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Abstract

This paper is organised into two sections, the first part is a review and the second a short ex-

ploitative inquiry into the integrability of a novel superconducting field theory. In the first part,

a comprehensive review and derivation of the Coordinate Bethe Ansatz and the Algebraic Bethe

Ansatz is conducted, focusing on the XXX Heisenberg Spin chain. Furthermore, there is a succinct

overview of spin chains in the context superconductivity, with emphasis on the Hubbard model,

SU(2) Gross-Neveu Model and relativistic superconductivity. Then the short exploration, a sim-

ple, novel field theoretic model of superconductivity is considered, mainly to test whether or not

it is integrable by synthesizing key attributes and principles from the Hubbard Model with the

symmetries of the XXX spin chain. This model is found to be integrable.
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1.1 Introduction and Quantum Spin Chains

Spin chains are a rich field of study in condensed matter physics, both from a theoretical and

experimental perspective, that have a myriad of applications in magnetisation and conduction.

Spin chains are statistical models constructed, initially, of localised magnetic moments linearly

arranged, interacting through spin-spin couplings. One of the original uses of a spin chain was

by Werner Heisenberg, applying Pauli’s exclusion principle to explain ferromagnetism and later

anti-ferromagnetism by Hans Bethe in 1931.1 Spin chains have proven to be instrumental even in

modern condensed matter physics, for example, cited in the 2016 Nobel Prize in physics awarded to

David Thouless, Duncan Haldane and Michael Kosterlitz “for theoretical discoveries of topological

phase transitions and topological phases of matter” where specific chain parameters lead to the

discovery of exotic phases of matter.2a,2b,3 Certain spin chains are integrable and can be solved

exactly, which involves finding eigenvalues and eigenvectors of the Hamiltonian prescribed to that
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particular spin chain. This was the feature of Bethe’s influential 1931 paper in which he solved

anti-ferromagnetically coupled spin chains, proving to be instrumental in various further integrable

models.1,4

The following paper is split into two parts. Part one will cover the Coordinate Bethe Ansatz

and Algebraic Bethe Ansatz of the XXX spin chain, then address briefly the topic of spin chains

in superconducting, specifically the Hubbard Model, SU(2) Chiral Gross Neveu Model and a

relativistic consideration of superconductivity. Part two will examine the integrability of a proposed

relativistically consistent superconducting field theory that combines ideas and properties of the

Hubbard Model and XXX Heisenberg spin chain and admits topological edge modes.

Integrability offers great insight into various elusive physical phenomena such as superconduc-

tivity, the ability for electrons to move through substances with zero resistance. The occurrence

of superconductivity was attributed to the pairing of electrons with opposite spin below the Fermi

level, called a Cooper Pair, in the original “pairing approximation” theorised by Bardeen, Cooper

and Schrieffer, also known as BCS Theory, in 1957.5 This initially simplistic theory set the founda-

tion for more sophisticated models of 1D superconducting in topological condensed matter.6 The

Bethe ansatz is then extremely powerful in analysing the physics of both “classical” superconduct-

ing (BCS Theory etc.) and newer models of one-dimensional topological superconductors involving

Majorana bound-states (MBS) along the edges of the material.7,8

To study any kind of spin chain one needs to establish the concept of spin in a mathematically

rigorous way. Here it will be set up using the representation of the su(2) Lie algebra through the

commutation relation (1.1.1) with the Levi-civita symbol, εαβγ as the structure constants.

[Sα, Sβ ] = iεαβγSγ , α, β, γ = 1, 2, 3 (1.1.1)

In the fundamental representation, they are defined by the Pauli matrices as follows 9:

S1 = 1
2σ

x, S2 = 1
2σ

y, S3 = 1
2σ

z (1.1.2)

with the usual pauli matrices:

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (1.1.3)

Then define the two spin raising and lowering operators, which will be greatly useful in analysing
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the various Hamiltonians to come, as follows:

S± = Sx ± iSy (1.1.4)

which in the fundamental representation is:

S+ =

0 1

0 0

 , S− =

0 0

1 0

 . (1.1.5)

The S± and the Sz operators cumulatively describe the possible action on the spin states as such:

S+ |↑〉 = 0, S− |↑〉 = |↓〉 , Sz |↑〉 = 1
2 |↑〉

S+ |↓〉 = |↑〉 , S− |↓〉 = 0, Sz |↓〉 = − 1
2 |↓〉

. (1.1.6)

Using these operators one can construct various models of spin chains each with its own set of

unique properties and symmetries that describe a plethora of natural phenomena to a remarkable

degree. The spin states are defined in vector form as:

|↑〉 =

1

0

 , |↓〉 =

0

1

 .

One of the most powerful models is the Heisenberg Spin Chain. There are two possible states at

each site (|↑〉 , |↓〉), in a local Hilbert space V ∈ C2. For a spin chain of length L, the total Hilbert

space is given by the tensor product of the Hilbert spaces at each site, of dimension 2L

V = V1 ⊗ V2 ⊗ ...⊗ VL (1.1.7)

where the Hilbert spaces are defined by Vn = C2 and characterised by the following Hamiltonian:

Ĥ =

L∑
n=1

(
JxS

x
nS

x
n+1 + JyS

y
nS

y
n+1 + JzS

z
nS

z
n+1

)
(1.1.8)

where Jx, Jy, Jz are parameters specifying the strength of spin interaction. The local spin oper-

ators Sα
n only interact with Sα

n+1, hence the is nearest neighbour only. Medium and long, range

interactions are also of interest, though they are not nearly as well studied as the nearest neighbour

models and tend to be more complicated in nature. Imposing conditions by equating some of the

three parameters will also determine the symmetries of the spin chain, for example:
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• Jx = Jy = Jz is the isotropic XXX spin chain.

• Jx = Jy 6= Jz is the anisotropic XXZ spin chain.

• Jx 6= Jy 6= Jz is the fully anisotropic XYZ spin chain.

The models that are integrable can be solved by various versions of the Bethe Ansatz, starting with

Hans Bethe’s original proposal, now known as the Coordinate Bethe Ansatz 1. This was originally

done with the XXX spin chain but has since been expanded to incorporate various other models

such as the XXZ and XYZ models mentioned above and more 10,11,12a,12b,12c.

Henceforth the paper will focus on the SU(2)-invariant isotropic XXX spin chain. The Hamil-

tonian of this model is in involution with the generators of the global su(2) algebra, Sx, Sy, Sz,

thus making it SU(2)-invariant:

[Ĥ, Sx] = [Ĥ, Sx] = [Ĥ, Sx] = 0, (1.1.9)

with the translation-invariant sum of individual spins:

Sα =
∑
n

Sα
n . (1.1.10)

Consequently, Ĥ and Sz can be diagonalised, as is the goal of the Bethe Ansatz.

1.2 Coordinate Bethe Ansatz of the XXX Spin Chain

The general idea of the Bethe Anstaz is to diagonalise the Hamiltonian. This process allows us to

find the energy eigenvalues associated to the model, as well as the conserved charges prevalent in

the physicality of the Hamiltonian. These quantities are necessary to define any integrable theory,

and exploring them can be done elegantly through the imagery of a quasiparticle that defines the

spin wave interactions in the theory called a Magnon.

1.2.1 Magnons

Let us start with the XXX spin chain Hamiltonian 9:

ĤXXX = −J
L∑

n=1

(
Sx
nS

x
n+1 + Sy

nS
y
n+1 + Sz

nS
z
n+1

)
(1.2.1)
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Here the negative sign is chosen by convention to align with the ferromagnetic state when J > 0

(conversely one can also define the anti-ferromagnetic state J < 0), specific to the XXX Heisenberg

Spin chain. Using the raising and lowering S± operators described in (1.1.4) the Hamiltonian can

also be written as :

ĤXXX = −J
2

L∑
n=1

(
S−
n S

+
n+1 + S+

n S
−
n+1 + 2Sz

nS
z
n+1

)
(1.2.2)

For simplification one can set J = 1 without loss of generality. From here the idea is to find the

eigenvectors and eigenstates of ĤXXX . We start from the pseudo-vaccum, |Ω〉, (ground) state with

all spins up.

|Ω〉 = |↑L〉 (1.2.3)

One could also start with a ground state of all down spins without loss of accuracy: |Ω〉 = |↓L〉.

|Ω〉 can diagonalise the Hamiltonian and it follows (recalling that we set J = 1):

ĤXXX |Ω〉 = −
L∑

n=1

Sz
nS

z
n+1 |Ω〉 = −L

4
|Ω〉 = E0 |Ω〉 . (1.2.4)

Then the vacuum energy is

E0 = −L
4

(1.2.5)

In this basis, the first excited state will have the nth site as spin-down:

|n〉 = |↑↑ ... ↑↓↑ ... ↑〉 . (1.2.6)

More generally a state with N -excitations can be written using S−
n acting on the vacuum state

as:

|n1, n2, ..., nN 〉 = S−
n1
S−
n2
...S−

nN
. |Ω〉 (1.2.7)

Now consider the linear combination of |n〉 states (noting the translation invariance of the Hamil-

tonian), this is then Bethe’s original Ansatz 1, with magnon momentum p:

|Ψ(p)〉 =
L∑

n=1

eipn |n〉 (1.2.8)

A linear combination of the form in (1.2.8) is a magnon, a quasiparticle assigned to spin wave

excitations. Before computing the action of ĤXXX on the wavefunction above, note the useful
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relations: ∑L
l=1 S

+
l S

−
l+1 |n〉 = |n+ 1〉 ,∑L

l=1 S
−
l S

+
l+1 |n〉 = |n− 1〉 ,∑L

l=1 S
z
l S

z
l+1 |n〉 = L−4

4 |n〉 .

