−

(
k2 +

m2R2

z2

)
= 0. (3.17)

This is solved using Bessel functions such that

f(z) = az
d
2Kv(kz) + bz

d
2 Iv(kz), v =

√
d2

4
+m2R2, (3.18)

where a, b are constants. By going close to the boundary at z = 0 we have two independent
solutions f(z) = z△ and f(z) ∼ zd−△. Expanding the Bessel functions as power series in this
limit we get the following linear combination

f(z) = ãzd−△(1 + ...) + b̃z△(1 + ...),

△ (△ −d) = m2R2, △>
d

2
.

(3.19)

Where in the second line we have chosen to constrain △ such that only one of the roots of
the mass is considered. Note that, as mentioned earlier, we can have slightly negative mass -
while this does result in exponentially growing modes this is only at long wavelengths. As we
are considering short wavelengths where mass is unimportant we allow this slightly tachyonic
set of solutions. We also impose a boundary condition at z −→∞ such that φ = 0, meaning
we should set b = 0 for sensible dynamics (this condition is essentially saying we have no
incoming radiation).

Going back to φ one can write this as

φ(x, z) =φ0(x)z
d−△ + φ2(x)z

d+2−△ + ...

+ φd(x)z
△ + ...

(3.20)

where the first line of (3.20) is from the power series with ã coefficient and the second is
that with b̃ coefficient. It is worth noting that these φi all live on boundary z = 0, i.e. the
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x-directions are the boundary directions. Because we have a boundary condition fixing b = 0
one can find that this actually relates our leading functions such that,

φd(x) ∼
∫
ddy

1

|x− y|2△
φ0(x). (3.21)

Now this is actually a familiar sight - (3.21) appears to be the two point function (correlator).
Now previously we have used △ to refer to the scaling dimension, but here it has been
introduced as some power in our expansions.

Consider the rescaling z → λz, and xµ → λxµ which remains invariant when we restrict
this to the boundary. We want φ(x, z) to be invariant under rescaling, implying that when
we restrict to the boundary, the scaling of our functions φ0 and φd should adjust accordingly,
which we can read from (3.20)

φ0 → λd−△φ0(λx), φd(x)→ λ△φd(λx). (3.22)

Now consider the action

S =
1

2

∫
M
ddxdz

√
|g|φ(∇2φ−m2φ)− 1

2

∫
∂M

dSAφ∂Aφ. (3.23)

where we’ve just added a surface term to the action (3.14). Whilst it does not effect the
equations of motion to add this surface term, it can create a stationary action. The on-shell
action is now just the surface term on the boundary

SOS = −1

2

∫
∂M

dSAφ∂Aφ = −1

2
lim
z→0

I(z). (3.24)

where I(z) is the on-shell action with the (3.20) inserted. This comes out as

SOS = −
∫
ddxRd−1[(d− △)φ0(x)

2zd−2△ + ...+ dφ0(x)φd(x)z
0 + ...], (3.25)

in the z →∞ limit. Noting from (3.19) that △> d
2
, we can see that in this limit the leading

order terms are divergent. However, we did have more freedom to add additional surface
terms to the action which allow us to cancel these divergences,

+

∫
∂M

dS(αφ2 + ...) (3.26)

where parameters like α can be tuned to make our on-shell action finite. These terms in
(3.26) are called counterterms. These counterterms are required to make the theory regular
by cancelling out the divergent terms from the on-shell action.

This process is renormalisation (we don’t go into detail here), but we obtain the renor-
malised on-shell action

Srenorm,OS =
2 △ −d

2
Rd−1

∫
ddxφ0(x)φd(x),

∼
∫
ddx

∫
ddy

1

|x− y|2△
φ0(x)φ0(y).

(3.27)
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So we are now in a position to talk about how the AdS/CFT correspondence works given this
dynamical behaviour. We know that the CFT lives on the conformal boundary of the AdS
space containing the bulk gravity theory. Each bulk gravitational field seems to correspond
to a scaling generator, for example, a scalar field in the bulk of mass m corresponds to a
scalar in the CFT with scaling dimension △: △ (△ −d) = R2m2. In other words, the
dynamics in the interior are dual to operators on the boundary.

Take the dimension to be d = 2. The bulk require boundary conditions - we saw that
φ0(x) determined the boundary behaviour entirely. Call this φ0(x) = J(x). In our CFT we
can a source for our dual scalar operator: J(x) such that the dimension of this operator is
d− △.

Take the gravitational path integral is given by Hawking [40]

Zgrav[J ] =

∫
D[g;φ]ei

∫ √
|g|( R

16πG
+(∂φ)2−m2φ2+...)|φ0,g0 , (3.28)

where φ0, g0 are determined by J . Note that this is the path integral for quantum gravity
and not for the semiclassical approximation of gravity. For a CFT we also define the path
integral,

ZCFT [J ] =

∫
DΦei

∫
(LCFT+JΦ), (3.29)

with the J term denoting sources.
The AdS/CFT correspondence tells us that (3.27) with appropriate boundary conditions

is dual to the generating function of correlators for the field theory operator, see work by
Witten [48]:

Zgrav[J ] = ZCFT [J ]. (3.30)

We understand a great deal more in the semiclassical approximation in which Zgrav ∼
eiSreg,OS [φ0]|φ0=J (we’ve use regulated and renormalised interchangeably here). The regu-
latory terms in the gravitational theory relate to the regulatory terms in the CFT, i.e.

ZCFT [J ] ≈ eiSreg,OS [φ0=J ]. (3.31)

This we know to be the generating function of correlators. To compute the correlators we
recall that J is the source for Φ, and so we have to functionally vary (3.1) with respect to
J . For the two-point function this is as follows

⟨Φ(x)Φ(y)⟩ = − 1

ZCFT

∂2

∂J(x)∂J(y)
ZCFT [J ]|J=0,

= − 1

Zgrav

∂2

∂φ0(x)∂φ0(y)
Zgrav[φ0]|φ0 ,

=
c

|x− y|2△
.

(3.32)

So we see that one can derive the two-point function with the expected result but from a
gravitational calculation using this correspondence. In the second line of (3.32) we employ
the AdS/CFT correspondence claim (3.30). In the last line of the above we have simply
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performed the calculation as we know Sreg,OS from (3.27) and this is something that we can
compute. One of the key results from the correspondence is that the metric is in fact dual to
the energy momentum tensor. The constant c can be determined from the gravity side via
the condition on g0, which implies that for the energy-momentum tensor two-point function
we have

⟨Tµν(x)Tαβ(y)⟩ =
Rd−1

16πG

1

|x− y|2d
,

=
c

|x− y|2d
.

(3.33)

Note that the scale dimension of the energy-momentum operator is △= d - this allows us to
find the form of c, which is a well-known quantity in CFT called the central charge for d = 2
but also as the conformal anomaly more generally:

c =
Rd−1

16πG
. (3.34)

3.1.2 Example: Type-IIB String Theory in AdS and N = 4 Super-
Yang-Mills

We’ve defined the AdS/CFT correspondence, delved into some of the dynamics in AdS and
considered how the correspondence relates these dynamics to properties of the CFT. Now we
consider the one of the most studied examples of the AdS/CFT correspondence as we look
to demonstrate the connection between type-IIB string theory compactified on AdS5 × S5

with N = 4 super-Yang-Mills theory, following [2].
We begin with type-IIB string theory - in the low energy limit this is a supergravity theory,

combining general relativity and supersymmetry, in which our theory contains gravitinos of
the same chirality. The gravitino is a massless spinor-vector particle and the gauge (spin
3
2
) fermion supersymmetric counterpart to the graviton. For type IIB in 10-dimensional

Minkoski space, take N D3-branes and stack them in parallel within close proximity to one
another. Each of these D3-branes is a (3 + 1)-dimensional plane embedded in our (9 + 1)-
dimensional flat spacetime. D-branes here are defined in accordance with string perturbation
theory in that they are just surfaces that may act as endpoints for open strings.

We have two possible perturbative excitations here - the open string and the closed string.
The closed strings are excitations of the vacuum, whereas the open strings ending on our
D-branes encode the excitations that take place on these surfaces.

Taking the system at low energy, we only take massless string excitations. For the closed
string massless states we may write a low-energy effective Lagrangian describing type-IIB
supergravity. For the open string massless states a similar low-energy Lagrangian can be
written down but it is the Lagrangian of N = 4 U(N) super-Yang-Mills theory.

A complete effective action for the massless modes is of the form

S = Sbulk + Sbrane + Sint, (3.35)

where each of the terms are defined as follows:
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• Sbulk: this is the action of 10-dimensional supergravity (this may come with higher
derivative corrections and while only containing massless fields it must account for
integrating out massive fields).

• Sbrane: this is the brane action defined on the (3+1)-dimensional brane world-volume,
containing the N = 4 super-Yang-Mills Lagrangian in addition to higher derivative
corrections.

• Sint: this encodes the interactions between brane and bulk modes, in which we obtain
the leading term by covariantising the brane action and introducing the background
metric for the brane.

One can then expand the bulk action as a free quadratic part describing free propagation
of massless modes (including the graviton), plus the interaction terms

Sbulk ∼
1

2κ2

∫
√
gR ∼

∫
(∂h)2 + κ(∂h)2h+ ... (3.36)

with metric g = η + κh. Note that explicit dependence on the graviton has been indicated
here.

The interacting action Sint is also proportional to positive powers of κ, and in taking low
energy limit these terms drop out. Intuitively this makes sense as gravity becomes free at
long distances. In low energy limit, given that Sint vanishes we now have

S = Sbulk + Sbrane, (3.37)

and because there is no interaction between the two actions now, i.e. between the bulk and
the brane we see that we have two decoupled systems in the low energy limit:

• Free gravity in the 10-dimensional bulk theory.

• mathcalN = 4 SYM gauge theory on the branes.

This is a key point for outlining the correspondence in this example. Adopting another
perspective, one can view the D-branes as massive charged objects that act as a source for
various supergravity fields. We can find a D3-brane solution of supergravity in the form

ds2 = f− 1
2 (−dt2 + dx21 + dx22 + dx23) + f

1
2 (dr2 + r2dΩ2

5),

F5 = (1 + ∗)dtdx1dx2dx3df−1,

f = 1 +
R4

r4
, R4 ≡ 4πgsα

′2N.

(3.38)

If we take Ep to denote the energy of an object as measured by an observer at constant r
and take E as the energy measured by an observer at infinity, it is possible to relate these
by a redshift factor,

E = f− 1
4Ep. (3.39)
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This implies that an object brought increasingly closer to r = 0 would have increasingly
lower energy from the view of the observer at infinity. Now taking the low energy limit
in the background solution (3.38), the observer at infinity will witness two kinds of energy
excitations - massless particles propagating in bulk region with wavelengths that become
very large or we have any form of excitation as we approach r = 0.

In the low energy limit we see that these two types of excitation decouple from each
other such that the bulk massless particles decouple from the near horizon limit (approaching
r = 0). This is evident as the wavelength of such particles in this limit will be much greater
than the gravitational size of the brane. Similarly, the excitations living near the near
horizon limit find it increasingly difficult to climb the gravitational potential and escape to
the asymptotic region. This implies that in the low energy theory we can divide the theory
into two decoupled pieces: the free bulk supergravity theory and the near horizon region of
geometry.

In the near horizon region we can set r << R and thus f ∼ R4

r4
, meaning that we recover

ds2 =
r2

R2
(−dt2 + dx21 + dx22 + dx23) +

R2

r2
dr2 +R2dΩ2

5. (3.40)

But this is just the AdS5 × S5 geometry.
From both the point of view of the field theory of open strings on the brane and the view

of a supergravity description we have two decoupled theories in low energy. In both cases one
of the decoupled systems is supergravity in flat space and thus it is only natural to identify
the second system appearing in each of the two systems with one another. This leads us
to the conjecture: N = 4U(N) SYM in (3+1)d is dual to type IIB superstring theory on
AdS5xS

5. A more detailed description of how these limits are specified can be found from
Maldacena [2].

3.2 Entanglement Entropy

Having defined the AdS/CFT correspondence and provided some examples to further eluci-
date on the nuances of such a duality, we want to explore an area in which this conjecture
has been applied to provide new insight into modern physics. One such application heavily
involves the computation of entanglement entropy, and so we take a brief interlude from
AdS/CFT to provide an overview of some entanglement entropy notions.

3.2.1 Defining Entanglement Entropy

To begin to define entanglement entropy let us define a bipartite quantum system - our total
system is divided into two components A and B. We can write the Hilbert space of this
system as follows

H = HA ⊗HB. (3.41)

A typical wavefunction will be of the form
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Ψ =
∑
n

ψn(A)χn(B). (3.42)

If we can’t write the state |Ψ⟩ as a simple product between a state of A and a state of B, we
say that the systems A and B are entangled. This can be demonstrated in a simple example
- consider a 2-spin system in a 4-dimensional Hilbert space with the following wavefunction

|ψ⟩ = 1

2
(|↑↑⟩+ |↓↓⟩+ |↑↓⟩+ |↓↑⟩),

=
1

2
(|↑⟩+ |↓⟩)⊗ (|↓⟩+ |↓⟩).

