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Abstract

This dissertation discusses supergravity theories and their brane solutions on various back-

grounds. We started by introducing the 11D and type II supergravities and solve the M2, M5,

and D3 brane solutions on the flat background. We then considered the special holonomy of

the curved background manifolds that preserve supersymmetry. We calculated the M2 and

D3 branes at the apex of the Calabi-Yau manifolds. We then discussed branes wrapped on

calibrated cycles and how they preserve supersymmetry. We derived the 5D and 4D minimal

gauged supergravity via dimension reduction on Sasaki-Einstein manifolds. In the 5D and

4D minimal gauged supergravity, we calculated the D3 branes and M2 branes wrapped on

H2, S2, and spindle. In the end, we introduced the GK geometry and used it to obtain the

D3 and M2 branes wrapped on H2, S2, and spindle solutions.
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Chapter 1

Introduction

Supergravity theories play an important role in the study of string theory and M-theory.

Although M-theory is not yet well understood, in low energy, it is believed to give rise to the

11D supergravity theory which has the maximum amount of supersymmetry. Under various

compactifications, the M-theory leads to five types of 10-dimensional superstring theory.

The types of superstring theory that are of the most interest here are type II string theories,

IIA and IIB with different chiralities. They give rise to 10-dimensional type II supergravity

theories in the low energy limit.

String theory and M-theory have dynamic higher-dimensional objects known as branes.

In string theory, D-branes are where open strings are attached to and receive perturbative

effects from open string dynamics. These branes are also non-perturbatively solutions of

supergravity. A brane in spacetime will have a back reaction on the spacetime which is

described by supergravity. The brane solutions of the supergravity normally break half

the supersymmetry of the supergravity and have asymptotic anti-de-Sitter (AdS) spacetime

structures.

The AdS and Conformal Field Theory correspondence (AdS-CFT) is a conjecture which

states that a quantum gravity theory with an asymptotic AdS structure is dual to some

conformal field theory living on the boundary of the asymptotic AdS space. With the

conjecture, the supergravity is related to the conformal field theory on the AdS boundary

due to the asymptotic AdS structure of these brane solutions. This provides a useful tool to

study supergravity, string and M-theory.

Branes can also be wrapped on compact cycles in curved manifolds. The supersymmetry
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of these wrapped branes is preserved via the notion of calibration or topological twist. To

solve the wrapped brane solutions, one can perform the dimension reduction from the 11D

or 10D type II supergravities to lower-dimension minimal gauged supergravities and then

uplift the solution back to 11D or 10D. In the length scale much smaller than the radius

of the cycle, the brane world volume is approximately the same as unwrapped branes. In

the low energy limit where the length scale is much larger than the radius of the cycle, the

wrapped dimensions become undynamic, and then the brane world volume looks like a lower

dimension theory. Some of these solutions also have AdS factors, and hence are dual to some

superconformal field theory. Then the dual superconformal field theory could flow across

dimensions, interpolated by supergravity.

Recently, a new class of solutions of the lower-dimensional minimal gauged supergravity

was discovered, which describes branes wrapped on 2-dimensional spindles.[28][29] The spin-

dles are orbifolds with two conical singularities. Different from the calibrated cycles, the way

branes wrapping on spindles preserve the supersymmetry is not via the topological twist.

When the wrapped brane solution is uplifted to 10/11D, it was found that the solution can

be made to be completely regular without singularities.

Through the calculations, one can find that the AdS2 solutions of the M2 branes wrap-

ping 2-cycles/spindles and the AdS3 solutions of D3 branes 2-cycles/wrapping spindles share

very similar geometry structures. In fact, they can be classified into the same class of geom-

etry known as the Gauntlett-Kim (GK) geometry.[34]

We will start the discussion in chapter 2 by briefly introducing the 11D and type II

supergravity theories. Following this, we will use the supergravity theories to find some

brane solutions on a flat background spacetime. Then we will discuss the world volume

theory of branes. In chapter 3, we will talk about AdS-CFT correspondence with relates

supergravity, string and M-theory with the brane solutions obtained in section 2 to some

conformal field theory. We will start by introducing the correspondence. We will then discuss

how is the correspondence applied in the context of supergravity, string theory, and large N

gauge theory.

From chapter 4, we will generalise the discussion to branes on curved background man-

ifolds. We will first discuss the condition of the background geometry in order to preserve

supersymmetry. These background manifolds are classified by the special holonomy of the

manifold. Through supergravity, we then solve the D3 and M2 branes transverse to the

Calabi-Yau manifolds. In chapter 5, we will discuss the other way of putting branes on
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curved manifolds which is to wrap them on cycles in the curved manifolds. We will start the

discussion by wrapping probe branes around calibrated cycles to preserve supersymmetry via

topological twist. Then through the dimension reduction, we derive the 5D and 4D minimal

gauged supergravity. In these minimal gauged supergravities, we will discuss the M2 and D3

brane wrapping H2, S2, and spindles. These solutions share similar geometrical structures.

They both belong to the GK geometry which is discussed in chapter 6.
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Chapter 2

Supergravity and Branes

There are five types of 10-dimensional superstring theories, type IIA, type IIB, type I

string theory, and heterotic string theory with E8 ˆE8 and SOp32q gauge symmetry. These

string theories are related to each other via various dualities. It is now believed that there

exists an 11-dimensional M-theory which with different compactifications gives rise to each

superstring theory. The actual formulation of the M-theory is still unknown. Nevertheless,

the low energy limit of the M-theory gives rise to the 11-dimensional supergravity. With

various compactifications, the 11D supergravity is related to other 10-dimensional super-

gravities which are the low energy limit of the corresponding string theory. Here we are

mainly interested in the 11D and type II supergravity. Although the supergravity theories

are non-renormalizable as a quantum theory, it is fine that they are the effective theory of

the string theory and M-theory. Moreover, it is interesting to study their non-perturbative

solutions.

These supergravity theories admit non-perturbative solutions known as branes. Branes

are extended objects in spacetime, which is a generalized notion of point particles and strings.

These branes are dynamic in the string theory and M-theory. In string theory, the ends of

the open strings are attached to the branes. Due to the open string dynamics, branes receive

perturbative effects giving rise to the brane world volume theory. Branes in M-theory do not

receive the same perturbative effect as in string theory since there is no string in the theory.

In this chapter, we will first introduce the 11D and type II supergravities. Then we

will find certain brane solutions to these supergravities and discuss the brane world volume

theorem in string theory and M-theory.
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2.1 D=11 Supergravity

The 11-dimension supergravity [1] is the low energy effective field theory of the M-

theory. The 11D supergravity has the maximum supersymmetry with 32 supercharges. It

is the maximum amount of supercharges a theory can have without having fields with spin

higher than 2 in 4D. Also, in dimensions higher than 11, the fermionic degrees of freedom

became much more than the bosonic degrees of freedom, and hence the corresponding su-

persymmetric theory can not be constructed.

The corresponding graviton multiplet in the 11D supergravity contains elfbeins (metric)

eAµ where ηABe
A
µ e

B
ν “ gµν , vector fermion gravitinos Ψµ, and three-form gauge field Aµνρ with

gauge transformation δAr3s “ dΛr2s and field strength Fr4s “ dAr3s. The Action of the theory

is given by

S11 “

ż

dx11
?

´g
´

R ´
1

48
F 2

¯

` Fr4s ^ Fr4s ^ Ar3s, (2.1)

plus terms involving gravitinos Ψµ. Here we have set the gravitinos Ψµ to zero to obtain the

bosonic sector of the action. The equations of motion are

Rµν “
1

12

´

F 2
µν ´

1

12
gµνF

2
¯

,

d ˚ F “ ´
1

2
F ^ F,

dF “ 0,

(2.2)

where F 2
µν denotes FµαβρF

αβρ
ν and F 2 denotes FαβρσF

αβρσ.

The theory is supersymmetric with the action invariant under infinitesimal supersym-

metric transformations generated by a 32 components spinor parameter ϵ

δeAµ “ ϵ̄ΓAΨµ,

δAµνρ “ ϵ̄ΓrµνΨρs,

δΨµ “ Dµϵ “ ∇µϵ `
1

288
pΓ αβρσ

µ ´ 8δ α
µ ΓβρσqFαβρσϵ,

(2.3)

where gamma matrices ΓA “ eAµΓ
µ are in the elfbein basis and Γαβ “ ΓrαΓβs, and ∇µϵ is the

spin connection

∇µϵ “ Bµϵ `
1

4
ω A
µ BΓ

B
A . (2.4)

To truncate the theory down to the bosonic sector, we have set gravitino Ψµ to zero.

Hence the supersymmetric variation of the elfbein eAµ and three-form gauge field Aµνρ van-

ishes. The supersymmetric transformation of the gravitino, however, is non-zero unless
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Dµϵ “ 0. Therefore, in order for the bosonic action Eq.(2.1) and equations of motion

Eq.(2.2) to preserve supersymmetry, solutions to the equation of motion need to admit a

spinor ϵ such that

Dµϵ “

”

∇µ `
1

288
pΓ αβρσ

µ ´ 8δ α
µ ΓβρσqFαβρσ

ı

ϵ “ 0. (2.5)

The spinor satisfying the condition is called the Killing spinor. A supersymmetric solution

preserving some portions of the supersymmetry needs to admit the same amount of the

Killing spinor components.

From the Killing spinors, one can construct Killing vectors,

Kij
µ “ ϵ̄iΓµϵ

j, (2.6)

where Kii can be either time-like or null. The equations of motion and Killing spinor

condition implies LKijpgq “ LKijpF q “ 0. [2] It can be shown from the integrability condition

of the Killing spinor rDµ, Dνsϵ “ 0 that if d ˚ F “ ´1
2
F ^ F and dF “ 0 are satisfied, then

one is left with the condition

EµνΓ
µϵ “ 0, (2.7)

where

Eµν “ Rµν ´
1

12

´

F 2
µν ´

1

12
gµνF

2
¯

. (2.8)

By imposing ϵ̄ and EµαΓ
α from the right, the expression becomes

ϵ̄EµνΓ
µϵ “ EµνK

ν
“ 0, EµαEµβtΓα,Γβuϵ “ EµαE

α
µ “ 0. (2.9)

For a time like Killing vectors, this implies Eµ0 “ 0 in the appropriate basis. Then Eq.(2.9)

sum only the spacial indices which imply Eµν “ 0 and all of the equations of motion can be

satisfied by requiring the Killing spinor and d ˚ F “ ´1
2
F ^ F and dF “ 0. [2]

2.2 Type II Supergravity

Type II supergravity is a 10 dimensional N “ 2 supergravity theory which is the low

energy limit of type II string theory. String theory has closed string modes, followed by an

infinite tower of massive modes. In the low energy limit where the string length is small,

the massive modes decoupled, and the spectrum is left with only the massless modes of

the string theory, giving rise to the type II supergravity spectrum. The spectrum includes

NS-NS fields metric gµν , antisymmetric tensor Bµν , and a dilaton ϕ, R-R n-form fields Crns,
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gravitino Ψµ, and dilatino λ. Depending on chirality, two types of type II string theory can

arise, the type IIA and the type IIB string theory, related to each other by T-duality. The

type IIA string theory has fermion degrees of freedom in opposite chiralities while the type

IIB string theory has the same chiralities. These two type II string theories give rise to type

IIA and type IIB supergravity respectively.

2.2a Type IIA

Type IIA supergravity is the low energy effective theory of type IIA string theory. The

spectrum of the theory contains metric gµν , a dilaton ϕ, anti-symmetric two-form field Bµν ,

one-form R-R vector Aµ, and three-form R-R field Cµνρ, and fermion fields gravitino Ψµ and

dilatino λ. The type IIA supergravity can be obtained from the consistent truncation of

the Kazula-Klein dimension reduction from D=11 supergravity compactified on a circle to

10 dimensions. This followed from the fact that M-theory compactified on a circle gives the

type IIA string theory.[3]

In the Kazula-Klein reduction, the 11D metric GMN in the 11D supergravity can be

decomposed into a 10D metric gµν , a Kazula-Klein vector Aµ, and a dilaton ϕ,

GMN “ e´2ϕ{3

˜

gµν ` e2ϕAµAν e2ϕAµ

e2ϕAν e2ϕ

¸

, (2.10)

which can also be written as

ds211 “ e´2ϕ{3ds210 ` e4ϕ{3
pdxp11q

` Aµdx
µ
q
2. (2.11)

Elfbeins E of the metric are given by

EA
“ te´ϕ{3eaµdx

µ, e2ϕ{3
pdxp11q

` Aµdx
µ
qu, (2.12)

where eaµ are zehnbeins and eaµe
b
νηab “ gµν , and

EM
A “

˜

eϕ{3eµa 0

´eϕ{3Aa e´2ϕ{3

¸

. (2.13)

The spin connection of the metric is given by

ωab “ ω̃ab ´
1

3
eϕ{3

Bbϕe
a

´
1

2
e4ϕ{3Fabe

11, ω11
b “ ´

2

3
eϕ{3

Bbϕe
11

´
1

2
e4ϕ{3Fabe

a. (2.14)
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Then for the metric Gµν , one obtains
?

´G “
?

´ge´8ϕ{3 and

?
´GRpGq “

?
´g

”

e´2ϕ
´

Rpgq ` 4BµϕB
µϕ

¯

´
1

4
FµνF

µν
ı

. (2.15)

The three-form gauge field A
p11q

LMN can be decomposed into a three-form gauge field

Cµνρ “ A
p11q
µνρ and a two-form gauge field Bµν “ A

p11q

µν11 in the dimension reduction. And the

four-form field strength of the three-form gauge field F
p11q

KLMN “ 4BrK A
p11q

LMNs
is decomposed

into
F

p11q

µνρ11 “ 3BrµA
p11q

νρs11 “ 3BrµBµρs “ Hµνρ,

F p11q
µνρσ “ 4BrµA

p11q

νρσs
“ 4BrµCνρσs “ Fµνρσ.

(2.16)

Writing the field strength in the vielbein basis FABCD, we get

F
p11q

abcd “ e4ϕ{3F̃abcd “ e4ϕ{3
pFabcd ` 4AraHbcdsq,

F
p11q

abc11 “ eϕ{3Habc.
(2.17)

Then we get
1

48
F

p11q

ABCDF
ABCD
p11q “

1

48
e8ϕ{3F̃abcdF̃

abcd
`

1

12
e2ϕ{3HabcH

abc. (2.18)

And the Chern-Simons term becomes

F
p11q

r4s
^ F

p11q

r4s
^ A

p11q

r3s
“ Fr4s ^ Fr4s ^ Br2s. (2.19)

Substituting this and Eq.(2.15) into the bosonic 11D supergravity action, we get bosonic

action for type IIA supergravity

SIIA “

ż

dx10
?

´g

„

e´2ϕ
´

R ` 4BµϕB
µϕ ´

1

12
H2

r3s

¯

´
1

4
F 2

r2s ´
1

48
F 2

r4s

ȷ

, (2.20)

plus the Chern-Simons term

SCS “

ż

Fr4s ^ Fr4s ^ Br2s. (2.21)

The action is exactly the effective action of the type IIA string theory massless modes

requiring the cancellation of Weyl anomaly. The above action is written in the string frame.

With the rescaling g “ eϕ{2g1, we can switch the action to the Einstein frame given by

SIIA “

ż

dx10
a

´g1

´

R1
` 4BµϕB

µϕ ´
1

12
e´ϕH2

r3s ´
1

4
e

3
2
ϕF 2

r2s ´
1

48
e

1
2
ϕF 2

r4s

¯

` SCS. (2.22)

With the dimension reduced from 11 to 10, the vector spinor gravitino is decomposed to

Ψµ and Ψ11. And 11D spinors can also be decomposed into two 10 Majornan-Weyl spinors
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with different chirality. Therefore, the 11D gravitino is decomposed into two 10D gravitinos

Ψµ and two 10D dilatinos λ “ Ψ11, each having opposite chiralities. Again to preserve the

supersymmetry in a theory with the fermionic degrees of freedom truncated, the Killing

spinor needs to be considered. Substitute the spin connection and RR gauge fields into the

11D Killing spinor condition, with a field redefinition

λ̃ “ e´ϕ{6λ, Ψ̃µ “ e´ϕ{6
´

Ψµ `
1

2
ΓµΓ11λ

¯

, ϵ̃ “ eϕ{6ϵ, (2.23)

one gets the supersymmetric condition for type IIA supersymmetry,

δΨµ “

´

∇µ ´
1

4
HµνρΓ

νρ11
´

1

8
eϕFαβΓ

αβ11
µ `

1

8
eϕFαβρσΓ

αβρσΓµ

¯

ϵ “ 0,

δλ “

´

´
1

3
BµϕΓ

µ11
`

1

6
HµνρΓ

µνρ
´

1

4
eϕFµνΓ

µν
`

1

12
eϕFαβρσΓ

αβρσ11
¯

ϵ “ 0.
(2.24)

2.2b Type IIB

Type IIB supergravity is the low energy effective theory of type IIB string theory. The

spectrum of the theory contains metric gµν , a dilaton ϕ, anti-symmetric two-form field Bµν ,

0-form R-R gauge field C0 (an axion), 2-form R-R gauge field Cµν , and a self-dual 4-form

R-R gauge field Cµνρσ, and two left-handed Majorana-Weyl fermion fields gravitino Ψµ and

two left-handed Majorana-Weyl dilatino λ. Type IIB supergravity cannot be obtained from

the dimension reduction from 11D supergravity. Nevertheless, we can construct a similar

gauge invariant but problematic action [3]

SIIB “

ż

dx10
?

