
Imperial College London

Department of Physics

Theoretical Physics Group

What We Have Learned of Quantum Gravity
From Holography

Author: Abdulaziz Bazammul
Supervisor: Prof. Toby Wiseman

Submitted in part fulfilment of the requirements for the degree of
Master of Science of Imperial College London





Abstract

The existence of a correspondence between quantum and gravitational theories has been con-

jectured for a long time. The conjecture began with Super Yang Mills gauge theories as the

quantum theories, and D-P branes string theories as the gravitational theories. Since then, the

conjecture has developed greatly. The aim of this dissertation is to explore this development.

To do this, we first start by setting some background information regarding the holographinc

principal and quantum gravitational theories followed by a brief black holes thermodynamics re-

view. We then start by explaining the gauge/gravity duality followed by a journey through the

various models ranging from the very first proposed model of the conjecture (BFSS) and going

through much later developed models like BMN. We then see the conjecture being evolved to

the point where the quantum theories are ungauged. Ending with the simplest model to date,

in which the quantum theory is a simple quantum mechanical system and the gravitational

theory is a black hole. We then see the important role to be played by quantum simulation in

order to advance this field of literature further.
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Chapter 1

Introduction

On the holographic principal and quantum gravity

The pursuit of understanding the fundamental nature of the universe has been an unending

journey for scientists and physicists throughout history. At the heart of modern physics, two

dominant theories, quantum mechanics and general relativity, stand as monumental achieve-

ments, yet they pose a daunting challenge at their interface, where quantum mechanics and

gravity intersect. In this challenging terrain, the Holographic Principle emerges as a guiding

light, offering a path toward reconciling these seemingly disparate realms. This introduction

embarks on a comprehensive exploration of the Holographic Principle, its revolutionary impli-

cations, and its deep-seated relationship with the elusive domain of quantum gravity. We will

also delve into the groundbreaking contributions of Juan Maldacena and his transformative

impact on the field.

At its core, the Holographic Principle challenges the foundational principles of our understand-

ing of reality. It posits that all the information contained within a three-dimensional volume

can be entirely encoded on a two-dimensional surface that surrounds it. In simpler terms,

it suggests that the complete physical description of a given space can be equivalently ex-

pressed on its boundary, much like a hologram reconstructs a three-dimensional image from a

1



2 Chapter 1. Introduction

two-dimensional surface.

The roots of the Holographic Principle extend back to the late 20th century when theoretical

physicists Tom Banks, Willy Fischler, Stephen Shenker, and Leonard Susskind began to ex-

plore this revolutionary concept[3, 75]. However, its most significant advancement came with

the groundbreaking work of Juan Maldacena in 1997 [47].

Juan Maldacena’s contribution to the Holographic Principle, incarnated by the AdS/CFT

(Anti-de Sitter/Conformal Field Theory) correspondence, represents a milestone moment in

theoretical physics. The AdS/CFT correspondence unveiled a profound duality between a

higher-dimensional gravitational theory, particularly string theory or M-theory in an anti-de Sit-

ter space (AdS), and a lower-dimensional conformal field theory (CFT) residing on the bound-

ary of that AdS space. This groundbreaking revelation dramatically shifted our perspective on

the relationship between quantum mechanics and gravity. The AdS/CFT correspondence es-

sentially posits that the complex and intricate world of quantum gravity in higher-dimensional

spaces can be precisely captured and understood through a simpler, lower-dimensional quantum

field theory. This correspondence has opened up an entirely new and potent tool for investi-

gating the profound nature of quantum gravity without diving deeper into the complexities of

higher-dimensional spacetimes.

As we venture deeper into the holographic frontier, we continue to uncover remarkable insights

into the interconnectedness of fundamental physics. The Holographic Principle has become

a guiding star in our pursuit of a comprehensive theory that unifies the quantum world and

gravity. This journey has implications not only for theoretical physics but also for our under-

standing of the universe itself. The Holographic Principle challenges our perceptions of reality

and suggests that the true nature of the cosmos may be more intricate and interconnected than

we had ever imagined.
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As mentioned earlier, the achievements of the Holographic Principal along with the works of

Juan Maldacena enabled us to explore complex high-dimensional theories through the eyes of

a, much simpler, lower-dimensional one. It is this simplicity that will be the main focus here,

this dissertation will explore various models that have their origins in string theory but can

be understood through a quantum mechanical regime. We will avoid string theory discussions

where possible and try to shed more light to the quantum mechanical formulation and its du-

ality to a gravitational one.