(3.43)

This has clearly been separated into a simple product of a state in A and a state in B. As
this is possible we say that (3.43) defines a pure state - one that is not entangled. If this
were not possible we would see entanglement, something we can actually quantify by this
measure we call entanglement entropy. To compute this we take the density matrix of our
state

ρ = |Ψ⟩ ⟨Ψ| , (3.44)

and find the reduced density matrix of subsystem A by “tracing out” subsystem B:

ρA = TrB |Ψ⟩ ⟨Ψ| . (3.45)

Using this we can now define the Von-Neumann entropy (or fine-grained entropy) of A with
the rest of the total system as

SA = −TrA(ρA log ρA). (3.46)

This measures the entanglement between subsystems A and B, and as one might expect, if
SA = 0 this implies that the reduced density matrix ρA describes a pure state and |Ψ⟩ can
be written as a simple product. For any pure state |Ψ⟩ we trivially have that SA = SB.
However, if the total system AB is in a mixed state (there is entanglement present) we
generally have SA ̸= SB.

Again, we consider an example of this - take the state to be

|ψ⟩ = cos(θ) |↓↑⟩+ sin(θ) |↑↓)⟩ , (3.47)

which is clearly entangled. We compute the density matrix

ρ = |ψ⟩ ⟨ψ| = cos2(θ) |↓↑⟩ ⟨↓↑|+ sin2(θ) |↑↓⟩ ⟨↑↓|
+ sin(θ) cos(θ)(|↓↑⟩ ⟨↑↓|+ |↑↓⟩ ⟨↓↑| .

(3.48)

Now we can compute the reduced density matrix from this

ρA = TrB |ψ⟩ ⟨ψ| = cos2(θ) |↓⟩ ⟨↓|+ sin2(θ) |↑⟩ ⟨↓| . (3.49)

We now have everything we need to compute the entanglement entropy:

SA = − cos2(θ) log(cos2(θ))− sin2(θ) log(sin2(θ)), (3.50)
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from which one can also show (due to varying θ) that we have different levels of entanglement.
Our maximally entangled state would be given by:

θ =
π

4
=⇒ |ψ⟩ = 1√

2
(|↑↓⟩+ |↓↑⟩ . (3.51)

Entanglement entropy in general has two crucial properties:

1. Subadditivity:
|SA − SB| ≤ SAB ≤ SA + SB. (3.52)

2. Strong subadditivity:
SAC + SBC ≥ SABC + SC ,

SAC + SBC ≥ SA + SB.
(3.53)

In (3.52) this is a weaker condition, only considering a bipartite system AB, whereas in
(3.53) we have a much stronger property on a tripartite system ABC.

3.2.2 Entanglement Entropy in Quantum Many-Body Systems

Again we consider a quantum system AB, defining the Hamiltonian to be

H = HA +HB (3.54)

from which we deduce that the ground state of this system is unentangled. For any initial
state |ψ(t = 0)⟩ that begins unentangled, it will remain this way regardless of any unitary
evolution. We add some coupling (interaction) between the two subsystems by modifying
the Hamiltonian

H = HA +HB +HAB, (3.55)

giving us a ground state that is entangled. This means that for our unentangled initial state
above, we expect this to become more entangled under time evolution.

For typical systems we expect the Hamiltonian (including the interaction Hamiltonian
HAB) to be local. Because of this we expect the interactions to only have support in a region
of the boundary, say of subsystem A, ∂A.

Considering Figure 3.1, we see that HAB only involved degrees of freedom near ∂A,
specifically in some ϵ-region where ϵ denotes the lattice spacing (short distance or IR cutoff).
One finds in general that in the ground state of the localised Hamiltonian we have

SA = C
Area(∂A)

ϵd−2
+ ... (3.56)

for a d-dimensional system, where the leading term here is universal and the corrections
that follow correspond to long-range entanglement. We know that entanglement between A
and Ac = B is hugely dominated by short-range entanglement in the area ∂A where HAB is
supported.
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A B

→ ϵ←

Figure 3.1: Due to locality, the support of HAB lies withing some ϵ-region of the boundary
∂A.

Understanding more about the subleading terms in (3.56) has shown that the contribution
from this long-range entanglement can actually characterise a system. The main one that
we will consider is the characterisation of degrees of freedom of a QFT.

Consider a (1 + 1)-dimensional CFT with central charge c. For a subsytem A of length l
one finds that

SA =
c

3
log

(
l

ϵ

)
. (3.57)

A very thorough treatment of this is provided by Ryu and Takayanagi in [10] with increased
generality.

3.3 The Holographic Derivation of Entanglement En-

tropy

In 2006, Ryu and Takayanagi [8] published new insight on the AdS/CFT correspondence
that provided a holographic derivation of the entanglement entropy in CFTs. The premise
of this was the ability to compute the entanglement entropy in a (d + 1)-dimensional CFT
from a D-dimensional minimal surface of a dual AdSd+2 space.

We know that for a 1-dimensional quantum many-body system, this is essentially a 2-
dimensional CFT if the system is at criticality, a result shown by Ryu and Takayanagi [10]
shows that the entanglement entropy is given by,

SA =
c

3
log

(
L

πa
sin

(
πl

L

))
, (3.58)

which is a well known result for CFTs. To be more specific here, we are describing the entropy
for a subsystem A or a full bipartite system AB (which is the 1-dimensional boundary of a
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circle). Here l is the length of the subsytem A, L is the length of the full system, a is the
lattice-spacing or ultra violet (UV) cutoff, and c is the central charge of the CFT.

Away from criticality, we have another known result [10] for the entanglement entropy

SA =
c

6
A log

(
ξ

a

)
, (3.59)

where A is the number of boundary points, and ξ is the correlation length. For the setup
above we have a CFT on a line with two boundary points so A = 2, and we get that

SA =
c

3
log

(
l

a

)
. (3.60)

The key result of this proposal [8] is the Ryu-Takayanagi (RT) formula. The proposal is
as follows; if one defines the entanglement entropy SA of a CFT, say R1,d, then for the
subsystem A with some (d− 1)-dimensional boundary ∂A we have the “area law”:

SA =
Area(γA)

4G
(d+2)
N

. (3.61)

This makes use of a d-dimensional minimal surface in AdSd+2 with boundary ∂A, defined
by gammaA. The minimal surface acts as a form of holographic screen from the perspective
of an observer only accessible to subsystem A. It is noteworthy that (3.61) is reminiscent of
the definition of the Bekenstein-Hawking entropy

SBH =
Area(horizon)

4GN

, (3.62)

originally proposed by Bekenstein in 1973 [15] and then later more formally by Hawking in
1976 [16].

Here our objective is to reproduce the above results for CFTs from the AdS side, indeed
giving a holographic derivation of entanglement entropy. We will also prove the strong
subadditivity (3.53) requirement for the entanglement entropy defined in this way.

Heuristically, what we gain from this formula are the following conceptual dualities:
that spacetime corresponds to entanglement, and that geometry corresponds to quantum
information.

3.3.1 Proving Strong Subadditivity

To demonstrate the power and application in this relationship of the RT formula, by con-
sidering the minimal surfaces we can greatly simplify the proof that subadditivity holds for
entanglement entropy. Strong subadditivity is given by two conditions (3.53), we’ll tackle
these one at a time in (1 + 1)-dimensions.

Consider three subsytems on a line A, B, and C as depicted in Figure 3.2. We will go
about proving subadditivity be making comparisons between the minimal surfaces γAC and
γBC with γ1 and γ2 as shown. We can quite clearly see that

γAC + γBC = γ1 + γ2. (3.63)
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A C B

γAC γBC

γ2

γ1

Figure 3.2: The subsystems A, C, and B lie consecutively on the line, with minimal surfaces
(thick yellow lines) γAC and γBC for AC and BC respectively. We can also define minimal
surfaces (dashed blue lines) γ1 and γ2 as pictured.

A C B

γAC γBC

γ̃1 γ̃2

Figure 3.3: This setup is as above except we have redefined the minimal surfaces γ1 and γ2.

Then, if we define γABC and γC such that both of these are minimal surfaces (the index
describing the subsystems covered), we can see that the following also hold

γ1 ≥ γC ,

γ2 ≥ γABC .
(3.64)

Putting these back into (3.63), we have

γAC + γBC = γ1 + γ2 ≥ γABC + γC ,

=⇒ SAC + SBC ≥ SABC + SC ,
(3.65)

meaning we see that the first statement of subadditivty holds.
Now moving to the setup shown in Figure 3.3 we see that again

γAC + γBC = γ̃1 + γ̃2. (3.66)

Then with γA and γB being minimal surfaces we see that,
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γ̃1 ≥ γ̃A,

γ̃2 ≥ γ̃B.
(3.67)

This can then lead to the second requirement as such

γAC + γBC = γ̃1 + γ̃2 ≥ γA + γB,

=⇒ SAC + SBC ≥ SA + SB,
(3.68)

Without using this idea of holographic entanglement entropy, the full proof is actually com-
plicated and highly non-trivial [41]. It is greatly simplified by this holographic approach
using the RT formula [8].

3.3.2 Calculating Entanglement Entropy Holographically

We start with a lower dimensional case, namely when we have a gravitational theory in AdS3

with radius R that is dual to a (1 + 1)-dimensional CFT with the central charge

c =
3R

2G
(3)
N

(3.69)

We first calculate the entanglement entropy holographically with AdS Poincaré coordinates
before performing the computation in global AdS coordinates.

Poincaré Coordinate Calculation in Three Dimensions

The Poincaré metric in this context is

ds2 =
R2

z2
(dz2 − dt2 + dx2). (3.70)

To compute the entanglement entropy holographically using (3.61) we must compute the
minimal surface γA, which in this case will simply be a line (the “area” element is actually
just the length of the line here). Intuitively what we will be doing is foliating the AdS3 space
into time slices, which we will divide into a system AB with two constituent subsystems
A and B = Ac. As our calculation will take place on a fixed time slice we can merrily set
dt = 0 such that

ds2 =
R2

z2
(dz2 + dx2). (3.71)

Now we define with a little more specificity our subsystem A to be on the boundary region
of the time slice z = 0 with x constrained by − l

2
≤ x ≤ l

2
. This means we have boundary

points at x = ± l
2
, and our minimal surface should connect these through the bulk AdS

space.
Take this minimal surface to be X(τ) = (x(τ), z(τ)), meaning we take the usual definition

of the arclength

λ(τ) =

∫ τ

τ0

|X ′(τ)|dτ, (3.72)
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from which one can find λ = λ(τ). Here the arclength is an affine parameter, so we ideally
would like to parametrise our coordinates using λ to simplify the geodesic equations. To do
so, define the new curve Y (λ) = (x(λ), z(λ)) such that Y (λ) = RX(τ(λ)), which allows us
to find:

|Ẏ (λ)| = |dY
dλ
| = |dY

dτ

dτ

dλ
| = R|dX(τ(λ))

dτ
X ′(τ(λ))| = R

Ẏ (λ) = (ẋ(λ), ż(λ)) =⇒ |Ẏ (λ)| =
√
gµνẎ µẎ ν =

R

z

√
ẋ2 + ż2.

(3.73)

This gives us the first equation we will need, the arclength condition:

ẋ2 + ż2 = z2. (3.74)

Because we selected an affine parameter, we use the non-square root definition of the La-
grangian, which we state,

L =
1

2
gµν ẋ

µẋν =
1

2
R2z−2(ẋ2 + ż2). (3.75)

Noting that there is no x-dependence in the Lagrangian, we know we will get a simplified
equation of motion via the Euler-Lagrange equation for x - so we do just that

∂L
∂x
− ∂

∂λ

(
∂L
∂ẋ

)
= 0, (3.76)

but as there is no x-dependence we find that

∂L
∂ẋ

=
R2

z2
ẋ = C, (3.77)

where C is a constant. This gives us a second crucial equation

ẋ(λ) = αz(λ)2, (3.78)

with α = C
R2 . So we take (3.78) and plug this into (3.74) as follows:

ẋ2 + ż2 = z2 =⇒ α2z4 + ż2 = z2,

=⇒ ż2 = z2(1− α2z2),

=⇒ ż = z
√
1− α2z2.

(3.79)

This is a solveable ordinary differential equation (ODE) and so rearranging the final line of
(3.79) we can obtain ∫

dz
1

z
√
1− α2z2

=

∫
dλ. (3.80)

Making the substitution y = az we find∫
dz

1

z
√
1− α2z2

=

∫
dy

1

y
√

1− y2
. (3.81)
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Now we see we can implement the substitution u =
√

1− y2:

u =
√

1− y2 =⇒ dy = du

(
−u√
1− u2

)
,

=⇒
∫
dy

1

y
√

1− y2
=

∫
du

(
−u√
1− u2

)
1

u
√
1− u2

= −
∫
du

1

1− u2
.

(3.82)

But this final result is a known integral meaning we have

−
∫
du

1

1− u2
= −arctanh(u) = λ, (3.83)

reinserting the right hand side of (3.80). Using the definition of hyperbolic functions it is
possible to find a more convenient form of λ. First note that we can manipulate the minus
sign as follows

u = tanh(−λ) = − tanh(λ) =⇒ tanh(λ) = −u. (3.84)

Now using the definition of the tanh function,

eλ − e−λ

eλ + e−λ
= −u,

=⇒ eλ − e−λ = −u(eλ + e−λ),

=⇒ eλ(1 + u) = e−λ(1− u),

=⇒ e2λ =
1− u
1 + u

.