(1.2.9)

Then using the defined relations, the Hamiltonian acts on the wavefunction with the imposed

periodic boundary condition on the spin chain of length L- |n+ L〉 ≡ |n〉 as follows:

ĤXXX |Ψ(p)〉 =
L∑

n=1

eipnĤXXX |n〉

= −1

2

L∑
n=1

eipn
(
|n+ 1〉+ |n− 1〉+ L− 4

2
|n〉
)

= −1

2

(
eip + e−ip +

L− 4

2

) L∑
n=1

eipn |n〉

= −
(

cos(p) + L− 4

4

)
|Ψ(p)〉 = E1(p) |Ψ(p)〉

.

(1.2.10)

Thus it is clear |Ψ(p)〉 is an eigenstate of ĤXXX with the energy eigenvalue E1(p). So, to define

the energy of the magnon, ε(p), one only has to consider the difference between the ground state

energy E0 (zero magnon state) and the first excitation (one magnon state):

ε(p) = E1(p)− E0 = 1− cos(p) ≥ 0 (1.2.11)

This is nearly the full picture of the one magnon sector, however, there is no limit on p to a

corresponding |Ψ(p)〉. To fix this, introduce the quantisation condition to limit the arbitrary

freedom of p, following the momentum quantisation of a particle in finite space. Applying this to

the wavefunction:

|Ψ(p)〉 =
L∑

n=1

eipn |n〉 =
L∑

n=1

eipn |n+ L〉 =
L∑

n=1

eip(n−L) |n〉 (1.2.12)

which requires

eipL = 1 (1.2.13)

therefore providing the quantised magnon momentum:

p = 2πm
L , m = 1, 2, ..., L

.
(1.2.14)
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This analysis can be extended to the two magnon sector and the N-magnon sector.

1.2.2 Two, Three and N-Magnon Sectors

For the two magnon situation consider the linear combination of states with excitations at two

different sites n1 and n2, in a very long spin chain so the sites are far apart, however, still in

succession (choosing to keep p1 to the left of p2). Define the two magnon eigenstate as the linear

combination:

|Ψ(p1, p2)〉 =
∑

1≤n1<n2≤L

ψ(n1|n2) |n1, n2〉 (1.2.15)

Taking into account the two momenta and the linear combination of the two sites, one should

expect a term involving ip1n1 + ip2n2 in the exponential. Then following the proposition of the

first ansatz, the two magnon wavefunction ansatz is proposed:

ψ(n1|n2) = A(p1, p2)e
i(p1n1+p2n2) +B(p1, p2)e

i(p2n1+p1n2) (1.2.16)

With momentum-dependent coefficients A(p1, p2) and B(p1, p2) which are not useful on their own,

however, are crucial in a ratio that defines the scattering matrix 13. The first half of the right

hand side with coefficient A(p1, p2) is the incoming wave, while the latter half with B(p1, p2) is the

reflected wave. If both A 6= 0 6= B then only the ration of the coefficients is physical.

S(p1, p2) =
B(p1, p2)

A(p1, p2)
. (1.2.17)

Now, imposing that this is an eigenstate with the energy eigenvalue, E2:

ĤXXX = |Ψ(p1, p2)〉 = E2 |Ψ(p1, p2)〉 . (1.2.18)

In this regime, then, there are two quantities to decipher and specify- the energy eigenvalue,

E2(p1, p2), and the scattering matrix, S(p1, p2). To proceed, decompose the sum in (1.2.15) and

consider the following cases:

• Case 1: the two |↓〉’s are not neighbours, i.e. |n1 − n2| > 1.

• Case 2: the two |↓〉’s are neighbours, i.e. n2 = n1 + 1.
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Then, by extending the relations in (1.2.9) to the two magnon sector:

∑L
l=1 S

+
l S

−
l+1 |n1, n2〉 = |n1 + 1, n2〉+ |n1, n2 + 1〉 ,∑L

l=1 S
−
l S

+
l+1 |n1, n2〉 = |n1 − 1, n2〉+ |n1, n2 − 1〉 ,∑L

l=1 S
z
l S

z
l+1 |n1, n2〉 = L−8

4 |n1, n2〉 ,

.

(1.2.19)

The constraint here on the Schrödinger equation in (1.2.18) to be true, is the coefficients of |n1, n2〉

must be known. First consider Case 1- distant magnons, i.e. not neighbours. comparing either

side of the above equation:

E2ψ(p|n1, n2) = −1

2
(ψ(p|n1 − 1, n2) + ψ(p|n1, n2 − 1))

− 1

2

(
ψ(p|n1 + 1, n2) + ψ(p|n1, n2 + 1)− L− 8

4
ψ(p|n1, n2)

) (1.2.20)

For fixed n1 and n2, consider the action of ĤXXX on |↓〉.

ψ(n1 + 1, n2) + ψ(n1, n2 + 1) =
(
eip1 + eip2

)
ψ(p|n1, n2),

ψ(n1 − 1, n2) + ψ(n1, n2 − 1) =
(
e−ip1 + e−ip2

)
ψ(p|n1, n2),

(1.2.21)

The energy eigenvalues are then:

E2(p1, p2)− E0 = 2− cos(p1)− cos(p2) = ε(p1) + ε(p2) (1.2.22)

Which is just the sum of the energy of two magnons for the case of distant magnons. While this

was derived from the condition |n1 − n2| > 1, substituting E2 = ε(p1) + ε(p2) − L
4 into (1.2.18)

the relation is valid for any n1, n2 (even n2 = n1+1). Now consider case 2- Neighbouring Magnon

case. The wavefunction can be defined in terms of the magnon momentum and successive lattice

sites- n1 and n1+1 - ψ(p|n1, n1+1). Then define, again, the relations of the spin operators acting

on the states: ∑
i S

+
i S

−
i+1 |n1, n1 + 1〉 = |n1, n1 + 2〉 ,∑

i S
−
i S

+
i+1 |n1, n1 + 1〉 = |n1 − 1, n1 + 1〉∑

i S
z
l S

z
i+1 |n1, n1 + 1〉 = L−4

4 |n1, n1 + 1〉 ,

(1.2.23)

and following the argument in case 1, using the explicit definitions of the wavefunction and the

Schrödinger equation, solve for the energy eigenvalue:

E2ψ(p|n1, n1+1) = −1

2

(
ψ(p|n1 − 1, n1 + 1) + ψ(p|n1, n1 + 2)− L− 4

4
ψ(p|n1, n1 + 1)

)
(1.2.24)
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As mentioned above, (1.2.20) is applicable for any n1, n2, so applying the specific case n2 = n1 +1

to (1.2.20) results in:

E2ψ(p|n1, n1 + 1) =− 1

2
[ψ(p|n1 − 1, n1 + 1) + ψ(p|n1, n1)]

− 1

2
[ψ(p|n1 + 1, n1 + 1) + ψ(p|n1, n1 + 2)]− L− 8

4
ψ(p|n1, n1 + 1)

.

(1.2.25)

Then taking the difference between (1.2.24) and (1.2.25) one finds:

1

2
(ψ(p|n1, n1) + ψ(p|n1 + 1, n1 + 1))− ψ(p|n1, n1 + 1) = 0 (1.2.26)

So the scattering matrix can be found as:

S(p1, p2) = −1− 2eip2 + ei(p1+p2)

1− 2eip1 + ei(p1+p2)
. (1.2.27)

Which can be rewritten using the trigonometric identities of the exponential:

S(p1, p2) =
1
2 cot(p1

2 )− 1
2 cot(p2

2 )− i
1
2 cot(p1

2 )− 1
2 cot(p2

2 ) + i
(1.2.28)

and has the properties:

S(p1, p2)S(p2, p1) = 1 |S(p1, p2)| c = 1.

Employing the periodic boundary conditions from before- |n1, n2〉 = |n2 − L, n1〉 the eigenstate in

case 2 is then:

|Ψ(p1, p2)〉 =
∑

n1<n2

ψ(n1, n2) |n1, n2〉 =
∑

n1<n2

ψ(n1, n2) |n2 − L, n1〉

=
∑

n′
1<n′

2

ψ(n′2, n
′
1 + L) |n′1, n′

2〉

=
∑

n1<n2

ψ(n2, n1 + L) |n1, n2〉 .

(1.2.29)

Where some relabeling was done to clean up the expressions, namely in the penultimate line-

n′1 = n2 − L and n′2 = n1 and in the final line the dummy indices were relabeled- n′1 to n1 and n′2

to n2. By equating the first and final line of (1.2.30) the following statement can also be made:

ψ(n1, n2) = ψ(n2, n1 + L) (1.2.30)
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Then using the explicit form of ψ(n1, n2) one finds the following set of quantisation conditions

known as the Bethe Ansatz Equations (BAE):

eip1LS(p1, p2) = 1, eip2LS(p2, p1) = 1 (1.2.31)

The generalisation from here to the N-magnon sector is not yet clear, so the three-magnon sector

must also be considered, and as it turns out the extension from there to the N-magnon sector is

straightforward. Defining the eigenstate:

|Ψ(p1, p2, p3〉 =
∑

1≤n1<n2<n3≤L

ψ(p|n) |n1, n2, n3〉 (1.2.32)

With three different magnon momenta, p = {p1, p2, p3}, there are 3! = 6 possible permutations,

so anticipating the upcoming generalisation, it is convenient to introduce some notation for more

permutations of momenta. Firstly, name the permutations, here {1, 2, 3} as σ where the set of all

permutations is S3 and σ ∈ S3:

S3 = {{1, 2, 3}, {2, 1, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}} (1.2.33)

Then we define a momentum, p{σ}, for each permutation, σ, for example:

σ = {1, 2, 3}, p{σ} = {p1, p2, p3}, A(pσ) = A(p1, p2, p3) (1.2.34)

Now writing down the three magnon wavefunction ansatz:

ψ(n) =
∑
σ∈S3

A(pσ)e
i(pσ(1)n1+pσ(2)n2+pσ(3)n3)) (1.2.35)

Following the same method as in the one and two magnon sectors, the next step is determining the

energy eigenvalue E3(p) and the amplitudes A(pσ). As there are 6 total terms in the wavefunction,

there will be 5 ratios to determine and an overall 6 unknown quantities. The least tedious way to

solve this is to take advantage of the naturality of the Bethe Ansatz and conjecture a structure for

these objects based on physical intuition. Hence, the three magnon energy should continue to be

a sum of all the individual magnons, which indeed is true 10.

