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Abstract

With many theoretical obstacles now overcome, massive gravity
has recently become a field of renewed vitality. In this thesis, we first
review some outstanding problems of massive gravity in its historical
development and the recent progress in obtaining solutions. In partic-
ular, we provide the proof of absence of BD ghost in dRGT theory. We
then reproduce the construction of the positivity bounds, which could
be a powerful tool to verify the existence of standard UV completion
for EFTs. We also give some examples to show how it restricts the
parameter space. Finally, we explore what unitarity combined with
renormalizability may imply polynomial constraints for generic SM-
like theories, and discuss whether this also feasible for EFTs.
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1 Introduction

With impeccable phenomenological consistency, general relativity (GR) is
widely accepted as the correct theory describing the force of gravity, at least
over the range of scales so far probed. On the other hand, the search for
alternative theories of gravity is a challenge with a long history with sig-
nificant recent interest. Rather than being a purely academic exercise, the
development of alternative theories is paramount in order to provide an es-
sential test for GR. Furthermore, there exist remaining puzzles over the role
of gravity, for instance the old cosmological constant problem and the origin
of the late-time acceleration of the Universe, have also motivating the search
of alternatives.

In order to find an alternative gravity theory, one should first consider
a modification of the underlying assumptions that go into the construction
of GR. From a modern perspective GR describes an interacting theory of
massless spin-2 particles with Lorentz invariance build in. Thus the most
straightforward way to modify these properties might be to break Lorentz
invariance and or include states with additional spins. This has been explored
in many literatures such as [64]. Another well-known alternative theory is so-
called higher spin gravity which maintains Lorentz invariance but describes
gravity by including higher spin states. We refer the reader to [79, 4] for
further details. Despite the progress made in the above two possibilities, in
this review we will instead explore another alternative: based on the notion
that gravity continues to be propagated by gravitons which respect Lorentz
invariance and have spin-2, but where now the graviton is massive. From the
viewpoint of particle physics, this consideration seems natural since parti-
cles that mediate electroweak forces also have acquired masses by the Higgs
mechanism.

The study of massive spin-2 field theory can be traced back to 1939 when
the well-known Fierz-Pauli action was found. The construction of a linear
theory including a single massive spin-2 field is relatively simple. However,
the real obstacle appears if one tries to extend it as an interacting theory. In
GR, external matter coupling forces local Lorentz symmetry and the gauge
invariance of a massless spin-2 field to become fully non-linear diffeomorphism
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invariance (covariance). This gauge symmetry is inherited in massive gravity
theories and still plays a crucial role, even though the additional mass term
will break it. As a result, constructing a theory of massive spin-2 fields
become complicated and challenging.

Searching for a massive gravity theory alternative to GR, one should first
concern ourselves with the change of degrees of freedom as it is the most
elementary factor in physics. A massive spin-2 field in a Lorentz invariant
theory should propagate five degrees of freedom while a massless one only
propagates two as in the case of GR. These extra DoFs become the origin
of an inconsistency with GR, which known as van Dam-Veltman-Zakharov
(vDVZ) discontinuity [78, 84]. The resolution is given by the so-called Vain-
shtein mechanism which was first considered in the 1970s for the naive non-
linear Fierz-Pauli action of massive gravity and has further been generalized
to many different massive gravity models in recent decades.

Another related problem is that non-linear extensions of massive gravity
usually admit higher derivative terms. In the naive non-linear Fierz-Pauli
action, a sixth ghost degree of freedom arises from self-interactions with
higher derivatives, namely Boulware-Deser (BD) ghost [7]. Fortunately, there
are several theories evading the BD ghost have been successfully constructed.
For instance, the Dvali-Gabadadze-Porrati (DGP) model [33, 34, 32] with a
soft graviton (resonance) mass, and in particular, a ghost-free massive gravity
known as de Rham-Gabadadze-Tolley (dRGT) theory [18].

Despite the fact that ghost-free massive gravity has made a great step
forward in raising the energy scale of the dominant interactions to Λ3, the
theory is still strongly restricted to this low energy level which even much
below the Planck scale. It should be interpreted as a low energy effective field
theory (LEEFT) and will be break down at the cutoff, where the unknown
new degrees of freedom may introduce. On the other hand, it is now widely
known that not all effective field theories admit a local Lorentz invariant UV
completion [76, 1]. This has stimulated interest in exploring the existence of
possible UV completion for those modified gravity theories.

In the absence of an established framework for the standard UV approach,
the explicit form of the finite UV completion remains unknown. Nevertheless,
the IR physics could still teach people some lessons about the theory in
high energy. It has long been recognized that the physical requirements of
locality, unitarity and crossing symmetry could together provide non-trivial
constraints on the scattering S-matrix for a Lorentz invariant theory [62,
35]. With the requirements of analyticity, some of these constraints may
be derived by expressing the scattering amplitude in terms of dispersion
relations with a finite number of subtractions. Assuming the existence of a
possible local Lorentz invariant UV completion of the LEEFT, with some
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studies of positive properties for the scattering amplitude and its derivatives,
it could allow us to construct so-called-positivity bounds [21, 22, 20, 23] for
the linear combinations of free parameters in the Wilsonian effective action.
For the past few decades, these bounds have been pushed away from the
forward scattering limit to provide further constraints on the LEEFT and
well generalized for the theories of particle with spin.

Although there is no existing evidence to prove that any UV complete
theory must satisfy positivity bounds, it can at least help us to verify that
whether an EFT admits a possible local Lorentz invariant UV completion.
Furthermore, demanding that such a UV completion exists for gravitational
EFTs, one can derive constraints for the parameter space of massive gravity
theories, and this may sometimes even give inspirations for the UV approach.

This review is organized as follows: We start by linear Fierz-Pauli theory
and the vDVZ discontinuity, which is the first significant phenomenological
obstacle for massive gravity in Part 1. We then introduce the Stückelberg
formalism for massive spin-1 field and spin-2 field, and explain the necessity
of non-linearity for the gravitational theories with the appearance of the BD
ghost. In section 4 we provide the ADM proof of the absence of ghost for
the well-known ghost-free massive gravity (dRGT), explore the decoupling
limit of the theory and resolve the vDVZ discontinuity for both Λ5 and Λ3

theories by corresponding Vainshtein mechanism. The other massive gravity
theories, for instance DGP model, are briefly introduced in section 5. In Part
2, we first perform the construction of positivity bounds for scalar and give
massive Galileon EFT as an example. In the use of transversity formalism,
which has more explicit form of crossing symmetry relations, we generalize
the positivity bounds for particle with spins in the following section. The
Proca EFT is then studied as the simplest example for the spin-1 field. The
search of UV completion possibility for massive gravity theory are concluded
by its positivity bounds analysis in the section 8. Finally, in section 9 we
explore another methodology in different of positivity bounds to show the
unitarity imposes more constraints on generic renormalizable theories, and
discuss the feasibility for EFTs.

2 General relativity and Fierz-Pauli action

2.1 Theory of massless spin 2 field

General relativity (GR) is widely considered to be the correct theory for de-
scribing gravity at low energies or large distances [47]. The discovery of GR
undoubtedly led Einstein to construct a fully non-linear theory describing

3



the dynamics of spacetime itself in geometric terms, starting from the equiv-
alence principle and general coordinate invariance. The discovery of GR has
undoubtedly led to a major step forward in the understanding of the physi-
cal world. However, in a parallel universe where Einstein did not exist, the
equivalence theory of GR might also be found in a completely different but
more mathematically logical path a few decades later.

The alternative way to approach GR is most likely in field theory lan-
guage, by the study of particle symmetries. From a real physical world point
of view, the basic degrees of freedom are particles which carry mass and
spin. In the language of field theory, this means that the degrees of free-
dom are carried by fields. To describe long range macroscopic forces, one
should consider only bosonic fields which carry integer spin by virtue of the
spin statistics theorem, since fermion do not build classical coherent states.
While by considering the source like solution ∼ 1

r
e−mr of the Klein-Gordon

equation (□−m2)ψ = 0, it is natural to believe long range forces should be
described by massless fields to evade exponential suppression.

The massless bosonic fields can be classified by their transformation rule
under rotations. It is characterized by an integer called helicity h ⩾ 0.
The path to building a theory for massless particles with certain helicity
is straightforward. Assuming a priori special relativity, the principles of
Lorentz invariance give the corresponding gauge symmetry for particles char-
acterized by helicity. Finally, writing all possible self-interactions preserve
gauge symmetry (consistent with Lorentz invariance) to describe the dy-
namics of the physics system. For helicity 2 particles, the linearized general
coordinate invariance is the required gauge symmetry. The covariance of
self-interactions leads to a theory of massless helicity-2 particle essentially
uniquely to GR[47, 38, 58, 81, 31, 8, 36, 80]. On the other hand, the equiv-
alence principles and general coordinate invariance do not uniquely suggest
GR. The gauge symmetries are redundancies rather fundamental properties
[47]. As we will see in the following section, it is possible to introduce re-
dundant variables to restore the general coordinate diffeomorphisms for any
Lagrangian. As long as people realize that GR is the theory of a non-trivially
interacting massless helicity 2 particle rather the (full) theory of graviton,
they will not be surprise that GR is not UV complete at the quantum level,
and must be viewed as an effective field theory with a cutoff at Planck mass
MP .

2.2 Fierz-Pauli mass term

A straightforward way to modify the gravity of GR is by constructing a
mass term for graviton. A theory of massive gravity is a theory propagating
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massive spin-2 particle(s). Naively, one may simply add a graviton mass
term for Einstein-Hilbert action, so in the m=0 limit theory goes back to
GR. A priori assumption is that the mass term for a spin-2 field hµν contain
only 2 power of h and no derivatives, therefore the generic mass term can be
written as

Lmass = −1

2
m2(hµνh

µν − ah2) , (2.1)

where a is a dimensionless parameter and the indices are raised and lowered
with respect to the Minkowski metric. The mass term is manifestly breaking
the diffeomorphism invariance. We will show how to restore it by introducing
Stückelberg fields. On the other hand, there is no known symmetry to enforce
the parameter a to a particular value.

However, we shall always take a = 1 called Fierz-Pauli tuning. Violat-
ing this tuning by take a ̸= 1 would lead Fierz-Pauli action propagating a
scalar ghost with mass m2

g = m2 4a−1
2(1−a)

, in addition to the massive spin-2
particle. With Fierz-Pauli tuning approach, it goes to infinity and is thus
non-dynamical. We will see this more explicitly in the next section with
Stückelberg field introduced.

Degree of freedom

A massive gravity theory should propagate different degrees of freedom to
massless theory. We shall first study if the Fierz-Pauli action propagates the
correct number of DoFs for a massive spin 2 particle.

The full Fierz-Pauli action contains all possible contractions of two powers
of h and up to two derivatives is

S =

∫
dx− 1

2
∂khµν∂

khµν + ∂µhνk∂
νhµk − ∂µhµν∂

νh+
1

2
∂kh∂

kh

− 1

2
m2(hµνh

µν − h2) .

(2.2)

Indeed, in the m = 0 limit, it obtains exactly the Einstein-Hilbert action at
linear level. By Legendre transformation, the dynamical spatial canonical
momenta are

πij =
∂L
∂ḣij

= ḣij − ḣδij − 2∂(ihj)0 + ∂kh0kδij . (2.3)

Conversely,

ḣij = πij −
1

D − 2
πkkδij + 2∂(ihj)0 . (2.4)
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Our Hamiltonian is then

H =
1

2
π2
ij −

1

2

1

D − 2
π2
ii +

1

2
∂khij∂khij − ∂ihjk∂jhik + ∂ihij∂jhkk

− 1

2
∂ihjj∂ihkk +

1

2
m2(hijhij − h2ii) .

(2.5)

Now the Fierz-Pauli action can be written in the form containing no time-like
components h0i and h00 with time derivatives

S =

∫
dDxπijḣij −H + 2h0i(∂jπij) +m2h20i

+ h00(∇2hij − ∂i∂jhij −m2hii) .

(2.6)

Manifestly, the component h00 is a Lagrange multiplier. Solving the equation
of motion will give a constraint

C = ∇2hij − ∂i∂jhij −m2hii = 0 . (2.7)

Integrating out the component h0i by

h0i = − 1

m2
∂jπij . (2.8)

The Hamiltonian then becomes

H → H +
1

m2
(∂jπij)

2 . (2.9)

The Poisson bracket enforces another constraint

{H,C}PB = − 1

D − 2
m2πii − ∂i∂jπij = 0 . (2.10)

where H =
∫
dDH.

For D = 4, two symmetric 3x3 tensors hij and πij span a 12-dimensional
phase space. The two secondary class constraints move 2 phase freedom for
the space, so the massive graviton and its conjugate momenta carry a total of
10 degrees of freedom, i.e., a massive spin 2 particle has 5 degrees of freedom
as required. We shall later see how these 5 DoFs assign to Stückelberg fields.
In the m = 0 limit, there will have more constraints and thus leave only 2
degrees of freedom as the correct number for a massless spin 2 particle in
GR.

It is worth mentioning that if Fierz-Pauli tuning is violated, the com-
ponent h00 no longer appears linearly and does not enforce a constraint.
Consequently, the total 12 degrees of freedom excited and the extra DoFs
propagate the mentioned scalar ghost.
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2.3 vDVZ discontinuity

Since the massive gravity theory propagates more degrees of freedom, it is
not surprising that there may appear some inconsistencies between massless
limit of Fierz-Pauli action and the purely massless theory. One should keep
the following statement in mind: a massless limit of massive gravity is not a
theory propagating only single massless graviton [47]. A sufficient example
is Van Dam–Veltman–Zakharov discontinuity, which could be shown by a
study of the physical propagator of the theory.

Massless propagator

We start by considering purely massless theory equivalent to GR. Setting
m=0 in Fierz-Pauli action and couple gravity to a conserved (requiring by
general diffeomorphism) external source T µν

L = −1

4
hµν ε̂αβµνhαβ +

1

2MP

hµνT
µν . (2.11)

Where ε̂αβµν called Lichnerowicz operator

ε̂αβµνhαβ = −1

2
(□hµν − 2∂(µ∂αh

α
ν) + ∂µ∂νh− ηµν(□h− ∂α∂βh

αβ)) . (2.12)

Solving its equation of motion obtain linearized Einstein equation

ε̂αβµνhαβ =
1

MP

Tµν . (2.13)

Since the diffeomorphism is a gauge symmetry, we can fix the gauge by
choosing the de Donger gauge or called harmonic gauge

∂µhµν −
1

2
∂νh = 0 . (2.14)

The Einstein equation reduces to simply

□hµν = − 2

MP

(Tµν −
1

2
Tηµν) . (2.15)

Plug it back to rewrite Lagrangian in the form of L = −1/4hµνOµναβhαβ and
use the relation

OµναβGαβ,σλ =
i

2
(δµσδ

ν
λ + δνσδ

µ
λ) . (2.16)

We obtain the propagator for a massless spin-2 field

Gµναβ = − i

p2
(ηµ(αηνβ) −

1

2
ηµνηαβ) . (2.17)
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Massive propagator

Now let us consider Fierz-Pauli action with non-vanishing mass. The modi-
fied Einstein equation is then

ε̂αβµνhαβ +
1

2
m2(hµν − hηµν) =

1

MP

Tµν . (2.18)

The equation of motion is more complicated than the massless case and may
not be easy to derive out the propagator immediately. We thus first consider
the trace and the divergence separately [15],

h = − 1

3m2MP

(T +
2

m2
∂α∂βT

αβ) , (2.19)

∂µh
µ
ν =

1

m2MP

(∂µT
µ
ν +

1

3
∂νT +

2

3m2
∂ν∂α∂βT

αβ) . (2.20)

We obtain the equation of motion in a more familiar form by plugging them
back

(□−m2)hµν =− 1

MP

[Tµν −
1

3
Tηµν −

2

m2
∂(µ∂αT

α
ν) +

1

3m2
∂µ∂νT

+
1

3m2
∂α∂βT

αβηµν +
2

3m4
∂µ∂ν∂α∂βT

αβ] .

(2.21)

One can then derive the generic propagator by defining some new operator,
but here we are only interested in the case of massless limit. Taking m → 0
and recall diffeomorphism invariance enforce source to be conserved ∂µT

µ
ν →

0 in this limit. The equation then simply reduces to

□hµν = − 1

MP

[Tµν −
1

3
Tηµν ] . (2.22)

The propagator in massless limit is thus

Gµναβ = − i

p2
(ηµ(αηνβ) −

1

3
ηµνηαβ) . (2.23)

Explicitly, we see there is a discontinuity of coefficient between purely mass-
less propagator 1/2 and massless limit propagator 1/3. It implies the linear
Fierz-Pauli should not be the full story of massive gravity. There might be
some non-linear interactions that would affect the physical system as gravity
mass goes small. This problem is resolved by the Vainshtein mechanism [77]
in 1972 as we shall see in Section 4.3.
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3 Stückelberg field

3.1 Massive Photon

We first consider a massive spin-1 particle coupled to a source as a simpler
example.

S =

∫
dDx− 1

4
FµνF

µν − 1

2
m2AµA

µ + AµJ
µ , (3.1)

where Fµν ≡ ∂µAν − ∂νAµ is the usual field strength tensor. Since the
mass term breaks the gauge symmetry δAµ = ∂µΛ, this theory propagates
3 degrees of freedom different from 2 for a massless vector. However, the
Lagrangian is not smooth in the m → 0 limit: we lost 1 degree of freedom
when the theory returned to Maxwell.

To keep track of the would-lost DoFs and restore the gauge symmetry,
we introduce a new scalar field ϕ and replace Aµ by

Aµ → Aµ + ∂µϕ . (3.2)

The action is then

S =

∫
dDx− 1

4
FµνF

µν − 1

2
m2(Aµ + ∂µϕ)

2 + (Aµ + ∂µϕ)J
µ . (3.3)

It is manifestly invariant under the following simultaneous gauge transfor-
mation

Aµ → Aµ + ∂µΛ ,

ϕ→ ϕ− Λ .
(3.4)

In this replacement, we are not decomposing our field Aµ into transverse
and longitudinal parts as in QED. In QED, such a gauge residual gauge
freedom is nothing but redundancy. In contrast, we are adding a new field
ϕ as a physical longitudinal mode carries the extra 1 degree of freedom for
the massive spin-1 particle. To show this statement more explicitly, let us
rewrite the Lagrangian by firstly rescaling ϕ → 1

m
ϕ to normalize its kinetic

term, and then integrating by parts

S =

∫
dDx− 1

4
FµνF

µν − 1

2
m2AµA

µ −mAµ∂
µϕ

− 1

2
∂µϕ∂

µϕ+ AµJ
µ − 1

m
ϕ∂µJ

µ .

(3.5)

It suggests a massive spin-1 particle is described by 2 fields: helicity-1 vector
Aµ and helicity-0 scalar ϕ. This Lagrangian thus propagates correct degrees
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of freedom for the massive spin-1 particle and has the expected gauge sym-
metry

δAµ = ∂µΛ, δϕ = −mΛ . (3.6)

We note in the m → 0 limit, the external source should be restricted to be
conserved ∂µJµ = 0 to evade infinity strongly coupling 1

m
ϕ∂µJ

µ. It is con-
sistent with conserved source preserving gauge invariance in purely massless
theory. Taking m=0, the Lagrangian becomes

L = −1

4
FµνF

µν − 1

2
∂µϕ∂

µϕ+ AµJ
µ . (3.7)

Clearly, the transverse and longitudinal mode both survive, and no degree
of freedom is lost at the limit. The loss of DoF tends to be the origin of the
appearance of physical difference between a massive theory with tiny mass
and purely massless theory. Here, we show that for massive spin-1 particle,
there is no vDVZ discontinuity.

For Maxwell theory, the propagator is simply

Gµν =
−iηµν
p2

. (3.8)

For massive photon (3.5), we have the equation of motion

(□−m2)Aµ = −Jµ,□ϕ =
1

m
∂µJ

µ . (3.9)

However, we have seen above the source should be conserved and the scalar
fully decouple □ϕ = 1

m
∂µJ

µ → □ϕ = 0. The propagator is therefore obtained
by

Gµν =
−iηµν
p2 +m2

, (3.10)

which is smooth in the limit of m→ 0.