Our heated discussion of these models begins in chapter 3. Before that, we would like to cover

some important black hole concepts that plays a central role in understanding this piece of

literature. Namely, we would like to talk about black hole thermodynamics and the information

paradox. This will be done in chapter 2. In chapter 4, we will discuss what to expect next

following the models of chapter 3.



Chapter 2

On Black Holes

Before delving into the intricacies of black hole entropy, it is essential to grasp the concept of

entropy itself. In physics, entropy is a measure of the disorder or randomness of a system. It

is often associated with the second law of thermodynamics, which states that the total entropy

of an isolated system will tend to increase over time, ultimately leading to a state of maximum

entropy, known as thermodynamic equilibrium.

In classical thermodynamics, entropy is usually associated with the behavior of gases, heat

transfer, and energy dissipation. However, the notion of entropy extends far beyond classical

thermodynamics and plays a significant role in various branches of physics, including quantum

gravity.

The concept of black hole entropy emerged as a paradoxical and groundbreaking discovery in

the mid-20th century. The story begins with the work of Jacob Bekenstein in the early 1970s

[5]. Bekenstein postulated that black holes must have an associated entropy, challenging the

common belief that black holes were entirely unlinked to any thermodynamic properties. He

proposed that the entropy of a black hole was proportional to its surface area, measured in

Planck units, a fundamental scale of nature derived from quantum mechanics.

The concept of black hole entropy gained further support and prominence with Stephen Hawk-

ing’s groundbreaking work on black hole evaporation in 1975 [36]. Hawking’s calculations

4



5

demonstrated that black holes were not entirely black1; instead, they emitted a faint but steady

stream of particles, now known as Hawking radiation. This emission process gradually led to

the reduction of a black hole’s mass and, eventually, its complete evaporation.

Hawking’s discovery was a triumphant moment in physics, as it marked the first successful

attempt to reconcile quantum mechanics with the profound gravitational effects near a black

hole’s event horizon. Hawking radiation introduced quantum effects into the realm of gravity,

highlighting the need for a theory that could unify these two disparate worlds, a theory now

known as quantum gravity.

The interplay between black hole entropy and quantum mechanics gave rise to one of the most

enduring puzzles in modern physics, the black hole information paradox. This paradox posits

that the information that falls into a black hole, such as the quantum state of matter and

radiation, appears to be lost forever once the black hole has completely evaporated. This

apparent violation of the fundamental principles of quantum mechanics, which dictate that

information cannot be destroyed, led to intense discussions and debate within the physics

community.

The resolution of the black hole information paradox is intimately tied to the quest for a theory

of quantum gravity. Physicists have explored various avenues to address this paradox, including

string theory, loop quantum gravity, and holography, the latter of which we discussed earlier in

relation to the Holographic Principle. These theories seek to reconcile the quantum behavior

of matter and fields with the gravitational effects near black holes, ultimately preserving the

unitarity of quantum mechanics.

Black hole entropy, with its profound implications and connections to quantum gravity, serves

as a powerful reminder of the profound mysteries that persist at the intersection of these two

fundamental theories. The exploration of black hole entropy has reshaped our understanding

of black holes, thermodynamics, and the fundamental nature of the universe itself.

While significant progress has been made in unraveling the mysteries surrounding black hole

1 By “entirely black” we mean a body that absorbs everything and emits nothing
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entropy, the full resolution of the black hole information paradox and the attainment of a

comprehensive theory of quantum gravity remain elusive goals. The quest for a unified theory

that harmonizes the quantum and gravitational worlds continues to drive the work of physicists,

offering the promise of deeper insights into the fundamental laws that govern our universe.

With this being said, our main aim in this chapter is to unravel the aforementioned black hole

properties. Setting a common ground for our later discussions about holographic models in

chapter 3.

2.1 Thermodynamics and entropy

We begin with a brief derivation of Hawking’s temperature using quantum mechanical principals

[56]. The uncertainty principal states

∆x∆ν =
h̄

2m
(2.1)

where ∆x is the uncertainty in the position of the particle and ∆ν is the uncertainty in its

speed. Equation (2.1) gives the minimum value that the product of these quantities can take.

Recalling the relativistic relation between the mass m and energy E of a particle: E = mc2.

Hence,

∆x∆ν =
c2h̄

2E
(2.2)

The previous two equations show that ∆x and ∆ν are inversely proportional. Because quantum

black holes are very small, if a particle is inside one, the uncertainty in its position, ∆x, becomes

quite small. This means we can increase the uncertainty in its speed, ∆ν to a level where it’s

greater than the speed of light c. When this happens, the particle can escape from the black

hole and cross its boundary, known as the event horizon, to the outside.

