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Abstract

This dissertation discusses supergravity theories and their brane solutions on various back-
grounds. We started by introducing the 11D and type II supergravities and solve the M2, M5,
and D3 brane solutions on the flat background. We then considered the special holonomy of
the curved background manifolds that preserve supersymmetry. We calculated the M2 and
D3 branes at the apex of the Calabi-Yau manifolds. We then discussed branes wrapped on
calibrated cycles and how they preserve supersymmetry. We derived the 5D and 4D minimal
gauged supergravity via dimension reduction on Sasaki-Einstein manifolds. In the 5D and
4D minimal gauged supergravity, we calculated the D3 branes and M2 branes wrapped on
H?, S?, and spindle. In the end, we introduced the GK geometry and used it to obtain the
D3 and M2 branes wrapped on H?, S, and spindle solutions.
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Chapter 1

Introduction

Supergravity theories play an important role in the study of string theory and M-theory.
Although M-theory is not yet well understood, in low energy, it is believed to give rise to the
11D supergravity theory which has the maximum amount of supersymmetry. Under various
compactifications, the M-theory leads to five types of 10-dimensional superstring theory.
The types of superstring theory that are of the most interest here are type II string theories,
ITA and IIB with different chiralities. They give rise to 10-dimensional type II supergravity

theories in the low energy limit.

String theory and M-theory have dynamic higher-dimensional objects known as branes.
In string theory, D-branes are where open strings are attached to and receive perturbative
effects from open string dynamics. These branes are also non-perturbatively solutions of
supergravity. A brane in spacetime will have a back reaction on the spacetime which is
described by supergravity. The brane solutions of the supergravity normally break half
the supersymmetry of the supergravity and have asymptotic anti-de-Sitter (AdS) spacetime

structures.

The AdS and Conformal Field Theory correspondence (AdS-CFT) is a conjecture which
states that a quantum gravity theory with an asymptotic AdS structure is dual to some
conformal field theory living on the boundary of the asymptotic AdS space. With the
conjecture, the supergravity is related to the conformal field theory on the AdS boundary
due to the asymptotic AdS structure of these brane solutions. This provides a useful tool to

study supergravity, string and M-theory.

Branes can also be wrapped on compact cycles in curved manifolds. The supersymmetry



of these wrapped branes is preserved via the notion of calibration or topological twist. To
solve the wrapped brane solutions, one can perform the dimension reduction from the 11D
or 10D type II supergravities to lower-dimension minimal gauged supergravities and then
uplift the solution back to 11D or 10D. In the length scale much smaller than the radius
of the cycle, the brane world volume is approximately the same as unwrapped branes. In
the low energy limit where the length scale is much larger than the radius of the cycle, the
wrapped dimensions become undynamic, and then the brane world volume looks like a lower
dimension theory. Some of these solutions also have AdS factors, and hence are dual to some
superconformal field theory. Then the dual superconformal field theory could flow across

dimensions, interpolated by supergravity.

Recently, a new class of solutions of the lower-dimensional minimal gauged supergravity
was discovered, which describes branes wrapped on 2-dimensional spindles.[28][29] The spin-
dles are orbifolds with two conical singularities. Different from the calibrated cycles, the way
branes wrapping on spindles preserve the supersymmetry is not via the topological twist.
When the wrapped brane solution is uplifted to 10/11D, it was found that the solution can

be made to be completely regular without singularities.

Through the calculations, one can find that the AdS2 solutions of the M2 branes wrap-
ping 2-cycles/spindles and the AdS3 solutions of D3 branes 2-cycles/wrapping spindles share
very similar geometry structures. In fact, they can be classified into the same class of geom-
etry known as the Gauntlett-Kim (GK) geometry.[34]

We will start the discussion in chapter 2 by briefly introducing the 11D and type II
supergravity theories. Following this, we will use the supergravity theories to find some
brane solutions on a flat background spacetime. Then we will discuss the world volume
theory of branes. In chapter 3, we will talk about AdS-CFT correspondence with relates
supergravity, string and M-theory with the brane solutions obtained in section 2 to some
conformal field theory. We will start by introducing the correspondence. We will then discuss
how is the correspondence applied in the context of supergravity, string theory, and large N

gauge theory.

From chapter 4, we will generalise the discussion to branes on curved background man-
ifolds. We will first discuss the condition of the background geometry in order to preserve
supersymmetry. These background manifolds are classified by the special holonomy of the
manifold. Through supergravity, we then solve the D3 and M2 branes transverse to the

Calabi-Yau manifolds. In chapter 5, we will discuss the other way of putting branes on



curved manifolds which is to wrap them on cycles in the curved manifolds. We will start the
discussion by wrapping probe branes around calibrated cycles to preserve supersymmetry via
topological twist. Then through the dimension reduction, we derive the 5D and 4D minimal
gauged supergravity. In these minimal gauged supergravities, we will discuss the M2 and D3
brane wrapping H?, S?, and spindles. These solutions share similar geometrical structures.

They both belong to the GK geometry which is discussed in chapter 6.



Chapter 2

Supergravity and Branes

There are five types of 10-dimensional superstring theories, type IIA, type IIB, type I
string theory, and heterotic string theory with Fg x Eg and SO(32) gauge symmetry. These
string theories are related to each other via various dualities. It is now believed that there
exists an 11-dimensional M-theory which with different compactifications gives rise to each
superstring theory. The actual formulation of the M-theory is still unknown. Nevertheless,
the low energy limit of the M-theory gives rise to the 11-dimensional supergravity. With
various compactifications, the 11D supergravity is related to other 10-dimensional super-
gravities which are the low energy limit of the corresponding string theory. Here we are
mainly interested in the 11D and type II supergravity. Although the supergravity theories
are non-renormalizable as a quantum theory, it is fine that they are the effective theory of
the string theory and M-theory. Moreover, it is interesting to study their non-perturbative

solutions.

These supergravity theories admit non-perturbative solutions known as branes. Branes
are extended objects in spacetime, which is a generalized notion of point particles and strings.
These branes are dynamic in the string theory and M-theory. In string theory, the ends of
the open strings are attached to the branes. Due to the open string dynamics, branes receive
perturbative effects giving rise to the brane world volume theory. Branes in M-theory do not

receive the same perturbative effect as in string theory since there is no string in the theory.

In this chapter, we will first introduce the 11D and type II supergravities. Then we
will find certain brane solutions to these supergravities and discuss the brane world volume

theorem in string theory and M-theory.



2.1 D=11 Supergravity

The 11-dimension supergravity [1] is the low energy effective field theory of the M-
theory. The 11D supergravity has the maximum supersymmetry with 32 supercharges. It
is the maximum amount of supercharges a theory can have without having fields with spin
higher than 2 in 4D. Also, in dimensions higher than 11, the fermionic degrees of freedom
became much more than the bosonic degrees of freedom, and hence the corresponding su-

persymmetric theory can not be constructed.

The corresponding graviton multiplet in the 11D supergravity contains elfbeins (metric)

AB

e where nape; e, = g, vector fermion gravitinos W, and three-form gauge field A4,,, with

gauge transformatlon 0Ap3) = dA[g) and field strength Fjy) = dA[3). The Action of the theory

is given by
Sy = de”«/ (R — —F2) + Flgp A Fig A Ap, (2.1)

plus terms involving gravitinos ¥,. Here we have set the gravitinos ¥, to zero to obtain the

bosonic sector of the action. The equations of motion are

1 2 1 2
RW = E(FHV - ﬁgqu >’

d+F = —%F v (2:2)
dF =0,

where F77, denotes FoppF, %P and F? denotes F,p,, F*P1°.

The theory is supersymmetric with the action invariant under infinitesimal supersym-

metric transformations generated by a 32 components spinor parameter e
A _ pA
oe, = el"W,,
A = Ly ¥y, (2.3)

1 aBpo e o
6\11 = D € = V €+ 2—88(F B 85“ F/Bp )Faﬁpaea

where gamma matrices ' = el’jF # are in the elfbein basis and I'y3 = I'[,I'5}, and V¢ is the
spin connection

1
V€ 6e—|—4w TP (2.4)

To truncate the theory down to the bosonic sector, we have set gravitino ¥, to zero.
Hence the supersymmetric variation of the elfbein ef} and three-form gauge field A,,, van-

ishes. The supersymmetric transformation of the gravitino, however, is non-zero unless



D,e = 0. Therefore, in order for the bosonic action Eq.(2.1) and equations of motion
Eq.(2.2) to preserve supersymmetry, solutions to the equation of motion need to admit a
spinor € such that

1
DME _ [Vu 4 2_88(Fua500 o 85MO¢I‘,3,DU)FaﬁpU]6 = 0. (25)

The spinor satisfying the condition is called the Killing spinor. A supersymmetric solution
preserving some portions of the supersymmetry needs to admit the same amount of the

Killing spinor components.

From the Killing spinors, one can construct Killing vectors,
K =¢l €, (2.6)

where K% can be either time-like or null. The equations of motion and Killing spinor
condition implies Lr;;(g) = Lrij(F) = 0. [2] It can be shown from the integrability condition
of the Killing spinor [D,,, D,]e = 0 that if d « F = —1F A F and dF = 0 are satisfied, then

one is left with the condition

B The = 0, (2.7)
where ) )
2 2
B = Ry — E(FW — ok ) (2.8)

By imposing € and E,,I'* from the right, the expression becomes
B TVe = EWKY =0,  EnEp{l*IP}e=E, E*=0. (2.9)

For a time like Killing vectors, this implies E,o = 0 in the appropriate basis. Then Eq.(2.9)
sum only the spacial indices which imply £, = 0 and all of the equations of motion can be
satisfied by requiring the Killing spinor and d  F = —3F A F and dF = 0. [2]

2.2 Type 1I Supergravity

Type II supergravity is a 10 dimensional N' = 2 supergravity theory which is the low
energy limit of type II string theory. String theory has closed string modes, followed by an
infinite tower of massive modes. In the low energy limit where the string length is small,
the massive modes decoupled, and the spectrum is left with only the massless modes of
the string theory, giving rise to the type II supergravity spectrum. The spectrum includes

NS-NS fields metric g, antisymmetric tensor By, and a dilaton ¢, R-R n-form fields Cf,,

ns

9



gravitino ¥, and dilatino A. Depending on chirality, two types of type II string theory can
arise, the type ITA and the type IIB string theory, related to each other by T-duality. The
type IIA string theory has fermion degrees of freedom in opposite chiralities while the type
I1B string theory has the same chiralities. These two type II string theories give rise to type
ITA and type IIB supergravity respectively.

2.2a Type IIA

Type ITA supergravity is the low energy effective theory of type ITA string theory. The
spectrum of the theory contains metric g, a dilaton ¢, anti-symmetric two-form field B, ,
one-form R-R vector A,, and three-form R-R field C),,,, and fermion fields gravitino ¥, and
dilatino A. The type ITA supergravity can be obtained from the consistent truncation of
the Kazula-Klein dimension reduction from D=11 supergravity compactified on a circle to
10 dimensions. This followed from the fact that M-theory compactified on a circle gives the

type IIA string theory.[3]

In the Kazula-Klein reduction, the 11D metric G,y in the 11D supergravity can be

decomposed into a 10D metric g,,,, a Kazula-Klein vector A,, and a dilaton ¢,

2 2
Gun = e 28 <9W Z2ZA;4NAV e@;ju) 7 (2.10)
which can also be written as
ds?, = e 2B3ds?) + 3 (da M) 4 A, dat)?. (2.11)
Elfbeins E of the metric are given by
EA = {e_d’/?’ede“, 2B (dx) + A, dat)}, (2.12)

a : a b _
where e,, are zehnbeins and €nerlab = G, and

?/3 i 0
M _ € €a
Ey = ( s e_2¢/3> . (2.13)

The spin connection of the metric is given by

1 1 2 1
wh =% — §e¢/3§b¢e“ — §e4¢/3FabeH, why, = —§e¢/3§b¢611 — §e4¢/3Fabea. (2.14)

10



Then for the metric G, one obtains /-G = /—ge %3 and

V=GR(G) = v (Rlg) +46,60"6) - i g (2.15)

The three-form gauge field A(LIJ\I/I)N can be decomposed into a three-form gauge field
Cuvp = AE},},} and a two-form gauge field B, = Af}l,ll)l in the dimension reduction. And the

four-form field strength of the three-form gauge field F' 1%3\4 N = 40k A(Llj\l/f)N] is decomposed

into o )
FWpll = 3a[uAup]11 = 300 Bup) = Hywp, (2.16)
(11) :
L ;511/27 = 4a[ﬂAupU] = 401, Cupo) = Flvpo-
Writing the field strength in the vielbein basis Fapcp, we get
Fé;clg _ e4¢/3ﬁabcd = e4¢/3(Fabcd + 4A[aHbcd]), (2 17)
chécll)l = e¢/3HabC‘ ‘
Then we get
1 11 1 n [rabc 1 abe
4_8Ff(xB)CDF(?1B)CD = 4—8€8¢/3Fabch bed E€2¢/3HabcH ", (2.18)
And the Chern-Simons term becomes
FI A D A0 — oA B A B 2.19
4 N N A [4] N L[4 A D2 (2.19)

Substituting this and Eq.(2.15) into the bosonic 11D supergravity action, we get bosonic
action for type ITA supergravity

1 1 1
— 10 /— 7| o—2¢ 2 2 2

plus the Chern-Simons term

SCS = JF[4] AN F[4] 7AN B[Q]. (2.21)

The action is exactly the effective action of the type IIA string theory massless modes
requiring the cancellation of Weyl anomaly. The above action is written in the string frame.