(3.85)

This gives us a function of λ in terms of u:

λ =
1

2
[log(1− u)− log(1 + u)], (3.86)

which we can further specify by fully restoring λ in terms of the z coordinate:

λ =
1

2
[log(1−

√
1− α2z2)− log(1 +

√
1− α2z2)], (3.87)

This is a good place to stop and consider the boundary conditions for this minimal surface
we are computing. On the boundary itself z = 0 it is clear from (3.87) that the arclength
λ diverges - this is expected by our construction, from which we also can see that λ = 0
at some z = z∗ (this is just the point we began measuring arclength which we take to be z
value of the saddle point of the minimal surface).

We are now going to proceed with computing the length of the geodesic from z = z∗ to
the boundary z = 0. To do so, we revisit our fixed time metric (3.71), from which we deduce

ds2 =
R2(ẋ2 + ż2)

z2
dλ2. (3.88)

Using (3.74), this tells us that ds2 = R2dλ2, and so we have can find the minimal surface
length:

44



LγA = 2R

∫ ∞

0

dλ. (3.89)

As this integral is divergent we cut off the upper limit by introducing a regulator λ0. Note
the factor of two is because we are taking the integral over half of the minimal surface (due
to its symmetry). Following this, we look to transform the regulated version of (3.89) into
an integral over z (for which we will make use of a short distance cut off or lattice spacing
a).

LγA =2R

∫ λ0

0

dλ = 2R

∫ z0

a

dz
1

ż
= 2R

∫ z0

a

dz
1

z
√
1− α2z2

,

=R
(
log(1−

√
1− α2z2∗)− log(1 +

√
1− α2z2∗)

)
−R

(
log(1−

√
1− α2a2)− log(1 +

√
1− α2a2)

)
,

=R log

(
1−
√
1− α2a2

1 +
√
1− α2a2

)
,

=R log

(
2− α2a2 + 2

√
1− α2a2

α2a2

)
,

=R log

(
2

α2a2
− 1 +

2

α2a2
√
1− α2a2

)
,

=R log

(
l2

2a2
− 1 +

l2

2a2

√
1− 4a2

l2

)
.

(3.90)

Now we take the limit as a→ 0 to obtain

LγA = 2R log

(
l

a

)
. (3.91)

So we have successfully computed the area element (length) of the minimal surface in the
bulk connecting the boundary points of region A in our fixed time slice. We may now use
the Ryu-Takayanagi formula (3.61) to compute the entropy

SA =
R

2GN

log

(
l

a

)
, (3.92)

but we see that we can substitute the definition of the central charge (3.69) to find

SA =
c

3
log

(
l

a

)
, (3.93)

which exactly matches the result for the 2-dimensional CFT (3.60).
Particularly rigorous readers will have identified that in the final line of (3.90) the sub-

stitution α = 2
l
was used. Let us justify this here - note that from (3.78) and (3.79) we

have
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ẋ =
dx

dλ
= ż

dx

dz
,

=⇒ dx

dz
=
αz2

ż
=

αz√
1− α2z2

.
(3.94)

We then manipulate this via a substitution y = αz, giving

α
dx

dy
=

y√
1− y2

=⇒ α

∫
dx =

∫
dy

y√
1− y2

. (3.95)

We note that we are free to choose the sign of α and do so to our convenience below, obtaining

x =
1

α

√
1− α2z2, (3.96)

by solving (3.95). At z = 0 we know that x = l
2
by construction, and so we find that

α =
2

l
(3.97)

We then see that the minimal surface is in fact the upper half circle with radius l
2
centred

around the origin, as from (3.96), plugging in (3.97), we see that

x2 + z2 =

(
l

2

)2

. (3.98)

We could have taken this route to compute the entanglement entropy also, but parametrising
such that x = x(z),

ds2 =
R2

z2
(1 + x′(z)2)dz2, (3.99)

consequently giving the entropy

SA =
1

4GN

2R

∫ z∗

a

1

z

√
1 + x′(z)2. (3.100)

As we are free to scale, take z → l
2
z, now

SA =
R

2GN

∫ 1

2a
l

dz
1

z
√
1− z2

, (3.101)

where we have also used (3.94). Let us compute this integral explicitly,
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∫ 1

2a
l

dz
1

z
√
1− z2

= −1

2

[
log

(
1−

√
1− 4a2

l2

)
− log

(
1 +

√
1− 4a2

l2

)]
,

=
1

2
log

1 +
√
1− 4a2

l2

1−
√

1− 4a2

l2

 ,

=
1

2
log

(
l2

2a2
− 1 +

l2

2a2

√
1− 4a2

l2

)
.

(3.102)

and again we take the a→ 0 limit to obtain,∫ 1

2a
l

dz
1

z
√
1− z2

= log

(
l

a

)
. (3.103)

And so we see the expected result by plugging this back into (3.101),

SA =
R

2GN

log

(
l

a

)
=
c

3
log

(
l

a

)
. (3.104)

Global AdS Coordinate Calculation in Three Dimensions

The primary demonstration of the holographic derivation of the entanglement entropy in
gravitational theories by Ryu and Takayanagi [8] takes place in AdS3/CFT2 (as above) and
is computed using global coordinates. The explicit computation is given here, we begin with
the global AdS3 metric

ds2 = R2(− cosh2(ρ)dt2 + dρ2 + sinh2(ρ)dθ2) (3.105)

The boundary ρ = ∞ is clearly divergent for this metric, and so we introduce a large limit
regulator ρ ≤ ρ∗. In an identical setup to the Poincar e computation, AB denotes our total
system, L is the system length, and a is the lattice spacing of the system (short distance cut
off.

It is worth noting that at ρ = ρ∗, we have

ds2 = R2(− cosh2(ρ∗)dt
2 + sinh2(ρ∗)dθ

2), (3.106)

and so see that the regulator can be related, up to some factor, to the system length and
lattice spacing as such

eρ∗ ∼ L

a
. (3.107)

At ρ = ρ∗, define the subsystem A by the region 0 ≤ θ ≤ 2πl
L
. The minimal surface connects

boundary points θ = 0 and θ = 2πl
L

on a fixed time slice, and so

ds2 = R2(dρ2 + sinh2(ρ)dθ2). (3.108)
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ρ = ρ0

ρ = ρ∗

△ θ = πl
L

Figure 3.4: The turning point of the minimal surface (blue, dashed line) lies at ρ∗, we want to
integrate over angle θ from the midpoint of subsystem A (black, solid line) to the boundary
point as shown, as we integrate over half of the desired region we will pick up a factor of 2.

As in the previous calculation, we can affinely parametrise in terms of the arclength λ to
obtain the condition

ρ̇2 + sinh2(ρ)θ̇2 = 1. (3.109)

We similarly define the Lagrangian,

L =
1

2
R2(ρ̇2 + sinh2(ρ)θ̇2), (3.110)

and as there is no θ-dependence we use the Euler-Lagrange equations to obtain

θ̇ =
α

sinh2(ρ)
. (3.111)

Combining (3.109) and (3.111), we find that

ρ̇ =

√
1− α2

sinh2(ρ)
. (3.112)

The turning point on the minimal surface (minimal geodesic) is given by ρ̇ = 0. At this
point, let us say ρ = ρ∗, implying that

α = sinh(ρ∗) (3.113)

This can be seen more explicitly in Figure 3.4. We then want to get the explicit form of θ,
begin with

dθ

dρ
=
θ̇

ρ̇
=

α

sinh(ρ)
√

sinh2(ρ)− α2

. (3.114)

This implies that we can compute θ as
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θ =

∫
dρ

α

sinh(ρ)
√
sinh2(ρ)− α2

. (3.115)

Making the substitution x = − α cosh(ρ)√
sinh2(ρ)−α2

, we show

dx

dρ
=

d

dρ

(
− α cosh(ρ)√

sinh2−α2

)
,

=
d

dρ
(−α cosh(ρ)(sinh2(ρ)− α2)−

1
2 ),

= −α sinh(ρ)(sinh2(ρ)− α2)−
1
2 + α cosh2(ρ) sinh(ρ)(sinh2(ρ)− α2)−

3
2 ,

= α sinh(ρ)(sinh2(ρ)− α2)−
1
2 [−1 + cosh2(ρ)(sinh2(ρ)− α2)−1],

=
α sinh(ρ)√
sinh2(ρ)− α2

(
α2 + 1

sinh2(ρ)− α2

)
.

(3.116)

And so, we compute θ as follows using (3.115) and (3.116),

θ =

∫
dx

α sinh(ρ)√
sinh2(ρ)− α2

(
α2 + 1

sinh2(ρ)− α2

)
α

sinh(ρ)
√
sinh2(ρ)− α2

,

=

∫
dx

(
sinh2(ρ)− α2

(α + 1) sinh2(ρ)

)
,

=

∫
dx

sinh2(ρ)− α2

(α + 1)(cosh2(ρ)− 1)
,

=

∫
dx

sinh2(ρ)− α2

cosh2(ρ)− 1 + α2 cosh2(ρ)− α2
,

=

∫
dx

sinh2(ρ)− α2

sinh2(ρ)− α2 + α2 cosh2(ρ)
,

=

∫
dx

1

1 +

(
− α cosh(ρ)√

sinh2(ρ)−α2

)2 ,

=

∫
dx

1

1 + x2
= arctan(x) + C.

(3.117)

This gives us the following result for θ

tan(θ − C) = − α cosh(ρ)√
sinh2(ρ)− α2

. (3.118)

The conditions on the minimal surface (Figure 3.4) imply that for θ = 0 we have ρ = ρ∗.
This implies that
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tan(−C) = − α cosh(ρ∗)√
sinh2(ρ∗)− α2

→∞, (3.119)

telling us we take −C = π
2
. Leaving us with

tan(θ +
π

2
) = − α cosh(ρ)√

sinh2(ρ)− α2

=⇒ cot(θ) =
α cosh(ρ)√
sinh2(ρ)− α2

. (3.120)

We also know that we must implement a boundary condition at θ =△ θ, ρ = ρ0, so we take

cot(△ θ) =
α cosh(ρ0)√
sinh2(ρ0)− α2

. (3.121)

We also know that ρ0 →∞, and so we can take cosh(ρ0) ≈ sinh(ρ0),

=⇒ cot(△ θ)→ α = sinh(ρ∗),

=⇒ cos(△ θ)

sin(△ θ
= sinh(ρ∗),

=⇒ cosh(ρ∗) =
1

sin(△ θ)
.

(3.122)

Now that we have successfully constrained the system using the appropriate boundary con-
ditions, we can compute the geodesic length as an integral over λ,

LγA =

∫
ds = 2R

∫ △λ

0

dλ

√
ρ̇2 + sinh2(ρ)θ̇ = 2R

∫ △λ

0

dλ. (3.123)

One can rewrite (3.112) as such

ρ̇ =

√
sinh2 ρ− α2

sinh(ρ)
, (3.124)

meaning that we can write (3.123) as an integral over ρ using the following

dλ =
sinh(ρ)√

sinh2 ρ− α2
dρ =⇒ LγA = 2R

∫ ρ0

ρ∗

dρ
sinh(ρ)√

sinh2 ρ− α2
. (3.125)

We proceed to make the following substitution u = cosh(ρ) =⇒ du = dρ sinh(ρ), and so

LγA = 2R

∫ u0

u∗

du
1

sinh(ρ)

sinh(ρ)√
cosh2 ρ− 1− α2

= 2R

∫ u0

u∗

du
1√

u2 − α2 − 1
. (3.126)

We then substitute v = u√
α2+1

=⇒ dv
du

= 1√
α2+1

and obtain,
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LγA = 2R

∫ v0

v∗

dv
1√

v2 − 1
,

= 2R

[
arccosh

(
cosh(ρ0)√
α2 + 1

)
− arccosh

(
cosh(ρ∗)√
α2 + 1

)]
,

= 2R log

(
cosh(ρ0)

cosh(ρ∗)
+

√
cosh2(ρ0)

cosh2(ρ∗)
− 1

)
,

= 2R log

cosh(ρ0) +
√

cosh2(ρ0)− α2

cosh(ρ∗)

 ,

≈ 2R log

(
2 cosh(ρ0)

cosh(ρ∗)

)
≈ 2R log

(
eρ0

cosh(ρ∗)

)
,

= 2R log

(
eρ0 sin

(
πl

L

))
.

(3.127)

Recalling (3.107), we can take eρ0 ∼ L
a
∼ L

πa
, implying

LγA = 2R log

(
L

πa
sin

(
πl

L

))
. (3.128)

Now we are ready to compute the entanglement entropy:

SA =
LγA

4G
(3)
N

=
R

2G
(3)
N

log

(
L

πa
sin

(
πl

L

))
, (3.129)

but as we did in the Poincaré case, we can input the central charge and obtain

SA =
c

3
log

(
L

πa
sin

(
πl

L

))
, (3.130)

which exactly coincides with the CFT result (3.58).

Poincaré Coordinate Calculation in d+ 2 dimensions

We would like to study this correspondence more generally, and so we are going to compute
an example in AdSd+2 space which corresponds to a (d+1)-dimensional CFT. The example
we will compute is the “fixed belt” mentioned in [8] for which Ryu and Takayanagi give a
brief outline, with a slightly more explicit calculation in [10], however we will approach this
via the method used in the previous two examples.