3.2 Stückelberg-ing Graviton

Now let us turn to massive spin-2 particle

L = Lkin −
1

2
m2(hµνh

µν − h2) + λhµνT
µν . (3.11)

The mass term breaks the gauge symmetry δhµν = 2∂(µξν) for the massless
graviton. We introduce Stückelberg field Aµ to restore it by replacing

hµν → hµν + ∂µAν + ∂νAµ . (3.12)
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This looks like a gauge transformation, so the kinetic term remains invariant.
Integrating by parts, the action becomes

S = Lkin −
1

2
m2(hµνh

µν − h2)− 1

2
m2(∂µAν + ∂νAµ)(∂

µAν + ∂νAµ)

−m2hµν(∂
µAν + ∂νAµ) + 2m2[(∂µA

µ)2 + h∂µA
µ]

+ λ(hµν + ∂µAν + ∂νAµ)T
µν

= Lkin −
1

2
m2(hµνh

µν − h2)− 1

2
m2FµνF

µν − 2m2(hµν∂
µAν − h∂µA

µ)

+ λhµνT
µν − 2λAµ∂νT

µν ,
(3.13)

where Fµν ≡ ∂µAν − ∂νAµ as usual. The Lagrangian is then invariant under
the fowling gauge transformation

hµν → hµν + 2∂(µξν) ,

Aµ → Aµ − ξµ .
(3.14)

Normalizing the vector kinetic term by rescaling Aµ → 1
m
Aµ, we see the La-

grangian now propagates a tensor field and a vector field both carry 2 degrees
of freedom. However, recall that for a massive spin-2 particle we should have
a total of 5 degrees of freedom, so we need secondary Stückelberging Aµ to
evade unsmooth at m→ 0 limit

Aµ → Aµ + ∂µϕ . (3.15)

The action is then

S =

∫
d4xLkin −

1

2
m2(hµνh

µν − h2)− 1

2
m2FµνF

µν

− 2m2(hµν∂
µAν − h∂µA

µ)− 2m2(hµν∂
µ∂νϕ− h∂2ϕ)

+ λhµνT
µν − 2λAµ∂νT

µν + 2λϕ∂µ∂νT
µν .

(3.16)

To see this Lagrangian now propagates correct number of degrees of freedom,
we first rescale Aµ → 1

m
Aµ, ϕ → 1

m2ϕ to normalize kinetic (or kinetic-like)
terms

L = Lkin[h]−
1

2
FµνF

µν −2(hµν∂
µ∂νϕ−h∂2ϕ)+Lmass[h]+Lsource[ϕ,A, T, h] .

(3.17)
The vector kinetic term is explicit, but the scalar is still kinetically mixed
with the tensor field. Consider field redefinition

hµν = h′µν + πηµν , ϕ = π . (3.18)

11



The action rearranged as

S =

∫
d4xLkin[h

′]− 1

2
m2(h′µνh

′µν − h′2)− 1

2
FµνF

µν + 3π(□+ 2m2)π

− 2m2(h′µν∂
µAν − h′∂µA

µ) + 3(m2h′π + 2mπ∂µA
µ)

+ λh′µνT
µν + λπT − 2

m
λAµ∂νT

µν +
2

m2
λπ∂µ∂νT

µν .

(3.19)
2 gauge symmetries obtained by

δh′µν = 2∂(µξν) +mΛηµν , δAµ = −mξµ , δAµ = ∂µΛ , δπ = −mΛ . (3.20)

We note in section 2, that only tensor field hµν couple with an external
source. However, here we have an extra interaction λπT still survives even
in the m=0 limit. This is the origin of the vDVZ discontinuity. Imposing the
following gauge conditions [66, 53]

∂νh′µν −
1

2
∂µh

′ +mAµ = 0 , (3.21)

∂µA
µ +m(

1

2
h′ + 3π) = 0 . (3.22)

and diagonalizing the action with the gauge-fixing term

S ′ + Sgauge =

∫
d4x

1

2
h′µν(□−m2)h′µν − 1

4
h′(□−m2)h′

+ Aµ(□−m2)Aµ + 3π(□−m2)π

+ λh′µνT
µν + λπT − 2

m
λAµ∂νT

µν +
2

m2
λπ∂µ∂νT

µν .

(3.23)

The propagator of h′µν is then

Gh′

µναβ = − i

p2 +m2
(ηµ(νηαβ) −

1

2
ηµνηαβ) . (3.24)

which is now smooth at the m → 0 limit. Also, the Lagrangian propagates
the correct number of degrees of freedom and preserves DoFs in the massless
limit.

At this step so far, we can see how ghost appears if Fierz-Pauli tuning
is violated. For the first Stückelberg decomposition hµν → hµν + 2∂(µAν),
one can no longer obtain an exact product −1/2m2FµνF

µν of field stress,
but with some additional terms ∼ (∂A)(∂A). Consequently, Stückelberg
scalar appears a kinetic term with four derivatives ∼ (□ϕ)2 which carries
two degrees of freedom with one of ghost-like [26, 27].

12



3.3 Non-linear Stückelberg decomposition

Necessity of GR

So far in our linear Fierz-Pauli action, we are only a prior consider an external
source with satisfactory properties. However, one must consider non-linearity
to describe nature more completely. In linearized theory, the gravity-matter
coupling can be written as

Llinear
matter =

1

2MP

hµνT
µν
0 , (3.25)

T µν
0 = ∂µφ∂νφ− 1

2
(∂φ)2ηµν . (3.26)

The free Klein-Gordon equation □φ = 0 guarantees conservation of source
∂µT

µν
0 = 0 and thus preserves linearized diffeomorphism invariance. However,

as an interacting theory, the coupling of matter and gravity enforces the
massless scalar should satisfy following modified K-G equation

□φ =
1

MP

[∂α(hαβ∂
βφ)− 1

2
∂α(h∂

αφ)] , (3.27)

and the stress-energy tensor hence is no longer conserved

∂µT
µν
0 =

1

MP

[∂α(hαβ∂
βφ)− 1

2
∂α(h∂

αφ)]∂νφ . (3.28)

It is natural to resolve this by adding non-linear interaction between gravity
and matter,

Lfull
matter =

1

2MP

hµνT
µν
0 +

1

2M2
P

hµνhαβT
µναβ
1 + ... . (3.29)

This promotes the gauge symmetry from linearized diffeomorphism invari-
ance to the fully non-linear coordinate transformation invariance, i.e., the
covariance. Also, the stress-energy tensor enforced to be covariantly con-
served ∇µT

µν = 0. It then leads us to GR: the theory of a massless spin-2
particle with a unique (up to Lovelock invariants) fully non-linear kinetic
term

Llinear
kin = −1

4
hµν ε̂αβµνhαβ → Lcovariant

kin =
M2

P

2

√
−gR[g] . (3.30)

Following the above path, we see the general diffeomorphism is not a funda-
mental property, but rather an essential conclusion for the covariant theory
of massless spin-2 particle. The appearance of the coupling itself changes

13



the equation of motion of the matter field, makes the source non-conserved
and so breaks linear diffs. Consequently, there are no interactions between
matter and gravity to preserve linear diffs. While we successfully wrote self-
interactions hµν ϵ̂

µν
αβh

αβ with linear diffs, we should abandon them and only
consider fully non-linear kinetic contribution

√
−gR[g] to make the story

continue.

Stükelberg-ing non-linear gravity

For a theory of massive gravity, the mass term is built out of fluctuation hµν
which is not transformed as a tensor under diffeomorphism. Extending our
massive gravity to a fully non-linear level, the mass term so breaks covariance.
Nevertheless, as we have seen in linearized theory, the gauge symmetry is
a ‘redundancy’ and one can always restore it by introducing Stückelberg
fields. There are many equivalent ways with different advantages to using
Stückelberg trick. Here we use the one which is convenient to keep track of
the hµν .

Under general diffeomorphism, the full metric transforms as

gµν(x) →
∂fa

∂xµ
∂f b

∂xν
gab(f(x)) . (3.31)

Recall that the kinetic term
√
−gR[g] is always gauge invariant. To restore

the full diffs of the potential mass term built out of the hµν and leave the
full metric unchanged, we consider introducing Stückelberg fields by making
simultaneous replacement

fµν(x) → f̃µν(x) = ∂µϕ
a∂νϕ

bfab(ϕ(x)) , (3.32)

hµν(x) → Hµν(x) = (gµν(x)− ∂µϕ
a∂νϕ

bfab(ϕ(x)))MP . (3.33)

where ϕa(x) (a = 0, 1, 2, 3) are four scalars transform as

ϕa → ϕa(f(x)) , (3.34)

or infinitesimally,

δϕa = ξν∂νϕ
a , fµ(x) = xµ + ξµ(x) (3.35)

under diffeomorphisms. Now f̃ transform as a tensor under diffs, and so
contractions like gµν f̃µν transform as scalars. One can therefore construct
gauge invariant potential U(g,H) to introduce a non-linear extension of the
Fierz-Pauli mass term.
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Helicity decomposition

We shall show more explicitly how Stückelberg fields ϕa decompose to differ-
ent helicity modes. Expanding

ϕa = xa − 1

MP

χa (3.36)

and only consider flat reference metric fµν = ηµν for simply, we obtain

Hµν = hµν + 2∂(µχν) −
1

MP

ηab∂µχ
a∂νχ

b . (3.37)

Again, splitting χa in terms of the helicity-1 and helicity-0 modes by

χa =
1

m
Aa +

1

m2
ηab∂bπ . (3.38)

Then

Hµν =hµν +
2

m
∂(µAν) +

2

m2
Πµν

− 1

MPm2
∂µA

a∂νAa −
2

MPm3
∂µA

aΠνa −
1

MPm4
Π a

µ Πνa .
(3.39)

where Πµν = ∂µ∂νπ is defined for future convenience and all indices are
raised and lowered with respect to reference metric fµν = ηµν . As discussed
in linearized decomposition, the graviton described by helicity-2 part hµν ,
helicity-1 part Aµ and helicity-0 part π.

3.4 Boulware-Deser ghost

A straightforward extension of the non-linear gravity mass term is replacing
η → g, h → H (and considering the change of measure) in the linear Fierz-
Pauli mass term

LFP = −m2M2
P ηµνηαβ(hµαhνβ − hµνhαβ) (3.40)

to obtain

L(nl)
FP = −m2M2

P

√
−g[gµνgαβ(HµαHνβ −HµνHαβ)] . (3.41)

Constructing the tensor quantity

Xµ
ν = gµaf̃aν = ∂µϕa∂νϕ

bfab . (3.42)
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We can then rewrite (3.41) in a form that is manifestly diffeomorphism in-
variant

L(nl)
FP = −m2M2

P

√
−g([(1− X)2]− [1− X]2) . (3.43)

Focusing on helicity-0 mode π, we note that

Xµ
ν ⊃ − 2

MPm2
Πµ

ν +
1

M2
Pm

4
Πµ

aΠ
a
ν . (3.44)

These give terms with higher order derivatives in our extended mass term

L(nl)
FP ⊃− 4

m2
([Π2]− [Π]2) +

4

MPm4
([Π3]− [Π][Π2])

+
1

M2
Pm

6
([Π4]− [Π2]2) .

(3.45)

While the quadratic term can be viewed as a total derivative after integrating
by parts, we still have interactions with higher derivatives in Lagrangian.
By Ostrogradski’s theorem[71, 83], this implies that the non-linear Firez-
Pauli mass term propagates an additional ghostly scalar degree of freedom
which called BD ghost. Taking an appropriate background configuration
π = π0 + δπ, one can write

L(nl)
FP ⊃ 4

MPm4
Zµναβ∂µ∂νδπ∂α∂βδπ

Zµναβ = 3∂µ∂απ0η
νβ −□π0η

µαηνβ − 2∂µ∂νπ0η
αβ + ... .

(3.46)

The ghost mass is then depending on the background

m2
gh ∼ MPm

4

∂2π0
. (3.47)

Around a flat background, the mass goes to infinity so the ghost ‘freezes’.
For this reason one have not seen the BD ghost in linear level as higher order
operators ([Π3]− [Π][Π2]) and ([Π4]− [Π2]2) be irrelevant.

One may also consider a functional mass term to evade the BD ghost

L(nl)
FP = −m2M2

P

√
−gF [gµνgαβ(HµαHνβ −HµνHαβ)] . (3.48)

However, it does not help: the only choice of the function to prevent higher-
derivative term [Π3]− [Π][Π2] is F ′[0] = 0 , but this removes the mass term
as the price to pay[15].
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4 Massive Gravity in dRGT theory

We have seen the theories of massive gravity are plagued by BD ghost in-
stability at the non-linear level. Moreover, it is argued in [67, 85] that this
instability is inevitable when constructing a gravity mass term. However, in
this section we shall see how the ghost could be circumvented in the most
well-known ghost-free massive gravity theory found by de Rham, Gabadadze
and Tolley[16, 18]. In brief, they take a square root of (3.42) and introduce
a tensor

Kµ
ν [g, f ] = δµν − (

√
g−1f )µν (4.1)

as a replacement of 1− X. Then constructing potential terms as

U ∼
√
−g

4∑
n=0

αn

n!
Ln[K] , (4.2)

or alternatively,

U ∼
√
−g

4∑
n=0

βn
n!

Ln[
√
g−1f ] , (4.3)

where the Lagrangian Ln defined to

L0[Q] = εµναβεµναβ ,

L1[Q] = εµναβεµ′ναβ Q
µ′

µ ,

L2[Q] = εµναβεµ′ν′αβ Q
µ′

µ Q
ν′

ν ,

L3[Q] = εµναβεµ′ν′α′β Q
µ′

µ Q
ν′

ν Q
α′

α ,

L4[Q] = εµναβεµ′ν′α′β′ Qµ′

µ Q
ν′

ν Q
α′

α Q
β′

β .

(4.4)

The coefficient relation is
β0
β1
β2
β3
β4

 =


1 1 1 1 1
0 −1 −2 −3 −4
0 0 2 6 12
0 0 0 −6 −24
0 0 0 0 24



α0

α1

α2

α3

α4

 . (4.5)

In what follows, we prove this theory is indeed absent of BD ghost under
general reference metric by ADM formulation. The proof in the Stückelberg
language and in the vierbein formulation are referred to [3, 45]and [28, 50],
respectively.
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4.1 Absence of BD ghost in ADM formulation

We start by ADM formulation of GR, the full metric is decomposed to

N ≡ (−g00)−
1
2 , Ni ≡ g0i, γij = gij . (4.6)

The N and Ni are the lapse and shift functions respectively. We also define
such analog for reference metric for later convenience

M ≡ (−f 00)−
1
2 , Mi ≡ f0i,

3fij = fij = f . (4.7)

The inverse metric in ADM parameterization is

gµν =

(
−1 N j

N i N2γij −N iN j

)
. (4.8)

The Einstein-Hilbert action then reads

Skin =M2
P

∫
d4x[πij∂tγij +NR0 +NiR

i] , (4.9)

R0 =
√

det{γ}[R(γ) + 1

det{γ}
(
1

2
π2 − πijπij)] , (4.10)

Ri = 2
√
det{γ}∇j(

πij√
det{γ}

) . (4.11)

The proof is based on the statement as follows. In the linear Fierz-Pauli
theory, the lapse is a Lagrangian multiple, so its equation of motion provides
a modified Hamiltonian constraint while the shifts would be determined in
terms of (γ, π). Expecting this situation is the same in non-linear theory, we
suppose there exist three (invertible) functions

nr = nr(N,N
i, γ) , Ni = (N, nj, γ) linear in N , (4.12)

such that one could rewrite action as

S[N,Ni] = S̃[N, nr = nj(N,Ni, γ)] , (4.13)

and varying respect to ni give N-independent equation of motion so that ni

can be entirely determined only by (γ, π). That is, ni can be viewed as ‘re-
defined shifts’ variables that take the role of Ni in linear theory. Conversely,
one can also determine the Ni as functions of ni. The original equations of
motion lead to the equivalent equations

δS

δNi

≡ δS̃

δnj

∣∣∣∣
N

δnj

δNi

= 0 ,
δS

δN
≡ δS̃

δnj

∣∣∣∣
N

δnj

δN
+
δS̃

δN

∣∣∣∣
n

= 0 ,

⇒ δS̃

δnj

∣∣∣∣
N

= 0 ,
δS̃

δN

∣∣∣∣
n

= 0 .

(4.14)
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Accordingly, there are 3 criteria for us to investigate the existence of a pri-
mary Hamiltonian constraint [44] :

i) The ni equations of motion should depend on lapse and shifts only
through the three functions ni, i.e., F [γ, π, ni(N,N

i, γ)] = 0.
ii) The N equation of motion could only involve ni and must be N -

independent, so substituting the ni solution it becomes a constraint on (γ, π).
The action S̃ is thus linear in N .

iii) Since the action S̃ contains the term RiNi = (N, nj, γ), the linearity
of Ni = (N, nj, γ) in N implies the expression must also be linear in N .

The most generic ghost-free massive gravity action can be written as[41]

S =M2
P

∫
d4x

√
−g [R + 2m2

3∑
n=0

βn Qn(
√
g−1f)] , (4.15)

with more explicit operators in analogue of (4.4)

Q0(X) = 1 ,

Q1(X) = [X] ,

Q2(X) =
1

2
([X]2 − [X2]) ,

Q3(X) =
1

6
([X]3 − 3[X][X2] ,+2[X⊯])

Q4(X) =
1

24
([X]4 − 6[X]2[X2] + 3[X2]2 + 8[X][X3]− 6[X4]) ,

Qk(X) = 0 for k > 4 .

(4.16)

The four coefficients can be determined by 2-free parameters

βn = (−1)n(
1

2
(4− n)(3− n)− (4− n)α3 + α4) . (4.17)

For simplicity, we first consider minimal massive gravity model (β0 = 3, β1 =
−1, β2 = β3 = 0) with zero cosmological constant

Smin =M2
P

∫
d4x

√
−g [R− 2m2(Tr

√
g−1f − 3)] , (4.18)

or equivalently,

Lmin = πij∂tγij +NR0 +NiR
i − 2m2

√
det{γ}N(Tr

√
g−1f − 3) . (4.19)
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In ADM parameterization we have

N2g−1f = N2N−2

(
−1 N j

N i N2γij −N iN j

)(
f00 f0j
fi0 fij

)
=

(
−f00 +N jfj0 −f0j +N jfji

N if00 + (N2γij −N iN j)fi0 N if0j + (N2γij −N iN j)fij

)
=

(
−f00 +N lfl0 −f0j +N lflj

N2γilfl0 −N i(−f00 +N lfl0) N2γilflj −N i(−f0j +N lflj)

)
.

(4.20)
By criteria 3, we suppose the shifts could be expressed by

N i = ci(n, γ) +Ndi(n, γ) , (4.21)

where the variables ci and di are manifestly independent of N . On the other
hand, criteria 2 implies that the matrix (4.21) should take a form at most
including 2 power of N

N2g−1f = E0 +NE1 +N2E2 . (4.22)

Substituting (4.21) to (4.20), one obtains

N2g−1f =

(
−f00 + clfl0 −f0j + clflj
cif00 − ciclfl0 cif0j − ciclflj

)
+

(
dlfl0 dlflj

dif00 − diclfl0 − dlcifl0 dif0j − diclflj − dlciflj

)
N

+

(
0 0

γilfl0 − didlfl0 γilflj − didlflj

)
N2 .

(4.23)

Comparing this to (4.22), these give the results

E0 =

(
a0 aj

−a0ci −ajci
)
, E1 =

(
dlfl0 dlflj

−a0di − cidlfl0 −ajdi − cidlflj

)
,

E2 =

(
0 0

(γil − didl)fl0 (γil − didl)flj

)
,

(4.24)

where we have introduced aµ = −f0µ + clflµ for compactivity. Equivalently,
criteria 2 directly restricted

N
√
g−1f = A+NB ⇒ N2g−1f = A2 +N(AB +BA) +N2B2 . (4.25)

Relations between these matrices then reads

A2 = E0 , AB +BA = E1 , B
2 = E2 . (4.26)
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To determine matrix A, we note

E2
0 = (a0 − clal)

(
a0 aj

−a0ci −ciaj

)
= xE0 , x ≡ a0 − clal . (4.27)

gives A = E0/
√
x. The matrix B is straightforward to evaluate by

B =

(
0 0√

(γil − didl)flk(f
−1)klflo

√
(γil − didl)flj

)
. (4.28)

For later convenience, we introduce an important matrix D through

√
xDi

j ≡
√

(γil − didl)flj , (4.29)

so that B can be written in a more compact form

B =
√
x

(
0 0

Di
k(f

−1)klflo Di
j

)
. (4.30)

Also, one can easily check that the matrix D has the following useful sym-
metric property

fikD
k
j = fjkD

k
i , (4.31)

which will be applied in what follow. Plugging the above results in the
remaining equation AB +BA = E, we obtain

AB +BA =

(
a0 aj

−a0ci −ciaj

)(
0 0

Di
k(f

−1)klflo Di
j

)
+

(
0 0

Di
k(f

−1)klflo Di
j

)(
a0 aj

−a0ci −ciaj

)
=

(
aiD

i
k(f

−1)klfl0 aiD
i
j

−ciajDj
k(f

−1)klfl0 −cialDl
j

)
+

(
0 0

a0D
i
k(f

−1)klfl0 − a0c
iDi

j ajD
j
k(f

−1)klfl0 − alc
iDl

j

)
=

(
aiD

i
k(f

−1)klfl0 aiD
i
j

a0D
i
k(f

−1)klfl0 − ajc
iDj

k(f
−1)klfl0 ajD

j
k(f

−1)klfl0 − 2alc
iDl

j

)
= E1 =

(
dlfl0 dlflj

−a0di − cidlfl0 −ajdi − cidlflj

)
.