With the rescaling g = e®?¢’, we can switch the action to the Einstein frame given by

1a, , 1

1
Spra = J dz'%/—g (R’ +40,00"6 — e PHE) = Je30FE — @6%451?[24]) + Ses. (2.22)

With the dimension reduced from 11 to 10, the vector spinor gravitino is decomposed to

VU, and Wy;. And 11D spinors can also be decomposed into two 10 Majornan-Weyl spinors

11



with different chirality. Therefore, the 11D gravitino is decomposed into two 10D gravitinos
VU, and two 10D dilatinos A = Wy, each having opposite chiralities. Again to preserve the
supersymmetry in a theory with the fermionic degrees of freedom truncated, the Killing
spinor needs to be considered. Substitute the spin connection and RR gauge fields into the

11D Killing spinor condition, with a field redefinition

- - 1

A=e 0, = (W, 4 §FMF11>\>, ¢ = /S, (2.23)
one gets the supersymmetric condition for type IIA supersymmetry,

1 1 1
o0, = (v# = Hupl" = §e¢Fa5Fﬁ“ + ge‘ﬁFa,epaF“ﬁ”"Fu)e =0, .20
1 1 1 1 :

N = <f§ WO 4 =y D7 — 26 F T 4 Ee<%ﬁp(,rofﬁfw”)e —0.

2.2b Type 1IB

Type IIB supergravity is the low energy effective theory of type IIB string theory. The
spectrum of the theory contains metric g, , a dilaton ¢, anti-symmetric two-form field B, ,
0-form R-R gauge field Cj (an axion), 2-form R-R gauge field C),, and a self-dual 4-form
R-R gauge field C}, 0, and two left-handed Majorana-Weyl fermion fields gravitino ¥, and
two left-handed Majorana-Weyl dilatino A\. Type IIB supergravity cannot be obtained from
the dimension reduction from 11D supergravity. Nevertheless, we can construct a similar

gauge invariant but problematic action [3]

_ 1 1 1 1
Srip = de“’\/—g[e 2 (R +40,00"¢ — EHE@,}) -5k — o F - m%]? (2.25)
plus the Chern-Simons term
SCS = JC[4] A H[g] AN F[g]. (2.26)

Where Fjy}, Fi3), and Fis) are the field strength for the R-R 0-form, 2-from, and 4-form. In
addition to the action, we need a self-dual constraint on the four-form R-R gauge field C\, s

which can not be built within the Lagrangian
However, the action description of the type IIB supergravity is problematic. The first
thing is that the action is not supersymmetric. Since the four-form self-dual constraint cannot

12



be built in the action, the four-form in the action has more components than demanded
before applying the constraint. Hence the Lagrangian has more bosonic degrees of freedom
than fermionic degrees of freedom, breaking the supersymmetry. Also, with the self-dual
constraint, the kinetic term of the five-form vanishes. One thing one can do is to describe
the type IIB supergravity via equations of motion. Fortunately, the equations of motion

including the self-dual constraint, are supersymmetric.

To have a bosonic solution preserving the supersymmetry, we again require a vanishing
supersymmetric transformation. The supersymmetric variations of the bosonic fields are
again dependent on the fermionic fields, hence vanishing by setting fermions to zero. The

supersymmetric variations of the fermionic fields are given by

)
(5\11“ = <v“ + §€¢ ]_6 5'
1

1
0N = 5(0ut = i€?0,Co) e + Z(z'(f¢FaﬁpFaﬁf’ — HpopTHP)e
Where € is 10d Majorana Weyl spinor satisfying the chiral projection I'''e = e. Requiring

1
d)Faﬁpavraﬁpayru)e - g(QHua,BFaﬂ + ie‘z’FagpFaﬂpFu)e* .

these transformation to vanish leads to the type IIB Killing spinor condition.

For simplicity, the type IIB spectrum can be truncated to contain only a metric, a scalar
dilaton field, and the self-dual 4-form gauge field with the rest of the spectrum set to zero.
Such truncated type IIB supergravity is of the most interest in the following discussion. The
action of the truncated theory in the string frame is given by

1
S = dew«ﬁ (1~ —(ma - =) (2.29)

with the self-dual constraint on the 4-form. And one gets the equations of motion given by

1
Rw/ = u¢&u¢ + FuaBpJF ozﬁpa

V#(F/waﬁ) =0, (2.30)
0,0"¢ = 0.
And the Killing spinor condition becomes requiring a constant scalar and
00, = Dye = (Vu+ T 5|Fa5pwraﬂp0”ru)e — 0, (2.31)

2.3 Brane Solutions of Supergravity

The D=11 and type Il supergravity have non-perturbative extended objects sourcing the

n-form gauge fields. Like the zero-dimensional particle sourcing the one form vector potential

13



of the electric and magnetic field, we can have a d dimension objects either electrically
couple to (d)-form gauge field or magnetically couple to a (D — d — 4)-form gauge field in
the supergravity. We call these extended objects p-branes, where p = (d — 1) corresponds
to the spatial dimension of the brane world volume. These p-branes have n-form charges,
therefore, are the source of the n-form gauge fields. Having a brane on a flat spacetime will
have a back reaction to the spacetime. These back reactions are described by the Einstein
equation. Solutions to the 11D supergravity are called M-branes, which satisfy the equations
of motion Eq.(2.2). M-branes are the extended objects in the M-theory. There are two M-
branes, the M2-branes that are coupled electrically to the 3-form field and the M5-branes
that are coupled magnetically to the 3-form field. The M-branes are also supersymmetric,
meaning they preserve a portion of the supersymmetry by admitting some Killing spinors.
D branes are solutions to the type II supergravities, which satisfy the type II supergravity
equations of motions and supersymmetric conditions. D-branes are dynamic objects in string

theory with the end of the open string attached to them and receive perturbative effects.[4]

We now study the back reaction of various branes on flat backgrounds to obtain the brane
solutions of supergravity theories. Start with p-brane on a D-dimensional flat spacetime with
Poincare symmetry ISO(1,D — 1). The p+1 dimensional brane world volume naturally
breaks ISO(1, D — 1) into ISO(1,p) x SO(D —p—1) , where ISO(1,p) is the symmetry of
the (p + 1)-dimensional world volume and SO(D — p — 1) is the symmetry of the transverse

space. The most general metric with such symmetry can be written as
ds* = 24 dgt dxvn,, + 2P0 (dr? + r?dOL_, ), (2.32)

where {z#} is the coordinate of the brane world volume and dQZ_p_2 gives the standard
metric on a D-p-2 sphere parametrized by the coordinate {y}. The brane with such metric
is located at r=0 and is transverse to the y™ coordinate. The vielbeins {e?,ef e} of the

metric is given by
et = eA(T)él’?dx“ et = eBWer eM = Bem, (2.33)

where {¢} are the vielbeins on the D-p-2 sphere. The convention used here is to have Greek
indices labelling the brane world volume directions and Latin indices labelling the spherical
directions. While in the vielbein coordinate, the world volume directions are labelled by
{ABCDE} and the spherical directions are labelled by {MNIJK}. With de® = —w? A €,

14



one can calculate the spin connections
M —-B(r) ( nr 1N / 1\
WM = e (B (r) + = )eM = (B (r)+;>e : (2.34)

where @M, is the spin connection on the D-p-2 sphere, and its Ricci tensor is given by

Ry = (D — p — 2)gmn, Where g, is the metric on the sphere. One finds the non-zero
components of the Ricci tensor

. d+1
Ry,z/ _ _Thwe2(AfB) (A// + d(A/)Q +dA'B + + A/>,

r

- 1+ 1
R = —Grn ™™ <B” +dA'B' +d(V)? + LRy C—iA’), (2.35)
r r

. {+1
R, = — <dA” (A4 DB+ (A — dB A+ B'),
r

where G is the metric on the D-p-2 sphere, and d =p+1,d =D —p — 2.

We now derive the M2 brane and M5 brane solution in the 11D supergravity, and D3
brane solution in the type IIB supergravity.

2.3a MZ2-Branes

M2 brane is a solution of 11D supergravity that is electrically coupled to a 3-form gauge
field with the world volume dimension three. With the symmetry ansatz, the 3-form gauge

field coupled to the M2-brane world volume can be written as

A ) (2.36)

pvp = €uwp€
and the non-vanishing component of the field strength is

Fr,u,up = E,ul/parec(r)' (237)

Einstein equation become

7 1
A"+ 3(A? + 6A'B + - A = ()2,
r 3
1 1
B"+3A'B +6(V)* + By Sy —— ()20, (2.38)
r r 6
7 1
3A” +7B" + S(A/)Q —3B'A+ 1B = §(01)262(J—6A'
r

15



And the equation of the field strength becomes
V2C + C'(C" + 6B’ —34") = 0, (2.39)
where V2 is the Laplacian of d + 1 flat space.

To have a supersymmetric solution, we still need to consider the supersymmetry condi-
tion given by the Killing spinor equation Eq.(2.5). To solve the Killing spinor condition, we

first split the Killing spinor € according to the symmetric ansatz

€= e ®n(r), (2.40)

where ¢ is a constant spinor in 3 dimensions and n(r) is a spinor in 8 dimensions. The
corresponding gamma matrices in the vielbein basis are 'y = 4 ® 01 QL ' = T ® 0y ® 1,
and Iy, = [ ® i03 ® X where 74 are the gamma matrices in 3d Minkowski spacetime,
Y are the gamma matrices in 7d Euclidean space, and o; are Pauli matrices. Substituting
the gamma matrices, spin connection and field strength, the Killing spinor condition can be

rewritten as

—_

16
6
D,e =<8r — —e 780 T® oy ®H>€ =0,

Due =(0 = 54 F0eM 7, @3- 01 ®T = < 80,79, @ 1, @ T)e = 0,

il \V]

(@)

i ] i (2.41)
Due =(Vin = 1@ 1 @,
1 1 .
3¢ 0P I® 01 @ T + 5 F 0 IRI@ T )€ = O,

where we have used the condition for all gamma matrices [5]

Fal..ak = aGal...adra(k+1)madrd-i-l7 (242)
where

1 (—1)F(r=D/2+d(@-1)/2, (2.43)

(d—k)!
It can be shown that it is possible to find a spinor on an n-sphere with odd n satisfying
<@m — %f]m>e =0 [6], where V,, and X, are the covariant derivative and gamma matrices

on the n-sphere. Therefore, the Killing spinor condition is solved by
3A=—-6B=C, (2.44)

n(r) = noe”5°, (2.45)
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satisfying the chiral projection o1 ® [ - n = —n, or equivalently I'g;2¢ = —¢, and a constant
spinor €y on the brane world volume. Substitute this condition into the equation of motion
Eq.(2.39), and we get

Vie @ =0. (2.46)
Demanding an asymptotically flat solution, solutions to the equation are the 6d harmonic
functions
_ K
e % = Hg(r) =1+ 5 (2.47)

From this, we get the supersymmetric solution of the 11D supergravity

2
3

2 _ (14 BN g BN a2 4 202

as? = (1+55) datda'n, + (1+ ) (dr +%d03),
K\ 1

AIWP = Ew/p<1 + E) .

The chiral condition on the Killing spinors reduces the components of Killing spinors by

(2.48)

half. This means the M2-brane solution preserves half of the supersymmetry of the 11D

supergravity corresponding to 16 supercharges.

The metric of the solution has a coordinate singularity at r = 0, which corresponds

to a horizon. In the near horizon limit r = 0, we can approximate e=¢ = 7, then with a
coordinate transformation, the solution becomes
2 1 af1 Wy 2 2
as? = F(dw d2" 1, + dp ) 1 4d02|, (2.49)

VK
2r2 "

near horizon limit of the M2 brane is AdS4 x S7.

where p = The metric in the parentheses is just an anti-de-Sitter metric. Hence the

Note the M2 brane solution is solved from the Laplacian equation Eq.(2.46). Any linear

superposition of the harmonic functions is also a solution [7]

K

—c _ K
e _HEHHZZJ( (2.50)

— (r — ;)8

Hence we can generalize the solution of a single M2 brane to multiple parallel M2 branes

given by

ds? = (1+;ﬁ)_

The reason for the possibility of stacking branes is due to the no-force condition. One can

Wl

1
v K 3 . m g n

calculate the ADM mass to be equal to the electric charge of the brane solution, which
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saturates the BPS bound. Hence gravitational attraction is cancelled by the electric force.
This is the same situation as the extremal Reissner—Nordstrom black hole. In fact, the M2
brane is also in the extremal limit of the general black branes, where two horizons of the

black brane coincide.

2.3b Mb5-Branes

M5 brane is a solution of D=11 supergravity that is magnetically coupled to a 3-form
gauge field with the world volume dimension six. With the symmetry ansatz, the field

strength of the magnetic 3-form gauge field can be written as
me'j = —emmjré’rec(’"). (252)

Then the condition d = F' = —%F A F'is automatically satisfied. And the condition dF = 0
requires V2e® = 0, which is again related to harmonic functions. The solution to the 5d
laplacian is

€ = Hy(r) =1+ % (2.53)

And the Einstein equation become

4 1
A" +6(A) +3AB + A = g(c’)%?C*GB
T

1
B// + 6A/B/ + 3([)/)2 + ZB/ + gA/ _ _g(c/)2€2C—GB (254)
r
4 1
6A"” + 4B" + 6(14,)2 —6B'A + B = E(C,)262C_GB'
r

We then check the constraint of the Killing spinor conditions on the solution. To solve
the Killing spinor condition, the spinor is again split into a constant 6d spinor and a 5d
spinor

€= ¢e®n(r). (2.55)

The corresponding gamma matrices are given by
Tp=(1a®Ly ®Tr ®Ty), (2.56)

where 77 = 7;...75. Then the Killing spinor condition with the presence of the magnetic
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4-form field strength becomes

1 1
DME :<au . 5eaneA,}/M "‘)/7®ET . —673367:60’}/#@27‘)6 =0

12

1

D,e = <§r + Ee_wé’recv? ® ]I) e=0
) 1 (2.57)

Dye = (vm _-9RY,

2

1 1
+ ée_BéreBZmT - 66_33&6077 ® Zmr>e = 0.

