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Abstract

The notion of macrorealism and associated assumptions was first proposed by Leggett
and Garg in 1985 in the hope of testing quantum behaviour against classical intu-
ition. Mainly, there are three assumptions that a macrorealistic system should obey:
(i) physical quantities of a system should have definite values at all times (macro-
realism per se), (ii) it is possible to measure these quantities without disturbing the
future evolution of the system (non-invasive measurability), and (iii) future mea-
surements cannot affect the system in the past (induction). Similarly to Bell’s case,
Leggett and Garg derived a set of inequalities consisting of time correlation func-
tions, which a macrorealistic system should satisfy. In this review, we thoroughly
discuss the formulation and the validity of the Leggett-Garg framework and possi-
ble generalizations of the framework in testing larger systems. We also include the
discussion on how the Leggett-Garg inequalities can be combined to form a set of
necessary and sufficient conditions for macrorealism, a consideration that has been
lacking in many previous experiments, and comparisons between different versions
of macrorealism. We also present a quantum-mechanical formulation of the Leggett-
Garg inequalities to highlight what the LG framework actually tests. We have shown
that LGIs are only satisfied when the interference caused by measurements is suf-
ficiently small, and violations can be found across a variety of quantum systems.
Since measurements are inherently invasive on a quantum system, different experi-
ment set-ups would require separate justifications for non-invasiveness and they do
not hold in the general case. As a result, a clumsiness loophole always exists, where
a macrorealist would argue that violation is caused by measurements being invasive
after all, and macrorealism per se cannot be refuted. There are various proposals to
narrow or even close this loophole, but this proves to be challenging and needs to
be carefully assessed in future experiments.
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Chapter 1

Introduction

In recent years, means to probe the behaviour of quantum systems and certify quan-
tum coherence within have become increasingly in demand, and the ability to do
so is critical, especially in the blooming fields of quantum biology and quantum in-
formation processing. The difficulty being any interaction with the system through
measurements on a quantum system will collapse the wavefunction, hindering us
from assessing the existence of genuine quantum behaviour. This feature of quan-
tum mechanics is in stark contrast to classical objects from our intuition.

A novel approach has been proposed by Leggett and Garg in their 1985 paper[1],
initially to address the question: ”is the (quantum) flux there when nobody looks”.
Leggett and Garg have proposed a set of criteria that a classical system would obey,
and the conjunction of these criteria is known as macrorealism. Based on these as-
sumptions, a set of inequalities, known as the Leggett-Garg inequalities, are derived,
for which a macrorealistic system would satisfy. As discussed in this review, these
inequalities not only address the more philosophical questions, such as the compati-
bility between quantum mechanics and physical reality, but also serve as a coherence
witness in certifying the level of ”quantumness” present in any given system.

The Leggett-Garg inequalities, constructed from time correlation functions, take
different forms depending on the particular system we are trying to test, and the set
of necessary and sufficient conditions varies depending on the measurement scheme.
They can be viewed as a generalization to the Bell/CHSH inequalities, sometimes
referred to as the temporal version of Bell inequalities, but with a few caveats. Extra
considerations, as we will discuss later, must be taken in order to recreate the success
of Bell inequalities in disputing local realism.

This review will structure as follows. In Chapter 2, we review the derivation of
the Leggett-Garg inequalities as they were initially proposed, and together with a
discussion on the types of measurements that can be used in a Leggett-Garg test,
we aim to present the original LG framework, albeit incomplete, on testing quantum
systems. In chapter 3, we focus more on the notion of macrorealism, and discuss
how the LGIs can be combined to obtain a set of necessary and sufficient conditions
for macrorealism by utilizing Fine’s theorem, thereby completing the LG framework.
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Chapter 1. Introduction

We will also show how the complete LG framework can be readily extended to test
larger systems and note possible versions of macrorealism and comparisons between
them. We close by discussing a few recently performed experiments and an overview
of the LG framework in Chapter 4.
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Chapter 2

Laggett-Garg Framework

2.1 Motivations

Object permanence, the understanding that things continue to exist when they are
not seen, is developed by infants at as early as eight to nine months of age. The
idea that the properties of a system continue to behave in the same way when they
are not being observed as they do when they are being observed is buried deeply
in everyone’s intuition. The notion that the existence of reality is independent of
observation is known as realism, one of the trivial assumptions of classical physics.
This is rarely challenged until the development of quantum mechanics.

Realism implies that the variables describing a system must possess definite values
at all times, independent of observations, which then implies that an underlying
probability distribution describing these variables must exist. On the other hand, in
the Copenhagen interpretation of quantum mechanics, it is believed that quantum
systems exist in superpositions of states (described by wavefunctions) in between
observations (or measurements); therefore, reality will not be in a definite state
until it is observed. Furthermore, quantum theory assigns probabilities only to sets of
commuting variables, and an underlying probability distribution for all the variables
may not exist. As we will also discuss in Chapter 3, testing realism, at its core, is all
about probing the existence of underlying joint probability distribution.

This leads to the famous Einstein-Podolsky-Rosen (EPR) paradox[2]. Consider a
pair of entangled spin 1

2
particles which have spin in the same direction and are

spatially separated by some arbitrary distance. The spin of the particles are mea-
sured simultaneously along some axis by two detectors D1 and D2 with outcomes
(s1, s2) ∈ {±1} such that s1 = s2. It is argued that if the entangled system is not in a
definite state before the measurements, then there must be instantaneous communi-
cation between the two particles when they are being measured to always produce
the same outcome. Einstein argued that this instantaneous communication must
violate locality, which is the idea that the influence of an event at one point can
not travel faster than the speed of light, therefore, the measurement outcomes must
have been predetermined by local hidden variables which are only revealed during
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2.1. MOTIVATIONS Chapter 2. Laggett-Garg Framework

Figure 2.1: A simple illustration of the experimental set-up in the EPR paradox and Bell
experiment. The source generates two entangled particles in a way that their spins will
always point in the same direction. The particles then move in the opposite direction
towards the two detectors, D1 and D2, which are spacelike separated. Both detectors
will measure the incoming particle’s spin along a certain direction, and the outcomes
will be ±1.

the measurements. Based on Einstein’s assumptions regarding locality, the paper
then claims that quantum mechanics is, in fact, ”incomplete”, and that the local hid-
den variables are there to protect the ”element of reality”. This is known as the local
hidden variable theory, an alternative theory to the Copenhagen interpretation to
protect (local) realism.

Both theories predict the same measurement outcomes in the EPR paradox, there-
fore, these two views of reality remain at a standstill. However, in 1964, John Bell
demonstrated that they could be distinguished with a more refined measurement
scheme than the one described in the EPR paradox. In this set-up, both detectors
D1, D2 are able to measure the spin of the particle along three co-planar axis, α, β, γ,
which are separated by 120◦. During each measurement, each detector will choose
a random axis to produce an outcome of either +1 or −1. As we will show below,
there is a discrepancy between the probability of obtaining the same outcome on D1

and D2, e.g. p(s1 = s2), as predicted by these two theories.

According to the local hidden variable theory, the outcome is determined when
the particles are generated. Then, there are only 23 = 8 possible definite states the
particles could be in, they are (+1,+1,+1), (+1,+1,−1), (+1,−1,+1), (+1,−1,−1),
(−1,+1,+1), (−1,+1,−1), (−1,−1,+1) and (−1,−1,−1), where each of the three
numbers corresponds to the measurement outcome in axis α, β, γ respectively. Out
of the eight possibilities, there are two cases, namely (+1,+1,+1) and (−1,−1,−1),
which will guarantee p(s1 = s2) = 1 regardless which axis each detector chooses. In
the remaining six cases, it can be shown that p(s1 = s2) = 5

9
, see Table 2.1 for an

example.

Therefore, the probability of both detectors giving the same outcome according to
the local hidden variable theory is:

p(s1 = s2) =

(
2

8
× 1

)
+

(
6

8
× 5

9

)
=

2

3
≈ 0.667. (2.1)

Now we calculate the same probability according to the Copenhagen interpreta-
tion. Without affecting the conclusion of the experiment, we assume that D1 per-
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(D1) Axis α (D1) Axis β (D1) Axis γ
(D2) Axis α Same Different Same
(D2) Axis β Different Same Different
(D2) Axis γ Same Different Same

Table 2.1: This is a list comparing the measurement outcomes from two detectors D1

and D2 in a Bell experiment for the initial state (+1,−1,+1) according to local hidden
variable theory. Each detector will choose one random axis to measure along, and it
shows that, out of the nine possible pairs of the chosen axis, five pairs will return the
same result. Given that the axis is chosen on random, there is a 5

9 probability of both
detectors measuring the same result. The same probability hold for all the initial states
where the spins along the three directions have only two of the same value.

forms the measurement first at t = t0, and then D2 performs the measurement at
t = t0 + δ, with the distance d = δ × c much smaller than the spatial separation
between the two particles, e.g. locality will still be violated. In this case, as soon as
D1 makes the measurement, the wavefunction will collapse, and the particles will be
in a definite state. Regardless of the chosen axis of detector D1, detector D2 would
have chosen the same axis with a probability of p(same axis) = 1

3
, which will then

yield the probability p(s1 = s2| same axis) = 1, since the two particles are entangled.
If D1 and D2 has chosen different axis for their measurements, with a probability of
p( different axis) = 2

3
, then probability p(s1 = s2| different axis) is given by the pro-

jection of spin measured by D1 onto the chosen axis of D2, and quantum mechanics
tells us that p(s1 = s2| different axis) = cos

(
120◦

2

)2
= 1

4
. Thus, the probability of both

detectors giving the same outcome according to the Copenhagen interpretation is
equal to:

p(s1 = s2) =

(
1

3
× 1

)
+

(
2

3
× 1

4

)
=

15

36
≈ 0.416. (2.2)

This discrepancy between the predicted value of the probability allows us to test
the existence of local realism experimentally.

A set of inequalities can also be derived from the experimental set-up above to
serve as a more practical test for local realism. We now denote the measurement
outcomes as siX , where i ∈ {1, 2} denotes the corresponding detectors Di and X ∈
{α, β, γ} denotes the axis chosen by detector Di.

From the eight possibilities according to the local hidden variable theory listed
above, it is straight forward to see that the values of s1X have at least 2 of the same
value, therefore, the union of the events {s1α = s1β}, {s1β = s1γ} and {s1α = s1γ} must
equal to the entire sample space. Therefore the following equation must be true (see
also Table 2.2):

p(s1α = s1β) + p(s1β = s1γ) + p(s1α = s1γ) ≥ 1. (2.3)

We have been considering two entangled particles which have their spin perfectly
correlated, and this implies s1α = s2α, when substituted into inequality (2.3), gives
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2.1. MOTIVATIONS Chapter 2. Laggett-Garg Framework

(s1α, s
1
β, s

1
γ) p(s1α = s1β) +p(s1β = s1γ) +p(s1α = s1γ) =

(+1,+1,+1) 1 1 1 3
(+1,+1,−1) 1 0 0 1
(+1,−1,+1) 0 0 1 1
(+1,−1,−1) 0 1 0 1
(−1,+1,+1) 0 1 0 1
(−1,+1,−1) 0 0 1 1
(−1,−1,+1) 1 0 0 1
(−1,−1,−1) 1 1 1 3

Table 2.2: This is a list of the probabilities that measurements of spin along two of the
three possible directions will have the same value. All of the 23 = 8 possible initial states
in a Bell experiment according to the local hidden variable theory are considered here.
The last column on the right is the sum of the probabilities, and it is easy to see that the
sums are either 1 or 3.

inequalities of the form:

p(s1α = s2β) + p(s1β = s2γ) + p(s1α = s2γ) ≥ 1. (2.4)

These inequalities are known as the Bell inequalities. If the system we are consid-
ering is perfectly anti-correlated, e.g. s1β = −s2β, we can find the new set of Bell
inequalities by replacing the equal signs with not equal signs within the arguments
of the probabilities.

It is also worth noting that the derivation of the Bell inequalities given above is
solely based on a complete list of permutations of 3 dichotomic random variables,
which take on values of ±1. The data set we are considering here could have any
reasonable context, they could be the results of three fair coin tosses or they can
be devoid of any statistical meaning. Either way, inequality (2.3) appears trivially
satisfied, as shown in Table 2.2. However, the Bell inequalities (2.4) are violated by
quantum mechanics. As calculated above, p(siX = sjY ) =

1
4

for i ̸= j and X ̸= Y , this
results in the left hand side of the Bell inequalities (2.4) to add up to 3

4
which means

the inequality is violated. This is a significant result which proves that quantum
mechanics is incompatible with the notion of local realism described by Einstein.

There is also a generalisation of the Bell inequalities developed by John Clauser,
Michael Horne, Abner Shimony and Richard Holt (CHSH), which applies to situ-
ations where the assumption of perfect correlations or anti-correlations no longer
holds. For the derivation of CHSH inequalities, we consider the following set-up
and notation. Similar to the previous set-up, we have a spatially separated pair of
entangled particles whose spins are highly-correlated. Spin on the first particle are
measured along the axis a or a’, we denote the measurement outcomes as s1 and
s2 respectively with values of ±1. Similarly, the second particle’s spin is measured
along axis b and b’ with outcomes s3 and s4. Following the idea of local hidden vari-
able theory, there are two cases: either s1 + s2 = 0 and s1 − s2 = ±2, or s1 − s2 = 0

6
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and s1 + s2 = ±2. We can define a function S as :

S ≡ (s1 + s2)s3 + (s1 − s2)s4 = s1s3 + s2s3 + s1s4 − s2s4 = ±2, (2.5)

such that the following holds,

|S| = |(s1 + s2)s3|+ |(s1 − s2)s4| = |s1s3 + s2s3 + s1s4 − s2s4| ≤ 2. (2.6)

Assuming an underlying probability distribution p(s1, s2, s3, s4) exists, then we can
immediately obtain the following inequality from inequality (2.6):

|S| ≤
∑

s1,s2,s3,s4

|s1s3 + s2s3 + s1s4 − s2s4|p(s1, s2, s3, s4) ≤ |C13 + C23 + C14 − C24| ≤ 2,

(2.7)
where we have introduced the correlation functions Cij defined as,

Cij =
∑

s1,s2,s3,s4

sisjp(s1, s2, s3, s4). (2.8)

Inequality (2.7) is one of the CHSH inequalities, and there are three more which
can be obtained by permuting the minus sign to three other possible locations. Just
like the Bell inequalities, examples of violations of the CHSH inequalities by quantum
systems can be readily found; see ref [3; 4; 5]. Arthur Fine later published a paper[6]
and proved that Bell and CHSH inequalities are, in fact, necessary and sufficient
conditions for local realism. This result is known as Fine’s theorem, which is discussed
in detail in Chapter 3. Since their invention, experimental violations of Bell and
CHSH inequalities have been tested on a variety of quantum systems, together, these
results suggest quantum mechanics indeed violate Einstein’s notion of local realism,
even though the implications of the violation is still heavily debated[7].