(4.32)
This gives

di = cjDi
j −Di

k(f
−1)klfl0 = Di

k(c
k − (f−1)klfl0) . (4.33)
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Inspired by the proof in flat space in [43], we take a prior choice of ni as
follows

ni = ci − (f−1)ilfl0 . (4.34)

(4.33) then reduced to
di = Di

jn
j . (4.35)

By the definition (4.29), it gives

√
xDi

j ≡
√
(γil −Di

kn
kDl

hn
h)flj . (4.36)

At this stage, we can now determine all variables ci, di, Di
j in terms of ni

and γif with arbitrary reference metric fµν . In the case of minimal massive
gravity, (4.36) can be analytically solved [44]

D = (
√
γ−1fQ)Q−1 , Q−1 =

1

M2 − nkfklnl
(1−M2nn⊺f) . (4.37)

Here we have treated the ni as a column vector and n⊺ as its transpose. The
(4.19) in full ADM parametrization is

N i = ni +M i +NDi
kn

k . (4.38)

Substituting it in the Lagrangian gives

Lmin =πij∂tγij +NR0 +Ri[ni +M i +NDi
kn

k]

− 2m2
√

det{γ}[
√
x+N

√
xTrD − 3N ] .

(4.39)

Varying respect to the nk using

∂

∂nk

√
x = − 1√

x
njfji

∂ni

∂nk

, (4.40)

∂

∂nk
(
√
xTrD) = − 1√

x
njfji

∂(Di
ln

l)

∂nk

. (4.41)

gives the equation of motion

(Ri + 2m2
√

det{γ}n
jfji√
x
)(
∂(ni +NDi

ln
l)

∂nk

) = 0 . (4.42)

Note the quantity in the square bracket is exactly the Jacobi matrix J i
k =

∂N i

∂nk

which is invertible. Neglecting it and recall ∂Lmin

∂nk = ∂Lmin

∂N i
∂N i

∂nk , the e.o.m
reduce to

∂Lmin

∂N i
= Ri + 2m2

√
det{γ}n

jfji√
x

= 0 (4.43)
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and is N-independent as required. Surprisingly, with our choice of ni, the
criteria i) is automatically satisfied by imposing criteria ii) and iii). Using
the definition in (4.25), ni could be explicitly determined as

ni =
−M√

4m4 det{γ}+Rk(f−1)klRl

(f−1)ijRj . (4.44)

Finally, varying action with respect to the N to obtain the N equation of
motion

R0 +RiD
i
jn

j − 2m2
√
det{γ}[

√
xTrD − 3] = 0 . (4.45)

Using the expression of x and D and the solution (4.44), this becomes a
primary Hamiltonian constraint on the (γ, π) and reduces the total number
of phase freedom from 12 to 11.

The secondary constraint is given by the time evaluation of the primary
constraint. Integrating out shifts N i, one can read off Hamiltonian

Lmin = πij∂tγij −H0(γij, π
ij, f) +NC(γij, π

ij, f) , (4.46)

H =

∫
d3x(H0 −NC) . (4.47)

The secondary constraint is then given by

d

dt
C = {C,H} . (4.48)

The detailed evaluation of the Poisson bracket is refereed to [42]. In brief, it
shows that dC

dt
is independent of N so become the secondary constraint on the

(γ, π). Furthermore, it also argued that there are no additional constraints
are generated.

As a footnote, the Hamiltonian

Hmin =M
√

4m4 det{γ}+Rk(f−1)klRl −RiM
i (4.49)

is manifestly positive for any reference metric fµν with M i = 0 and M > 0,
in particular, it is positive for flat space fµν = ηµν (M = 1, M i = 0).

Now we generalize our conclusion to the generic 2-parameter theory of
massive gravity

L = πij∂tγij +NR0 +NiR
i + 2m2

√
det{γ}N(

3∑
n=0

βnQn(
√
g−1f)) . (4.50)

In the above discussion we have considered operators Q0 and Q1, so in what
follows we study the remaining Q2 and Q3 to complete the proof.
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We start by writing these in terms of A and B matrices we have deter-
mined

NQ2(
√
g−1f) = TrATrB − TrAB +

1

2
N [(TrB)2 − TrB2] , (4.51)

NQ2(
√
g−1f) =TrAB2 − TrAB TrB +

1

2
TrA[(TrB)2 − TrB2]

+
1

6
N [(TrB)3 − 3TrB TrB2 + 2TrB3] .

(4.52)

Varying the action with respect to ni, we found that the RiNi in the kinetic
part gives a contribution

Ri
∂N i

∂nk
= Ri

∂

∂nk
(ni +NDi

jn
j) , (4.53)

which is proportional to the Jacobi matrix. To keep N as a Lagrangian mul-
tiple, each of the potential terms should also give a contribution proportional
to J i

k as well. We shall verify this in what follows. Using auxiliary variables
we defined, express

TrA =
√
x,TrB =

√
xTrD,

TrB2 = xTrD2, TrB3 = x
3
2 TrD3 ,

TrAB = −n⊺fDn , TrAB2 = − 1√
x
n⊺f(γ−1 −Dnn⊺D⊺)fn .

(4.54)

Varying these gives

∂

∂nk
TrA = − 1√

x
n⊺f

∂n

∂nk
,

∂

∂nk
TrB = − 1√

x
n⊺f

∂(Dn)

∂nk
,

∂

∂nk
TrB2 = −2n⊺fD

∂(Dn)

∂nk
,

∂

∂nk
TrB3 = −3

√
xn⊺fD2∂(Dn)

∂nk
,

∂

∂nk
TrAB = −n⊺fD

∂n

∂nk
− n⊺f

∂(Dn)

∂nk
,

∂

∂nk
TrAB2 = − 1√

x
(n⊺fD2n)n⊺f

∂n

∂nk
− 2

√
xn⊺fD2 ∂n

∂nk

+
2√
x
(n⊺fDn)n⊺f

∂(Dn)

∂nk
.

(4.55)
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Combine them to the (4.51) and (4.52), gets

∂

∂nk
NQ2(

√
g−1f) = n⊺f [D − TrD]

∂

∂nk
(n+NDn) , (4.56)

∂

∂nk
NQ3(

√
g−1f)

= −
√
xn⊺f [D2 −DTrD +

1

2
((TrD)2 − TrD2)]

∂

∂nk
(n+NDn) .

(4.57)

Indeed, both satisfy the requirement as expected. So, varying the action,
gives N-independent equations of motion

Ri − 2m2
√

det{γ}n
lflj√
x
[β1δ

j
i + β2

√
x(δ j

i D
m
m −Dj

i)

+ β3x(
1

2
δ j
i (Dm

mD
n
n −Dm

nD
n
m) +Dj

mD
m
i −Dj

iD
m
m)] = 0 ,

(4.58)

R0 +RiD
i
jn

j + 2m2
√
det{γ}[β0 + β1

√
xDj

i +
1

2
β2x(D

i
iD

j
j −Di

jD
j
i)

+
1

6
β3x

3
2 (Di

iD
j
jD

k
k − 3Di

iD
j
kD

k
j + 2Di

jD
j
kD

k
i)] = 0 .

(4.59)
It may be difficult to solve them exactly as in the minimal case. However, it
is enough to solve them perturbatively to show these indeed give a primary
Hamiltonian constraint and reduced phase freedom. The proof of secondary
constraint (4.48) is also given in [42]. Consequently, these two constraints
eliminate the BD ghost in generic dRGT theory with an arbitrary reference
metric.

4.2 Decoupling limit and Λ3 scale

The generic interaction term included in the potential of massive gravity
theories can be written in terms of helicity-0 π, helicity-1 Aµ and helicity-2
modes hµν

Lj,k,l = m2M2
P (

h

MP

)j(
∂A

mMP

)2k(
∂2π

m2MP

)l

= Λj+4k+3l−4
j,k,l hj(∂A)2k(∂2π)l ,

(4.60)

at the scale
Λjkl = (m2k+2l−2 M j+2k+l−2

P )
1

j+4k+3l−4 . (4.61)

Manifestly, the first interaction involving dangerous operator (∂2π)3 excited
at the scale Λj=0,k=0,l=3 ≡ Λ5 = (MPm

4)1/5. At and beyond this scale, such
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interactions will lead BD ghost instability. In what follows, we shall see the
ghost-free massive gravity also rise the scale from Λ5 to Λj=k=0, l→∞ = Λ3 =

(MPm
2)

1
3 .

As in this case, we interested in interactions that only contain helicity-0
mode (j=k=0), so it is sufficient to consider

gµν
∣∣∣∣
h=0

= ηµν , (4.62)

f̃µν

∣∣∣∣
h=A=0

= ηµν −
2

MPm2
Πµν +

1

M2
Pm

4
ηαβΠµαΠνβ , (4.63)

so the tensor introduced in (4.1) reads

Kµ
ν

∣∣∣∣
h=A=0

=
1

MPm2
Πµ

ν . (4.64)

Setting α0 = α1 = 0 to obtain zero cosmological constant and tadpole, so
the flat space is the vacuum solution. The potential U [K] up to the scale is
then

Lmass =
m2M2

P

4

√
−g
∣∣∣∣
h=0

4∑
n=2

αnLn[K]

∣∣∣∣
h=A=0

=
m2M2

P

4

4∑
n=2

αnLn[
Πµν

MPm2
]

=
1

4
εµναβεµ′ν′α′β′(

α2

m2
δµ

′

µ δ
ν′

ν +
α3

MPm4
δµ

′

µ Πν′

ν +
α4

M2
Pm

6
Πµ′

µ Π
ν′

ν )Π
α′

α Πβ′

β .

(4.65)
Since all these terms are total derivatives, interactions involving higher deriva-
tives of the form (∂2π)l are thus harmless and would not lead to an Ostro-
gradsky instability. This proves the BD ghost is absent in dRGT theory
in Stückelberg language, at least at a scale below to Λ3. Actually, this is
how ghost-free massive gravity was originally constructed in [16, 18]. At the
scale Λ3 or higher, more interactions with (∂2π)l excited and the BD ghost
may still reappear. However, as we have proved in ADM parametrization in
the last subsection, the 2-parameter dRGT theory is free of BD instability
without any scaling restriction.

Decoupling limit

Sending MP → ∞, m → 0 and maintaining the scale Λ3 fixed, we could
investigate the theory at the scale Λ3. The new interactions that arise are

j = 1 , k = 0 , ∀ l ⩾ 2 (4.66)
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and
j = 0 , k = 1 , ∀ l ⩾ 1 . (4.67)

Here we are interested in helicity-2 and -0 coupling so focus on the case of
(4.66) to see the interactions

LDL
mass = hµνX̄µν , (4.68)

where by [16, 18, 17],

X̄µν =
δ

δhµν
Lmass

∣∣∣∣
h=A=0

=
M2

Pm
2

4

δ

δhµν
(
√
−g

4∑
n=2

αnLn[K])

∣∣∣∣
h=A=0

.

(4.69)

Using the relation

δKn

δhµν

∣∣∣∣
h=A=0

=
n

2
(Πn−1

µν − Πn
µν) , (4.70)

we obtain

X̄µν =
Λ3

3

8

4∑
n=2

αn(
4− n

Λ3n
3

X(n)
µν [Π] +

n

Λ
3(n−1)
3

X(n−1)
µν [Π]) , (4.71)

with

X(0)
µν [Q] = 3!ηµν ,

X(1)
µν [Q] = 2!([Q]ηµν −Qµν) ,

X(2)
µν [Q] = ([Q]2 − [Q2])ηµν − 2([Q]Qµν −Q2

µν) ,

X(3)
µν [Q] = ([Q]3 − 3[Q][Q2] + 2[Q3])ηµν

− 3([Q]2Qµν − 2[Q]Q2
µν − [Q2]Qµν + 2Q3

µν) ,

X(n⩾4)
µν [Q] = 0 .

(4.72)

For more detail for the operators X(n) we refer the reader to appendix A in
[47]. In the decoupling limit MP → ∞ the full metric gµν = ηµν +M−1

P hµν
reduces to Minkowski metric and the standard Einstein-Hilbert kinetic term
reduces to linearized version hεh. Neglecting the helicity-1 modes, the full Λ3-
decoupling limit Lagrangian of ghost-free massive gravity (with flat reference
metric) is

LΛ3 =
1

4
hµν ε̂αβµνhαβ+

1

8
hµν(2α2X

(1)
µν +

2α2 + 3α3

Λ3
3

X(2)
µν +

α3 + 4α4

Λ6
3

X(3)
µν ) . (4.73)
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The tensors X
(n)
µν are transverse and the equations of motion with respect to

h and π involve derivatives no more than two. So, the theory is free of BD
ghost instability in the decoupling limit and healthy even beyond this limit.

For completeness, we also give the full decoupling limit Lagrangian with
vector modes [70]

L(0)
Λ3

=− 1

4
hµν Êαβ

µν hαβ +
1

2
hµν

3∑
n=1

an

Λ
3(n−1)
3

X(n)
µν

+
3β1
8
δαβγδabcd δ

a
α

(
δbβF

c
γω

d
δ + 2

[
ωb

βω
c
γ +

1

2
δbβω

c
µω

µ
γ

]
(δ +Π)dδ

)
+
β2
8
δαβγδabcd (δ +Π)aα

(
2δbβF

c
γω

d
δ +

[
ωb

βω
c
γ + δbβω

c
µω

µ
γ

]
(δ +Π)dδ

)
+
β3
48
δαβγδabcd (δ +Π)aα(δ +Π)bβ

(
3F c

γω
d
δ + ωc

µω
µ
γ(δ +Π)dδ

)
,

(4.74)

where the auxiliary Lorentz Stückelberg fields are introduced

ωab =

∫ ∞

0

due−2ue−uΠa ′
a Fa′b′e

−uΠ b ′
b

=
∑
n,m

(n+m)!

21+n+m n!m!
(−1)n+m (Πn F Πm)ab ,

(4.75)

with Fab = ∂aAb − ∂bAa.

4.3 Vainshtein mechanism

Vainshtein mechanism in Λ5 theories

At the linear level, we have seen the helicity-0 mode couples to matter would
give an extra fifth force and leads to vDVZ discontinuity. The resolution
is well-known as the Vainshtein mechanism, which relies strongly on non-
linearities. In theories with scale Λ5, the BD ghost play a sufficient role in
response to it.

In the decoupling limit

m→ 0 , MP → ∞ , T → ∞ , Λ5 ,
T

MP

fixed , (4.76)

where T is the trace of matter source. The action contains only helicity-0
mode reads (Up to a total derivative)

Sϕ =

∫
d4x− 3(∂π)2 +

2

Λ5
5

[(□π)3 − (□π)(∂µ∂νπ)
2] +

1

MP

πT . (4.77)
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Around a source of mass M, the spherical solution at linear order goes like

π ∼ M

MP

1

r
. (4.78)

The non-linearities become important until

rV ∼ (
M

M2
Pm

4
)
1
5 , (4.79)

which is called the Vainshtein radius. In section 3, we see the ghost has mass

m2
ghost (r) ∼

MPm
4

∂2π0(r)
=

Λ5
5

∂2π0(r)
. (4.80)

We could not ignore the ghost in our EFT once its mass drops below scale
Λ5, so equivalently, it appears inside the radius

rghost ∼ (
M

MP

)
1
3
1

Λ5

≫ rV ∼ (
M

MP

)
1
5
1

Λ5

. (4.81)

Far outside the Vainshtein radius, the field remains the usual Coulombic form
(4.74), while the non-linearities dominate inside the Vainshtein radius. We
conclude {

π ∼ M
MP

1
r

, r ≫ rV

π ∼ ( M
MP

)
1
2Λ

5
2
5 r

3
2 , r ≪ rV

. (4.82)

At distances much below the Vainshtein radius, the exciting ghost with a
negative kinetic term mediates a long-range repulsive force as its mass goes
small. This force exactly cancels the attractive force mediated by the healthy
helicity-0 mode (a more explicit formulaic discussion referred to [29]).

As a result, we restore the general relativity inside the Vainshtein radius.
In particular, in the massless limit m → 0 the Vainshtein radius goes to
infinity, which becomes the origin of the vDVZ discontinuity. Beyond the
Vainshtein radius, the ghost ‘frozen’ so the helicity-0 mode generates a fifth
force which is known as a screening mechanism for rendering a light scalar
inactive at short distances through non-linearities [48, 49, 37].

This ghost-based mechanism is strongly relying on instability and may
be viewed as only resolving a problem by introducing another. However, the
radius of quantum correction is actually the same as the ghost radius. So,
one may expect the unknown quantum effect would finally cure the ghost
problem.
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Vainshtein mechanism in Λ3 theories

As mentioned above, the resolution of vDVZ discontinuity relies on ghost
instability in Λ5 theories. However, we have seen theories that are free of
ghosts at a scalar below Λ3. Therefore, the Vainshtein mechanism in Λ3

theories must be constructed by other methods and in fact depend on the
source.

To see how this works, it is sufficient to consider the cubic Galileon term
for π self-interaction

L(3) = −1

2
(∂π)2 − 1

Λ3
(∂π)2□π +

1

MP

πT . (4.83)

Perturbatively, expanding

π = π0 + ϕ , T = T0 + δT , (4.84)

where π0 is the background profile generated by the background source T0
and the perturbation ϕ response to the fluctuation δT . In this background
configuration

L =− 1

2
(∂ϕ)2 +

2

Λ3
3

(∂µ∂νπ0 − ηµν□π0)∂
µϕ∂νϕ

− 1

Λ3
3

(∂ϕ)2□ϕ+
1

MP

ϕδ T .
(4.85)

We introduce a new effective metric

Zµν = ηµν +
2

Λ3
3

X(1)µν(Π0) . (4.86)

The Lagrangian then reduces to

L(3) = −1

2
Zµν(Π0)∂µϕ∂νϕ+

1

MP

ϕδT . (4.87)

Symbolically, we see Z ∼ 1 + ∂2π0/Λ
3
3 ∼ ∂2π0/Λ

3
3 ≫ 1 for large sources. By

the nice argument in [68], one should also scale the space-like coordinates
x→ x̂ when canonically normalizing

ϕ̂ =
√
2ϕ . (4.88)

However, here it is sufficient for us to see the essence of the Vainshtein mech-
anism by simply scaling ϕ→ ϕ̂ to obtain

L(3) = −1

2
(∂ϕ̂)2 +

1

MP

√
2
ϕ̂δT . (4.89)
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This manifestly shows the fluctuation-matter coupling ϕ̂δT is considerable
only at the effective scale

Λeff ≡MP

√
2 ≫MP (4.90)

and thus, it is very suppressed by a large source. In the gravity massless
limit m → 0, our scale sent to zero and so Λeff → ∞ as Z goes infinity. We
therefore restored the continuity with GR.

Considering a point-like background source

T0 = − M

4πr2
δ(r) . (4.91)

The Vainshtein radius is then

rV ∼ (
M

4πMP

)
1
3
1

Λ3

. (4.92)

We conclude the spherical solution of cubic Galileon

π(r) ∼

{
M
MP

1
4πr2

, r ≫ rV
M
MP

r
− 3

2
v

1
4πr1/2

, r ≪ rV .
(4.93)

At distances much larger than the Vainshtein radius, we recover a gravita-
tional strength fifth force mediated by π. While at a short distance

Fπ

FNewton

∼ (
r

rV
)
3
2 ≪ 1 for r ≪ rV . (4.94)

This fifth force is extremely small compared to the standard gravity. As
the end of this section, the two following diagram show more explicitly the
regimes of different physical effects for Λ5 and Λ3 theory, respectively.
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Figure 1: Regimes for Λ5 massive gravity

Figure 2: Regimes for Λ3 massive gravity

5 Other theories of massive gravity

5.1 DGP Model

The Dvali-Gabadadze-Porrati Model [33, 34, 32] introduce gravity in a four-
dimensional braneworld by construct an extra infinite-size dimension. The
standard matter fields lying on the brane induce a curvature term. By inte-
grating out the extra dimension, a momentum-dependent gravity mass term
(or resonance) naturally arises in the effective 4d action.