´g

„

e´2ϕ
´

R ` 4BµϕB
µϕ ´

1

12
H2

r3s

¯

´
1

2
F 2

r1s ´
1

12
F 2

r3s ´
1

2 ˆ 48
F 2

r5s

ȷ

, (2.25)

plus the Chern-Simons term

SCS “

ż

Cr4s ^ Hr3s ^ Fr3s. (2.26)

Where Fr1s, Fr3s, and Fr5s are the field strength for the R-R 0-form, 2-from, and 4-form. In

addition to the action, we need a self-dual constraint on the four-form R-R gauge field Cµνρσ

which can not be built within the Lagrangian

Fr5s “ ˚Fr5s. (2.27)

However, the action description of the type IIB supergravity is problematic. The first

thing is that the action is not supersymmetric. Since the four-form self-dual constraint cannot
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be built in the action, the four-form in the action has more components than demanded

before applying the constraint. Hence the Lagrangian has more bosonic degrees of freedom

than fermionic degrees of freedom, breaking the supersymmetry. Also, with the self-dual

constraint, the kinetic term of the five-form vanishes. One thing one can do is to describe

the type IIB supergravity via equations of motion. Fortunately, the equations of motion

including the self-dual constraint, are supersymmetric.

To have a bosonic solution preserving the supersymmetry, we again require a vanishing

supersymmetric transformation. The supersymmetric variations of the bosonic fields are

again dependent on the fermionic fields, hence vanishing by setting fermions to zero. The

supersymmetric variations of the fermionic fields are given by

δΨµ “

´

∇µ `
i

8
eϕ `

i

16 ¨ 5!
eϕFαβρσνΓ

αβρσνΓµ

¯

ϵ ´
1

8
p2HµαβΓ

αβ
` ieϕFαβρΓ

αβρΓµqϵ˚,

δλ “
1

2
pBµϕ ´ ieϕBµC0qΓµϵ `

1

4
pieϕFαβρΓ

αβρ
´ HµαβΓ

µαβ
qϵ˚,

(2.28)

Where ϵ is 10d Majorana Weyl spinor satisfying the chiral projection Γ11ϵ “ ϵ. Requiring

these transformation to vanish leads to the type IIB Killing spinor condition.

For simplicity, the type IIB spectrum can be truncated to contain only a metric, a scalar

dilaton field, and the self-dual 4-form gauge field with the rest of the spectrum set to zero.

Such truncated type IIB supergravity is of the most interest in the following discussion. The

action of the truncated theory in the string frame is given by

S “

ż

dx10
?

´g
´

R ´
1

2
BµϕB

µϕ ´
1

4 ¨ 5!
F 2

r5s

¯

, (2.29)

with the self-dual constraint on the 4-form. And one gets the equations of motion given by

Rµν “
1

2
BµϕBνϕ `

1

4 ¨ 4!
FµαβρσF

αβρσ
ν ,

∇µpFµναβq “ 0,

BµB
µϕ “ 0.

(2.30)

And the Killing spinor condition becomes requiring a constant scalar and

δΨµ “ Dµϵ “

´

∇µ `
i

16 ¨ 5!
FαβρσνΓ

αβρσνΓµ

¯

ϵ “ 0. (2.31)

2.3 Brane Solutions of Supergravity

The D=11 and type II supergravity have non-perturbative extended objects sourcing the

n-form gauge fields. Like the zero-dimensional particle sourcing the one form vector potential
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of the electric and magnetic field, we can have a d dimension objects either electrically

couple to pdq-form gauge field or magnetically couple to a pD ´ d ´ 4q-form gauge field in

the supergravity. We call these extended objects p-branes, where p “ pd ´ 1q corresponds

to the spatial dimension of the brane world volume. These p-branes have n-form charges,

therefore, are the source of the n-form gauge fields. Having a brane on a flat spacetime will

have a back reaction to the spacetime. These back reactions are described by the Einstein

equation. Solutions to the 11D supergravity are called M-branes, which satisfy the equations

of motion Eq.(2.2). M-branes are the extended objects in the M-theory. There are two M-

branes, the M2-branes that are coupled electrically to the 3-form field and the M5-branes

that are coupled magnetically to the 3-form field. The M-branes are also supersymmetric,

meaning they preserve a portion of the supersymmetry by admitting some Killing spinors.

D branes are solutions to the type II supergravities, which satisfy the type II supergravity

equations of motions and supersymmetric conditions. D-branes are dynamic objects in string

theory with the end of the open string attached to them and receive perturbative effects.[4]

We now study the back reaction of various branes on flat backgrounds to obtain the brane

solutions of supergravity theories. Start with p-brane on a D-dimensional flat spacetime with

Poincare symmetry ISOp1, D ´ 1q. The p+1 dimensional brane world volume naturally

breaks ISOp1, D´ 1q into ISOp1, pq ˆ SOpD´ p´ 1q , where ISOp1, pq is the symmetry of

the pp` 1q-dimensional world volume and SOpD ´ p´ 1q is the symmetry of the transverse

space. The most general metric with such symmetry can be written as

ds2 “ e2Aprqdxµdxνηµν ` e2Bprq
pdr2 ` r2dΩ2

D´p´2q, (2.32)

where txµu is the coordinate of the brane world volume and dΩ2
d´p´2 gives the standard

metric on a D-p-2 sphere parametrized by the coordinate tymu. The brane with such metric

is located at r=0 and is transverse to the ym coordinate. The vielbeins teA, eR, eMu of the

metric is given by

eA “ eAprqδAµ dx
µ eR “ eBprqer eM “ eBprqẽm, (2.33)

where tẽMu are the vielbeins on the D-p-2 sphere. The convention used here is to have Greek

indices labelling the brane world volume directions and Latin indices labelling the spherical

directions. While in the vielbein coordinate, the world volume directions are labelled by

tABCDEu and the spherical directions are labelled by tMNIJKu. With dea “ ´ωab ^ eb,
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one can calculate the spin connections

ωAR “ e´BprqA1
prqeA “ eAprq´BprqA1

prqδAa dx
a,

ωMR “ e´Bprq
´

B1
prq `

1

r

¯

eM “

´

B1
prq `

1

r

¯

ẽM ,

ωMN “ ω̃MN ,

(2.34)

where ω̃MN is the spin connection on the D-p-2 sphere, and its Ricci tensor is given by

Rmn “ pD ´ p ´ 2qgmn, where gmn is the metric on the sphere. One finds the non-zero

components of the Ricci tensor

Rµν “ ´ηµνe
2pA´Bq

´

A2
` dpA1

q
2

` d̃A1B1
`
d̃ ` 1

r
A1

¯

,

Rmn “ ´g̃mnr
2
´

B2
` dA1B1

` d̃pb1
q
2

`
2d̃ ` 1

r
B1

`
d

r
A1

¯

,

Rrr “ ´

´

dA2
` pd̃ ` 1qB2

` dpA1
q
2

´ dB1A1
`
d̃ ` 1

r
B1

¯

,

(2.35)

where g̃mn is the metric on the D-p-2 sphere, and d “ p ` 1, d̃ “ D ´ p ´ 2.

We now derive the M2 brane and M5 brane solution in the 11D supergravity, and D3

brane solution in the type IIB supergravity.

2.3a M2-Branes

M2 brane is a solution of 11D supergravity that is electrically coupled to a 3-form gauge

field with the world volume dimension three. With the symmetry ansatz, the 3-form gauge

field coupled to the M2-brane world volume can be written as

Aµνρ “ ϵµνρe
Cprq, (2.36)

and the non-vanishing component of the field strength is

Frµνρ “ ϵµνρBre
Cprq. (2.37)

Einstein equation become

A2
` 3pA1

q
2

` 6A1B1
`

7

r
A1

“
1

3
pc1

q
2e2C´6A,

B2
` 3A1B1

` 6pb1
q
2

`
13

r
B1

`
3

r
A1

“ ´
1

6
pc1

q
2e2C´6A,

3A2
` 7B2

` 3pA1
q
2

´ 3B1A1
`

7

r
B1

“
1

3
pc1

q
2e2C´6A.

(2.38)
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And the equation of the field strength becomes

∇2C ` C 1
pC 1

` 6B1
´ 3A1

q “ 0, (2.39)

where ∇2 is the Laplacian of d̃ ` 1 flat space.

To have a supersymmetric solution, we still need to consider the supersymmetry condi-

tion given by the Killing spinor equation Eq.(2.5). To solve the Killing spinor condition, we

first split the Killing spinor ϵ according to the symmetric ansatz

ϵ “ ϵ0 b ηprq, (2.40)

where ϵ0 is a constant spinor in 3 dimensions and ηprq is a spinor in 8 dimensions. The

corresponding gamma matrices in the vielbein basis are ΓA “ γA b σ1 b I, ΓR “ I b σ2 b I,
and ΓM “ I b iσ3 b ΣM where γA are the gamma matrices in 3d Minkowski spacetime,

ΣM are the gamma matrices in 7d Euclidean space, and σi are Pauli matrices. Substituting

the gamma matrices, spin connection and field strength, the Killing spinor condition can be

rewritten as

Dµϵ “

´

Bµ ´
1

2
e´A´B

BeAγµ b σ2 ¨ σ1 b I ´
1

6
e´3A´B

Bre
Cγµ b σ2 b I

¯

ϵ “ 0,

Drϵ “

´

Br ´
1

6
e´3A´B

Bre
CI b σ1 b I

¯

ϵ “ 0,

Dmϵ “

´

∇̃m ´
1

2
I b σ1 b Σ̃m

´
1

2
e´2B

Bre
BI b σ1 b Σm `

1

12
e´3A´B

Bre
CI b I b Σm

¯

ϵ “ 0,

(2.41)

where we have used the condition for all gamma matrices [5]

Γa1..ak “ αϵa1...adΓ
apk`1q...adΓd`1, (2.42)

where

α “
1

pd ´ kq!
p´1q

kpk´1q{2`dpd´1q{2. (2.43)

It can be shown that it is possible to find a spinor on an n-sphere with odd n satisfying
´

∇̃m ´ 1
2
Σ̃m

¯

ϵ “ 0 [6], where ∇̃m and Σ̃m are the covariant derivative and gamma matrices

on the n-sphere. Therefore, the Killing spinor condition is solved by

3A “ ´6B “ C, (2.44)

ηprq “ η0e
´ 1

6
C , (2.45)
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satisfying the chiral projection σ1 b I ¨ η “ ´η, or equivalently Γ012ϵ “ ´ϵ, and a constant

spinor ϵ0 on the brane world volume. Substitute this condition into the equation of motion

Eq.(2.39), and we get

∇2e´C
“ 0. (2.46)

Demanding an asymptotically flat solution, solutions to the equation are the 6d harmonic

functions

e´C
“ H8prq “ 1 `

κ

r6
. (2.47)

From this, we get the supersymmetric solution of the 11D supergravity

dS2
“

´

1 `
κ

r6

¯´ 2
3
dxµdxνηµν `

´

1 `
κ

r6

¯
1
3
pdr2 ` r2dΩ2

7q,

Aµνρ “ ϵµνρ

´

1 `
κ

r6

¯´1

.

(2.48)

The chiral condition on the Killing spinors reduces the components of Killing spinors by

half. This means the M2-brane solution preserves half of the supersymmetry of the 11D

supergravity corresponding to 16 supercharges.

The metric of the solution has a coordinate singularity at r “ 0, which corresponds

to a horizon. In the near horizon limit r “ 0, we can approximate e´C “ κ
r6
, then with a

coordinate transformation, the solution becomes

dS2
“

1

4
κ

1
3

„

1

ρ2

´

dxµdxνηµν ` dρ2
¯

` 4dΩ2
7

ȷ

, (2.49)

where ρ “
?
κ

2r2
. The metric in the parentheses is just an anti-de-Sitter metric. Hence the

near horizon limit of the M2 brane is AdS4 ˆ S7.

Note the M2 brane solution is solved from the Laplacian equation Eq.(2.46). Any linear

superposition of the harmonic functions is also a solution [7]

e´C
“ 1 `

κ

r6
Ñ 1 `

ÿ

i

κ

pr ´ riq6
. (2.50)

Hence we can generalize the solution of a single M2 brane to multiple parallel M2 branes

given by

dS2
“

´

1 `
ÿ

i

κ

pr ´ riq6

¯´ 2
3
dxµdxνηµν `

´

1 `
ÿ

i

κ

pr ´ riq6

¯
1
3
dymdynδmn. (2.51)

The reason for the possibility of stacking branes is due to the no-force condition. One can

calculate the ADM mass to be equal to the electric charge of the brane solution, which
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saturates the BPS bound. Hence gravitational attraction is cancelled by the electric force.

This is the same situation as the extremal Reissner–Nordström black hole. In fact, the M2

brane is also in the extremal limit of the general black branes, where two horizons of the

black brane coincide.

2.3b M5-Branes

M5 brane is a solution of D=11 supergravity that is magnetically coupled to a 3-form

gauge field with the world volume dimension six. With the symmetry ansatz, the field

strength of the magnetic 3-form gauge field can be written as

Fmnij “ ´ϵmnijrBre
Cprq. (2.52)

Then the condition d ˚ F “ ´1
2
F ^ F is automatically satisfied. And the condition dF “ 0

requires ∇2eC “ 0, which is again related to harmonic functions. The solution to the 5d

laplacian is

eC “ H5prq “ 1 `
κ

r3
. (2.53)

And the Einstein equation become

A2
` 6pA1

q
2

` 3A1B1
`

4

r
A1

“
1

6
pc1

q
2e2C´6B

B2
` 6A1B1

` 3pb1
q
2

`
7

r
B1

`
6

r
A1

“ ´
1

3
pc1

q
2e2C´6B

6A2
` 4B2

` 6pA1
q
2

´ 6B1A1
`

4

r
B1

“
1

6
pc1

q
2e2C´6B.

(2.54)

We then check the constraint of the Killing spinor conditions on the solution. To solve

the Killing spinor condition, the spinor is again split into a constant 6d spinor and a 5d

spinor

ϵ “ ϵ0 b ηprq. (2.55)

The corresponding gamma matrices are given by

ΓP “ pγA b I, γ7 b ΣR, γ
7

b ΣMq, (2.56)

where γ7 “ γ0...γ5. Then the Killing spinor condition with the presence of the magnetic
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4-form field strength becomes

Dµϵ “

´

Bµ ´
1

2
e´A

BeAγµ ¨ γ7 b Σr
´

1

12
e´3B

Bre
Cγµ b Σr

¯

ϵ “ 0

Drϵ “

´

Br `
1

12
e´3B

Bre
Cγ7 b I

¯

ϵ “ 0

Dmϵ “

´

∇̃m ´
1

2
ΣRΣ̃m

`
1

2
e´B

Bre
BΣ r

m ´
1

6
e´3B

Bre
Cγ7 b Σ r

m

¯

ϵ “ 0.

(2.57)

Again it can be shown that for an even-dimensional sphere, ∇̃mϵ “ 1
2
ΣRΣ̃mϵ with ΣR “

Σ1...Σn can be satisfied.[6] With the projection γ7ϵ0 “ ϵ0, or Γ0...Γ5ϵ “ ϵ, the Killing Spinor

condition is solved by

ϵ “ e´C{12ϵ0 b η0, (2.58)

and

A “
1

6
C, B “ ´

1

3
C. (2.59)

Therefore, the supersymmetric solution of the M5-brane is given by

dS2
11 “

´

1 `
κ

r3

¯´ 1
3
dxµdxνηµν `

´

1 `
κ

r3

¯
2
3
pdr2 ` r2dΩ2

4q, (2.60)

with the four-form field strength

Fmnij “ 3κϵmnijr
1

r4
. (2.61)

With the projection condition on the Killing spinor, the solution breaks half of the super-

symmetry. The solution again has the asymptotic AdS structure. In the near horizon limit,

the metric approximate

dS2
“ 4κ

2
3

” 1

ρ2
pdxµdxνηµν ` dρ2q `

1

4
dΩ2

4

ı

, (2.62)

with ρ2 “ 4κ1
r
. Therefore, the near horizon limit of the solution is AdS7ˆS4.