E3(p)− E0 = ε(p1) + ε(p2) + ε(p3) (1.2.36)
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The ratio A(pσ(1),pσ(2),pσ(13))

A(p1,p2,p3)
is a little more complicated than the physical S-matrix in the two

magnon section. Bethe finds, that the ratio A(pσ)
A(p) factorises into a sequence of two- body S-

matricies, i.e. any A(pσ) can be brought to A(p) simply by exchanging two particles. This would

look like:

A(..., pj , pk, ...) = S(pk, pj)A(..., pk, pj , ...), ifj > k (1.2.37)

Then applying recursively an example of this rule with the two body S-Matrix, S(pi, pj):

A(p3, p2, p1) = S(p1, p2)A(p3, p1, p2)

= S(p1, p2)S(p1, p3)A(p1, p3, p2)

= S(p1, p2)S(p1, p3)S(p2, p3)A(p1, p2, p3)

(1.2.38)

Then the ratio for this example:

A(p3, p2, p1)

A(p1, p2, p3)
= S(p1, p2)S(p1, p3)S(p2, p3) (1.2.39)

The 4 other amplitude ratios can be found using the same method, and with the periodic boundary

conditions the resultant three equations are found:

eip1LS(p1, p2)S(p1, p3) = 1

eip2LS(p2, p1)S(p2, p3) = 1

eip3LS(p3, p1)S(p3, p2) = 1

(1.2.40)

Now the extension to the N-Magnon sector is very straight forward inlight of this new notation,

starting with the eigenstate 14,15:

|Ψ(p)〉 =
∑

1≤n1<...<nN≤L

A(pσ)

A(p)
ei

(
pσ(1)n1+pσ(2)n2...+pσ(N)nN

)
|n1, ..., nN 〉 (1.2.41)

with the energy eigenvalue,EN :

ĤXXX |Ψ(p)〉 = EN (p) |Ψ(p)〉

with EN (p) = E0 +
∑N

k+1 ε(pk)
(1.2.42)

This nearly concludes the full picture of the coordinate Bethe Ansatz. Bethe also found that

the momentum variables tend to be a little troublesome when explicitly solving a model, thus he
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introduced a change of variables from the momenta, pk, to the rapidities, uk.

eipk =
uk+

i
2

uk− i
2

, uk = 1
2 cot(pk

2 ) (1.2.43)

Then, the BAE and the magnon energy, ε(pk), can be written very simply in terms of the rapidity15:

(
uk+

i
2

uk− i
2

)L
=
∏N

j 6=k
uj−uk+i
uk−uj−i ;

k = 1, 2, ..., N
(1.2.44)

ε(pk) = 1− cos(pk) =
2

4u2k + 1
(1.2.45)

This way the Hamiltonian is diagonalised and described by the magnon picture which has proven

to be instrumental in solving numerous integrable models in condensed matter. It has gone further

to inspire various new analytical methods and re-derivations of these BAE’s. One such formalism

is the Algebraic Bethe Ansatz, also known as the Quantum Inverse Scattering method, which is

discussed in the next section.

1.3 Algebraic Bethe Ansatz of the XXX Spin Chain

The Algebraic Bethe Ansatz (ABA) originates from the Quantum Inverse Scattering method de-

veloped by Leningrad mathematicians Fadeev, Takhtajan, Reshetikhin, and Sklyanin, which was

then expanded into its current formalism by physicists Korepin, Izergin and Slavnov to name a

few 16. The core mathematical operator of the ABA is the Lax operator, which acts as the spin

chain generating object, explicitly defined as:

Ln,a(λ) = λIn ⊗ Ia + i
∑

α∈{x,y,z}

Sα
n ⊗ σα

a (1.3.1)

Where σα
a are the Pauli matrices in the auxiliary Hilbert space, Ha ∈ C2 with a local physical

Hilbert Space Vn ∈ C2 at each site n. The Lax operator depends on λ ∈ C, the spectral parameter

(eigenvalue of the Lax operator), and acts in the tensor product space - Hn ⊗Ha, of the quantum

spin space, Hn, the Hilbert space at site n, and complex auxiliary space, C2
a. Sα

n is the spin

operator 17. It can also be written in matrix form as:

Ln,a(λ) =

λ+ iSz
n iS−

n

iS+
n λ− iSz

n

 (1.3.2)
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Then define the permutation operator- P ∈ C2 ⊗ C2:

P =
1

2

(
I⊗ I+

∑
α

σα ⊗ σα

)
(1.3.3)

which acts by flipping the order as such:

P (a⊗ b) = b⊗ a ; a⊗ b ∈ C2 ⊗ C2

One can also define the Lax operator in terms of the permutation operator in the auxiliary Hilbert

spaces C2:

Ln,a(λ) =

(
λ− i

2

)
In,a + iPn,a (1.3.4)

Now to understand if there is a simple relation between the products Ln,a1
Ln,a2

and Ln,a2
Ln,a1

, it

turns out that the equation (1.3.5) does this effectively provided one chooses the R-matrix acting

on Ha1 ⊗Ha2 as in (1.3.6) resulting in the fundamental commutation relation of the Lax operator,

known as the RLL relation acting in the tensor triple product space hn ⊗ V1 ⊗ V2:

Ra1,a2
(λ− µ)Ln,a1

(λ)Ln,a2
(µ) = Ln,a2

(µ)Ln,a1
(λ)Ra1,a2

(λ− µ) (1.3.5)

with spectral parameters λ ∈ V1 and µ ∈ V2 (to check that it works, see Appendix A). To solve

the equation in (1.3.5), the R-matrix is defined with subscripts a1 and a2 in two auxiliary spaces

V1, V2 ∈ C2:

Ra1,a2
(λ) = λIa1,a2

+ iPa1,a2
(1.3.6)

It is also interesting to note that comparing (1.3.1) and (1.36), the R-matrix and Lax Operator have

the same form. The Lax operator can be interpreted as the object that generates an isotropic 1D

spin chain in this setting 15. The R-Matrix obeys the following properties 16,17 with the simplified

notation- Ra1,a2
≡ R12 (proof found in Appendix B):

R12(u, v)R13(u,w)R23(v, w) = R23(v, w)R13(u,w)R12(u, v) (1.3.7)

R12(u, u) = P12 (1.3.8)

where P12 is the permutation operator. (1.3.7) is the quantum Yang-Baxter equation and (1.3.8) is

called the “regularity condition”. The quantum Yang-Baxter equation plays a key role in integrable

quantum models and arose in the works of Yang (1967)20 and Baxter (1972)21.
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Naturally, we can then consider the ordered product of the Lax operator for every spin space

along the chain, then the Lax operator can be interpreted geometrically as the connection between

each spin site, i.e. the transport from n→ n+ 1. Thus defines the monodromy matrix:

Ta(λ) = LL,a(λ)LL−1,a(λ)...L1,a(λ)

Ta(λ) =

A(λ) B(λ)

C(λ) D(λ)

 (1.3.9)

Ta(λ) turns out to be a generating object for spin, Hamiltonian and raising & lowering operators.

The monodromy matrix also fulfils a similar commutation relation as in (1.3.5), known as the RTT

relation (proof in Appendix C):

Ra1,a2
(λ− µ)Ta1

(λ)Ta2
(µ) = Ta2

(µ)Ta1
(λ)Ra1,a2

(λ− µ) (1.3.10)

Having defined the monodromy matrix and the family of Yang-Baxter equations, consider the

polynomial form of TL,a(λ) with the total spin, Sα; α = x, y, z, as the second highest order

coefficient.

Ta(λ) = λL + iλL−1
∑
α

(Sα ⊗ σα) + ... (1.3.11)

One defines the transfer matrix as the trace of the monodromy matrix, acting on C2 ⊗ L:

F (λ) = trT (λ) = A(λ) +D(λ)

[F (λ), F (µ)] = 0
(1.3.12)

It is straightforward to see the commutator in (1.3.12) vanishes:

[A(λ) +D(λ), A(µ) +D(µ)] = (A(λ) +D(λ)) (A(µ) +D(µ))− (A(µ) +D(µ)) (A(λ) +D(λ))

So, if the operators A(λ)A(µ) and D(λ)D(µ) commute, the commutator in (1.3.12) is true. This

illustrates another function of F (λ), that generates a collection of commuting operators for different

values of the spectral parameter. Now expanding in the non-trivial λ:

F (λ) = 2λL +

L−2∑
l=0

Qlλ
l (1.3.13)

which produces L − 1 commutating operators Ql. For the Hamiltonian to be integrable, it must

be a part of this family on commuting operators, in other words it must be in involution with the
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conserved charges. Now we can proceed with the expansion around λ = i
2 , and introducing an

important observable- momentum, P :

eiP = U, (1.3.14)

which is a unique point in the auxiliary space (see Appendix D for the rationale of choosing the

point λ = i
2 and the derivation of (1.3.14)). Then:

d

dλ
Ta(λ)

∣∣∣∣
λ= i

2

= iL−1
∑
n

PL,a...Pn,a...P1,a (1.3.15)

Then repeating and taking the trace over the auxiliary space:

d

dλ
Ta(λ)

∣∣∣∣
λ= i

2

= iL−1
∑
n

P1,2...Pn−1,n+1...PL−1,N (1.3.16)

Most permutations in (1.3.16) can be cancelled by multiplying the inverse of the unitary operator,

U−1, resulting in:

d

dλ
Fa(λ)F (λ)

−1

∣∣∣∣
λ= i

2

=
d

dλ
lnFa(λ)

∣∣∣∣
λ= i

2

=
i

2

∑
n

Pn,n+1 (1.3.17)

Recalling the Hamiltonian defined in (1.2.1) and the definition of P in (1.3.3) the Hamiltonian can

be rewritten in terms of the permutation operator:

ĤXXX =
1

2

∑
n

Pn,n+1 −
N

2
(1.3.18)

Then comparing (1.3.18) and (1.3.17) the Hamiltonian is related to F (λ) and thus belongs to the

family of L -1 commuting operators that are generated by the trace of the monodromy matrix.