Supposing a brane localized at y=0, the DGP 5d action is

S =

∫
d4x dy

(
M3

5

4

√
−(5)g (5)R + δ(y)[

M2
P

2

√
−gR[g] + Lmatter(g, ψi)]

)
,

(5.1)

where M5 is the 5d plank mass and
√

−(5)g, (5)R correspond to 5d metric
(5)g. The reason we choose the coefficient M3

5/4 rather than M2
5/2 is that we

have been considering the whole extra dimension as a convention.
Varying with respect to the metric gives five-dimensional Einstein equa-
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tion
M3

5
(5)GAB = 2δ(y)(Tµν −M2

PGµν)δ
µ
Aδ

ν
B (5.2)

with the stress-energy tensor Tµν generated by matter fields ψi confined on
the brane. In what follows, we shall see how this action gives rise to a graviton
mass. We start by expending the 5d metric perturbatively,

ds25 = (ηAB + hAB)dx
AdxB (5.3)

and fix gauge by choosing 5d de Donder gauge ∂Ah
A
B = 1/2∂Bh

A
A, the 5d

Einstein tensor then reduces to

GAB = −1

2
□5(hAB − 1

2
hccηAB) , □5 ≡ □+ ∂2y . (5.4)

The Einstein equation (5.2) manifestly implies (5)Gµy =
(5) Gyy = 0, so{

□5hµy = 0

□5(hyy − 1
2
hcc) = □5(hyy − 1

2
hyy − 1

2
hµµ)

⇒

{
hµy = 0

hyy = hµµ
.

(5.5)

Using them, we can then drive the 4-dimensional part of de Donder gauge

∂µh
µ
ν = ∂νh

µ
µ . (5.6)

Substituting these relations in the Einstein equation (5.2) gives

−1

2
M3

5 (□+ ∂2y)(hµν − hηµν) = δ(y)[2Tµν +M2
P (□hµν − ∂µ∂νh)] . (5.7)

Schematically, the solution of this equation would exponentially suppress
along the extra dimension

hµν(x, y) ∼ e−|y|
√
−□ hµν(x) . (5.8)

Integrating (5.7) along dimension y form −ϵ to +ϵ, the equation of motion
on the braneworld then becomes

M2
P [(□hµν − ∂µ∂νh)−

M3
5

M2
P

√
−□(hµν − hηµν)] = −2Tµν . (5.9)

We found that hµν − hηµν term appearing in equation of motion is exactly
Fierz-Pauli combination. In a view of momentum Fourier space, gravity can
be regarded as having an effective mass

m2(□) =
M3

5

M2
P

√
−□ ∼ m2(k) =

M3
5

M2
P

k , (5.10)
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which strongly depends on the scale. Following the similar procedure in
section 2.3, one can express the fluctuation h as

hµν = − 2

M2
P

1

□−m0

√
−□

(Tµν −
1

3
Tηµν +

1

3m
√
−□

∂µ∂νT ) . (5.11)

It contains the term 1/3Tηµν as in the case in (2.22), while in GR one should
obtain a factor 1/2Tηµν . This again explicitly shows the vDVZ discontinuity
in DGP, which would also be cured by the Vainshtein mechanism [30].

Stückelberg decomposition

In the ADM parametrization, the metric split to(
N2 +NµNµ Nµ

Nµ gµν

)
(5.12)

with the lapse N = 1 + 1/2hyy and the shift Nµ = gµy. The 5d Einstein-
Hilbert kinetic term becomes

L(5)
E−H =

M3
5

4

√
−gN(R[g] + [K]2 − [K2]) , (5.13)

with extrinsic curvature

Kµν =
1

2N
(∂νgµν −∇µNν −∇νNµ) , (5.14)

where ∇µ is the covariant derivative with respect to metric gµν . The gauge-
fixing term for de Donder gauge then expressed as

L(5)
GF = −M

3
5

8
(∂Ah

A
B − 1

2
∂Bh

A
A)

2

= −M
3
5

8
[(∂µh

µ
ν −

1

2
∂νh+ ∂yNν −

1

2
∂νhyy)

2

+ (∂µN
µ − 1

2
∂yh− 1

2
∂yhyy)

2] .

(5.15)

Following the discussion in [59], we fix the residual linearized gauge symmetry
of the bulk on the brane

δhµν = 2∂(µξν) ,

δNν = −
√
−□ξµ ,

δhyy = 0 ,

(5.16)

by introducing the residual gauge-fixing term

L(4)
GF = −M

2
P

4
(∂µh

µ
ν −

1

2
∂νh+

M3
5

M2
P

Nν)
2 . (5.17)

34



Performing field redefinitions in the analogy of Stückelberg decomposition
(and normalizing) in Fierz-Pauli massive gravity

hµν =
1

MP

(h′µν + πηµν) ,

Nµ =
1

MP
√
m0

N ′
µ +

1

MPm0

∂µπ ,

hyy = −2
√
−□

m0MP

π

(5.18)

withm0 =M3
5/M

2
P . We then obtain the linearized action in terms of helicity-

2 h′ , -1 N ′ and -0 π modes, omitting the mass terms [59]

Slin
DGP =

1

4

∫
d4x[

1

2
h′µν□(h′µν −

1

2
h′ηµν)−N ′µ√−□N ′

µ + 3π□π] . (5.19)

Decoupling limit of DGP

The operators included in boundary terms have a generic form

Λn,k,l ∂(h
′
µν)

n(N ′
µ)

k(∂π)l , (5.20)

Λn,k,l = (Mn+k+l−2
P m

k/2+l−1
0 ) 1/(n+3/2k+2l−3) . (5.21)

The first dangerous operator (∂π)3 involving higher power of derivatives
arises at scale Λn=0,k=0,l=3 ≡ Λ3 = (MPm

2
0)

1/3. Taking the decoupling
limit

m0 → 0 , MP → ∞ , Λ3 fixed . (5.22)

The relevant helicity-0 self-interaction comes from the combination (∂π)3

LDL
Λ3

=
1

2Λ3
3

(∂π)2□π . (5.23)

Combining to (5.19), we obtain the decoupling limit of DGP at scale Λ3

LDL
DGP =

1

8
h′µν□(h′µν −

1

2
h′ηµν)−

1

4
N ′µ√−□N ′

µ +
3

4
π□π +

1

2Λ3
3

(∂π)2□π .

(5.24)

5.2 Multi-gravity and Bi-gravity

Multi-gravity

In the construction of the DGP model, we have integrated over the whole ex-
tra auxiliary dimension. Nevertheless, one can also consider a discretization
of the 5th dimension, which will lead us to multi-gravity[50].
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We start by considering N=2M+1 sites yi discretized from the extra di-
mension and their corresponding metric gi dominant for each site. The sim-
plest multi-gravity action can be written as

SN mGR =
M2

4

2

N∑
i=1

∫
d4x

√
−gi
(
R[gi] +

m2
N

2

4∑
n=0

α(i)
n Ln[Kµ

ν [gi, gi+1]]

)
.

(5.25)

where M2
4 = M3

5/m, α
(i)
2 = −1/2 and α

(i)
0 = α

(i)
1 = 0 to remain zero cos-

mological constant and non-tadpole. In this special case, one can clearly see
from the form of the tensor Kµ

ν [gi, gi+1] that we have restricted each metric
gi only interacts with its closest neighbours gi−1, gi+1. Then we reduce the

number of free parameters to 2N with α
(i)
3 = (ri + si), α

(i)
4 = risi.

At the linear level, this multi-gravity action reads in terms of the Fourier
transformed field variables h̃n as following

L =
M∑

n=−M

[(∂h̃n)(∂h̃−n) +m2
n h̃n h̃−n] + Lint . (5.26)

The mass spectrum is then given by

mn = mN sin
( n
N

)
. (5.27)

It is manifestly the theory contains 2M massive spin-2 fields and one massless
spin-2 field. To count the degrees of freedom, we note each massive spin-2
field contributes 5 DoFs while a massless spin-2 field contributes 2 DoFs. In
addition, as the zero mode of the lapse and the shift contribute 3 DoFs [73],
so we have a total of 5N degrees of freedom for the theory in 4 space-time
coordinates.

Bi-gravity

Bi-gravity is the special case of multi-gravity with only 2-site. While it can
also be precisely interpreted as the ghost-free massive gravity with the now
dynamical reference metric and so obtain an additional Einstein-Hilbert term
in the Lagrangian. The bi-gravity action is then simply

Sbi =
M2

P

2

∫
d4x

√
−gR[g] +

M2
f

2

∫
d4x
√
−fR[f ]

+
M2

Pm
2

4

∫
d4x

√
−g

4∑
n=0

αnLn[K[g, f ]] ,

(5.28)
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where α0 = α1 = 0, α2 = 1/2 for consistency. For most generic cases,
one can artificially manipulate the ratio MP/Mf by considering a non-trivial
discretization by changing the ‘weight’ of each site or performing a conformal
rescaling of the metrics, etc. To obtain the mass spectrum, we first expand
two metrics into fluctuations about flat spacetime

gµν = ηµν +
1

MP

δgµν , (5.29)

fµν = ηµν +
1

Mf

δfµν . (5.30)

To quadratic order, the (pseudo) linear bi-gravity action reads

S
(2)
bi =

∫
d4x[−1

4
δgµν ε̃αβµν δgαβ −

1

4
δfµν ε̃αβµν δfαβ −

1

8
m2

eff (h2µν − h2)] . (5.31)

The combination h2µν − h2 is exactly the Fierz-Pauli mass term. The corre-
sponding massive spin-2 field (eigenstates) is

hµν = (M−2
P +M−2

f )−
1
2 (

1

MP

δgµν −
1

Mf

δfµν) (5.32)

with the effective mass

m2
eff = m2(1 +

M2
P

M2
f

) . (5.33)

Extracting the kinetic term hεh from the non-mass part and rewriting the
linear action to

S
(2)
bi =

∫
d4x[−1

4
hµν ε̃αβµνhαβ −

1

4
lµν ε̃αβµν lαβ −

1

8
m2

eff (h2µν − h2)] . (5.34)

We obtain the remaining massless spin-2 field lµν represented by the other
combination

lµν = (M−2
P +M−2

f )−
1
2 (

1

Mf

δgµν +
1

MP

δfµν) . (5.35)

In the case that the ratio MP/Mf ≪ 1, the massless and massive eigenstates
are dominated by the fluctuations δf and δg respectively. Therefore, in the
decoupling limit

Mf → ∞ , MP fixed (5.36)

we recover the ghost-free massive gravity with a single interacting massive
graviton and a fully decoupled massless graviton.
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5.3 Mass-varying gravity

The mass-varying gravity interprets the graviton mass as an effective po-
tential of external scalar fields. This idea could be performed to various
massive gravity theories, for instance, dRGT theory and bi-gravity. More
generically, it can further generalize the formulation to varying all parame-
ters αn → αn(ϕ) with multiple fields ϕA (A = 1, 2, 3, ..., N) [52]

LGeneralized
MV =

M2
P

2

∫
d4x

√
−g

[
Ω (ϕA)R +

1

2

4∑
n=0

αn (ϕA)Ln[K]

−1

2
gµν∂µϕA∂νϕ

A −W (ϕA)

]
,

(5.37)

where the tensor K is constructed as usual. The absence of BD ghost is
presented in ADM formulation by constraint analysis in analogy to the ar-
gument in section 4.1 [51, 52]. A flexible graviton mass could lead to many
interesting features, such as avoiding the Higuchi bound [46]. It is natural
to consider the graviton mass(es) would depend on some moduli if gravity is
an effective description from higher dimensions.

6 Positivity bounds for scalar

The unitarity, analyticity and crossing symmetry could imply strong con-
straints for the UV completion of EFTs. In this section, we will show how to
derive these constraints into an infinity number of positivity bounds by using
the known properties of 2-2 scattering amplitudes. The exact amplitudes are
in principle incalculable since the explicit information of UV physics remains
unclear. Nevertheless, the positivity bounds may practically be evaluated on
the tree level at the low energy scale.

6.1 Dispersion relation

It is convenient to study the 2-2 scattering amplitude by expressing it in
terms of the Mandelstam variables [61]

s = −(p1 + p2)
2 = −(p3 + p4)

2 ,

t = −(p1 − p3)
2 = −(p4 − p2)

2 ,

s = −(p1 − p4)
2 = −(p3 − p2)

2 ,

cos θ = 1 +
2t

s− 4m2

(6.1)
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with respect to the Minkowski metric η(−1, 1, 1, 1). The physical requirement
of unitarity gives the optical theorem

Im A(s, 0) =
√
s(s− 4m2)σ(s) , (6.2)

where σ(s) is the total cross-section. This implies the generalization of
Schwarz reflection principle

AA+B→C+D (s)∗ = AC+D→A+B (s∗) . (6.3)

Assuming the scattering is time reversal invariant, the above condition gives

A(s+ iε)− A(s− iε) = Re A(s+ iε) + iIm A(s+ iε)

−Re A(s− iε)− iIm A(s− iε)

= 2iIm A(s+ iε) .

(6.4)

Defining the s-channel ‘absorptive’ part of arbitrary function f as

Abss f(s) =
1

2i
Disc f(s) =

1

2i
lim
ε→0

[f(s+iε)−f(s−iε)] , for s≫ 4m2 . (6.5)

Then the absorptive part of scattering amplitude is exactly the imaginary
part

Abss A(s) = Im A(s) . (6.6)

To drive the dispersion relation, we start by assuming that the scattering
amplitude is an analytic function of s with modulo poles and branch cuts in
the usual places. By Cauchy’s integral formula we have

A(s, t) =
1

2πi

∮
c

ds′
A(s′, t)

s′ − s
. (6.7)

One can deform the contour C inside the region in which A is analytic as in
Figure 3, and make use of (6.6) to obtain

A(s, t) =
λ

m2 − s
+

λ

m2 − u
+

∫
C±

∞

ds′
A(s′, t)

s′ − s

+

∫ ∞

4m2

dµ

π
(
Im A(µ, t)

µ− s
+
Im A(µ, t)

µ− u
) ,

(6.8)

with the pole residues λ = Resu=m2 A(s, t) = −Ress=m2 A(s, t) guaranteed
by crossing symmetry. It is important to note that the contour integrals along
semicircle C∞

± in the upper/lower half plane are not finite in the limit s′ → ∞.
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This suggests we perform two subtractions. Picking an arbitrary subtraction
point µp which could be chosen for convenience, using the following identity

Im A(µ, t)

µ− s
=
(s− µp)

2

(µ− µp)2
Im A(µ, t)

µ− s
+ 2

(s− µp)

(µ− µp)2
Im A(µ, t)

+
(µ− s)

(µ− µp)2
Im A(µ, t) .

(6.9)

One may rewrite the amplitude as

A(s, t) =a(t) +
λ

m2 − s
+

λ

m2 − u

+

∫ ∞

4m2

dµ

π

[
(s− µp)

2ImA(µ, t)

(µ− µp)2(µ− s)
+

(µ− µp)
2ImA(µ, t)

(µ− µp)2(µ− µ)

]
,

(6.10)

where a(t) absorbs all the remaining integral contributions and can be de-
termined up to a constant by t↔ s crossing symmetry A(s, t) = A(t, s). To
continue to construct the positivity bounds, we shall first prove the positivity
of t derivatives at the forward limit t = 0 in the physical region

∂nt Im A(s, 0) ≡ ∂n

∂tn
Im A(s, t)

∣∣∣∣
t=0

> 0 , ∀n ⩾ 0and s ⩾ 4m2 . (6.11)

Firstly, from the partial wave expansion of scattering amplitude implied by
the optical theorem

A(s, t) = 16π

√
s

s− 4m2

∞∑
l=0

(2l + 1)Pl(cos θ)al(s) , (6.12)

we obtain

∂nt Im A(s, 0) = 16π

√
s

s− 4m2

2n

(s− 4m2)n

∞∑
l=n

(2l + 1)P n
l (1)Im(al(s)) .

(6.13)

Using the property of the Legendre polynomials P n
l = ∂nt Pl(1 + t)

∣∣∣∣
t=0

⩾ 0,

together with Im(al(s)) =| al(s) |2 +... ⩾ 0, it is straightforward to see that1

∂nt Im A(s, 0) ⩾ 0 , ∀n , for s ⩾ 4m2 . (6.14)

Up to this stage, one still need to consider the possibility that ∂nt Im A(s, 0) =
0 for some n∗. However, we can rule out this possibility by the assumption of

1Also for n=0, non-trivial theories imply that Im A(0, s) > 0
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analyticity [20]. The situation can be achieved by imposing 0 = Im(al(s)) ⩾|
al |2 for l ⩾ n∗, i.e., al(s) = 0 for l ⩾ n∗ so that ∂nt A(s, 0) = 0 for n ⩾ n∗.
We now assume that there exist the smallest n∗ satisfies ∂nt Im A(s, 0) = 0
and consider dispersion relation (6.10) with choice µp = 0

A(s, t) =a(t) +
λ

m2 − s
+

λ

−3m2 + t+ s
+ s2

∫ ∞

4m2

dµ

π

Im A(µ, t)

µ2(µ− s)

+ (4m2 − t− s)2
∫ ∞

4m2

dµ

π

Im A(µ, t)

µ2(µ− 4m2 + t+ s)
.

(6.15)

Differentiating twice by s, get

∂2sA(s, t) =
2λ

(m2 − s)3
+

2λ

(−3m2 + t+ s)3

+ 2

∫ ∞

4m2

dµ

π

Im A(µ, t)

(µ− s)3
+ 2

∫ ∞

4m2

dµ

π

Im A(µ, t)

(µ− 4m2 + t+ s)3
,

(6.16)
then differentiating by t to obtain

∂n∗
t ∂2sA(s, t) =

(2 + n∗)!

2!

2(−1)n∗λ

(−3m2 + t+ s)3+n∗

2
n∗−1∑
m=0

∫ ∞

4m2

dµ

π

(−1)n∗−m∂mt Im A(µ, t)

(µ− 4m2 + t+ s)3+n∗−m

n∗!(2 + n∗ −m)!

2!m!(n∗ −m)!
+ ... ,

(6.17)
where the omitted terms or their t derivatives would vanish at t = 0 as in
what follows. Acting the operator (∂t − ∂s) to reduces series

(−1)n∗(∂t−∂s)n∗−1∂n∗
s ∂2sA(s, t) = 2

∫ ∞

4m2

dµ

π

∂n∗−1
t Im A(µ, t)

(µ− 4m2 + t+ s)3+n∗

(2 + n∗)!

2!n∗!
+... .

(6.18)
We note since by our assumption n∗ is the lowest value for ∂

n
t Im A(s, 0) = 0,

thus there must exist some region of M ⩾ 4m2 with ∂n∗−1
t Im A(µ, t) > 0.

Taking the forward limit t=0, the right-hand side of (6.18) is positive however
the left-hand side equal to 0 by assumption, thus giving the contradiction

0 > 0 . (6.19)

We therefore proved the positivity (6.11) in the physical region. Furthermore,
for a scalar theory, we expect the amplitude to have a simple t-channel pole
at T =M2 with a necessarily real residue so that Im A(s, t) has no poles at
t = m2. Consequently, Im A(s, t) is then analytic in the region | t |< 4m2,
and we can therefore extend our positivity beyond the forward limit

∂nt Im A(s, t) > 0 , ∀n , for s ⩾ 4m2 and 0 ⩽ t < 4m2 . (6.20)
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Finally, we remove all three poles s, t, u = m2 by define

B(s, t) = A(s, t)− λ

m2 − s
− λ

m2 − u
− λ

m2 − t
. (6.21)

For future convenience, define notations and variables

x̄ := x− 4

3
m2 , (6.22)

v̄ = s̄+
t̄

2
, (6.23)

and choosing µ̄p = −1/2t̄, we obtain the final form of the dispersion relation
as a function of v2

B(s, t) = B̃(v(s, t), t) = b(t) +

∫ ∞

4m2

dµ

π(µ̄+ t̄
2
)

2v2Im A(µ, t)

(µ̄+ t̄
2
)2 − v2

, (6.24)

with redefined subtraction function b(t) = a(t)− λ
m2−t

. The s↔ u symmetry
then goes to v ↔ −v symmetry.

Figure 3: The scattering amplitude can be analytically continued to the
entire complex s plane, with the poles at s = m2 and 3m2 − t and branch
cuts along the real axis from −t to −∞ and from 4m2 to ∞
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6.2 Positivity bounds

The left-hand side of (6.24) is the pole subtracted amplitude that can be
evaluated at s ∼ m2 in the low energy effective field theory (LEEFT) while
the right-hand side is fully depending on the possible UV completion and
cannot be explicitly computed at this stage. However, given the positive
condition (6.20) implied by unitarity and analyticity, we may expect there
exist translated constraints on low energy amplitudes. With the form of the
positivity (6.20), It is natural to consider that this information is included
in derivatives of the amplitude, we therefore define

B(2N,M) (t) =
1

M !
∂2Nv ∂Mt B̃(v, t)

∣∣∣∣
v

= 0 , for N ⩾ 1 . (6.25)

Explicitly,

B(2N,M) (t) =
M∑
k=0

(−1)k

k!2k
I(2N+k,M−k) , (6.26)

with manifestly positive integrals

I(q,p)(t) =
q!

p!