2.3c D3-Branes

D3 brane is a solution of type IIB supergravity that is coupled to a 4-form self-dual

gauge field with the world volume dimension Four. For the D3-brane solution, the type
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IIB supergravity spectrum is truncated to the metric, a scalar dilation field, and the self-

dual 4-form. The self-dual 4-form can be written as F “ p1 ` ˚qG, and the non-vanishing

components of F are given by

Fµναβr “ Gµναβr “ ϵµναβBre
C

Fmnijk “ p˚Gqmnijk “ ϵmnijkre
4pB´Aq

Bre
C .

(2.63)

In the presence of only the scalar field and the self-dual five-form, the system is described

by the equation of motion Eq.(2.30) and Killing spinor condition Eq.(2.31). Recall the Killing

spinor condition requires a constant dilaton field. Then from the Einstein equation, we get

A2
` 4pA1

q
2

` 4A1B1
`

5

r
A1

“
1

4
pc1

q
2e2C´8A

B2
` 4A1B1

` 4pb1
q
2

`
9

r
B1

`
4

r
A1

“ ´
1

4
pc1

q
2e2C´8A

4A2
` 5B2

` 4pA1
q
2

´ 4B1A1
`

5

r
B1

“
1

4
pc1

q
2e2C´8A.

(2.64)

And from the equation of motion of the field strength, we get

∇2C ` C 1
pC 1

` 6B1
´ 3A1

q “ 0. (2.65)

Again we need to consider the Killing spinor condition to have a supersymmetric solu-

tion. To solve the Killing spinor condition, the 10d Majorana-Weyl spinor satisfying Γ11ϵ “ ϵ

is split into a 4d constant spinor ϵ0 and a 6d spinor ηprq

ϵ “ ϵ0 b ηprq. (2.66)

And the corresponding gamma matrices in the vielbein coordinates are given by

ΓP “ pγA b I,´iγ5 b ΣR,´iγ
5

b ΣMq, (2.67)

where γ5 “ γ0...γ3 and Σ7 “ σRΣ1...σ5. With the projection

γ5ϵ0 “ iϵ0, Σ7η “ ´iη, (2.68)

or, in other words, Γ0123ϵ “ ϵ, such that

Γ11ϵ “ γ5 b Σ7ϵ “ ϵ, (2.69)

the Killing spinor condition becomes
´

Bµ `

´1

2
e´A

Bre
A

´
1

8
e´4A

Bre
C

¯

γµΣr
¯

ϵ “ 0,
´

Br `
1

8
e´4A

Bre
C

¯

ϵ “ 0,
´

∇̃m ´
1

2
Σ̃m

¯

ϵ `

´1

2
e´B

Bre
B

`
1

8
e´4A

Bre
C

¯

Σ r
mϵ “ 0.

(2.70)

20



The condition is solved by a constant spinor ϵ0,

ηprq “ e´C{8η0, (2.71)

and

A “
1

4
C, B “ ´

1

4
C. (2.72)

Substitute the supersymmetric condition into the equation of motion Eq.(2.65), we once

again get the Laplacian equation

∇2e´C “ 0, (2.73)

which is solved by

e´C
“ H “ 1 `

κ

r4
. (2.74)

Hence the D3 brane solution is given by

dS2
10 “

´

1 `
κ

r4

¯´ 1
2
dxµdxνηµν `

´

1 `
κ

r4

¯
1
2
pdr2 ` r2dΩ2

5q. (2.75)

The solution again breaks half of the supersymmetry due to the projection on the spinor. In

the limit of r Ñ 0, the metric of the solution is asymptotically

dS2
10 “ κ

1
2

” 1

ρ2
pdxµdxνηµν ` dρ2q ` dΩ2

5

ı

, (2.76)

with ρ “ κ
1
2 {r. Therefore, the near horizon limit of the solution is given by AdS5ˆS5.

2.4 Brane World-volume Action

The D-branes and M-branes are dynamic objects in string theory and M-theory. There-

fore, they are described by some brane world-volume effective action. The classical action of

a p-brane is given by the Nambu-Goto action,

S “

ż

dσp`1
a

detpGabq “

ż

dσp`1
b

detpBaXµBbXµq, (2.77)

which is given by the world volume of the brane. The Polyakov version of the action is given

by

S “
1

2

ż

dσp`1
?

´GpGab
BaX

µ
BbXν ´ p ` 1q, (2.78)

where Gab is the induced metric on the brane world volume.
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In bosonic string theory, the end of the open strings can attach to a stack of D branes,

i.e. open strings are subjected to the Newmann boundary condition in the D-brane world

volume directions and the Dirichlet boundary condition in the D-brane transverse direction.

The open strings attached to branes have excitations corresponding to a massless vector

field, leading to an electromagnetic theory described by the Dirac-Born-Infeld action [8] of

D-branes

S “

ż

dσp`1
a

detphab ` 2πα1Fabq, (2.79)

where Fab is the field strength of the massless vector field.

In order to have a supersymmetric theory, a brane action with target space super-

symmetry is needed. The construction of the supersymmetry action is in analogy to the

Green-Schwarz formalism.[3] To have N “ 2 spacetime supersymmetry in the action, the

coordinates Xµ are accompanied by two Majorana-Weyl fermionic coordinates Θ1 and Θ2

satisfying the chiral projection of type II supergravities. The supersymmetric transformation

is given by

δXµ
“ ϵ̄AΓ

µΘA, δΘA
“ ϵA, (2.80)

where A=1,2. The supersymmetric version of the Born-Infeld action is

S “

ż

dσp`1
a

detpGab ` 2πα1Fabq. (2.81)

Where

Gab “ ηµνΠ
µ
a Πbµ, (2.82)

with

Πµ
a “ BaX

µ
´ Θ̄AΓ

µ
BaΘ

A, (2.83)

and Fab is the supersymmetric combination of the field strength in the Born-Infeld action,

which is given by

Fab “ Fab ` bab, (2.84)

where bab is a 2-from depend on Θ.

In Green-Schwarz string theory, it was found that there are twice the fermionic degrees of

freedom with half of them being gauge components. This fact indicates that there is a hidden

symmetry in the theory known as kappa symmetry [9] in addition to the supersymmetry. To

have the kappa symmetry in the action, an additional supersymmetric Wess-Zumino term

needs to include. A similar story happens to D-branes. In order to have the correct fermionic
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degree of freedom, the theory now has the kappa symmetry generated by Majorana-Weyl

spinor κ, [3]

δXµ
“ Θ̄AΓ

µδΘA, δΘ1
“ P´κ

1, δΘ2
“ P`κ

2, (2.85)

where the projection operator P˘ is given by

P˘ “
1

2
p1 ¯

1

pp ` 1q!
?

´G
ϵa...bΠµ

a ...Π
ν
bΓµ...νq. (2.86)

To have the kappa symmetry generated by Eq.(2.85) in the theory, the supersymmetric

Wess-Zumino term is needed in addition to the Born-Infeld action. The bosonic part of the

term is given by

SCS “ µp

ż

ÿ

n

Crns ^ eB`2πα1F
“ µp

ż

Crp`1s ` Crp´1s ^ pB ` 2πα1F q ` .... (2.87)

with the integral forms pulled back to the brane volume. Crns in the Wess-Zumino term

correspond to RR fields which equal the RR fields that are electrically coupled to the branes

and equal the dual fields of RR fields that are magnetically coupled to the branes. And µp is

the charge of the branes. Note the first term in the expansion describe how the (p+1)-form is

coupled to the p-branes as mentioned in the last section. And the term gives the (p+1)-form

current coupled to the (p+1)-form.

A similar construction of the supersymmetric D-branes world volume action can be done

to M-branes.[10] For M2-brane, the action is known as the super-membrane action, given by

S “

ż

dσ3
?

´G
´1

2
Gab

BaX
µ
BbX

νgµν´
1

2
`Θ̄Γa∇aΘ`

1

3!
ϵabcAµναBaX

µ
BbX

ν
BcX

α
`...

¯

, (2.88)

which is the Polyakov action plus the Wess-Zumino term describing M2-brane coupling to the

3-form. Θ now is an 11D spinor coordinate. The same as the D-brane action, the M2-brane

action has supersymmetry with variations generated by 11D spinor ϵ

δϵX
µ

“ ϵ̄ΓµΘ, δϵΘ “ ϵ, (2.89)

as well as the kappa symmetry generated by κ [11]

δκX
µ

“ 2Θ̄ΓµP`κ, δκΘ “ 2P`κ, (2.90)

with P˘ given by

P˘ “
1

2
p1 ˘

1

3!
?

´G
ϵabcBaX

µ
BbX

ν
BcX

αΓµναq. (2.91)
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satisfying P`P´ “ 0. A bosonic configuration of M2 brane described by Xµ breaks the

supersymmetry since the supersymmetry transformation δϵΘ does not vanish by requiring

Θ “ 0. However, the supersymmetry can be preserved if the non-vanishing δϵΘ can be

gauged away by the kappa symmetry, meaning

δϵΘ ` δκΘ “ ϵ ` 2P`κ “ 0. (2.92)

Using P`P´ “ 0 we get the condition on ϵ

P´ϵ “ 0. (2.93)

Branes also have backreaction on the geometry of supergravity described by

S “ SSUGRA ` SpBrane. (2.94)
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Chapter 3

AdS-CFT Correspondence

In the previous chapter, we obtained various solutions for the supergravities with the

asymptotic anti-de-Sitter spacetime structure. It was found that through Maldacena’s Anti-

de-Sitter and Conformal Field Theory (AdS-CFT) Correspondence conjecture, [18] Super-

gravity or String and M-theory on asymptotic AdS spacetime is related to some conformal

field theory on the boundary of the AdS spacetime. This correspondence is a powerful tool

which provided a new approach to studying string theory, M theory, and quantum field the-

ory. In this chapter, we will first briefly introduce the AdS-CFT correspondence and then

discuss it in the context of type IIB string theory and supergravity.

3.1 Conformal Symmetry and AdS Geometry

Conformal Field Theory: The conformal symmetry[12] is an extension of the Poincare

symmetry. In addition to the translations, rotations, and boosts in the Poincare group, the

conformal group includes two extra transformations, the dilations and the special conformal

transformations(SCT). Under conformal transformations, the metric transforms as

g1
µνpx1

q “ Λpxqgµνpxq, (3.1)

for some function Λpxq. The conformal transformations are generated by vector fields satis-

fying the conformal Killing equation

∇µϵν ` ∇νϵµ “
2

d
gµν∇αϵ

α. (3.2)
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And the conformal transformations on the coordinates are given by

Translation : x1µ
“ xµ ` aµ

Dilation : x1µ
“ αxµ

Rotation : x1µ
“ Λµνx

ν

SCT : x1µ
“

xµ ´ bµx2

1 ´ 2b ¨ x ` b2x2
.

(3.3)

The corresponding generators of these transformations on functions are given by

Translation : Pµ “ iBµ

Dilation : D “ ixµBµ

Rotation : Mµν “ ipxµBν ´ xνBµq

SCT : Kµ “ ´ip2xµx
ν
Bν ´ x2Bµq.

(3.4)

It can be shown that the conformal generators obey the lie algebra

rMµν , Ds “ 0

rMµν , Pρs “ ´2iηρrµPνs

rMµν , Kρs “ ´2iηρrµKνs

rD,Pµs “ ´iPµ

rD,Kµs “ iKµ

rPµ, Kνs “ 2iMµν ´ 2iηµνD

rMµν ,Mρσs “ ´ipηµρMνσ ´ ηνρMµσ ` ηνσMµρ ´ ηµσMνρq.

(3.5)

We can rearrange these generators into

Jµν “ Mµν , Jµd “
1

2
pKµ ´ Pµq, Jµpd`1q “

1

2
pKµ ` Pµq, Jdpd`1q “ D, (3.6)

labelled by p0, 1, ..., d, d ` 1q. These generators satisfy the SO(d,2) algebra with signature

p´,`, ...,`,´q

rJµν , Jρσs “ ´ipηµρJνσ ´ ηνρJµσ ` ηνσJµρ ´ ηµσJνρq. (3.7)

Therefore, the lie algebra of the conformal group is isomorphic to the lie algebra of SO(d,2).

An operator Ôpxq with scaling dimension ∆ transform under dilation xµ ÝÑ αxµ as

Ôpxq ÝÑ α∆Ôpαxq. The dilation operator act on the operator as

rD, Ôpxqs “ ipxµBµ ´ ∆qÔpxq. (3.8)

For the operator at origin, this expression is diagonalized to rD, Ôp0qs “ ´i∆Ôp0q. With

the commutation relation between D and Pµ, Kµ, it is easy to verify that Pµ increases the

scaling dimension by one whereas Kµ lowers the scaling dimension by one,

rD,PµÔp0qs “ ´ip∆ ` 1qPµÔp0q, rD,KµÔp0qs “ ´ip∆ ´ 1qKµÔp0q. (3.9)
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For a unitary theory, there is a lower bound on the operator [14], therefore, there exists an

operator satisfying rKµ, Ôp0qs “ 0. We call the operators satisfying the condition the primary

operators, while operators constructed by acting Pµ are called the descendant. A conformal

field theory does not have asymptotic states, so it is natural to consider operators.[15] The

representations of conformal groups are labelled by the ”lowest weights”. The representations

correspond to operators with the primary operator as the lowest weight. [13]

The form of correlation functions of operators is restricted by conformal symmetry. For

example, the form of the two-point function of scalar operators is completely fixed by the

conformal symmetry, which is given by〈
Ô1px1qÔ2px2q

〉
“

C

px1 ´ x2q2∆
. (3.10)

Anti deSitter space: Anti-de-Sitter space is a Lorentzian maximum symmetric space.

It is a Lorentzian analogy of hyperbolic space. An AdS(d+1) space with radius R can be

embedded in a (d,2) Minkowski space via

X2
´1 ` X2

0 ´ X2
1 ´ ... ´ X2

d “ R2. (3.11)

AdS space is maximally symmetric, and the isometry of AdS(d+1) is SO(d,2) which is

isomorphic to the d-dimensional conformal group. Parameterizing the coordinates with

Poincare coordinate chart, [14]

X´1 “
R

2z
p1` |xi|

2
´ t2 ` z2q, X0 “

R

z
t, Xi “

R

z
xi, Xd “

R

2z
p1´ |xi|

2
` t2 ´ z2q,

(3.12)

and pulling back the Minkowski metric, one gets the AdS(d+1) metric in the Poincare chart

ds2 “ R2 1

z2
p´dt2 ` dxidx

i
` dz2q. (3.13)

which is identical to the brane solutions in the near horizon limit discussed in the last chapter.

We now consider the geometry near the boundary of AdS(d+1) space at z ÝÑ 0. As z ÝÑ 0,

dz ÝÑ 0, the metric become

ds2 “ R2 1

z2
p´dt2 ` dxidx

i
q. (3.14)

which is just the (d-1,1) Minkowski space up to scaling. Therefore, the boundary of AdS(d+1)

space is equipped with the SO(d-1,1) isometry. Note the metric is also invariant under di-

lation txµ, zu ÝÑ tαxµ, αzu. Hence the boundary is actually conformal. A spacetime is

asymptotically AdS if its boundary approaches the AdS boundary, and the boundary of the

asymptotic AdS spacetime is also conformal.[14]
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The correspondence: CFT and AdS geometry are connected via the field-operator

correspondence. A field living in the bulk with an asymptotic AdS geometry is dual to an

operator with the same spin of the conformal field theory living on the AdS boundary.[15]

For example, it can be shown from correlation functions that the scalar field of the bulk

theory and a corresponding operator in CFT are matched via

ZBulk

”

Φpx, zq|z“0 “ Φ0pxq

ı

“ ZCFT

”

Φ0pxq

ı

“

〈
e

ş

dxdΦ0pxqÔpxq
〉
, (3.15)

where ZBulkrΦpx, zq|z“0 “ Φ0pxqs is the partition function of the bulk theory with scalar

Φpx, zq restricted to the boundary condition. The action in the partition function is on shell

and regularized. And ZCFTrΦ0pxqs is the generating functional of the operator Ôpxq with

the boundary condition of the scalar field in the bulk Φ0pxq as its source. The same relation

can also apply to other fields and operators. The stress-energy tensor is sourced by the

metric, therefore the stress-energy tensor of the CFT is in correspondence with the metric

tensor in the bulk. Since the bulk theory can have a dynamical metric, it is a quantum

gravity theory. This leads to the famous AdS-CFT conjecture of Maldacena, which states a

quantum gravity theory in (d+1)-dimensional spacetime with an asymptotic AdS geometry

is dual to a d-dimensional conformal field theory without gravity on the boundary of AdS

spacetime.