Again it can be shown that for an even-dimensional sphere, Ve = %ZRf}me with ©F =
¥1...3, can be satisfied.[6] With the projection "¢y = €, or T'y...I'se = ¢, the Killing Spinor
condition is solved by

€= 670/1260 ® Mo, (258)
and

1
A=—C, B=—3C. (2.59)

Therefore, the supersymmetric solution of the M5-brane is given by

2
3

wl=

ds?, = (1 4 %)_ (dr? + r2d02), (2.60)

with the four-form field strength

v Y
dxtdz" 1, + (1 + ﬁ)

1
anij = 3/{Emnijrﬁ- (261)

With the projection condition on the Killing spinor, the solution breaks half of the super-
symmetry. The solution again has the asymptotic AdS structure. In the near horizon limit,
the metric approximate

1
2

4S? = 4x3 [p

|
(dadz” ., + dp?) + Zdﬂi], (2.62)

with p? = 4k2. Therefore, the near horizon limit of the solution is AdS7x.S*.

2.3c¢  D3-Branes

D3 brane is a solution of type IIB supergravity that is coupled to a 4-form self-dual

gauge field with the world volume dimension Four. For the D3-brane solution, the type
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I1B supergravity spectrum is truncated to the metric, a scalar dilation field, and the self-
dual 4-form. The self-dual 4-form can be written as F' = (1 + %)G, and the non-vanishing

components of F' are given by

Fuar:Guarzeua arec
prapf prap prap (2' 63)
anijk = (*G)mnijk = Emnijkr€4(B_A)a7"eC-
In the presence of only the scalar field and the self-dual five-form, the system is described
by the equation of motion Eq.(2.30) and Killing spinor condition Eq.(2.31). Recall the Killing

spinor condition requires a constant dilaton field. Then from the Einstein equation, we get

1
A" + 4(A/)2 + 4A'B' + §A/ _ Z_l(c/)262078A
r
9 4 1
B// + 4A/B/ + 4(()’)2 + _B/ + _A/ _ _1(01)2620—814 (264)
r r
1
LA" 4 5B" + A(A'? —AB'A' + 2B = ()P
T

And from the equation of motion of the field strength, we get
V20 + C'(C' + 6B —3A") = 0. (2.65)

Again we need to consider the Killing spinor condition to have a supersymmetric solu-
tion. To solve the Killing spinor condition, the 10d Majorana-Weyl spinor satisfying I'''e = ¢

is split into a 4d constant spinor ¢y and a 6d spinor 7(r)
e =eo®@n(r). (2.66)
And the corresponding gamma matrices in the vielbein coordinates are given by
I'p=a®L —ir" @ TR, —17° @ ), (2.67)
where 7° = 7p...73 and X7 = 0pX;...05. With the projection
Ve = ieo, Yy = —in, (2.68)
or, in other words, ['g1o3¢ = €, such that
Me=7"@X=c¢, (2.69)
the Killing spinor condition becomes

<‘9u + <1€_A5T€A — 16_4‘48,«60)7“27")6 =0,

2 8
(ar + %6_4‘48,,60)6 —0, (2.70)
<@m - lf]m>e + <16_38T€B + 16_4Aérec> Xe=0.

2 2 8
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The condition is solved by a constant spinor ¢,

_ 8

n(r) o, (2.71)

and

1
A=-C, B=—1C. (2.72)

Substitute the supersymmetric condition into the equation of motion Eq.(2.65), we once
again get the Laplacian equation
Vie C =0, (2.73)

which is solved by
e C=H=1+". (2.74)

Hence the D3 brane solution is given by

N
[NIES

dsty = (1+ =) “datdatn, + (1+ ) (dr? +12d02), (2.75)

The solution again breaks half of the supersymmetry due to the projection on the spinor. In

the limit of » — 0, the metric of the solution is asymptotically
!
d5120 = K2 [_Q(dx#dxvmy +dp*) + dﬂg], (2.76)
p

with p = K2 /r. Therefore, the near horizon limit of the solution is given by AdS5x.S°.

2.4 Brane World-volume Action

The D-branes and M-branes are dynamic objects in string theory and M-theory. There-
fore, they are described by some brane world-volume effective action. The classical action of

a p-brane is given by the Nambu-Goto action,

S - fdap“«/det(Gab) _ f 4o\ Jdet(@, X1, X, ), (2.77)

which is given by the world volume of the brane. The Polyakov version of the action is given
by

1
=1 f Ao I\ —G(G0, X 0,X, — p + 1), (2.78)

where G is the induced metric on the brane world volume.
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In bosonic string theory, the end of the open strings can attach to a stack of D branes,
i.e. open strings are subjected to the Newmann boundary condition in the D-brane world
volume directions and the Dirichlet boundary condition in the D-brane transverse direction.
The open strings attached to branes have excitations corresponding to a massless vector
field, leading to an electromagnetic theory described by the Dirac-Born-Infeld action [8] of

D-branes

S = Jdapﬂ\/det(hab + 21! Fyp), (2.79)

where Fy;, is the field strength of the massless vector field.

In order to have a supersymmetric theory, a brane action with target space super-
symmetry is needed. The construction of the supersymmetry action is in analogy to the
Green-Schwarz formalism.[3] To have N' = 2 spacetime supersymmetry in the action, the
coordinates X* are accompanied by two Majorana-Weyl fermionic coordinates ©! and 6?2
satisfying the chiral projection of type II supergravities. The supersymmetric transformation
is given by

SXH =g o4, 504 = ¢, (2.80)

where A=1,2. The supersymmetric version of the Born-Infeld action is

S = Jd0p+1\/det(Gab + 27TCY/Fab). (2.81)
Where
Gab = nuuHa“Hbm (282)
with
" = 0, X" — O,41"0,04, (2.83)

and Fy, is the supersymmetric combination of the field strength in the Born-Infeld action,
which is given by
-Fab = Fab + baby (284)

where b, is a 2-from depend on ©.

In Green-Schwarz string theory, it was found that there are twice the fermionic degrees of
freedom with half of them being gauge components. This fact indicates that there is a hidden
symmetry in the theory known as kappa symmetry [9] in addition to the supersymmetry. To
have the kappa symmetry in the action, an additional supersymmetric Wess-Zumino term

needs to include. A similar story happens to D-branes. In order to have the correct fermionic
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degree of freedom, the theory now has the kappa symmetry generated by Majorana-Weyl

spinor &, [3]
SXH = O ,TH604, 60! = P_x!, 60% = P, K>, (2.85)

where the projection operator Py is given by

1

L. _
Pe=30s i vee

=5 S 1N 1 S A (2.86)

To have the kappa symmetry generated by Eq.(2.85) in the theory, the supersymmetric
Wess-Zumino term is needed in addition to the Born-Infeld action. The bosonic part of the

term is given by
Scs = MPJZ C[n] A BT F ,upJC[p_,_l] + C[p_l] A (B + 27TO/F) + ... (2.87)

with the integral forms pulled back to the brane volume. Cf,) in the Wess-Zumino term
correspond to RR fields which equal the RR fields that are electrically coupled to the branes
and equal the dual fields of RR fields that are magnetically coupled to the branes. And p,, is
the charge of the branes. Note the first term in the expansion describe how the (p+1)-form is
coupled to the p-branes as mentioned in the last section. And the term gives the (p+1)-form

current coupled to the (p+1)-form.

A similar construction of the supersymmetric D-branes world volume action can be done

to M-branes.[10] For M2-brane, the action is known as the super-membrane action, given by
1 1 - 1
S = J da?’x/—G(ﬁGabaaX“abX”gW—5+@F“Va@+§e“bcAWaaaX“abX”acX“+...), (2.88)

which is the Polyakov action plus the Wess-Zumino term describing M2-brane coupling to the
3-form. © now is an 11D spinor coordinate. The same as the D-brane action, the M2-brane

action has supersymmetry with variations generated by 11D spinor €
0. XH =elo, 0.0 =€, (2.89)
as well as the kappa symmetry generated by « [11]
5. X" = 20I'*P, Kk, 5.0 = 2P, K, (2.90)

with Py given by
€0, X" 0y X" 0. XT ) (2.91)
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satisfying P, P~ = 0. A bosonic configuration of M2 brane described by X* breaks the
supersymmetry since the supersymmetry transformation 6.0 does not vanish by requiring
© = 0. However, the supersymmetry can be preserved if the non-vanishing 6.0 can be

gauged away by the kappa symmetry, meaning
0.0 +06,0 =c+ 2P,k =0. (2.92)
Using P, P_ = 0 we get the condition on e

P_e=0. (2.93)

Branes also have backreaction on the geometry of supergravity described by

S = SSUGRA + SpBrane- (294>
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Chapter 3

AdS-CFT Correspondence

In the previous chapter, we obtained various solutions for the supergravities with the
asymptotic anti-de-Sitter spacetime structure. It was found that through Maldacena’s Anti-
de-Sitter and Conformal Field Theory (AdS-CFT) Correspondence conjecture, [18] Super-
gravity or String and M-theory on asymptotic AdS spacetime is related to some conformal
field theory on the boundary of the AdS spacetime. This correspondence is a powerful tool
which provided a new approach to studying string theory, M theory, and quantum field the-
ory. In this chapter, we will first briefly introduce the AdS-CFT correspondence and then
discuss it in the context of type IIB string theory and supergravity.

3.1 Conformal Symmetry and AdS Geometry

Conformal Field Theory: The conformal symmetry[12] is an extension of the Poincare
symmetry. In addition to the translations, rotations, and boosts in the Poincare group, the
conformal group includes two extra transformations, the dilations and the special conformal

transformations(SCT). Under conformal transformations, the metric transforms as

Gy (') = M) g (7). (3.1)

for some function A(z). The conformal transformations are generated by vector fields satis-

fying the conformal Killing equation

2
Ve, +Vye, = Eg,wvaea. (3.2)
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And the conformal transformations on the coordinates are given by

Translation :
Dilation :

Rotation :

SCT :

't =t 4 at

™ = azt
't = A" ¥

" aH — bHa?
2H =

1 —2b-1+ 222

The corresponding generators of these transformations on functions are given by

Translation :
Dilation :
Rotation :

SCT :

P, =id,

D =iz"0,

M,, = i(x,0, — x,0,)

K, = —i(2x,2"0, — 2°0,,).

It can be shown that the conformal generators obey the lie algebra

[M,,, D] =0

(M, By] = —2in,p. P
(M, K| = —2in,(, Ky
(M ws ] (UupM

We can rearrange these generators into

1
Juv = Muw Jud = 5(
labelled by (0,1, ...
(— 4+, +,—)

[‘],uw '] ] =

Ky = F),

_i(nupjua

[D7 Pﬂ] = _iPH
[D7 KM] = iKH
[P, K, = 2iM,, — 2in,, D
= NupMpuo + Mo Mpup — Mo M)
1
Jud+1) = Q(Ku + P.), Jad+1) = D,

— NupJuo + MvoJup — Mo Jup)-

(3.3)

(3.4)

(3.5)

(3.6)

,d,d + 1). These generators satisfy the SO(d,2) algebra with signature

(3.7)

Therefore, the lie algebra of the conformal group is isomorphic to the lie algebra of SO(d,2).

An operator O(z) with scaling dimension A transform under dilation 2 — az* as

O(x) — o®O(ax). The dilation operator act on the operator as

[D,0(x)]

For the operator at origin, this expression is diagonalized to [D,0(0)] = —iAO(0).

the commutation relation between D and P,, K,

= i(z"0, — A)O(x).

scaling dimension by one whereas K, lowers the scaling dimension by one,

[D, F,0(0)] =

—i(A + 1)P,0(0),

[D, K,0(0)] =

26

—i(A - 1)K,0(0).

(3.8)

With

it is easy to verify that P, increases the

(3.9)



For a unitary theory, there is a lower bound on the operator [14], therefore, there exists an
operator satisfying [ K, O(0)] = 0. We call the operators satisfying the condition the primary
operators, while operators constructed by acting P, are called the descendant. A conformal
field theory does not have asymptotic states, so it is natural to consider operators.[15] The
representations of conformal groups are labelled by the ”lowest weights”. The representations

correspond to operators with the primary operator as the lowest weight. [13]

The form of correlation functions of operators is restricted by conformal symmetry. For
example, the form of the two-point function of scalar operators is completely fixed by the

conformal symmetry, which is given by

<Ol(x1)02(x2)> . ﬁ (3.10)

Anti deSitter space: Anti-de-Sitter space is a Lorentzian maximum symmetric space.
It is a Lorentzian analogy of hyperbolic space. An AdS(d+1) space with radius R can be
embedded in a (d,2) Minkowski space via

X2+ X -XP— ... —X:=R (3.11)

AdS space is maximally symmetric, and the isometry of AdS(d+1) is SO(d,2) which is
isomorphic to the d-dimensional conformal group. Parameterizing the coordinates with

Poincare coordinate chart, [14]

R R R

(14 |z — 2+ 22 Xo=—t X; = —x; Xg=—(1—|z)* +1* - 22

22( +|ZE2| +2z )v 0 P i szu d 2Z( |xz| + < )7
(3.12)

and pulling back the Minkowski metric, one gets the AdS(d+1) metric in the Poincare chart

X =

1 )
ds® = RQE(—dﬂ + dr;dr’ + d2?). (3.13)

which is identical to the brane solutions in the near horizon limit discussed in the last chapter.
We now consider the geometry near the boundary of AdS(d+1) space at z — 0. As z — 0,
dz — 0, the metric become
1 i
ds* = RZ;(—dt2 + dx;dz’). (3.14)

which is just the (d-1,1) Minkowski space up to scaling. Therefore, the boundary of AdS(d+1)
space is equipped with the SO(d-1,1) isometry. Note the metric is also invariant under di-
lation {z*,z} — {az" az}. Hence the boundary is actually conformal. A spacetime is
asymptotically AdS if its boundary approaches the AdS boundary, and the boundary of the

asymptotic AdS spacetime is also conformal.[14]
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The correspondence: CFT and AdS geometry are connected via the field-operator
correspondence. A field living in the bulk with an asymptotic AdS geometry is dual to an
operator with the same spin of the conformal field theory living on the AdS boundary.[15]
For example, it can be shown from correlation functions that the scalar field of the bulk

theory and a corresponding operator in CFT are matched via

Zule [q)(x, oo = CI)O(x)] — Zepr [CI)O(x)] _ <eSdmd‘1’0<x>‘5<w>>, (3.15)

where Zgui[®(z, 2)|.—0 = Po(x)] is the partition function of the bulk theory with scalar
®(x, z) restricted to the boundary condition. The action in the partition function is on shell
and regularized. And Zcpp[®o(z)] is the generating functional of the operator O(z) with
the boundary condition of the scalar field in the bulk ®y(x) as its source. The same relation
can also apply to other fields and operators. The stress-energy tensor is sourced by the
metric, therefore the stress-energy tensor of the CFT is in correspondence with the metric
tensor in the bulk. Since the bulk theory can have a dynamical metric, it is a quantum
gravity theory. This leads to the famous AdS-CFT conjecture of Maldacena, which states a
quantum gravity theory in (d+1)-dimensional spacetime with an asymptotic AdS geometry
is dual to a d-dimensional conformal field theory without gravity on the boundary of AdS

spacetime.