2

π

∫ ∞

4m2

dµ ∂pt Im A(µ, t)

(µ̄+ t̄
2
)q+1

> 0 . (6.27)

Taking M=0 we see the simplest case with no t derivatives

B(2N,0) (t) = I(2N,0) (t) > 0 . (6.28)

The situation is more subtle for higher t derivatives: due to the sign structure
(−1)k in series, one can not immediately construct a string of positivity
constraints B(2N,M) ≯ 0. Alternatively, we need to construct a new series of
quantities by recursion relation. Firstly, we note the integral inequality

I(q,p) <
1

M2
I(q−1,p) <

q

M2
I(q−1,p) , (6.29)

M2 = Minµ⩾4m2 (µ̄+
t̄

2
) = 2m2 +

1

2
t . (6.30)

Now consider single t derivative amplitude

B(2N,1) = I(2N,1) − 1

2
I(2N+1,1) > I(2N,1) − 2N + 1

2M2
I(2N,0) . (6.31)

Using the property (6.28), we may view Y (2N,0) = B(2N,0) as the first element
of our list and define the second element as

Y (2N,1) = B(2N,1) +
2N + 1

2M2
I(2N,0)

= B(2N,1) +
2N + 1

2M2
Y (2N,0) > I(2N,1) > 0

(6.32)
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and thus positive. Taking a step forward, we have, for a second t derivative

B(2N,2) = I(2N,2) − 1

2
I(2N+1,1) +

1

8
I(2N+2,0) . (6.33)

It is then straightforward to perform addition and get a positive quantity.
Since

2N + 1

2M2
Y (2N,1) >

2N + 1

2M2
I(2N,1) > I(2N+1,1) , (6.34)

so

B(2N,2) +
2N + 1

2M2
Y (2N,1) > I(2N,2) +

1

8
I(2N+2,0) > 0 . (6.35)

This looks sufficient however we can take one more step forward to further
restrict our bound by defining the manifestly positive quantity as follows

Y (2N,2) = B(2N,2) +
2N + 1

2M2
Y (2N,1) − 1

8
B(2(N+1),0) > I(2N,2) > 0 . (6.36)

From the above example, we show the positive quantities have the following
schematical form

B(2N,M) +B(2(N+1),M−2) + ...+B(2(N+1),0) + ... > I(2N,M) > 0 , (6.37)

where we have omitted the coefficients in front of B and I. This motivated
us to consider a generic linear combination splitting into odd and even parts

M/2∑
r=0

crB
(2N+2r,M−2r) =

M/2∑
r=0

cr

M−2r∑
k=0

(−1)k

k!2k
I(2N+2r+k,M−2r−k)

=

M/2∑
r=0

cr

[M/2−2r∑
k=0

(−1)2λ

2λ!22λ
I(2N+2r+λ,M−2(r+λ))

+

(M−1)/2−2r∑
k=0

(−1)2λ+1

(2λ+ 1)!22λ+1
I(2N+2r+λ+1,M−2(r+λ)−1)

]

=

M/2∑
r=0

cr

[ k∑
r=0

22(r−k)

(2k − 2r)!
I(2N+2k,M−2k)

+
k∑

r=0

22(r−k)−1

(2k − 2r + 1)!
I(2N+2k+1,M−2k−1)

]

=

M/2∑
k=0

αkI
(2N+2k,M−2k) −

(M−1)/2∑
k=0

(−1)kβkI
(2N+2k+1,M−2k−1) ,

(6.38)
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αk =
k∑

r=0

cr
22(r−k)

(2k − 2r)!
, βk = (−1)k

k∑
r=0

cr
22(r−k)−1

(2k − 2r + 1)!
. (6.39)

Now we precisely choose the coefficients so that the quantity has a similar
structure to the right-hand side of (6.37), which requires

α0 = 1 , αk = 0 for k ̸= 0 . (6.40)

Simultaneously,

c0 = α0 = 1 ,
k−1∑
r=0

22(r−k)

(2k − 2r)!
cr + ck = αk = 0 ⇒ ck = −

k−1∑
r=0

22(r−k)

(2k − 2r)!
cr .

(6.41)
Since βk ⩾ 0, we can perform addition to obtain

M/2∑
r=0

crB
(2N+2r,M−2r) +

(M−1)/2∑
even k

βk I
(2N+2k+1,M−2k−1)

= I(2N,M) +

(M−1)/2∑
k odd

βk I
(2N+2k+1,M−2k−1) > I(2N,M) > 0 ,

(6.42)

which is manifestly positive. Using the inequalities (6.29) and (6.34), we
finally construct positivity quantities

Y (2N,M) =

M/2∑
r=0

crB
(2N+2r,M−2r)

+
1

M2

(M−1)/2∑
even k

(2(N + k) + 1)βk Y
(2N+2k,M−2k−1)

⩾ I(2N,M) > 0 ,

(6.43)

which is also consistent with the previous example with respect to M=0,
M=1 and M=2 case.

6.3 Massive Galileon EFT

The generalization of the non-linear Feriz-Pauli action acquires higher deriva-
tive interactions of helicity-0 mode π which are in the Galileon form. It is
therefore leading the study of the effective field theory for massive Galileons
as the purely scalar part of the modified gravity theories [20, 69]. In what
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follows we shall consider the positivity bounds for the massive Galileon La-
grangian in 4d flat spacetime [69]

LmGal = −1

2
(∂π)2 − 1

2
m2π2 +

g3
3!Λ3

π

[
[π]2 − [π2]

]
+

g4
4!Λ6

π

[
[π3]− 3[π][π2] + 2[π3]

]
+ ... ,

(6.44)

where we have used the usual notation Πµν = ∂µ∂νπ. As we will determine
positivity bounds by 2-2 scattering amplitude at tree-level, only interactions
up to quartic order contribute and higher terms are omitted in (6.44). In the
centre of mass frame, the 2-2 scattering amplitude for the massive Galileon
is then given by

A(s, t) =
g23

16Λ6
[
s2(s− 4m2)2

m2 − s
+
t2(t− 4m2)2

m2 − t
+
u2(u− 4m2)2

m2 − u
] +

g4
4Λ6

stu .

(6.45)
For a generic effective theory, the tree-level pole-subtracted amplitude B(s, t)
could express as an analytic function of the crossing symmetric variables

B(s, t) =
∑
nm

anm
Λ4n+6m

xnym (6.46)

with
x = −(s̄t̄+ t̄ū+ ūs̄) , y = −s̄t̄ū , (6.47)

where the bar-variables are defined in the way of (6.22). Here we then con-
clude the amplitude as

B(s, t) = a00 + a10 x+ a01 y (6.48)

with the coefficients

a00 =
m6

Λ6
[
16g4
27

− 295g23
144

] , a10 =
m2

Λ6
[−g4

3
+

3g23
8

] , a01 =
1

Λ6
[−g4

4
+

3g23
16

] .

(6.49)
Applying the first two positivity bounds in (6.43) gives

Y (2,0) : a10 + a01t̄ > 0 , (6.50)

Y (2,1) : a01 +
3

2Λ2
th

(a10 + a01t̄) > 0 , (6.51)

where the scale Λth ∼ M is the threshold that the analyticity and unitarity
effectively hold. We first note (6.50) gives the essential requirement a10 +
8/3m2a01 ⩾ 0, i.e. g4/g

2
3 ⩽ 7/8. On the other hand, it is clear if a10 >

0, a01 ⩾ 0 (so g4/g
2
3 ⩽ 3/4), the two bounds are strongly satisfied. In

summary, there are 3 scenarios distinguished:
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i) For g4/g
2
3 > 7/8, the positivity bounds are violated and there have

no local, analytic, and Lorentz invariant UV completion for the massive
Galileon.

ii) For g4/g
2
3 ⩽ 3/4, the UV completion may exist and the Galileon mass

can be taken to be arbitrarily small since bounds give no restriction on the
threshold or the mass.

iii) For 3/4 < g4/g
2
3 ⩽ 7/8, the bound (6.51) at t̄ → 8/3m2 gives con-

straint on Λth

Λ2
th < 6m27/8− g4/g

2
3

g4/g23 − 3/4
. (6.52)

This suggests, for a LEEFT, even the ratio g4/g
2
3 can be larger than 3/4,

it however should not get away from 3/4 because EFT requires a sufficient
threshold Λ2

th ≫ m2.

Analyticity

At this stage, we have two different choices on the region of the ratio g4/g
2
3. It

is possible to further constraint the cutoff by also considering the analyticity
together with perturbative unitarity. To see how this works, we first consider
the case when any of the partial waves violate the optical theorem

32π

√
s

s− 4m2
a0(s) = (3g23−4g4)

s3

24Λ6
−(g23−2g4)

2s2m2

3Λ6
+O(

sm4

Λ6
) . (6.53)

This implies that the generic strong coupling scale is

Λsc =
Λ

| g4 − 3g23/4 |1/6
. (6.54)

While in the massless limit m → 0, if one performs the Galileon duality
transformation [5, 24] to the Lagrangian, the combination g4−3g33/4 is exactly
the new coefficient g′4 of the quartic Galileon operator. If we artificially take
g4 − 3g23/4 to be small to make the strong coupling scale large, we are also
simultaneously switching off interactions. In contrast, it is more natural to
take the tuning | g4 − 3g23/4 |= 1 and define the free parameter Λ as the
strong coupling scale. This tuning then implies

Λ2
th <

1

2
m2g23 (6.55)

in the region 3/4 < g4/g
2
3 ⩽ 7/8, which clearly violates the LEEFT require-

ment for the threshold. We, therefore, restrict the ratio to stay in only one
region

g4/g
2
3 ⩽ 3/4 . (6.56)
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Vainshtein mechanism Compatibility

The phenomenological requirements enforce the Galileons to the Vainshtein
screened region to suppress their fifth forces contributions. The Vainshtein
mechanism thus requires the existence of a real regular solution to the Galileon
equations in static and spherically symmetric configuration. In [69], it sug-
gests Vainshtein works under such configuration only in the following case

g3 > −√
g4 , g4 ⩾ 0 . (6.57)

Combining it with (6.56), we conclude the requirements for the coefficients

g4 > 0 , g3 >

√
4g4
3

> 0 . (6.58)

7 Positivity bounds for particle with spin

7.1 Helicity and Transversity formalism

It is common to use helicity formalism to calculate the scattering amplitude
for particles with spin. However, this is inconvenient to construct positivity
bounds as scalar case, since the crossing relations play an important role in
construction but is highly non-trivial under helicity formalism. In contrast,
in what follows we will introduce a so-called transversity formalism that can
diagonalize the crossing relations.

For general 2-2 scattering amplitudes, one should consider particles with
different masses and spins. Nevertheless, it is sufficient to see the essence of
the simple case:

m1 = m2 = m3 = m4 = m , s1 = s3, s2 = 24 . (7.1)

We start by briefly reviewing the helicity formalism. As usual, we make use
of Mandelstam variables and introduce auxiliary variables:

S = s(s− 4m2) , U = u(u− 4m2) . (7.2)

Helicity Formalism

The plane wave 2-particle states |pθϕλ1λ2⟩ and spherical wave 2-particle
states |pJMλ1λ2⟩ are related via [22]

|pθϕλ1λ2⟩ =
∑
J,M

√
2J + 1

4π
DJ

µλ(ϕ, θ, 0) |pJMλ1λ2⟩ , (7.3)
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where J is angular momentum and Wigner D matrices [82] defined by

Dj
m′m(α, β, γ) = e−iαm′

djm′m(β)e
−iγm , djm′m(β) = ⟨jm′| e−iβJy |jm⟩ . (7.4)

Consider the scattering between initial state |i⟩ = |pi00λ1λ2⟩ and final state
|f⟩ = |pfθϕλ3λ4⟩ and splitting the S matrix as usual Ŝ = 1+ iT̂ , the helicity
amplitude H can be defined in the following way

⟨f | T̄ |i⟩ = (2π)4δ4(pf − pi)Hλ1λ2λ3λ4(s, θ) , (7.5)

Hλ1λ2λ3λ4(s, θ) = 16π2

√
s

pipf
⟨pfθϕλ3λ4| T̂ |pi00λ1λ2⟩ . (7.6)

Inserting the complete spherical wave basis
∑

J,M |pfJMλ3λ4⟩ ⟨pfJMλ3λ4| =
1, we obtain

Hλ1λ2λ3λ4(s, θ) = 16π2

√
s

pipf

∑
JM

⟨pfθϕλ3λ4|pfJMλ3λ4⟩T J
λ1λ2λ3λ4

⟨piJMλ1λ2|pi00λ1λ2⟩

= 4π

√
s

pipf

∑
J

(2J + 1)eiλϕdJλµ(θ)T
J
λ1λ2λ3λ4

(s) ,

(7.7)

where T J
λ1λ2λ3λ4

(s) called the partial wave helicity amplitude

T J
λ1λ2λ3λ4

(s) = ⟨pfJMλ3λ4| T̂ |piJMλ1λ2⟩ (7.8)

is the scattering amplitude between two particles states of definite total angu-
lar momentum and definite individual helicities and λ = λ1−λ2, µ = λ3−λ4
are defined for later convenience.

As angular momentum is conserved in the scattering, the S-matrix can
be diagonalized to different partial wave blocks labeled by J

Ŝ = 1 + iT̂ =


ŜJ1

ŜJ1

...
□

 = 1 +


T̂ J1

T̂ J1

...
□

 . (7.9)

The partial unitarity then gives

ŜJ†
ŜJ = (1− iT̂ J†

)(1 + iT̂ J†
) = 1 ⇒ i(T̂ J† − T̂ J) = T̂ J†

T̂ J , (7.10)

which implies T J
λ3λ4λ1λ2

(s)∗ = T J
λ1λ2λ3λ4

(s∗). Assuming the scattering is time
reversal invariant, this then implies the absorptive part defined in (6.5) is
just the imaginary part

Abss T
J
λ1λ2λ3λ4

= Im T J
λ1λ2λ3λ4

(7.11)
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as in the scalar case.
We denote the s-channel A + B → C + D amplitude by Hs

λ1λ2λ3λ4
, and

u-channel A + D̄ → C + B̄ amplitude by Hu
λ1λ4λ3λ2

, where the upper bar
denotes the corresponding antiparticles. The B ↔ D crossing relation is
given by [22, 56, 39, 40]

Hs
λ1λ2λ3λ4

(s, t, u) = (−1)2S2

∑
λ′
i

eiπ(λ
′
1−λ′

3) dS1

λ′
1λ1

(χµ) d
S2

λ′
2λ2

(−π + χµ)

× dS1

λ′
3λ3

(−χµ) d
S2

λ′
4λ4

(π − χµ) Hu
λ′
1λ

′
4λ

′
3λ

′
2
(u, t, s) ,

(7.12)

cosχµ =
−su√
SU

, sinχµ =
−2m

√
stu√

SU
. (7.13)

Manifestly, this is only trivial in the forward limit t=0 where χµ = 0

Hs
λ1λ2λ3λ4

(s, 0, u) = Hu
λ1 −λ4 λ3 −λ2

(u, 0, s) . (7.14)

The helicities flip sign since the momenta effectively reverse.

Transversity formalism

The transversity eigenstates [22, 57, 56] are defined as a particular combina-
tion of the helicity eigenstates

|−→p , S, τ⟩ =
∑
λ

uSλτ |−→p , S, λ⟩ , (7.15)

with the unitary matrix

uSλτ = DS
λτ (

π

2
,
π

2
,−π

2
) , (7.16)

which can diagonalize any of the Wigner dS. It is then straightforward to
drive the relation between the transversity amplitudes with helicity ampli-
tudes

Tτ1τ2τ3τ4 =
∑

λ1λ2λ3λ4

uS1
λ1τ1

uS2
λ2τ2

uS1∗
λ3τ3

uS2∗
λ4τ4

Hλ1λ2λ3λ4 . (7.17)

The crossing relations are now simply

T s
τ1τ2τ3τ4

(s, t, u) = (−1)2S1+2S2eiπ
∑

i τie−iχµπ
∑

i τiT u
−τ1 −τ4 −τ3 τ2

(u, t, s) .
(7.18)

See detailed derivation in appendix B and D in [22]. If we only consider
elastic transversities τ1 = τ3, τ2 = τ4, this reduces to

T s
τ1τ2τ1τ2

(s, 0, u) = e−iχµπ
∑

i τiT u
−τ1 −τ2 −τ1 τ2

(u, t, s) . (7.19)
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Further taking the forward limit t=0, the result is then simply as in helicity
basis (7.14)

T s
τ1τ2τ3τ4

(s, 0, u) = T u
−τ1 −τ4 −τ3 −τ2

(u, 0, s) . (7.20)

The scattering amplitudes may have potential poles or branch cuts at s =
0, s = 4m2 and

√
s+ u = 0. For s = 0, the helicity amplitudes and transver-

sity amplitudes are both regular [12] and so harmless. The factorizable sin-
gularities at s = 4m2 can be removed by multiplying an appropriate factor.
Finally, we can perform an appropriate combination for transversity ampli-
tudes [63] to remove the branch cut at s+ u = 0.

To summarize, we construct the regularized amplitudes

T +
τ1τ2τ3τ4

(s, θ) = (
√
−su)ξSS1+S2(Tτ1τ2τ3τ4(s, θ) + Tτ1τ2τ3τ4(s,−θ)) , (7.21)

T −
τ1τ2τ3τ4

(s, θ) = −i
√
stu(

√
−su)ξSS1+S2(Tτ1τ2τ3τ4(s, θ)− Tτ1τ2τ3τ4(s,−θ)) ,

(7.22)
where the parameter

ξ =

{
1 , if S1 + S2 is half integer

0 , otherwise
. (7.23)

These then have simply crossing relations and are free of kinematical singu-
larities.

7.2 Positivity constraints

To study the positivity condition of the scattering amplitude, we shall look at
its partial wave expansion. However, it is rather complicated under transver-
sity formalism, since one cannot define a rotationally invariant notion of
transversity in a state with only two particles [56, 72]. So we instead use the
helicity partial wave expansion. As the system is symmetric with respect to
rotations about the collision axis, we are free to set the interaction plane to
lie along ϕ = 0. Since the previous construction have removed all kinematic
singularities of T +

τ1τ2τ3τ4
, so the discontinuity comes from the physical part

T J
λ1λ2λ3λ4

. We define the absorptive part

Abss T̄
J
λ1λ2λ3λ4

(s) = 4π(2J + 1)

√
s

pfpf
Abss T

J
λ1λ2λ3λ4

. (7.24)

Using (7.7), (7.17) and the symmetry properties

Tτ1τ2τ1τ2(s,−θ) = T−τ1 −τ2 −τ1 −τ2(s, θ) , (7.25)
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we find

Abss T +
τ1τ2τ1τ2

= (
√
−su)ξSS1+S2

∑
Jλ1λ2λ3λ4

uS1
λ1τ1

uS2
λ2τ2

uS1∗
τ1λ3

uS2∗
τ2λ4

(dJµλ(θ) + dJµλ(−θ))

× Abss T̄
J
λ1λ2λ3λ4

(s) .
(7.26)

Expanding the sum of Wigner matrix to the Fourier series

dJµλ(θ) + dJµλ(−θ) = 2ei
π
2
(λ−µ)

J∑
ν=J

dJλν(
π

2
)dJµν(

π

2
) cos(νθ) (7.27)

and substituting it in (7.26), we obtain

Abss T +
τ1τ2τ1τ2

= 2(
√
−su)ξSS1+S2

∑
J,ν

cos(νθ)F Jν
τ1τ2

(s) , (7.28)

where
F Jν
τ1τ2

(s) =
∑

λ1λ2λ3λ4

Cν∗
λ1λ2

Abss T̄
J
λ1λ2λ3λ4

Cν
λ3λ4

, (7.29)

Cν
λ3λ4

= uS1∗
τ1λ3

uS2∗
τ2λ4

e−iπ
2
µdJµν(

π

2
) ,

Cν∗
λ1λ2

= uS1
λ1τ1

uS2∗
λ2τ2

ei
π
2
λdJλν(

π

2
) .

(7.30)

We note the unitarity condition (7.10) implies

Abss T
J
λ1λ2λ3λ4

=
1

2

∑
N

⟨pfJMλ3λ4| T̂ J† |N⟩ ⟨N | T̂ J |piJMλ1λ2⟩ , (7.31)

where
∑

N denotes the sum over all intermediate states. This suggests if one
regards {λ1λ2}, {λ3λ4} as matrix indices, then Abss T

J
λ1λ2λ3λ4

is a positive
definite Hermitian matrix, and so as Abss T̄

J
λ1λ2λ3λ4

. consequently, we may
conclude

Unitarity ⇒ F Jν
τ1τ2

(s) ⩾ 0 . (7.32)

Now we have to first deal with the prefactor (
√
−su)ξ to continue. In gen-

eral, ξ = 0 corresponds to boson-boson or fermion-fermion scattering which
has integer total spin, and ξ = 1 corresponds to boson-fermion scattering
which has half-integer total spin. In what follows, we shall discuss these two
situations separately.
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BB or FF scattering

We start by considering the forward limit t = 0, (7.28) is then simply gives
the optical theorem

Abss T +
τ1τ2τ1τ2

(s, t = 0, u)2SS1+S2

∞∑
J=0

J∑
ν=J

F Jν
τ1τ2

(s) > 0 , ∀s ⩾ 4m2 , (7.33)

which is manifestly positive. Using the properties of the Chebyshev polyno-
mials

Nn,ν =
dn cos(νθ)

d cosn θ

∣∣∣∣
θ=0

=
n−1∏
k=0

ν2 − k2

2k + 1
⩾ 0 . (7.34)

We find
∂n

∂ cosn θ
Abss T +

τ1τ2τ1τ2
(s, θ)

∣∣∣∣
θ=0

= 2SS1+S2

∑
J,ν

∂n

cosn θ
cos(νθ)F Jν

τ1τ2
(s)

∣∣∣∣
θ=0

= 2SS1+S2

∑
J,ν

Nn,νF
Jν
τ1τ2

(s) > 0

⇔ ∂n

∂tn
Abss T +

τ1τ2τ1τ2
(s, t, u)

∣∣∣∣
t=0

> 0 , ∀s ⩾ 4m2 .