3.2 4D N=4 SYM and D3-Brane World Volume

The best-studied AdS/CFT example is the correspondence between the D3 brane world

volume theory of type IIB string theory and the 4D N “ 4 super Yang-Mills theory. We

previously obtained the asymptotically AdS5ˆS5 solution for the D3 brane with 16 super-

charges preserved. Due to the AdS/CFT correspondence, the AdS boundary of the theory

is described by a 4D N “ 4 superconformal field theory.

The 4d Yang-Mills theory is classically invariant under scaling. This conformal invari-

ance, however, is broken by quantum effects, for example, momentum cut-off. The 4D N=4

super Yang-Mills, however, scales invariant. [14] This can be read from the fact that the

Beta function of super Yang-Mills theory at one loop order,

Bg

Blnµ
“ ´

g3

48π2
p11 ´ 4 ˆ 4 ´ 6q “ 0, (3.16)

and higher-order perturbations. The theory is superconformal with the superconformal group

PSUp2, 2|4q. The spectrum of the vector multiplet has a gauge field Aµ, six scalar fields
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ϕI in the fundamental representation of SO(6), and 4 Weyl spinors in the fundamental

representation of SU(4). The super Yang-Mills action of the vector multiplet is given by [14]

S “

ż

dx4
1

gYM2

Tr
”

´FµνF
µν

´ DµϕID
µϕI ` λ̄i {Dλi ´

ÿ

i,j

rϕI , ϕJ s
2

` λ̄iΓ
IϕIλ

i
ı

` θ

ż

F ^ F.

(3.17)

Written in the superpotential form, the action has a complexified gauge coupling

τ “
θ

2π
` i

4π

g2
. (3.18)

This coupling has an SL(2,Z) symmetry.

We now consider the string theory side of the story. Open strings ended on D3 brane

give rise to the D3 brane dynamics described by the brane world volume theory. The theory

has a 4D gauge field, 6 scalars describing the brane transverse degrees of freedom, and the

same amount of the fermionic degrees of freedom, the string massive modes again decoupled

in the low energy limit. The bosonic part of the theory is described by the Born-Infeld

action, which for D3-brane in the Einstein frame is given by

SBI “

ż

dσ4epp´3qϕ{4
b

´detpG ` e´ϕ{2F q “

ż

dσ4
?

´detGp1 `
1

4
e´ϕFµνF

µν
` ...q (3.19)

The higher order terms can be ignored in the low energy limit where α1 “ 0. And the

Wess-Zumino action Eq.(2.87) can be expended into

SWZ “

ż

pC4 ` F ^ C2 `
1

2
F ^ F ^ C0 ` ...q. (3.20)

where the first term in the action is the 4-form gauge field coupling to the D3 brane. Note the

third term in this expansion, Eq.(3.20), and the second term in Born-Infeld action Eq.(3.19)

gives

S “ ´

ż

dx4pe´ϕFµνF
µν

` C0ϵ
µναβFµνFαβq. (3.21)

One can immediately recognise that the above action recovers the kinetic and Chern-Simons

term of the field strength in the super Yang-Mills action Eq.(3.17) with complexified gauge

coupling

τ “
C0

2π
` i

4π

gseϕ
. (3.22)

Notice that there is a discrete symmetry τ Ñ τ ` 1 due to the axionic properties of C0 Ñ

C0 `2π. In fact, this coupling also has a SLp2,Zq invariance. We can read from the coupling

that

gs “ g2YM, (3.23)
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and the expectation value of the dilaton shifts the sting coupling constant.

One can consider a change to the super Yang-Mills coupling. Such change is given

by the deformation of a marginal operator in the super Yang-Mills theory. The marginal

operator in the generating functional is sourced by a scalar. According to the field-operator

correspondence Eq.(3.15), this deformation by the marginal operator will change the scalar

dilaton field boundary condition. The change in the expectation value of the dilaton field

will shift the string coupling. [15] This exactly relates the string coupling with the super

Yang-Mills coupling.

3.3 Large N Gauge Theory and Supergravity

In the discussion from the previous section, we ignored the massive higher spin modes

and the gravitational coupling to the brane world volume field. The former assumption

makes sure that supergravity gives a good approximation to the bulk theory and Yang-Mills

gives a good description of the theory on the brane. And the latter leaves the brane world

volume decoupled from the gravitons and other closed string modes such that one is left

separately with a supergravity theory in the bulk and a Super Yang-Mills on the conformal

boundary. These require a small string coupling constant gs and a small string length l2s „ α1

compared with the radius of the AdS space L. [16] From the t’Hooft planar diagram, one

is able to read that Feynman diagrams of a U(N) gauge theory look like world sheets with

t’Hooft coupling given by λ “ g2YMN “ gsN .[17] It is also found that 2g2YMN “ L4{l4s .

Hence, to have a weakly coupled gravity and small string length, one needs a large N gauge

theory and the gauge theory becomes strongly coupled. Also, as one goes to the near horizon

limit, the energy is redshifted, and one is left in the low energy regime. Then we are able to

correspond the D3 brane world volume on AdS5 to large N 4D super Yang-Mills.

A similar story can also be applied to M-theory and 11D supergravity. M5-branes on

AdS7 ˆ S4 is dual to 6D N “ p0, 2q superconformal field theory. M2-branes on AdS4 ˆ S7

is dual to 3D N “ 6 ABJM theory. [18]

One way to check the correspondence is via global symmetries. For example, the su-

perconformal group of the 4D N “ 4 super Yang-Mills theory is PSU(2,2|4) which has a

subgroup of SO(4,2) ˆ SU(4) where the SO(4,2) is the 4D conformal group and SU(4) is

the R symmetry of the theory. The group is isomorphic to the SO(4,2) ˆ SO(6) isometry of

30



AdS5 ˆ S5. There are other ways of checking the correspondence via correlation functions,

operators, moduli space, matching anomalies, and central charges. [15]
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Chapter 4

Branes on Curved Background

In chapter2, we considered branes on a flat background spacetime as the supergravity

solutions. In this chapter, instead of flat backgrounds, we consider the background to be

the product of flat spacetime and some curved manifolds. A curved manifold has a non-zero

spin connection, which affects the Killing spinor condition. Therefore, the supersymmetry

condition restricts the possible geometry of the background manifold. Branes on curved

manifolds can either transverse to the curved manifolds or wrap around a cycle in the curved

manifold. In this chapter, we will first discuss the geometry of the background manifold which

is classified by special holonomy and then talk about the supergravity solutions of branes

transverse to Calabi-Yau manifolds. Branes wrapping on curved cycles will be discussed in

the next chapter.

4.1 Special Holonomy Manifolds

We first consider the geometry of the D=11 supergravity on a more general background

spacetime with a vanishing 3-form gauge field. Then the supergravity equation of motion

requires the spacetime to be Ricci flat. And the Killing spinor condition requires spacetime

to admit a covariant constant spinor ∇µϵ “ 0, which implies

r∇µ,∇νsϵ “
1

4
RµναβΓ

αγϵ “ 0. (4.1)

RµναβΓ
αγ generates the infinitesimal holonomy transformation of the manifold. Hence a nec-

essary supersymmetric condition is for the Killing spinor to be invariant under the holonomy
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group of the manifold. This means the 32-component Killing spinor needs to decompose into

the trivial representation of the special holonomy group.[19]

Here we consider the spacetime to be the product of flat spacetime with some Ricci flat

manifold IR1,D´d
ˆ Md. The holonomy group of spacetime is the holonomy group of the

Ricci flat manifold. The Ricci flat manifolds that can be considered here are Calabi-Yau

N-folds with SU(N) holonomy, hyper K:ahler manifolds with Sp(N) holonomy, G2-holonomy

manifolds and Spin(7)-holonomy manifolds. The manifold we will be talking about the most

here is the Calabi-Yau manifold. The Calabi-Yau manifold admits two nowhere vanishing

closed forms, the K:ahler form and a holomorphic top form Ω.

To count preserved supersymmetries, one needs to count the number of spinor compo-

nents in the spinor 32 representation of Spin(10,1) decomposes into the trivial representa-

tions of the special holonomy group of the manifold. For example, consider the 8-dimensional

manifolds, then the 32 representation of Spin(10,1) decomposes into Spin(2,1)ˆSpin(8). Spin

representations of Spin(8) can be written as 8s ‘ 8c. First, consider SU(4) holonomy. The

representations of Spin(8) 8s decompose into 6‘1‘1 and 8c decompose into 4‘4 representa-

tion of SU(4). There are two trivial representations, each is a 3D spinor with 2 components.

Therefore the SU(4) holonomy background preserves 4 supersymmetry. For the Spin(7)-

holonomy manifold, 8s decompose into 7 ‘ 1 and 8c decompose into 8 representation of

Spin(7), preserving 2 supersymmetry.[19]

dimension Holonomy SUSY

10 SU(5) 2

10 SU(3)ˆSU(2) 4

8 Spin(7) 2

8 SU(4) 4

8 Sp(2) 6

8 SU(2)ˆSU(2) 8

7 G2 4

6 SU(3) 8

4 SU(2) 16

Table 4.1: The supersymmetry preserved by each background manifold with special holon-

omy. [19]

We have discussed the supersymmetry by the special holonomy manifolds, or by probe

branes on the special holonomy manifolds. We can consider the back reactions of the branes
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on these special holonomy manifolds. The branes back reactions are described by the su-

pergravity and in most cases break half supersymmetry of the special holonomy manifold.

We will first consider branes on the product manifold of flat spacetime and a Calabi-Yau

manifold, with the brane transverse to the Calabi-Yau manifold. We will then in the next

chapter consider brane wrap a compact cycle within the Calabi-Yau manifold.

4.2 Branes Transverse to Calabi-Yau Manifolds

We now consider M2 and D3 branes on the background manifold with special holonomy

by switching on the n-form gauge fields. We first look at the M2 and D3 brane transverse

to and on the apex of the Calabi-Yau cone. With the background as the tensor product of

a flat spacetime and a Calabi-Yau cone R1,p ˆ CYpD´p´1q{2.

4.2a Calabi-Yau Cone and Sasaki Geometry

A Calabi-Yau n-cone is a cone over a Sasaki-Einstein 2n´ 1 manifold. The cone metric

of the Calabi-Yau cone can be written as

dS2
“ dr2 ` r2dS2

pSE2n ´ 1q, (4.2)

where ds2pSEq is the metric on the Sasaki-Einstein manifold.

An odd-dimensional manifold is Sasakian if and only if the cone over the manifold is

K:ahler.[20] The K:ahler cone over the Sasakian manifold has a complex structure I which

acting on the radial direction of the K:ahler cone gives a normed Killing vector ξ “ IprBrq

on the Sasakian manifold. The Killing vector is called the Reeb vector and corresponds to

the R-symmetry of the dual field theory discussed in the next subsection. The metric of the

Sasakian manifold can be written as

dS2
pSE2n ´ 1q “ pdz ` σq

2
` dS2

pKEn ´ 1q (4.3)

where η “ dz ` σ is the one form dual to the Reeb vector such that ηpξq “ 1 and the

dS2pKEn ´ 1q is a transverse K:ahler metric on a transverse K:ahler n ´ 1 manifold. And η

satisfy

dη “ 2J (4.4)
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where J is the K:ahler form of the transverse K:ahler manifold. Therefore, the Sasakian

manifold is in the middle of two K:ahler manifolds.

If the K:ahler cone is also Ricci-flat or in other words Calabi-Yau, then the Sasakian

manifold is also Einstein with the Ricci tensor

Rµν “ p2n ´ 2qgµν (4.5)

where n is the complex dimension of the Calabi-Yau cone and gµν is the metric on the Sasaki-

Einstein manifold. And for the Sasaki-Einstein manifold, the transverse K:ahler manifold is

also Einstein with the Ricci tensor

RµνpT q “ 2ngµνpT q (4.6)

where gµνpT q is the transverse K:ahler metric on the transverse K:ahler Einstein manifold.

4.2b M2 and D3 Branes at Apex of the CY Manifolds

M2 and D3 branes have transverse space even-dimensional, hence we can replace the

transverse flat space with a Calabi-Yau cone and put branes at the apex of the cone which

corresponds to r “ 0. For M2-Brane the background spacetime is R1,2 ˆ CY4, and for D3 is

R1,3 ˆ CY3. The same n-form gauge fields are switched on as in chapter(2). The metric can

be written as

ds2 “ e2Aprqdxµdxνηµν ` e2Bprq
pdr2 ` r2ds2pSEqq, (4.7)

where the second term is the Calabi-Yau cone metric with ds2pSEq the Sasaki-Einstein met-

ric. Note the only difference between the flat space and the CY cone is the odd-dimensional

sphere is now replaced with the Sasaki-Einstein manifold. Sasaki-Einstein manifolds have

the same Ricci tensor as the spheres. Therefore, solutions to the equations of motion are the

same as the flat background in chapter(2), which together with the asymptotic structures

are given by

M2 dS2
“

´

1 `
κ

r6

¯´ 2
3
dxµdxν `

´

1 `
κ

r6

¯
1
3
pdr2 ` r2ds2pSE7qq ÝÑ AdS4 ˆ SE7

D3 dS2
“

´

1 `
κ

r4

¯´ 1
2
dxµdxν `

´

1 `
κ

r4

¯
1
2
pdr2 ` r2ds2pSE5qq ÝÑ AdS5 ˆ SE5

(4.8)

To have a supersymmetric solution, we also have to check the Killing spinor condition.

The condition of requiring spinors to satisfy p∇̃m ´ αΣ̃mqϵ “ 0 on a sphere now has to
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satisfy on the Sasaki-Einstein manifold. For a general Sasaki-Einstein manifold, at least

one spinor solution can be found for an odd complex dimension of the Calabi-Yau cone

which corresponds to the D3 brane case, and at least two solutions can be found for an

even dimension of the Calabi-Yau cone which corresponds to the M2 brane case.[20] Hence

a portion of supersymmetry is broken. If more spinor solutions are found, then the Sasaki-

Einstein manifold is a sphere, which recovers the flat background manifold which preserves

all of the spinor solutions.

The D3 brane case has four spinor components on the 5-dimensional Sasaki-Einstein

manifold with only one component left. Hence the D3 brane on the CY3 cone preserves

a quarter of the supersymmetry and is left with 4 supercharges. This breaks half of the

supersymmetry of the CY3 background. The AdS/CFT dual of the D3 brane solutions on

CY3 is now a 4DN “ 1 superconformal field theory. The R symmetry of the dual field theory

corresponds to the Reeb Killing vector mentioned earlier. And for the M2 brane on the CY4

case, eight spinor components on the 7-dimensional Sasaki-Einstein manifold are reduced

to two. This also preserves a quarter of the supersymmetry and left with 4 supercharges.

Hence the AdS/CFT dual of M2 brane on CY4 is a 3D N “ 2 superconformal field theory.

Note M2 brane on CY4 does not break half supersymmetry of the CY4 manifold. This is a

special case where the projections on spinors overlap.

36



Chapter 5

Branes Wrapped on Cycles

In the last chapter, we discussed curved background manifolds for brane solutions and

branes transverse to the Calabi-Yau manifolds. In this chapter, we discuss another way to

put branes on curved background manifolds, which is to wrap them around a supersymmetric

cycle in the curve manifold. As mentioned earlier, for branes wrapped around curved cycles,

the non-trivial spin connection of the cycle will appear in the Killing spinor condition. Hence

the supersymmetry condition restricts the possible geometry structure a brane solution can

have. There are several ways for wrapped brane solutions to preserve supersymmetry. One

way for branes to be wrapped around curved cycles is via calibration. The other way is

to turn on the gauge field connection on the normal bundle of the cycle such that the spin

connection on the cycle is cancelled by the gauge field leaving a constant spinor. This is

known as the topological twist, which is closely related to the calibration. For a brane

wrapped around a compact cycle, in the IR limit where the scale is much larger than the

cycle, the fluctuations on the cycle become undynamic, hence the dual field theory can have

fewer dimensions than in the UV where the scale is much smaller. These solutions also have

AdS structures in different dimensions, therefore they are also dual to superconformal field

theories in various dimensions, and the renormalization group flow of the superconformal

field theories could go across different dimensions. [21]

In this chapter, we will first introduce the idea of calibration and discuss how probe-

branes wrapped around calibrated cycle preserve supersymmetry and how the calibration is

related to the topological twist. Then we will talk about the D3 and M2 brane wrapped

around H2 and S2 in the minimal gauged supergravity and discuss how the UV solution

flows to the IR solution. We will also discuss D3 and M2 branes wrapped on a type of
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orbifold with conical singularities known as the spindle. For the spindle solution, it was

found that there is no topological twist to preserve the supersymmetry, and although the

spindle has singularities, the uplifted solution is free from the singularities. The M2 and D3

branes wrapped around H2 and spindles share similar geometrical structures known as the

GK geometry which will be introduced in the next chapter.