To be explicit, Einstein, Podolsky and Rosen, in their original paper, gave a clear
definition of their notion of realism, commonly referred to as EPR Criterion of Real-
ity[2].

If, without in any way disturbing a system, we can predict with certainty
(i.e., with probability equal to unity) the value of a physical quantity,
then there exists an element of reality corresponding to that quantity.

In quantum mechanics, a quantity can only be determined without disturbing the
system only if the quantum state is an eigenstate of said quantity, and the value will
be the corresponding eigenvalue of that state. However, for a pair of incompatible
quantities, e.g., position and momentum, a quantum state, which is an eigenstate
of both quantities simultaneously, is simply not permitted. In other words, joint
probabilities for position and momentum are ill-defined in any given quantum state,
according to quantum mechanics. This is why Bell and CHSH inequalities can be
violated since the existence of such joint probabilities is a key assumption in both
derivations. Another important issue to address is the violation of locality. The

7



2.1. MOTIVATIONS Chapter 2. Laggett-Garg Framework

notion of locality is motivated by Einstein’s special theory of relativity, however, a
violation of locality does not imply a violation of causality. The entangled particles
with their spins correlated, as mentioned above, cannot be used to send information
between the locations of the detectors, which are space-like separated. Any ex-
change of information would still require a classical channel, hence, causality is not
violated. In this context, quantum mechanics is often referred to as non-local since
the entangled states with non-local (not predetermined) correlation are allowed. It
is in this way, we conclude that quantum mechanics violate local realism.

Violations of Bell and CHSH inequalities do not prove the Copenhagen interpre-
tation of quantum mechanics, but instead, they allowed us to rule out the local
hidden variable theories. The discussions and conclusions sparked other theories,
such as the de Broglie-Bohm theory of quantum mechanics[8] and the many-worlds
interpretation of quantum mechanics, also known as the Everett interpretation[9].
Ultimately, the EPR paradox and Bell/CHSH tests deepened the understanding of
the underlying nature of quantum mechanics and enticed further developments in
this field, and the implications of their work on the foundations of quantum theory
are still being debated to date.
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Chapter 2. Laggett-Garg Framework 2.2. ASSUMPTIONS OF MACROREALISM

2.2 Assumptions of Macrorealism

All of our discussions so far are in fact part of a bigger question: how and when
do classical properties emerge from quantum mechanics? In exploring where the
classical limit lies, we inevitably wonder if macroscopic coherence is achievable, a type
of phenomenon that macroscopic systems composed of very many atoms exhibiting
quantum behaviour and existing in a superposition of macroscopically distinct state.
If it is possible to achieve this, how would we then test the ”quantumness” in a
system and prove the existence of said phenomenon? This problem is addressed in
a 1985 paper by Leggett and Garg[1].

Leggett and Garg started off by proposing a set of assumptions to their intuition
of the macroscopic world, and they are as follows[1]:

1. Macroscopic realism per se (MRps): a macroscopic system with two or more
macroscopically distinct states available to it will at all times be in one or the
other of these states.

2. Noninvasive measurability (NIM): it is possible, in principle, to determine the
state of the system with arbitrarily small perturbation on its subsequent dy-
namics.

In more-recent papers[10], Leggett and Garg added the third assumption for com-
pleteness, but it is rarely contested:

3. Induction: the outcome of a measurement on the system cannot be affected by
what will or will not be measured on it later.

The conjunction of these assumptions is coined the name macrorealism (MR).

A fitting example would be that of the well-known Schrödinger’s cat. According to
quantum mechanics, the cat, exhibiting macroscopic coherence, must be simultane-
ously dead and alive before the wavefunction collapses as we open the box. Under
a theory which admits the assumptions of MR, however, the cat must be either dead
or alive at any given time, and it can be measured in a way that neither affect nor
affected by the final fate of the poor cat[11]. Therefore, this notion of macrorealism
aligns with our intuition of physical reality but strongly contradicts the predictions
of quantum mechanics.

Note that the reason that the first assumption is commonly referred to as MRps is
to distinguish it with MR, which often thought of as ”macrorealism in the broader
sense”. There are many criticisms and debates regarding these assumptions’ exact
interpretations and validity, especially the first two, MRps and NIM. We will tem-
porarily ignore these issues until Chapters 3 and follow the arguments of the origi-
nal paper to derive a set of inequalities similar to those of Bell and CHSH. The main
takeaway from these assumptions is that MR, as Leggett and Garg initially presented
them, aligns with the notion of realism we have been discussing so far, that the phys-
ical quantities corresponding to a macrorealistic system should be deterministic at
all times, independent of measurements.

9



2.3. DERIVATION OF LGIS Chapter 2. Laggett-Garg Framework

2.3 Derivation of LGIs

Consider a time-evolving system where we measure a single dichotomic variable,
Q(t), at times, ti, and we will assume that t1 < t2 < t3.... For simplicity, we will
denote Q(ti) as Qi. And, to be consistent with our previous notation, the outcome of
the measurements of Qi will be denoted as si, similar to the Bell case, can be either
+1 or −1.

Then it immediately follows from the conclusion of the last subsection, for a
macrorealistic system, joint probability distributions exists, e.g., p(s1, s2), p(s1, s2, s3),
and also are consistent with one another, e.g.,∑

s1=±1

p(s1, s2, s3) = p(s2, s3). (2.9)

We can then also define averages ⟨Qi⟩ and correlation functions, Cij,

Cij = ⟨QiQj⟩ =
∑

si,sj=±1

sisjpij(si, sj). (2.10)

Consider now we perform three separate experiments with the same system, where
we measure at t = t1, t2, t = t2, t3 and t = t1, t3 only in each experiment to obtain
C12, C23 and C13. Then for a macrorealistic system, these correlation functions can
be shown to obey the following inequalities:

1 + C12 + C23 + C13 ≥ 0 (2.11)

1− C12 − C23 + C13 ≥ 0 (2.12)

1− C12 + C23 − C13 ≥ 0 (2.13)

1 + C12 − C23 − C13 ≥ 0 (2.14)

These are known as the three-time Leggett-Garg inequalities (LGIs, also abbreviated
as LG3s, for reasons to become apparent later), and they have the same mathemati-
cal structure as the Bell inequalities.

Following the arguments of Leggett in his 2008 paper[10], we can derive this set of
inequalities as follows. Under the assumption of MRps and NIM, Qi, for i ∈ {1, 2, 3},
will always take on a definite value of ±1, irrespective of whether Qi is measured
or not, provided that the first measurement of every pair in each experiment are
measured in a non-invasive way. Also, the value of si is unaffected by what will or
will not be measured at a later time, according to the assumption of induction. Thus,
we can conclude that for each run, quantities QiQj exist, with Qi having the same
value for any tj.

Provided that quantities Qi and QiQj are well-defined for all i, j ∈ {1, 2, 3} and
i ̸= j, we can then define functions of the form below:

Qsum = Q1Q2 +Q2Q3 +Q1Q3, (2.15)

10
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s1 s2 s3 +Q1Q2 +Q2Q3 +Q1Q3 = Qsum

+1 +1 +1 +1 +1 +1 3
+1 +1 -1 +1 -1 -1 -1
+1 -1 +1 -1 -1 +1 -1
+1 -1 -1 -1 +1 -1 -1
-1 +1 +1 -1 +1 -1 -1
-1 +1 -1 -1 -1 +1 -1
-1 -1 +1 +1 -1 -1 -1
-1 -1 -1 +1 +1 +1 3

Table 2.3: Values of Qsum for possible combinations of values of si. It is straight forward
to confirm that they are between 3 and −1.

s1 s2 s3 −Q1Q2 −Q2Q3 +Q1Q3 = Q′
sum

+1 +1 +1 -1 -1 +1 -1
+1 +1 -1 -1 +1 -1 -1
+1 -1 +1 +1 +1 +1 3
+1 -1 -1 +1 -1 -1 -1
-1 +1 +1 +1 -1 -1 -1
-1 +1 -1 +1 +1 +1 3
-1 -1 +1 -1 +1 -1 -1
-1 -1 -1 -1 -1 +1 -1

Table 2.4: Values of Q′
sum for possible combinations of values of si. If we consider other

functions of the same form as Q′
sum, found by moving the plus sign to other two possible

positions, we will find essentially the same table but with the rows on the right half of
the table swapped places. In all cases, a lower bound of −1 is always trivially satisfied.

or,
Q′

sum = −Q1Q2 −Q2Q3 +Q1Q3. (2.16)

These functions will have different values depending on values of Qi. By consider-
ing the possible values of Qsum and Q′

sum, by trivial algebra, we find that (see Table
2.3 and Table 2.4):

3 ≥ Qsum ≥ −1, (2.17)

the same is also true for Q′
sum, as well as the two more functions found by moving

the plus sign to other possible positions.

Here we note that, even if we have prepared all of our experiments in the same
way, that they are all in the exact same initial state at t = t0, we may still get a
statistical spread of values ±1. For it is possible that there are underlying variables at
play which are not fixed by our preparation procedure[12]. Therefore, the essential
and experimentally accessible quantities will be the expectation values of the form
⟨Qi⟩ and ⟨QiQj⟩. Then by considering the expected value of the functions Qsum and
Q′

sum, we find the inequalities of the form:

⟨Qsum⟩all ≡ ⟨Q1Q2⟩all + ⟨Q2Q3⟩all + ⟨Q1Q3⟩all ≥ −1, (2.18)

11
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where the subscripts, ⟨...⟩all, can have two equivalent meanings. They could indicate
that these values correspond to the average taken over all runs of the experiment,
i.e., we are merging results from all three experiments. Or equivalently, they could
be thought of as indicating a single experiment, where we measure at all three times.
Either way, we disregard which measurements took place in each experiment and
consider all data equally. Note that we have left out the upper bound in inequality
(2.18), it is irrelevant in experimental studies since only the lower bound is found
violated by quantum mechanics[11].

Inequality (2.18) looks very similar to the LGI (2.11) already. However, there is
one crucial difference. When considering the case where measurements are per-
formed at all three times in a single experiment, it is easy to see that inequality
(2.18) must always hold, even in quantum mechanics. Since regardless of the fact
whether the quantity Q(t) has deterministic values or not prior to a measurement,
the measurement outcomes must be definitive, and there exist joint probabilities of
outcomes for a sequence of (commuting) performed measurements.

To get to the LGIs, we need to invoke the assumption of NIM. If both measurement
at times, t = t1 and t = t2, are performed in a non-invasive way, such that future
evolution of the system is not at all affected the first two measurements, then the
measurement at time t = t3 should have the same outcome, regardless of measure-
ments at t = t1 or t = t2 are actually performed. Therefore, under the assumption of
NIM, we have that:

Cij ≡ ⟨QiQj⟩i,j = ⟨Qi, Qj⟩all, (2.19)

where the subscript ⟨...⟩i,j indicate that measurements are taken twice at t = ti and
t = tj only. Here we stress that the commutation functions, Cij, that appear in LGIs
are valid when measurements are taken at labelled times only.

By substituting equation (2.19) into inequality (2.18) and similar inequalities ob-
tained by considering Q′

sum, we arrive at the usual three-time LGIs (inequalities
(2.11)-(2.14)). Unlike inequality (2.18), which states a trivial algebraic feature that
the measured outcomes of Qi from a single experiment must satisfy, LGIs relate the
results from three distinct experiments in a highly non-trivial way.

Violation of LG3s can be found if we consider the following set-up: a spin-1
2

par-
ticle evolving under a Hamiltonian Ĥ = 1

2
ωσ̂x, and the spin is measured along the

z-direction, Q̂ = σ̂z. The quantum analogue of the classical correlation function,
Cij, according to Fritz[13], can be found to be half the expectation value of the
anti-commutator of the observables when using projective measurements (see dis-
cussions later),

Cij =
1

2

〈{
Q̂i, Q̂j

}〉
, (2.20)

In this case, it can be shown that the correlation functions take the simplified form[11]:

Cij =
1

2

〈
Q̂iQ̂j + Q̂jQ̂i

〉
= cos(ω(tj − ti)). (2.21)

12
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Figure 2.2: A plot of the values of the left-hand side of the LG3s, for a simple qubit-like
system, with the region below the bound of zero coloured red, indicating a violation. The
four LG3s are reduced to two non-trivial ones, namely LG3a (2.22) and LG3b (2.23). As
can be seen in the plot, LG3a is violated for π

2 < ωt < 3π
2 and LG3b is violated in regions

ωt < π
2 and ωt > 3π

2 . Interestingly, there are cases where for certain value of ωt, namely
ωt = π

2 , π,
3π
2 , the LG3s are not violated.