3.2 4D N=4 SYM and D3-Brane World Volume

The best-studied AdS/CFT example is the correspondence between the D3 brane world
volume theory of type IIB string theory and the 4D N = 4 super Yang-Mills theory. We
previously obtained the asymptotically AdS5xS® solution for the D3 brane with 16 super-
charges preserved. Due to the AAS/CFT correspondence, the AdS boundary of the theory
is described by a 4D N = 4 superconformal field theory.

The 4d Yang-Mills theory is classically invariant under scaling. This conformal invari-
ance, however, is broken by quantum effects, for example, momentum cut-off. The 4D N'=4
super Yang-Mills, however, scales invariant. [14] This can be read from the fact that the
Beta function of super Yang-Mills theory at one loop order,

dg g
Y9 9 (11 -4x4-6)= 1
Jlnp 4872 ( 8 6) =0, (3.16)

and higher-order perturbations. The theory is superconformal with the superconformal group
PSU(2,2/4). The spectrum of the vector multiplet has a gauge field A,, six scalar fields

28



¢; in the fundamental representation of SO(6), and 4 Weyl spinors in the fundamental
representation of SU(4). The super Yang-Mills action of the vector multiplet is given by [14]

1 _ . _ .
S = fdx‘*g Tr[—FWF‘“’ — D D'+ NN = o1, 64]° + Airqu,x]
YM?

b (3.17)
+ 0 J F A F.
Written in the superpotential form, the action has a complexified gauge coupling
0  Am
T = %—FZ? (318)

This coupling has an SL(2,Z) symmetry.

We now consider the string theory side of the story. Open strings ended on D3 brane
give rise to the D3 brane dynamics described by the brane world volume theory. The theory
has a 4D gauge field, 6 scalars describing the brane transverse degrees of freedom, and the
same amount of the fermionic degrees of freedom, the string massive modes again decoupled
in the low energy limit. The bosonic part of the theory is described by the Born-Infeld

action, which for D3-brane in the Einstein frame is given by

1
Spr = Jda4e(p_3)¢/4\/—det(G + e 92F) = fda‘l\/—detG(l + Ze_quwFW +...) (3.19)

The higher order terms can be ignored in the low energy limit where o/ = 0. And the

Wess-Zumino action Eq.(2.87) can be expended into
1
SWZZJ(C4+FACQ+§FAF/\Co—F...). (320)

where the first term in the action is the 4-form gauge field coupling to the D3 brane. Note the
third term in this expansion, Eq.(3.20), and the second term in Born-Infeld action Eq.(3.19)
gives

S =- de4(e_¢FMVF"” + Coe" P F,, Fop). (3.21)

One can immediately recognise that the above action recovers the kinetic and Chern-Simons
term of the field strength in the super Yang-Mills action Eq.(3.17) with complexified gauge

coupling
Co . 47T

= +1 .
2w gse?

(3.22)

T

Notice that there is a discrete symmetry 7 — 7 + 1 due to the axionic properties of Cy —
Co+ 2m. In fact, this coupling also has a SL(2,Z) invariance. We can read from the coupling
that

9s = 90 (3.23)
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and the expectation value of the dilaton shifts the sting coupling constant.

One can consider a change to the super Yang-Mills coupling. Such change is given
by the deformation of a marginal operator in the super Yang-Mills theory. The marginal
operator in the generating functional is sourced by a scalar. According to the field-operator
correspondence Eq.(3.15), this deformation by the marginal operator will change the scalar
dilaton field boundary condition. The change in the expectation value of the dilaton field
will shift the string coupling. [15] This exactly relates the string coupling with the super
Yang-Mills coupling.

3.3 Large N Gauge Theory and Supergravity

In the discussion from the previous section, we ignored the massive higher spin modes
and the gravitational coupling to the brane world volume field. The former assumption
makes sure that supergravity gives a good approximation to the bulk theory and Yang-Mills
gives a good description of the theory on the brane. And the latter leaves the brane world
volume decoupled from the gravitons and other closed string modes such that one is left
separately with a supergravity theory in the bulk and a Super Yang-Mills on the conformal
boundary. These require a small string coupling constant g, and a small string length 2 ~ o/
compared with the radius of the AdS space L. [16] From the t’Hooft planar diagram, one
is able to read that Feynman diagrams of a U(N) gauge theory look like world sheets with
t'Hooft coupling given by A\ = ¢&,,N = g,N.[17] Tt is also found that 2¢%,,N = L*/I%.
Hence, to have a weakly coupled gravity and small string length, one needs a large N gauge
theory and the gauge theory becomes strongly coupled. Also, as one goes to the near horizon
limit, the energy is redshifted, and one is left in the low energy regime. Then we are able to

correspond the D3 brane world volume on AdS5 to large N 4D super Yang-Mills.

A similar story can also be applied to M-theory and 11D supergravity. Mb5-branes on
AdST7 x S*is dual to 6D N = (0,2) superconformal field theory. M2-branes on AdS4 x S7
is dual to 3D V' = 6 ABJM theory. [1§]

One way to check the correspondence is via global symmetries. For example, the su-
perconformal group of the 4D A = 4 super Yang-Mills theory is PSU(2,2|4) which has a
subgroup of SO(4,2) x SU(4) where the SO(4,2) is the 4D conformal group and SU(4) is
the R symmetry of the theory. The group is isomorphic to the SO(4,2) x SO(6) isometry of
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AdS5 x S°. There are other ways of checking the correspondence via correlation functions,

operators, moduli space, matching anomalies, and central charges. [15]
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Chapter 4

Branes on Curved Background

In chapter2, we considered branes on a flat background spacetime as the supergravity
solutions. In this chapter, instead of flat backgrounds, we consider the background to be
the product of flat spacetime and some curved manifolds. A curved manifold has a non-zero
spin connection, which affects the Killing spinor condition. Therefore, the supersymmetry
condition restricts the possible geometry of the background manifold. Branes on curved
manifolds can either transverse to the curved manifolds or wrap around a cycle in the curved
manifold. In this chapter, we will first discuss the geometry of the background manifold which
is classified by special holonomy and then talk about the supergravity solutions of branes
transverse to Calabi-Yau manifolds. Branes wrapping on curved cycles will be discussed in

the next chapter.

4.1 Special Holonomy Manifolds

We first consider the geometry of the D=11 supergravity on a more general background
spacetime with a vanishing 3-form gauge field. Then the supergravity equation of motion
requires the spacetime to be Ricci flat. And the Killing spinor condition requires spacetime

to admit a covariant constant spinor Ve = 0, which implies

1
[V, V,]e = ZRwaﬁFMe = 0. (4.1)

R0l generates the infinitesimal holonomy transformation of the manifold. Hence a nec-

essary supersymmetric condition is for the Killing spinor to be invariant under the holonomy
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group of the manifold. This means the 32-component Killing spinor needs to decompose into

the trivial representation of the special holonomy group.[19]

Here we consider the spacetime to be the product of flat spacetime with some Ricci flat
manifold RYP~¢ x M?. The holonomy group of spacetime is the holonomy group of the
Ricci flat manifold. The Ricci flat manifolds that can be considered here are Calabi-Yau
N-folds with SU(N) holonomy, hyper Kahler manifolds with Sp(N) holonomy, G2-holonomy
manifolds and Spin(7)-holonomy manifolds. The manifold we will be talking about the most
here is the Calabi-Yau manifold. The Calabi-Yau manifold admits two nowhere vanishing

closed forms, the Kahler form and a holomorphic top form 2.

To count preserved supersymmetries, one needs to count the number of spinor compo-
nents in the spinor 32 representation of Spin(10,1) decomposes into the trivial representa-
tions of the special holonomy group of the manifold. For example, consider the 8-dimensional
manifolds, then the 32 representation of Spin(10,1) decomposes into Spin(2,1) xSpin(8). Spin
representations of Spin(8) can be written as 8; ® 8.. First, consider SU(4) holonomy. The
representations of Spin(8) 8, decompose into 6@ 1@ 1 and 8. decompose into 44 representa-
tion of SU(4). There are two trivial representations, each is a 3D spinor with 2 components.
Therefore the SU(4) holonomy background preserves 4 supersymmetry. For the Spin(7)-
holonomy manifold, 8, decompose into 7@ 1 and 8. decompose into 8 representation of

Spin(7), preserving 2 supersymmetry.[19]

dimension || Holonomy SUSY
10 SU(5)

10 SU(3)xSU(2)
8 Spin(7)
8 SU(4)
8 Sp(2)

8 SU(2)xSU(2)
7

6

4

G2
SU(3)
SU(2)

o T e T < N U NC R NG O

—_
(@)

Table 4.1: The supersymmetry preserved by each background manifold with special holon-
omy. [19]

We have discussed the supersymmetry by the special holonomy manifolds, or by probe

branes on the special holonomy manifolds. We can consider the back reactions of the branes
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on these special holonomy manifolds. The branes back reactions are described by the su-
pergravity and in most cases break half supersymmetry of the special holonomy manifold.
We will first consider branes on the product manifold of flat spacetime and a Calabi-Yau
manifold, with the brane transverse to the Calabi-Yau manifold. We will then in the next

chapter consider brane wrap a compact cycle within the Calabi-Yau manifold.

4.2 Branes Transverse to Calabi-Yau Manifolds

We now consider M2 and D3 branes on the background manifold with special holonomy
by switching on the n-form gauge fields. We first look at the M2 and D3 brane transverse
to and on the apex of the Calabi-Yau cone. With the background as the tensor product of

a flat spacetime and a Calabi-Yau cone R x CYP7P~1/2,

4.2a Calabi-Yau Cone and Sasaki Geometry

A Calabi-Yau n-cone is a cone over a Sasaki-Einstein 2n — 1 manifold. The cone metric

of the Calabi-Yau cone can be written as
dS* = dr? + r*dS*(SE2n — 1), (4.2)
where ds?(SE) is the metric on the Sasaki-Einstein manifold.

An odd-dimensional manifold is Sasakian if and only if the cone over the manifold is
Kahler.[20] The Kéahler cone over the Sasakian manifold has a complex structure Z which
acting on the radial direction of the Kahler cone gives a normed Killing vector £ = Z(rd,)
on the Sasakian manifold. The Killing vector is called the Reeb vector and corresponds to
the R-symmetry of the dual field theory discussed in the next subsection. The metric of the

Sasakian manifold can be written as
dS?(SE2n — 1) = (dz + 0)* + dS*(KEn — 1) (4.3)

where n = dz + o is the one form dual to the Reeb vector such that n({) = 1 and the
dS*(KEn — 1) is a transverse Kéhler metric on a transverse Kéhler n — 1 manifold. And n
satisfy

dn =2J (4.4)
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where J is the Kahler form of the transverse Kahler manifold. Therefore, the Sasakian

manifold is in the middle of two Kahler manifolds.

If the Kahler cone is also Ricci-flat or in other words Calabi-Yau, then the Sasakian

manifold is also Einstein with the Ricci tensor
R, = (2n — Z)QW (4.5)

where n is the complex dimension of the Calabi-Yau cone and g,,, is the metric on the Sasaki-
Einstein manifold. And for the Sasaki-Einstein manifold, the transverse Kahler manifold is

also Einstein with the Ricci tensor
Byu(T) = 2ng,(T) (4.6)

where g,,,(T) is the transverse Kahler metric on the transverse Kéhler Einstein manifold.

4.2b M2 and D3 Branes at Apex of the CY Manifolds

M2 and D3 branes have transverse space even-dimensional, hence we can replace the
transverse flat space with a Calabi-Yau cone and put branes at the apex of the cone which
corresponds to 7 = 0. For M2-Brane the background spacetime is R'? x CY*, and for D3 is
R!3 x CY?. The same n-form gauge fields are switched on as in chapter(2). The metric can

be written as
ds* = 2 dat dzn,, + 2P0 (dr? + r?ds*(SE)), (4.7)

where the second term is the Calabi-Yau cone metric with ds?(SFE) the Sasaki-Einstein met-
ric. Note the only difference between the flat space and the CY cone is the odd-dimensional
sphere is now replaced with the Sasaki-Einstein manifold. Sasaki-Einstein manifolds have
the same Ricci tensor as the spheres. Therefore, solutions to the equations of motion are the

same as the flat background in chapter(2), which together with the asymptotic structures

)

_1
D3 dS? = (1 + ﬁ) ® datda, + (1 + %)

rd

are given by

Wl

_2
M2 dS? = (1 + ﬁ@) *datdr, + (1 + 2 (dr? + 12ds*(SET)) — AdS4 x SET

r

(4.8)

N|=

(dr® 4 r*ds*(SE5)) — AdS5 x SE5

To have a supersymmetric solution, we also have to check the Killing spinor condition.