5.1 Calibration

In chapter 2 we talked about the world volume effective actions of branes and introduced

the kappa symmetry to gauge away the extra degrees of freedom. In order for a brane with

a bosonic configuration to preserve supersymmetry, the condition on the Killing spinor

P´ϵ “ 0 (5.1)

need to be satisfied, where

P´ “
1

2
p1 ´ Γq (5.2)

For M2-branes,

Γ “
1

3!
?

´G
ϵabcBaX

µ
BbX

ν
BcX

αΓµνα, (5.3)

where

G “ det
´

BaX
µ
BbX

νgµν

¯

, (5.4)

for a, b, c “ 0, 1, 2. Consider M2 brane wrapped around a 2-dimensional cycle. In the gauge

the world volume parameter σ0 “ X0 with the direction of σ1 and σ2 undetermined and

wrapped around a cycle Σ, we get

Γ “
1

2!
?

´G
ϵabBaX

µ
BbX

νΓ0Γµν , (5.5)

with

G “ det
´

BaX
i
BbX

jgij

¯

, (5.6)

for a, b “ 1, 2, where G is just the determinant of the metric pulled back to the cycle. P˘

are projection operators satisfying P 2
˘ “ P˘ “ P :

˘ “ P :
˘P˘, therefore

ϵ:P´ϵ “ ϵ:P :
´P´ϵ “ |P´ϵ|

2
ě 0, (5.7)

with equality only if the supersymmetry is preserved. This is equivalent to saying

ϵ:ϵ ě ϵ:Γϵ (5.8)
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with Killing spinor normalized to ϵ:ϵ “ 1, we get

?
´G ě

1

2!
ϵabBaX

µ
BbX

νϵ:Γ0Γµνϵ “
1

2!
ϵabBaX

µ
BbX

ν ϵ̄Γµνϵ (5.9)

which is equivalent to saying that the form ψ “ ϵ̄Γµνϵ pulled back to the cycle Σ is less or

equal to the volume form of the cycle, and the form equals the volume form if the cycle is

supersymmetric,

V olΣ ě ψ|Σ “
1

2!
ϵ̄ΓµνϵBaX

µ
BbX

νdσadσb. (5.10)

Moreover, as given by minimizing the Nambu-Goto action, the brane needs to be wrapped

around cycles with minimum volume. Such conditions can be realized via the notion of

calibration. [19][22]

The calibration form is a closed n-form ψ that is less than the volume form of any cycle

when pulled back to the cycle, [19]

dψ “ 0, volΣ ě ψ|Σ, @Σ. (5.11)

Then an n-cycle Σ is called being calibrated if the calibration n-form pulled back to the cycle

is equal to the volume form of the cycle,

volΣ “ ψ|Σ. (5.12)

Also, since the form is closed, it can be proven that the calibrated cycle has the minimum

volume. Therefore, a calibrated cycle is supersymmetric.

The Calabi-Yau manifolds admit two types of form that can be the calibrations forms,

the wedge products of K:ahler forms Jn, and the real part of the holomorphic volume form

Ωpn,0q, which can be constructed by

Jmn “ iρ:γmnρ, (5.13)

Ωm1..m2n “ ρTγm1..m2nρ, (5.14)

where ρ is the covariantly constant spinor in the Calabi-Yau manifolds.[19] The cycle cali-

brated by Jn has 2n dimensions and inherits the closed K:ahler form, therefore is a K:ahler

2n-cycle. The cycle calibrated by the holomorphic volume form Ωpn,0q are called the spe-

cial lagrangian cycles, they have the same dimensions as the complex dimensions of the

Calabi-Yau manifold.

There are also Spin(7)-holonomy manifolds, which admits a nowhere vanishing self-dual

closed Cayley 4-form

ψmnij “ ´ρ̄γmnijρ. (5.15)
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The Cayley 4-form calibrates the Cayley 4-cycles in the Spin(7)-holonomy manifolds. The

G2-holonomy manifold admits a nowhere vanishing associative 3-form that is closed and

co-closed, given by

ψmni “ ´iρ̄γmniρ, (5.16)

which calibrates the associative 3-cycles. Since the form is also co-closed, the Hodge dual

of the form is also a calibration form, calibrating the co-associative 4-cycles. The hyper

K:ahler manifolds are a type of Calabi-Yau manifolds hence admit the K:ahler and special

Lagrangian calibration. In addition, the 8-dimensional HK2 manifolds also calibrate the

Cayley cycles and quaternion K:ahler 4-cycles. In later discussions, we will mainly focus

on cycles in Calani-Yau manifolds. Just as the brane solutions in the flat space, a brane

wrapping cycle in a special holonomy manifold in general breaks half of the supersymmetry

of the special holonomy manifold.

5.2 Topological Twist

Since the spin connection ω on the curved cycle affects the supersymmetric condition,

one can turn on the gauge connection A on the normal bundle of the cycle and enforce

ω “ ´A to cancel the spin connection such that

Dµϵ „ pBµ ` ωµ ¨ Γ ` Aµqϵ “ 0 (5.17)

leaves a constant Killing spinor on the cycle. Since the normal bundle is in the direction

transverse to the brane, the G structure of the normal bundle is a subgroup of the R-

symmetry of the dual field theory. This is exactly the topological twist in the topological

field theory, where the fields in the theory are coupled to a gauge field of the global symmetry

to cancel the spin connection of the theory. [23]

For example, consider a probe D3-brane wrapping a 2-sphere in the Calabi-Yau 2-fold.

[21] This corresponds to the case of K:ahler or special Lagrangian 2-cycle calibration, which

in Calabi-Yau 2-folds are equivalent. The symmetry of the tangent and normal bundle

of a D3-brane on the flat space is given by SO(3,1)ˆSO(6). And the symmetry of the

canonical bundle of the Calabi-Yau two folds is SU(2). As the D3 brane is wrapped around

a two-cycle in the CY2, the bundle SU(2) is split into two U(1)„SO(2) bundles with one

tangent to the two-sphere and one normal to the two-sphere. The connection on the 2-

sphere is in SO(2)S2. To perform the topological twist, we have to turn on the gauge

40



field connection on the normal bundle of the sphere which is also in SO(2) to cancel the

SO(2)S2 spin connection. And the two remaining world volume directions have the symmetry

of SO(1,1) and the 4 transverse direction SO(4). This is equivalent to breaking the flat

space SO(6)ÑSO(4)ˆSO(2). Then the supersymmetry of the tangent and normal bundle

becomes SO(1,1)ˆ[SO(2)S2ˆSO(2)]ˆSU(2)LˆSU(2)R, with the SO(2) being twisted with

SO(2)S2. The spinors then transform in the representation of the symmetry p˘1,˘,¯, 2, 1q

and p˘1,˘,¯, 1, 2q corresponding to N “ p4, 4q supersymmetry in 2-dimension.

It turns out the way that calibrated cycles preserve supersymmetry is exactly via topo-

logical twist.[19] The tangent bundle of the special holonomy manifold on the cycle can be

decomposed into a tangent bundle and normal bundle of the cycle T pMq|Σ “ T pΣq ‘NpΣq.

The special Lagrangian cycles are calibrated by the holomorphic volume form. Except for

the special Lagrangian two-cycle, the K:ahler form restricted to the special Lagrangian cycles

vanishes. Therefore, the complex structure maps the tangent space (tangent bundle) of the

special Lagrangian cycle to the tangent space normal to the cycle (normal bundle). Hence

the tangent bundle and the normal bundle of the special Lagrangian cycles are isomorphic

to each other. This agrees with the M2 brane wrapping K:ahler/Lgaranian 2-cycles in the

CY2 example above where the tangent bundle is split into two equivalent bundles. The way

a brane wrapped on a special Lagrangian cycle preserve supersymmetry is exactly to turn

on the gauge connection on the normal bundle to cancel the spin connections.

5.3 D3 Branes Wrapped on K:ahler 2-Cycles

We have discussed probe-branes wrapped on calibration cycles and how they preserve

supersymmetry. For two cycles in the Calabi-Yau manifolds, the calibrated cycles are the

K:ahler 2-cycles. The back reaction of the D-brane on spacetime is described by type II

supergravity. We now consider the detailed calculations of D3 and M2 branes wrapped on

K:ahler 2-cycles in a truncated supergravity theory in 5/4D which is the minimal gauged

supergravity.

5.3a 5D Minimal Gauged Supergravity

The dynamics of the 10/11 dimensions in general can be very hard to solve. One can

perform dimension reduction to a certain dimension to solve the equation of motion and then
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uplift back to the 10/11 dimension, such that a solution of the reduced theory is an exact

solution to the original theory. For type IIB supergravity on AdS5ˆS5, one can perform

a dimension reduction on a 5-sphere to obtain the N “ 8 5D SO(6) gauged supergravity.

The SO(6) gauged supergravity can have further truncation into the Cartan subalgebra

of SO(6), which is a N “ 2 5D supergravity with three U(1) gauge fields known as the

STU model. Earlier we obtained the D3 brane solution on AdS5ˆSE5. We can perform a

dimension reduction on the Sasaki-Einstein 5 manifold to obtain the 5D N “ 2 minimal

gauged supergravity. [24][25] This is equivalent to the supergravity obtained from setting

the three U(1) gauge fields of the STU model to equal.

We now perform the dimension reduction of the type IIB supergravity on SE5 to obtain

the 5D minimal gauged supergravity. Different from dimension reduction from 11D to type

IIA supergravity discussed in chapter 2, type IIB supergravity is described by the equation of

motions. Hence the dimension reduction is performed on the equation of motions. The type

IIB supergravity in our consideration has the equation of motion Eq.(2.30) with vanishing

dilaton field,

RAB “
1

4 ¨ 4!
F 2

r4sAB, (5.18)

with the self-dual 5-form field strength satisfying dF “ 0 as in the D3 brane case. To perform

the dimension reduction, the SE5 manifold with the metric written as Eq.(4.3) is fibered over

R1,4 with metric dS2
5 via

dS2
10 “ dS2

5 `

´1

3
dψ ` σ `

2

3
A

¯2

` dS2
pKE4q (5.19)

where dσ “ 2J with J and dS2pKE4q the K:ahler form and the K:ahler metric on the

transverse K:ahler Einstein manifold, and A is an 1-form gauge field on R1,4. The self-dual

5-form field strength is given by [24]

Fr5s “ p1 ` ˚q

´

4vol5 ´
2

3
p˚5Fr2sq ^ J

¯

“ 4vol5 ´
2

3
p˚5Fr2sq ^ J `

´

2J ^ J ´
2

3
Fr2s ^ Jq ^ p

1

3
dΨ ` σ `

2

3
A

¯

(5.20)

where vol5 is the volume form on R1,4 and F is the field strength of the 1-form A.

The metric can be written in the vielbein form,

eA “ eA5 , eΨ “
1

3
dΨ ` σ `

2

3
A, eM “ eMKE4. (5.21)

Then the spin connection of the metric is given by

ωAB “ ω̃ A
5 B ´

1

3
FA

B ¨ eΨ ωΨ
B “

1

3
FBC ¨ eC

ωMN “ ω̃ M
KE4 N ´ JMN ¨ eΨ ωΨ

N “ JNK ¨ eK
(5.22)
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Where ω̃ A
5 B is the spin connection on R1,4 and ω̃ M

KE4 N is the spin connection on the transverse

K:ahler-Einstein space. And the components of the 10D Ricci tensor in the vielbein basis are

given by

RAB “ R̃AB ´
2

9
F 2
AB RΨΨ “

1

9
F 2

` J2
“

1

9
F 2

` 4

RAΨ “ ´
1

3
∇NF

N
A RMΨ “ ´∇NJ

N
M “ 0

RMN “ R̃MN ` 2JMIJ
I
N “ 4gMN RMA “ 0

(5.23)

We have used the fact that the Ricci tensor of KE4 is R̃mn “ 4gmn. And from the field

strength side, we get

F 2
r4sAB “ 4 ¨ 4!

´4

9
F 2
AB ´

1

9
F 2g̃AB ´ 4g̃AB

¯

F 2
r4sAΨ “ 4 ¨ 4! ¨

2

9
˚5 pF ^ F qA F 2

r4sMA “ F 2
r4sMΨ “ 0

F 2
r4sMN “ 4 ¨ 4! ¨ 4g̃MN F 2

r4sΨΨ “ 4 ¨ 4!
´1

9
F 2

` 4
¯

(5.24)

Therefore, the equations of motion of the 5D minimal gauged supergravity are given by

Rµν “ ´4gµν `
2

3
F 2
µν ´

1

9
F 2gµν

d ˚ F “ ´
2

3
F ^ F

(5.25)

From the equations of motions, we can construct an action containing the cosmological

constant

S5 “

ż

dx5
?

´g
´

R ` 12 ´
1

3
F 2

¯

`

ż

F ^ F ^ A. (5.26)

To have a supersymmetric theory, the Killing spinor condition must also be considered.

We now find the condition on the solutions of 5D minimal gauged supergravity in order to

preserve supersymmetry in the type IIB supergravity. The type IIB Killing spinor in the

vielbein basis with only the self-dual 5-form field strength switched on is given by

δΨP “ DP ϵ “

´

∇P `
i

16 ¨ 5!
FQ1...Q5Γ

Q1...Q5ΓP

¯

ϵ “ 0

“

´

eµPBµ `
1

4
ωQ1

PQ2
Γ Q2

Q1
`

i

16 ¨ 5!
FQ1...Q5Γ

Q1...Q5ΓP

¯

ϵ,
(5.27)

with 10D Weyl spinor satisfying the chiral projection Γ11ϵ “ ϵ. eAµ are inverse vielbeins

eµP “

¨

˚

˝

ẽµA 0 0

´AA 3 ´σM

0 0 ẽmM

˛

‹

‚

(5.28)
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We first make a 5-5 split on the spinor

ϵ “ λ b η b

«

1

0

ff

(5.29)

with the corresponding gamma matrix given by ΓP “ tγA b I b σ1, I b ΣM b σ2u with

γ0...γ4 “ ´i and ΣRΣ1...Σ4 “ 1. Hence the chiral projection operator is given by Γ11 “

Γ0...Γ10 “ I b I b σ3. It is easy to verify that the Killing spinor is Weyl. Substituting the

field strength we get

FQ1...Q5Γ
Q1...Q5 “ 40

´

12 ¨ p´iσ1 ` σ2q ´ FBCγ
BCJIJΣ

IJ 1

2
piσ1 ´ σ2q

¯

(5.30)

Then

FQ1...Q5Γ
Q1...Q5ΓA “ 40

´

´i12 ¨ γApI ` σ3q ´ iFBCγ
BCγAJIJΣ

IJ 1

2
pI ` σ3q

¯

FQ1...Q5Γ
Q1...Q5ΓM “ 40

´

12 ¨ ΣMpI ` σ3q ` FBCγ
BCJIJΣ

IJΣM
1

2
pI ` σ3q

¯

(5.31)

Therefore,

DA “ ∇̃A ´ 2AABψ `
i

6
FABγ

BΣR
`

1

24
FBCγ

BCγAJIJΣ
IJ

`
1

2
γA

DΨ “ 3Bψ ´
1

12
FBCΓ

BC
´

i

24
FBCγ

BCJIJΣ
IJ

`
i

2
ΣΨ ´

1

2
JIJΣ

IJ

DM “ BM ´ 3σMBψ `
1

4
ω̃IJKE4ΓIJ `

i

24
FBCγ

BCJIJΣ
IJΣM `

i

2
ΣM ´

1

2
JNMΣNΨ

(5.32)

The K:ahler form can be written as J “ e12 ` e23, hence

1

2
JMNΣ

MN
“ Σ12

` Σ34 (5.33)

by requiring

Σ12η “ Σ34η “
1

2
JMNΣ

MN
“ iη,

ΣΨ
“ Σ12Σ34

“ ´η,
(5.34)

as the Killing spinor on SE5. With more detailed analysis,[24] the Killing spinor condition

can be solved by

η “ e
i
2
ψη0 (5.35)

and a 5D spinor satisfying

p∇̃µ ´
i

12
pγ αβ
µ ´ 4δαµγ

β
qFαβ ´

1

2
γµ ´ iAµqϵ “ 0 (5.36)
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where we have used the fact that γµγ
αβ “ γ αβ

µ ` 2δ
rα
µ γβs.Due to the projection Eq.(5.34),

the solution preserves a quarter of the supersymmetry which corresponds to N “ 2 in 5D.

Hence the N “ 2 5D minimal gauged supergravity is described by the equations

of motion given by

Rµν “ ´4gµν `
2

3
F 2
µν ´

1

9
F 2gµν

d ˚5 F “ ´
2

3
F ^ F

(5.37)

and the 5D Killing spinor condition given by

p∇̃µ ´
i

12
pγ αβ
µ ´ 4δαµγ

β
qFαβ ´

1

2
γµ ´ iAµqϵ “ 0. (5.38)

With the 5D solution, one can recover the 10D solution by uplifting the solution via

dS2
10 “ dS2

5 `

´1

3
dψ ` σ `

2

3
A

¯2

` dS2
pKE4q (5.39)

The usual D3 brane solution can not be found in the 5D minimal gauged supergravity. The

AdS5 background can be recovered by setting the gauge field to zero.