For simplicity, we consider the case t2−t1 = t3−t2 = t. Then the LGIs (2.11)-(2.14)
simplify to:

(LG3a)1 + 2cos(ωt) + cos(2ωt) ≥ 0, (2.22)

(LG3b)1− 2cos(ωt) + cos(2ωt) ≥ 0, (2.23)

1− cos(2ωt) ≥ 0. (2.24)

Where we note inequalities (2.13) and (2.14) both simplify to the same inequality
(2.24) and are always trivially satisfied. By plotting the inequalities (2.22) and
(2.23) as a function of ωt, we find that LGIs are violated by this system at all times,
except for specific discrete values of ωt, see Figure 2.2.

We have now successfully found a case where the LGIs are violated. The exact im-
plications of violations of LGIs, however, are still heavily debated; see later chapters
for more discussion. Ever since the first example of violation given in the original
paper by Leggett and Garg[1], violations of the LGIs are found experimentally on a
variety of quantum systems, see Refs [14; 11; 15; 16].

13
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2.4 Alternative Derivation of LG3s

In this subsection, we consider an alternative derivation of the LG3s, a perhaps more
explicit way of arriving at the same set of conditions.

Again, following the assumption of MRps, the variable Q(t) will take definite val-
ues at all times. We can then define the two-time probabilities as:

pij(si, sj) =
∑

sk=±1

pij(s1, s2, s3), (2.25)

where the subscripts pij(...), again, signify that the probability is obtained by per-
forming measurements at times t = ti and t = tj only.

Then, under the assumptions of NIM and induction, we can expect that the prob-
ability of the measurement outcomes should be independent of whether earlier or
later measurements are made. This leads to the following expression:

p12(s1, s2, s3) = p13(s1, s2, s3) = p23(s1, s2, s3) ≡ p(s1, s2, s3), (2.26)

where p(s1, s2, s3) is the underlying joint probability distribution.

The correlation functions, Cij, can now be written in terms of the joint probability
distribution p(s1, s2, s3):

C12 = p+++ + p++− − p+−+ − p+−− − p−++ − p−+− + p−−+ + p−−−, (2.27)

C23 = p+++ − p++− − p+−+ + p+−− + p−++ − p−+− − p−−+ + p−−−, (2.28)

C13 = p+++ − p++− + p+−+ − p+−− − p−++ + p−+− − p−−+ + p−−−, (2.29)

where p+++ is the shorthand for p(+1,+1,+1), etc.

Consider the sum of Cij:

C12 + C23 + C13 = 3p+++ − p++− − p+−+ − p+−− − p−++ − p−+− − p−−+ + 3p−−−

= −1 + 4(p+++ + p−−−)

(2.30)

In the second line of the equation, we have used the fact that the sum of the proba-
bilities over the entire sample space must equal one.

With a little rearranging, and the requirement that probabilities must be non-
negative, we immediately obtain the inequality:

1 + C12 + C13 + C23 ≥ 0. (2.31)

The rest of the LG3s can be found similarly by consider the following quantities:
−C12 − C13 + C23, −C12 + C13 − C23 and C12 − C13 − C23.

14
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2.5 Families of LGIs

There are other LGIs that could be found when we consider different numbers of
measurements.

First and foremost, there is the set of twelve two-time Leggett-Garg inequalities
(LG2s) of the form:

1 + si⟨Qi⟩+ sj⟨Qj⟩+ sisjCij ≥ 0, (2.32)

where si has the usual meaning of the measurement outcome of variable Q at t = ti.
The LG2s are important because, as it turns out, the four LG3s alone are not suf-
ficient for MR at three-time, the LG2s are a subset of conditions which are both
necessary and sufficient for macrorealism at the three-time[17], just like Bell’s in-
equalities to local realism (see also Chapter 3 for a full proof). We note here that
for marcrorealism at two-time only, the LG2s serve as necessary and sufficient con-
ditions.

Then we could also easily extend to find four-time Leggett-Garg inequalities, LG4s,
which, just like LG3s to Bell inequalities, are of a similar structure to the CHSH
inequalities. The LG4s consist of a total of eight inequalities of the form:

−2 ≤ C12 + C23 + C34 − C14 ≤ 2, (2.33)

the other six inequalities can be found by moving the minus sign to three other pos-
sible locations. Notice the different pairing of the indices of the correlation functions
compared to the CHSH inequalities.

Recall that during the derivation of LG3s (2.11)-(2.14) presented in the previous
two subsections, we have noted that only the lower bound could be violated by
quantum mechanics. The same is not true for the case of four-time. To see this, we
consider the same two-level system as in the case of LG3s. Using equation (2.21),
where we make the interval between consecutive measurements the same as before,
then eight LG4s reduce to:

(LG4a)− 2 ≤ 3cos(ωt) + cos(3ωt) ≤ 2, (2.34)

−2 ≤ cos(ωt) + cos(3ωt) ≤ 2. (2.35)

Where six of the LG4s reduce to inequality (2.35), and are always satisfied for all
values of ωt.

We can also generate new sets of inequalities by permutation of the time-indices.
To be explicit, consider the following set of eight inequalities:

−2 ≤ C14 + C13 + C24 − C23 ≤ 2, (2.36)

the rest can be found by moving the minus sign around, as before. This set of
inequalities reduce to four more distinct inequalities which are not trivially satisfied:

(LG4b)− 2 ≤ cos(3ωt) + 2cos(2ωt)− cos(ωt) ≤ 2, (2.37)
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Figure 2.3: A plot of the values of the LG4s, for a simple qubit-like system, same as
Figure 2.2. Only the non-trivially satisfied inequalities are plotted here. The original
form of LG4s only reduces to two inequalities, labelled LG4a (2.34), and represented by
the solid black line . By considering other permutations of the time indices, we are able
to find four more inequalities, labelled LG4b (2.37) and LG4c (2.38), plotted with blue
dashed lines. Two things can be noticed in this plot: firstly, both the upper bound and
the lower bound can be violated by the system; also, there are at least one inequality
violated at all values of ωt, except for multiples of π

2 , which is also seen in the violation
pattern of LG3s of the same system.

for the case of a minus sign being in front of C23, and,

(LG4c)− 2 ≤ −cos(3ωt) + 2cos(2ωt) + cos(ωt) ≤ 2, (2.38)

for the case of a minus sign being in front of C14.

Quantities in inequalities (2.34), (2.37), (2.38) are plotted as a function of ωt, as
shown in Figure 2.3. A few comments are in order. Firstly, notice that both bounds
are violated by the system, therefore, both bounds are relevant and neither bound
cannot be ignored completely, this also justified the counting of LG4s compared to
LG3s, where we consider LG4s as eight inequalities and only four for the case of
LG3s. It turns out that this is a general feature; both bounds are relevant when
the number of measurement times is even, see equation (). Additionally, Figure
2.3 shows the same violation pattern of the LG3s, i.e., LG4s are only satisfied at
values of ωt = π

2
, π, 3π

2
, but this conclusion cannot be drawn if we only consider the

original set of eight LG4s given by (2.33). This is a indication that the LG4s alone
cannot be sufficient conditions for macrorealism, for we know that the system is not
macrorealistic. Finally, as to the particular reason why no violations are found for ωt
equal to multiples of π

2
, at the corresponding times, the state of the system is already

an eigenstate of the measurement operator[18], and a QND measurement[19] is
performed.
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The forms of LG2s, LG3s and LG4s follow a particular pattern and can be general-
ized by the n-measurement Leggett-Garg strings[20]:

Kn = C12 + C23 + ...+ C(n−1)n − C1n. (2.39)

Since each correlation function is bounded from above and below, e.g., −1 ≤ Cij ≤
1, with ±1 corresponding to perfect correlation and anti-correlation. We can then
conclude that Kn is also bounded from above and below; by considering even and
odd n separately, we arrive at the following formula for a family of LGIs:

−n ≤ Kn ≤ n− 2 for n ≥ 3, odd;
−(n− 2) ≤ Kn ≤ n− 2 for n ≥ 4, even.

(2.40)

In this formulation, we see that the set of LG3s we have been dealing with in the
previous subsections are, in fact, the negative version of K3 considered here, which
is, of course, mathematically equivalent. For the remaining of the paper, we will use
the form of LG3s given by the formula (2.40) above for consistency. To be explicit,
we redefine the LG3s to be:

−C12 − C23 − C13 ≤ 1 (2.41)

C12 + C23 − C13 ≤ 1 (2.42)

C12 − C23 + C13 ≤ 1 (2.43)

−C12 + C23 + C13 ≤ 1 (2.44)

Then, in our example of violations of LG3s, the only relevant bound is now the upper
bound of 1, and this trend continues for all odd n, namely, only the upper bound of
n − 2 for Kn is of interest. The LG4s given above are already of the form of the
formula (2.40), and we stress again that for even n, both the upper bound and the
lower bound could be potentially violated.

The Leggett-Garg strings do not, however, form complete sets of LGIs. We can
utilize various symmetry properties[11] to derive further inequalities. If we redefine
the variable Q to −Q independently at each time, the inequalities will still hold,
this can be shown easily by considering Table 2.3 and 2.4. For a detailed example
of this procedure, starting with K3, with the minus sign originally in front C13 and
corresponds to inequality (2.42), if we flip the sign of Q1 or Q3, i.e., indices which
one of the two correlation functions that having that index already has a minus sign
in front, we then immediately obtain inequalities (2.43) and (2.44), which we note
have the same number of minus signs as the inequality we started with. If we flip the
sign of Q2, i.e., indices which all related correlation functions are positive, we then
obtain (2.41), which have two more minus signs. We can repeat this procedure for
any n, and a set of inequalities will be completely found after we have considered
all possible sign changes. Notice how the number of minus signs always goes up
in twos, which means the number of minus signs in each inequality of a complete
set of LGIs will always be an odd number. Also, for even n, inequalities with nm
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minus signs are equivalent to those with n− nm minus signs due to the fact that the
inequalities are symmetric around 0.

Using the procedure described above, we can easily find complete sets of LGIs
of any order. For the case of n = 4, it can be easily checked that the procedure
yields the LG4s (2.33) given above. For n = 5, we will find that there are a total
of 5 + 10 + 1 = 16 inequalities in the set of LG5s, with the numbers on the left
corresponds to the number of inequalities found corresponding to the number of
minus signs nm = 1, 3, 5 respectively.

However, as noted in later a later paper by Avis et al. [21], the LGIs found by
the method above, for n ≥ 4, are, in fact, reducible in the sense that they can be
obtained by combining the original LG3s, which are referred to as triangle LGIs. The
paper successfully shows the relation between LGIs and the facet inequalities for
the geometry of cut polytopes[22]. In doing so, new irreducible LGIs can be found;
particularly, for the case of n = 5, we have the ”pentagon LGI”,∑

1≤i≤j≤5

Cij + 2 ≥ 0. (2.45)

The pentagon inequality can be violated even when all the relevant LG3s are sat-
isfied; see discussions in Chapter 4. This result does not, however, mean that the
reducible higher-order LGIs are not interesting; there are situations in which their
existence is useful, e.g., in addressing the clumsiness loophole[23].
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2.6 Types of Measurements

The de Broglie-Bohm theory of quantum mechanics, as known as the ”pilot wave”
theory, by introducing new hidden variables, namely the position of the particles, to
the wavefunctions while leaving the wavefunctions untouched, managed to repro-
duce all the standard experimental predictions of quantum mechanics and maintain
the notion of realism at the same time. Based on this, Leggett, in his 2008 paper[10],
has argued that:

[...], we shall never attempt to test realism alone, but always in conjunc-
tion with one or more other prima facie plausible assumptions about the
world.

With this remark, in the case of macrorealism, the assumption of non-invasive
measurability then becomes particularly important. As a side note, this justifies the
name of the first assumption, macrorealism per se. Therefore, roughly speaking,
macrorealism in the broader sense is a statement about the classical systems that
observables process definite values at all times (realism) and measurements do not
disturb the state of the system (NIM).

The requirement of non-invasive measurements, however, is challenging to imple-
ment experimentally; many experiments have done so, but achieving NIM always
comes with arguments that are made dependent on the particular quantum system
in question. In this section, we will review a few types of measurements that would,
arguably, satisfy the NIM condition.

2.6.1 Ideal Negative Measurement

Ideal negative measurements are proposed by Leggett and Garg in their original
paper[1], as a method to satisfy non-invasiveness. When the detector measuring
Q(t) in an experiment only interacts strongly with the system when the system is in
one of the two possible states, e.g. Q(t) = +1, and does not interact at all otherwise,
such measurements are considered to be ideal negative measurements.

If such detector is turned on at time t, and we do not get a response from the
detector, we can then infer that the system at time t is in the state Q(t) = −1.
In the limit of an arbitrarily short measurement, together with the assumption of
MRps, it can be said that the measurement could not have affected the evolution
of the system, thereby satisfying the assumption of NIM. In an experimental set-
ting, where we measure the three correlation functions in different experiments, we
could implement ideal negative measurements in the following way. In the experi-
ment determining Cij, we would need to measure the probabilities pij(si, sj). Since
the dynamics of the system after tj are not important, an ordinary (invasive) mea-
surement can be performed at tj, and an ideal negative measurement is performed
at ti. With the detector that only couples to the state Qi = +1, we simply discard any
runs with a response elicited by the system at t = ti. In this way, we can obtain the
value of pij(−1, sj). To obtain pij(+1, sj), we would then need a different detector
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which couples only to the state Qi = −1. In this way, we can, in the end, calculate
the value of Cij and continue to see if LG3s are indeed violated.

The testing protocol involving ideal negative measurements, as suggested above,
is reasonable for the macrorealistic theories being put to the test, since they are
inherently classical in nature[24]. It is, however, not compatible with quantum me-
chanics since a null result from such a detector still collapses the wavefunction[25].
This makes it challenging to identify the exact cause of violations of LGIs on quan-
tum systems when utilizing ideal negative measurements, that which, if not all, of
the assumptions, are not satisfied with the particular quantum system in question.
Macrorealism does not assert that measurements cannot be invasive on a macrore-
alistic system, but rather it is possible for cleverly implemented measurements to
avoid doing so. Therefore, a violation of the LGIs can indicate either (i) a violation
of macrorealism by the system in question or (ii) the measurement protocol used in
the experiment does disturb the system, which could still be macrorealistic in nature.
(ii) is also known as the ”clumsiness loophole”[23].