ĤXXX =
i

2

d

dλ
lnF (λ)

∣∣∣∣
λ= i

2

− N

2
(1.3.19)

Having set up the Lax and Permutation operators, the monodromy matrix and defining the set of

commuting operators generated by the monodromy matrix, focus can be shifted on deriving the

BAEs from this formalism. This entire buildup is to diagonalise the Hamiltonian as was done in

the Coordinate Bethe Ansatz. The Algebraic Bethe Anstaz has also the extension to diagonalise

the transfer matrix F (λ) = A(λ) +D(λ). Now, use the explicit 4x4 matrix representation of the

RTT relation, define the natural basis in the auxiliary space C2 ⊗ C2 (Appendix E), so that the
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R-matrix then looks like (where the zeros are dropped):

R(λ) =



a(λ)

b(λ) c(λ)

c(λ) b(λ)

a(λ)


(1.3.20)

where a = λ+ i, b = λ and c = i. Monodromy matrices Ta1(λ) and Ta2(λ) are of the form:

Ta1 =



A(λ) B(λ)

A(λ) B(λ)

C(λ) D(λ)

C(λ) D(λ)



Ta2
=



A(µ) B(µ)

C(µ) D(µ)

A(µ) B(µ)

C(µ) D(µ)



(1.3.21)

So the product of the two matrices:

Ta1
Ta2

=



A(λ)A(µ) A(λ)B(µ) B(λ)A(µ) B(λ)B(µ)

A(λ)C(µ) A(λ)D(µ) B(λ)C(µ) B(λ)D(µ)

C(λ)A(µ) C(λ)B(µ) D(λ)A(µ) D(λ)B(µ)

C(λ)C(µ) C(λ)D(µ) D(λ)C(µ) D(λ)D(µ)


, (1.3.22)

which can now be used in the RTT relation. From the explicit form of the RTT relation arises the

set of commutator relations:

[B(λ), B(µ)] = 0;

A(λ)B(µ) = f(λ− µ)B(µ)A(λ) + g(λ− µ)B(λ)A(µ);

D(λ)B(µ) = h(λ− µ)B(µ)D(λ) + k(λ− µ)B(λ)A(µ);

(1.3.23)

where the spectral parameter coefficients are:

f(λ) = λ−i
λ ; g(λ) = i

λ

h(λ) = λ+i
λ ; k(λ) = − i

λ

(1.3.24)
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Now continuing with the form:

a(λ− µ)B(λ)A(µ) = c(λ− µ)B(µ)A(λ) + b(λ− µ)A(µ)B(λ) (1.3.25)

and then interchanging the order λ↔ µ one gets:

A(λ)B(µ) =
a(µ− λ)

b(µ− λ)
B(µ)A(λ)− c(µ− λ)

b(µ− λ)
B(λ)A(µ) (1.3.26)

Using this process, the other pair-terms in (1.3.23) can be found explicitly. Now introducing |Ω〉

which here will play as a reference state, similar to the pseudo-vacuum in the previous section:

C(λ) |Ω〉 = 0. (1.3.27)

To decipher this state exactly, observe that in each hn, there is a vector, ωn that triangularises the

Lax operator as follows:

Lm(λ)ωn =

λ+ i
2 ∗

0 λ− i
2

ωn (1.3.28)

The ∗ are expressions irrelevant to the diagonalisation process. So acting the monodromy matrix

to this reference state results in the following:

T (λ) |Ω〉 =

αL(λ) ∗

0 δL(λ)

 (1.3.29)

where α(λ) = λ+ i
2 and δ(λ) = λ− i

2 . Then finally the terms from Ta1 and Ta1 are:

A(λ) |Ω〉 = αL(λ) |Ω〉 ; C(λ) |Ω〉 = 0; D(λ) |Ω〉 = δL(λ) |Ω〉 (1.3.30)

so that |Ω〉 is an eigenstate of A(λ) andD(λ) as well as F (λ) = A(λ)+D(λ). The other eigenvectors,

then, will be searched for in the form involving B(λM ):

|Φ({λ})〉 = B(λ1)...B(λM ) |Ω〉 . (1.3.31)

The crucial condition that Φ({λ}) must be an eigenvector of F (λ) will result in an algebraic

expression describing the relations between λ1...λM , i.e. the Algebraic Bethe Ansatz Equations.
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The derivation starts with the application of (1.3.23), as above:

A(λ)B(λ1)...B(λM ) |Ω〉 =
l∏

k=1

f(λ− λk)α
L(λ)B(λ1) |Ω〉

+

l∑
k=1

Mk (λ, {λ})B(λ1)...B̂(λk)...B(λM )B(λ) |Ω〉

(1.3.32)

The coefficients Mk are very involved, however, a general expression can be derived quite straight-

forwardly from the first term, M1, by replacing λ1 ↔ λj due to the commutativity of B(λ):

M1(λ, {λ}) = g(λ− λ1)

M∏
k=2

f(λ1 − λk)α
N (λ1), (1.3.33)

Mj(λ, {λ}) = g(λ− λj)

l∏
k 6=j

f(λj − λk)α
N (λj). (1.3.34)

Therefore the coefficients a(λ), b(λ) and c(λ) in the R-matrix satisfy sum rules, thus following the

RTT relations. Consequently, for D(λ):

D(λ)B(λ1)...B(λM ) |Ω〉 =
l∏

k=1

h(λ− λk)δ
N (λ)B(λ1) |Ω〉

+

l∑
k=1

Nk (λ, {λ})B(λ1)...B̂(λk)...B(λM )B(λ) |Ω〉

(1.3.35)

With Nk instead of Mk:

Nj(λ, {λ}) = k(λ− λj)

l∏
k 6=j

h(λj − λk)δ
N (λj). (1.3.36)

Then the observation can be made that g(λ − λj) = −k(λ − λj), allowing for the cancellation of

unwanted terms in (1.3.32) and (1.3.35) to apply F (λ)Φ({λ}) = (A(λ)+D(λ))Φ({λ}). This results

in:

(A(λ) +D(λ))Φ({λ}) = Λ(λ, {λ})Φ({λ})) (1.3.37)

where:

Λ(λ, {λ}) = αL(λj)

l∏
j=1

f(λ− λj) +

l∏
j=1

δN (λj)h(λ− λj). (1.3.38)

Under the conditions that {λ} satisfies the conditions

l∏
k 6=j

f(λ− λj)α
L(λj) =

l∏
k 6=j

h(λ− λj)δ
N (λj) (1.3.39)
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for j = 1, ...,M and applying the explicit expressions of α(λ), δ(λ), (1.3.24) and (1.3.39) the

Algebraic Bethe Ansatz Equations are:

(
λj +

i
2

λj − i
2

)L

=

l∏
k 6=j

λj − λk + i
2

λj − λk − i
2

. (1.3.40)

This is equivalent to the BAE condition found in (1.2.46) using the magnon formalism. The

algebraic method is a another way to derive these powerful equations and has applications in more

than just condensed matter theory, for example, it can be to study various string theories. The

only thing left to do now is apply these conditions to the shift operator to find the corresponding

momentum and energy expressions. Continuing with the point λ = i
2 , it is easy to notice the

second term in Λ(λ, {λ}) vanishes, leaving a multiplicative eigenvalue:

UΦ({λ}) = iLF

(
i

2

)
Φ({λ}) =

∏
j

λj +
i
2

λj − i
2

. (1.3.41)

Then taking the log, it turns out the momentum, P , eigenvalues are additive:

PΦ({λ}) =
∑
j

p(λ)Φ({λ}) (1.3.42)

with

p(λ) =
1

i
ln
λ+ i

2

λ− i
2

. (1.3.43)

The Hamiltonian is also additive by extension, thus taking the differential: d
dλ lnΛ

∣∣
λ= i

2

, the energy

eigenvalues are:

ĤXXXΦ({λ}) =
∑
j

ε(λj)Φ({λ}) (1.3.44)

where

ε(λ) = −1

2

1

λ2 + 1
4

(1.3.45)

Thus rearriving at the quasiparticle interpretation, where ε(λ) is the magnon energy and p(λ)

the magnon momentum. Consistently, λ, the spectral parameter, is the rapidity. The interesting

extension here is that B(λ) acts as the magnon creation operator. Finally, one can relate ε(λ) and

(λ) in the following way:

ε(λ) =
1

2

d

dλ
p(λ) (1.3.46)

with the dispersion relation:
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ε(p) = cos p− 1. (1.3.47)

1.4 Superconductivity and Spin Chains

Classical superconducting models rely heavily on various lattice spin chain models, the most suc-

cessful thus far being the Hubbard Model of strongly correlated electrons18,19. The Hubbard model

is a fundamental model of electrons in the conduction band associated with a 4D Hilbert space.

Where the Heisenberg spin chain deals with 1D spin interactions, the Hubbard model deals with

a lattice of electrons involving kinetic energy, i.e. electron site hopping and coulomb interactions.