5.3b D3 Brane wrapped on H2

We have mentioned branes wrapping K:ahler 2-cycles via calibration in order to preserve

supersymmetry. A calibrated cycle turns on the gauge field on the normal bundle to preserve

the supersymmetry through the topological twist. We now use the 5D minimal gauged

supergravity introduced earlier to see how branes are wrapped on the K:ahler 2-cycles and

how the topological twist is applied to preserve supersymmetry, and how the solution flow

crosses different dimensions. [26]

We consider two types of K:ahler-Einstein 2-cycles, H2 and S2, where H2 is negatively

curved and S2 is positively curved. In order to be made compact, the cycles can be quotient

by discrete subgroups. Here we first use H2 as an example, which has the metric

dS2
pH2

q “
1

y2
pdy2 ` dz2q. (5.40)

We first consider the simpler IR solution of the form AdS3ˆH2 with the metric

dS2
5 “ pdS2

pAdS3q ` qdS2
pH2

q. (5.41)
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with p and q some undetermined constant. The spin connection of the metric is given by

ωAB “ ω̃ A
AdS B, ωZY “ ω̃ Z

H2 Y “ ´
1

y
dz. (5.42)

where tA,Bu labels vielbein basis on AdS3 and tY, Zu labels vielbein basis on H2. To ensure

the topological twist, a gauge field needs to be turned on

A “ ´
1

2
ω “

1

2y
dz, Fr2s “ ´

1

2y2
dy ^ dz. (5.43)

Now with the equation of motion Eq.(5.25), we can determine the factors p and q. The Ricci

tensor of the AdS3 space is Rab “ ´2gab{p and for H2 is Rmn “ ´gmn{q. Then it is easy to

get the solution to the 5D minimal gauged supergravity

dS2
5 “

4

9
dS2

pAdS3q `
1

3

1

y2
pdy2 ` dz2q. (5.44)

We now consider the Killing spinor condition, one gets

Dy “ By `
i

3
γzFyzg

zz
´

1

2
γy

Dz “ Bz `
1

2
pωZzY γ

Y
Z ´ i2Azq ´

i

3
γyFyzg

yy
´

1

2
γz

DA “ ∇̃A ´

´1

2
`
i

6
γyzFyz

¯

γA

(5.45)

By requiring a projection on the spinor

γZY ϵ “ ´iϵ, or, γY ϵ “ ´iγZϵ, (5.46)

one finds the spin connection cancelled by the gauge field as required by the topological

twist, which simplifies the Dy and Dz condition, and the Killing spinor condition is reduced

to require

Byϵ “ Bzϵ “ 0, ∇̃Aϵ “ ´aγAϵ. (5.47)

The first condition is simply to require a constant spinor on the cycle, due to the topological

twist. The second condition is the Killing spinor condition on AdS space which can be

solved similar to the sphere case with all supersymmetry preserved on it.[6] Due to the

projection of the Killing spinor, the solution breaks further half of the supersymmetry, leaving

4 supercharges. The solution has the geometry structure of AdS3ˆH2. To have a compact

cycle, we can quotient H2 by a discrete subgroup, H2{Γ. Since this does not change the

local geometry, the supersymmetry condition is held.
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One can uplift a solution of 5D minimal gauged supergravity back to 10D via Eq.(5.39),

then we get the AdS3ˆY 7 solution of type IIB supergravity given by

dS2
10 “

4

9
dS2

pAdS3q `

„

1

3y2
pdy2 ` dz2q `

´1

3
dψ ` σ `

1

3y
dz

¯2

` dS2
pKE4q

ȷ

(5.48)

where the Y 7 correspond to the SE5 fibered over H2. Since this is a solution of type IIB

supergravity with the self-dual five-form turned on, we identify the solution as D3 brane

wrapped on H2. With the AdS3 structure, the solution is dual to a 2D superconformal field

theory with 4 Majorana-Wyle supercharges. The Y 7 manifold has a Killing vector, which

corresponds to the U(1)„SO(2) R symmetry. Hence the superconformal field theory has

(0,2) chiral supersymmetry.

One can also consider the high energy behaviour of the D3-brane wrapped around a

2-cycle. In the limit where the length scale is much smaller than the cycle, the cycle may

look uncompact and have dynamical fluctuations, hence is dual to the 4D superconformal

field theory in the UV. In the IR limit where the length scale is much larger than the cycle,

the fluctuations on the cycle become undynamic, and the dual field theory remains to be 2D

superconformal field theory. Hence under the RG flow, a 4D SCFT can flow to a 2D SCFT,

with the supergravity interpolating the two field theories. To see this, we can construct the

more general solution of the type IIB supergravity in the form of

dS2
5 “ e2fprq

p´dt2 ` dx2 ` dr2q ` e2gprq 1

y2
pdy2 ` dz2q. (5.49)

Substituting the metric in the Killing spinor equation will give a set of differential equations

of the function fprq and gprq. These differential equations describe the flow of two functions

under the flow of r. Then the flow may take the AdS3ˆH2 solution to the AdS5 solution in

the UV, where the AdS5 metric is given by

dS2
5 „

1

r2

”

´dt2 ` dz2 `
1

y2
pdy2 ` dx2q ` dr2

ı

. (5.50)

For example, we can consider these BPS equations in the 5D minimal gauged super-

gravity. The spin connections of the metric are given by

ωZY “ ´
1

y
dx, ωZR “

1

y
eg´fg1dz, ωYR “

1

y
eg´fg1dy

ωTR “ f 1dt ωXR “ f 1dx

(5.51)

and again with A “ ´ωZY {2 as required by the topological twist. Then the Killing spinor
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condition become

Dy “ By `
1

2
ye´gωYRγyγ

R
`
i

3
γzFyzg

zz
´

1

2
γy

Dz “ Bz `
1

2
pωZzY γ

Y
Z ´ iAzq `

1

2
ye´gωZRγzγ

R
´
i

3
γyFyzg

yy
´

1

2
γz

Dx “ Bx ` γx

´1

2
e´fωXRγ

R
´

1

2
´
i

6
γyzFyz

¯

Dt “ Bt ` γt

´1

2
e´fωTRγ

R
´

1

2
´
i

6
γyzFyz

¯

Dr “ Br ´

´1

2
`
i

6
γyzFyz

¯

γRe
f

(5.52)

again by requiring a projection on the spinor

γZY ϵ “ ´iϵ, or, γY ϵ “ ´iγZϵ, (5.53)

and

γRϵ “ ´ϵ, (5.54)

the Killing spinor condition is solved by an r-dependent spinor with the differential equations

g1
“ ´ef `

1

3
ef´2g

f 1
“ ´ef ´

1

6
ef´2g.

(5.55)

The solution Eq.(5.58) can be recovered from the differential equation. It can also be seen

that a solution that is asymptotic to

e2g „ e2f „
1

r2
(5.56)

near r “ 0 can be found, which corresponds to the solution Eq.(5.50) with the asymptotic

AdS5 structure in the UV. Then we are able to identify the UV AdS5 solution and the IR

AdS3ˆH2 solution.

5.3c D3 Brane Wrapped on S2

We now consider the D3 brane wrapped on the positively curved K:ahler-Einstein man-

ifold S2 with metric

dS2
pS2

q “
4

p1 ` z2 ` y2q2
pdy2 ` dz2q (5.57)

in the minimal gauged supergravity.
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Again first consider the IR solution to be the form of AdS3 ˆ S2

dS2
5 “ pdS2

pAdS3q ` qdS2
pH2

q. (5.58)

with spin connections

ωAB “ ω̃ A
AdS B, ωZY “ ω̃ Z

S2 Y “ 2
zdy ´ ydz

1 ` x2 ` y2
. (5.59)

Again to ensure the topological twist, a gauge field needs to be turned on with

A “ ´
1

2
ω “ ´

zdy ´ ydz

1 ` x2 ` y2
, Fr2s “

2

p1 ` x2 ` y2q2
dy ^ dz. (5.60)

Again use the equation of motion Eq.(5.25) to work out the factors p and q. The spheres are

positively curved with the Ricci tensor Rij “ gij{q. Then the equation of motion become

4q2 ` q ´
1

9
“ 0, p “

36q2

72q2 ` 1
(5.61)

with two roots q1 “ ´1
3
, and q2 “ 1

12
and the corresponding p1 “ 4

9
, p2 “ 1

6
. Taking the

positive roots we get

dS2
5 “

1

6
dS2

pAdS3q `
1

3

1

p1 ` z2 ` y2q2
pdy2 ` dz2q. (5.62)

However, this is not the whole story, we still need to check the Killing spinor condition in

order to preserve supersymmetry. The Killing spinor equation is again given by

Dy “ By `
i

3
γzFyzg

zz
´

1

2
γy

Dz “ Bz `
1

2
pωZzY γ

Y
Z ´ i2Azq ´

i

3
γyFyzg

yy
´

1

2
γz

DA “ ∇̃A ´

´1

2
`
i

6
γyzFyz

¯

γA.

(5.63)

It turns out the solution Eq.(5.62) does not lead to the constant spinor with a similar

projection on the spinor. The negative root, however, can satisfy the Killing spinor condition

but leads to a negative metric. Hence there is no supersymmetric solution for the D3 brane

wrapped on S2 in the form of AdS3ˆS2 in the minimal gauged supergravity. We will discuss

the reason for this in the GK geometry in section(6.2a).

To consider the RG flow, we again consider the more general solution

dS2
5 “ e2fprq

p´dt2 ` dx2 ` dr2q ` e2gprq 4

p1 ` z2 ` y2q2
pdy2 ` dz2q, (5.64)
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with the same gauge connection. With a similar projection on the spinor, the Killing spinor

again gives the BPS equation

g1
“ ´ef ´

1

3
ef´2g

f 1
“ ´ef `

1

6
ef´2g

(5.65)

Near r “ 0, there is again a solution that is asymptotic to

e2g „ e2f „
1

r2
, (5.66)

corresponding to the UV AdS5 solution with the metric

dS2
5 „

1

r2

”

´dt2 ` dz2 `
4

p1 ` z2 ` y2q2
pdy2 ` dx2q ` dr2

ı

. (5.67)

In the IR, the AdS3ˆS2 solution Eq.(5.62) is not recovered. Therefore, although the UV of

the dual field theory is described by the 4d superconformal field theory, the IR of the theory

does not flow to the 2d conformal field theory in the minimal gauged supergravity. It could

be because the solution in the IR with the AdS3 structure is more complicated to analyse.

However, in the STU model or the more complicated SO(6) gauged supergravity, the IR AdS3

solution of the D3 brane wrapping S2 can be found and is dual to a 2D superconformal field

theory.

5.4 M2 Branes Wrapped on K:ahler 2-Cycles

We now discuss the solutions of M2 brane wrapped on H2 and S2 which share many

similarities with the D3 brane case. We will first derive the 4D minimal gauged supergravity

and then use it to solve the wrapped M2 brane solutions.

5.4a 4D Minimal Gauged Supergravity

In the previous section, we performed the dimension reduction on SE5 from the type

IIB supergravity to obtain the 5D minimal gauged supergravity. The same operation can be

done to the 11D supergravity. We now perform the dimension reduction on SE7 to derive the

4D N “ 2 minimal gauged supergravity.[27] The procedure is similar to the 11D reduction
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to type IIA, where the main consideration is the action of the theory. The action of the 11D

supergravity is given by

S11 “

ż

dx11
?

´g
´

R ´
1

48
F 2

r4s

¯

(5.68)

with the Chern-Simons term vanishes in the discussion. To perform the dimension reduction

on SE7, the SE7 is fibered over R1,3 given by

dS2
11 “

1

4
dS2

4 ` p
1

4
dψ ` σ `

1

2
Aq

2
` dS2

pKE6q, (5.69)

where dS2
4 is the metric on R1,3. The 4-form field strength is given by

Fr4s “
3

8
V ol4 ´

1

2
p˚4Fr2sq ^ J, (5.70)

where V ol4 is the volume form and Fr2s is the two-form on R1,3.

The vielbeins of the metric are given by

eA “ eAB̄e
B̄
4 “

1

2
eĀ4 , eΨ “

1

4
dΨ ` σ `

1

2
A, eM “ eMKE6. (5.71)

Then the spin connection is given by

ωAB “ ω̃ A
5 B ´

1

4
FA

B ¨ eΨ ωΨ
B “

1

4
FBC ¨ eC

ωMN “ ω̃ M
KE6 N ´ JMN ¨ eΨ ωΨ

N “ JNK ¨ eK
(5.72)

Where ω̃ A
4 B is the spin connection on R1,3 and ω̃ M

KE6 N is the spin connection on the transverse

K:ahler-Einstein space. And the components of the 10D Ricci tensor in the vielbein basis are

given by

RAB “ R̃AB ´
1

8
F 2
AB RΨΨ “

1

16
F 2

` J2
“

1

16
F 2

` 6

RAΨ “ ´
1

4
∇NF

N
A RMΨ “ ´∇NJ

N
M “ 0

RMN “ R̃MN ` 2JMIJ
I
N “ 6gMN RMA “ 0

(5.73)

Hence the Ricci scalar is given by

R “ 4R̃ ´ F̃ 2 ` 42, (5.74)

where R̃ and F̃ 2 are contracted with metric on R1,3. The F 2
r4s

term is given by

F 2
r4s “ 2 ¨ 4!p18 ` 3F̃ 2q. (5.75)
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Substitute into the 11D supergravity action, we get the action of the 4D minimal gauged

supergravity

S4 „

ż

dx4
?

´gpR ` 6 ´ F 2
q. (5.76)

with the equations of motion given by

Rµν “ ´3gµν ` 2F 2
µν ´

1

2
F 2gµν ,

d ˚4 F “ 0.
(5.77)

We now check the supersymmetry condition of the solution in order to preserve some

of the supersymmetry in the 11D supergravity. The Killing Spinor of the 11D supergravity

is given by

DP “

”

∇P `
1

288
pΓ Q1Q2Q3Q4

P ´ 8δ Q1

P ΓQ2Q3Q4qFQ1Q2Q3Q4

ı

ϵ “ 0

“

”

eµPBµ `
1

4
ωQ1

PQ2
Γ Q2

Q1
`

1

288
pΓ Q1Q2Q3Q4

P ´ 8δ Q1

P ΓQ2Q3Q4qFQ1Q2Q3Q4

ı

ϵ.
(5.78)

To solve the Killing spinor condition, the spinor is decomposed into ϵ “ λbη with 4D spinor

λ and 7D spinor η. The corresponding gamma matrices are given by

ΓA “ ´iγAγ
5

b I, ΓM “ γ5 b ΣM (5.79)

Then one gets

ΓABCDϵABCD “ iγ5 ¨ 4!, ΓBCDϵABCD “ γA ¨ 3!,

Γ BCMN
A ϵBCDEF

DEJMN “ 4γBFABJMNΣ
MN ,

ΓABMNϵABCDF
CDJMN “ ´2iγCDFCDγ

5JMNΣ
MN ,

ΓBMNϵABCDF
CDJMN “ ´γ CD

A FCDJMNΣ
MN ,

(5.80)

Substitute into the 11D Killing spinor condition, again with γµγ
αβ “ γ αβ

µ ` 2δ
rα
µ γβs, one

gets

DA “ ∇̃A ´ 2AABψ `
i

2
FABγ

BΣψ `
1

12
pFBCγ

BC
A ` FABγ

B
qJIJΣ

IJ
`

1

2
γA

DΨ “ 4Bψ ´
1

2
FBCΓ

BC
´

i

12
FBCγ

BCJIJΣ
IJΣψ ´

i

2
Σψ ´

1

2
JIJΣ

IJ

(5.81)

with a Killing spinor condition on KE6. With the projection

Σ12η “ Σ34η “Σ56η “
1

6
JMNΣ

MNη “ iη,

Σψη “iΣ12Σ34Σ56η “ η,
(5.82)
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the Killing spinor condition is solved by

η “ e
iψ
2 η0 (5.83)

with KE6 preserving a quarter of the supersymmetry, leaving N “ 2 on 4D. Then the 4D

Killing spinor condition of the theory is given by

p∇̃µ `
i

4
Fαβγ

αβγµ `
1

2
γµ ´ iAµqλ “ 0. (5.84)

5.4b M2-Brane Wrapped on H2 and S2

We now discuss the M2 brane wrapped on K:ahler-Einstein 2-cycle Σ2, where Σ2 is taken

to be H2 and S2. We will focus on the IR AdS2ˆΣ2 solution in the 4D minimal gauged

supergravity which uplifted to the 11d gives an AdS2ˆY 9 solution. The geometry structure

of the AdS solution in the M2-brane case is very similar to the D3-brane case. To derive a

such solution, we again consider the AdS2ˆΣ2 metric in the form of

dS2
4 “ pdS2

pAdS2q ` qehpx,yq
pdy2 ` dz2q, (5.85)

where again with

H2 : ehpx,yq
“

1

y2
, S2 : ehpx,yq

“
4

p1 ` z2 ` y2q2
. (5.86)

The spin connection is given by

H2 : ωZY “ ´
1

y
dx, S2 : ωZY “ 2

zdy ´ ydz

1 ` x2 ` y2
. (5.87)

The gauge field is again given by the topological twist

A “ ´
1

2
ω. (5.88)

Then from the 4D minimal gauged supergravity equation of motion, we get

12q2 ¯ 4q ´ 1 “ 0, p “
4q2

12q2 ` 1
. (5.89)

where ` for H2 and ´ for S2. Taking the positive solution, we get for H2, q “ 1
2
and p “ 1

4
,

and for S2, q “ 1
6
and p “ 1

12
. We then have to check the supersymmetry preserved by these

solutions. The Killing spinor condition in the situation is given by

Dy “ By ´
i

2
Fyzγ

zyγy ´
1

2
γy,

Dz “ Bz `
1

2
pωZzY γ

Y
Z ´ i2Azq `

i

2
Fyzγ

yzγz ´
1

2
γz,

DA “ ∇̃A ´

´1

2
`
i

2
Fyzγ

yz
¯

γA.