2.6.2 Weak Measurements

In the quantum theory of measurement, a measurement involves the coupling be-
tween the object system, S, and the measurement apparatus, M , and the measured
observable A is determined by the value of the pointer observable[26], R. The in-
teraction between S and M is described by the Hamiltonian:

H = g(t)Â⊗ F̂ = g(t)AF, (2.46)

where g(t) is called the instantaneous coupling rate and has non-zero values in the
interval (ti, tf ), as interaction takes place, and F̂ is the operator of the ”input” vari-
able of M . At times, t ≤ ti, that the system, S, and the measurement apparatus, M ,
are uncorrelated and in the pure states |ψ⟩ and |ψM⟩ respectively. Then, for t ≥ tf ,
the states become correlated in this way:

|ψf⟩ = U |ψ⟩|ψM⟩, (2.47)

by the unitary transformation,

U = exp(−i ∫ Hdt) = exp(−iγAF ), (2.48)

where γ is the coupling strength, defined to be,

γ =

∫ tf

ti

g(t)dt. (2.49)

Finally, a measurement of the ”output” or the pointer variable, R, is taken at t ≥
tf , revealing information about the system. Note here we have ignored the free
Hamiltonian of the system and the measuring apparatus for simplicity. When the
coupling constant is sufficiently weak, we will refer to such measurements as weak
measurements.
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To be more explicit, we now suppose F and R are a pair canonically conjugate
variables, say momentum, p, and position, q of a freely moving particle,

F = p, R = q. (2.50)

Furthermore, we will assume that Â has discrete and non-degenerate eigenvalues,
αj, such that we can expand |ψ⟩ as:

ψ =
∑
j

αj|aj⟩, (2.51)

where |aj⟩ is the eigenstate of Â corresponding to the eigenvalue αj. We can then
write equation (2.47) as:

|ψf (q)⟩ ≡ ⟨q|ψf⟩ = exp(−iγÂ⊗ p)
∑
j

αj|aj⟩ψM(q)

=
∑
j

αjexp(−iγajp)ψM(q)|aj⟩

=
∑
j

αjexp(−iγajp)exp
(
− q2

4(∆q)2

)
|aj⟩

=
∑
j

αjexp

(
−(q − γaj)

2

4(∆q)2
)

)
|aj⟩

=
∑
j

αjψM(q − γaj)|aj⟩ ≡
∑
j

αjψM(qf )|aj⟩,

(2.52)

where ψM(q) = ⟨q|ψM⟩ and qf denotes the value of q at t ≥ tf . Also, as a reason-
able assumption, we made |ψM⟩ a Gaussian in p (and consequently ψM(q)). Then,
after the interaction took place, we were left with a mixture of Gaussians located
around γaj. In this way, it is clear that a projective measurement of q at, t ≥ tf ,
results in a projective measurement of A, when the wave packets ψM(q−γaj) do not
overlap[27], that γA = δq ≡ qf − q. This imposes a condition on γ to be sufficiently
strong:

|γ|(δa) ≫ ∆q, (2.53)

where δa is the minimal distance between aj ’s and ∆q is the uncertainty of q at
t = 0 ≤ ti.

When the condition (2.53) is not met, however, such measurements (weak mea-
surements) provide almost no information since the uncertainty in the measurement
is too big. We are still able to measure the expectation value, ⟨A⟩, since, from equa-
tion (2.52), we have:

⟨qf⟩ − ⟨q⟩ = γ⟨A⟩, (2.54)

by performing multiple runs of the same experiment, effectively decreasing the un-
certainty ∆q. By increasing the number of repeats, we can determine ⟨A⟩ to any
desired precision.
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In summary, weak measurements measure the expectation value,

⟨A⟩ =
∑
j

|αj|2aj =
∑
j

pj(aj)aj, (2.55)

very differently to projective measurements. When using projective measurements,
we measure the probabilities, pj(aj), directly in experiments to then calculate the
expectation value. On the other hand, the expectation value is obtained by equation
(2.54) directly in the case of weak measurements.

We note that in the original paper by Leggett and Garg, it is implicit that the quan-
tities Qi are to be obtained using projective measurements. Either type of measure-
ment we use in an experiment, the quantum correlation function, equation (2.20),
remains in the same form[13]. Therefore, we can replace the projective measure-
ments in the standard protocol for LGIs, with weak measurements, i.e., obtaining
the correlation functions in three separate experiments using weak measurements,
without having to worry too much about the consequences (this argument does not
necessarily hold for systems of larger dimension[11; 28]). We can then conclude
that the standard protocol, as discussed above, referred to as the two-point method,
is independent of measurement strength[11].

We note here that the benefit of using weak measurements is that the wavefunc-
tion of the system is only partially collapsed by a weak measurement, when carefully
implemented, with the trade off being less information can be extracted from a sin-
gle measurement. In the limit of a true weak measurement, i.e., γ → 0, there is a
vanishing effect on the wavefunction of the system, which one hopes would satisfy
the NIM condition and avoid the clumsiness loophole; this is, however, extremely
hard to achieve experimentally, as expected.

The name of the two-point protocol refers to the fact that the system is only mea-
sured at two out of three possible points in time in any run. In contrast, a three-
point protocol can be designed, where measurements at all three points in time are
performed[29]. In this protocol, only the second measurement needs to be weak
since the first measurement can also be considered as fixing the initial state of the
system, and, same as before, the evolution of the system is irrelevant after the third
measurement[30]. Repeated runs of a such experiment will give us the probability
distribution p(s1, q2, s3), where s1 and s3 have the usual meaning of the outcome of
a projective measurement of the value Q1 and Q3, and q2 is the outcome obtained
from the weak measurement at t = t2. Note that q2 here is different to the pointer
variable q in equation (2.50)-(2.54), it corresponds to the response of the ambiguous
detector performing the weak measurement, also called the contextual value of the
variable Q2[31], defined such that the expectation, ⟨q2⟩ ≡ ∫ dq2q2p(q2), is consistent
with the expectation value with that of a projective measurement of Q2. By only
considering the case, s1 = +1, thought of as setting the initial state of the system in
Q1 = +1, then the left-hand side of equation (2.42) can be written as[30]:

K3 = ⟨q2⟩+ ⟨q2Q3⟩ − ⟨Q3⟩

=
∑

s3=±1

∫
dq2p(q2, s3)(q2 + s3q2 − s3) ≤ 1,

(2.56)
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where we have used the fact that p(s1, q2, s3) = p(q2, s3)δs1,+1. Note that the sum over
s2 when the measurement at t = t2 has been replaced with a integral over q2; this
is due to the fact that the pointer variable q2 could be continuous, and the range of
q2 necessarily exceeds the range of the system variable Q2[11], this is ab interesting
property of the contextual values when using weak measurements.

It can be shown that in the limit of γ → ∞, inequality (2.56) is always satisfied.
This is consistent with the remark made on inequality (2.18). However, in the op-
posite limit, as γ → 0, the upper bound of unity can be violated. In the particular
example of a spin-1

2
particle given above, maximum violation of inequality (2.56)

with the same pattern of violations occur as γ → 0[11]. Therefore, for any γ in the
range [0,∞), inequality (2.56) can be violated.

It is worth noting that the two-point and three-point protocols admit violations
of LGIs in opposite ways. Following the two-point protocol, we obtain the three
independently measured two-point correlation functions and assume the existence
of a joint probability distribution that is compatible with the correlation functions.
Failing to find such a joint probability distribution is the root source of the violation
of LGIs in the two-point case. Whereas in the three-point case, we obtain the joint
probability distribution p(s1, q2, s3) directly, and then to find that the marginal prob-
abilities (see Chapter 3) calculated from the measured joint probability distribution
are not compatible with the NIM assumption or each other. In this way, inequality
(2.56) can be violated.

2.6.3 Continuous Weak Measurements

Another way to implement weak measurements in testing quantum systems for
macrorealism is continuous weak measurements, particularly useful when a detec-
tor is permanently attached to the system. Here we follow the arguments given by
Ruskove et al.[32] and show that the occurrence of violations of LGIs in a quantum
stochastic approach.

When making continuous weak measurements on a system, instead of measuring
the value of Qi directly, the detector shows a noisy signal:

I(t) = I0 +
∆I

2
Q(t) + ξ(t), (2.57)

where I0 is a constant offset to the signal due to background, ∆I is the difference in
the signal corresponding to the state Q(t) = +1 and Q(t) = −1, and ξ(t) represents
the Gaussian white noise present in the system that is stochastic in nature. The
variable ξ(t) has a vanishing temporal average,

⟨ξ(t)⟩ ≡ lim
T→∞

1

T

∫ (

−T/2

T/2)dtξ(t) = 0, (2.58)

and a δ-function correlator,

⟨ξ(t)ξ(t+ τ)⟩ = S0

2
δτ , (2.59)
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where τ is a arbitrary time interval such that τ > 0, and S0 is the spectral density.
The symbol I(t) originated from measurement apparatus such as a quantum point
contact (QPC)[33], where the signal is a current. By averaging I(t), one obtains:

CI(τ) = ⟨[I(t)− I0][I(t+ τ)− I0]⟩

=

(
∆I

2

)2

⟨Q(t)Q(t+ τ)⟩+
(
∆I

2

)
(⟨ξ(t)Q(t+ τ)⟩+ ⟨Q(t)ξ(t+ τ)⟩),

(2.60)

where the second line is obtained by substituting equations (2.58) and (2.59). Under
the assumptions of NIM and induction, we can assume that the state of the system at
time t cannot affect future noise in the detector and that the noise registered by the
detector at time t does not disturb the subsequent measurements of variable Q(t+τ),
therefore the following correlators must have a value of zero,

⟨ξ(t)Q(t+ τ)⟩ = ⟨Q(t)ξ(t+ τ)⟩ = 0, (2.61)

for a macrorealistic system.

By combining equations (2.60), (2.61) and the LGI (2.42), we obtain an inequality
for the correlation functions of the detector signal:

CI(t2 − t1) + CI(t3 − t2)− CI(t3 − t1) ≤ 1×
(
∆I

2

)2

. (2.62)

The experimental benefit of this protocol is that the experiment only needs to be
run once. Experiments have been performed[32], and violations of the inequality
are, of no surprise, found in quantum systems. It is argued that this protocol still has
not managed to avoid the clumsiness loophole[23], but simply rephrased in the form
of equation (2.61), that the reason inequality (2.62) is violated is that the system
inevitably feels a backaction from the detector such that ⟨ξ(t)Q(t+ τ)⟩ ≠ 0.

2.6.4 Continuous In Time Velocity Measurements

A different approach to testing the LGIs is proposed by JJ Halliwell in 2016[24],
which bears a resemblance to both continuous weak and ideal negative measure-
ments, which could be implemented in a way that presents a stronger argument for
its non-invasiveness in both classical theories and quantum mechanics.

The protocol is conceptually straightforward, and consists of a single ”waiting de-
tector” weakly coupled to the system, which only registers a click when the variable
Q(t) changes sign. This is motivated by the observation that the correlation functions
can be written as,

Cij = p(Qi = Qj)− p(Qi ̸= Qj), (2.63)

that the correlation function only depends on whether the observable, Q(t), has the
same value (sign) or not at times t = ti and t = tj. We can then rephrase equation
(2.63) as:

Cij = 1− 1

2

〈
[Qj −Qi]

2
〉
, (2.64)
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which is consistent with both the classical definition (2.10) and the quantum ana-
logue (2.20). Further more, we will assume the existence of a velocity variable,
v(t) = Q̇(t), such that,

Qj −Qi =

∫ tj

ti

dtv(t), (2.65)

and can be experimentally measured by an ancilla weakly coupled to the system.
We note that the existence of such variables is not normally assumed by the LGI
framework; however, there are quantum systems in which such a velocity is readily
identified, for example, for the spin-1

2
particle system considered many times in this

chapter, the velocity is defined as σ̇z = ωσy.

For simplicity, we will now present the quantum mechanical implementation of
the protocol using the aforementioned spin-1

2
system (S), and additionally, a two-

state ancilla (A) weakly coupled to v(t) of S. The total Hamiltonian of the system is
then written as (ignoring hats):

H = (
1

2
ωσx)⊗ 1+ γ(ωσy)⊗ (|0⟩⟨1|+ |1⟩⟨0|), (2.66)

where it is clear that operators to the left of the tensor products act on S and the
opposite acts on A, and γ is the coupling strength as discussed above. The ancilla
is initialized in the state |0⟩ and will flip to the state |1⟩ when an interaction takes
place.

By noting that H2 = (Ω2/4)1⊗1, where Ω = ω
√
1 + 4γ, we can Taylor expand the

unitary time evolution operator as:

U(t) = exp(−iHt) = cos

(
Ωt

2

)
1− 2i

Ω
sin

(
Ωt

2

)
H. (2.67)

Then for a general state at time t, we can write:

|Ψ(t)⟩ = U(t)(|ψ⟩ ⊗ |0⟩)
= (A0(t)|ψ⟩)⊗ |0⟩+ (A1(t)|ψ⟩)⊗ |1⟩,

(2.68)

where,

A0(t) = cos

(
Ωt

2

)
1− iω

Ω
sin

(
Ωt

2

)
σx, (2.69)

and,

A1(t) = −2iγω

Ω
sin

(
Ωt

2

)
σy, (2.70)

found by simple expansion.

We can then calculate the probability of finding the ancilla in state |1⟩:

p(1) = ⟨ψ|A†
1(t)A1(t)|ψ⟩

=
2γ2ω2

Ω2
[1− cos(Ωt)].

(2.71)
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In the weak measurement limit, we assume γ ≪ 1, so that Ω ≈ ω, and p(1) becomes:

p(1) ≈ 2γ2[1− cos(ωt)] = 2γ2(1− Cij), (2.72)

where Cij = cos(ωt) for tj − ti = t. It is also worth checking that,

p(0) = ⟨ψ|A†
0(t)A0(t)|ψ⟩

≈ 1− 2γ2(1− Cij) = 1− p(1),
(2.73)

as expected.