(7.35)

Which extends positivity conditions to arbitrary numbers of t derivatives.
It further implies by analyticity of transversity amplitudes [60], the optical
theorem can be analytically continued away from the forward limit to the
finite positive t until the first pole at t = m2 in generic case 2

Abss T +
τ1τ2τ1τ2

(s, t, u) > 0 , ∀0 ⩽ t < m2 and s ⩾ 4m2 . (7.36)

BF scattering

In this case the prefactor
√
−su =

√
S cos

(
θ
2

)
is excited, by definition (7.28)

we have

Abss T +
τ1τ2τ1τ2

(s, θ) = 2SS1+S2+
1
2

∞∑
J= 1

2

J∑
ν=−J

cos

(
θ

2

)
cos(νθ)F Jν

τ1τ2
(s)

= SS1+S2+
1
2

∑
J,ν

[cos

(
(ν +

1

2
)θ

)
+ cos

(
(ν − 1

2
)θ

)
]F Jν

τ1τ2
(s) .

(7.37)

2In special cases one can extend the range further, for instance, one can go to t = 4m2

in purely scalar theory [21, 20]
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It is also manifestly positive in the forward limit Abss T +
τ1τ2τ1τ2

∣∣∣∣
t=θ=0

> 0

differentiating it gives

∂n

∂tn
Abss T +

τ1τ2τ1τ2
(s, θ)

∣∣∣∣
θ=0

= SS1+S2+
1
2

∑
J,ν

(Nn,ν+ 1
2
+Nn,ν− 1

2
)F Jν

τ1τ2
(s) > 0 .

(7.38)
Again, by analytical continuation this implies

∂n

∂tn
Abss T +

τ1τ2τ1τ2
(s, t, u) > 0 , ∀n ⩾ 0 , for ∀0 ⩽ t < m2 and s ⩾ 4m2 .

(7.39)

Left Hand Cut

At present, we have only evaluated the positivity condition of the right-
hand branch cut s ⩾ 4m2 for scattering amplitudes. However, the positivity
bounds would arise from dispersion relations which are strongly related to
the properties of transversity amplitudes in the whole complex Mandelstam
plane. It is important to consider the left-hand branch cut u ⩾ 4m2 asso-
ciated with the second pole u = m2. On the other hand, one could easily
follow the similar procedure for T +

τ1τ2τ1τ2
to derive

Abss T −
τ1τ2τ1τ2

(s, θ) =
1√
s
(
√
−su)ξSS1+S2+1

∑
J,ν

sin θ sin(νθ)F Jν
τ1τ2

(s)

= − 1

2
√
s
(
√
−su)ξSS1+S2+1

∑
J,ν

[cos((ν + 1)θ) + cos((ν − 1)θ)]F Jν
τ1τ2

(s) .

(7.40)
One cannot straightforwardly read off any positivity properties of either the
discontinuity or its derivatives from it. Nevertheless, this expression could
be useful to help us to determine the absorptive part along the left-hand cut.
By s↔ u symmetry, we find

T s+
τ1τ2τ1τ2

(s, t, u) = (
√
−su)ξSS1+S2(T s

τ1τ2τ1τ2
(s, t, u) + T s

−τ1 −τ2 −τ3 −τ4
(s, t, u))

= (
√
−su)ξSS1+S2

(
e+iχµ

∑
i τiT u

τ1τ2τ1τ2
(u, t, s)

+ e−iχµ
∑

i τiT u
−τ1 −τ2 −τ3 −τ4

(u, t, s)

)
.

(7.41)
Using expression in (7.13), define variables

C+ =
SS−1+S2

US1=S2
cos

(
ξµ
∑
i

τi

)
, C− = −SS−1+S2

US1=S2
sin

(
ξµ
∑
i

τi

)
. (7.42)
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Then (7.41) reduces to

T s+
τ1τ2τ1τ2

(s, t, u) = C+T u+
τ1τ2τ1τ2

(u, t, s) + C−T u−
τ1τ2τ1τ2

(u, t, s) . (7.43)

In the analogy of scattering angle θ, we define the u-channel scattering angle

cos θu = 1 +
2t

u− 4m2
. (7.44)

This copies the same analyticity from T s±
τ1τ2τ1τ2

(s, t, u) to the T u±
τ1τ2τ1τ2

(u, t, s).
The latter thus can also be expressed in terms of partial wave amplitudes,
which contain all potential discontinuities. We thus define the u-channel
absorptive part

Absu T s+
τ1τ2τ1τ2

(s, t, u)

= lim
ε→0

1

2i
[T s+

τ1τ2τ1τ2
(s, t, u+ iε)− T s+

τ1τ2τ1τ2
(s, t, u− iε)]

= lim
ε→0

1

2i
[T s+

τ1τ2τ1τ2
(s− iε, t, u)− T s+

τ1τ2τ1τ2
(s+ iε, t, u)]

= C+Absu T u+
τ1τ2τ1τ2

(u, t, s) + C−Absu T u−
τ1τ2τ1τ2

(u, t, s) .

(7.45)

Here in the last line, we have substituted (7.43) in. Now, using expressions
(7.28) and (7.40) with the replacement θ → θu, S → U , s → u, we can
obtain the discontinuity of the s-channel amplitude across the LH cut in
terms of cos and sin. Explicitly,

Absu T +
τ1τ2τ1τ2

(s, t)

= 2(
√
−su)ξUS1+S2

∑
J,ν

[C+ cos((ν + 1)θu)− C−
U

2
√
u
sin θu sin(νθu)]F

Jν
τ1τ2

(s)

= 2(
√
−su)ξSS1+S2

∑
J,ν

cos

(
νθu − χu

∑
i

τi

)
F u,Jν
τ1τ2

(u) .

(7.46)
Again, we shall discuss it separately.

BB or FF scattering

For u > 4m2 we first note

√
Se±iχu =

1

2

√
U +

(
√
u± 2m)

√
U

4
√
u

eiθu +
(
√
u∓ 2m)

√
U

4
√
u

e−iθu (7.47)

and

S = s(s− 4m2) = (u− 4m2)(1+ cos θu)
[u+ 4m2 + (u− 4m2) cos θu]

4
(7.48)

55



are both sum of positive quantities. They can be expressed as power series

√
Se±iχu =

1∑
p=−1

c±p (u)e
ipθu , with cp(u) > 0 for u > 4m2 . (7.49)

On the other hand, since the amplitude is invariant under τ → −τ , we can
assume τ1 + τ2 ⩾ 0 without loss of generality. The prefactor of (7.46) then
reduces to

2SS1+S2

∑
J,ν

cos

(
νθu − χu

∑
i

τi

)
= SS1+S2−τ1−τ2Sτ1+τ2(eiνθue−iχu

∑
i τi + e−iνθueiχu

∑
i τi)

= SS1+S2−τ1−τ2 [eiνθu(
√
Se−iχu)2(τ1+τ2) + e−iνθu(

√
Seiχu)2(τ1+τ2)]

=

2(τ1+τ2)+ν∑
p=−2(τ1+τ2)−ν

cν,p(u)e
ipθu , with cν,p(u) > 0 for u > 4m2 .

(7.50)

Using the property cν,−p = cν,p and recall Absu T s+
τ1τ2τ1τ2

is real, we conclude

Absu T s+
τ1τ2τ1τ2

(s, t, u) = 2
∞∑
J=0

J∑
ν=J

2(τ1+τ2)+ν∑
p=0

cν,p(u) cos(pθu)F
u,Jν
τ1,τ2

(u) . (7.51)

Combining with analyticity, it clearly implies the same set of positivity con-
straints with the s-channel absorptive part

Absu T s+
τ1τ2τ1τ2

(s, 0) > 0 , u ⩾ 4m2 , (7.52)

∂n

∂ cosn θu
Absu T s+

τ1τ2τ1τ2
(s, t)

∣∣∣∣
θu=0

> 0 , u ⩾ 4m2 , ∀n ⩾ 0 , (7.53)

∂n

∂tn
Absu T s+

τ1τ2τ1τ2
(s, t)

∣∣∣∣
t=0

> 0 , u ⩾ 4m2 , ∀n ⩾ 0 , (7.54)

∂n

∂tn

∣∣∣∣
u

Absu T s+
τ1τ2τ1τ2

(s, t, u) , u > 4m2 , ∀0 ⩽ t < m2 , n ⩾ 0 . (7.55)

BF scattering

For ξ = 1, the additional factor
√
−su =

√
U cos(θu/2) excited, gives

Absu T s+
τ1τ2τ1τ2

(s, t, u) =
√
USS1+S2

∑
J,ν

[cos

(
(ν +

1

2
)θu − 2χu(τ1 + τ2)

)
+ cos

(
(ν − 1

2
)θu − 2χu(τ1 + τ2)

)
]F u,Jν

τ1τ2
(u) .

(7.56)
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As this does not change the situation too much difference, we can still follow
the above arguments

Absu T s+
τ1τ2τ1τ2

(s, t, u) =
∑
J,ν

∑
p=0

Dν,p(u) cos(pθu)F
u,Jν
τ1τ2

(u) . (7.57)

Once again implies

∂n

∂tn

∣∣∣∣
u

Absu T s+
τ1τ2τ1τ2

(s, t, u) , u > 4m2 , ∀0 ⩽ t < m2 , n ⩾ 0 . (7.58)

7.3 Dispersion relation

In the scalar case, we define the pole-subtracted amplitude by removing
all the 3 poles. However, this for the scattering of particles with spins is
not convenient. Since the residue of the t-channel is a function of s, the
subtraction of the pole will affect the behavior of the amplitude at large s and
modifies the analyticity arguments as the residue may violate the Froissart
bound at tree-level or finite loop [22]. Instead, we only remove s-channel pole
at s = m2 and u-channel pole at u = m2, so consider

T̃ +
τ1τ2τ1τ2

(s, t) =T +
τ1τ2τ1τ2

(s, t)−
Res T +

τ1τ2τ1τ2
(s = m2, t)

s−m2

−
Res T +

τ1τ2τ1τ2
(s = 3m2 − t, t)

s+ t− 3m2
.

(7.59)

For any fixed point −t < s < 4m2, by Cauchy’s integral formula

T̃ +
τ1τ2τ1τ2

(s, t) =
1

2πi

∮
C

ds′
T̃ +
τ1τ2τ1τ2

(s′, t)

(s′ − s)
. (7.60)

where the contour C contains the poles s′ = m2, 3m2 − t, and the point s,
as shown in Figure 3. Following the same argument as in the scalar case, we
deform the contour to C ′ in Figure 3 and assume a Froissart bound applies
[60]

| T̃ +
τ1τ2τ1τ2

(s, t) ||s|→∞<| s |NS , (7.61)

where
NS = 2 + 2(S1 + S2) + ξ . (7.62)

Performing a sufficient number of subtractions to neglect the integral at the
infinite arcs gives us the dispersion relation

T̃ +
τ1τ2τ1τ2

(s, t) =

NS−1∑
n=0

an(t)s
n +

sNS

π

∫ ∞

4m2

dµ
Abss T +

τ1τ2τ1τ2
(µ, t)

µNS(µ− s)

+
uNS

π

∫ ∞

4m2

dµ
Absu T +

τ1τ2τ1τ2
(4m2 − t− µ, t)

µNS(µ− u)
,

(7.63)
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where the subtraction functions an(t) are undetermined by analyticity.

7.4 Positivity bounds

The first positivity bound is simple to derive: taking the NS derivatives of
dispersion relation, we eliminated the undetermined functions an(t) to obtain

fτ1τ2(s, t) =
1

NS!

dNS

dsNS
Abss T̃ +

τ1τ2τ1τ2
(s, t)

=
1

2πi

∮
C

ds′
Abss T̃ +

τ1τ2τ1τ2
(s′, t)

(s′ − s)NS+1

=
1

π

∫ ∞

4m2

dµ
Abss T +

τ1τ2τ1τ2
(µ, t)

(µ− s)NS+1

+
1

π

∫ ∞

4m2

dµ
Absu T +

τ1τ2τ1τ2
(4m2 − t− µ, t)

(µ− u)NS+1
.

(7.64)

Using the positivity constraints on RH and LH branch cuts derived in section
7.2, we immediately infer that

fτ1τ2(s, t) > 0 , for − t < s < 4m2 , 0 ⩽ t < m2 . (7.65)

To further proceed the construction of positivity bounds, we first define new
variables in the way of the scalar case (6.22) and (6.23)

s = 2m2 − t

2
+ v , u = 2m2 − t

2
− v , (7.66)

and then rewrite (7.62) to

fτ1τ2(s, t) = f̃τ1τ2(v, t) =
1

π

∫ ∞

4m2

dµ
Abss T +

τ1τ2τ1τ2
(µ, t)

(µ− 2m2 + t/2− v)NS+1

+
1

π

∫ ∞

4m2

dµ
Absu T +

τ1τ2τ1τ2
(4m2 − t− µ, t)

(µ− 2m2 + t/2 + v)NS+1
.

(7.67)

Performing a single t derivative gives

∂

∂t
fτ1τ2(v, t) =

1

π

∫ ∞

4m2

dµ
∂tAbss T +

τ1τ2τ1τ2
(µ, t)

(µ− 2m2 + t/2− v)NS+1

+
1

π

∫ ∞

4m2

dµ
∂tAbsu T +

τ1τ2τ1τ2
(4m2 − t− µ, t)

(µ− 2m2 + t/2 + v)NS+1

− (NS + 1)

2π
[

∫ ∞

4m2

dµ
Abss T +

τ1τ2τ1τ2
(µ, t)

(µ− 2m2 + t/2− v)NS+2

+

∫ ∞

4m2

dµ
Absu T +

τ1τ2τ1τ2
(4m2 − t− µ, t)

(µ− 2m2 + t/2 + v)NS+2
] .

(7.68)
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Using the integral inequalities satisfied for arbitrary positive function ρ(µ) >
0 in an analogy of (6.29)

1

M2

∫ ∞

4m2

dµ ρ(µ)

(µ− 2m2 + t/2)N
>

∫ ∞

4m2

dµ ρ(µ)

(µ− 2m2 + t/2)N+1
. (7.69)

We find

∂

∂t
fτ1τ2(0, t) +

NS + 1

2M2
fτ1τ2(0, t) >

1

π

∫ ∞

4m2

dµ
∂tAbss T +

τ1τ2τ1τ2
(µ, t)

(µ− 2m2 + t/2− v)NS+1

+
1

π

∫ ∞

4m2

dµ
∂tAbsu T +

τ1τ2τ1τ2
(4m2 − t− µ, t)

(µ− 2m2 + t/2 + v)NS+1
> 0

(7.70)
and thus determine it as our second positivity bound

∂

∂t
fτ1τ2(0, t) +

NS + 1

2M2
fτ1τ2(0, t) > 0 , for 0 ⩽ t < m2 . (7.71)

Following the same argument in section 6, we can generalize our positivity
bounds to any t derivatives and all even v derivatives of the amplitudes.
To see this explicitly we shall use the similar notation for pole-subtracted
amplitude as we are constructing positivity bounds for scalar

B̃τ1τ2(v, t) = T̃ +
τ1τ2τ1τ2

(s = −2m2 − t/2 + v, t) . (7.72)

In the analogy of (6.25), we have

B(2N,M)
τ1τ2

(t) =
1

M !
∂2Nv ∂Mt B̃τ1τ2(v, t)

∣∣∣∣
v=0

. (7.73)

It can be further expressed in terms of I
(q,p)
τ1τ2 to

B(2N,M)
τ1τ2

(t) =
M∑
k=0

(−1)k

k!2k
I(2N+k,M−k)
τ1τ2

, ∀N ⩾
NS

2
, M > 0 , (7.74)

where

I(q,p)τ1τ2
=
q!

p!

1

π

∫ ∞

4m2

dµ
[∂ptAbss T +

τ1τ2τ1τ2
(µ, t) + ∂ptAbsu T +

τ1τ2τ1τ2
(4m2 − t− µ, t)]

(µ+ t/2− 2m2)q+1
> 0 .

(7.75)
It is then straightforward to write the positive quantities Y (2N,M) for particles
with spin

Y (2N,M)
τ1τ2

(t) =

M/2∑
r=0

crB
(2N+2r,M−2r)
τ1τ2

(t)

+
1

M2

(M−1)/2∑
even k=0

(2(N + k) + 1)βk Y
(2N+2k,M−2k−1)
τ1τ2

(t) > 0 ,

(7.76)
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where the coefficients cr, βk are same defined as in (6.39) and (6.41)

c0 = 1 , ck = −
k−1∑
r=0

22(r−k)

(2k − 2r)!
cr , ∀k ⩾ 1 , βk = (−1)k

k∑
r=0

22(r−k)−1

(2k − 2r + 1)!
cr .

(7.77)
In summary, the general positivity bounds are

Y (2N,M)
τ1τ2

(t) > 0 , ∀N ⩾
NS

2
, M > 0 , 0 ⩽ t < m2 . (7.78)

7.5 Proca EFT

In this section, we discuss positivity bounds for theory with a single massive
spin-1 field Aµ with cutoff ΛA ≫ m. This cut off is chosen to be sufficient
to suppress the non-renormalizable operators ∂/ΛA ≪ 1 and so perturbative
unitarity applies. The mass of the spin-1 field is introduced by the symmetry
breaking scheme occurring at scale Λϕ ≫ m which is independent of ΛA.
This leading to an additional sector built out of the ‘covariant’ term of the
helicity-0 mode ϕ

Dµϕ = ∂µϕ+mAµ . (7.79)

The Lagrangian thus has a generic form

L =
Λ4

A

g2∗
F1[

∂

ΛA

,
Fµν

Λ2
A

] + F2[
∂

Λϕ

,
FDµϕ

Λ2
ϕ

] , (7.80)

where F1 andF2 denote dimensionless Lorentz scalars, and the overall cou-
pling is chosen to be g∗ ≪ 1 to evade the possible strongly coupling near ΛA,
so we can apply the positivity bounds at tree level. For positivity bounds of
2-2 scattering, it is convenient to take unitary gauge ϕ = 0 and sufficient to
focus on the following contribution [23]

g2∗L
unitary
Proca ⊃− 1

4
F ν
µF

µ
ν − 1

2
m2AµA

µ +
m4a0
Λ4

ϕ

(AµA
µ)2

+
m4

Λ6
ϕ

(
a3AµAν∂

µAρ∂
νAρ + a4AµAν∂ρA

µ∂ρAν + a5AµA
µ∂αAβ∂

βAα
)

+
1

Λ4
A

(
c1F

µ
ν F

ν
ρ F

ρ
σF

σ
µ + c2

(
F 2
µν

)2)
+
m4

Λ6
ϕ

(
C1AµA

νFαµFαν + C2F
2
µνAαA

α
)
.