The condition of requiring spinors to satisfy (@m — ozim)e = 0 on a sphere now has to
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satisfy on the Sasaki-Einstein manifold. For a general Sasaki-Einstein manifold, at least
one spinor solution can be found for an odd complex dimension of the Calabi-Yau cone
which corresponds to the D3 brane case, and at least two solutions can be found for an
even dimension of the Calabi-Yau cone which corresponds to the M2 brane case.[20] Hence
a portion of supersymmetry is broken. If more spinor solutions are found, then the Sasaki-
Einstein manifold is a sphere, which recovers the flat background manifold which preserves

all of the spinor solutions.

The D3 brane case has four spinor components on the 5-dimensional Sasaki-Einstein
manifold with only one component left. Hence the D3 brane on the CY3 cone preserves
a quarter of the supersymmetry and is left with 4 supercharges. This breaks half of the
supersymmetry of the CY3 background. The AdS/CFT dual of the D3 brane solutions on
CY3isnow a 4D N = 1 superconformal field theory. The R symmetry of the dual field theory
corresponds to the Reeb Killing vector mentioned earlier. And for the M2 brane on the CY4
case, eight spinor components on the 7-dimensional Sasaki-Einstein manifold are reduced
to two. This also preserves a quarter of the supersymmetry and left with 4 supercharges.
Hence the AAS/CFT dual of M2 brane on CY4 is a 3D N = 2 superconformal field theory.
Note M2 brane on CY4 does not break half supersymmetry of the CY4 manifold. This is a

special case where the projections on spinors overlap.
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Chapter 5

Branes Wrapped on Cycles

In the last chapter, we discussed curved background manifolds for brane solutions and
branes transverse to the Calabi-Yau manifolds. In this chapter, we discuss another way to
put branes on curved background manifolds, which is to wrap them around a supersymmetric
cycle in the curve manifold. As mentioned earlier, for branes wrapped around curved cycles,
the non-trivial spin connection of the cycle will appear in the Killing spinor condition. Hence
the supersymmetry condition restricts the possible geometry structure a brane solution can
have. There are several ways for wrapped brane solutions to preserve supersymmetry. One
way for branes to be wrapped around curved cycles is via calibration. The other way is
to turn on the gauge field connection on the normal bundle of the cycle such that the spin
connection on the cycle is cancelled by the gauge field leaving a constant spinor. This is
known as the topological twist, which is closely related to the calibration. For a brane
wrapped around a compact cycle, in the IR limit where the scale is much larger than the
cycle, the fluctuations on the cycle become undynamic, hence the dual field theory can have
fewer dimensions than in the UV where the scale is much smaller. These solutions also have
AdS structures in different dimensions, therefore they are also dual to superconformal field
theories in various dimensions, and the renormalization group flow of the superconformal

field theories could go across different dimensions. [21]

In this chapter, we will first introduce the idea of calibration and discuss how probe-
branes wrapped around calibrated cycle preserve supersymmetry and how the calibration is
related to the topological twist. Then we will talk about the D3 and M2 brane wrapped
around H? and S? in the minimal gauged supergravity and discuss how the UV solution

flows to the IR solution. We will also discuss D3 and M2 branes wrapped on a type of
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orbifold with conical singularities known as the spindle. For the spindle solution, it was
found that there is no topological twist to preserve the supersymmetry, and although the
spindle has singularities, the uplifted solution is free from the singularities. The M2 and D3
branes wrapped around H? and spindles share similar geometrical structures known as the

GK geometry which will be introduced in the next chapter.

5.1 Calibration

In chapter 2 we talked about the world volume effective actions of branes and introduced
the kappa symmetry to gauge away the extra degrees of freedom. In order for a brane with

a bosonic configuration to preserve supersymmetry, the condition on the Killing spinor

Pe=0 (5.1)
need to be satisfied, where
1
P = 5(1 -1 (5.2)
For M2-branes,
_ 1 abc n v a
I'= mﬁ (%X 6bX 6CX F/“/OU (53)
where
G = det(&aX"&bX”gW>, (5.4)

for a,b,c = 0,1,2. Consider M2 brane wrapped around a 2-dimensional cycle. In the gauge
the world volume parameter oqp = Xy with the direction of o; and oy undetermined and

wrapped around a cycle Y, we get
[ = ——€®0, X" X" Tl 0, (5.5)

with
G = det(@aXiﬁijg,;j>, (5.6)

for a,b = 1,2, where G is just the determinant of the metric pulled back to the cycle. Py

are projection operators satisfying P? = Py = Pl = PlPi, therefore
ePe=cPTP e=|Pe? >0, (5.7)
with equality only if the supersymmetry is preserved. This is equivalent to saying
€le > €Te (5.8)
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with Killing spinor normalized to efe = 1, we get
1 1
V=G = §€abaaX“(9be€TF0Fw,€ = 2—e“b§aX”(9bX el € (5.9)

which is equivalent to saying that the form ¢ = €I',, € pulled back to the cycle X is less or
equal to the volume form of the cycle, and the form equals the volume form if the cycle is
supersymmetric,

Voly, > 1)|s = er,wea X*0, X" do"do®. (5.10)

Moreover, as given by minimizing the N ambu—Goto action, the brane needs to be wrapped
around cycles with minimum volume. Such conditions can be realized via the notion of
calibration. [19][22]

The calibration form is a closed n-form 1 that is less than the volume form of any cycle
when pulled back to the cycle, [19]

dip = 0, voly, = |y, V. (5.11)

Then an n-cycle X is called being calibrated if the calibration n-form pulled back to the cycle

is equal to the volume form of the cycle,

UOZZ = w‘g (512)

Also, since the form is closed, it can be proven that the calibrated cycle has the minimum

volume. Therefore, a calibrated cycle is supersymmetric.

The Calabi-Yau manifolds admit two types of form that can be the calibrations forms,
the wedge products of Kahler forms J”, and the real part of the holomorphic volume form

Qn,0), which can be constructed by
Jin = iPT%m,@ (513)

le..m2n = pT’le..anP> (514)

where p is the covariantly constant spinor in the Calabi-Yau manifolds.[19] The cycle cali-
brated by J™ has 2n dimensions and inherits the closed Kahler form, therefore is a Kahler
2n-cycle. The cycle calibrated by the holomorphic volume form ), o) are called the spe-
cial lagrangian cycles, they have the same dimensions as the complex dimensions of the
Calabi-Yau manifold.

There are also Spin(7)-holonomy manifolds, which admits a nowhere vanishing self-dual

closed Cayley 4-form
wmm’j = _ﬁ/Ymm]p (515)
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The Cayley 4-form calibrates the Cayley 4-cycles in the Spin(7)-holonomy manifolds. The
G2-holonomy manifold admits a nowhere vanishing associative 3-form that is closed and

co-closed, given by

wmni = _iﬁaniP; (516)

which calibrates the associative 3-cycles. Since the form is also co-closed, the Hodge dual
of the form is also a calibration form, calibrating the co-associative 4-cycles. The hyper
Kahler manifolds are a type of Calabi-Yau manifolds hence admit the Kahler and special
Lagrangian calibration. In addition, the 8-dimensional HK2 manifolds also calibrate the
Cayley cycles and quaternion Kahler 4-cycles. In later discussions, we will mainly focus
on cycles in Calani-Yau manifolds. Just as the brane solutions in the flat space, a brane
wrapping cycle in a special holonomy manifold in general breaks half of the supersymmetry

of the special holonomy manifold.

5.2 Topological Twist

Since the spin connection w on the curved cycle affects the supersymmetric condition,
one can turn on the gauge connection A on the normal bundle of the cycle and enforce

w = —A to cancel the spin connection such that
Dye~ (0, +w, - T'+A4,)e=0 (5.17)

leaves a constant Killing spinor on the cycle. Since the normal bundle is in the direction
transverse to the brane, the G structure of the normal bundle is a subgroup of the R-
symmetry of the dual field theory. This is exactly the topological twist in the topological
field theory, where the fields in the theory are coupled to a gauge field of the global symmetry

to cancel the spin connection of the theory. [23]

For example, consider a probe D3-brane wrapping a 2-sphere in the Calabi-Yau 2-fold.
[21] This corresponds to the case of Kahler or special Lagrangian 2-cycle calibration, which
in Calabi-Yau 2-folds are equivalent. The symmetry of the tangent and normal bundle
of a D3-brane on the flat space is given by SO(3,1)xSO(6). And the symmetry of the
canonical bundle of the Calabi-Yau two folds is SU(2). As the D3 brane is wrapped around
a two-cycle in the CY2, the bundle SU(2) is split into two U(1)~SO(2) bundles with one
tangent to the two-sphere and one normal to the two-sphere. The connection on the 2-

sphere is in SO(2)g2. To perform the topological twist, we have to turn on the gauge
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field connection on the normal bundle of the sphere which is also in SO(2) to cancel the
SO(2)g2 spin connection. And the two remaining world volume directions have the symmetry
of SO(1,1) and the 4 transverse direction SO(4). This is equivalent to breaking the flat
space SO(6)—S0(4)xSO(2). Then the supersymmetry of the tangent and normal bundle
becomes SO(1,1)x[SO(2)s2xSO(2)]xSU(2),xSU(2) g, with the SO(2) being twisted with
SO(2)g2. The spinors then transform in the representation of the symmetry (', +, F,2,1)
and (£, +, F, 1,2) corresponding to A = (4, 4) supersymmetry in 2-dimension.

It turns out the way that calibrated cycles preserve supersymmetry is exactly via topo-
logical twist.[19] The tangent bundle of the special holonomy manifold on the cycle can be
decomposed into a tangent bundle and normal bundle of the cycle T(M)|ys = T(X) D N(X).
The special Lagrangian cycles are calibrated by the holomorphic volume form. Except for
the special Lagrangian two-cycle, the Kahler form restricted to the special Lagrangian cycles
vanishes. Therefore, the complex structure maps the tangent space (tangent bundle) of the
special Lagrangian cycle to the tangent space normal to the cycle (normal bundle). Hence
the tangent bundle and the normal bundle of the special Lagrangian cycles are isomorphic
to each other. This agrees with the M2 brane wrapping Kahler/Lgaranian 2-cycles in the
CY2 example above where the tangent bundle is split into two equivalent bundles. The way
a brane wrapped on a special Lagrangian cycle preserve supersymmetry is exactly to turn

on the gauge connection on the normal bundle to cancel the spin connections.

5.3 D3 Branes Wrapped on Kahler 2-Cycles

We have discussed probe-branes wrapped on calibration cycles and how they preserve
supersymmetry. For two cycles in the Calabi-Yau manifolds, the calibrated cycles are the
Kahler 2-cycles. The back reaction of the D-brane on spacetime is described by type II
supergravity. We now consider the detailed calculations of D3 and M2 branes wrapped on
Kahler 2-cycles in a truncated supergravity theory in 5/4D which is the minimal gauged

supergravity.

5.3a 5D Minimal Gauged Supergravity

The dynamics of the 10/11 dimensions in general can be very hard to solve. One can

perform dimension reduction to a certain dimension to solve the equation of motion and then
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uplift back to the 10/11 dimension, such that a solution of the reduced theory is an exact
solution to the original theory. For type IIB supergravity on AdS5xS®, one can perform
a dimension reduction on a 5-sphere to obtain the N’ = 8 5D SO(6) gauged supergravity.
The SO(6) gauged supergravity can have further truncation into the Cartan subalgebra
of SO(6), which is a N' = 2 5D supergravity with three U(1) gauge fields known as the
STU model. Earlier we obtained the D3 brane solution on AdS5xSE5. We can perform a
dimension reduction on the Sasaki-Einstein 5 manifold to obtain the 5D N = 2 minimal
gauged supergravity. [24][25] This is equivalent to the supergravity obtained from setting
the three U(1) gauge fields of the STU model to equal.

We now perform the dimension reduction of the type IIB supergravity on SE5 to obtain
the 5D minimal gauged supergravity. Different from dimension reduction from 11D to type
ITA supergravity discussed in chapter 2, type IIB supergravity is described by the equation of
motions. Hence the dimension reduction is performed on the equation of motions. The type
IIB supergravity in our consideration has the equation of motion Eq.(2.30) with vanishing
dilaton field,

1
= MF[%l]ABv (5.18)

with the self-dual 5-form field strength satisfying dF' = 0 as in the D3 brane case. To perform

Rap

the dimension reduction, the SE5 manifold with the metric written as Eq.(4.3) is fibered over
R with metric dS? via

1 2 \2
A8} = dS + (v + 0+ SA) +dS (K EA) (5.19)

where do = 2J with J and dS?(KFE4) the Kihler form and the Kahler metric on the
transverse Kahler Einstein manifold, and A is an 1-form gauge field on R%*. The self-dual

5-form field strength is given by [24]

2
F[5] = (1 + *) (47}015 - §(*5F[2]) A J)

9 9 1 9 (5.20)
= dvols — Z(s5Flay) A J + (277~ Fo A J) A (GAE + o+ §A>
where vols is the volume form on RY* and F is the field strength of the 1-form A.
The metric can be written in the vielbein form,
1 2
et = e, el = gd\lf + 0+ §A, eM = e, (5.21)
Then the spin connection of the metric is given by
1 1
A ~ A A W 7
wipg=w'g—-F e w pg==-Fpc-e
B 5B~ 30 B B = 348 (5.22)



Where @5*; is the spin connection on R and @y g1y is the spin connection on the transverse

Kahler-Einstein space. And the components of the 10D Ricci tensor in the vielbein basis are

given by
B 2 2 1 2 2 1 2
RAB:RAB_gFAB R\y\y=§F +J =§F +4
1
RA\I/ = —§VNFNA RM\I/ = —VNJ]\](/[ =0 (523)

Run = Run + 2010y = dgun Rya=0

We have used the fact that the Ricci tensor of KE4 is Ry, = 4G,mn. And from the field
strength side, we get

4 1 5. -
Fiyyap =4 4!(§F313 — o F?gap — 49AB)

9
2
F[%L]A\P:4'4!'§*5 (FAF)y F[Z]MA:F[Z]M\IJZO (5.24)
1
Therefore, the equations of motion of the 5D minimal gauged supergravity are given by
2 1

Ry, = —4g,, + gFg,, - §F29W
9 (5.25)

d+«F = —gF A F

From the equations of motions, we can construct an action containing the cosmological

constant

1
S5=Jda:5\/—g<R+12—§F2> +JF/\F/\A. (5.26)

To have a supersymmetric theory, the Killing spinor condition must also be considered.
We now find the condition on the solutions of 5D minimal gauged supergravity in order to
preserve supersymmetry in the type IIB supergravity. The type IIB Killing spinor in the
vielbein basis with only the self-dual 5-form field strength switched on is given by

i
oWp = Dpe = (Vp + = S!FQI_,,QJQI--erp)e — 0
Z. (5.27)

16 - 5!