It is noted that measurement p(1) and p(0) are not the same as p(si = sj) and
p(si ̸= sj) as in equation (2.63), in fact, they are related by:

p(1) = 4γ2p(si ̸= sj),

p(0) = p(si = sj) + (1− 4γ2)p(si ̸= sj),
(2.74)

which can be thought of as that only a 4γ2 fraction of sign changes is detected by the
ancilla due to the fact the ancilla is only weakly coupled to the system.

There is a crucial requirement for this measurement protocol to work as intended.
Namely, we will need to limit the time interval t so that the system, under free evo-
lution, can undergo at most one sign change within that time. This requirement has
several reasoning behind it. The first is that the ancilla cannot distinguish between
zero and two sign changes since the second sign change will make the state of the
ancilla back to |0⟩. Secondly, assume the time interval is short enough for one sign
change at most. Then, if the ancilla is found in the |0⟩ state, there are only two
possible explanations: (i) the system variable Q has not changed sign during the
time interval, (ii) the ancilla changes state as the sign of Q flipped, but the back
action from the ancilla caused the sign to flip a second time, which then interacts
with the ancilla a second time, causing the state to change back to the initial state
|0⟩. One could argue for the non-invasiveness of the protocol if case (ii) has a van-
ishing probability of happening compared to case (i). This probability can, in fact,
be calculated explicitly using the equations above; the probability that ancilla has a
history of |0⟩ → |1⟩ → |0⟩ at times 0, t, 2t (for simplicity), is given by,

p010 = A4
1(t) =

16γ4ω4

Ω4
sin4

(
Ωt

2

)
≈ 16γ4sin4(

ωt

2
),

(2.75)

which is just the square of the probability of a single sign change given by (2.71),
under the same assumption that Ω ≈ ω. In contrast, case (i) has a probability, p011,
given by,

p011 = A2
1(t)A

2
0(t) =

4γ2ω2

Ω2
sin2

(
Ωt

2

)[
cos2

(
Ωt

2

)
+
ω2

Ω2
sin2

(
Ωt

2

)]
≈ 4γ2sin2(ωt).

(2.76)
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By inspection, it is easy to see that p010 is of a factor of γ2 smaller than p011, since
we are already assuming γ ≪ 1. Furthermore, we could test for disturbances if
the final state of ancilla is found to be |0⟩ by performing a measurement at some
time after tf and comparing the outcome with the initial state of the system S which
would be fixed. We now consider case when the ancilla is in state |1⟩ at time tf .
In this case, it is clear that the sign of Q must have flipped once as it would under
free evolution of the system S, since no interaction can happen between the ancilla
and the system before the sign flip. The interaction with the ancilla could then
cause either (i) no disturbance, (ii) some non-zero back action but no sign flipping
as a result, or (iii) some non-zero back action and flipping the sign a second time.
Case (iii) has already been considered, whereas case (ii) does not have an effect on
the correlation functions when the system is measured in this way. Therefore, we
can conclude that with this particular set-up, at least, when the coupling strength
is sufficiently small and the time interval is sufficiently short, back action from the
ancilla can be statistically ignored, that the protocol satisfies the NIM condition, to a
good approximation. It is then proved by Halliwell[24] that such a short time scale
assumption, where Q only changes sign once, is reasonable in both classical and
quantum formulations.

Experiments utilizing this protocol have already been performed [34], and they
have shown that the results of the CTVM protocol agreed with those of the ideal
negative protocol and admit the violations of LGIs.
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2.7 Summary

We first began this chapter by reviewing the EPR paradox, arguments made by Ein-
stein et al. for the existence of local realism against the Copenhagen interpretation of
quantum mechanics. This is as expected since concepts implied by the Copenhagen
interpretation were hard to accept by almost anyone at the time, and the intuitions
we developed on the physical world were profoundly challenged. To resolve the
disputes, Bell then proposed a more sophisticated experimental set-up and derived a
set of inequalities which would be satisfied if the assumptions of local realism were
indeed correct. Backed by experimental data, the notion of local realism is then
violated by a variety of quantum systems through the Bell/CHSH framework.

This all served as motivation to Leggett and Garg, who proposed the notion of
macrorealism in their original paper in 1985, along with it, a set of Leggett-Garg
inequalities which could be satisfied if a given system is so-called macrorealistic.
The set of LGIs, in most literature, is considered to be the temporal version of Bell
inequalities, although it could be argued that the LGIs are a generalization of the
Bell inequalities as they are less restrictive in the types of systems they can apply
to. As noted by Leggett, realism should always be tested in conjunction with other
logical assumptions about the physical reality; in the case of macrorealism, it is
the ability to perform measurements on a particular system without disturbing the
system’s evolution at test. Violation of macrorealism implies that a classical view
of the system must be abandoned, that the system exhibits ”quantumness”. In this
way, the LGIs are particularly useful in the journey towards achieving macroscopic
coherence and explorations of the boundaries of the classical limit.

In sections 2.4 and 2.5, we reviewed a few of the many derivations of the LGIs
as well as other forms of the LGIs. We note here that sets of LGIs in the form of
equation (2.39) for n ≥ 3 measurements are not yet complete, in that LG3s, LG4s,
or higher-order LGIs alone cannot be viewed as necessary and sufficient conditions
for MR at the corresponding measurement times. We will present the proof of Fine’s
theorem and use it as a guide to complete the LG framework in Chapter 3.

Much of the current experimental work is focused on, arguably, not-macroscopic
systems, where the goal is to understand the patterns better and identify the cause
of violations of the LGIs. In these quantum systems, it is the condition of NIM that is
the most challenging to implement, and it always comes with assumptions that are
dependent on the particular system being tested. These assumptions, or arguments,
do not hold in general cases since quantum mechanical measurements are always
invasive to some degree. Different protocols with different measurement schemes
have been proposed and experimented with, as discussed in section 2.6. However,
the problem, known as the clumsiness loophole, remains, that a macrorealist could
always view the violations of LGIs as failure to satisfy NIM such that MRps cannot
be refuted by the violations. It is argued that, unless there is a way to close this
loophole, the LG framework for testing macrorealism is not methodologically on par
with the Bell/CHSH framework. More discussion on this will follow.
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Chapter 3

Conditions for Macrorealism

3.1 Fine’s Theorem

3.1.1 Marginal Probabilities

First, we consider a simple system with two variables with measurement outcomes,
s1 and s2, such that si ∈ {±1}. There are then 22 = 4 possible combinations of
measurement outcomes (s1, s2) each with some probability p12(s1, s2) of occurring,
we call these probabilities pairwise probabilities. These four pairwise probabilities
must satisfy the following relation,∑

s1,s2=±1

p12(s1, s2) = 1, (3.1)

since the system is completely described by these two variables, therefore the union
of the four combinations must equal the entire sample space. For this simple two-
variable system, the pairwise probabilities p12(s1, s2) are the underlying probability
distribution of the system. Given the underlying probability distribution, we can find
different marginal probabilities of the system, defined as the probability of an event
happening independent of other events. In this case, by summing over one of the
systems variables si, we can find the marginal probabilities pj(sj) for i ̸= j, e.g.

p1(s1) =
∑

s2=±1

p12(s1, s2). (3.2)

See Table 3.1 for a detailed description of the system.

This notion of an underlying and marginal probability distribution can easily ex-
tend to systems with more variables. For a system with n variables with n measure-
ment outcomes, the underlying probability distribution will be labelled as p12...n(s1, s2, ..., sn).

In the experimental set-up for CHSH inequalities, the system concerns four vari-
ables with measurement outcomes, s1, s2, s3 and s4, namely the spins of two entan-
gled particles measured along one of two axes, where each measurement outcome,
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s1 = +1 s1 = −1 Row Sum
s2 = +1 p12(+1,+1) p12(−1,+1) p2(+1)
s2 = −1 p12(+1,−1) p12(−1,−1) p2(−1)

Column Sum p1(+1) p1(−1)

Table 3.1: Marginal probabilities

just like the example above, can take values of ±1. If the local hidden variables
theory is indeed the correct description of the system, such that there exist a set of
hidden variables matching the pairwise probabilities, p13(s1, s3), p14(s1, s4), p23(s2, s3)
and p24(s2, s4), measured indirectly in the experiment, then it is clear that an under-
lying probability distribution, p1234(s1, s2, s3, s4), must exist. Additionally, the pair-
wise probabilities can then be thought of as the marginal probabilities of the system,
and they can be obtained by summing over the corresponding outcomes. As we
discussed in Chapter 2, the existence of such underlying probability is a necessary
condition for establishing bounds on the correlation functions, which in turn gives
us the CHSH inequalities. Violating the CHSH inequalities must then imply that the
assumption of the existence of an underlying probability distribution is incorrect. We
can, therefore, conclude that CHSH inequalities are a necessary condition for local
realism.

3.1.2 Proof of Fine’s Theorem

The derivation of CHSH inequalities, however, does not prove the opposite, that sat-
isfaction of the CHSH inequalities must imply the existence of an underlying proba-
bility distribution. In other words, we have not yet proved that satisfying the CHSH
inequalities is not only a necessary condition for local realism, but it is also a suf-
ficient one. At its core, validating realism is all about proving the existence of an
underlying probability distribution. This is the exact problem Fine’s theorem ad-
dressed.

In his paper, Arthur Fine has proved that the following five statements about a
quantum correlation experiment are equivalent[6]:

1. There is a deterministic local hidden-variables model for the experiment.

2. There is a factorizable, stochastic model for the experiment.

3. There exists one joint distribution for all observables of the experiment, whose
marginals match the probabilities obtained from the experiment.

4. There are well-defined, compatible joint distributions for all pairs and triples
of commuting and non-commuting observables.

5. The Bell/CHSH inequalities hold.

Here we note that the conclusion we desire, namely that CHSH and Bell inequali-
ties are both necessary and sufficient conditions for local realism, is only one of the
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results of Fine’s theorem. Fine’s original proof is purely algebraic and not as immedi-
ately apparent as the proof of necessity. For these reasons, this review will not cover
the full proof. Instead, we will follow a perhaps simpler proof by JJ Halliwell[35]
for the case of Bell’s inequalities, which, as we will see later, is closely related to the
Leggett-Garg inequalities we have been discussing.

Consider a system with three variables, and we have obtained the three pairwise
marginal probabilities, p12(s1, s2), p23(s2, s3) and p13(s1, s3). The underlying proba-
bility distribution, p123(s1, s2, s3), may be written as:

p123(s1, s2, s3) =
1

8

(
1 +

∑
i

Bisi +
∑
i<j

Cijsisj +Ds1s2s3

)
, (3.3)

where the indices i, j, k run over the values 1, 2, 3, and the correlation functions Bi,
Cij and D are found by:

Bi =
∑

s1,s2,s3

sip123(s1, s2, s3), (3.4)

Cij =
∑

s1,s2,s3

sisjp123(s1, s2, s3), (3.5)

D =
∑

s1,s2,s3

s1s2s3p123(s1, s2, s3). (3.6)

The marginal probabilities in this form are then easily found by summing over si,
e.g.

p13(s1, s3) =
∑

s2=±1

p123(s1, s2, s3) =
1

4
(1 +B1s1 +B3s3 + C13s1s3) . (3.7)

There are a total of 3 × 4 = 12 equations of this form, and they relate functions Bi

and Cij with marginal probabilities that we have already obtained. Therefore, by
knowing the marginal probabilities. we completely fix Bi and Cij.

By requiring the marginal probabilities are non-negative, we immediately obtain
a set of twelve inequalities from equation (3.7):

1 +Bisi +Bjsj + Cijsisj ≥ 0. (3.8)

These conditions are trivially satisfied since we have already obtained the marginal
probabilities.

Additionally, equation (3.3) is also required to be non-negative. Since we have
fixed Bi and Cij, the only free parameter is D, and we can therefore obtain the
following inequality:

A(s1, s2, s3) ≡

(
1 +

∑
i

Bisi +
∑
i<j

Cijsisj

)
≥ −Ds1s2s3. (3.9)

31



3.1. FINE’S THEOREM Chapter 3. Conditions for Macrorealism

For the case s1s2s3 = 1, we obtain four lower bounds for D:

−A(s1, s2, s3) ≤ D. (3.10)

For the case s1s2s3 = −1, we obtain four upper bounds for D:

A(s1, s2, s3) ≥ D. (3.11)

Thus, D will exist as long as the lower bounds are indeed lower than the upper
bounds. We, therefore, obtain constraints of the form:

− A(+1,+1,+1),−A(+1,−1,−1),−A(−1,+1,−1),−A(−1,−1,+1)

≤ A(+1,+1,−1), A(+1,−1,+1), A(−1,+1,+1), A(−1,−1,−1). (3.12)

There are a total of sixteen inequalities. Depending on the relation between the
arguments of both sides, they group into two sets of inequalities. One set is found
by pairing up those with two arguments being the same, e.g.,

−A(+1,−1,−1) ≤ A(+1,−1,+1) ⇒ 1 +B1 −B2 − C12 ≥ 0. (3.13)

In this case, both sides have s1 = +1 and s2 = −1, and we obtain the same inequal-
ity as we would from equation (3.8) by requiring p12(+1,−1) to be non-negative.
Therefore, twelve of the sixteen inequalities in equation (3.12) are already found by
requiring the marginal probabilities to be non-negative.