(7.81)
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Polarization vector

To compute the amplitudes, we first need to determine the polarization vec-
tors in the transversity basis. Given the helicity spinors and anti-spinors that
satisfied the Dirac equation [−iγ · ∂ +m]ũλe

ip·x = 0

ũ+ = − 1√
2m(m+ E)


(E +m) cos(θ/2)
(E +m) sin(θ/2)

p cos(θ/2)
p sin(θ/2)

 ,

ũ− = − 1√
2m(m+ E)


−(E +m) sin(θ/2)
(E +m) cos(θ/2)

p sin(θ/2)
−p cos(θ/2)

 ,

(7.82)

¯̃vλ = ũ⊺λC , ¯̃uλ = ṽ⊺λC , (7.83)

where C = −iγ0γ2 is the charge conjugation matrix with the standard Dirac
convention for the γ matrices. The transversity spinors are then a particular
combination of the helicity spinors

uτ =
∑
λ

u
1/2
τλ ũλ (7.84)

with Wigner matrix

u
1/2
τλ =

1√
2

(
1 i
i 1

)
. (7.85)

Explicitly,

uτ (θ) =
eiπ/4√

4m(m+ E)


(E +m)e−iτ(θ+π/2)

(E +m)e−iτ(θ−π/2)

peiτ(θ−π/2)

−peiτ(θ+π/2)

 . (7.86)

We can then construct the vector polarization for transversity states by the
following relations [22]

ϵµτ=±1 = − 1√
2
v̄τ/2γ

µuτ/2, ϵ
µ
0 = −1

2
(v̄1/2γ

µu−1/2 + v̄−1/2γ
µu1/2) . (7.87)

Explicitly,

ϵµτ=±1(θ) =
i√
2m

(p, E sin θ ± im cos θ, 0, E cos θ ∓ im sin θ) ,

ϵµτ=0(θ) = (0, 0, 1, 0) ,

(7.88)

which manifestly satisfy the conditions of orthogonality and completeness.
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Scattering amplitudes

There are only four independent elastic amplitudes. To the leading order
of tree-level scattering, the pole-subtracted transversity amplitudes omitting
overall factor 1/g2∗ are given by

T +
0000 = 2s2s̃2

(
24
m4

Λ4
ϕ

a0 − 8
m6

Λ6
ϕ

(a4 + C1 + 2C2) + 8
m2 (6m4 + x)

Λ6
ϕ

(c̃1 + 2c̃2)

)
,

(7.89)

T +
−11−11 =2s2s̃2

[
x− 4m2 (t− 4m2)

Λ4
ϕ

(
a0 −

1

2

m2

Λ2
ϕ

(a4 − 4 (c̃1 + 2c̃2) + C1)

)

+
3

8

y

Λ6
ϕ

(a3 + a4 − 2a5)−
m2su

Λ6
ϕ

(
3

2
a3 − a4 + a5 +

3

2
C1 + 2C2

)]
,

(7.90)

T +
0101 =

m2s2s̃ (st− 4m2u)

Λ4
ϕ

[
4a0 −

1

2

u

Λ2
ϕ

(a3 + C1) + 2
s− t

Λ2
ϕ

c̃1

+
t

Λ2
ϕ

(−a4 + a5)− 4
2t− 4m2

Λ2
ϕ

c̃2 + 2
t− 4m2

Λ2
ϕ

C2

]

+
m2s2s̃3(s− u)

2Λ6
ϕ

(a3 + 4c̃1 + C1) ,

(7.91)

T +
1111 =

2s2

Λ4
ϕ

[
s̃2
(
t2 + ts̃+ s̃2

)
+ 4m2s

(
8t2 + 8ts̃+ s̃2

)](
a0 +

2m2

Λ2
ϕ

(c̃1 + 2c̃2 − C2)

)

+
s2s̃

4Λ6
ϕ

[
s̃2
(
4m2s− 3tu

)
+ 16m2t(t+ s̃)

(
3s− 4m2

)]
(a3 + a4 − 2a5) .

(7.92)
s̃ = s − 4m2 and c̃1,2 = c1,2Λ

6
ϕ/(m

2Λ4
A) are defined for compactness and the

Lorentz crossing-symmetric invariants are denoted as x = −(st + su + ut)
and y = −stu. By the definition of (7.62), taking NS = 2 + 4 = 6 for Proca
EFT here, we obtain the following definite positivity quantities

f00(v, t) = 16
m2

Λ6
ϕ

(c̃1 + 2c̃2) , (7.93)

f−11(v, t) =
2

Λ4
ϕ

[a0 −
m2

2Λ2
ϕ

(a4 − 4(c̃1 + 2c̃2) + C1)]

+
3t

4Λ6
ϕ

(a3 + a4 − 2a5) +
2m2

Λ6
ϕ

(
3

2
a3 − a4 + a5 +

3

2
C1 + 2C2) ,

(7.94)
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f01(v, t) =
m2

Λ6
ϕ

(a3 + 4c̃1 + C1) , (7.95)

f11(v, t) =
2

Λ4
ϕ

[a0 +
2m2

Λ2
ϕ

(c̃1 + 2c̃2 −C2)] +
4m2 + 3t

4Λ6
ϕ

(a3 + a4 − 2a5) . (7.96)

Indefinite Positivity Bounds

Instead of positivity bounds for definite states fτ1τ2 , one can also construct
a bound [23] for designed mixed transversity state (α, β)

fαβ(0, t) =
∑

τ1τ2τ2τ4

ατ1βτ2α
∗
τ3
β∗
τ4
fτ1τ2τ3τ4(0, t) , (7.97)

where fτ1τ2τ3τ4 is defined by the same arguments of fτ1τ2 without restriction
of elastic scattering and | α |2=| β |2= 1 by normalization. Now for the
Proca EFT, this gives the forward limit bound

fαβ

∣∣∣∣
t=0

=
8

Λ4
ϕ

(
a0 −

1

2

m2

Λ2
ϕ

(a4 + C1)

)
|α+|2 |β+|2

+
4m2

Λ6
ϕ

(a3 − 2a4 + 2a5 + C1 + 4C2)
(
Re [α∗

0α+] Re [β
∗
0β+]− Re

[
α∗
−α+

]
Re
[
β∗
−β+

])
+

2m2

Λ6
ϕ

(a3 + C1)
(
|α+|2 |β|2 + |α|2 |β+|2

)
+

8m2

Λ6
ϕ

c̃1
(
|α0|2 + |α−|2

) (
|β0|2 + |β−|2

)
+

8m2

Λ6
ϕ

(c̃1 + 4c̃2)
(
|α0β0 − α−β−|2 − 2 Im [α∗

0α−] Im [β∗
0β−]

)
,

(7.98)
where for compactness we have defined variables

α± ≡ 1√
2
(α−1 ± α+1) , β± ≡ 1√

2
(β−1 ± β+1) . (7.99)

We first note that for the sum of the first and second line, the term propor-
tional to a0 dominates because the remaining terms are suppressed by the
factor m2/Λ2

ϕ ≪ 1. Therefore, we have our first requirement a0 > 0.
Taking the choice β+ = 0, the last three lines give

(a3 + C1)|α+|2 + 4c̃1(1− |α+|2)

+ 4(c̃1 + c̃2)

(
|α0β0 − α−β−|2 − 2 Im[α∗

0α−] Im[β∗
0β−]

)
> 0 .

(7.100)
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Now we shall discuss two cases Λ2
A ≫ Λ3

ϕ/m and Λ2
A ∼ Λ3

ϕ/m separately.

i) If Λ2
A ≫ Λ3

ϕ/m (i.e. c̃1,2 ≪ 1), this simply implies a3 + C1 > 0, so we
have

a0 > 0 , a3 + C1 > 0 for Λ2
A ≫ Λ3

ϕ/m . (7.101)

ii) If Λ2
A ∼ Λ3

ϕ/m, up to a finite factor, we may assume Λ2
A = Λ3

ϕ/m.
Taking α0 = β− = 0 to eliminate the second line, we infer that a3 + C1 > 0
and c1 > 0. On the other hand, choosing α+ = β− = α− = 0 gives condition
c1 + c2 > 0, so we conclude

a0 > 0, c1 > 0, c1 + 2c2 > 0 and a3 + C1 > 0 for Λ2
A = Λ3

ϕ/m . (7.102)

It is important to note that taking α±1 = ±1/
√
2, α0 = 0 and β±1 =

1/
√
2, β0 = 0 leads to fαβ which violate the positivity bounds. This suggests

one should further consider higher order operators O(m4/Λ8
ϕ) for Proca EFT.

First t derivative

From the form of (7.93)-(7.96), it is easy to see that is only significant to
take the first t derivative of them since the higher t derivatives only give 0.
Recall the general form of the second positivity bound is

∂

∂t
fτ1τ2(0, t) +

NS + 1

2M2
fτ1τ2(0, t) > 0 , for 0 ⩽ t < m2 . (7.103)

Given the leading contribution to the first t derivative of the indefinite bound

∂

∂t
fαβ

∣∣∣∣
t=0

=
3

4

a3 + a4 + 2a5
Λ6

ϕ

|α+|2|β+|2 + ... , (7.104)

where here N2 = 2 + 4 = 6 for massive spin-1 field and for tree-level bounds
M2 ∼ Λ2

th ∼ Λ2
ϕ. For a weakly coupled UV completion, we may define

Λth = Λϕ so the interactions of the Goldstone arise from integrating out the
massive modes. Substituting the results that have been evaluated in (7.103),
we obtain

3

4

(a3 + a4 − 2a5)

Λ6
ϕ

+
7

2Λ2
ϕ

8

Λ4
ϕ

(
a0 −

m2

2Λ2
ϕ

(a4 + C1)

)
⪆ 0 ,

⇒ 3(a3 + a4 − 2a5) + 112a0 ⪆ 0 .

(7.105)

This clearly distinguished from the previous constraints (7.101) or (7.102)
and thus gives new information on the parameter space.
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8 Positivity bounds for massive spin-2 fields

8.1 Generic Λ5 massive gravity

In the previous section, we have seen the first dangerous interaction for
generic massive gravity theories arises at the scale Λ5 = (MPm

4)1/5. If one
expects a Λ5 theory can be interpreted as a Wilsonian EFT with possible
UV completion, to resolve the perturbative unitarity at the scale Λ5, it will
generate an infinite number of operators in the following form

∆L = Λ4
5L0(

Λ2
5

m2
Kµ

ν ,
∇µ

Λ5

,
Rµ

νρσ

Λ2
5

) , (8.1)

where all notations are consistent with arguments in previous sections and
L0 denotes scalar operators. More explicitly, the tensor Kµ

ν is defined by

Kµ
ν = 1−

√
g−1f = δµν −

√
gµρ∂ρϕa∂νϕbηab (8.2)

with Stückelberg decomposition

ϕa = xa − V a

mMP

− ∂aπ

m2MP

. (8.3)

One can further generalize this to a ‘single scale-single coupling’ theory [19]
by introducing a weak coupling parameter g∗ and redefining

Λ5 = (m4MPg∗)
1
5 , (8.4)

which then becomes the cutoff of the EFT. For a weakly coupled UV com-
pletion, the amplitude contributions from higher derivative EFT corrections
are suppressed by the factor 1/Λ2

5. Taking the threshold M2 ∼ Λ2
5, one may

truncate the amplitudes to the leading order contribution and simplify the
positivity bounds to [23]

fτ1τ2(v, t) > 0 , |v| ≪ Λ5 , (8.5)

∂

∂t
fτ1τ2(v, t) > 0 , |v| ≪ Λ5 , (8.6)

∂2N

∂vN
∂M

∂tM
fτ1τ2

∣∣∣∣
t=v=0

> 0 , ∀M ⩾ 1 , N ⩾ 0 (8.7)

and for indefinite states

∂2N

∂vN
fαβ

∣∣∣∣
t=v=0

> 0 , ∀N ⩾ 0 . (8.8)
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It is therefore sufficient to focus on the finite number of terms from the mass
potential up to quartic order in the manner

V (g, h) ⊃[h2]− [h]2 + (c1 − 2)[h3]

+ (−3

2
c1 +

11

4
+ ∆c)[h2]h+ (d1 + 3− 3c1)[h

4]

+ (−1

2
d1 +

3

2
c1 −

45

32
+ ∆d−∆c)[h2]2 .

(8.9)

∆c = ∆d = 0 is precisely the tuning results in ghost-free massive gravity
which raises the scale to the Λ3. Remarkably, once the leading interactions
contribute zero to the bounds, one can then apply the following EFT correc-
tions to it and may obtain constraints on parameter space to any order in
the EFT expansion by repeating the process.

Polarization

For momenta kµ = (ω, 0, 0, k), the corresponding polarizations given by

ϵ(τ=±2)
µν =

1

2m2


k2 ±ikm 0 kw

±ikm −m2 0 ±imw
0 0 0 0
kw ±imw 0 w2

 ,

ϵ(τ=±1)
µν =

1

2m


0 0 ik 0
0 0 ∓m 0

ik ∓m 0 iw
0 0 iw 0

 ,

ϵ(τ=0)
µν =

1√
6m2


k2 0 0 kw
0 m2 0 0
0 0 −2m2 0
kw 0 0 w2

 .

(8.10)

A general spin state then can be expressed as

ϵ(α)µν =
∑
τ

ατ ϵ
(τ)
µν . (8.11)

These polarizations are related to the standard SVT decomposition by
αT1

αT2

αV1

αV2

αS

 =
1

2
√
2


−1 0

√
6 0 −1

0 2 0 −2 0
−2 0 0 0 2
0 2 0 2 0√
3 0

√
2 0

√
3




α−2

α−1

α0

α+1

α+2

 . (8.12)

It is more convenient to express the bounds in terms of vector α.
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Forward limit

First, consider the indefinite transversity bound ∂2

∂v2
fαβ > 0 in the forward

limit

2M2
Plm

6 ∂
2

∂v2
fαβ

∣∣∣∣
t=0

=
352

9
|αSβS|2 (∆c (−6 + 9c1 − 4∆c)− 6∆d)

+
176

3
α∗
Sβ

∗
S (αV1βV1 − αV2βV2)∆c (3− 3c1 + 4∆c) .

(8.13)
As complex α and β would not give stronger bounds, we shall consider them
as real without loss of generality. Taking the choice of polarizations

αS = βS = ϵ (8.14)

to be sufficiently small, (8.13) then reduces to

2M2
P1m

6 ∂
2

∂v2
fαα

∣∣∣∣
t=0

=
176

3
(αV1αV1 − αV2αV2)∆c (3− 3c1 + 4∆c)

(
ϵ2 +O

(
ϵ4
))

.

(8.15)
Since this should satisfy by an arbitrary value of αV1 andαV2 , it gives the
requirement

∆c = 0 (8.16)

and together implies ∆d ⩽ 0.

For another forward limit bound fαβ

∣∣∣∣
t=0

, it is more complicated to ana-

lytically find the parameter constraints. A numerical minimization approxi-
mation in [23] found that analyticity prefers a large negative ∆d when people
only consider the leading order contribution. However, applying the t deriva-
tive bounds completely reverses the situation.

First t derivatives

The first t derivative definite bound

∂

∂t

∂2

∂v2
fτ1τ2(v, t) > 0 (8.17)

only gives the same requirement ∆c = 0 as before. While recalling for an
EFT we have the underlying assumption m2 ≪ Λ2

5. Considering the case
m2 ≪ |v| ≪ Λ5, the first t derivative bound gives

∂

∂t
fτ1τ2(v, t) ∝

m2v

Λ10
5

∆d+O(
m4

Λ10
5

) > 0 . (8.18)
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Since the sign of v is not restricted, we obtain the second condition

∆d = 0 . (8.19)

Surprisingly, unitarity and analyticity enforce the generic Λ5 massive gravity
to the special theory with Λ3 massive gravity tuning. This further motivated
that Λ3 massive gravity is more possible to admit a Wilsonian UV completion,
even though taking such tuning is not a prior natural thing to do.

8.2 Λ3 Massive gravity

In the proof of the absence of ghost in section 4, we have seen the full 2-
parameter dRGT theory in a simple form. It is however more explicit to see
how the cutoff be raised to Λ3 in ghost-free massive gravity by performing
the tuning

c1 = 2c3+
1

2
, c2 = −3c3−

1

2
, d1 = −6d5+

3

2
c2+

5

16
, d3 = 3d5−

3

4
c3−

1

16
.

(8.20)

Forward limit

The analytic results for the forward limit are rather difficult to obtain, while
the strict approximation can be achieved by some numerical method. Con-
sequently,

−0.0582 ≈ 9− 2
√
39

60
< c3 <

51 +
√
14613

546
≈ 0.315 , (8.21)

1

24

(
−23

8
+ 9c3 − 18c23

)
< d5 ≲ 0.149 + 0.588c3 + 3.21 , c23 (8.22)

d5 > −0.122− 0.461c3 + 1.84c23 if − 0.0582 ≲ c3 ≲ 0 . (8.23)

First t derivative

The first t derivative bound ∂fSS/∂t gives a constraint in addition to ∆d = 0
even if we have applied the Λ3 tunning

25 + 4c3(−37 + 63c3) + 64d5 > 0 . (8.24)
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Higher t derivatives

The residue of the t channel pole dominates when taking higher t derivatives

Rest=m2 [fαβ] =
1

4
YαYβ + 12 (c1 − 1)2 αSαV1βSβV1 , (8.25)

where the combinations

Yα = −2α2
T + (3c1 − 4)α2

V + (6c1 − 7)α2
S . (8.26)

With this must be positive for any definite states, the strictest constraint
given by the scattering T0±2. It gives

c3 <
2

5
or c3 >

5

6
, (8.27)

which is automatically satisfied since the forward limit bounds already sug-
gest c3 < 2/5. As mentioned, if the EFT satisfies the leading forward and
first t derivative bounds, then it will satisfy all higher t derivative bounds.

9 Unitarity implies more constraints?

The positivity bounds can be regarded as one sufficient example of how per-
turbative unitarity imposes important constraints on the physical Model. It
is natural to think if there exist other manifestations in distinguishing positiv-
ity bounds that provide more constraints for generic theories. One possible
consideration might be requiring the cancellation of unbounded growth of
scattering amplitudes at the high energy level. This may lead to a set of
specific relations among the coupling constants. We expect the feasibility of
it on general grounds since the equations implied by perturbative unitarity
uniquely reflect the spontaneously broken gauge structure [74, 13, 14] and
thus might be derived by means of Slavnov-Taylor identities (STIs) as well
[9]. Usually, constraints are appearing as polynomials which imply the re-
lations between the physical coupling constants. These relations could help
us to perform the renormalization when we are modeling the new physics as
an extension of the standard model. For example, it may describe or restrict
the general form of the dark matter interactions in realistic theory. Further-
more, if the above statement is also correct for effective field theories, it may
provide additional constraints on their parameter space and more powerful
tools to check the existence of their UV completion, together with positivity
bounds.
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9.1 The BRST invariance and Slavnov-Taylor identi-
ties

We start by considering a generic Lagrangian, which is an extension of the
Standard Model (SM). It contains an arbitrary number of heavy scalars,
fermion, and vector fields. As a starting point, we are mainly interested in
bosonic interaction. Therefore, we will only study the vector and scalar fields
in the following content. The interaction terms involving massless SM vector
fields, photons and gluons, are fixed by QED and QCD gauge invariance. In
particular, the massive-massless interaction terms are given in terms of the
covariant derivative

(Dµ)ij = (∂µ − ieQFAµ)δij − igsG
a
µT

a
F,ij (9.1)

by the usual kinetic terms of the massive fields F. Here T a
F,ij and Ga

µ are
representation of the respective gauge group SU(3) and U(1).

L =
i

6

∑
v1v2v3

gabcv1v2v3
(V a

v1,µ
V b
v2,ν

∂[µV c,ν]
v3

+ V c
v3,µ

V a
v1,ν

∂[µV b,ν]
v2

+ V b
v2,µ

V c
v3,ν

∂[µV a,ν]
v1

)

+
1

2

∑
v1v2s1

gabcv1v2s1
V a
v1,µ

V b,µ
v2
hcs1 −

i

2

∑
v1s1s2

gabcv1s1s2
V a,µ
v1

(hbs1∂µh
c
s2
− (∂µh

b
s1
)hcs2)

+
1

6

∑
s1s2s3

gabcs1s2s2
(has1h

b
s2
hcs3) +

1

24

∑
s1s2s3s4

gabcds1s2s3s4
(has1h

b
s2
hcs3h

d
s4
)

+
1

8

∑
v1v2v3v4

gabcdv1v2v3v4
(V a

v1,µ
V b,µ
v2
V c
v3,ν

V d,ν
v4

) +
1

4

∑
v1v2s1s2

gabcdv1v2s1s2
(V a

v1,µ
V b,µ
v2
hcs1h

d
s2
) .

(9.2)
It involves real vector fields Vvi and real physical scalar fields hsi with non-
zero masses Mvi and Msi , respectively. The indices abc are color indices
corresponding to SU(3) gauge symmetry and do not strongly relate to the
problem we study. In the following content, we will simply write Vvi as Vi
and hsi as si.
We first start with a brief introduction to the Goldstone-boson equivalence
theorem. It is well known that the Lagrangian of Standard model is invariant
under the Becchi-Rouet-Stora (BRS) transformations. For the gauge-bosons
and fermion fields, the BRS transformation is a gauge transformation with
δθa(x) = gδλua(x),

δBRSV
a
µ (x) = δλDab

µ u
b(x) = δλ(∂µδ

ab − gfabcV c
µ (x))u

b(x) ≡ δλsV a
µ (x)) ,

δBRSψi(x) = δλua(x)ig(Γaψ(x))i ≡ δλsψi(x) ,

δBRSψ̄i(x) = −δλua(x)ig(ψ̄(x)Γa)i ≡ δλsψ̄i(x) .
(9.3)
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where δλ is an infinitesimal constant which anti-commutes with the ghost
fields ua(x) and ūa(x) . The s is the BRS operator defined as the left deriva-
tive with respect to δλ of the BRS transformed fields with the product rule,

s(FG) = (sF )G± FsG . (9.4)

The transformations of the ghost fields are chosen to keep Lfix+Lghost BRS-
invariant.