We first state the Poincaré AdSd+2 metric

ds2 =
R2

z2

(
dz2 + dx2 − dt2 +

d−1∑
i=1

dx2i

)
. (3.131)

We define the straight belt region we will consider as

AS = {xµ|x ∈ [−l/2, l/2], xi ∈ [−∞,∞], ∀i = 1, ..., d− 1} (3.132)
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Following a similar procedure to the one outlined in the previous Poincaré coordinate calcu-
lation, we are computing the area element of the minimal surface for a fixed time slice and
regulated xi directions at length L,

ds2 =
R2

z2

(
dz2 + dx2 +

d−1∑
i=1

dx2i

)
, xi ∈ [0, L]∀i = 1, ..., d− 1. (3.133)

Now we parametrise in such a way that z = z(x),

ds2 =
R2

z2

(
(1 + z′(x)2)dx2 +

d−1∑
i=1

dx2i

)
, (3.134)

The total area of the disk is then something we can compute, as follows

Area(AS) =

∫
√
gdxdxi,

=

(
d−1∏
i=1

∫ L

0

)∫ l
2

− l
2

dx

√[
R2

z2
(1 + z′2)

] [
R2

z2

]d
,

= RdLd−1

∫ l
2

− l
2

dx

√
1 + z′2

zd
.

(3.135)

We want to use a Lagrangian and Hamiltonian formalism and so we begin with the action
and therefore the Lagrangian via (3.135)

S =

∫
dx

√
1 + z′2

zd
=⇒ L =

√
1 + z′2

zd
. (3.136)

Now we define the conjugate momentum P in order to define the Hamiltonian:

P =
∂L
∂z′

=
z′

zd
√
1 + z′2

. (3.137)

Using (3.137) we see that

P 2z2d =
z′2

1 + z′2
=⇒ 1− P 2z2d =

1

1 + z′2
=⇒

√
1 + z′2 =

1√
1− P 2z2d

(3.138)

We can now use the definition of the Hamiltonian, H = Pz′ − L to find

H =
z′2

zd
√
1 + z′2

− 1 + z′2

zd
= − 1

zd
√
1 + z′2

= −
√
1− P 2z2d

zd
(3.139)

Noting that H is independent of x, we can take H = E to be constant. We need some
further manipulations for the calculation. The first is

∂H

∂P
= − 1

2zd
−2Pz2d√
1− P 2z2d

=
Pzd√

1− P 2z2d
. (3.140)
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And so we can see that from (3.139),

H2z2d = 1− P 2z2d,

=⇒ Pzd =
√

1−H2z2d, and Hzd =
√
1− P 2z2d,

=⇒ ∂H

∂P
=

√
1−H2z2d

Hzd
=

√
1
H2 − z2d

zd
.

(3.141)

As H = Pz′ − L we know that ∂H
∂P

= z′, and setting H = 1
zd∗
,

z′ =

√
z2d∗ − z2d
zd

(3.142)

We would like z = z∗ to be a turning point, and therefore we constrain such that∫ l
2

0

dx =
l

2
=

∫ z∗

0

dz

(
1

z′

)
=

∫ z∗

0

dz
zd√

z2d∗ − z2d
. (3.143)

The substitution u = z
z∗

can be made such that dz = duz∗, implies that

l

2
=

∫ 1

0

duz∗
ud√

1− u2d
= z∗

∫ 1

0

duud(1− u2d)−
1
2 ,

= z∗
1

2d
B

(
d+ 1

2d
,
1

2

)
= z∗

1

2d

Γ
(
d+1
2d

)
Γ
(
1
2

)
Γ
(
d+1
2d

+ 1
2

) ,
= z∗

1

2d

√
πΓ
(
d+1
2d

)
1
2d
Γ
(

1
2d

) =

√
πΓ
(
d+1
2d

)
Γ
(

1
2d

) z∗.

(3.144)

Here we have first used the Beta function:∫ 1

0

dxxµ−1(1− xλ)ν−1 =
1

λ
B
(µ
λ
, ν
)
,

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

(3.145)

and the Gamma function, which obeys the following,

Γ

(
1

2

)
=
√
π, Γ(1 + z) = zΓ(z). (3.146)

We are now ready to compute the definite area of the minimal surface. Go back to the area
element

Area(AS) = RdLd−1

∫ l
2

− l
2

dx

√
1 + z′2

zd
,

= 2RdLd−1

∫ l
2

0

dx

√
1 + z′2

zd
,

= 2RdLd−1

∫ z∗

a

dz
1

z′

√
1 + z′2

zd
,

(3.147)
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where a is the lattice spacing or short distance cut off. Now

(
1

z′

) √
1 + z′2

zd
=

√
1 + z2d∗ −z2d

z′2d√
z2d∗ − z2d

, (3.148)

which we can plug back into the area (3.148)

Area(AS) = 2RdLd−1zd∗

∫ z∗

a

dz
1

zd
√
z2d∗ − z2d

,

= 2RdLd−1zd∗

[∫ z∗

0

dz
1

zd
√
z2d∗ − z2d

−
∫ a

0

dz
1

zd
√
z2d∗ − z2d

]
.

(3.149)

We compute the two integrals here individually. Again we use the substitution u = z
z∗

=⇒
dz = duz∗ to compute the first integral in the final line of (3.149), so∫ z∗

0

dzz−d(z2d∗ − z2d)−
1
2 =

∫ 1

0

duz∗z
−du−d(1− u2d)−

1
2 z−d

∗ ,

=

∫ 1

0

duu−d(1− u2d)−
1
2 z1−2d

∗ .

(3.150)

This is followed by the substitution v = z
a

=⇒ dz = adv, giving us the following result for
the second integral in (3.149)∫ a

0

dz
1

zd
√
z2d∗ − z2d

=

∫ 1

0

dva1−dv−d(z2d∗ − a2dv2d)−
1
2 ,

→
∫ 1

0

v−da1−dz−d
∗ ,

(3.151)

where, in the final line, we take advantage of a→ 0. Bringing the constituent parts together,
we have

Area(AS) = 2RdLd−1zd∗

[∫ 1

0

duu−d(1− u2d)−
1
2 z1−2d

∗ −
∫ 1

0

v−da1−dz−d
∗

]
. (3.152)

Let us now compute each of the integrals in (3.152), first of all we have∫ 1

0

duu−d(1− u2d)−
1
2 =

1

2d
B

(
1− d
2d

,
1

2

)
,

=
Γ
(
1−d
2d

)
Γ
(
1
2

)
2dΓ

(
1−d
2d

+ 1
2

) ,
=

√
πΓ
(
1−d
2d

)
2dΓ

(
1
2d

) = −I.

(3.153)

Quite trivially we also see
∫ 1

0
dvv−d = − 1

d−1
. Let’s plug these back into (3.152)
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Area(AS) = 2RdLd−1z1−d
∗ (−I) + 2RdLd−1a1−d

(
1

d− 1

)
,

=
2Rd

d− 1

(
L

a

)d−1

− 2IRd

(
L

z∗

)d−1

.

(3.154)

Rearranging (3.144) for the form of z∗ and using the second identity for the Gamma function
in (3.146), we can further manipulate the above, namely

−Iz1−d
∗ =

lΓ
(
1−d
2d

)
2dΓ

(
1
2d

) l1−dΓ
(

1
2d

)1−d

21−dπ
1−d
2 Γ

(
d+1
2d

)1−d
,

=
l1−d2dπ

d
2

2dΓ
(

d
2d

) Γ
(
1−d
2d

)
1−d
2d

Γ
(
1−d
2d

)
Γ
(
d+1
2d

)−d
,

=
2dπ

d
2Γ
(
d+1
2d

)d
(1− d)Γ

(
1
2d

)d l1−d,

=
−2dπ d

2

d− 1

(
Γ
(
d+1
2d

)
Γ
(

1
2d

) )2
1

ld−1
.

(3.155)

From this we can finally compute the entanglement entropy of in (d + 2)-dimensional AdS
using holography and the RT formula in Poincaré coordinates:

SA =
1

4G
(d+2)
N

 2Rd

d− 1

(
L

a

)d−1

− −2
dπ

d
2

d− 1

(
Γ
(
d+1
2d

)
Γ
(

1
2d

) )2(
L

l

)d−1
 (3.156)

A similar result [8], [10] can be found for the disk AD = {xi|r ≤ l}.

Yang-Mills at Finite Temperature

In [8], Ryu and Takayanagi show (as have others prior to this paper) that N = 4 super-
Yang-Mills (SYM) theory on R at finite temperature T is dual to the black hole defined by
[23] as

ds2 = R2

[
du2

hu2
+ u2(−hdt2 + dx21 + dx22 + dx23) + dΩ2

5

]
, (3.157)

with h = 1− u4
0

u4 and u0 = πT . We’ll briefly provide some commentary on this example purely
because it is one of the most fundamental aspects of the AdS/CFT correspondence. There
is also a more detailed discussion on black holes in the following chapter for more context
around this topic.

We take the same example as the calculation prior to this and look to compute the
entanglement entropy for AS but in SYM at finite temperature. Taking the cut off to be
u ∼ z−1 ∼ a one can find the area to be
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Area(AS) = 2R3L2

∫ a−1

u∗

du
u6√

(u4 − u40)(u6 − u6∗)
, (3.158)

with u∗ is defined such that:

l

2
=

∫ ∞

u∗

du

[
(u4 − u40)

(
u6

u6∗
− 1

)]
. (3.159)

We can see that we will get some UV divergences here but we can find the finite part of the
entropy in the large l limit regardless:

Sfinite ≈
π2

2
N2T 3L2l =

π2N2T 3

2
× Area(AS). (3.160)

This entropy can be regarded as part of the Hawking-Bekenstein entropy of black 5-branes,
proportional to the area of the horizon at u = u0. Because of this we can interpret Sfinite as
thermal entropy contribution to the total entanglement entropy at finite temperature.

In the gravitational description, we can paint more of a picture to visualise how the
entropy relates to the black hole. The thermality arises because the minimal surface wraps
a part of the black hole horizon. If we expand the size of A until it coincides with the total
system, γA wraps the horizon completely and SA = SBH as expected.

The AdS black hole can be dual to an entanglement of two different CFTs at the two
boundaries, per Maldacena [24]. It is interesting to look at minimal surfaces connecting them
and in the appropriate limit, one can consider the black hole entropy as the entanglement
entropy of the CFTs as the minimal surface wraps the horizon.
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Chapter 4

Black Holes and AdS/CFT

The consequences of this incredible duality span a large, yet inevitably incomplete, set
of research areas in physics - either unlocking novel mechanisms and perspectives within
existing problems or bringing about new and exciting ideas for study. For the purposes of
our discussion in this report, we will focus on the application of this gauge-gravity duality -
the AdS/CFT correspondence - to black holes, beginning with a brief overview of black hole
solutions in Minkowski and AdS space, reviewing black hole thermodynamics and entropy,
and computing the holographic entanglement entropy via the AdS/CFT correspondence.

4.1 Schwarzschild Solution

Black holes are a prediction of Einstein’s theory of general relativity - unavoidable singular-
ities hidden behind a horizon, within which no physical particles can escape due to the very
nature of this regions geometry.

The first black hole solution to define would be the Schwarzschild solution - this is the
simplest black hole solution we will discuss here and it is incredibly apparent where the
curvature singularity lies. The metric for this coordinate system is defined as follows

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2
2, (4.1)

where we are in (3+1)-dimensions and dΩ2 = dθ2+sin2(θ)dϕ2. This is the unique spherically
symmetric vacuum solution according to general relativity.

One can also see that clearly there is some singular behaviour present in (4.1), namely
that we encounter apparent singularities in the metric coefficients when either r = 0 or
r = 2GM . Now we must recall that these coefficients do depend on the coordinates used to
define the metric, and so we must check for one of two possible types of singular behaviour
here.

• Coordinate Singularity: this is the case in which we don’t actually observe singular
behaviour, but more we have used an ill-defined coordinate system for the space. These
can be removed simply by transforming to another coordinate system that is well-
defined at the point of the coordinate singularity.
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• Curvature Singularity: this is more subtle and in the case of a curvature singularity we
must check if the geometry itself is out of control. To do so we must check curvature
scalars - measures of curvature independent of the coordinate system used - such as
the Ricci scalar R or other higher order scalars. If any of these are divergent as we
approach the singular point in question we have a true singularity of the spacetime.

For the case at hand, one can check that the point r = 0 is the true curvature singularity
that defines the black hole, and that rs = 2GM is a coordinate singularity that defines
the location of the black hole’s event horizon. We assume here that the reader has the
background knowledge regarding Schwarzschild black holes and their maximal extension,
including Schwarzschild geodesics, the Penrose diagram and the formation of the black hole
from star (photon shell) collapse. Rigourous description of this can be found from Susskind
and Lindesay [18] and Carroll [4].

It is important here to state Birkhoff’s theorem but a full treatment of this can be found
by Carroll [4]. The theorem states that for a spherically symmetric, asymptotically flat
vacuum, the unique solution must be the Schwarzschild metric. We will later discuss the
validity of this uniqueness theorem when we consider the AdS-Schwarzschild solution.

4.2 Black Hole Thermodynamics

During the 1970’s it was found that black holes behaved as thermal objects leading largely
from Bekenstein and Hawking, meaning they appear to obey parallels of thermodynamic
laws - allowing one to define an entropy and a temperature that is indicative of Hawking
radiation. This was pivotal in the conceptualisation of the Hawking information paradox.