Since quantum events are inherently uncertain or random, we can’t predict with certainty which

type of particle will escape or exactly when it will happen. However, over time, this randomness

results in a continuous release of particles. These particles are emitted in various directions
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away from the event horizon, and we refer to this phenomenon as Hawking radiation. As each

particle escapes through Hawking radiation, it takes away a portion of the black hole’s mass-

energy, causing the black hole’s mass, MBH , to decrease gradually. This reduction initiates the

process of black hole evaporation.

Since the emission of this radiation happens within the range of uncertainty related to speed,

it’s crucial to note that we cannot actually witness a particle moving faster than the speed of

light. Therefore, from a practical standpoint, this mechanism doesn’t lead to a violation of the

principles of relativistic physics.

Let’s delve into the details more precisely. Imagine a particle inside a stationary black hole. We

know that how uncertain the particle’s position, ∆x, is depends on the black hole’s size. Since

we have some flexibility in determining this uncertainty, we can assume that ∆x is equivalent

to the circumference of the black hole’s boundary, often referred to as the event horizon. We

will use Shwarzchild’s radius, Rs =
2GMBH

c2
for convenience. Hence,

∆x ≈ 2πRs =
4πGMBH

c2
(2.3)

where G is Newton’s gravitational constant, MBH is the black hole’s mass and c is the speed

of light. The crucial requirement for the particle to break free from the black hole is when ∆ν

equals the speed of light c. Applying this condition to Equation (2.2) and incorporating the

outcome into Equation (2.3) yields

E =
c3h̄

8πGMBH

(2.4)

furthermore, we can impose a condition on energy since Hawking’s radiation follows a thermal

behaviour. Namely,

E ≈ kT (2.5)

where k is boltzman’s constant and T is the absolute temperature. Hence, equation (2.4) results

to

T = TH =
c3h̄

8πkGMBH

(2.6)

It is worth noting that we will use natural units from now on unless stated otherwise. Writing
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equation (2.6) in natural units

TH =
1

8πGMBH

. (2.7)

Hence, we showed that Hawking’s temperature could be derived using quantum mechanics.

Now, would like to discuss black hole entropy [33]. Since a black hole has temperature and

energy, it is logical that it has entropy. Remember, in statistical mechanics, temperature is

typically defined in relation to the entropy, S, as:

dS

dE
=

1

T
(2.8)

we have: T = TH = 1
8πGMBH

, E =MBH in natural units and assuming S(E = 0) = 0, yields

S =
Area

4G
= 2π

A

l2p
(2.9)

where the area of the horizon is 4πR2
s and lp =

√
8πG is the Planck length. This entropy is

staggering in magnitude. For instance, for a black hole with the mass of our sun, it reaches

around 1078, significantly surpassing the entropy of the sun itself, which is approximately 1060.

To put it in perspective, the entropy of the entire observable universe, excluding black holes

and mainly governed by cosmic microwave background photons, is roughly 1087.

Comparatively, a single black hole with a mass equivalent to a million suns, like the one at

the center of our Milky Way galaxy, possesses an entropy of roughly 1088. When we consider

the most massive supermassive black holes, which can have masses on the order of 1010 solar

masses, their entropies reach levels around 1096.

Regarding temperature, within classical general relativity, one can establish, under fairly broad

assumptions, that the area of an event horizon never diminishes over time [35]. This prop-

erty bears a resemblance to the second law of thermodynamics. If we formally introduce an

entropy proportional to the horizon area and a temperature on the order of 1 divided by

the Schwarzschild radius (1/RS), we find that a first law of thermodynamics, expressed as
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dMBH = TdS, is also satisfied [5, 4].

Bardeen, Carter, and Hawking initially regarded this as a mere mathematical analogy [4].

However, Jacob Bekenstein of the Hebrew University took a different stance, suggesting that this

entropy should genuinely represent the statistical entropy of a black hole. He envisioned this as a

way of counting the various possible manners in which a black hole could form [6]. Bekenstein

argued that the entropy should be a constant multiple of the horizon area in Planck units

and provided supporting evidence by examining hypothetical scenarios involving an entropic

system being absorbed by a black hole. In each case, he observed that the black hole’s entropy,

defined in this manner, always increased more than the exterior entropy decreased due to

the loss of the system. Bekenstein termed this observation the Generalized Second Law and

conjectured that it held as a general principle [38, 6]. It was at this point that Hawking’s paper

on temperature completed the circle. Consequently, the quantity (2.9) is commonly referred to

as the Bekenstein-Hawking entropy.