1
= <e’1§0u + ngbQI’QlQZ +

FQl...Q5FQ1'"Q5FP> €
with 10D Weyl spinor satisfying the chiral projection I'j1e = e. eﬁ are inverse vielbeins

0 0
6;2 —AA 3 —OM (528)

0 0 é&m
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We first make a 5-5 split on the spinor

E=ARN® [(1)] (5.29)

with the corresponding gamma matrix given by I'p = {74 ® I ® 01,1 ® Xy ® 05} with
Yo---Y4 = —t and Xgdi;...204 = 1. Hence the chiral projection operator is given by I';; =
[o..'0 =I®1I®os. It is easy to verify that the Killing spinor is Weyl. Substituting the
field strength we get

1
FQIMQSFQL”Q?’ = 40(12 . (—iO’l + 0'2) — FBc’)/BCJ[JEIJi(Z'O'l — Ug)) (530)
Then

1
Fir@el 0T = 40(=i12 - a(L+ 03) = iFpey ™ a1y S S(1+ 03) )

5.31)
1 (
Fo,.q %Iy = 40<12 Ep(I+03) + FBC'VBCJIJEIJEM§(H + 03))
Therefore,
- i ByR , L BC o, 1
Dy =V, —2A,0, + EFAB'Y X+ ﬂFBC’Y YadriX + 374
1 ) ) 1
Dy = 30y — —Fpcl'PC — —FpenBCJ,n! + -5y — —Jp8’ 5.32
T v~ ptBC 21 BCYY IJ +2 v U1 ( )
1. ) ) 1
Dy = 6M — SO'Maw + ZWII{{EMFIJ + ﬂFBc’}/BCJ]JEIJZM + 52]\/[ — EJNMZN\D
The Kahler form can be written as J = e'2 + €?3, hence
1
§JMNEMN =y y¥ (5.33)

by requiring

1
212 2234 =_J EMNIZ
Z\I’ _ 212234 = —,

as the Killing spinor on SE5. With more detailed analysis,[24] the Killing spinor condition
can be solved by
n = e2¥n, (5.35)

and a 5D spinor satisfying

) 1 ,
(Vi — _(’Yyaﬁ - 45375)Fa5 - 57# —iA,)e=0 (5.36)



where we have used the fact that 7,y = fyuaﬁ + 25M[a75].Due to the projection Eq.(5.34),

the solution preserves a quarter of the supersymmetry which corresponds to N = 2 in 5D.

Hence the N/ = 2 5D minimal gauged supergravity is described by the equations

of motion given by

2 1
R,UJ/ = _4g,U'V + gFiV — §F2gp,l/
9 (5.37)
desg F'=—=F A F
3
and the 5D Killing spinor condition given by

= 4 « « 1 :
(Vi = 250, = 4029 Fag = 57 — id)e = 0. (538)

With the 5D solution, one can recover the 10D solution by uplifting the solution via
9 9 1 2 \2 9
dSi, = dS; + (gdz/; +o+ §A> + dS*(KE4) (5.39)

The usual D3 brane solution can not be found in the 5D minimal gauged supergravity. The

AdS5 background can be recovered by setting the gauge field to zero.

5.3b D3 Brane wrapped on H?

We have mentioned branes wrapping Kahler 2-cycles via calibration in order to preserve
supersymmetry. A calibrated cycle turns on the gauge field on the normal bundle to preserve
the supersymmetry through the topological twist. We now use the 5D minimal gauged
supergravity introduced earlier to see how branes are wrapped on the Kahler 2-cycles and
how the topological twist is applied to preserve supersymmetry, and how the solution flow

crosses different dimensions. [26]

We consider two types of Kahler-Einstein 2-cycles, H? and S?, where H? is negatively
curved and S? is positively curved. In order to be made compact, the cycles can be quotient

by discrete subgroups. Here we first use H? as an example, which has the metric

1
dS*(H?) = ?F(dy? + dz?). (5.40)

We first consider the simpler IR solution of the form AdS3x H? with the metric
dS2 = pdS*(AdS3) + qdS*(H?). (5.41)
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with p and ¢ some undetermined constant. The spin connection of the metric is given by

1
WAB = @AdéA B> WZY = @szy = ——dz. (5.42)

Y
where { A, B} labels vielbein basis on AdS3 and {Y, Z} labels vielbein basis on H2. To ensure

the topological twist, a gauge field needs to be turned on

1
A=——w= 2—ydz, Frg = —Q—yzdy A dz. (5.43)

Now with the equation of motion Eq.(5.25), we can determine the factors p and g. The Ricci
tensor of the AdS3 space is Ry = —2¢a/p and for H? is R, = —Gmn/q. Then it is easy to
get the solution to the 5D minimal gauged supergravity

4 11
ds? = §ds2(AdS3) + 5—2(dy2 + d2?). (5.44)
y

We now consider the Killing spinor condition, one gets

7 L1
Dy = ay + _/YZFyzg — 5V

3 2
1 , i 1

D,=0,+ E(wZZYWZY —i24A,) — gvayzgyy — 5% (5.45)

~ 1 1
Di=V —<—+— yze)
A A 5 67 yz | YA
By requiring a projection on the spinor
Yzy€ = —lE, or, Yy € = —i7Yz€, (5.46)

one finds the spin connection cancelled by the gauge field as required by the topological
twist, which simplifies the D, and D, condition, and the Killing spinor condition is reduced
to require

Oye = 0e = 0, V4€ = —ay4e. (5.47)

The first condition is simply to require a constant spinor on the cycle, due to the topological
twist. The second condition is the Killing spinor condition on AdS space which can be
solved similar to the sphere case with all supersymmetry preserved on it.[6] Due to the
projection of the Killing spinor, the solution breaks further half of the supersymmetry, leaving
4 supercharges. The solution has the geometry structure of AdS3x H?2. To have a compact
cycle, we can quotient H? by a discrete subgroup, H?/I". Since this does not change the

local geometry, the supersymmetry condition is held.
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One can uplift a solution of 5D minimal gauged supergravity back to 10D via Eq.(5.39),
then we get the AdS3xY7 solution of type IIB supergravity given by

4 1 1 1 2
A8, = 5dS?(AdS3) + [3—y2(dy2 +d2?) + <§d¢ +ot 3—ydz> + dSQ(KEAL)} (5.48)

where the Y7 correspond to the SE5 fibered over H2. Since this is a solution of type IIB
supergravity with the self-dual five-form turned on, we identify the solution as D3 brane
wrapped on H2. With the AdS3 structure, the solution is dual to a 2D superconformal field
theory with 4 Majorana-Wyle supercharges. The Y7 manifold has a Killing vector, which
corresponds to the U(1)~SO(2) R symmetry. Hence the superconformal field theory has
(0,2) chiral supersymmetry.

One can also consider the high energy behaviour of the D3-brane wrapped around a
2-cycle. In the limit where the length scale is much smaller than the cycle, the cycle may
look uncompact and have dynamical fluctuations, hence is dual to the 4D superconformal
field theory in the UV. In the IR limit where the length scale is much larger than the cycle,
the fluctuations on the cycle become undynamic, and the dual field theory remains to be 2D
superconformal field theory. Hence under the RG flow, a 4D SCFT can flow to a 2D SCFT,
with the supergravity interpolating the two field theories. To see this, we can construct the

more general solution of the type IIB supergravity in the form of
1
dSZ = A (—at? + da® + dr®) + 629“)?(@2 +d2?). (5.49)

Substituting the metric in the Killing spinor equation will give a set of differential equations
of the function f(r) and g(r). These differential equations describe the flow of two functions
under the flow of r. Then the flow may take the AdS3x H? solution to the AdS5 solution in
the UV, where the AdS5 metric is given by

| 1
ast ~ [—dt2 4+ ?(dgf +da?) + er]. (5.50)

For example, we can consider these BPS equations in the 5D minimal gauged super-

gravity. The spin connections of the metric are given by
Z Z 1 g—f ! Y 1 g—f !
w4y = ——dx, wh = —e’gdz, wp=—-e"Tgdy
Y Y y (5.51)
why = fldt W' = fldo

and again with A = —w%,/2 as required by the topological twist. Then the Killing spinor
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condition become

) L 1
g’)/szzg - 57@/

1 1
D, =27, + §(wZZY’yZY —iA,) + Eye’ngR’yZ’yR

1
Dy, =0, + 53/6 gWYR'Yy’YR +

1 1
- _f}/yFyzgyy - §7z

3
1 1 ]
D, = ax + Y <§eifw)§%7R - § - é’szFyZ> (552)
thﬁt—i-%(ée W RY —5_67 Fyz)
1 .
D, =0, — (5 + %’szFyz)'VRef

again by requiring a projection on the spinor
Yzy€ = —IE, or, Yy € = —i7Yz€, (5.53)
and
YRE = —€, (5.54)
the Killing spinor condition is solved by an r-dependent spinor with the differential equations

/

1
_ f f—2g
= —e/ + e
g 3

1
g —— ]

6

(5.55)

The solution Eq.(5.58) can be recovered from the differential equation. It can also be seen

that a solution that is asymptotic to

1

e29 2f =
T

~ € ~

(5.56)

near r = 0 can be found, which corresponds to the solution Eq.(5.50) with the asymptotic
AdS5 structure in the UV. Then we are able to identify the UV AdS5 solution and the IR
AdS3x H? solution.

5.3c D3 Brane Wrapped on 5>

We now consider the D3 brane wrapped on the positively curved Kahler-Einstein man-

ifold S? with metric A

WSS = Tz e

(dy* + d2?) (5.57)

in the minimal gauged supergravity.
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Again first consider the IR solution to be the form of AdS3 x S?

dSz = pdS*(AdS3) + qdS*(H?). (5.58)
with spin connections
- - zdy — ydz
WAB = WAd§4 B> wh = WS2ZY = 21_{_'1,—2_|_y2' (5.59)

Again to ensure the topological twist, a gauge field needs to be turned on with

1 dy — yd 2
Ao Lo zdy—yde Fiay —

i Tia i sdy A dz. (5.60)

(1422 +y?)

Again use the equation of motion Eq.(5.25) to work out the factors p and ¢q. The spheres are

positively curved with the Ricci tensor R;; = g;;/q. Then the equation of motion become

1 36¢>
42 +q— = =0, = — 5.61
¢ t+a-g P= e 1 (5.61)
with two roots ¢ = —%, and ¢ = % and the corresponding p; = %, Py = %. Taking the
positive roots we get
ds? = 1alSQ(AdS?)) + 1;(@2 + dz?) (5.62)
° 6 3(1+ 22+ y?)? ' '

However, this is not the whole story, we still need to check the Killing spinor condition in

order to preserve supersymmetry. The Killing spinor equation is again given by

ja) Z zZZ 1
Dy =0y + -7:Fy:9% — =y

3 2
1 , i 1
D, =20, + 5(wZZWZY —i2A,) — gnyyzgyy -5 (5.63)
- 1
Dy=V,— (5 + EWyszz>7A-

It turns out the solution Eq.(5.62) does not lead to the constant spinor with a similar
projection on the spinor. The negative root, however, can satisfy the Killing spinor condition
but leads to a negative metric. Hence there is no supersymmetric solution for the D3 brane
wrapped on S? in the form of AdS3x.S? in the minimal gauged supergravity. We will discuss

the reason for this in the GK geometry in section(6.2a).

To consider the RG flow, we again consider the more general solution

4

2 2f(r)(_ 42 2 2 2g(r)
dSs = e\ (=dt* + dz* + dr®) + e A5 27

(dy* + d2?), (5.64)
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with the same gauge connection. With a similar projection on the spinor, the Killing spinor

again gives the BPS equation

q = —ef — Zef29
; (5.65)
f=—e + gef_gg

Near r = 0, there is again a solution that is asymptotic to

1
2 2f
e ~ e ~ et (5.66)
corresponding to the UV AdS5 solution with the metric
1
2 2 2 2 2 2

In the IR, the AdS3x.S5? solution Eq.(5.62) is not recovered. Therefore, although the UV of
the dual field theory is described by the 4d superconformal field theory, the IR of the theory
does not flow to the 2d conformal field theory in the minimal gauged supergravity. It could
be because the solution in the IR with the AdS3 structure is more complicated to analyse.
However, in the STU model or the more complicated SO(6) gauged supergravity, the IR AdS3
solution of the D3 brane wrapping S? can be found and is dual to a 2D superconformal field

theory.

5.4 M2 Branes Wrapped on Kahler 2-Cycles

We now discuss the solutions of M2 brane wrapped on H? and S? which share many
similarities with the D3 brane case. We will first derive the 4D minimal gauged supergravity

and then use it to solve the wrapped M2 brane solutions.