Each lattice site can either have a single electron (with up or down spin) or a pair with opposing

spins (due to Pauli exclusion). The standard Hubbard model Hamiltonian is 19 :

HHub = −t
∑
i

∑
α=↑,↓

(
c†α,icα,i + c†α,i+1cα,i+1

)
+ un↑,in↓,i (1.4.1)

Where c, c† are the creation and annihilation operators (kinetic part), n are the number densities

(potential), t is the energy scale governing site hopping, found by the overlap of two wavefunctions

of the pair of atoms in question, U is the energy scale at the site. The kinetic and potential parts

of H describe the hopping term which enables electrons to move between neighbouring sites and

the number of electron pairs on each site respectively. The Hubbard model in 1D is integrable,

thus there is a solution to the Yang-Baxter equation- the R-matrix that generates an infinite set

of conserved charges in involution with the Hamiltonian. These mathematical objects codify the

properties of the system in question and when explicitly solved, describe in detail the inner work-

ings of the current model. In this lengthy process, there are numerous symmetries one can take

advantage of, such as the “boost” symmetry of the Hamiltonian. Specific models will also demon-

strate symmetric properties corresponding to Lie Algebras. A ubiquitous symmetry in successful

models is the su(2) × su(2) symmetry attributed to the kinetic part of HHub, where the algebra

is consistent with suC(2) charge symmetry and suη(2) spin symmetry which is expanded into a

larger “centrally extended” su(2|2) (an algebra also used extensively in AdS/CFT calculations)
24,25,26. This brand of Hubbard models can also be used to calculate the zero temperature suscep-

tibility and magnetisation of the system to derive the “finite-temperature” Bethe Ansatz equations

or “Thermodynamic” Bethe Ansatz equations, done initially by Yang in 196720, Lieb and Wu in

196822 and extended to the finite-temperature setting by Takahashi and Shiba in 197223.
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The SU(2) spin chain models can be deformed and expanded upon to evaluate topological

phases of matter often seen in topological superconductors allowing Majorana bound edge states.

Topological protection of these states depends on the existence of an energy gap in the bulk of

the material, however, provided there are enough symmetries, exponentially localised zero energy

modes could also be found in a gapless system. One example is the 1D spin-triplet topological

superconductor with fractional spin 1
4 at either end of an open (exponentially localised spin)

chain6. To solve this model Pasnoori et al. (2020) used a U(1)-symmetric Thirring model with

open boundary conditions on fermions- an anisotropic XXZ-type deformation of SU(2) Chiral

invariant Gross-Neveu Model with the Hamiltonian density:

H = −iv
(
ψ†
Ra∂xψRa − ψ†

La∂xψLa

)
+ ψ†

RaψRa[g‖σ
z
abσ

z
cd + g⊥ (σx

abσ
x
cd + σy

abσ
y
cd)]ψ

†
LcψLd (1.4.2)

Where σx,y,z are the Pauli matrices and ψL(R)(x) are two component spinor fields corresponding

to left (right) moving spin 1
2 fermions with components a = (↑, ↓). H can then be diagonalised

using its exact eigenstates as it obeys the commutation [H, N ] = 0. Then to employ the Bethe

Ansatz form, the set of momentum states, kj , j = 1...N , with energy eigenvalue E =
∑

j kj is:

|{kj}〉 =
∑
Q,~a,~σ

∫
θ(xQ)A

{σ}
{a} [Q]

N∏
j

eiσjkjxjψ†
ajσj

(xj) |0〉 (1.4.3)

with spin configurations {a} = {a1...aN}, chiral configurations {σ} = {σ1...σN}, various orderings

of the N particles and with θ(xQ) being the Heaviside function acting on a refernce state, |0〉,

known as the “Drained Fermi Sea”. The amplitudes A~σ
~a [Q] refer to a chirality, σ, and spin, a,

configuration for an electron in the system and are related by the particle-particle S matrix 6:

S =



1

sinh(f)
sinh(f+η)

sinh(η)
sinh(f+η)

sinh(η
sinh(f+η)

sinh(f)
sinh(f+η)

1


(1.4.4)

where the η = −iu and f, u are related to g‖ and g⊥ by the following, where
(
g‖, g⊥

)
are the

generic couplings from above.

cos(u) =
cos(g‖)

cos(g⊥)
,
sin(u)

tanh(f)
=
sing(g‖)

cos(g⊥)
(1.4.5)

Additionally, W ij is also defined as a scattering matrix that related amplitudes differing through
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exchanging particles with identical chirality, given by W ij = P ij . Then both S and W matrices

satisfy the YB and Reflection equations 27. These equations are then used to finally construct the

Bethe equations in terms of “rapidities”, i.e. the Bethe roots, λβ , with satisfy the Bethe equations:

∑
σ=±

NΘ

(
λα + σ

f

2u
− 2Θ(λα +

iτπ

2u
,
1

2

)
=

M∑
β=1

∑
σ=±

Θ(λα + σλβ , 1) + 2iπIα (1.4.6)

with the momenta,kj , and defining Θ(x, y) = log
(

sinh(u(x+iy))
sinh(u(x−iy))

)
:

kj =
πnj

L
+

i

2L

M∑
β=1

∑
σ=±

Θ

(
f

2u
+ σλβ ,

1

2

)
(1.4.7)

This set of non-linear equations are then used to analyse and evaluate various phases of the topo-

logical superconductor throughout the paper6.

These are just a couple of examples of the applications of the Bethe ansatz in superconduct-

ing models and how the evaluation of spin chains contributes to the future of condensed matter

theory. Later in the research section, a Hamiltonian that combines the basic Hubbard Model and

Heisenberg spin interactions will be considered to find the physicality of such a design in the rel-

ativistic regime. This section is here to illustrate the prevalence and importance of topological

superconducting states and how powerful the Bethe Ansatz is to be applicable in so much more

than the original anti-ferromagnetic setting. Not much is known about the effects of relativity in

superconducting and an exploration of this type could prove to be useful in understanding the

natural world. Before that is done, however, one needs to familiarise themselves with the existing

theory on relativistic superconductivity.

1.4.1 Relativistic Superconducting Models

While “classical” models of superconductivity do a comprehensive job of describing numerous

superconductive phenomenon through BCS theory, various papers have noted the prevalence of

relativity in superconduction. Some examples are- Spin orbit coupling, which is relativistic to the

second order of v
c , magnetic impurities in superconductors, spin susceptibility, Josepheson currents

and many other effects. There was also experimental proof of the theorised relativistically cor-

rected Cooper pair masses, generally speaking, relativistic effects need to be taken into account

while considering high temperature, heavy fermion superconductors. Another important, defining,

characteristic of a material being superconductive is the Meissner effect, the rejection of an external
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magnetic field due to self-consistent current screening which is also relativistic to the second order

of v
c

28,29. While there isn’t a comprehensive field theory of relativistic superconductivity, the phe-

nomenological Ginzburg-Landau theory with Maxwell’s equations has made some progress, though

it doesn’t capture the full picture of the underlying particle physics. The other main approach is to

extended the BCS formalism to the relativistic regime and consider the relativistci generalisation

of the so-called “Bogolubov-de Gennes” (BdG) equations of superconductivity, developed indepen-

dently by Alexei Alexeyevich Abrikosov & Lev Gor’kov 30, Igor Yevgenyevich Dzyaloshinskii 31,

as well as by Nikolay Bogoliubov 32, and David J. Thouless 33 in the 1950 and 60s. Capelle and

Gross derive a relativistic Hamiltonian in their 1997 paper,“Relativistic Framework for Microscopic

Theories of Superconductivity. I. the Dirac Equation for Superconductors” 34a, with a relativistic

order parameter and covariant quantities:

Ĥ =

∫
d3rΨ̄(r)[cγ̂ · p+mc2 + qγ̂µAµ]Ψ(r)

− 1

2

∫
d3rd3r′{ΨT (r)[η̂4∗(r, r′) + η̂54∗

P (r, r
′)

+ η̂µV 4
∗
V,µ(r, r

′) + η̂µA4
∗
A,µ(r, r

′) + η̂µνT 4∗
T,µν(r, r

′)]Ψ(r′) +H.c.}

(1.4.8)

with the scalar constructed by η̂ & 4. the pseudoscalar constructed by η̂5 & 4P , the four-vector

η̂µV & 4V µ, the axial vector constructed by η̂µA & 4Aµ and finally the tensor constructed using

η̂µνT & 4T,µν . The specifics of the construction are detailed in the paper and will not be the

subject of this section, what is more relavant to the topic at hand is the general structure and

analysis of the relativistic Bogolubov-de Gennes equations. Explicitly written in matrix form the

Hamiltonian with the generalised BCS-type order parameter is:

Ĥ =

∫
d3rΨ̄(r)[cγ̂ · p+mc2 + qγ̂µAµ]Ψ(r)

− 1

2

∫
d3rd3r′[PΨT (r)



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


Ψ(r′)4∗(r, r′) +H.c.]

(1.4.9)

with

χ̂(r, r′) = ΨT (r, r′)η̂Ψ(r′) (1.4.10)
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and

η̂ =



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


=

iσ̂y 0

0 iσ̂y

 (1.4.11)

In the process of diagonalising the Hamiltonian the relativistic generalisation of what is called the

Bogolubov-Valatin transformation is needed. Starting with the non-relativistic case:

ψ↑(r)−
∑
k

(uk(r)ak↑)−vk(r)∗a
†
k↓

(1.4.12)

and

ψ↓(r)−
∑
k

(uk(r)ak↓)−vk(r)∗a
†
k↑

(1.4.13)

where uk(r) and vk(r) are can be found by imposing the requirement of diagonalising the Hamilto-

nian. To treat the more complicated phenomenon of relativistic models such as magnetic impurities,

spin-orbit coupling, triple pairing and more, the transformation needs to be generalised to involve

the spin degrees of freedom, using the subscripts σ and τ as spin-like quantum numbers.

ψτ (r)−
∑
σk

(uστk(r)aσk) − vστk(r)
∗a†σk↑ (1.4.14)

Then replacing σ and τ with the spinor labels, the relativistic generalisation of (1.4.14) is:

ψi(r) =
∑
ijk

[uijk(r)ajk + v∗ijka
†
jk]. (1.4.15)

The transformation (1.4.15) has the requirement that is needs to be unitary and canonical to

preserve the normalisation of quasiparticle wave functions and the anti-commutating relations of

field operators respectively. Unitarity requires:

∫
d3r

∑
i

[vijk(r)v
∗
ij′k′(r) + uijk(r)u

∗
ij′k′(r)] = δkk′δjj′ (1.4.16)

and ∫
d3r

∑
i

[vijk(r)uij′k′(r) + uijk(r)vij′k′(r)] = 0, (1.4.17)
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while the canonical requirement define the conditions:

∑
kj

[uijk(r)v
∗
ij′k′(r′) + v∗ijk(r)uij′k′(r′)] = 0 (1.4.18)

and ∑
kj

[u∗ijk(r)u
∗
ij′k′(r′) + vijk(r)v

∗
ij′k′(r′)] = δii′δ(r − r′). (1.4.19)

The same results can be obatined by requiring the single-particle equations to be complete and

orthonormal. The coefficients uijk & vijk have more conditions imposed on them for diagonalising

the Hamiltonian, they are the particle and hole amplitudes i.e. four-component Dirac Spinors.