(5.90)
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For the H2 solution, with the projection on the spinor

γzyϵ “ iϵ, (5.91)

the 4D Killing spinor condition reduced to the Killing spinor condition on AdS2. Hence

the H2 solution is supersymmetric. The S2 solution again does not solve the Killing spinor

condition.

Thus the solution of M2 brane wrapped on H2 in the minimal gauged supergravity in

the form of AdS2ˆH2 is given by

dS2
4 “

1

4
dS2

pAdS2q `
1

2

1

y2
pdy2 ` dz2q, (5.92)

The solution can be uplifted to 11D via Eq.(5.69) to obtain the AdS2ˆY 9 with Y 9 an SE7

fibered over H2. The metric of the solution is given by

dS2
11 “

1

16
dS2

pAdS2q `
1

16
pdψ ` 4σ ` 2Aq

2
`

1

8

1

y2
pdy2 ` dz2q ` dS2

pKE6q. (5.93)

The structure of the solution is very similar to the D3 brane wrapping 2-cycles. In fact,

they belong to the same class of geometry known as GK geometry which will be discussed

in chapter 6.

Due to the AdS2 structure, the solution is dual to some superconformal quantum me-

chanics. And under the RG flow, the corresponding supergravity solution could interpolate

between UV and IR of the theory which corresponds to the 3D and 1D superconformal field

theory.

5.5 Branes Wrapped on Spindles

We have seen how branes are wrapped on cycles in the special holonomy manifolds via

calibrations. These cycles preserve supersymmetry via topological twist. We now discuss

a new class of supergravity solutions corresponding to the branes wrapping spindles.[28]

Different from calibrated cycles, the spindle is an orbifold with two conical singularities.

Also, the way that branes wrapping on the spindle preserves supersymmetry is not through

the topological twist, and hence, the Killing spinor on the spindle is not constant.

The spindle is a weighted projective space Σ “ WCP1
rn´,n`s with two coprime positive

integers n˘. The spindle is topologically a sphere but has two conical singularities with
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deficit angles 2πp1 ´ 1{n¯q. [29] The Euler character of the spindle is given by

χ “
1

4π

ż

Σ

R “
n´ ` n`

n´n`

. (5.94)

With n´ “ n` “ 1, the Euler character is just given by 2, which is a 2-sphere.

5.5a D3 Brane Wrapped on Spindle

The dynamic of the D3-brane is again solved in the 5D minimal gauged supergravity

with the equation of motion Eq.(5.25) and the Killing spinor condition Eq.(5.36). The

solution has the structure of the warped product AdS3ˆΣ and is given by [29]

dS2
5 “

4y

9
dS2

pAdS3q ` dS2
pΣq

A “
1

4

´

1 ´
a

y

¯

dz
(5.95)

where y and z are the coordinates on the spindle, and dS2pΣq is the metric on the spindle

given by

dS2
pΣq “

y

qpyq
dy2 `

qpyq

36y2
dz2, (5.96)

where qpyq is a cubic function of y

qpyq “ 4y3 ´ 9y2 ` 6ay ´ a2. (5.97)

For a certain a, the function qpyq has three positive roots. To have a positive metric, the

range of y is set to be within two roots of qpyq such that qpyq is positive. Note as y approaches

one of the roots, the metric becomes singular, corresponding to the orbifold singularities of

the spindle. In addition, by choosing

a “
pn´ ´ n`q2p2n´ ` n`q2pn´ ` 2n`q2

4pn2
´ ` n´n` ` n2

`q3
(5.98)

∆z “
2pn2

´ ` n´n` ` n2
`q

3n´n`pn´ ` n`q
¨ 2π, (5.99)

where ∆z is the period of z, then the metric of the cycle gives the metric on the spindle.

Note that the gauge connection is not cancelled by the gauge connection. Moreover, the

magnetic flux of the gauge field through the spindle is given by

Q “
1

2π

ż

Σ

F “
n´ ´ n`

2n´n`

, (5.100)
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which is different from the Euler character of the spindle. Therefore, the way a brane

wrapped on a spindle preserves supersymmetry is not via the topological twist.

The Killing spinor condition of the spindle solution is solved by ϵ “ θ b ηpyq, where θ

is the Killing spinor on AdS3 as usual satisfying ∇aθ “ 1
2
γaθ and ηpyq is a spinor on the

spindle with components

ηpyq “

´

a

q1pyq

y
,

a

q2pyq

y

¯

, (5.101)

with

q1pyq “ ´a ` 2y3{2
` 3y, q2pyq “ a ` 2y3{2

´ 3y. (5.102)

Different from cycles preserving supersymmetry via topological twist, the spindle does not

have a constant Killing spinor.

The 5D solution of the minimal gauged supergravity can be uplifted back to 10D via

Eq.(5.39) to obtain the solution of type IIB supergravity given by

dS2
10 “

4y

9
dS2

pAdS3q `
y

qpyq
dy2 `

qpyq

36y2
dz2 `

1

9

ˆ

Dψ`
1

2

´

1´
a

y

¯

dz

˙2

`dS2
pKE4q, (5.103)

where Dψ “ dψ ` 3σ. The uplifted solution is a warped product of AdS3ˆM7 with the

warp factor y and the M7 the Sasaki-Einstein manifold fibered over the Spindle. M7 can

be written as

dS2
pM7

q “
9

4y
dS2

pKE4q `
9

4qpyq
dy2 `

qpyq

16y2py2 ´ 2y ` aq
Dψ2

`
y2 ´ 2y ` a

4y2
Dz2, (5.104)

with

Dz “ dz ´
a ´ y

2py2 ´ 2y ` aq
Dψ, (5.105)

which turns out can be regular.[30] Hence the uplifted solution AdS3ˆM7 is also regular with

the conical singularities removed in the uplifting. The warp factor of the warped product is

a function on M7. Therefore the solution AdS3ˆM7 has the AdS3 isometry, hence is dual

to a 2D N “ p0, 2q superconformal field theory. The UV solution of D3 branes wrapping

spindles in the form of AdS5 is not yet discovered.

5.5b M2 Brane Wrapped on Spindle

The solution of M2 branes wrapped on spindles is solved in the 4D minimal gauged

supergravity. The solution is similar to the D3 brane wrapped on the spindle and is given
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by [31]

dS2
4 “

y2

4
dS2

pAdS2q ` dS2
pΣq

A “
1

2

´

1 ´
a

y

¯

dz
(5.106)

with

dS2
pΣq “

y2

qpyq
dy2 `

qpyq

4y2
dz2, (5.107)

where qpyq is now a quartic function of y

qpyq “ y4 ´ 4y2 ` 4ay ´ a2. (5.108)

The solution again can be uplifted to the 11D via Eq.(5.69) to obtain the AdS2ˆY 9 solution

of the 11D supergravity with Y 9 corresponds to SE7 manifold fibered over the spindle. The

metric of the solution is given by

dS2
11 “

y2

16
dS2

pAdS3q`
y

4qpyq
dy2 `

qpyq

36y2
dz2 `

1

16

ˆ

Dψ`

´

1´
a

y

¯

dz

˙2

`dS2
pKE4q. (5.109)

which again can be made regular.[33]

Different from the D3 brane case, a UV-completed solution corresponding to M2 branes

wrapping spindles is identified. Such a solution corresponds to the accelerating supersym-

metric extremal black hole in AdS4.[32] An accelerating black hole has five parameters,

acceleration, electric charge, magnetic charge, angular momentum and mass. They are de-

scribed by the same action as the 4D minimal gauged supergravity Eq.(5.76) which is an

Einstein-Maxwell theory with a negative cosmological constant. These black holes are solved

by Plebanski–Demianski solutions.[31] The acceleration of the black hole cause two conical

deficits on the horizon which gives a spindle, and magnetic flux through the horizon. By

requiring the solution to be supersymmetric and extremal, the solution depends on one pa-

rameter, the angular momentum or the electric charge. In the near horizon limit, the solution

is of the form of AdS2ˆΣ2 where Σ2 is the spindle. Such a solution can be uplifted to 11D

to obtain a regular solution in the form of AdS2ˆY 9. When the rotation parameter is set to

zero, the uplifted M2 brane wrapped on the spindle solution described by Eq.(5.109) can be

recovered in the near horizon limit. In the near horizon limit with non-zero rotation, one re-

covers new AdS2ˆY 9 solutions. hence we are able to identify the UV of the spindle solution

as the form of AdS4, which is dual to a 3-dimensional superconformal field theory. Under

renormalization group flow, the solution flow to AdS2ˆΣ2 which is dual to a 1-dimensional

superconformal quantum mechanics.
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Chapter 6

GK Geometry

We have discussed in the previous chapter about D3-branes and M2-branes wrap-

ping K:ahler-Einstein two cycles and spindle two cycles, leading to solutions in the form

of AdS3ˆY 7 and AdS2ˆY 9 with the manifold Y a fibration of the Sasaki-Einstein manifold

on the K:ahler-Einstein or the spindle two-cycle. We have found that the geometrical struc-

ture of the two types of solutions shares many similarities. In fact, they belong to the same

class of geometry called GK geometry, where GK stands for Gauntlett-Kim.[34] The GK ge-

ometry describes the AdS3ˆY 7 and AdS2ˆY 9 solution with non-vanishing self-dual 5-form

or 4-form field strength for each case. Though these two cases are of interest in physics, the

GK geometry can also be generalised to Y 2n`1 with arbitrary n ě 3. The GK geometry is

closely related to but different from the Sasakian geometry mentioned in section(4.2a).

6.1 The General Structure of GK Geometry

The AdS3 solutions of type IIB supergravity in the context of GK geometry are given

by [34]

ds210 “ e´B{2
rds2pAdS3q ` ds2pY 7

qs

Fr5s “ ´rvolpAdS3q ^ Fr2s ` ˚7Fr2ss,
(6.1)
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where B is a function on Y 7 and Fr2s is a 2-form on Y 7. And similarly, AdS2 solutions of

the 11D supergravity are given by

ds211 “ e´2B{3
rds2pAdS2q ` ds2pY 9

qs

Fr4s “ ´volpAdS2q ^ Fr2s.
(6.2)

The vielbein for a general AdS(d)ˆY(d̃) metric is given by

eA “ e´B{cẽAAdS, eB “ e´B{cẽBY . (6.3)

where c “ 3 for M2-brane and c “ 4 for D3-brane. Then the spin connections are given by

ωAB “ ω̃ A
AdS B, ωAM “ ´

1

c
BMBe

A

ωMN “ ω̃ A
Y B ´

1

c
BNBe

M
`

1

c
B
MBeN ,

(6.4)

And Ricci tensor

Rµν “

´

´pd ´ 1q `
1

c
∇2B ´

d ` d̃ ´ 2

c2
p∇Bq

2
¯

gµνpAdSq

Rmn “ R̃mn `
d ` d̃ ´ 2

c
∇2
mnB `

d ` d̃ ´ 2

c2
∇mB∇nB `

1

c
∇2B ´

d ` d̃ ´ 2

c2
p∇Bq

2

(6.5)

Substitute this into the supergravity equation of motion, for general d̃ “ 2n ` 1, we get

´
4pn ´ 1q

pn ´ 2q2
` ∇2B ´ pn ´ 1qp∇Bq

2
`

1

2
e2BF 2

“ 0

R̃mn ` pn ´ 1q∇2
mnB `

n ´ 2

2
∇mB∇nB `

2

n ´ 2
gmnpY q `

1

2
e2BF 2

mn ´
1

4
gmnpY qF 2

“ 0

dpep3´nqB
˚2n`1 F q “ 0

(6.6)

which is described by the action

S “

ż

Y 2n`1

ep1´nqB
”

R2n`1 ´
2n

pn ´ 2q2
`
np2n ´ 3q

2
pBBq

2
`

1

4
e2BF 2

ı

¨ volpY 2n`1
q. (6.7)

We now discuss the GK geometry structure of Y2n`1, which is similar to the Sasakian

geometry. For a super symmetric solution, the manifold Y2n`1 admits at least one Killing

vector ξ “ 1{cBz constructed by Killing spinors and is corresponding to the R-symmetry of

the dual field. From the Killing vector, we can write the metric as [35] [36]

ds22n`1 “ c2pdz ` P q
2

` eBds22n “ η2 ` eBds22n (6.8)
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where η “ cpdz ` P q is the covector dual to ξ, and c “ pn ´ 2q{2. Moreover, the supersym-

metric condition further require the transverse metric ds22n to be K:ahler with dP “ ρ the

Ricci form of the transverse K:ahler metric, and

eB “
c2

2
R2n (6.9)

F “ ´
1

c
J ` cdre´B

pdz ` P qs (6.10)

where R2n is the Ricci tensor of the transverse K:ahler metric. By imposing the equation of

motion of the two-form F given by Eq.(6.6), one gets a PDE

lR “
1

2
R2

´ RijR
ij. (6.11)

Recall that the supersymmetry condition plus dF “ d ˚ F “ 0 solves the supergravity equa-

tion of motion. By relaxing the PDE, one gets the off-shell supersymmetric GK geometry.

6.2 Examples

We have briefly introduced the GK geometry which describes the AdS3 and AdS2 solu-

tions with non-vanishing 5-form and 4-form field strength in the type IIB and 11D supergrav-

ity. We now use the GK geometry to obtain the AdS3 and AdS2 solutions corresponding

to D3 and M2 branes wrapped on K:ahler-Einstein and spindle 2-cycles to see how these

examples are fitted into the GK geometry. We will show that the same results are obtained

as in the last chapter.

6.2a KE2ˆKE4 Example

We first consider a simple example of the GK geometry where the Y 2n`1 for n “ 3

is taken to be a product of M1 “KE2 and M2 “KE4, which corresponds to the D3 brane

wrapped on the KE 2-cycle.[37] Since both manifolds are Einstein, we take the Ricci tensors

of two manifolds to be

R1
ij “ l1g

1
ij, R2

ij “ l2g
2
ij, (6.12)

Therefore the Ricci scalar is R “ 2l1 `4l2. Then the PDE given by Eq.(6.11) simply become

pl1 ` 2l2q
2

“ l21 ` 2l22, (6.13)
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and we get l2 “ ´2l1 or l2 “ 0.

For the l2 “ ´2l1 case with positive l1, this corresponds to the positively curved KE

2-manifold S2. The corresponding case for positive l1 is the D3 brane wrapped on S2 as

discussed in the previous sections. However, when l1 is taken to be positive, l2 needs to be

taken negatively. The consequence of that is the KE4 manifold now needs to be negatively

curved which is not what we assumed in the dimension reduction on the SE5. Also for

negative l1, the Ricci tensor of the transverse K:ahler metric of Y 7 is negative, therefore the

factor eB „ R in the metric is also negative, leaving a negative metric just as discussed in

the previous section.

For l2 “ ´2l1 with negative l1, this corresponds to the negatively curved KE 2-manifold

H2. Taking the l2 to be 6 as in the dimension reduction on the SE5. Then l1 “ ´3 and

hence the metric of the H2 is scaled by 1/3. Then the Ricci scalar of the transverse metic is

R “ 18 and the factor eB “ c2{2R “ 9{4. The full metric is therefore given by

dS2
10 “

2

3

„

dS2
pAdS3q `

1

4
pdψ ` P q

2
`

9

4

´1

3
dS2

pH2
q ` dS2

pKE4q

¯

ȷ

. (6.14)

Taking P “ 3σ ` 2A, the metric

dS2
10 “

3

2

„

4

9
dS2

pAdS3q ` p
1

3
dψ ` σ `

2

3
Aq

2
`

1

3
dS2

pH2
q ` dS2

pKE4q

ȷ

(6.15)

is then exactly the metric given by Eq.(5.48) up to a scale.