The set of four new inequalities is found by pairing up those with all three argu-
ments being opposite:

−A(+1,−1,−1) ≤ A(−1,+1,+1) ⇒ +C12 + C13 − C23 ≤ 1, (3.14)

−A(+1,−1,−1) ≤ A(+1,−1,+1) ⇒ +C12 − C13 + C23 ≤ 1, (3.15)

−A(−1,−1,+1) ≤ A(+1,+1,−1) ⇒ −C12 + C13 + C23 ≤ 1, (3.16)

−A(+1,+1,+1) ≤ A(−1,−1,−1) ⇒ −C12 − C13 − C23 ≤ 1. (3.17)

These are, in fact, a form of Bell’s original inequalities[36]. We have thus shown
that by requiring the existence of an underlying probability distribution, i.e., p123(s1, s2, s3) ≥
0, Bell’s inequalities follow. Most importantly, since inequalities of the form of (3.13)
are guaranteed to be satisfied, and there are no further restrictions other than Bell’s
inequalities, we can now conclude that satisfaction of Bell’s inequalities is a sufficient
condition for ensuring the existence of an underlying probability. Combining with
the discussions above, we have now proven that Bell’s inequalities are necessary and
sufficient conditions for local realism.
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3.1.3 Generalized Fine Ansatz

We can extend the proof in the last subsection to measurements at more times.
Specifically, when dealing with measurements at four times, our goal is to find the
set of necessary and sufficient conditions for the existence of the four-time proba-
bility distribution, p1234(s1, s2, s3, s4), matching the four known two-time marginal
probabilities, p13(s1, s3), p14(s1, s4), p23(s2, s3) and p24(s2, s4), and we fully expect the
conditions found are of the form of CHSH inequalities (2.7). In proving sufficiency,
we encounter the difficulty that only four of the six possible marginals are fixed in
this problem. It is proposed that the matching problem can be solved using the
following Fine’s ansatz[37]:

p(s1, s2, s3, s4) =
p(s1, s2, s3)p(s1, s2, s4)

p(s1, s2)
, (3.18)

where we have ignored the subscripts for simplicity. This simplifies the problem of
proving the existence of the two three-time probabilities and one two-time proba-
bility, which we have already seen that the resulting conditions are in the form of
inequalities (3.8) and the Bell-type inequalities (3.14)-(3.17).

As we have noted before, the LG4s are similar to CHSH inequalities but with a
different pairing of measurements. For the LG test at four times then, the ansatz
becomes:

p(s1, s2, s3, s4) =
p(s1, s2, s3)p(s1, s3, s4)

p(s1, s3)
. (3.19)

This can be generalized to any number of measurement times[37], specifically, for
n-time, we have:

p(s1, ..., sn) =
p(s1, ..., sn−1)p(s1, sn−1, sn)

p(s1, sn−1)
, (3.20)

and we are left with a n−1-time probability, a three-time probability and a two-time
probability. We can then apply the n − 1-time ansatz and so on to finally obtain the
formula for generalized Fine’s ansatz:

p (s1, . . . , sn) = p (s1, s2, s3)
n−3∏
i=1

p (s1, si+2, si+3)

p (s1, si+2)
. (3.21)

This formula provides another way of finding LGns and implies that we can always
reduce a n-time problem to a set of three-time problems. This is consistent with the
finding by Avis et al.[21] as we have noted in section 2.5 that the LGIs are reducible
for n ≥ 4. Most importantly, with the help of the generalized Fine ansatz, we can
easily extend our existing framework to measurements at more times, lifting the
restrictions on how we test the system.
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3.2 Sufficient Conditions for MR

We now return to the discussion of the Leggett-Garg inequalities. As we have dis-
cussed in Chapter 2, the Leggett-Garg inequalities were designed by analogy with
the Bell inequalities and often considered to be a temporal version of the Bell in-
equalities. However, Maroney and Timpson [12] in their paper argued that Bell and
LG tests are not methodologically on par due to fact that the assumption of noninva-
sive measurability cannot be made suitably model-independent. Nevertheless, our
goal here is to modify the proposed LG framework and construct a decisive test for
macrorealism just like the Bell inequalities to local realism, as Fine’s theorem has
proved.

Depending on the measurement protocol used in various experiments, there exists
different interpretations of the NIM assumption[17]. In the original LG framework,
for example, the correlation functions are obtained from three separate experiments,
where each experiment only measures at two of the times, and we only require
that NIM is satisfied in each experiment, i.e., two sequential measurements only.
We will denote this piecewise interpretation as NIMpw. However, some protocols
assume a different interpretation of NIM, where it is required that the system is
undisturbed by any number of sequential measurements in a single experiment. We
will denote this interpretation as NIMseq. It is then clear that NIMseq is a stronger
notion than NIMpw, for that a set-up which satisfy NIMpw may not satisfy NIMseq.
It is argued by Halliwell[17] that there exist different versions of MR, depending
on which interpretation of NIM is assumed, and the set of necessary and sufficient
conditions also varies for different versions of MR. Explicitly, using the same notation
as Halliwell’s paper, we will denote these two versions as MRweak and MRstrong.

In Bell experiments, there are a set of trivial conditions that the pairwise probabil-
ities must satisfy, which we have not mentioned in the last subsection. They are of
the form: ∑

s1

p12(s1, s2) = p2(s2). (3.22)

Such conditions ensure that the pairwise probabilities, p12(s1, s2), p13(s1, s3) and
p23(s2, s3), are compatible with each other. These are guaranteed by causality since
there cannot be any signalling between the two spacelike separated detectors. How-
ever, the same cannot be said for the case of LG experiments; since measurements
are timelike separated, equation (3.18) is not generally satisfied. In the context of
the LG framework, conditions in equation (3.18) are referred to as No Signalling
In Time (NSIT) conditions in analogy to the no signalling in Bell experiments, and
they are closely related to the implementation of NIM. This is a crucial distinction
between the LG and Bell framework, and equation (3.18) must be satisfied in order
for Fine’s theorem to apply.

34



Chapter 3. Conditions for Macrorealism 3.2. SUFFICIENT CONDITIONS FOR MR

3.2.1 Augmented LG Framework

The two-time probabilities, similar to equation (3.7), in an LG-like set-up, can be
constructed as:

p(si, sj) =
1

4
(1 + si⟨Qi⟩+ sj⟨Qj⟩+ sisjCij). (3.23)

We note two changes. Firstly, we have replaced the correlation functions Bi with the
averages ⟨Qi⟩ for clarity. The second is that we have removed the subscript on the
two-time probabilities, which were used to denote which measurements were taken
in obtaining it. It is clear from the formula that we need the quantities ⟨Qi⟩ to com-
pute the probabilities. In certain protocols, like with ideal negative measurements,
the two-time probabilities are measured directly, from which we could read off Cij

and ⟨Qi⟩, we would then label the probabilities with the corresponding subscripts.
However, there exist non-invasive protocols in which only the correlation functions
Cij are measured in a single experiment [17], and measuring ⟨Qi⟩ in different ex-
periments clearly satisfies NIM since only one measurement is taken. Hence, to be
more general, we instead assume that Cij and ⟨Qi⟩ are measured in six separate
experiments to best satisfy the NIMpw requirement.

From equation (3.19), it is then clear that the following conditions are trivially
satisfied: ∑

si

p(si, sj) = p(sj) =
∑
sk

p(sj, sk), (3.24)

provided that ⟨Qi⟩ are measured in separate experiments. Here we note a sub-
tle point: even though these equations are mathematically equivalent to the NSIT
conditions (3.18), they certainly lack the sense of no signalling due to the protocol
implemented above [17].

We can then invoke the arguments of Fine’s theorem given in the previous section.
Inequalities (3.8) in the context of the LG framework becomes:

1 + si⟨Qi⟩+ sj⟨Qj⟩+ sisjCij ≥ 0, (3.25)

these are the twelve LG2s (2.32) given in section 2.5. Similarly, inequalities (3.14)-
(3.17) now become the four LG3s (2.41)-(2.44). Fine’s theorem guarantees the
existence of an underlying probability distribution, p(s1, s2, s3), provided that the
three sets of LG2s, compatibility conditions (3.20) and the set of LG3s are satisfied.
Hence, the set of necessary and sufficient conditions for MRweak reads:

MRweak = LG12 ∧ LG23 ∧ LG13 ∧ LG123 ∧ NIMpw ∧ Induction, (3.26)

where LGij is the set of LG2s for measurements at times t = ti and t = tj, similarly
LG123 is the set of LG3s, and ∧ denotes logical conjunction. Compared with the
original LG framework, which involves obtaining the three correlation functions in
three separate experiments to test the LG3s, this protocol consists of three additional
experiments to obtain ⟨Qi⟩ and three more sets of LG2s to test. The set of inequalities
with the LG2s and the LG3s combined are often referred to as the augmented set of
LGIs, and they are the set of necessary and sufficient conditions for MRweak at three
times.
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This protocol can be readily extended to four times[17], and we find:

MRweak = LG12 ∧ LG23 ∧ LG34 ∧ LG14 ∧ LG1234 ∧ NIMpw ∧ Induction, (3.27)

where LG1234 are the set of eight LG4s given by inequalities (2.33).

3.2.2 Testing Macrorealism with NSIT

Under the assumption of NIMseq, a very different set of conditions can be derived
for MRstrong which do not involve the LGIs at all, see [38; 17; 39]. In this protocol,
we assume a single experiment with sequential measurements at all three times
is performed, from which we measure directly the joint probability, p123(s1, s2, s3).
Without assuming non-invasive measurements, we can write equation (3.3) as:

p123(s1, s2, s3) =
1

8
(1 + s1⟨Q1⟩+ s2⟨Q(1)

2 ⟩+ s3⟨Q(12)
3 ⟩

+ s1s2C12 + s2s3C
(1)
23 + s1s3C

(2)
13 + s1s2s3D),

(3.28)

where the superscripts denote that the value of quantity depends on whether the
measurement at times labelled by the superscript is performed. For example, the
value of C(1)

23 depends on whether the measurement at t = t1 is performed, and ⟨Q(12)⟩
3

depends on whether both measurements at the two earlier times are performed.
Note here we only included earlier or intermediate measurements in the superscript,
but not later measurements. This is because induction is assumed throughout, also
called the ”arrow of time” in the paper by Clemente and Kofler[38].

Equation (3.24) is a measured probability that is non-negative by definition, but it
is not the underlying joint probability distribution we seek since MR requires a joint
probability such that there can be no dependence on which measurements are actu-
ally performed. As we will see below, by imposing a set of NSIT conditions, we can
ensure that equation (3.24) becomes the same as the probability of an independent
set of variables, Qi.

We will begin the proof with a more rigorous definition of the NSIT condition:

NSIT(i)j: pj(Qj) = pij(Qj) =
∑
si

pij(si, sj). (3.29)

As noted in [38], NSIT(2)3 alone is a strong condition that can already detect viola-
tions of MR more reliably than the LG3s[40; 28]. However, it fails for certain initial
states. This can be fixed by always performing measurements at t = t1, and the
resulting conditions are:

NSIT1(2)3: p13(s1, s3) = p123(s1, s3) =
∑
s2

p123(s1, s2, s3), (3.30)

and,

NSIT(1)23: p23(s2, s3) = p123(s2, s3) =
∑
s1

p123(s1, s2, s3). (3.31)
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As a side note, Maroney and Timpson, in their paper, has proved that NSIT1(2)3

and NSIT(1)23 combined, along with the assumption of induction, are sufficient to
imply the satisfaction of the LG3s[12], however, not MR. Referring back to equation
(3.24), NSIT(1)23 then implies that C(1)

23 = C23, ⟨Q(1)
2 ⟩ = ⟨Q2⟩ and ⟨Q(12)

3 ⟩ = ⟨Q(2)
3 ⟩.

Similarly, NSIT1(2)3 implies C(2)
13 = C13 and ⟨Q(12)

3 ⟩ = ⟨Q(1)
3 ⟩, but the union of both

conditions allows us to write ⟨Q(12)
3 ⟩ = ⟨Q(1)

3 ⟩ = ⟨Q(2)
3 ⟩. Finally, we can impose

NSIT(2)3, which then implies ⟨Q(12)
3 ⟩ = ⟨Q(1)

3 ⟩ = ⟨Q(2)
3 ⟩ = ⟨Q3⟩. Therefore, under

these three assumptions, we find that all the superscripts in equation (3.24) are
removed, and we end up with a joint probability distribution that satisfies all the
requirements of MR. To be explicit, we have found the set of necessary and sufficient
conditions for MR:

MRstrong = NSIT(2)3 ∧ NSIT(1)23 ∧ NSIT1(2)3 ∧ induction. (3.32)

To summarize, we have now found the sets of necessary and sufficient conditions
for both versions of macrorealism. The notion of the ”strength” of MR comes from
the fact that, for reasons to become apparent in the next section, MRstrong implies
MRweak, but not the other way around. In the augmented LG framework, we assume
that NIM is satisfied by how we implement the measurements, and we set out to test
the existence of an underlying probability distribution that is compatible with MR.
Whereas in the NSIT formulation, we measure a three-time probability and impose
a set of NSIT conditions, which, if satisfied, we obtain the underlying probability
distribution that is compatible with MR. In this way, we can view the set of NSIT
conditions as tests of NIMseq, which, if satisfied, immediately implies MRps and then
MR[38], since NIMseq allows us to measure the system with arbitrarily small time
intervals and as many times as we desire. We also note the apparent but significant
fact that the set of NSIT conditions are equalities rather than inequalities as com-
pared to the augmented LG framework. This goes to show that the conditions for
MRstrong are far more restrictive than the ones for MRweak.