The typical story one begins with for black hole thermodynamics is that of dropping an
object into a black hole - we expect a dynamical response to this action as we do so, a rippling
at the event horizon that then settles back into a new equilibrium at an increased radius. The
rules governing these changes in the black hole geometry due to such actions is somewhat
akin to the laws of thermodynamics. Almheiri, Hartman, Maldacena, Shaghoulian, and
Tajdini provide a brief summary of black hole thermodynamics in [9], but more detailed
outlines can be found by Carroll [4] and Wald [19]. The equation for the response of a black
hole to an infalling object is given by [9] as

κ

8πGN

dA = dM − ΩdJ, (4.2)

in which κ is the surface gravity,M is the mass of the black hole, J is the angular momentum,
Ω is the rotational velocity of the horizon, A is the area of the event horizon and GN is
Newton’s gravitational constant. If one was to postulate that the black hole in fact possessed
a temperature T ∝ κ and an entropy S ∝ A, then (4.5) becomes identical to the first law of
thermodynamics:

TdS = dM − ΩdJ. (4.3)

But also in the classical theory, the area of the horizon is ever-increasing for such actions,
connecting us to the second law of thermodynamics. In [16], Hawking showed that in the
case of general relativity coupled to QFT black holes have a temperature
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T =
ℏκ
2π
, (4.4)

where we are working in units such that c = kB = 1. By noting that the total black hole
entropy must have a contribution from the exterior, we can also define the generalised black
hole entropy

Sgen =
A

4ℏGN

+ Sexterior, (4.5)

with Sexterior being the entropy of matter and gravitons outside of the black hole (in the
semiclassical theory). This also includes a vacuum contribution from the quantum fields
themselves. Even with the addition of this quantum term, the generalised entropy we’ve
defined here (4.8) obeys the second law of thermodynamics, in that

△ Sgen ≥ 0. (4.6)

4.2.1 Thermality and Euclidean Black Holes

Recall the Schwarzschild metric (4.1), for a Schwarzschild black hole in (3 + 1)-dimensions
we know this can be written in terms of the Schwarzschild radius rs:

ds2 = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1

dr2 + r2dΩ2
2, (4.7)

where rs = 2GM denotes the Schwarzschild radius. For the moment we can neglect the
angular coordinates here, they are not particularly relevant to the following discussion.

We impose the following coordinate transformation

r → rs

(
1 +

ρ2

4r2s

)
, t→ 2rsτ, (4.8)

and expand this for ρ≪ rs. This gives us the “near-horizon” metric:

ds2 ≈ −ρ2dτ 2 + dρ2. (4.9)

Now interestingly, if one has little background understanding of the black hole horizon,
one would expect something interesting to happen with the geometry near the horizon.
However, we see that if we were to transform coordinates again, say taking x0 = ρ sinh(τ)
and x1 = ρcosh(τ), we actually get flat Minkowski space. In other words, to an inwardy free-
falling observer Polchinski [20] summarises the perspective with the no drama postulate: “a
freely falling observer experiences nothing out of the ordinary when crossing the horizon” -
we understand this to be a manifestation of Einstein’s equivalence principle that in localised
patches of spacetime one cannot detect the existence of a gravitational field. Locally, we
think of the horizon as being smooth.

In our near-horizon coordinates, one can show that for an observer at fixed ρ, the trajec-
tory they must follow is that of a uniformly accelerated observer, and hence we know that
they will detect thermal radiation. This is known as the Unruh effect [21], describing that for
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a uniformly accelerated observer (a Rindler observer), they will experience a thermal bath
of particles (vacuum fluctuations) at the Unruh temperature.

One way to compute the temperature is via a Wick rotation, so implement the coordinate
transformation

τ → iθ, x0 → ix0E,

=⇒ x0E = ρ sin(θ), x1 = ρ cos(θ),
(4.10)

which moves us to the Euclidean plane, R2, coordinates. This tells us that an observer at
some fixed ρ moves in a circle with length 2πρ - this Euclidean time evolution on the circle is
the relation that will allow us to compute thermodynamical quantities. For a thermodynamic
system, we know that the partition function for a given temperature T = 1

β
is given by

Z = Tr[e−βH ] (4.11)

with β denoting the length of Euclidean time evolution. Then, the temperature felt by an
accelrated observer will be

Tproper =
1

2πρ
=

ℏa
2πkBc

, (4.12)

where we restore fundamental constants for the sake of the reader’s intuition, and a is the
proper acceleration of the observer. Tproper is the proper temperature felt by the near-
horizon observer such that Tproper →∞ at ρ = 0 and decreases as ρ→∞. This decrease in
temperature is consistent with what we might expect for thermal equilibrium in the presence
of a gravitational potential.

We quote the Tolman relation [22] as we are in a spherically symmetric configuration:

Tproper
√
−gττ = const. (4.13)

Therefore, by (4.9), we see that

Tproper
√
−gττ =

ℏa
2πkBc

ρ =
ℏ

2πkBc
∼ 1

2π
. (4.14)

If one moves back to (t, r) coordinates (4.7), it is simple to show that this becomes the
Hawking temperature

THawking = Tproper(r ≫ rs) =
1

4πrs
. (4.15)

This is due to the fact that at large r, gtt = −1. Observers far from the black hole will
measure this temperature.

Now we want to explore this link between the wick rotated or Euclidean time tE : t→
itE - we can see that this has a periodicity that is directly related to the temperature. For
a thermal state, we have the partition function

Z = Tr[e−βH ]. (4.16)
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By the cyclic properties of the trace we can show that any observable, say Tr[O(t)O(0)e−βH ],
is periodic with t→ t+ iβ given we know that O(t) = eiHtOe−iHt. If one returns to Figure
2.4, one can gain some intuition more visually - the time coordinate appears to wrap into
a circle under the Wick rotation, which of course will lead to some periodic nature in the
temporal coordinate.

We can think more generally about this considering the path integral. A Lorentzian path
integral describes real time evolution and a Euclidean path integral describes Euclidean time
evolution. The Euclidean geometry evolves for a time β with the trace being interpretted as
the identification of both “ends” - the boundary conditions if you will.

Now if we have a strip with length β obeying periodic boundary conditions this is equiv-
alent to a path integral over a cylinder, thus for QFT we calculate Z (4.16) using such a
path integral on the Euclidean cylinder on which the angle is given by θ = θ + β.

One way to compute this directly is simply by coordinate changes and demanding a
smooth geometry. Consider some d-dimensional black hole metric

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2, (4.17)

where dΩ contains our angular coordinates in d− 2 dimensions. If we Wick rotate t→ itE,
we obtain,

ds2E = f(r)dt2E +
dr2

f(r)
+ r2dΩ2. (4.18)

Take the horizon to be at r = r0 and go to the near horizon limit r = r0 + ϵ, ϵ≪ 1. In
this limit we know that by expansion around ϵ, we have that f(r) ≈ f ′(r)|r=r0ϵ to find the
metric:

ds2E ≈ ϵf ′(r0)dt
2
E +

dϵ2

ϵf ′(r0)
, (4.19)

where we have dropped the angular terms as they aren’t important for this point. We can
obtain the usual polar coordinate metric by taking the coordinate transformation,

R = 2

√
ϵ

f ′(r0)
, φ =

tEf
′(r0)

2
, (4.20)

leading to
ds2E ≈ dR2 +R2dφ2. (4.21)

However, this only defines a smooth geometry in the polar coordinates if φ → φ + 2π - we
require 2π periodicity. If this is the case, then from (4.20) we must have that tE → tE+

4π
f ′(r0)

.

But we know that if for inverse temperature β as defined by (4.16), we have

β =
4π

f ′(r0)
, (4.22)

which defines our black hole temperature:
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r = rs

r

tE

Figure 4.1: The Euclidean Schwarzschild black hole is often referred to as the “cigar”, made
smooth by adding in the point r = rs.

TBH =
1

β
=
f ′(r0)

4π
. (4.23)

For a black hole spacetime we can consider a Euclidean Schwarzschild black hole with
t→ itE:

ds2E =
(
1− rs

r

)
dt2E +

(
1− rs

r

)−1

dr2 + r2dΩ2
2, (4.24)

with tE = tE +β. Taking R = r− rs to be the radial coordinate in the Euclidean spacetime,
the origin must be at R = 0 with the radial coordinate in (4.24) being restricted in such a
way that r > rs. The Euclidean black hole has no interior in this description.

The setup is shown in Figure 4.1. Following the above procedure for finding β we want
to define

f(r) = 1− rs
r

=⇒ f ′(r) =
rs
r2

(4.25)

which means, taking our horizon to be the Schwarzschild radius r = rs we have f ′(rs) =
1
rs
.

Plugging this into (4.22) we get

β = 4πrs, (4.26)

corresponding exactly with (4.18) when taking T = 1
β
. This is seen as the temperature to

observers who are far from the Euclidean black hole, and we clearly see from Figure 4.1 that
this is a circle of circumference β and hence periodic. On this geometry we can think of the
path integral as the partition function we know and love from statistical mechanics,

Z(β) = Euclidean BH Path Integral ∼ e−IclassicalZquantum. (4.27)

The Einstein action is I in (4.27) and describes the gravity contribution. The quantum
contribution is defined for partition functions of quantum fields within this geometry. We
also state the generalised entropy using typical thermodynamic formulae
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S = (1− β∂β) logZ(β). (4.28)

To conclude our discussion on black hole thermodynamics, we consider how a black hole
can very much be treated in the same way we would treat an ordinary quantum system,
for which thermodynamics has really been the catalyst. What we notice is that the black
hole can be (somewhat in an ordinary fashion) be described by a large (but finite) number
of degrees of freedom obeying the usual laws of thermodynamics (in addition to physics
more generally). As stated by Almheiri et al [9], from the outside a black hole can simlpy
be described using Area/4GN degrees of freedom evolving in a unitary fashion under time
evolution. This concept we have already seen run parallel to the AdS/CFT correspondence
in the previous chapter.

4.2.2 AdS Black Holes and the AdS/CFT Correspondence

So now we have discussed some tools for manipulations regarding black holes in flat space-
time, let us extend our efforts to AdS. The applications of the AdS/CFT correspondence
have progressed many fields but black hole research is certainly at the forefront of that. We
start with the 5-dimensional AdS-Schwarzschild metric [28] used by Balasubramanian and
Ross

ds2 = −
(
1 +

r2

l2
− r20
r2

)
dt2 +

(
1 +

r2

l2
− r20
r2

)−1

dr2 + r2(dθ2 + cos2(θ)dΩ2
2). (4.29)

As is now seemingly customary for these calculations, weWick rotate the temporal coordinate
t→ itE, giving

ds2E =

(
1 +

r2

l2
− r20
r2

)
dt2E +

(
1 +

r2

l2
− r20
r2

)−1

dr2 + r2(dθ2 + cos2(θ)dΩ2
2). (4.30)

Define f(r) = 1 + r2

l2
− r20

r2
and note that the roots of this give us coordinate singularities

(horizons) in the spacetime. One can find these roots to be

f(r) = 0 =⇒ 1 +
r2

l2
− r20
r2

= 0 =⇒ (r2)2 + l2r2 − l2r20 = 0,

=⇒ r2± =
l2

2

[
−1±

√
1 +

4r20
l2

]
.

(4.31)

We take the r+ solution (this describes a large black hole, we don’t take the r− small black
hole solution as this is unstable), but we want to avoid the conical defect at r = r+. We first
want to compute r20:

r20 =
l2

4

[(
2r2+ + l2

l2

)2

− 1

]
=

(
2r2+ + l2

2l

)2

− l2

4
=
r4+ + l2r2+

l2
. (4.32)
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Then by the description used to obtain (4.26), we compute the derivative of f taken r = r+,

f ′(r+) =
2r+
l2

+
2r20
r3+

,

=
2r+
l2

+
2r4+ + 2l2r2+

r3+l
2

,

=
2(2r2+ + l2

l2r+
.

(4.33)

We again use (4.26) and find that

β =
4π

f ′(r+)
=

2πl2r+
2r2+ + l2

. (4.34)

From the final output of the above (4.34), we can see that we need
2(2r2++l2)

l2r+
tE to be 2π-

periodic, and with tE = tE+β we have that the temperature of the AdS-Schwarzschild black
hole:

T = β−1 =
2r2+ + l2

2πl2r+
(4.35)

There is also a final solution called Euclidean thermal AdS, with metric

ds2 =

(
1 +

r2

l2

)
dt2E +

(
1 +

r2

l2

)−1

dr2 + r2dΩ2
3, (4.36)

again with the identification that tE ∼ tE + β. For AdS-Schwarzschild we might want to
understand these three solutions and in what scenarios they would arise. Following Hartman
[29], we can compute the free energy via the on-shell action, this is given by F = − 1

β
log(Z).

We know that for the Einstein action we must consider non-vanishing boundary terms,
namely we will need to add in the Gibbons-Hawking-York boundary term and a boundary
term to counter divergences (counterterms). The full action Hartman presents is

IE = − 1

16πGN

∫
d5x
√
g

(
R +

12

l2

)
+

1

8πGN

∫
r= 1

ϵ

d4x
√
γK +

∫
r= 1

ϵ

d4x
√
γLct[γ],

= Ibulk + IGHY + Ict,

(4.37)

noting that here we have used γµν as the boundary metric and a spacetime cut off r = 1
ϵ
has

been used where we will take the limit as ϵ→ 0. Define the Einstein equation

Rµν −
1

2
Rgµν + Λgµν = κTµν , (4.38)

where we have included the right hand side of the field equations - κ denoting the Einstein
gravitational constant and Tµν being the usual energy-momentum tensor. For the bulk action
we are in empty spacetime and so the right hand side of (4.38) vanishes under the trace;
we will trace the Einstein field equations as we wish to determine the Ricci scalar R. From
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reading the bulk action in (4.37) we also can read off the value of the cosmological constant
as Λ = − 6

l2
. So taking the trace of (4.38) and plugging in the cosmological constant we

obtain R = −20
l2
. With this we compute the bulk action

Ibulk = −
1

16πGN

∫
r< 1

ϵ

d5x
√
g

(
R +

12

l2

)
,

=
1

2πGN l2

∫
r< 1

ϵ

d5x
√
g,

=
1

2πGN l2
∈β0 dtE

∫ 1
ϵ

r+

drr3
∫
dΩ3,

=
πβ

4GN l2

[
1

ϵ4
− r4+

]
.