5.4a 4D Minimal Gauged Supergravity

In the previous section, we performed the dimension reduction on SE5 from the type
I1B supergravity to obtain the 5D minimal gauged supergravity. The same operation can be
done to the 11D supergravity. We now perform the dimension reduction on SE7 to derive the

4D N = 2 minimal gauged supergravity.[27] The procedure is similar to the 11D reduction
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to type ITA, where the main consideration is the action of the theory. The action of the 11D

supergravity is given by
1
Siy = fdxlh/—g(R - 4—8F[‘i]) (5.68)
with the Chern-Simons term vanishes in the discussion. To perform the dimension reduction
on SE7, the SE7 is fibered over RY3 given by

1 1 1
dSi = stz +(7dY + o+ 5A)2 + dS*(KE6), (5.69)

where dS? is the metric on RY3. The 4-form field strength is given by

3 1
Flag = gVola = S (xaFjz)) A J, (5.70)

where Voly is the volume form and Fjy is the two-form on R'?.
The vielbeins of the metric are given by

5 1 1 1 1
et = efel = 56214’ eV = Z_ld\lj + 0+ §A, eM = el (5.71)

Then the spin connection is given by

. 1 1
Wl = @ = W = gFo- e (5.72)
WMy = g v — Ty e” w'y = Iy e

Where @,%; is the spin connection on R and @y is the spin connection on the transverse

Kahler-Einstein space. And the components of the 10D Ricci tensor in the vielbein basis are

given by
Rup = Rap — ~F?2 Row — —F2 42— Lp2 4
AB AB 8 AB VA 16 16
1
Ray = = VnF", Rypy = —VnJ%, =0 (5.73)

Run = Run + 21y = 6gmn Rya=0

Hence the Ricci scalar is given by
R=4R — F? + 42, (5.74)
where R and F? are contracted with metric on R*3. The F 7 term is given by

Fyy =2-41(18 + 3F2). (5.75)
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Substitute into the 11D supergravity action, we get the action of the 4D minimal gauged
supergravity

Sy~ fdx4\/jg(R +6— F?). (5.76)

with the equations of motion given by

1
R, = —3g V+2F2V——F2g v
g g mweogn o (5.77)

d*4F=O

We now check the supersymmetry condition of the solution in order to preserve some

of the supersymmetry in the 11D supergravity. The Killing Spinor of the 11D supergravity

is given by
1
Dp = [Vp + o (D720 86PQ1FQ2Q3Q4)FQ1Q2Q3Q4]€ =0
2818 ) (5.78)
_ [elfgﬁu + 4wgclggr Q2 +— o (F Q1Q2Q3Q4 85PQ1FQ2Q3Q4)FQ1Q2Q3Q4]€

To solve the Killing spinor condition, the spinor is decomposed into € = A\®n with 4D spinor

A and 7D spinor n. The corresponding gamma matrices are given by

Iy =—iyay° @1, Fv=7"Q®Zuy (5.79)
Then one gets
48%Pe ypop = iy° - 4, 5P spop = 74 - 3,
FABCMNEBCDEFDEJMN = 4’YBFABJMNZMN> (5 80)
PN ey pep FOP Jun = —2ivP Fopy® JunSMY,
TPMN e s pop FOP Jyun = v, P Fop Jun MY,

Substitute into the 11D Killing spinor condition, again with ~,y*? = ’ylf‘ﬁ + 2(5”[&75], one

gets
1 1
Dy =Va—2A,0, + 2FA37 Yyt E(FB(ﬂA + Fupy?) I 2! + 374 (5.81)
5.81
1 1
Dy = 40, — 5FBCFB 5 soyPC T Y, — 52‘” — —JUE”

with a Killing spinor condition on KE6. With the projection

1 )
Yon = Ysan) =Xsen) = EJMNEMNn =1, (5.52)

Y =1212234 2561 = 1],
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the Killing spinor condition is solved by
n=e2mn (5.83)

with KE6 preserving a quarter of the supersymmetry, leaving N’ = 2 on 4D. Then the 4D
Killing spinor condition of the theory is given by

~ 1 1 ,
(V,+ ZFO"BIV By, + 3~ iA )N = 0. (5.84)

5.4b M2-Brane Wrapped on H? and 5?

We now discuss the M2 brane wrapped on Kahler-Einstein 2-cycle Y5, where ¥, is taken
to be H? and S?. We will focus on the IR AdS2xX, solution in the 4D minimal gauged
supergravity which uplifted to the 11d gives an AdS2xY? solution. The geometry structure
of the AdS solution in the M2-brane case is very similar to the D3-brane case. To derive a

such solution, we again consider the AdS2xX? metric in the form of

dS? = pdS?(AdS2) + qe" @Y (dy? + d2?), (5.85)
where again with
1 4
H? . ohlaw) _ R oL o E— 5.86
e 2 € (1+ 22 + y2)2 ( )

The spin connection is given by

1 7 o 2dy —ydz

2. zZ 2.
H: w y = ——dl’, S LWy = QH:L‘—W (587)
The gauge field is again given by the topological twist
1

A= —gw- (5.88)

Then from the 4D minimal gauged supergravity equation of motion, we get

4q°

12> F4g—1=0 =—. 5.89
¢ F4q P e (5.89)

where + for H? and — for S2. Taking the positive solution, we get for H?, ¢ = § and p = 1,
2 1 _ 1
and for 5%, ¢ = ¢ and p = ;. We then have to check the supersymmetry preserved by these

solutions. The Killing spinor condition in the situation is given by

i 1
Dy =0y — SFpuv™ v — 5w

2 2
1 , i .1
Dz = az + §<W,z«ZYrYZY - Z2Az) + éFyz’yy Yz — 5’727 (590)
~ 1 1
DA = vA - (5 + §Fy27yz>7A‘
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For the H? solution, with the projection on the spinor
Vay€ = 1€, (5.91)

the 4D Killing spinor condition reduced to the Killing spinor condition on AdS2. Hence
the H? solution is supersymmetric. The S? solution again does not solve the Killing spinor

condition.

Thus the solution of M2 brane wrapped on H? in the minimal gauged supergravity in
the form of AdS2x H? is given by

1 11
ds? = Z—ld52(Ad82) + 5E(d;ﬁ + dz?), (5.92)

The solution can be uplifted to 11D via Eq.(5.69) to obtain the AdS2xY? with Y? an SE7

fibered over H2. The metric of the solution is given by
1 1 11
dSt = 7dS*(AdS2) + = (dy + 4o + 24)° + gE(czgﬁ +dz2?) + dS?(KE6).  (5.93)

The structure of the solution is very similar to the D3 brane wrapping 2-cycles. In fact,
they belong to the same class of geometry known as GK geometry which will be discussed

in chapter 6.

Due to the AdS2 structure, the solution is dual to some superconformal quantum me-
chanics. And under the RG flow, the corresponding supergravity solution could interpolate
between UV and IR of the theory which corresponds to the 3D and 1D superconformal field
theory.

5.5 Branes Wrapped on Spindles

We have seen how branes are wrapped on cycles in the special holonomy manifolds via
calibrations. These cycles preserve supersymmetry via topological twist. We now discuss
a new class of supergravity solutions corresponding to the branes wrapping spindles.[28§]
Different from calibrated cycles, the spindle is an orbifold with two conical singularities.
Also, the way that branes wrapping on the spindle preserves supersymmetry is not through

the topological twist, and hence, the Killing spinor on the spindle is not constant.

1
[n,,nJr]

integers ny. The spindle is topologically a sphere but has two conical singularities with

The spindle is a weighted projective space ¥ = WCP with two coprime positive
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deficit angles 27m(1 — 1/n%). [29] The Euler character of the spindle is given by

1 o
R=l=T

X (5.94)

A Js, n_n;

With n_ = n, =1, the Euler character is just given by 2, which is a 2-sphere.

5.5a D3 Brane Wrapped on Spindle

The dynamic of the D3-brane is again solved in the 5D minimal gauged supergravity
with the equation of motion Eq.(5.25) and the Killing spinor condition Eq.(5.36). The
solution has the structure of the warped product AdS3xX and is given by [29]

4
ds? = 3de?(Ads:a) +dS¥ (%)

(5.95)
A= 1(1 — g)dz
4 Y
where y and z are the coordinates on the spindle, and dS?*(X) is the metric on the spindle
given by
Yy oo 4y) o
dS*(X) = —2—dy* + dz=?, 5.96
=) q(y) 36y° (5:96)

where ¢(y) is a cubic function of y
q(y) = 4y® — 9y* + 6ay — a*. (5.97)

For a certain a, the function ¢(y) has three positive roots. To have a positive metric, the
range of y is set to be within two roots of ¢(y) such that ¢(y) is positive. Note as y approaches
one of the roots, the metric becomes singular, corresponding to the orbifold singularities of

the spindle. In addition, by choosing

(n- —ny)*(2n- +ny)?(ne + 2ny)?
4(n% +n_ny +n2)?

a =

(5.98)

2(n* +n_n, +n}
Ay Hpmtnone b)) (5.99)

3n_ny(n_+ny)

where Az is the period of z, then the metric of the cycle gives the metric on the spindle.
Note that the gauge connection is not cancelled by the gauge connection. Moreover, the

magnetic flux of the gauge field through the spindle is given by

n_—ny

1
Q= %LF _ ey (5.100)

2n_n,

%)



which is different from the Euler character of the spindle. Therefore, the way a brane

wrapped on a spindle preserves supersymmetry is not via the topological twist.

The Killing spinor condition of the spindle solution is solved by € = 0 ® 1(y), where 0
is the Killing spinor on AdS3 as usual satisfying V.0 = %%Q and 7n(y) is a spinor on the

n(y) = (\/%(9)7 \/QQQ/))’ (5.101)

Y Y

spindle with components

with
a(y) = —a+2y*2+3y,  @ly) =a+2"° 3y (5.102)

Different from cycles preserving supersymmetry via topological twist, the spindle does not

have a constant Killing spinor.

The 5D solution of the minimal gauged supergravity can be uplifted back to 10D via
Eq.(5.39) to obtain the solution of type IIB supergravity given by

4y y q(y) 1 Lo a ’
5% = “LdS?(AdS3) + ——dy? a2+ 5 (Dv+ 5 (1-2)dz ) +dS*(KE4), (5.103
where D = di) + 30. The uplifted solution is a warped product of AdS3x M7 with the
warp factor y and the M7 the Sasaki-Einstein manifold fibered over the Spindle. M7 can

be written as

q(y) 2 YV —2y+a
dy? + py?+ L Y71
Y 16y%(y? — 2y + a) v 42

dS*(M7) = %ds%z(m) + Dz*, (5.104)

4q(y)

with

a—y
Dz = dz — D 5.105
= v ) ¥, (5.105)

which turns out can be regular.[30] Hence the uplifted solution AdS3x M7 is also regular with
the conical singularities removed in the uplifting. The warp factor of the warped product is
a function on M. Therefore the solution AdS3x M7 has the AdS3 isometry, hence is dual
to a 2D N = (0,2) superconformal field theory. The UV solution of D3 branes wrapping
spindles in the form of AdS5 is not yet discovered.

5.5b M2 Brane Wrapped on Spindle

The solution of M2 branes wrapped on spindles is solved in the 4D minimal gauged

supergravity. The solution is similar to the D3 brane wrapped on the spindle and is given
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by [31]

2
ds? = yZdSQ(AdSQ) +dS2(D)
. (5.106)
with ) )
ds? (%) = Lay? + LY 4.2, 5.107
=) q(y) 4y? (5:107)
where ¢(y) is now a quartic function of y
q9(y) = y* — 4y* + day — a*. (5.108)

The solution again can be uplifted to the 11D via Eq.(5.69) to obtain the AdS2x Y™ solution
of the 11D supergravity with Y corresponds to SE7 manifold fibered over the spindle. The

metric of the solution is given by

1 2
)dez T (Dw + (1 - §>dz) +dS2(KE4). (5.100)

2
452 = L 4s2(AdS3) + —L—ay® +

which again can be made regular.[33]

q(y
36y

Different from the D3 brane case, a UV-completed solution corresponding to M2 branes
wrapping spindles is identified. Such a solution corresponds to the accelerating supersym-
metric extremal black hole in AdS4.]32] An accelerating black hole has five parameters,
acceleration, electric charge, magnetic charge, angular momentum and mass. They are de-
scribed by the same action as the 4D minimal gauged supergravity Eq.(5.76) which is an
Einstein-Maxwell theory with a negative cosmological constant. These black holes are solved
by Plebanski-Demianski solutions.[31] The acceleration of the black hole cause two conical
deficits on the horizon which gives a spindle, and magnetic flux through the horizon. By
requiring the solution to be supersymmetric and extremal, the solution depends on one pa-
rameter, the angular momentum or the electric charge. In the near horizon limit, the solution
is of the form of AdS2x3, where ¥, is the spindle. Such a solution can be uplifted to 11D
to obtain a regular solution in the form of AdS2xY®. When the rotation parameter is set to
zero, the uplifted M2 brane wrapped on the spindle solution described by Eq.(5.109) can be
recovered in the near horizon limit. In the near horizon limit with non-zero rotation, one re-
covers new AdS2xY? solutions. hence we are able to identify the UV of the spindle solution
as the form of AdS4, which is dual to a 3-dimensional superconformal field theory. Under
renormalization group flow, the solution flow to AdS2x 35 which is dual to a 1-dimensional

superconformal quantum mechanics.
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Chapter 6

GK Geometry

We have discussed in the previous chapter about D3-branes and M2-branes wrap-
ping Kahler-Einstein two cycles and spindle two cycles, leading to solutions in the form
of AdS3xY 7 and AdS2xY? with the manifold Y a fibration of the Sasaki-Einstein manifold
on the Kahler-Einstein or the spindle two-cycle. We have found that the geometrical struc-
ture of the two types of solutions shares many similarities. In fact, they belong to the same
class of geometry called GK geometry, where GK stands for Gauntlett-Kim.[34] The GK ge-
ometry describes the AdS3xY” and AdS2xY? solution with non-vanishing self-dual 5-form
or 4-form field strength for each case. Though these two cases are of interest in physics, the
GK geometry can also be generalised to Y?*™! with arbitrary n > 3. The GK geometry is

closely related to but different from the Sasakian geometry mentioned in section(4.2a).