The two protocols described above clearly investigate the two extremes of inter-
pretations of MR, depending on how strongly NIM is assumed. There is, in fact, a
hierarchy of MR which can be tested depending on the protocol. As Halliwell pro-
posed in his paper, an intermediate (int) version of MR can be defined[17], of which
the set of necessary and sufficient conditions are,

MRint=NSIT(1)2 ∧ NSIT(2)3 ∧ NSIT(1)3 ∧ LG123 ∧ Induction, (3.33)

a mixture of two-time NSIT conditions and the LG3s.
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3.3 Quantum-Mechanical Analysis

3.3.1 Quasi-Probability

Consider a system with Hamiltonian Ĥ, measurements of the dichotomic variable Q
on the system at time t can be written as the projection operator, P̂s(t) = eiĤtP̂se

−iĤt,
where P̂s is given by:

P̂s =
1

2

(
1+ sQ̂

)
, (3.34)

here we note that the projection operators, P̂s and therefore P̂s(t), sum to 1. The
probability, pij(si, sj), of two sequential projective measurements, according to the
Born rule, is then given by:

pij(si, sj) = Tr(Psj(tj)Psi(ti)ρPsi(ti)), (3.35)

where ρ is the reduced density operator of the system, and we have dropped the
hats on the operators for simplicity. By contrast, the two-time probabilities given by
equation (3.23) in quantum mechanics correspond to the quasi-probabilities:

q(si, sj) =
1

2
Tr[(Psi(ti)Psj(tj) + Psj(tj)Psi(ti))ρ], (3.36)

where again, we assume that it is calculated from the results of separate experi-
ments. Equation (3.36) is real and sums to 1, but it can be negative at times, there-
fore, it is not a probability in general. We see here that the quasi-probabilities are
clearly related to the set of LG2s in the augmented LG framework since they both
originate from equation (3.23). Furthermore, if we impose the LG2s, this requires
that q(si, sj) ≥ 0.

When we sum over the two measurements in equation (3.35), we find:∑
sj=±1

pij(si, sj) = Tr(Psi(ti)ρPsi(ti)) = Tr(Psi(ti)ρ) ≡ pi(si), (3.37)

when we sum over the second measurement, and,∑
si=±1

pij(si, sj) = Tr(PsjρM(ti)), (3.38)

where we sum over the first measurement and ρM denotes the measured density
operator,

ρM(ti) =
∑
si=±1

Psi(ti)ρPsi(ti). (3.39)

We note that equation (3.38) does not equal to the single time probability, pj(sj) =
Tr(Psj(tj)ρ), in general. Therefore, we can immediately conclude that the two-time
NSIT conditions (3.29) are not satisfied in quantum mechanics in general.

38



Chapter 3. Conditions for Macrorealism 3.3. QUANTUM-MECHANICAL ANALYSIS

When we perform the same calculations on the quasi-probabilities of equation
(3.36), however, we find that:∑

sj=±1

q(si, sj) =
1

2
(2Psiρ) = p(si), (3.40)

∑
si=±1

q(si, sj) =
1

2
(2Psjρ) = p(sj). (3.41)

This is the exact same situation as the case with equation (3.24) in that the quasi-
probabilities satisfy the set of conditions that is mathematically equivalent to the
NSIT conditions since they are linear in both projection operators. Conditions of the
form (3.40) and (3.41) are sometimes referred to as the generalized no-signaling in
time conditions.

The relation between the probabilities and quasi-probabilities is given by:

q(si, sj) = pij(si, sj) +
1

8
sj

〈
[Q̂(tj), Q̂(ti)]Q̂(ti)

〉
, (3.42)

where the extra term on the RHS of the equation is a measure of interference be-
tween two non-commuting measurements.

We see that if the interference term vanishes, then pij(si, sj) = q(si, sj), and the
two-time NSIT conditions (3.29) are satisfied exactly. Additionally, by imposing the
two-time NSIT conditions, we see that this immediately implies q(si, sj) ≥ 0, which
is equivalent to the satisfaction of the LG2s. However, this relation clearly does not
work in reverse; by imposing the LG2s, it only requires that the interference term is
bounded by:

1

8

∣∣∣〈[Q̂(ti), Q̂(tj)]Q̂(ti)〉∣∣∣ ≤ pij(si, sj). (3.43)

Even though we have only considered the measurement at two-times, the same
conclusion can be drawn in the general case, where we see that MRstrong involving the
NSIT conditions requires zero interference but MRweak, which makes use of the LGIs,
only requires bounded interference. Hence, we have shown that, from a quantum-
mechanical viewpoint,

MRstrong ⇒ MRweak. (3.44)

Note that at two times, the NSIT condition (3.29) and the LG2s (3.26), i.e.,
q(s1, s2) ≥ 0, are both necessary and sufficient conditions for MR, but a violation
means different things. As stressed many times before, when measuring q(s1, s2),
NIM is assumed by the measurement scheme. Therefore, in an ideal situation, the
LG2s can be considered as a direct measure of MRps directly. However, there is al-
ways the clumsiness loophole which arguably cannot be avoided. In contrast, the
NSIT conditions are different in the sense that it is thought of as testing a combina-
tion of both NIM and MRps, and we are unable to distinguish between them.

39



3.3. QUANTUM-MECHANICAL ANALYSIS Chapter 3. Conditions for Macrorealism

3.3.2 Quantum Witness

In the two-time case, we can quantify the invasiveness of the first measurement by
defining a quantum witness:

W (s2) =

∣∣∣∣∣p2(s2)−∑
s1

p12(s1, s2)

∣∣∣∣∣ , (3.45)

which is the difference between the probabilities, of obtaining, s2 if we measured
it directly and that given by equation (3.38). These familiar looking-terms are of
course closely related to the NSIT conditions, and the witness can then be thought
of as a measure of the degree to which NSIT is violated in the familiar qubit-like
system, which consists of a single dichotomic variable Q. However, equation (3.45)
is very general in that it imposes no restrictions on the particular set-up, e.g., the
variables of the first and second measurements can be different, and they can both
be many-valued.

The value of W (s2) is clearly bounded between 0 and 1, for which a value of 0
corresponds to classical behaviour. It is proved that for a general N -level system, the
maximum value of W (s2) is given by[41]:

Wmax(s2) = 1− 1

N
, (3.46)

which permits a bigger violation of the LGIs that exceeds the limit in the two-level
case, which we will discuss in more detail in the following sections.

If the first measurement is indeed non-invasive, we should then expect that:

W = 0, (3.47)

this is known as the quantum-witness equality[41].

Returning to the discussion on a qubit-like system, it can be shown that this wit-
ness, in fact, is proportional to the interference term[17],

W (s2) =
1

4

∣∣∣〈[Q̂(tj), Q̂(ti)]Q̂(ti)〉∣∣∣ . (3.48)

Hence, the witness can also be used to check the LG2s, for which the condition is:

1

2
W (s2) ≤ p12(s1, s2), (3.49)

much similar to the inequalities (3.43).

40



Chapter 3. Conditions for Macrorealism 3.4. MANY-VALUED VARIABLES

3.4 Many-Valued Variables

The original proposed LG framework, and a part of the later developments in this
area, is primarily focused on two-level systems with a single dichotomic variable
Q, which is very restrictive on how we can test different systems. We note that
variables, but it is actually the measurement outcomes that we deal with, being
many-valued, can have different origins, and they can have different effects on the
LGIs, depending on the dimension of the system, i.e., the number of states, N , and
the type of measurements, i.e., weak or projective. There are a few cases to be
considered.

We have already seen that when performing weak measurements on a dichotomic
variable, Q, as discussed in section 2.6, the range values of the measurement out-
come, q, exceeds the range of Q, and in turn, that of the outcomes of projective
measurements, s, and q can even be continuous. In this case, q, being many-valued,
can be easily incorporated into the LGIs by simply requiring that ⟨Q⟩ = ⟨q⟩, this
can be achieved by calibrating the detector, and as a result, we get LGIs similar to
equation (2.56).

Another possibility is that the quantity we are interested in, of a system, is in-
herently multi-valued, for example, the spin of a spin-3

2
particle. A projective mea-

surement on such a N -level system can project the state of a system onto one of M
different subspaces. In general, we could also choose 2 ≤ M ≤ N . We could choose
M = 2, in which case, the LG framework remains unaffected, which admits the same
patterns of violation as it would if N = 2[42]. For the 2 < M ≤ N , we can neverthe-
less choose to assign a value of Q = ±1 to each outcome of the measurement, such
that Q = +1 corresponds to a fraction of all possible measurement outcomes and
Q = −1 corresponds to the rest. In this way, the LGIs remain the same; however,
the maximum violation of the LGIs are found to be affected by both M and N[43],
exceeding the value of 3

2
for the LG3s. In exploiting this interesting feature, the LGIs

have been proposed to serve as a dimension witness[44], in providing a lower bound
on the number of quantum levels an experimenter is able to manipulate[43], and
also a possible connection to equation (3.46). However, reducing the measurement
outcome in this way makes the test incomplete in that we have not considered all
the possible ways to construct the dichotomic variable Q.

We can, however, adopt a complete approach in dealing with 2 < M ≤ N
by rewriting the M -value outcomes as a set of M dichotomic variables, Q(n), for
n = 1, ...,M , this is proposed by Halliwell et al.[39], this approach leads to a re-
formulation of the original LG framework, and the set of necessary and sufficient
conditions for MR, in this case, are also found in the same paper. We will follow the
formulation of Halliwell et al. and present some of their findings in the remainder
of this section.

Consider a projective measurement with a set of M projection operators labelled
by n, Ên, such that: ∑

n

Ên = 1, (3.50)
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where we have used a different letter, E, to distinguish from the N = M = 2 case,
i.e., equation (3.34). The most general dichotomic variable one can construct from
the projectors has the form:

Q̂ =
∑
n

ϵ(n)Ên, (3.51)

where ϵ(n) = ±1 and contains at least one of each. However, it is found to be
sufficient to consider a subset of Q̂ whose ϵ(n) only has a single +1, for the purpose
of constructing the many-valued LG framework[39]. We can then label these Q̂ by
n, and they can be written as:

Q̂(n) = Ên −
∑
n′ ̸=n

Ên′ = Ên − (1− Ên) ≡ Ên − ˆ̄En, (3.52)

where ˆ̄En corresponds to the negation of Ên. We, therefore, obtain a formula similar
to equation (3.34):

Ên =
1

2
(1+ Q̂(n)), (3.53)

where we note the lack of a minus sign compared to equation (3.34), for reasons to
become clear later.

From equation (3.50), we can find that the sum of Q̂(n):∑
n

Q̂(n) = (2−M)1. (3.54)

This is a constraint that the set of Q̂(n) must satisfy; hence, this is a non-minimum
set, and there are only M − 1 independent variables in the system.

We are now ready to obtain the LGIs. We will start by denoting the classical
counterparts to Q̂(n) and Ê(n) as Qi(ni) and Ei(ni), at time t = ti. Here we note that
the classical counterpart to the projection operators Ê(n), has values Ei(ni) ∈ {0, 1},
such that Ei(ni) = 1 denotes that the system is projected onto the state |ni⟩. We can
easily generalize equation (3.23) to the many-value case as:

p(n1, n2) = ⟨E1(n1)E2(n2)⟩ =
1

4
(1 + ⟨Q1(n1)⟩+ ⟨Q2(n2)⟩+ ⟨Q1(n1)Q2(n2)⟩), (3.55)

where we assume that the terms on the right are all measured in a non-invasive
fashion, similar to before. We can immediately obtain the LG2s in the many-valued
case by requiring that p(n1, n2) ≥ 0:

1 + ⟨Q1(n1)⟩+ ⟨Q2(n2)⟩+ ⟨Q1(n1)Q2(n2)⟩ ≥ 0, (3.56)

and there are a total of M2 inequalities. Exactly the same as the two-level case,
these M2 LG2s are the necessary and sufficient conditions for the existence of the
underlying joint probability, p(n1, n2), i.e., it is non-negative, and hence, MRweak.
Compared to the usual LG2s, apart from the obvious difference where the label si
is replaced with ni, it can be easily spotted that equation (3.56) contains no minus
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signs. This is a consequence of utilizing a non-minimum set, we can replace Qi(ni)
with −Qi(n

′
i) since, ∑

ni ̸=n′
i

Ei(ni) = 1− E(n′) = Ē(n′). (3.57)

Therefore, the set of LG2s (3.56) is equivalent to any other set with any number of
minus signs in it, and it is the same for equation (3.53). For a set-up where, M = 2,
then we find Qi(1) = −Qi(2), and we retrieve the usual two-level LG2s, as expected.
Similarly, for M = 3, the dichotomic variables obey equation (3.54), and we have
Qi(1)+Qi(2)+Qi(3) = 1, which means we can replace Qi(3) with 1−Qi(1)−Qi(2).
Writing them out explicitly, the LG2s for the case M = 3 are[39]:

1 + ⟨Q1⟩+ ⟨Q2⟩+ ⟨Q1Q2⟩ ≥ 0, (3.58)

1 + ⟨R1⟩+ ⟨Q2⟩+ ⟨R1Q2⟩ ≥ 0, (3.59)

1 + ⟨Q1⟩+ ⟨R2⟩+ ⟨Q1R2⟩ ≥ 0, (3.60)

1 + ⟨R1⟩+ ⟨R2⟩+ ⟨R1R2⟩ ≥ 0, (3.61)

⟨Q1⟩+ ⟨R1⟩+ ⟨Q1Q2⟩+ ⟨R1Q2⟩ ≤ 0, (3.62)

⟨Q1⟩+ ⟨R1⟩+ ⟨Q1R2⟩+ ⟨R1R2⟩ ≤ 0 (3.63)

⟨Q2⟩+ ⟨R2⟩+ ⟨Q1Q2⟩+ ⟨Q1R2⟩ ≤ 0, (3.64)

⟨Q2⟩+ ⟨R2⟩+ ⟨R1Q2⟩+ ⟨R1R2⟩ ≤ 0, (3.65)

⟨Q1Q2⟩+ ⟨Q1R2⟩+ ⟨R1Q2⟩+ ⟨R1R2⟩ ≥ 0, (3.66)

where we have adopted the notation Qi ≡ Qi(1) and Ri ≡ Qi(2). The ability to write
the LG2s in this form is clearly beneficial in an experimental setting since one of the
M states needs not to be measured. This also reflects the fact that there are only
M − 1 free variables in this framework.

Higher order LGIs can be found in a similar fashion as above, and combined with
Fine’s theorem described in earlier sections, we can easily prove that the set of nec-
essary and sufficient conditions for MRweak have the exact same form, but with the
newly found many-valued LGIs. In general, nth-order LGIs will consist of Mn in-
equalities, consistent with the M = 2 results we have found before.