H =
∑
jk

Ejka
†
jkajk + E0, (1.4.20)

with the ground state E0 and the creation and annihilation operators for the quasiparticle called a

Bogolon, with energy Eijk. The conditions for uijk & vijk are conveniently laid out in the following

set of integro-differential equations in matrix form:

 ĥ D

−D∗ −ĥ∗


uijk(r)
vijk(r)

 = Ejk

uijk(r)
vijk(r)

 (1.4.21)

where ĥ is the kernel of the Dirac Hamiltonian:

ĥ = γ̂0[cγ̂ · p+mc2(1− γ̂0) + qγ̂µAµ] (1.4.22)

with D being an integral operator containing the pair potential as a kernel:

D =

∫
d3r...4(r, r′)η̂. (1.4.23)

Then the four-component spinors are:

ujk(r) =



u1jk

u2jk

u3jk

u4jk


vjk(r) =



v1jk

v2jk

v3jk

v4jk


(1.4.24)

(1.4.23) to (1.4.24) are the relativistic generalisations of the Bogolubov-de Gennes equations. This

is a general summary of the BdG’s for the Dirac Hamiltonian. The authors of the paper wrote
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a subsequent article on the reduction of the Dirac BdG’s to the vector Pauli BdG’s, so that the

4x4 Dirac equation is reduced to the 2x2 Schrodinger type equation 34a,34b. This then allows the

expansion into first and second order of v
c to explore the weakly relativistic effects in superconduc-

tivity.

Using the information in this section as precedent for a formalism that implicitly accounts for

relativistic effects in BCS theory, the following section will endeavour to construct a theory in the

Lagrangian notation and transform it into a relativistic Hamiltonian and further specifying the use

of Majorana fermions as the spinor objects.
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2.1 Constructing the Theory

This section describes an SU(N), Gauge and Lorentz invariant Lagrangian to cover the interactions

and particle spectrum of a field theory of “Classical”, relativistic and topological superconducting.

The process includes adopting aspects of the SU(3)-invariant non-abelian Yang-Mills Lagrangian of

Quantum Chromodynamics (QCD) and combining it with a strongly coupled spin-spin interaction

term and Hubbard Model, then simplifying to the SU(2)-invariant abelian case attributed to

Quantum Electrodynamics (QED).

The goal is to construct a generalised 2D integrable Hamiltonian that admits relativistic prop-

erties and allows for topological phases such as Majorana Bound Edge states. The general basis

of the Yang-Mills lagrangian was chosen to allow for cases of colour superconductivity and other

general fermion superconductive cases, such as those observed in Neutron stars, without limiting

the model to electrons alone. However, these phenomena will not be the focal point of this in-

vestigation. Instead, the Bethe Ansatz approach outlined in the review section will be used on

the 2D Hamiltonian to be derived below, to prove integrability and compatibility with the greatly
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successful Hubbard model analyses in an effort to consider known analytical methods through a

new phenomenological perspective.

2.1.1 The Lagrangian and Hamiltonian

To begin, consider the non-abelian Yang-Mills Lagrangian:

L = −1

2
FµνF

µν (2.1.1)

where FµνF
µν is a gauge invariant object and Fµν is the field strength defined in terms of the

vector potential, Aµ, and g is the coupling constant:

Fµν = ∂µAν − ∂νA
a
µ − ig

[
Ai

µ, A
i
ν

]
≡ i

g
[Dµ,Dν ] , (2.1.2)

Then consider the QCD lagrangian which includes the Yang-Mills term and the QCD interaction

and mass term:

LQCD = −1

4
FµνF

µν + ψ̄α(i(/∂µ + igγµT a
αβA

a
µ))ψβ −m2ψ̄αψα (2.1.3)

where ψ̄α, ψα are 4-component Dirac Spinors with α ∈ {1, 2, 3, 4} and the Dirac adjoint is defined

ψ̄ = ψ†γ0 and γµ and the standard clifford algebra gamma matrices with µ = 0, 1, 2, 3 and the

fifth gamma matrix defined γ5 = iγ0γ1γ2γ3.

Next to include the spin-spin interactions, recall the standard Hubbard Hamiltonian from

(1.4.1). It can be extended to include the spin operators from Chapter One by simply adding the

Heisenberg spin term-
∑L

n=1

(
JxS

x
nS

x
n+1 + JyS

y
nS

y
n+1 + JzS

z
nS

z
n+1

)
. In this model, however, the

spin interactions are strongly coupled to off site interaction energy with the coefficient V J . Then

by making a change by replacing the creation and annihilation operators, c†α, cα, with the spinors,

Ψ̄α,Ψα and introducing the strongly coupled spin-spin interaction term V Jµ
∑3

µ=1

(
Ψ̄αγ

µ
αβΨβ

)2
,

the combined SU(3)-invariant Lagrangian for this field theory of superconducting is:

L3 = −1

4
FµνF

µν + Ψ̄α(i(/∂µ + igγµαβT
a
αβA

a
µ))Ψβ −m2Ψ̄αΨα − U

(
Ψ̄αΨα

)2 − V Jµ
3∑

µ=1

(
Ψ̄αγ

µ
αβΨβ

)2
+ τ

∑
j

[(
Ψ̄α(~r, t)Ψα(~r + ~ej , t) + Ψα(~r, t)Ψα(~r − ~ej , t)

)
+ c.c.

]
(2.1.4)
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and then converting this to the Hamiltonian formulation:

H3 =
1

4
FµνF

µν − Ψ̄αigγ
µ
αβT

aAa
µΨβ + (m2 + UΨ̄αΨα)

(
Ψ̄αΨα

)
+ V Jµ

3∑
µ=1

(
Ψ̄αγ

µ
αβΨβ

)2
− τ

∑
j

[(
Ψ̄α(~r, t)Ψα(~r + ~ej , t) + Ψα(~r, t)Ψα(~r − ~ej , t)

)
+ c.c.

]
(2.1.5)

Here the “t” hopping coefficient was replaced with τ so as not to confuse it with the time variable,

µ, ν ∈ {0, 1, 2, 3}, α, β are spinors indices where each index is in two components and T a = λa

2 ;

a ∈ {1, 2, 3, 4, 5, 6, 7, 8} are the generators of the su(3) Lie algebra defined by 3× 3 traceless Gell-

Mann matrices, λa. V is the kinetic coefficient paired with the spin parameter J . The spinor

wavefunctions are defined in 3+1D with r̂ as the position coordinates and t as time. In the “latice

hopping” term êj describes a particle that is a given distance êj away, where the term “lattice”

is used loosely to easily generalise down to the 2D lattice case. Finally, Ψ̄α,Ψα are the quark

fields, Fµν is the gluon field strength tensor and Aa
µ are gluon fields. This defines the Non-Abelian

Lagrangian of this Gauge field theory to allow for more general descriptions in higher dimensions.

The next step is to simplify to the SU(2) case in 3 + 1D down to the 2D square lattice.

To do this, replace the SU(3)-QCD coupling constant, g, with the SU(2)-QED coupling, e and

replace the quark spinors Ψ̄α,Ψα with fermion bispinors ψ̄α, ψα, Fµν = ∂µAν − ∂νAµ is now

the electromagnetic field strength tensor and Aµ is the covariant four-potential electromagnetic

gauge field. For generality one can include an external field Bµ in the covariant derivative term-

Dµ = ∂µ+ ieAµ+ ieBµ, however, Bµ = 0 in this theory to account for the Meissner effect expelling

an external magnetic field. This Lagrangian is:

L2 = −1

4
FµνF

µν + ψ̄α(i(/∂µ + ieγµαβAµ))ψβ −m2ψ̄αψα

− U
(
ψ̄αψα

)2 − V Jµ
3∑

µ=1

(
ψ̄αγ

µ
αβψβ

)2
+ τ

∑
j

[(
ψ̄α(~r, t)ψα(~r + ~ej , t) + ψ̄α(~r, t)ψα(~r − ~ej , t)

)
+ c.c.

]
(2.1.6)

with the Hamiltonian:

H2 =
1

4
FµνF

µν − ψ̄αieγ
µ
αβAµψβ + (m2 + Uψ̄αψα)

(
ψ̄αψα

)
+ V Jµ

3∑
µ=1

(
ψ̄αγ

µ
αβψβ

)2
− τ

∑
j

[(
ψ̄α(~r, t)ψα(~r + ~ej , t) + ψα(~r, t)ψ̄α(~r − ~ej , t)

)
+ c.c.

] (2.1.7)
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Finally, simplifying to the 2D lattice Hamiltonian:

Hlat =
1

4
(∂µAν − ∂νAµ)

2 − ψ̄αiγ
u
αβAµψβ +

∑
i

(m2 + Uψ̄α,iψα,i)
(
ψ̄α,jψα,j

)
+ V Ju

3∑
u=1

∑
〈i,j〉,α

(
ψ̄α,iγ

u
αβψβ,j

) (
ψ̄α,jγ

u
αβψβ,i

)
− τ

∑
〈i,j〉

[(
ψ̄α,iψα,j + ψα,jψ̄α,i

)] (2.1.8)

Here, the vector displacements êj and position vector r̂ are replaced by lattice positions (i, j) where

the 〈i, j〉 confine the model to nearest-neighbour interactions, though long-range interactions are

not disallowed. A further specification is made to define Majorana fermions (fermions that are

their own anti-particle), ψ̂α = γ0Cψ∗
α, where ψ̂ is known as the Lorentz covariant conjugate, C is

the charge conjugation operator and the subscript α denoting either an up spin or a down spin

with each fermion admitting chirality L or R. The benefit of this choice is in defining the mass

and kinetic interaction terms. The Dirac mass term can be written as ψ̄ψ = ψ̄LψR + ψ̄RψR,

and since ψ is a Majorana term, ψ = ψ̂, which is the ψ̄ψ̂ = ψ̄Lψ̂R +
¯̂
ψRψL, which is Lorentz

invariant. Taking a closer look at this Hamiltonian it is clear the interaction is a Hubbard-type

interaction that has been extensively studied and has proven to be an integrable theory describing

numerous physical superconducting phenomena. One final specification would be to choose the

anti-ferromagnetic scheme in an isotropic XXX spin chain, recalling from before that J = −1,

again, periodic boundary conditions are employed on the spin chain of length N : |n+N〉 ≡ |n〉.