(4.39)

We plug in the usual definition of the Gibbons-Hawking-York boundary term to find

IGHY = − πβ

GN l2

[
1

ϵ4
+

3l2

4ϵ2
− r20l

2

2

]
. (4.40)

Taking Ibulk + IGHY we can consider the divergent terms in this sum to find the required
boundary counterterms for finite IE, which one can show to be

Ict =
3

8πGN l

∫
r= 1

ϵ

d4x
√
γ

(
1 +

l2

12
R[γ]

)
, (4.41)

with R[γ] being the Ricci scalar for the boundary metric - this is also an important distin-
guishment as we cannot evaluate the energy-momentum tensor to vanish under the trace
here.

Overall, we have the Einstein action (finite) given by

I
(large black hole)
E =

π2β

8GN l2

[
r2+l

2 − r4+ +
3l4

4

]
. (4.42)

For the Einstein action we know there is a semiclassical approximation for gravity for the
path integral (partition function) in which we include each possible solution, to outline this
we could approximately say,

Zgrav ≈ e−I
(large black hole)
E + e−I

(small black hole)
E + e−I

(thermal AdS)
E . (4.43)

So we also need IE for the small black hole solution and the thermal AdS solution. The
small black hole is very simple in that we just choose the r = r− root in (4.32). For the
thermal AdS solution, the metric obeys boundary conditions such that as r →∞ we get

ds2 → r2

l2
dt2E +

l2

r2
dr2 + r2dΩ2

3, (4.44)

Following a similar methodology to the large black hole, one can find for thermal AdS that
we get
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I
(thermal AdS)
E =

π2β

8GN l2

(
3l4

4

)
. (4.45)

So when we consider transitions between these three solutions, we can immediately rule out
the small black hole, as Hartman states [29] it never dominates the canonical ensemble -
the free energy of the large black hole by definition will always be smaller, it is a more
stable solution and one might expect the small black hole to quickly decay to the large black
hole solution, should it arise. We then must consider the large black hole solution and the
thermal AdS solution. The partition function takes the form shown in (4.43). As the terms
are negative exponents we can see that they blow up (in a finite way) when we substitute
in the actions (4.42) and (4.45), and that the bigger of the two actions will dominate the
partition function:

log(Zgrav) ≈ max
(
I
(large black hole)
E , I

(thermal AdS)
E

)
. (4.46)

Because of this we can easily see there must be a transition - the Hawking-Page transition -
when the two actions are equal for a given β, which reaches criticality at

β∗ =
2πl

3
, (4.47)

which occurs at r+ = l. As temperature goes from low to high we go from thermal AdS
to the large black hole solution. This implies that in a semiclassical approximation we go
from a small number of states when the system has a low temperature, to an abrupt and
incredibly large increase in states at high temperature as the criticality threshold for the
Hawking-Page transition is crossed. The entropy for both solutions can be computed using

S = (1− β∂β) log(Z), (4.48)

and it is a simple calculation to show that

S(large black hole) =
π2r2+
2GN

,

S(thermal AdS) = 0.

(4.49)

These results are semiclassical, so in reality the entropy for the thermal AdS solution would
not be zero, but this emphasises that it is far smaller than the entropy of the large black
hole solution and there is a very sharp transition between the two states.

AdS/CFT for a Black Hole at Finite Temperature

Now that we understand a bit more about the nature of a black hole in AdS spacetime -
in particular a Euclidean AdS-Schwarzschild black hole, let us demonstrate an example of a
holographic entanglement entropy calculation for 3-dimensional AdS. Our system has some
temperature given by T = 1

β
and L is the total length of the system such that β

L
≪ 1.

At high temperatures it was shown that the gravity dual of the 2-dimensional CFT is the
Euclidean BTZ black hole [30]
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φ = 2πl
L

φ = 0

Figure 4.2: The BTZ black hole exists within a foliation of our spacetime bulk where the
minimal surface also lies, we define our subsystem A to be a patch of the boundary for this
fixed time slice. The outer circle is our boundary r =∞

ds2 = (r2 − r2s)dτ 2 +
R2

r2 − r2s
dr2 + r2dφ2. (4.50)

This has been compactified with periodic time such that τ ∼ τ + 2πR
r+

and φ ∼ φ + 2π. In
the boundary limit as r →∞ we also obtain

β

L
=

R

r+
≪ 1. (4.51)

As in the previous chapter’s calculations, we define a subsystem A on the boundary,
depicted in Figure 4.2, with boundary points at φ = 0 and φ = 2πl

L
. Perform the coordinate

transformation:

r = r+ cosh(ρ), τ =
R

r+
θ, φ =

R

r+
t (4.52)

then we obtain

ds2 = R2(cosh2(ρ)dt2 + dρ2 + sinh2(ρ)dθ2), (4.53)

which appears to be the Euclidean global AdS metric in 3-dimensions. Taking a static τ
surface implies that we set dθ = 0,

ds2 = R2(dρ2 + cosh2(ρ)dt2). (4.54)

The arclength λ parametrisation condition (as justified earlier) gives us the equation

ρ̇2 + cosh2(ρ)ṫ2 = 1. (4.55)

We obtain the other require equation of motion using the Euler-Lagrange equations, starting
with the Lagrangian

L =
1

2
R2(ρ̇2 + cosh2(ρ)ṫ2). (4.56)
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ρ = ρ∗

ρ = ρ0

△ φ = πl
L

Figure 4.3: We specify boundary conditions for integration on the foliation of the BTZ black
hole, note that due to symmetry we need only integrate over half of the minimal surface

Due to the lack of dependence on t,

ṫ =
α

cosh2(ρ)
. (4.57)

At the turning point of the minimal surface, we have ρ̇ = 0 =⇒ ρ = ρ∗ as shown in
Figure 4.3. Substituting this into (4.55) we find that

α = cosh(ρ∗). (4.58)

To compute the area element of the minimal surface we must first acquire some of the
constituents to the inevitable integral that must be performed. Begin with

dt

dρ
=
ṫ

ρ̇
=

α

cosh(ρ)
√

cosh2(ρ)− α2

. (4.59)

For the purposes of a later integration, define x = α sinh(ρ)√
cosh2(ρ)−α2

. Then

dx

dρ
=

d

dρ

 α sinh(ρ)√
cosh2(ρ)− α2

 ,

=
d

dρ

(
α sinh(ρ)(cosh2(ρ)− α2)−

1
2

)
,

= α cosh(ρ)(cosh2(ρ)− α2)−
1
2 − α sinh2(ρ) cosh(ρ)(cosh2(ρ)− α2)−

3
2 ,

=
−α cosh(ρ)√
cosh2(ρ)− α2

(
α2 − 1

cosh2(ρ)− α2

)
.

(4.60)

We solve (4.59) by rearranging and integrating, which we will see makes use of this x sub-
stitution. The details are as follows
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t =

∫
dρ

α

cosh(ρ)
√

cosh2(ρ)− α2

,

= −
∫
dx

√
cosh2(ρ)− α2

α cosh(ρ)

(
cosh2(ρ)− α2

α2 − 1

)
α

cosh(ρ)
√

cosh2(ρ)− α2

,

= −
∫
dx

cosh2(ρ)− α2

(α2 − 1) cosh2(ρ)
,

= −
∫
dx

cosh2(ρ)− α2

α2 sinh2(ρ) + α2 − sinh2(ρ)− 1
,

= −
∫
dx

cosh2(ρ)− α2

α2 sinh2(ρ) + α2 − cosh2(ρ)
,

=

∫
dx

1(
−α sinh(ρ)√
cosh2(ρ)−α2

)2

− 1

,

= −
∫
dx

1

x2 − 1
,

=⇒ t = −arccoth(x) + C ′.

(4.61)

We still need to determine the constant C ′, so we write

coth(−t− C ′) =
α sinh(ρ)√
cosh2(ρ)− α2

, (4.62)

and note that t = 0 =⇒ coth(−C ′)→∞ =⇒ C ′ = 0, giving the following equation

coth(−t) = α sinh(ρ)√
cosh2(ρ)− α2

. (4.63)

If we take that after some t =△ t we hit ρ = ρ0 following the minimal surface to the boundary
from its turning point, we can compute the following:

coth(△ t) = − α sinh(ρ)√
cosh2(ρ)− α2

,

=⇒ coth(△ t) = −α = − cosh(ρ∗),

=⇒ cosh(△ t)

sinh(△ t)
= − cosh(ρ∗),

=⇒ sinh2(ρ∗) =
cosh2(△ t)

sinh2(△ t)
− 1 =

1

sinh2(△ t)
,

=⇒ sinh(△ t) =
1

sinh(ρ∗)
.

(4.64)
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where we have used the fact that cosh(ρ0) ≈ sinh(ρ0) in the ρ0 →∞ limit and cosh(ρ0)≫ α.
Now we move to the computation of the area element of the minimal surface - simply a line
element as we are in 3-dimensions.

LγA =

∫
ds = 2R

∫ △λ

0

dλ(ρ̇2 + cosh2(ρ)ṫ2)frac12, (4.65)

and we can change variables such that dλ = dρ cosh(ρ)√
cosh2(ρ)−α2

to obtain

LγA = 2R

∫ ρ0

ρ∗

dρ
cosh(ρ)√

cosh2(ρ)− α2

. (4.66)

We use the substitution u = sinh ρ =⇒ du = dρ cosh(ρ) and find that

LγA = 2R

∫ u0

u∗

du
1√

1 + u2 − α2
. (4.67)

And another substitution v = u√
α2−1

, leading to

LγA =2R

∫ v0

v∗

dv
1√

v2 − 1
,

=2R

[
arccosh

(
sinh(ρ0)√
α2 − 1

)
− arccosh

(
sinh(ρ∗)√
α2 − 1

)]
,

=2R log

(
sinh(ρ0)

sinh(ρ∗)
+

√
sinh2(ρ0)

sinh2(ρ∗)
− 1

)
,

=2R log

sinh(ρ0) +
√

sinh2(ρ0)− sinh2(ρ∗)

sinh(ρ∗)

 ,

≈2R log

(
2 sinh(ρ0)

sinh(ρ∗)

)
,

=2R log

(
eρ0−eρ0

sinh(ρ∗)

)
≈ 2R log

(
eρ0

sinh(ρ∗)

)
,

=2R log

(
β

a
sinh(△ t)

)
,

=2R log

(
β

a
sinh

(
πl

β

))
.

(4.68)

We have made use of ρ0 →∞, the fact that △ t = r+
R

△ φ = r+
R

πl
L
and (4.51), implying that

△ t = πl
β
.

The entanglement entropy is then

SA =
c

3
log

(
β

a
sinh

(
πl

β

))
. (4.69)

This reproduces the exact known result for a 2-dimensional CFT with finite temperature [10].
We see from this that we can utilise the AdS/CFT correspondence in spacetimes containing

70



black holes in such a way that known results are exactly identified. This presents a strong
case for the use of the AdS/CFT correspondence to probe black hole interiors using physics
on the boundary (horizon surface).
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Chapter 5

Information, Entropy, and Emerging
Islands

In this chapter we bring together all of the previous discussion and look to apply it to a puzzle
that has remained unsolved since the 1970’s. We will introduce the information paradox as
initially stated by Hawking [32] and with some additional commentary from [9] to introduce
the concept of Hawking radiation. We will then consider the concept of quantum extremal
surfaces and their role in the paradox considering recent work by Almheiri, Engelhardt,
Marolf, and Maxwell [33]. Then we will conclude the chapter with discussion on the Islands
Conjecture [34].

5.1 The Hawking Information Paradox

Entropy - particularly entanglement entropy - is quite apparently the cornerstone of our
discussion here, and so it is important to ensure that we have defined the different types of
entropy quite clearly. An important distinction to make when doing so is defining fine- versus
coarse-grained entropy. Fine-grained entropy has actually been seen already (3.46), but we
also introduce coarse-grained entropy. To compute the coarse-grained entropy of a system we
first take all density matrices that give the same result as the system for tracked observables.
Say we have ρ̃ denoting all of the density matrices we wish to consider, for each of these
we compute their von Neumann entropy S(ρ̃) and then we maximise the calculated entropy
over all possible ρ̃. Note that these entropies obey the second law of thermodynamics. The
primary example of coarse-grained entropy we shall use is the Bekenstein-Hawking entropy
(3.62).

For a fine-grained entropy of quantum fields we can (similar to the foliation in our holo-
graphic entanglement entropy calculations) define this for a fixed time foliation corresponding
to a spatial region Σ. The fine-grained entropy is

SvN(Σ) ≡ SvN(ρΣ), (5.1)

where ρΣ is the density matrix for the specified region. For the purposes of the information
paradox we will be considering a semiclassical approximation of gravity, and so - in keeping
with Almeiri et al [9], with the new semiclassical entropy denoted
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Ssemi(Σ) (5.2)

which describes the fine-grained or von Neumann entropy of our quantum fields, which are
defined on a classical geometry.