We can also consider NSIT conditions for MRstrong in the many-valued case. It is
found that at two times, there are M(M−1)2

2
different ways interference can occur,

each represented by an interference term that needs to be fixed to zero to ensure
MRstrong[39]. There are, in general, M − 1 independent two-time NSIT conditions of
the form:

p2 (n2)−
N∑

n1=1

p12 (n1, n2) = 0. (3.67)

Additionally, it is also completely natural to require that:

p2 (n2)−
∑
s1

p
Q1(n1)
12 (s1, n2) = 0, (3.68)
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where pQ1(n1)
12 (s1, n2) is obtained by measuring one of the dichotomic variable Q1(n1)

as the first measurement. It can be shown that the NSIT conditions in equation
(3.68) each tests a different mixture of interference terms; therefore, they count as
further independent conditions to equation (3.67). Unlike equation (3.67), however,
the number of independent conditions of the form (3.68) depends on the number
of different dichotomic variables we are considering. For a set of M ′ Q(n), and
M ′ = M , like the one we have been using in the LG case, there will be a total of
(M − 1)M independent NSIT conditions. The total number of independent NSIT
conditions we can derive from M dichotomic variables is then (M + 1)(M − 1), for
M ≥ 3. For M = 3, we can find 4 × 2 = 8 two-time NSIT conditions, but only
3(3−1)2

2
= 6 of them are needed to ensure that interference is zero. For M = 4, and in

general M > 4, we find that the number of independent two-time NSIT conditions
is less than the number of interference terms that need fixing. In order to find a
full set of NSIT conditions suitable for MRstrong, we would need to consider more
dichotomic variables of the form given by equation (3.51). In summary, then, the
set of Q(n) is enough to find all the LGIs we need for MRweak, we need to consider
the set of all possible dichotomic variables to find sufficiently many NSIT conditions
to ensure MRstrong. This also reflects the fact that MRstrong is a much stricter notion
than MRweak, as we have discussed in previous sections.
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3.5 Macrorealism per se

As Peres noted in his paper[45], realism has ”as least as many definitions as there
are authors”. It is criticized that the original wording of the MRps statement is
ambiguous. At first glance, MRps implies two things, that the system is in a definite
state at all times and that no linear superpositions of macroscopically distinct states
are allowed for a macroscopic system. The first is consistent with the notion of
realism we have been discussing so far, and we can immediately draw the conclusion
that there exists an underlying joint probability distribution in the same way as the
Bell/CHSH case. Regarding the denial of superposition and the exact meaning of
the words ”macroscopically distinct states”, however, the exact interpretation and
the validity of this statement have been debated by many authors[12; 46].

We have already seen how the different interpretations of the NIM condition can
lead to different versions of MR; however, as we will discuss in this section, different
interpretations of the MRps condition can also lead to different versions of MR, as
argued by Maroney and Timpson in their 2014 paper[12]. By carefully considering
the preparation stage of each experiment and the resulting state the system is in,
we are able to find different interpretations of MRps. Specifically, the authors have
identified three different varieties of MRps, namely:

1. Operational eigenstate mixture macrorealism,

2. Operational eigenstate support macrorealism,

3. Supra eigenstate support macrorealism.

To properly define these different assumptions and understand the differences, we
need to consider a couple of definitions first. An operational eigenstate of a macro-
scopic physical quantity Q is defined such that a measurement of Q on such a state
will return a particular value qi with certainty, i.e., p(Q = qi) = 1. We can also as-
sume that immediately after a measurement, the system will be in the corresponding
operational eigenstate, such that if we perform a second measurement immediately
following the first, we will find the same result. Note that an operational eigenstate
is defined in a macroscopic way and need not to be in a one-to-one correspondence
with the ontic states. In this way, if the system is in an operational eigenstate before
the measurements, and we have checked that the type of measurement, when per-
formed on such operational eigenstates, does not affect the subsequent evolution of
the system, we can then assume that the NIM condition holds. The second definition
is that of the support: given a quantum system with (microscopic) states, λ ∈ Λ,
where Λ is the set of all possible quantum states, an arbitrary state of the system
can be described with a probability distribution over λ, denoted as µ(λ), and the
corresponding support of that state is defined as:

supp(µ) ≡ {λ|µ(λ) > 0}, (3.69)

i.e., the set of states λ which µ(λ) > 0.

The notion of realism requires that every possible quantum state λ ∈ Λ is macrodef-
inite forQ. It is then also natural to assume that every quantum state can be accessed
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by one of the operational eigenstates. Even though a general preparation procedure
can result in a non-macrodefinite state, but it is nothing more than a statistical mix-
ture of operational eigenstates due to our ignorance of the preparation procedure.
This view is called the operational eigenstate mixture macrorealism. It assumes that
the distribution of a general state µ(λ) can always be written as:

µ(λ) =
∑
i

aiµqi(λ), (3.70)

where µqi(λ) can be written as a convex sum of that of operational eigenstates such
that every state in supp(µqi) is value-definite with Q = qi, and ai ≥ 0, appropriately
valued such that µ(λ) is normalized. Clearly, under this version of MRps, NIM can
hold at all times, and a violation of the LGIs implies a violation of MRps.

By contrast, operational eigenstate support macrorealism assumes a more general
version of equation (3.70):

µ(λ) =
∑
i

aiνqi(λ), (3.71)

where νqi(λ) > 0 only if λ can be accessed by the corresponding qi operational eigen-
state, and can be negative in general. The difference compared to the operational
eigenstate mixture macrorealism is that the quantity νqi(λ) cannot be obtained from
a statistical mixture of operational eigenstates in general. In this way, even though
a measurement has been tested thoroughly to be non-invasive for operational eigen-
states, it may still turn out to be invasive for a general state. An example of theories
matching this description is the Kochen-Specker model[47].

Lastly, if we lift the assumption that every macrodefinite state λ can be accessed
by one of the operational eigenstates, we arrive at the last variety: supra eigenstate
support macrorealism. More specifically, there exist states which can be accessed
only when the system is in a mixture of two or more operational eigenstates. The
probability distribution µ(λ) is still given by equation (3.71), but we assume that
ν(λ) can be bigger than zero, even if λ cannot be accessed by the qi operational
eigenstate. An example of such theories is the de Broglie-Bohm theory, also known
as the pilot wave interpretation of quantum mechanics.

The validity of these assumptions can be found in the original paper[12]. The
crucial point here is that even though all three cases admit realism about the macro-
scopic, that for all λ ∈ Λ is macrodefinite, only the first case of MRps can be defini-
tively ruled out by a violation of the LGIs, whereas a violation in the remaining two
cases can both be considered as a violation of NIM, rather than MRps. This is consis-
tent with our discussion on the clumsiness loophole in the previous sections, that in
theories like the de Broglie-Bohm interpretation, the last two kinds of MRps cannot
be ruled out definitively by the LG framework. However, as noted by the author, both
kinds are not particularly welcome since they seem to suggest quantum behaviours
at a macroscopic level.
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3.6 Summary

This chapter is focused mainly on finding the set of necessary and sufficient condi-
tions for macrorealism, motivated mainly by Fine’s theorem in Bell’s case. We have
shown that Fine’s theorem can be applied to the LG framework, provided we specify
the measurement protocol or a set of two-time NSIT-like compatibility conditions as
equation (3.24) holds. When extending to more measurement times and higher-
dimensional systems, the generalized Fine’s theorem allows us to find the sets of
necessary and sufficient conditions for both cases.

In searching for necessary and sufficient conditions for MR, we must inevitably
consider all the interpretations of MR. As we have briefly shown in this chapter, the
exact interpretation of both the NIM and MRps assumptions can have an impact on
the exact definition of MR and how we test for it. Notably, we can obtain a hierar-
chy of different MR, depending on how strongly we implement the NIM conditions
in our experiments. On the one hand, we can require that the only first measure-
ment of the pair of sequential measurements is non-invasive, and that we perform
at most two measurements in an experiment, i.e., NIMpw. The corresponding MR
is denoted MRweak, and we find that the set of all possible LG2s and LG3s is suffi-
cient to prove MRweak at n-time, as indicated by the generalized Fine ansatz (3.21).
On the other hand, by requiring that any number of sequential measurements can
be non-invasive, we obtain MRstrong. The assumption of NIMseq is checked by NSIT
conditions, when combined appropriately, they form a set of necessary and sufficient
conditions for MRstrong. We have also seen explicitly that, in the quantum-mechanical
formulation, both notions of MR pose restrictions on the amount of interference be-
tween measurements, and the LG framework only requires that interference is suf-
ficiently small. An important point to note is that we must consider a set of NSIT
conditions that is sufficiently large compared to the possible interference terms be-
fore concluding anything regarding MR. For example, in the many-value case, as
we have seen in section 3.4, special care must be taken with the set of dichotomic
variables we use in order to obtain enough NSIT conditions to kill interference com-
pletely, only then can we begin to test for MRstrong.

In the last section, we have briefly discussed different interpretations of the MRps.
These are specified through the distinction between the operational eigenstates and
the true state of the system, which, in the case of quantum mechanics, are the quan-
tum states themselves. The paper by Maroney and Timpson, considered by most
readers a blunt criticism of the LG framework, defined the three varieties of MRps
and proved that the LGIs are only useful for ruling out one of them. This feature is,
of course, closely related to the clumsiness loophole. There is seemingly no way to
prove a measurement is non-invasive once and for all, at least not by testing it ex-
perimentally since there always exist some other tests which are not yet performed.
Therefore, we can never fully close the clumsiness loophole, which, in turn, would
give us hope of falsifying MRps. There are many proposals in wishing to address the
clumsiness loophole, including the continuous in time velocity measurements like
we have discussed, see also Ref. [23; 48], but such a loophole remains to date.
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Chapter 4

Related Works and Overview

As we have already seen in the previous sections, the LG framework can be adapted
to various forms depending on the experimental set-up. In general, the experiments
all involve testing the system against selective sets of inequalities involving time
correlation functions, similar to the original LGIs. We have included a few examples
of what they could look like in sections 2.5, 2.6 and 3.4.

Particularly, we have not yet discussed the pentagon inequality (PI), equation
(2.45). In the paper by Majidy et al.[49], a numerical simulation is performed,
and they have found that there exist regimes where the PI is violated while satisfy-
ing all the corresponding LG2s and LG3s. This is consistent with the fact that the PI
is irreducible, that it can not be obtained from combining the LG3s. In general, we
can define n-gon inequalities[37]:

n+ 2
∑
i<j

sisjCij ≥
{

1 if n odd,
0 if n even, (4.1)

and it is found that the set of all possible LG2s, LG3s and the n-gon inequality are the
necessary and sufficient conditions for MR at n-time. Compared to the original n-
time LG framework, testing the n-gon inequalities requires more measurements to be
taken, e.g., all possible two-time correlation functions. More measurements lead to
more potential interference terms, and hence the set of sufficient conditions varies,
as expected. Here we note that we could also extend our measurement scheme to
include higher-order correlation functions, this is discussed in [50].

Another interesting form of LGIs is derived in a paper by Emary [48] when con-
sidering ambiguous measurements, the classical analogue of weak experiments. In
which, the author is able to derive a set of LGIs without invoking the NIM assump-
tion, which takes into account the invasiveness of the measurements, by adding a
term to the LGIs similar to the quantum witness given by equation (3.45). Such LGIs
cannot be violated in experiments, following similar reasoning to that of inequality
(2.18). However, by performing ambiguous measurements instead of unambigu-
ous ones, together with the assumption ”equivalently invasive measurability” (EIM),
which states that ambiguous measurements are equally invasive as non-ambiguous
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ones, violations of LGIs can be detected. By tailoring the experimental set-up to
best satisfy EIM, a violation would force a macrorealist to either reject MRps or find
reasons to explain how two types of measurements can collude to give the same
amount of signalling and yet affect the system in drastically different ways[48]. In
this case, the clumsiness loophole clearly does not apply, but it is replaced with a
”collusion loophole”, which is arguably smaller. We note here that this is of a similar
methodology to the test proposed in [23], and carried out experimentally in [51].

The LG framework can also be adapted into testing interference experiments,
where macroscopic coherence, arguably, is already observed [52; 53; 54; 55]. As
Pan noted in his paper, there are no measurements taken during each experiment
hence NIM essentially plays no role in violating the LGIs. A detailed analysis found
that violations of LGIs are always accompanied by destructive interference[52], and,
of the same origin, anomalous weak values[53]. In this case, situations where the
LGIs are satisfied simply imply that the level of interference in the system is suffi-
ciently small, that we can essentially treat the system as classical, and, in principle,
assign probabilities to the object passing each slit. Similar experiments are also per-
formed with a triple-slit set-up and simple harmonic oscillators, and the regimes
where the LGIs are violated are identified.

LGIs can also function as a coherence witness in studying open systems, the be-
haviour of the LGIs in such systems is also studied[56; 57; 11; 58], however, as noted
by Wang et al.[59], the degree of violation cannot be taken directly as a measure of
quantumness. Nevertheless, the LGIs are still very useful in studying the effect of de-
phasing on quantum systems, and this is particularly important in testing quantum
hardware such as quantum computers[60; 61].

In summary, we have seen various examples of the capabilities of the LG frame-
work. Despite the fact that it fails to rule out a particular natural class of theories,
unlike Bell’s inequalities, the LG framework has many applications in studying quan-
tum systems from a whole new perspective. However, it does not come without
challenges, namely, the assumption that a measurement can be non-invasive is in-
herently incompatible with quantum mechanics. This makes it difficult to interpret a
violation and distinguishing between the corresponding assumption or assumptions
that have been shown to be false. A macrorealist will always use the clumsiness
loophole to try to protect MRps, and future experiments need to present far more
convincing arguments to change that. Potential future work in this subject includes
extending the framework to larger systems, finding more refined measurement pro-
tocols, studying the effect of noise on the system and, ultimately, understanding
when and how classical behaviour emerges from quantum mechanics.
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