6.2b KE2ˆKE6 Example

We then consider the example of GK geometry with n=4. The Y 9 is taken to be the

product of M1 “KE2 and M2 “KE6 with the Ricci tensor again taken to be

R1
ij “ l1g

1
ij, R2

ij “ l2g
2
ij, (6.16)

and the Ricci scalar is R “ 2l1 ` 6l2. Then the PDE Eq.(6.11) become

pl1 ` 3l2q
2

“ l21 ` 3l22, (6.17)

and we get l2 “ ´l1 or l2 “ 0. The former situation again admits negative l1 which corre-

sponds to the M2-Brane wrapped on H2. For KE6, l1 “ ´l2 “ ´8. Then the metric of H2 is
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scaled by 1/8. The Ricci scalar is given by R “ 32 and the factor eB “ c2{2R “ 16. Hence

the metric of AdS2ˆY 9 is given by

dS2
11 “ 16´2{3

¨

ˆ

dS2
pAdS2q ` pdψ ` P q

2
` 16

´1

8
dS2

pH2
q ` dS2

pKE6q

¯

˙

(6.18)

which with rearrangement gives

dS2
11 „

1

16
dS2

pAdS2q `
1

16
pdψ ` P q

2
`

1

8
dS2

pH2
q ` dS2

pKE6q (6.19)

which again up to a scale is the same as the result from the last chapter.

6.2c The Spindle Example

We now briefly explain how to recover the solution of the D3-brane wrapped on a spindle

mentioned in the section(5.5a) in the GK geometry which is discussed in [37]. Start with a

6d transverse metric of some 2-cycle fibered over KE4,

dS2
6 “

dρ2

Upρq
` Upρqρ2Dϕ2

` ρ2dS2
pKE4q, (6.20)

where Dϕ “ dϕ ` σ with dσ “ 2JKE and JKE is K:ahler form on KE4. The 6d metric

integrable complex structure and a closed K:ahler form given by

J “ ρDϕ ^ dρ ` ρ2JKE. (6.21)

Therefore, the transverse 6d space is K:ahler. And the Ricci form of the metric is given by

R “ dP, with P “

´

3p1 ´ Upρqq ´
ρ

2

dUpρq

dρ

¯

Dϕ. (6.22)

It is convenient to transform the coordinate to x “ 1{ρ and consider Upxq to be a polynomial

of x, and the metric becomes

dS2
6 “

1

x

´ dx2

4x2Upxq
` UpxqDϕ2

` dS2
pKE4q

¯

. (6.23)

The form of Upxq is constrained by the PDE Eq.(6.11). For the spindle case, we take

Upxq “ 1 ´
xpx ´ βq2

α
, (6.24)

hence P in the Ricci form is given by

P “ ´
2xpx ´ βq

α
, (6.25)
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and the Ricci scalar is given by

R “
8β2

α
x2. (6.26)

With this, we can construct the Y 7 of GK geometry with metric given by

dS2
pY 7

q “
1

4

´

dz ´
2βxpx ´ βq

α
Dϕ

¯

`
β2

α

´ 1

4xU
dx2 ` xUDϕ2

` xdS2
pKE4q

¯

. (6.27)

By choosing

β “
4

3a
, α “

256

729a2
, (6.28)

and changing the coordinate to y “ 4
9x

and ψ “ 3ϕ ` z we get the same expression for M7

as the section(5.5a),

dS2
pM7

q “
9

4y
dS2

pKE4q `
9

4qpyq
dy2 `

qpyq

16y2py2 ´ 2y ` aq
Dψ2

`
y2 ´ 2y ` a

4y2
Dz2. (6.29)

And the full AdS3ˆM7 solution is given by

dS2
10 “

4y

9

´

dS2
pAdS3q ` dS2

pM7
q

¯

. (6.30)

6.3 More about the GK geometry

6.3a The Cone Geometry

Similar to the Sasakian geometry, we can define a complex cone with complex dimension

n over Y2n`1 with a radial direction r such that acting the complex structure of the cone

gives the Killing vector IprBrq “ ξ.[34] The metric of the cone is given by

ds22n`2 “ dr2 ` r2ds22n`1. (6.31)

The complex structure two-form of the complex cone can be constructed by

I “ ´crdr ^ pdz ` P q ` r2eBJ (6.32)

where J is the complex structure over the transverse K:ahler manifold. Note that the two-

form is not closed, hence the complex cone is not K:ahler. The complex cone also admits a

holomorphic volume form

Ωpn`1,0q “ eizpeB{2rq2rdr ´ ircpdz ` P qs ^ Ωpn,0q (6.33)

where Ωpn,0q is the holomorphic volume form on the transverse K:ahler manifold. The holo-

morphic volume form is also not closed but is conformally closed.
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6.3b The Action and the C-Extrimization

Substitute the metric Eq.(6.8) and the off-shell 2-form Eq.(6.10) into the Y2n`1 action

Eq.(6.7), one gets the supergravity action restricted to the off-shell supersymmetric GK

geometry which is simply given by

S “

ż

Y2n`1

η ^ ρ ^ eJ . (6.34)

To impose the on-shell condition, relax the local condition to global by requiring the inte-

gration of the PDE to be satisfied. Via integration by part, one gets
ż

Y2n`1

η ^ ρ2 ^ eJ “ 0. (6.35)

Note for the Sasakian geometry, the Ricci is proportional to the K:ahler form. Then the

above integral gives the volume of the Sasakian manifold. Hence Sasakian geometry is not

GK.

To further constrain the solution, we can exert the flux quantizations as in the string

and M theory. The flux quantization of the self-dual 5-form field strength is given by
ż

ΣA

Fr5s “ NA (6.36)

for all 5-cycle ΣA in Y7 where NA is proportional to integers. For the 4-form field strength,

the flux quantization condition is given by
ż

ΣA

˚Fr4s “ NA (6.37)

for all 7-cycle ΣA in Y9 where NA is proportional to integers. With Eq.(6.10), these conditions

can be reformulated into a simpler form
ż

η ^ ρ ^ eJ (6.38)

is proportional to some integer. Hence the supersymmetric AdS3ˆY7 and AdS2ˆY9 solu-

tions to the supergravity are described by the action Eq.(6.34) subjects to two constraints

the PDE Eq.(6.35) and the flux quantization Eq.(6.38). [34]

There are also some interesting field theory aspects of the geometry that it is dual to the

c-extremization.[38] The AdS3ˆY7 solution is dual to a 2-dimensional conformal field theory

which admits a central charge. It can be calculated that the extremized action is propor-

tional to the central charge. And for AdS2ˆY9 solutions, they are dual to one-dimensional
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conformal quantum mechanics, which has the log of the partition function proportional to

the action.

There is also a Sasakian analogy, the volume minimization. [39] In the previous chapter

we obtained AdSˆSE solution for branes, we now relax the Sasaki-Einstein to the general

Sasakian geometry. The supergravity action restricted to the Sasakian geometry gives the

volume over the Sasakian manifold

S “

ż

M
η ^ eJ (6.39)

which is a functional of the Reeb vector. The action is minimized by the Sasaki-Einstein

manifold, leading to the solutions described in chapter3. The AdS5ˆSE5 solution is dual to

a four-dimensional conformal field theory. The volume minimization, as an analogue of the

c-extremization, is dual to the a-extremization. One can also generalize the idea of central

charge to three-dimensional conformal field theory in a similar way as the a-extremization.[40]
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Chapter 7

Discussion

In this article, we first introduced the supergravity theories and AdS-CFT correspon-

dence. Following that, we found the M2, M5, and D3 brane solutions of 11D and type IIB

supergravities on flat backgrounds. Then we discussed the branes on curved backgrounds.

The curved backgrounds preserving supersymmetry are classified via their special holonomy.

We then calculated the D3 and M2 branes on the apex of the Calabi-Yau manifolds which

yield asymptotic AdSˆSE solutions.

After that, we discussed branes wrapped on calibrated cycles which satisfies the super-

symmetry condition via topological twist. To study the D3 and M2 brane wrapping 2-cycles,

we first derived the 5D and 4D minimal gauged supergravity via dimension reduction from

the type IIB and 11D supergravity on the Sasaki-Einstein manifolds. We then used these

minimal gauged supergravities to obtain the solution of D3 and M2 branes wrapped on H2

and S2. For the D3-brane wrapping H2 case, we are able to get the solution which flows

from an AdS5 solution in the UV to an AdS3ˆH2 solution in the IR. The AdS-CFT dual

description is given by a 4D superconformal field theory in the UV flowing to a 2D conformal

field theory in the IR. For the D3-brane wrapping S2 case, we are not able to identify the

IR AdS3ˆS2 solution while the UV AdS5 solution is recovered, in the context of minimal

gauged supergravity. For the M2 brane, we get a similar situation but with the AdS4 solu-

tion flowing to the AdS2ˆH2. These AdS2 and AdS3ˆH2 solutions can be uplifted to the

11/10 dimension to obtain the AdS2ˆY 9 and AdS3ˆY 7 with Y 9 and Y 7 the SE7 and SE5

fibered over H2.

We then discussed the D3 and M2 branes wrapped on a spindle. We found that brane
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wrapping spindles do not preserve supersymmetry via topological twist, and hence do not

have a constant spinor over the spindle. We presented the AdS3ˆΣ2 and AdS2ˆΣ2 solution

for the D3 and M2 branes where Σ2 corresponds to the spindle. These solutions uplifted to

the 10/11D have the form of AdS3ˆY 7 and AdS2ˆY 9 with Y 7 and Y 9 the Sasaki-Einstein

manifold fibered over the spindle and is free from the conical singularities on the spindle.

For the M2 brane case, we are able to identify the UV solutions as AdS4 supersymmetric

and extremal black holes. For the D3 brane case, the UV solution is not yet known. These

spindle solutions open a new topic of branes wrapping on cycles. One can also look at branes

wrapping higher dimensional spindles.

In the above discussions in D3 and M2 branes wrapping 2-cycles and spindles, we have

obtained multiple AdS3ˆY 7 and AdS2ˆY 9 solutions which can be classified in the Gauntlett-

Kim geometry. We briefly introduced the GK geometry and performed calculations in the

GK geometry to recover the D3 and M2 branes wrapped on H2 and spindle solutions.

67



Bibliography

[1] E. Cremmer, B. Julia and J. Scherk, “Supergravity Theory in 11 Dimensions”, Phys.

Lett. B 76, 409 (1978).

[2] J.P. Gauntlett and S. Pakis, “The geometry of D= 11 Killing spinors”, arXiv:hep-

th/0212008 (2003).

[3] K. Becker, M. Becker, and J.H. Schwarz, “String Theory and M-Theory, A Modern

Introduction”, Cambridge University Press (2006).

[4] K.S. STELLE, “BPS Brane in Supergravity”, arXiv: hep-th/9803116v3 (2009).

[5] M.F.Sohnius, “Introducing Supersymmetry”, PHYSICS REPORTS 128, Nos. 2 & 3

(1985) 39—204.

[6] H. Lu, C.N. Pope and J. Rahmfeld, “A Construction of Killing Spinors on Sn”, arXiv:hep-

th/9805151 (1998).

[7] M.J.Duff, K.S. Stelle, “Multi-membrane Solutions of D= 11 Supergravity”, Phys. Lett.

B 253 (1991) 113-18.

[8] E. S. Fradkin and A. A Tseytlin “Effective Field Theory from Quantized Strings”,

Nucl.Phys.B 261 (1985)1-27.

[9] J. Polchinski, “String Theory”, Cambridge University Press (1998).

[10] P. K. Townsend, E. Bergshoeff and E. Sezgin, “Supermembranes and eleven-dimensional

supergravity”, Phys. Lett. B 189 (1987) 75-78.

[11] K. Becker, M. Becker, and A. Strominger, “Five Brane, Membranes, and Non-

Perturbative String Theory”, arXiv:hep-th/9507158 (1995).

68



[12] P. D. Francesco, P. Mathieu, and D. Senechal, “Conformal Field Theory Vol.1”, Springer

(1997).

[13] D. Simmons-Duffin, “TASI Lectures on the Conformal Bootstrap”, arXiv:1602.07982

(2016).

[14] F. Benini, “Brief Introduction to AdS/CFT”.

[15] O. Aharony, S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, “Large N Field Theories,

String Theory and Gravity”, arXiv:hep-th/9905111 (1999).

[16] J. Maldacena, “The Gauge Gravity Duality”, arXiv: 1106.6073 (2011).

[17] G. t’Hooft, “A Planar Diagram Theory for Strong Interactions”, Nuclear Physics B72

(1974) 461-473.

[18] J. Maldacena, “The Large N Limit of Superconformal field theories and supergravity”,

arXiv:hep-th/9711200 (1998).

[19] J. P. Gauntlett, “Branes, Calibrations and Supergravity”, arXiv:hep-th/0305074 (2003).

[20] J. Sparks, “Sasaki-Einstein Manifolds”, arXiv:1004.2461 (2010).

[21] J. Maldacena, C. Nunez, “Supergravity Description of Field Theories on Curved Mani-

folds and a No Go Theorem”, arXiv:0007018 (2000).

[22] J. Gutowski, G. Papadopoulos and P.K. Townsend, “Supersymmetry and Generalized

Calibrations”, arXiv:hep-th/9905156 (1999).

[23] M. Bershadsky, C. Vafa, and V. Sadov, “D-Branes and Topological Field Theories”,

arXiv:hep-th/9511222(1995)

[24] A. Buchel, and J. T. Liu, “Gauged supergravity from type IIB string theory on Y p,q

manifolds”, arXiv:hep-th/0608002 (2007).

[25] J. P. Gauntlett1 and O. Varela “Universal Kaluza–Klein Reductions of Type IIB to N

= 4 Supergravity in Five Dimensions”, arXiv:1003.5642 (2010).

[26] F. Benini and N. Bobev, ”Two-dimensional SCFTs from wrapped branes and c-

extremization”, arXiv:1302.4451v2 (2013).

[27] J. P. Gauntlett1 and O. Varela, “Consistent Kaluza-Klein Reductions for General Su-

persymmetric AdS Solutions”, arXiv:0707.2315 (2007).

69



[28] P. Ferreroa, Jerome P. Gauntlett, and J. Sparks, “Supersymmetric spindles”,

arXiv:2112.01543 (2021).

[29] P. Ferrero, J. P. Gauntlett,2 J. M. P. Ipina, D. Martelli, and J. Sparks, “D3-branes

wrapped on a spindle”, arXiv:2011.10579v2 (2021).

[30] J. P. Gauntlett, O. A. P. MacConamhna, T. Mateos, and D. Waldram, “Supersymmetric

AdS3 solutions of type IIB supergravity”, arXiv:hep-th/0606221 (2006).

[31] P. Ferreroa, J. P. Gauntlett, J. M. P. Ipina, D. Martelli, and J. Sparks, “Accelerating

Black Holes and Spinning Spindles”, arXiv:2012.08530v2 (2021).

[32] D. Cassania, J. P. Gauntlettb, D. Martelli and J. Sparks, “Thermodynamics of acceler-

ating and supersymmetric AdS4 black holes”, arXiv:2106.05571 (2021).

[33] J. P. Gauntlett, D. Martelli, and J. Sparks, “Fibred GK geometry and supersymmetric

AdS solutions”, arXiv:1910.08078, (2019)

[34] C. Couzensa, J. P. Gauntlett, D. Martellic, and James Sparks, “A geometric dual of

c-extremization”, arXiv:1810.11026v2 (2019).

[35] N.Kim, “AdS3 Solutions of IIB Supergravity from D3-branes”, arXiv:hep-th/0511029

(2006).

[36] J. P. Gauntlett and N. Kim, “Geometries with Killing Spinors and Supersymmetric AdS

Solutions”, arXiv:0710.2590 (2007).

[37] J. P. Gauntlett, N. Kim, and D. Waldram, “Supersymmetric AdS3, AdS2 and Bubble

Solutions”, arXiv:hep-th/0612253 (2007).

[38] J. P. Gauntletta, D. Martelli, and J. Sparks, “Toric geometry and the dual of c-

extremization”, arXiv:1812.05597 (2018)

[39] D. Martelli, J. Sparks, and S. Yau, “Sasaki–Einstein Manifolds and Volume Minimisa-

tion”, arXiv:hep-th/0603021 (2006).

[40] D. Martelli, J. Sparks, and S. Yau, “Sasaki-Einstein manifolds and volume minimisa-

tion,” arXiv:0603021 (2008).

70