As for the paradox itself, there are a few ways of thinking about it. Almheiri et al [9]
begins with a black hole that emits thermal radiation formed from the collapse of a pure
state. The thermal behaviour experienced we know to emerge from dividing our space into
an interior and an exterior, and some presence of short entanglement between the states
in each of these subregions. In this case, even if overall we have a pure state, observers in
either of the subregions will see a mixed state (as the other state from the entangled pair is
inaccessible). Now this does not violate any laws of physics as presented, however when one
considers that black holes do in fact evaporate, this causes issues. We see the interior region
shrinking as the exterior builds, but eventually when the black hole evaporates this will stop.
Say we have taken our interior region to have become infinitesimally small - the states on
the exterior still appear like mixed states entangled to inaccessible particles on the interior.
But if the black hole evaporates completely, we surely must have a pure state again? Well,
this would certainly be convenient, but the laws we have obeyed thus far describe that the
exterior should continue to be a mixed state.

What is the issue here? Unitarity. If I start in a pure state and time evolution is unitary
then I expect to end in a pure state. Clearly with the evaporating black hole, this was not the
case; it is not reasonable to suspect that something odd is happening with the entanglement
entropy at this point, so let’s track that. At early times the black hole essentially only has
thermal radiation as the radiation in the exterior is entangled with the black hole quantum
system - the entropy of the radiation is rising. As the black hole continues to evaporate,
it shrinks and so we see the thermodynamic entropy of the black hole decreasing, which is
trivially seen from the Bekenstein-Hawking entropy formula (3.62). But this is where we
start to encounter problems - the black hole is still radiating and so the entropy of radiation
on the exterior rises. So we have some contradiction here in that the black hole began as a
pure state, but we end up with a final state of highly entangled radiation.

It seems logical that we would expect the entropy of the radiation to decrease at a certain
point with the black hole entropy, and this is exactly what was proposed by Page [25], [26].
Hawking argued that one could not have a unitary map from the initial pure state shell to
the mixed state radiation as it implies that many initial states could result in the same final
state. This is exactly what was being put forward by Page in that there is no way for the
Page curve to go back to SRad = 0. In other words, the entropy of radiation cannot follow
the Hawking curve which leads to this paradoxical behaviour, we should instead look for
solutions that adhere to the Page curve. The Page curve proposes that at a given time when
SBH = SRad - which occurs at the Page time - there must be some mechanism that causes
the entropy of radiation to then decrease.

5.2 Emerging Islands

The notion of emerging islands as a result of a quantum extremal surface is one of several
generalisations of the original RT formula we have used throughout our discussion thus far [8],
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[10]. To reach this concept, we must first provide a brief overview of an initial generalisation
of the RT formula proposed by Hubeny, Rangamani and Takayanagi (HRT) [36] which allows
for the holographic calculation of entanglement entropy in a temporally varying system. We
will see that emerging islands within the interior of the black hole could help to reproduce
the Page curve, in the appropriate setting.

5.2.1 HRT Surfaces

Hubeny et al [36] put forward a covariant entanglement entropy proposal as a generalisation
to the RT formula, starting with the typical AdS/CFT setup and using Poincaré coordinates
for convenience. At some time t we divide the boundary into two regions At and Bt = Ac

t

and denote the boundary between the two ∂At - this is a spacelike surface on the boundary
of the entire asymptotically AdS spacetime with dimension d− 2.

One can construct the spacelike surface ∂At via light-sheets as outlined in [36]. In short,
the intersection of upper and lower light sheets creates a spacelike surface that extends into
the bulk, call this Yt = L+

t ∪ L−
t . The proposed correction to the RT formula given this set

up is

SAt =
minY(Area(Yt))

4G
(d+1)
N

=
Area(Ymin

At
)

4G
(d+1)
N

, (5.3)

where we have called the minimal area surface Ymin
At

. Now, whilst this is manifestly covariant
in that we successfully encode time dependence, it is quite a lengthy process to construct
each of the light-sheets in the bulk that are feasible. This can be vastly streamlined with a
second proposal.

The claim is that - in the same setup as above - we have some region A and can find the
holographic entanglement entropy to be

SA =
Area(Yext)

4G
(d+1)
N

(5.4)

Our surface Yext is codimension two surface such that ∂Y = ∂A and that has zero null
geodesic expansions. For cases where there are many of these surfaces, we choose the one with
minimum area. Computations are provided by [36] that replicate the results of entanglement
entropy for CFTs using the holographic prescription in the bulk, but we don’t dive any further
into these here.

5.2.2 Quantum Extremal Surfaces

This is a good place to take stock of what we have encountered thus far, before we introduce
some more abstract notions. We know that black hole thermodynamics gives us an entropy
consistent with the second law of thermodynamics. Quantum corrections are needed for this
as - due to Hawking radiation - black holes are intrinsically quantum systems. We can write
the semi-classical generalised entropy of the black hole horizon H as the area term (entropy
of the black hole), plus the entropy in the exterior and the counterterms:
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Sgen(H) =
Area(H)

4GN

+ Sout + counterterms, (5.5)

with Sout defined as the von Neumann entropy for the state of the matter fields outside of
the black hole (including Hawking radiation). The counterterms are something we saw in
chapter 4 and similarly, they absorb divergences in Sout and subleading divergences on the
horizon.

In the AdS/CFT arena, we have seen the Ryu and Takayanagi entropy-area relation
which relates the area of a minimal surface extending from the boundary region into the
bulk. In the appropriate classical limit, it has been proposed by HRT that the entanglement
entropy for a patch of the boundary R with a CFT living on it can be computed from the
gravitational theory using a codimension two extremal surface X such that ∂X = ∂R with
X homologous to R. We can see why the two theories are valid when you take the spacetime
to be static in the extremal surface case - in the case where a time foliation is preferred
(we choose a static time slice), the extremal surface coincides with the minimal surface on a
constant time slice, as seen in [8].

Following this, there was work by Faulkner, Lewkowycz, Maldacena (FLM) [37] that
computed the quantum corrections to the HRT entanglement entropy proposal:

SR =
Area(X)

4GN

+ Sent + counterterms = Sgen(X), (5.6)

with the bulk entanglement entropy being denoted Sent. We note that this is strikingly similar
to (5.5). The FLM prescription essentially generalises the classical prescription (RT/HRT)
by including quantum corrections to the Euclidean gravitational path integral.

Engelhardt and Wall [35] then define an entangling surface E as any codimension two
spacelike surface that divides a Cauchy surface into two pieces - a cut - to define an interior
and exterior on the Cauchy slice. Sout(E) would now be the entanglement entropy in the
exterior of E and Sgen(E) we take as the black hole entropy but on E rather than a slice of
the horizon. One can also make a unitarity argument that the choice of Cauchy slice passing
through E (our cut) doesn’t change the generalised entropy Sgen(E).

The crucial difference between the prescriptions set out by FLM [37] and Engelhardt and
Wall (EW) [35] is that instead of extremising for area and then adding Sout (FLM regime),
we should in fact extremise the total generalised entropy Sgen. The following conjecture was
put forward by EW:

“The entanglement entropy of a region R in a field theory with a holographic
dual is given at any order in ℏ in the holographic dual by the generalised entropy
of the quantum extremal surface XR anchored at R, homologous to R”

SR = Sgen(XR). (5.7)

After seeing the work by FLM and EW, we can see how the notion of QES can be
applied to the black hole to reproduce the Page curve. In [35, 36, 37] we search for an
extremal surface that minimises spatially whilst maximises temporally. As summarised by
[9], one first chooses a Cauchy (spatial) slice and proceeds to find the minimal surface, then
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it is a case of maximising over the choice of Cauchy slice taken. More specifically, for a
codimension two surface X

S = minX

{
extX

[
Area(X)

4GN

+ Ssemi(ΣX)

]}
, (5.8)

where ΣX is the region bounded by X and the cut off, and the final semiclassical entropy
term is the von Neumann entropy of quantum fields on ΣX . Then the generalised entropy
is simply

Sgen(X) =
Area(X)

4GN

+ Ssemi(ΣX). (5.9)

This concept is particularly dependent on the geometry of the black hole interior, which may
vary regardless of how similar the exterior appears. If the interior geometry differs we expect
the fine-grain entropy to differ also. What we are really doing is choosing some Cauchy time
slice outside of the black hole and moving into the interior to find its minimum. It is certainly
possible that the surface within the exterior could completely shrink, not giving any area
contribution.

One can consider an evaporating black hole, and study how the entropy would behave
throughout the stages of this process. We assume that we have started the collapsing shell
process for the black hole in a pure state. At very early times, we can consider the scenario
prior to any evaporation or any Hawking radiation being released. For each of the Cauchy
slices at this time, we cannot find an extremal surface by deforming along the slice into the
black hole interior. This is the vanishing extremal surface. The early evaporation time gives
a slightly different picture however.

Early Evaporation:

The von Neumann entropy is no longer zero due to the entanglement between the Hawking
radiation emitted and the interior Hawking quanta. As the black hole evaporates, the entropy
seems to continue increasing. However, there is now a non-vanishing extremal surface that
appears shortly after the Hawking radiation starts to escape - this is shown explicitly in
[42, 43].

Say we have chosen to locate the extremal surface at a time t during early evaporation.
To determine the precise location of the extremal surface following the method of [9], we
move back along the cutoff surface by a time of order rs log(SBH) (the “scrambling time”)
and we shoot an ingoing light ray. It turns out that the extremal surface lies near the point
of intersection between the light ray and the horizon.

For this case, the generalised entropy is approximately the Bekenstein-Hawking entropy
(3.62). There has not been a great deal of Hawking radiation yet, so the extremal surface
CFT has a relatively low entropy so we can neglect the semiclassical entropy contribution.
The generalised entropy is decreasing here as the black hole surface area is evaporating.

Consider starting with the extremal surface X by the horizon. As we move X inwards
the entropy Ssemi is decreasing because the new Hawking radiation modes are purifying the
outgoing quanta already included in the outside region. Having completed this purification,
moving X further inwards begins to include modes that are already entangled to “outside”
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t

S

Figure 5.1: Displaying entropy S over time t, we have the non-vanishing surface represented
by the blue dashed line, the vanishing surface represented by the red dashed line, and the
Page curve for fine-grained entropy shown in green.

modes in the exterior, bringing up the value of Ssemi. This is exactly what is shown by
Almheiri et al [34] to balance out the change in area.

We have found two surfaces here, the one at early times before Hawking radiation has
occurred is the vanishing surface and the non-vanishing surface being the decreasing surface
just discussed. During the early time period we only have this vanishing surface which
provides a contribution to the entropy which starts at zero and grows monotonically as the
black hole evaporates. After some time the non-vanishing surface appears when we have at
least had some small amounts of Hawking radiation - this decreases in entropy as the black
hole evaporates. The key point here is that our corrected entropy formula (5.6) [35, 37] is
selecting the minimum of the extremal surfaces. Initially the vanishing surface is minimal,
but this has increasing entropy and the non-vanishing surface has decreasing entropy - at
some time tP we expect the minimum extremal surface to switch to the non-vanishing surface.
In other words, for time t < tP the fine-grained entropy is defined by the vanishing surface
and for time t > tP the fine-grained entropy is defined by the non-vanishing surface. As the
first is increasing in entropy from zero and the second is decreasing in entropy to zero, we see
that we reproduce the Page curve and tP can be taken as the Page time as shown in Figure
5.1. This is an outline of how, for the black hole, one can use the gravitational entropy
formula (5.8) to compute the fine-grained entropy and show it accurately follows the Page
curve. An explicit calculation of this can be found by Almheiri et al in [33] which considers
another mechanism that sheds light on a new perspective one can consider the information
paradox from, which also speaks to the content of the next subsection.

5.2.3 The Islands Conjecture

To study the classical information paradox in AdS spacetime is actually quite complex, even
with a tool as powerful as the AdS/CFT correspondence. It is widely known that photons
in the AdS cylinder reach the boundary r =∞ in finite time and are forced to bounce off of
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the horizon back into the spacetime (details can be found in [44]).
Now imagine we have a black hole in the AdS spacetime. This black hole will never be

able to evaporate as the radiation will just bounce back into the black hole given enough
time has passed. One way to study an evaporating black hole in this setup is to couple the
AdS space to an auxiliary system. Coupling to an auxiliary system with boundary conditions
that allow for the exchange of stress-energy means the radiation will move from AdS into
the auxiliary system rather than bouncing back into the black hole - this allows evaporation
in AdS to occur. We can take this auxiliary system to be Minkowski space without gravity.

Almheiri et al [34] consider this exact problem in 2-dimensional JT (Jackiw-Teitelboim)
gravity - this is just typical Einstein-Hilbert gravity with an additional dilaton field ϕ,

Ig[gij, ϕ] =

∫
d2y
√
−g

(
1

16πG
(2)
N

ϕR + U(ϕ)

)
. (5.10)

We want to consider the 2-dimensional gravity theory with the addition of holographic
matter. We “add matter” by taking this to be a CFT 2 dimensions with some fields denoted
χ, giving the action

I[gij, ϕ, χ] = Ig[gij, ϕ] + ICFT [gij, χ]. (5.11)

Now we employ the AdS/CFT tools we have explored in the previous sections - the
CFT has a 3-dimensional holographic dual that will be crucial to this notion of islands.
More specifically, the 3-dimensional theory with boundary metric gij is dual to a CFT in 2
dimensions described by ICFT [gij, χ]. To ensure the semi-classical limit is appropriate and
that the dual space is of large radius we require both that for central charge c (we are in 2
dimensions) we have 1 ≪ c ≪ ϕ

4G
(2)
N

. For there to be an Einstein gravity dual also we will

require that the CFT is strongly coupled - the gravity dual will be important in considering
how the radiation connects to the interior in the higher-dimensional dual perspective.