δBRSu
a(x) = −δλ1

2
gfabcub(x) ≡ δλsua(x) ,

δBRSū
a(x) = −δλ1

ξ
Ca{A;x} ≡ δλsūa(x) ,

δ(Lfix + Lghost) = 0 .

(9.5)

The Slavnov-Taylor identities are the Ward identities under the BRS sym-
metry, which give rise to relations between Green’s functions. The generic
form of these identities could be written as

0 =
δBRS

δλ
⟨T
∏
l

ΨIl⟩ , (9.6)

where
∏

l ΨIl is a combination of arbitrary fields. Consider the Green function

involving one anti-ghost field and other on-shell physical fields
∏

l Ψ
phy
Il

0 =
δBRS

δλ
⟨T ūa

∏
l

ΨIl⟩ . (9.7)

Using δBRSū
a = −δλ 1

ξa
Ca ≡ δλsūa and sΨIl = 0,

0 =
δBRS

δλ
⟨T ūa

∏
l

ΨIl⟩ = s⟨T ūa
∏
l

ΨIl⟩

= − 1

ξa
⟨TCa

∏
l

Ψphy
Il

⟩+
∑
k

σk⟨T ūa(
∏
l<k

ΨIl)(sΨIk)
∏
m>k

Ψlm⟩

⇒ 0 = ⟨TCa
∏
l

Ψphy
Il

⟩ .

(9.8)

Now putting our gauge-fixing term C in our STIs

0 = ⟨T{∂µV µ
v̄ + σv̄Mv̄ξv̄ϕv̄}

∏
l

Ψphy
Il

⟩ . (9.9)

In momentum space, it reads

0 = ⟨T{kµV µ
v̄ − iσv̄Mv̄ξv̄ϕv̄}

∏
l

Ψphy
Il

⟩ . (9.10)
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In order to obtain a relation for S-matrix elements, we need to truncate the
external legs. We first introduce the propagator matrix

Gv̄
(µν) =

(
Gv̄v

µν Gv̄ϕ
µ

Gϕ̄v
ν Gϕ̄ϕ

)
=

(
gTµνG

vv
T + gLµνG

vv
L kµG

vϕ
L

kνG
vϕ
L Gϕϕ

)
, (9.11)

where gTµν = (gµν − kµkν
k2

) and gLµν = kµkν
k2

. We rewrite our STIs (2.8) as

0 = ⟨T (kµV µ
v̄ − iσv̄Mv̄ξv̄ϕv̄)

∏
l

Ψphy
Il

⟩

=
(
kµ iσv̄Mv̄ξv̄

)(⟨TV µ
v̄ X⟩

⟨Tϕv̄X⟩

)
=
(
kµ iσv̄Mv̄ξv̄

)(2⟨TV µ
v̄ X⟩

2⟨Tϕv̄X⟩

)
=
(
kµ iσv̄Mv̄ξv̄

)(Gv̄v
µν⟨TV µ

v X⟩+Gv̄ϕ
µ ⟨TϕvX⟩

Gϕ̄v
ν ⟨TV µ

v X⟩+Gϕ̄ϕ⟨TϕvX⟩

)
=
(
kµ iσv̄Mv̄ξv̄

)(Gv̄v
µν Gv̄ϕ

µ

Gϕ̄v
ν Gϕ̄ϕ

)(
⟨TV µ

v X⟩
⟨TϕvX⟩

)
=
(
kµ iσv̄Mv̄ξv̄

)(gTµνGvv
T + gLµνG

vv
L kµG

vϕ
L

kνG
vϕ
L Gϕϕ

)(
⟨TV µ

v X⟩
⟨TϕvX⟩

)
=
(
kν(Gvv

L + iσv̄Mv̄ξv̄G
vϕ
L ) k2Gvϕ

L + iσv̄Mv̄ξv̄G
ϕϕ
)(⟨TV µ

v X⟩
⟨TϕvX⟩

)
,

(9.12)

where X =
∏

l Ψ
phy
Il

= (...)ph. This yields

kν⟨TV ν
v (...)ph⟩ = iσv̄MvAv(k

2)⟨Tϕv(...)ph⟩
⇒ ⟨T{kµV µ

v − iσv̄MvAv(k
2)ϕv(...)ph⟩ = 0,

Av(k
2) =

ΓVvVv̄
L + k2

ξv

Mv(Mv − iσvΓ
Vvϕv̄

L )
.

(9.13)

Here we have defined the vertex matrix as the inverse of the propagator
matrix

Γv
(µν)(k,−k) =

(
gTµνΓ

vv̄
T (k2) + gLµνΓ

vv̄
L (k2) kµΓ

vϕ̄
L (k2)

kνΓ
ϕv̄
L (k2) Γϕϕ̄(k2)

)
,

Gv̄
(µλ)Γ

v(λν) = i

(
δνµ 0
0 1

)
.

(9.14)
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In the one-loop approximation, the Av(k
2) could be written as

Av(k
2) = 1− Σvv

L (k2)

M2
v

− Σvϕ(k2)

Mv

, (9.15)

where Γ̃vv
L = M2

v − Σvv
L and Γ̃vϕ

L = Mv + Σvϕ. The second and third terms
are corresponding to the loop correction. Working on the tree level, the STIs
have the simplest form

0 = ⟨T{kµV µ
v − iσvMvξvϕv}(...)ph⟩ . (9.16)

Extract unphysical couplings

The Goldstone-boson equivalence theorem is an important consequence of
the Slavnov-Taylor identities (STIs) in spontaneously broken gauge theories.
It states that the amplitudes for reactions involving high-energetic, longitu-
dinal vector bosons are asymptotically proportional to the amplitudes where
these are replaced by their associated would-be Goldstone bosons [6]. One
important application is to study the relation between the unphysical would-
be Goldstone-boson and the physical ones. The physical scattering then can
be used to determine the unphysical couplings in terms of physical couplings,
and this could be done specifically in the method of spontaneously symmetry
breaking. For example, the coupling of a fermion to a Goldstone-boson is
in a typical model of electronic symmetry breaking and related to the cou-
plings of fermion and massive vector boson. These identities follow directly
from the above Slavonv-Taylor identities. For instance, the bosonic 3-point
couplings for the Lagrangian (9.2) can be derived as follows

⟨T{kρV3,ρ − iσv̄3Mv3ϕ3}(V1,µV2,ν)⟩ = 0

⇒ gv1v2ϕ3 = iσv3
M2

v2
−M2

v1

Mv3

gv1v2v3 ,
(9.17)

⟨T{kµV µ
1 − iσv̄1Mv1ϕ1}(s1s2)⟩ = 0

⇒ gϕ1s1s2 = iσv1
M2

s1
−M2

s2

M2
v1

gv1s1s2 ,
(9.18)

⟨T{kνV ν
2 − iσv̄2Mv2ϕ2}(s1V1,µ)⟩ = 0

⇒ gv1ϕ2s1 = −iσv2
1

2Mv2

gv1v2s1 ,
(9.19)

⟨T{kνV ν
2 − iσv̄2Mv2ϕ2}{kρV ρ

3 − iσv̄3Mv3ϕ3}(V1,µ)⟩ = 0

⇒ gv1ϕ2ϕ3σv2σv3
M2

v2
+M2

v3
−M2

v1

2Mv2Mv3

gv1v2v3 ,
(9.20)
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⟨T{kµV µ
1 − iσv̄1Mv1ϕ1}{kνV ν

2 − iσv̄2Mv2ϕ2}(s1)⟩ = 0

⇒ gϕ1ϕ2s1 = −σv1σv2
M2

s1

2Mv1Mv2

gv1v2s1 ,
(9.21)

gϕ1ϕ2ϕ3 = 0 . (9.22)

Jacobi identity

As well as 3-point functions, the STIs allow us to extract 4-point couplings
related to unphysical would-be Goldstone-boson. However, since to keep the
interaction ϕV V V Lorentz invariant, it would at least contains one partial
derivative operator and then has a dimension greater than 4. This breaks the
renormalizability of our theory, and thus gϕvvv = 0. This implies the corre-
sponding 4-point function would yield an identity that includes only 3-point
couplings and 4-point physical couplings. After substituting the expression
of 3-point unphysical couplings in terms of physical ones, we may derive a
polynomial only including physical couplings. Considering

⟨T{kµV µ
v1
− iσv̄1Mv1ϕv1}(V2,νV3,ρV4,σ)⟩ = 0 . (9.23)

The identity is manifestly containing both physical and unphysical cou-
plings. we can however substitute the results in (9.17)-(9.22) to replace all
unphysical couplings with expressions in terms of the physical ones. Schemat-
ically, the identity would ultimately come in a form∑

v5

(gg + ...) +
∑
s5

(gg + ...) = 0 . (9.24)

Explicitly, we obtain
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0 = [ϵ∗(k3) · ϵ∗(k4)][ϵ(k2) · k3]{−2gv1v2v3v4 +
∑
v5

(gv1v2v5gv3v4v̄5 + 2gv1v4v5gv2v3v̄5)}

+ [ϵ∗(k3) · ϵ∗(k4)][ϵ(k2) · k4]{−2gv1v2v3v4 +
∑
v5

(−gv1v2v5gv3v4v̄5 + 2gv1v3v5gv2v4v̄5)}

+ [ϵ(k2) · ϵ∗(k3)][ϵ∗(k4) · k2]{gv1v2v3v4 +
∑
v5

(gv1v4v5gv2v3v̄5 − 2gv1v3v5gv2v4v̄5)}

+ [ϵ(k2) · ϵ∗(k3)][ϵ∗(k4) · k3]{gv1v2v3v4 +
∑
v5

(−gv1v4v5gv2v3v̄5 − 2gv1v2v5gv3v4v̄5)}

+ [ϵ(k2) · ϵ∗(k4)][ϵ∗(k3) · k2]{gv1v2v3v4 +
∑
v5

(gv1v3v5gv2v4v̄5 − 2gv1v4v5gv2v3v̄5)}

+ [ϵ(k2) · ϵ∗(k4)][ϵ∗(k3) · k4]{gv1v2v3v4 +
∑
v5

(−gv1v3v5gv2v4v̄5 + 2gv1v2v5gv3v4v̄5)} ,

(9.25)
which is an identity with three independent coefficients. By taking a

specific set of polarization vectors and momentums, it can lead to the Jacobi
identity ∑

v5

(gv1v2v5gv3v4v̄5 + gv1v4v5gv2v3v̄5 + gv3v1v5gv2v4v̄5) = 0 . (9.26)

Furthermore, identity (9.25) also includes relations between physical 4-point
couplings and 3-point couplings as non-trivial constraints. For example,

gv1v2v3v4 =
∑
v5

(gv1v4v5gv2v3v̄5 + gv1v3v5gv2v4v̄5) . (9.27)

9.2 Feasibility for EFTs

Although it appears that unitarity may give polynomial constraints in distin-
guishing positivity bounds, it is rather strongly rely on the Standard Model-
like behavior. If one considers the feasibility of these constraints for EFTs,
the following requirements should be satisfied and an assumption has to be
made: the standard S-matrix properties (unitarity, analyticity, etc.), the
spontaneous symmetry breaking structure (SBGT’s), the BRST invariance,
and the existence of a weakly coupled UV completion with renormalizabil-
ity3. Combining these would extremely restrict the form of an effective field

3By definition of Standard UV completion, it should be renormalizable. Nevertheless,
from a physics point of view, the UV complete theory is only needed to be finite in the
high energy level and the content of renormalization might be absent
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theory. One may consider some relaxations of some requirements. However,
the SBGT’s and BRST symmetry is the precondition for applying the STIs,
while violating the renormalizability would directly give trivial results. We
shall see this by an example as follows.

Proca EFT

Considering the Proca EFT in section 7.5 but in non-unitary gauge, so the
Stükelberg/ Goldstone mode appears and the SBGT occurred with the heavy
Higgs boson has integrated out

g2∗LProca ⊃− 1

4
F ν
µF

µ
ν − 1

2
ϕ2
µ +

a0
Λ4

ϕ

ϕ4
µ +

a1
Λ3

ϕ

∂µϕνϕ
µϕν

+
1

Λ6
ϕ

(
a3 (ϕµ∂

µϕν)
2 + a4 (∂µϕνϕ

ν)2 + a5ϕ
2
µ∂αϕβ∂

βϕα
)

+
1

Λ4
A

(
c1F

µ
ν F

ν
ρ F

ρ
σF

σ
µ + c2

(
F ν
µF

µ
ν

)2)
+
m4

Λ6
ϕ

(
C1ϕµϕ

νFαµFαν + C2ϕ
2
µF

2
αβ

)
,

(9.28)

ϕµ = Dµ = ∂µϕ+mAµ . (9.29)

To start, we take the gauge choice C = ∂µA
µ −mϕ = 0 and add the corre-

sponding gauge-fixing term to eliminate the cross term ϕ∂A. To apply STIs,
one should be careful of the physical part which should be inserted in (9.8).
Although the field Aµ and ϕ carry degrees of freedom, they are not BRST
invariant. Instead, one should only consider the field strength Fµν , which is
manifestly BRST invariant. For the 4-point function, we have the STI

< T{∂µAµ −mϕ}(FνρF
ρβF ν

β ) >= 0 . (9.30)

Since the Goldstone mode has already explicitly appeared (so as the cou-
plings) in the above Lagrangian, the interaction terms in the first, second,
and fourth lines should manifestly only give 0 contributions for the STI (9.30).
These terms should not give any new information about the parameter space.
The only concern is whether terms in the third line would give a non-trivial
contribution and ultimately lead to a constraint, which has a linear form

ac1 + bc2 = 0 . (9.31)
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To verify this possibility, we shall first write the third line in a more explicit
form

c1F
µ
ν F

ν
ρ F

ρ
σF

σ
µ + c2

(
F ν
µF

µ
ν

)2
= c1(2∂µAν∂

νAρ∂µAσ∂
σAρ − 4∂µAν∂

νAρ∂µAσ∂ρA
σ

− 2∂µAν∂
νAρ∂σA

µ∂σAρ + 2∂µAν∂
νAρ∂σA

µ∂ρA
σ

+ 2∂µAν∂
ρAν∂µAσ∂ρA

σ + 2∂µAν∂
ρAν∂σA

µ∂σAρ

− 2∂µAν∂
ρAν∂σA

µ∂ρA
σ)

+ 4c2(∂µAν∂
µAν∂ρAσ∂ρAσ − 2∂µAν∂

µAν∂σAρ∂ρAσ

+ ∂µAν∂
νAµ∂σAρ∂ρAσ) .

(9.32)

According to the above argument, the STI can be reduced to

< T∂µA
µ(FνρF

ρβF ν
β ) >= 0 (9.33)

with all vertices only coming from (9.32). This identity gives a trivial result
only if contributions from terms which proportional to c1 and c2 respectively
vanish by themselves. For simplicity, we evaluate the c2 part of the right
hand of the identity (9.33) to show the actual situation. Explicitly,

4c2{[(p1 · p2)(p3 · p4)(p1 · p3)(p2 · p4)− 2(p1 · p2)(p1 · p3)(p2 · p3)p24
+ (p1 · p2)(p1 · p3)(p2 · p3)p24]
− [2(p1 · p2)(p3 · p4)(p1 · p3)(p2 · p4)− 2(p1 · p2)(p1 · p3)(p2 · p4)(p3 · p4)
+ (p1 · p2)(p1 · p3)(p2 · p4)(p3 · p4)]
− [(p1 · p2)(p3 · p4)(p1 · p2)(p3 · p4)− 2(p1 · p2)(p1 · p4)(p2 · p3)(p3 · p4)
+ (p1 · p2)(p1 · p4)(p2 · p3)(p3 · p4)]
+ [(p1 · p2)(p3 · p4)(p1 · p3)(p2 · p4)− 2(p1 · p2)(p1 · p4)(p2 · p4)p23
+ (p1 · p2)(p1 · p4)(p2 · p4)p23]
− [(p1 · p2)(p3 · p4)(p1 · p4)(p2 · p3)− 2(p1 · p2)(p1 · p3)(p2 · p3)p24
+ (p1 · p2)(p1 · p3)(p2 · p3)p24]
+ [2(p1 · p2)(p3 · p4)(p1 · p4)(p2 · p3)− 2(p1 · p2)(p1 · p4)(p2 · p3)(p3 · p4)
+ (p1 · p2)(p1 · p4)(p2 · p3)(p3 · p4)]
+ [(p1 · p2)(p3 · p4)(p1 · p2)(p3 · p4)− 2(p1 · p2)(p1 · p3)(p2 · p4)(p3 · p4)
+ (p1 · p2)(p1 · p3)(p2 · p4)(p3 · p4)]
− [(p1 · p2)(p3 · p4)(p1 · p4)(p2 · p3)− 2(p1 · p2)(p1 · p4)(p2 · p4)p23
+ (p1 · p2)(p1 · p4)(p2 · p4)p23]} .

(9.34)
It is tedious but straightforward to check this quantity finally yields 0. We
can thus conclude that the STIs trivially hold, and there is no polynomial
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constraint in analogy to (9.25)-(9.27) can be read off by unitarity and renor-
malizability, at least for non-interacting Proca EFT. It may be expected
that coupling the theory to matter or considering multiple massive spin-1
fields could change this situation differently. However, even if these polyno-
mial constraints can be true for the interacting Proca theory or some other
LEEFTs, we are difficult to consider they have equivalent universality with
positivity bounds. With identities in parameter space being more powerful
constraints than positivity, the assumptions we made are extremely limiting
in our search for feasible theories. Especially, the Higgs-like mechanism for
massive gravity theories is still absent at present. This leads to no evidence
that massive spin-2 theories should enjoy a spontaneous symmetry breaking
structure. Furthermore, to the best of the author’s knowledge, there has no
BRST-like symmetry for gravitational theory in 4D or higher been yet ex-
plored. The renormalizability also does not tend to be the necessary property
of all UV complete theories.

10 Discussion and Outlook

The origin of the concept of massive gravity can be traced back to a cen-
tury ago, the consistency with GR was however only resolved in the past few
decades. It is even more recently that the possibility of evading the ghost has
been proven that continues the recent interest in massive gravity theories.
The appearance of superluminalities with Vainshtein mechanism should be
understood in more depth. The difficulty in finding fully-fledged cosmological
and black holes solutions together with the absence of non-trivial spatially
flat FRW solutions imply that the phenomenology of massive gravity theories
is still waiting to be explored. On the other hand, there are also many unex-
plored questions about the non-perturbative quantum properties of massive
theories, for instance the potential modification of black hole thermodynam-
ics, Hawking radiation or holography by a massive graviton.

One of the major concerns of massive gravity is the existence of a possi-
ble UV completion. The ghost-free massive gravity is still in a low cutoff Λ3,
while the corresponding coefficient tuning is even non-natural (only techni-
cally natural). It would be a great step forward if a partial UV completion
at least raises the cutoff to the Planck scale MP . Such a UV completion
may be sufficient to explain the naturalness problem. Nevertheless, the UV
approach processes for these new gravitational EFTs which have a strong
coupling scale associated with Vainshtein mechanism are yet difficult to es-
tablish. The information above the scale Λ3 such as how would new degrees
of freedom entry is still less known. And it is extremely important to re-
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consider the ghost problem beyond the Λ3. The massive gravity is relatively
well understood in AdS space. In recent years, there have been worked on
holography of massive gravitons in AdS/CFT [2, 54, 55, 65] which proves the
existence of possible UV completion of massive gravity in AdS space. It is
also remarkable that massive gravity in 2d spacetime is UV complete since
it would be equivalent to string theory through T T̄ deformation [75].

Although there are some theories explicitly break the Lorentz invariance
have been well-developed, it is more inclined to believe massive gravity admits
(if that is the case) a standard Lorentz invariant UV completion analogous to
Higgs mechanism which provides masses for vectors. Generically, without any
explicit form of UV physics, unitarity, locality and analyticity still provide
powerful constraints for EFTs. Assuming the potential UV completion is
weakly coupled, positivity bounds can be applied on the tree-level scattering
amplitudes and strictly restrict the parameter space of the Wilsonian effective
action. This can on the other hand be turned into a tool to check the existence
of UV completion. Violating any of these infinity bounds would directly
imply the absence of any possible local, unitary and Lorentz invariant UV
completion for the LEEFTs. In this review we have shown this from another
perspective provides the necessity and (from some point of view) naturalness
of Λ3 massive gravity tuning.

The polynomial constraints might be powerful to provide strong con-
straints on the generic extension of renormalizable theories, it is however
may not applicable for most of EFTs such as massive gravity. While there
are many other useful tools for testing the existence of its UV completion
in development, for instance, the causality constraints [11, 25, 10]. With
many theoretical obstacles overcame but bring new sets of challenges, mas-
sive gravity remains an extremely young and active field that on its own path
to becoming the alternative to GR.
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