Hlat =
1

4
(∂µAν − ∂νAµ)

2 − ψ̄αiγ
u
αβAµψβ +

∑
i

(m2 + Uψ̄α,iψα,i)
(
ψ̄α,jψα,j

)
− V

3∑
u=1

∑
〈i,j〉,α

(
ψ̄α,iγ

u
αβψβ,j

) (
ψ̄α,jγ

u
αβψβ,i

)
− τ

∑
〈i,j〉

[(
ψ̄α,iψα,j + ψα,jψ̄α,i

)] (2.1.9)

It is important to note that while the Greek indices run from {0, 1, 2, 3}, the interactions are only

occuring between sites on a square lattice, hence the bidimensionality of the model.

2.2 Integrability

To begin, define a Lax Operator, L, acting in the tensor product space Hn ⊗Ha with the Hilbert

space at site n and spectral parameter λ ∈ C2, where they are placed consistently with the Hubbard
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Model Lax operator35:

Ln(λ) =



f(λ) +A B C D 1 T2

B∗ f(λ) −B 0 0 0

−C∗ B∗ f(λ) B C∗ 0

E 0 B∗ f(λ) −B −D

T1 0 C B∗ f(λ) (−T1 +BB∗ − CC∗)

1 0 0 E 1 f(λ) + (−T2 +DE)
1
2 −BB∗ + CC∗


(2.2.1)

where the components are defined:

A =
(
1
2 (∂µAν − ∂νAµ)

)
, B = i2

√
ψ̄µ
ααβAµψβ , C =

√
V ¯ψα,nγ

µ
αβψβ,n,

D = m2 + U
(
ψ̄α,nψα,n

)
, E =

(
ψ̄α,nψα,n

)
,

T1 = −τ
(
ψ̄α,nψα,n

)
, T2 = −τ

(
ψα,nψ̄α,n

)
,

(2.2.2)

with the function f(λ) = λ− i
2 . Now, similar to the case in the review, choosing for now the point

λ = i
2 to demonstrate some properties of this model, the full matrix with exact components are:



1
2 (∂µAν − ∂νAµ) i2

√
ψ̄µ
ααβAµψβ

√
V ¯ψα,nγ

µ
αβψβ,n m2 + U

(
ψ̄α,nψα,n

)
1 −τ

(
ψ̄α,nψα,n

)
−i2
√
ψ̄µ
ααβAµψβ 0 i2

√
ψ̄µ
ααβAµψβ 0 0 0

−
√
V ¯ψα,nγ

µ
αβψβ,n −i2

√
ψ̄µ
ααβAµψβ 0 i2

√
ψ̄µ
ααβAµψβ

√
V ¯ψα,nγ

µ
αβψβ,n 0(

ψ̄α,nψα,n

)
0 −i2

√
ψ̄µ
ααβAµψβ 0 −i2

√
ψ̄µ
ααβAµψβ −(m2 + U

(
ψ̄α,nψα,n

)
)

−τ
(
ψ̄α,nψα,n

)
0

√
V ¯ψα,nγ

µ
αβψβ,n −i2

√
ψ̄µ
ααβAµψβ 0 τ

(
ψ̄α,nψα,n

)
+ iψ̄µ

ααβAµψβ − V ( ¯ψα,nγ
µ
αβψβ,n)

2

1 0 0
(
ψ̄α,nψα,n

)
1 τ

(
ψ̄α,nψα,n

)
− (m2 + U

(
ψ̄α,n)(ψα,n

) (
ψ̄α,nψα,n

)
)− ψ̄αiγ

u
αβAµψβ − V

(
ψ̄α,iγ

u
αβψβ,j

)(
ψ̄α,jγ

u
αβψβ,i

)


(2.2.3)

Then define the conserved quantities:

Ik = Tr[Lk]. (2.2.4)

To see that these quantities are conserved, consider:

I1 = Tr[L]

=
1

2
(∂µAν − ∂νAµ)− τ

(
ψ̄α,nψα,n

)
− (m2 + U(ψ̄α,nψα,n))(ψ̄α,nψα,n)

− ψ̄αiγ
u
αβAµψβ − V

(
ψ̄α,iγ

u
αβψβ,j

) (
ψ̄α,jγ

u
αβψβ,i

) (2.2.5)
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and

I2 = Tr[L2]

=
1

4
(∂µAν − ∂νAµ)

2 − ψ̄αiγ
u
αβAµψβ +

∑
i

(m2 + Uψ̄α,nψα,n)
(
ψ̄α,n′ψα,n′

)
− V

3∑
u=1

∑
〈n,n′〉,α

(
ψ̄α,nγ

u
αβψβ,n′

) (
ψ̄α,n′γuαβψβ,i

)
− τ

∑
〈n,n′〉

[(
ψ̄α,nψα,n′ + ψα,n′ ψ̄α,n

)] (2.2.6)

is nothing but the lattice Hamiltonian listed previously, Hlat, which is also a conserved quantity

and n, n′ are successive lattice sites which can also be labelled n1 and n2 respectively. From here

on, Hlat is refested to as H for simplicity of notation. The importance of the quantity in (2.25) is

not immediately obvious and so it still needs to be checked whether or not it is actually conserved.

This can be done by evaluating the commutator [I1,H], as a conserved quantity should commute

with the Hamiltonian; which turns out to be true, i.e. [I1,H] = 0 = [I1, I2] as shown in Appendix

F. Using (1.3.9) the monodromy matrix of this model can generally be constructed using the form

of the monodromy matrix in the Hubbard model36:

Ta =


B(λ) B(λ) F (λ)

C(λ) Â(λ) B∗(λ)

C(λ) C∗(λ) D(λ)

 (2.2.7)

where B(λ),C∗(λ) have the form 4 × 1, B∗(λ),C(λ) have the form 1 × 4, with associated scalar

quantities B(λ), C(λ), D(λ), F (λ) and Â(λ) is a 4×4 matrix. Then the transfer matrix, T = Tr(T ),

is defined with the matrix components A11(λ), A22(λ), A33(λ) and A44(λ):

T = B(λ) +A11(λ) +A22(λ) +A33(λ) +A44(λ) +D(λ) (2.2.8)

Following the method of the Algebraic Bethe Ansatz, it’s easy to see the transfer matrix expands

non-trivially with the form of (1.3.13) producing N − 1 commuting operators:

T = (6f(λ))N +

N−2∑
n=0

Qnf(λ)
n, (2.2.9)

in this case, however, by definition of the transfer matrix and the construction of L, it is evident

that the Hamiltonian is already a part of this family, and thus integrable. To find the BAE’s from

here, the RTT relation must be followed. Using the short hand T(λ) = Tλ, the product of two
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transfer matrices of different spectral parameters λ, θ:

TλTθ =


BB(λ) B(λ) F (λ)

C(λ) Â(λ) B∗(λ)

C(λ) C∗(λ) D(λ)



BB(θ) B(θ) F (θ)

C(θ) Â(θ) B∗(θ)

C(θ) C∗(θ) D(θ)

 (2.2.10)

then explicitly the product of the two matricies:

TλTθ =


BλBθ + BλCθ + FλCθ BλBθ + BλÂθ + FλC∗

θ BλFθ + BλB∗
θ + FλDθ

CλBθ + ÂλCθ + B∗
λCθ CλBθ + ÂλÂθ + B∗

λB∗
θ CλFθ + ÂλB∗

θ + B∗
λDθ

CλBµ + C∗
λCθ +DλCθ CλBµ + C∗

λÂθ +DλC∗
θ CλFµ + C∗

λB∗
θ +DλDθ

 . (2.2.11)

Next, employing the pseudo-vacuum to use as a reference state:

C(λ, θ) |Ω〉 = 0,

C∗(λ, θ) |Ω〉 = 0,

C(λ, θ) |Ω〉 = 0.

(2.2.12)

as well as the bottom triangle of Â(λ):

Âst(λ) |Ω〉 = 0 if s < t, s 6= t. (2.2.13)

in order to make |Ω〉 an eigenstate of the diagonal terms of the transfer matrix T and also an

eigenstate of (2.2.8). This then suggests that operators B(λ),B∗(λ) and F (λ) are an analogue to

the creation operators. Using this approach one can construct a set of eigenvectors in the same

manner as Section 1.3:

|Φ(λ)〉 = B(λ1)F (λ) = Ba(λ)F
a(λ) |Ω〉 , (2.2.14)

then conceptually one would expect to construct other higher states using a product of B(λ) and

F (λ), due to the commutation between two fields of type B(λ) which is evident from the RTT

relation 36:

B(λ)B(θ) = c1(B(λ)B(θ))R(λ, θ)− c2F (λ), (2.2.15)

where c1, c2 ≡ c1(λ, θ), c2(λ, θ) are constants that depend on the spectral parameters. Now that

these parameters are defined, the diagonalisation can be completed. Starting with:

[
B(λ) +

4∑
s=t=1

Â(λ) +D(λ)

]
|Φn(λ)n〉 = Λ(λ, {λi}) |Φn(λ)〉 , (2.2.16)
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then requiring the commutator relations between all the various fields in the transfer matrix. This

then brings the model to what is essentially a Hubbard model solution, which has widely been

proven to be integrable, i.e. the model is integrable.



Conclusions

The inegrability of this new model is positive for three main reasons. Firstly, it is integrable.