We know from AdS/CFT that we can find a gravity dual for the auxiliary system, but
we need to find a 3-dimensional dual for the entire system. We do this by adding a scalar ϕ
to the above geometry that lives on the boundary with action Ig and integrating over both
the scalar field ϕ and the metric gij. This is the Randall-Sundrum model [45] and produces
a dynamical boundary brane called the Planck brane. This brane is embedded in AdS3 and
allows us to find a holographic dual for the full action (5.11). The reason we want this
dynamical boundary is so that we can project the CFT bath on the half line and the Planck
brane holographically as one system, allowing us to glean more information about how the
higher dimensional dual is connected - something that is crucial to the island conjecture.

We can allow the black hole to evaporate into a coupled CFT bath defined on the half-
line which we take to be the same CFT as the matter CFT in (5.11), leading to a set up
akin to Figure 5.2. This contains a precursor detailed by [34] in which we assume that it is
reasonable to neglect backreaction effects and can think of the matter as living on a fixed,
non-dynamical background. We also assume the boundary allows for a free exchange of
stress-energy.

We get this combined system now that Figure 5.2 depicts and can write it in two descrip-
tions:
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CFT

Ig + ICFT

CFT

Planck brane

AdS3 boundary

AdS3

Figure 5.2: Left: 2D gravity view in which the dot represents the boundary between the
gravity theory and the CFT, and the gravity theory line contains the full action. Right: 3D
gravity holographic dual of the full 2D picture, the Planck brane descends to the left from
the boundary point (below the AdS3 boundary.

• 2D Gravity: the 2-dimensional gravity-plus-matter theory living on the left of the
boundary point is coupled to a 2-dimensional field theory living on the right.

• 3D Gravity: the 3-dimensional gravity theory in AdS3 with a dynamical boundary
(the Planck brane) on the left of the boundary point, with a rigid boundary on the
right of the boundary point.

In the 2D Gravity description above, we compute the fine-grained entropy by extremising
Sgen following the EW prescription

Sgen(y) =
ϕ(y)

4GN

+ Sbulk+[Iy], (5.12)

where Sbulk+[Iy] is the bulk von Neumann entropy of the interval Iy, and y is a point in the
bulk. We extremise over y and then take the minimum over the extrema. Noting that we
are in 2-dimensions, the quantum extremal “surface” is actually the resulting point (y+e , y

−
e ).

ϕ(y) is taken to be the “area” of the point - the coefficient of the curvature term in (5.10).
The 2-dimensional CFT contributes to the entropy from the matter fields χ in Sbulk+

and has a holographic dual. This means we can compute this contribution using RT/HRT
- we would have to find a minimal/extremal surface in the 3-dimensional geometry. This
implies that the extremisation of Sgen in 2-dimensions is equivalent to the RT/HRT area
extremisation in 3-dimensions containing a dynamical brane.

Entanglement Wedge of the Black Hole

At late times the QES lies behind the horizon at the point (y+e , y
−
e ). A past-directed light

ray would reach the AdS2 boundary at a scrambling time less than t, at which time we can
compute the entropy

y+e = t =
1

2πT (t)
log

(
SBH(T (t))− S0

c

)
+ ..., (5.13)

where T (t) is the black hole temperature at time t and S0 is the extremal entropy.
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CFT

σ0
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CFTσ0

Planck brane

EWBH

AdS3 boundary
ye

AdS3

Figure 5.3: Left: 2D gravity view of the black hole entanglement wedge. Right: 3D gravity
holographic dual of the full 2D black hole entanglement wedge denoted EWBH .

CFT EW

σ0
ye

Island EW

CFTσ0

Planck brane EWR

AdS3 boundary
ye

AdS3

Figure 5.4: Left: 2D gravity view of the radiation entanglement wedge - this comprises of
two wedges (CFT and island) that appear to be disconnected. Right: 3D gravity holographic
dual of the full 2D radiation entanglement wedge denoted EWR which connected the island
to the exterior radiation.

We can define the entanglement wedge (EW) as the causal domain of a spacelike slice
from (t, σ0) to (y+e , y

−
e ), where σ0 denotes the end of a small interval into the CFT bath.

This implies that in our 2-dimensional model, the bulk entanglement entropy computation
only involved the calculation on an interval. This is more easily visualised when considering
Figure 5.3. Almheiri et al [34] describe how this leads to the black hole entropy

SBlack Hole(t) = SBH(T ) + log terms. (5.14)

SBH denotes the usual Bekenstein-Hawking entropy and the log terms are those that are
logarithmic in the Bekenstein-Hawking entropy of the initial state. This is a decreasing
entropy as the temperature decreases with time.

Entanglement Wedge of the Radiation

The entropy of the radiation here is just the entropy of the state in the CFT bath that lies
past the point σ0 we considered in the previous section. The naive computation involves
taking the entire slice and tracing out anything that doesn’t lie within the desired region -
this reproduces the Hawking entropy curve. Since the entanglement wedge EWBH covers
some of the interior we can take the rest of the interior as belonging to the EWR - the
radiation entanglement wedge.

The incredible thing about the AdS/CFT correspondence we have made use of is now
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H-Rad

σ0 σIR

Island EWR

AdS3 boundary
ye

Figure 5.5: A more precise view of the “bridge” connecting the island to the Hawking
radiation (H-Rad). This wormhole behaviour is apparent only in the higher dimensional
holographic projection.

manifest in Figure 5.4. In the 2-dimensional depiction we appear to have broken down the
EWR into two disconnected components - the “island” entanglement wedge EWI and the
CFT entanglement wedge EWCFT . However, when we consider the holographic dual of this,
we notice that the island and the exterior radiation appear to be connected, giving just
one complete entanglement wedge for the radiation EWR. There is a “bridge” of sorts -
often referred to as a wormhole - connecting the island to the exterior radiation once we
consider this higher dimensional holographic projection. One can think of this in the spirit
of ER=EPR as proposed by Susskind [46], in short this idea is that Hawking radiation and
the interior of the black hole via a wormhole because of their entanglement to each other.

Conjecture: The Islands Rule

A more precise description of this is given by [34], the conditions are that we begin with a low
energy black hole state, the radiation sits within a finite interval [σ0, σIR (σIR is large enough
to hold all Hawking radiation), and we began with a Cardy conformal boundary condition
[47] where we have the coupling between the CFT bath and the black hole spacetime. This
will give a more accurate 3-dimensional depiction of the entanglement wedge of the radiation
in which the wormhole concept is more apparent.

Considering Figure 5.5, we are nudged along the line of thinking that one must include the
interior in the holographic calculation of the radiation entropy. Hence, Almheiri, Mahajan,
Maldacena and Zhao stated a new rule [33] for the computation of entropies in effective
gravity theories:

“If we consider a state in a quantum field theory that is entangled with
some other system that lives in a gravity theory, then we should use the
RT/HRT/EW method and include all possible “islands” that could extremize
the entropy.”

The entropy of some region A in a QFt can be computed as

S(A) = MinIg

[
ExtIg

(
Seff (A ∪ Ig) +

Area(∂Ig)
4GN

)]
, (5.15)
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where we extremise over all islands Ig, then minimise over the obtained extrema. Note that
Area(∂Ig) is the area of the island boundary and that Seff is the semi-classical gravitational
entropy. The islands Ig are quantum extremal islands.
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Conclusion

We began with an overview of the AdS/CFT correspondence, starting with the basics of
conformal field theory and anti-de Sitter spacetime - the main result of this is, in essence,
that for any d+1-dimensional gravity theory in AdS one can always find a dual d-dimensional
CFT. With appropriate boundary conditions this essentially tells us that the gravitational
path integral is equivalent to the CFT path integral.

Application of the correspondence follows very naturally from this, and we focus on one
application in particular - the holographic derivation of entanglement entropy. We derive
some of the main results given by Ryu and Takayanagi [8] using the RT formula, before
giving some background on black holes, their thermodynamics, and how we can apply the
RT formula to black holes in AdS space.

Once we have reviewed these tools, it is unsurprising that a central discussion point would
be the information paradox, and how the possible resolutions to this problem have evolved as
the generalisations of the original RT formula have evolved. Of course there are many more
contexts in which we can probe the utility of the AdS/CFT correspondence and holographic
entanglement entropy, but our objective here was to see how the story of the iterations of
the RT formula spurred on developments in the information paradox arena.

The RT (Ryu, Takayanagi) formula [8] tells us that one can find the entanglement en-
tropy holographically for a d-dimensional CFT from the area of d− 1-dimensional minimal
surfaces at fixed time in AdSd+1. The HRT (Hubeny, Rangamani, Takayanagi) formula [36]
generalises this to include time dependence. This is all very classical at the moment however,
so FLM (Faulkner, Lewkowycz, and Maldacena) [37] derive the quantum corrections for the
HRT formula, this is what really opened doors for entanglement entropy calculations when
considering the black hole as a quantum system. Engelhardt and Wall do exactly this in
the quantum extremal surface conjecture [35] noting that one should extremise the gener-
alised entropy rather than the extremised area. Finally, this led to the islands rule posed by
Almheiri et al [34] stating that we should include all possible islands in our consideration of
extremal surfaces that extremise entropy. This is truly insightful, making use of holography
to see that a island - seemingly disconnected from Hawking radiation in the exterior - is
actually connected to exterior radiation through an additional dimension when we consider
the holographic dual.

In conjunction with these developments, we see the progress of the information paradox
since it came into being in the 1970’s when Hawking showed that black holes must evaporate.
The particular context that is useful for framing the information paradox here is the Page
curve. The entropy of a black hole should obey the Page curve, in that it initially increases,
reaches a turning point at the Page time, and then monotonically decreases to zero by the
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time the black hole evaporates. The initial calculation of the black hole entanglement entropy
by Hawking showed the entropy was monotonically increasing throughout, violating the
unitarity of the black hole evaporation (the idea that we should not lose quantum information
- if a black hole is initially in a pure state it should end in a pure state, but if there is entangled
radiation after evaporation how is this possible?).

It turns out some answers to replicating the Page curve came through this use of holo-
graphic entanglement entropy. Almheiri, Engelhardt, Marolf, and Maxwell [33] and Pen-
ington [49] showed that for a black hole in AdS space coupled to some auxiliary system
(similar to the previous chapter), there is an “entropic” phase transition that takes place
in the minimal QES. This occurs exactly at the Page time and moves our extremal surface
from one that is increasing in entropy to one that is decreasing, replicating Figure 5.1. This
was a direct result of the conjectured “island rule”. A detailed summary of this story can
be found in [9].

A Note on Replica Wormholes

A recent and promising development is the use of replica wormholes to derive the fine-
grained entropy for a black hole using the island conjecture. This is briefly outlined in [9]
and computed explicitly in [42, 43].

Assume that the black hole forms from an initial pure state, looking to find the entropy
of the final radiation. If we take the density matrix to be ρ = |ψ⟩ ⟨ψ| where ψ is the initial
state, we can compute the von Neumann entropy using the replica trick. What this means
is that Tr[ρn] can be used to measure the purity of the state, but it can also be viewed as n
copies (replicas) of the original system.

We consider n copies of the original theory and connect these replicas in a cyclic way. Say
we want to take n = 2 for our black hole state, we would use a path integral approach and
connect the exteriors of each black hole copy to find Tr[ρ2]. The crucial point that we must
keep in mind is similar to the rule for islands. For the gravitational path integral, we should
sum over all possible topologies that contribute any gravity effects. What this implies is that
we should take the gravitational path integral computation to include all possible ways in
which the interiors of our black hole copies can be connected.

For the case of n = 2, we can either have the Hawking saddle in which the interiors
of each replica don’t connect to each other, or the replica wormhole saddle in which the
interiors do in fact connect in a cyclic way. Whilst each replica in Figure 5.6 looks like two
black holes, each is in fact just a representation of one black hole drawn in such a way that
we see the interior as two throats connected through entanglement. This case will give the
increasing entropy that creates the Hawking curve.

Because we know that we should count all possible topologies we also have to count the
configuration in Figure 5.7 - this is the one in which the interiors of the replicas are connected
by a wormhole. We call this the replica wormhole. When computing the entanglement
entropy in this way we get the answer from the quantum extremal surface in the limit of
n → 1. There is a turning point at the Page time from the Hawking saddle to the replica
wormhole saddle which reproduces the Page curve, we can see this more explicitly in [42, 43].
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Figure 5.6: A heuristic diagram of the Hawking saddle to be counted in the gravitational
path integral when we use the replica trick for n = 2. Red lines represent entanglement. The
slices in the middle of each copy are the exterior and the interiors are actually just a single
interior of the black hole as they are connected via entanglement. We have two disjoint black
hole replicas.

Figure 5.7: A heuristic diagram of the Replica wormhole saddle to be counted in the gravita-
tional path integral when we use the replica trick for n = 2. Red lines represent entanglement.
This time, the two replicas seem to be connected in a cyclic way, and we call the connection
of the interiors to each other the replica wormhole.
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