6.1 The General Structure of GK Geometry

The AdS3 solutions of type IIB supergravity in the context of GK geometry are given
by [34]

ds?y = e P*[ds*(AdSs) + ds*(YT)]

(6.1)
Fi51 = —[vol(AdS3) A Fg) + #7F9],
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where B is a function on Y7 and Fjg) is a 2-form on Y7, And similarly, AdS2 solutions of

the 11D supergravity are given by

ds%1 = e’QB/S[dSQ(AdSQ) + dSQ(Yg)]

(6.2)
F[4] = —UOZ(AdSQ) AN F[Q]
The vielbein for a general AdS(d)x Y (d) metric is given by
et = e7Bleed o, ef = e BleeE, (6.3)

where ¢ = 3 for M2-brane and ¢ = 4 for D3-brane. Then the spin connections are given by

W = pad' B Wiy = —=0uBe”
(6.4)
And Ricci tensor
1 d+d-—2
R e
- - - (6.5)
- d+d—2 d+d—2 1 d+d—2
Ry = R + %vme + +C—2vavnB +oVPB - +T(VB)2

Substitute this into the supergravity equation of motion, for general d=2n+1, we get

4(n—1) 2 o 1 op, o
_ B—-—(n—-1 B —ePF“ =0
(n—2) +V (n WVB)” + 26
5 2 n—2 2 1 95,0 1 2

d(e(3_")B *on+1 F) =0
(6.6)
which is described by the action

- 2n n(2n — 3) 1
= (1-n)B — 2, * oBp2]| . 2n+1
5 Jy2n+1 © I:R2n+1 (n _ 2)2 + 2 (aB) + 46 F ] UOZ(Y ) (67)

We now discuss the GK geometry structure of Ys,,1, which is similar to the Sasakian
geometry. For a super symmetric solution, the manifold Y5,,; admits at least one Killing
vector € = 1/c0, constructed by Killing spinors and is corresponding to the R-symmetry of

the dual field. From the Killing vector, we can write the metric as [35] [36]
dss, 1 = (dz + P)* + ePds3, = n* + ePds3, (6.8)
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where n = ¢(dz + P) is the covector dual to &, and ¢ = (n — 2)/2. Moreover, the supersym-
metric condition further require the transverse metric ds3, to be Kahler with dP = p the

Ricci form of the transverse Kahler metric, and

62
ef = 7 Fon (6.9)

e —%J + ed[eB(dz + P)] (6.10)

where Ry, is the Ricci tensor of the transverse Kahler metric. By imposing the equation of

motion of the two-form F' given by Eq.(6.6), one gets a PDE
1 -
(R = 5R2 — R;;RY. (6.11)

Recall that the supersymmetry condition plus dF' = d = F' = 0 solves the supergravity equa-
tion of motion. By relaxing the PDE, one gets the off-shell supersymmetric GK geometry.

6.2 Examples

We have briefly introduced the GK geometry which describes the AdS3 and AdS2 solu-
tions with non-vanishing 5-form and 4-form field strength in the type IIB and 11D supergrav-
ity. We now use the GK geometry to obtain the AdS3 and AdS2 solutions corresponding
to D3 and M2 branes wrapped on Kahler-Einstein and spindle 2-cycles to see how these
examples are fitted into the GK geometry. We will show that the same results are obtained

as in the last chapter.

6.2a KE2xKE4 Example

We first consider a simple example of the GK geometry where the Y2"*! for n = 3
is taken to be a product of M; =KE2 and My =KE4, which corresponds to the D3 brane
wrapped on the KE 2-cycle.[37] Since both manifolds are Einstein, we take the Ricci tensors
of two manifolds to be

Rilj = llgilja R?j = l2.gz‘2j7 (6.12)

Therefore the Ricci scalar is R = 2l; +4l;. Then the PDE given by Eq.(6.11) simply become
(I} 4 215)? = I3 + 213, (6.13)
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and we get [, = —2[; or Iy = 0.

For the [, = —2l; case with positive [y, this corresponds to the positively curved KE
2-manifold S?. The corresponding case for positive [; is the D3 brane wrapped on S? as
discussed in the previous sections. However, when [; is taken to be positive, ls needs to be
taken negatively. The consequence of that is the KE4 manifold now needs to be negatively
curved which is not what we assumed in the dimension reduction on the SE5. Also for
negative [, the Ricci tensor of the transverse Kahler metric of Y7 is negative, therefore the
factor e? ~ R in the metric is also negative, leaving a negative metric just as discussed in

the previous section.

For [y = —2[; with negative [y, this corresponds to the negatively curved KE 2-manifold
H?. Taking the I to be 6 as in the dimension reduction on the SE5. Then [; = —3 and
hence the metric of the H? is scaled by 1/3. Then the Ricci scalar of the transverse metic is
R = 18 and the factor e = ¢2/2R = 9/4. The full metric is therefore given by

2 1 1
ds?, = 3 [dSQ(Adsza) + Z(d@z) + P)* + %(gdSQ(HQ) + dSQ(KE4)>]. (6.14)
Taking P = 30 + 2A, the metric
2 314 1 2 00 Loceie 2

is then exactly the metric given by Eq.(5.48) up to a scale.

6.2b KE2xKE6 Example

We then consider the example of GK geometry with n=4. The Y? is taken to be the
product of M1 =KE2 and M2 =KE6 with the Ricci tensor again taken to be

Rj; = hgyj, R = lhg?, (6.16)
and the Ricci scalar is R = 2[; + 6ly. Then the PDE Eq.(6.11) become
(I +3l)* = 17 + 313, (6.17)

and we get I, = —Iy or [y = 0. The former situation again admits negative [; which corre-
sponds to the M2-Brane wrapped on H%. For KE6, I; = —ly = —8. Then the metric of H? is
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scaled by 1/8. The Ricci scalar is given by R = 32 and the factor e = ¢?/2R = 16. Hence
the metric of AdS2xY? is given by

1
dS? = 16723 . <dS2(AdSQ) + (dp + P)* + 16<§d52(H2) + dS2(KE6)>) (6.18)
which with rearrangement gives
1 1
452 ~ 1—16dsz(AdS2) + 2o (d + P+ <dS*(H?) + dS*(K Eo) (6.19)

which again up to a scale is the same as the result from the last chapter.

6.2c The Spindle Example

We now briefly explain how to recover the solution of the D3-brane wrapped on a spindle
mentioned in the section(5.5a) in the GK geometry which is discussed in [37]. Start with a
6d transverse metric of some 2-cycle fibered over KE4,
dp?
Ulp)
where D¢ = d¢ + o with do = 2Jgr and Jgg is Kahler form on KE4. The 6d metric

integrable complex structure and a closed Kahler form given by

dsg = + U(p)p*D¢?* + p*dS* (K E4), (6.20)

J=pD¢ Adp+ p*Jxp. (6.21)

Therefore, the transverse 6d space is Kahler. And the Ricci form of the metric is given by

R=dP, with P= (3(1 —U(p)) - g%(gp)pgs. (6.22)

It is convenient to transform the coordinate to x = 1/p and consider U(x) to be a polynomial

of z, and the metric becomes

! (d—xz 4 U(x)De? + dSQ(KEAL)). (6.23)

2 _
d5s = 422U (x)

T

The form of U(z) is constrained by the PDE Eq.(6.11). For the spindle case, we take

_ A2
Ulx) =1- M7 (6.24)
o
hence P in the Ricci form is given by
Qv(x —
p 2e=p) (6.25)
Q@



and the Ricci scalar is given by

2
R_%ﬁ
o

With this, we can construct the Y7 of GK geometry with metric given by
1 2 — 2
dS*(Y") = Z(dz — MD¢> B (
a

By choosing

(6.26)

2 2
=da® 42U DG + wd$ (KE4)) (6.27)

3 4 256

—_ —_— a = ——
3a’ 72902’

and changing the coordinate to y = % and 1 = 3¢ + z we get the same expression for M’

(6.28)

as the section(5.5a),

v —2y+a

ds? d52 KEA) + —2—dy? a(y) Dy? + D22 (6.29
(M) = (K E4) 4q(y)" 16y2(y2 -2y +a) v 4y? - (629)
And the full AdSBxM7 solution is given by
4
ds2, = gy (ds2(Ad83) + ds2(/\47)). (6.30)

6.3 More about the GK geometry

6.3a The Cone Geometry

Similar to the Sasakian geometry, we can define a complex cone with complex dimension
n over Y, .1 with a radial direction r such that acting the complex structure of the cone

gives the Killing vector Z(rd,) = £.[34] The metric of the cone is given by
dss, .o = dr® +1r?ds5, .. (6.31)
The complex structure two-form of the complex cone can be constructed by
T =—crdr A (dz+ P)+r%PJ (6.32)

where J is the complex structure over the transverse Kahler manifold. Note that the two-
form is not closed, hence the complex cone is not Kahler. The complex cone also admits a

holomorphic volume form
Qusr0) = €7(eP2r)?[dr — irc(dz + P)] A Qo) (6.33)

where (1, o) is the holomorphic volume form on the transverse Kahler manifold. The holo-

morphic volume form is also not closed but is conformally closed.
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6.3b The Action and the C-Extrimization

Substitute the metric Eq.(6.8) and the off-shell 2-form Eq.(6.10) into the Y5, action
Eq.(6.7), one gets the supergravity action restricted to the off-shell supersymmetric GK
geometry which is simply given by

S = f nAapnel (6.34)
Yont1

To impose the on-shell condition, relax the local condition to global by requiring the inte-

gration of the PDE to be satisfied. Via integration by part, one gets
f nAaptae’ =0. (6.35)
Yon+1

Note for the Sasakian geometry, the Ricci is proportional to the Kahler form. Then the
above integral gives the volume of the Sasakian manifold. Hence Sasakian geometry is not
GK.

To further constrain the solution, we can exert the flux quantizations as in the string

and M theory. The flux quantization of the self-dual 5-form field strength is given by

f Fis) = N (6.36)
Za

for all 5-cycle ¥ 4 in Y7 where N4 is proportional to integers. For the 4-form field strength,

the flux quantization condition is given by
f N (6.37)
3A

for all 7-cycle ¥ 4 in Yy where N is proportional to integers. With Eq.(6.10), these conditions

can be reformulated into a simpler form

fn Apne’ (6.38)

is proportional to some integer. Hence the supersymmetric AdS3xY” and AdS2xY? solu-
tions to the supergravity are described by the action Eq.(6.34) subjects to two constraints
the PDE Eq.(6.35) and the flux quantization Eq.(6.38). [34]

There are also some interesting field theory aspects of the geometry that it is dual to the
c-extremization.[38] The AdS3xY” solution is dual to a 2-dimensional conformal field theory
which admits a central charge. It can be calculated that the extremized action is propor-

tional to the central charge. And for AdS2xY? solutions, they are dual to one-dimensional
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conformal quantum mechanics, which has the log of the partition function proportional to

the action.

There is also a Sasakian analogy, the volume minimization. [39] In the previous chapter
we obtained AdSxSE solution for branes, we now relax the Sasaki-Einstein to the general
Sasakian geometry. The supergravity action restricted to the Sasakian geometry gives the

volume over the Sasakian manifold

S = f nAe’ (6.39)
M

which is a functional of the Reeb vector. The action is minimized by the Sasaki-Einstein
manifold, leading to the solutions described in chapter3. The AdS5xSE5 solution is dual to
a four-dimensional conformal field theory. The volume minimization, as an analogue of the
c-extremization, is dual to the a-extremization. One can also generalize the idea of central

charge to three-dimensional conformal field theory in a similar way as the a-extremization.[40]
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Chapter 7

Discussion

In this article, we first introduced the supergravity theories and AdS-CFT correspon-
dence. Following that, we found the M2, M5, and D3 brane solutions of 11D and type IIB
supergravities on flat backgrounds. Then we discussed the branes on curved backgrounds.
The curved backgrounds preserving supersymmetry are classified via their special holonomy.
We then calculated the D3 and M2 branes on the apex of the Calabi-Yau manifolds which
yield asymptotic AdSx.SE solutions.

After that, we discussed branes wrapped on calibrated cycles which satisfies the super-
symmetry condition via topological twist. To study the D3 and M2 brane wrapping 2-cycles,
we first derived the 5D and 4D minimal gauged supergravity via dimension reduction from
the type IIB and 11D supergravity on the Sasaki-Einstein manifolds. We then used these
minimal gauged supergravities to obtain the solution of D3 and M2 branes wrapped on H?
and S2. For the D3-brane wrapping H? case, we are able to get the solution which flows
from an AdS5 solution in the UV to an AdS3x H? solution in the IR. The AdS-CFT dual
description is given by a 4D superconformal field theory in the UV flowing to a 2D conformal
field theory in the IR. For the D3-brane wrapping S? case, we are not able to identify the
IR AdS3x.S5? solution while the UV AdS5 solution is recovered, in the context of minimal
gauged supergravity. For the M2 brane, we get a similar situation but with the AdS4 solu-
tion flowing to the AdS2x H?. These AdS2 and AdS3x H? solutions can be uplifted to the
11/10 dimension to obtain the AdS2xY? and AdS3xY " with Y® and Y7 the SE7 and SE5
fibered over H2.

We then discussed the D3 and M2 branes wrapped on a spindle. We found that brane
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wrapping spindles do not preserve supersymmetry via topological twist, and hence do not
have a constant spinor over the spindle. We presented the AdS3 x>, and AdS2x Y, solution
for the D3 and M2 branes where Y5 corresponds to the spindle. These solutions uplifted to
the 10/11D have the form of AdS3xY " and AdS2xY? with Y7 and Y? the Sasaki-Einstein
manifold fibered over the spindle and is free from the conical singularities on the spindle.
For the M2 brane case, we are able to identify the UV solutions as AdS4 supersymmetric
and extremal black holes. For the D3 brane case, the UV solution is not yet known. These
spindle solutions open a new topic of branes wrapping on cycles. One can also look at branes

wrapping higher dimensional spindles.

In the above discussions in D3 and M2 branes wrapping 2-cycles and spindles, we have
obtained multiple AdS3x Y7 and AdS2xY? solutions which can be classified in the Gauntlett-
Kim geometry. We briefly introduced the GK geometry and performed calculations in the

GK geometry to recover the D3 and M2 branes wrapped on H? and spindle solutions.
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