Manifestly, it is exactly solvable using a modification of the Hubbard model Bethe Ansatz method

that is already quite well known thus allowing for deeper, scrutinous analysis with fewer gaps in the

mathematical framework. Second, the model admits topological states, in particular, Majorana

Bound edge states which can qualitatively be seen by limiting the lax connection to the edge of the

square lattice. Consider an N ×N square lattice grid Mab with sites at (a, b). The lax connection

can be limited to:
a = (1, 2, ..., N) if b = 1 and N

a = 1 and N if b = (1, 2, ..., N)

as a rudimentary set-up. Furthermore, due to the Hamiltonian of the model the interactions around

the edge of the lattice are by definition superconducting, so here the topologically protected edge

modes can be viewed as a Heisenberg style spin chain. Finally, the model is relativistic. Again,

due to its Lorentz and Gauge invariant set-up, phenomena such as the Meissner effect, i.e. the

exclusion of an external field, can be see as an intrinsically as a relativistic field theoretic effect by

gauge fixing the external field Bµ = 0 as applied in (2.1.6). Despite these favourable outcomes,

there is still a lot to be done for any truly valuable result.

Considering again with this model’s strong association to the Hubbard. While it was shown that

this model can be solved exactly, the full solutions have not yet been found- only a model of what

these equations would look like. This was mainly due to a lack of time, however, it is promising

to see an explicit lax operator that can be used to produce a family of commuting conserved

quantities. Explicit derivation of the spectral parameter constants would be a favourable starting

point. More so, an explicit illustration of the R-matrix with its Boltzmann weights would also be

greatly beneficial, resulting in a comprehensive characterisation of the Bethe roots and by extension

the energy eigenvalues, which could be measured. Then, to stress test the rudimentary edge state

conception above, a thorough analysis of the Majorana modes and the associated symmetries

would provide with a constructive research paper. Along this line, a perturbative expansion to

clearly define a relativistic superconducting order parameter from the Lagrangian can and should

be done to provide a better image of the phenomenology of this model. Finally, while the 2D case is
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integrable, greater steps need to be taken to make any definitive statements about generalising this

study to higher dimensional symmetries, for example an applicaiton of the nested Bethe Ansatz

to the QCD Lagrangian listed in Section 2, L3.

Overall, having started with the SU(3)-invariant Lagrangian and simplified down to a two-

dimensional lattice Hamiltonian with Hubbard, Spin-spin and electron-photon interactions has

proven to be integrable and a potentially viable field theory. While there is some more work to

make this a rigorous theory, the further generalisation of thus model to the SU(3) case could prove

to be promising and would be of great interest to the development of the theory of superconducting.
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To check the RLL relation, use the form in (1.3.6):

Ra1,a2(λ) = λIa1,a2 + iPa1,a2 (A.0.1)

and the form in (1.3.4):

Ln,a(λ) =

(
λ− i

2

)
In,a + iPn,a (A.0.2)

Then we get on the left-hand side:

(λIa1,a2
+ iPa1,a2

)
((
λ− i

2

)
In,a1

+ iPn,a1

) ((
λ− i

2

)
In,a2

+ iPn,a2

)
= (λIa1,a2

+ iPa1,a2
)
((
λ− i

2

)2
In,a1

In,a2
+
(
λ− i

2

)
In,a2

iPn,a1

)
+
(
λ− i

2

)
In,a1

iPn,a2
− Pn,a1

Pn,a2

(A.0.3)

Then using the general properties of the permutation operator:

Pn,a1
Pn,a2

= Pa1,a2
Pn,a1

= Pn,a1
Pa2,a1

(A.0.4)

along with the symmetry of P:

Pa2,a1 = Pa1,a2 , (A.0.5)

we then get:

((
λ− i

2

)
In,a1 + iPn,a2

)((
λ− i

2

)
In,a1 + iPn,a1

)
(λIa2,a1 + iPa2,a1) (A.0.6)
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Which is the right-hand side of (A.0.3) and thus no different to the original statement of the RLL

relation:

Ra1,a2
(λ− µ)Ln,a1

(λ)Ln,a2
(µ) = Ln,a2

(µ)Ln,a1
(λ)Ra1,a2

(λ− µ) (A.0.7)
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We start with :

R12(u, v)R13(u,w)R23(v, w) = R23(v, w)R13(u,w)R12(u, v), (B.0.1)

then using:

Ra1,a2
(λ) = λIa1,a2

+ iPa1,a2
(B.0.2)

we find of the left hand side:

(λIa1,a2 + iPa1,a2) (λIa1,a3 + iPa1,a3) (λIa2,a3 + iPa2,a3)

=
(
λ2Ia1,a2

Ia1,a3
+ ...− Pa1,a2

Pa1,a3

)
(λIa2,a3

+ iPa2,a3
)(

λ3Ia1,a2
Ia1,a3

Ia2,a3
+ ...− iPa1,a2

Pa1,a3
Pa2,a3

) (B.0.3)

Now, using the general properties of the permutation operator:

Pn,a1
Pn,a2

= Pa1,a2
Pn,a1

= Pn,a1
Pa2,a1

(B.0.4)

and simplifying, we find:

R23(v, w)R13(u,w)R12(u, v), (B.0.5)

which is the right-hand of (B.0.1).
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The following proof is from15:

Using the following shorthand notation:

• Ra1,a2(λ− µ) = R12,

• Ln,a1(λ) = L1,

• Ln+1,a1(λ) = L′
1,

• Ln,a2(µ) = L2,

• Ln+1,a2(µ) = L′
a2

R12L
′
1L1L

′
2L2 (commutativity ofL1, L

′
2)

= R12L
′
1L

′
2L1L2 (due to RLL relation forL1, L2 and L′

1, L
′
2)

= L′
2L

′
1L2L1R12 (commutativity ofL′

1, L2)

= L′
2L2L2L

′
1L1R12

which is the same as:

Ra1,a2(λ− µ)Ta1(λ)Ta2(µ) = Ta2(µ)Ta1(λ)Ra1,a2(λ− µ) (C.0.1)
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λ = i
2 is quite unique for the reason:

Ln,a(λ =
i

2
) = iPn,a (D.0.1)

and naturally for any λ:
d

dλ
Ln,a(λ) = In,a (D.0.2)

Then the expansion of F (λ) at λ = i
2 , is:

Ta

(
i

2

)
= iLPL,aPL−1,a...P1,a (D.0.3)

By permutating the string in (1.3.16) employing the property of P stated earlier and noting the

trace over the auxiliary space- traPL,a = IL, the shift operator U in the hamiltonian can be defined:

U = i−LtraTL

(
i

2

)
= P1,2P2,3...PL,L−1 (D.0.4)

The function of P can be rewritten as:

Pn1,n1Xn2Pn1,n2 = Xn1 (D.0.5)
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Therefore, when applied to the operator U :

XnU = P12...XnPn−1,nPn,n+1...PL−1,L

= P12...Pn−1,nXn−1Pn,n+1...PL−1,L

= UXn−1

(D.0.6)

Then, using the fact that U is a unitary operator- U∗U = UU∗ = 1 and the properties of P -

P∗ = P; P2 + I one can write:

U−1XnU = Xn−1 (D.0.7)

Then using this unitary operator we can introduce an important observable- momentum, P , which

by definition is an infinitesimal shift along the lattice 15:

eiP = U. (D.0.8)
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Define the

e1 = e+ ⊗ e+, e2 = e+ ⊗ e−, e3 = e− ⊗ e+, e4 = e− ⊗ e− (E.0.1)

where:

e+ =

1

0

 , e− =

0

1

 (E.0.2)

Then the matrix form of the permutation operator is:

P =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


(E.0.3)

Note also that ωn = e+, i.e. that Ω exists in the Hilbert space as:

|Ω〉 =
∏
n

⊗wn. (E.0.4)
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To prove:

[I1,H] = [L′1 = H] = 0, (F.0.1)

recall indoividual components:

A =
(
1
2 (∂µAν − ∂νAµ)

)
, B = i2

√
ψ̄µ
ααβAµψβ , C =

√
V ¯ψα,nγ

µ
αβψβ,n,

D = m2 + U
(
ψ̄α,nψα,n

)
, E =

(
ψ̄α,nψα,n

)
,

T1 = −τ
(
ψ̄α,nψα,n

)
, T2 = −τ

(
ψ̄α,nψα,n

)
.

(F.0.2)

substituted into the experssion [L′1,H]:

[A+ (−T2 +DE)
1
2 −BB∗ + CC∗, A2 +BB∗ − CC∗ +DE + T1 + T2] =

[A,A2] + [A,BB∗] + [A,DE]− [A,CC∗] + [A, T1] + [A, T2]

+ [(−T2 +DE)
1
2 , A2] + [(−T2 +DE)

1
2 , BB∗] + [(−T2 +DE)

1
2 , DE]

− [(−T2 +DE)
1
2 , CC∗] + [(−T2 +DE)

1
2 , T1] + [(−T2 +DE)

1
2 , T2] + [−BB∗, A2] + [−BB∗, BB∗] + [−BB∗, DE]

− [−BB∗, CC∗] + [−BB∗, T1] + [−BB∗, T2] + [CC∗, A2] + [CC∗, BB∗] + [CC∗, DE]

− [CC∗, CC∗] + [CC∗T1] + [CC∗, T2].

(F.0.3)

While this may look long and tedious, a number of these terms immediately turn out to be zero.

Firstly, T1 = −τ
(
ψ̄α,nψα,n

)
and T2 = −τ

(
ψ̄α,nψα,n

)
will commute with all the operators as the

combination of the two spinors are a Lorentz Scalar (also note the charge parity invariance of

Majorana terms). Secondly, as this is the QED case in the Abelian theory, all the components will
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commute with themselves. Then, similarly DE and CC∗ are comprised of Lorentz scalars, thus

leaving:

[A+ (−T2 +DE)
1
2 −BB∗ + CC∗, A2 +BB∗ − CC∗ +DE + T1 + T2] = 0. (F.0.4)

Thus the commutator in (F.0.1) is true.
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