The proposition that the Bekenstein-Hawking entropy serves as a microstate enumerator has

gathered robust backing within the framework of string theory. This theoretical framework,

renowned for its profound contributions to the understanding of quantum gravity over the past

few decades [57, 58], establishes arguments grounded in the enumeration of states inherent to

a longitudinally oscillating string. These arguments have exhibited the capacity to deduce the

area-dependent scaling pattern, as encapsulated in equation (2.9), across a comprehensive array

of scenarios [73, 38]. Furthermore, within specific instances characterized by supersymmetry

[72], these arguments achieved the precision required to compute the numerical coefficient

similar to the 1/4 factor found in equation (2.9).

2.2 The information problem and black hole evaporation

We have now observed that black holes exhibit many thermodynamic characteristics. Following

Bekenstein’s pioneering work, it becomes almost irresistible to adopt the perspective that the

Bekenstein-Hawking formula genuinely quantifies the logarithm of the count of microstates
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corresponding to a black hole of a specific size.

However, let’s momentarily consider an alternative viewpoint—one that insists black holes

are primarily characterized solely by their mass (and potentially their charge and angular

momentum, if these are taken into account), as suggested by the principles of general relativity.

This perspective leads to a fundamental conflict with a basic principle in physics: the idea that

if we possess knowledge about a system’s state at a particular moment, we should be capable

of deducing its initial state by running the system’s dynamics backward in time.

This proposal essentially implies that by creating a black hole, we obliterate most of the infor-

mation concerning the process that formed it. Since we are inclined to uphold this fundamental

principle, we are naturally compelled to assume that black holes indeed possess microstates.

However, in a profoundly remarkable paper authored by Hawking [36], it is brilliantly argued

that even when we allow for the possibility of black hole evaporation, this assumption alone is

insufficient to prevent the loss or destruction of information.

Before delving into Hawking’s argument, it’s worth taking a moment to discuss the concept

of information preservation. In classical mechanics, the progression of time is determined by

Hamiltonian dynamics in phase space, which can always be reverted by simply changing the

Hamiltonian’s sign. More straightforwardly, we can solve the equations of motion backward

in time. Similarly, in the realm of quantum mechanics, time evolution is described as unitary

evolution within Hilbert space, and this too can be reversed by changing the sign of the Hamil-

tonian. It’s important to note that these principles hold true only when the system in question

is isolated; otherwise, information can escape or be lost.

The quantum case may appear somewhat counter-intuitive, primarily because the process of

measurement is non-deterministic. However, it’s crucial to recognize that every measurement

entails the coupling of the system being measured with an external apparatus. Consequently,

the evolution of this combined system remains both unitary and deterministic.

Now consider a black hole that was formed by a shell of matter in some pure quantum state

|ψ⟩. As time progresses, the quantum state of the radiation field surrounding the black hole
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gradually becomes increasingly entangled or mixed. This can be quantified by noting that its

entanglement entropy is on the rise. Initially, this might not appear concerning, as we are, after

all, examining the radiation that exists outside the black hole’s event horizon.

However, as the black hole undergoes evaporation, its size diminishes, eventually reaching a

point where it becomes extremely tiny, on the scale of the Planck length. At this point one of

two things must happen:

• The process of evaporation comes to a halt, and the exceedingly small Planck-sized entity

remains in a steady state. This scenario is referred to as a remnant. For the entire

system’s quantum state to remain in a pure state, as mandated for unitary evolution, the

remnant must possess an exceptionally high level of entanglement entropy. Even before it

reaches the Planck size, the entanglement entropy of the remnant would need to surpass

the Bekenstein-Hawking value. Such a situation would contradict the interpretation of

(2.9) related to counting the states.

• The black hole completes its evaporation, transforming into particles like photons and

gravitons. Due to energy conservation, the ultimate emission of these particles lacks the

necessary entanglement entropy to cleanse the earlier radiation fully. Consequently, the

outcome of the evaporation process is a radiation field in a mixed state, characterized by

an entropy magnitude approximately equivalent to the initial black hole’s event horizon

area in Planck units.

Hawking put forward the second possibility. He argued that the way black holes form and

eventually disappear doesn’t follow a clear and consistent pattern where all the information is

preserved. If it did, the radiation coming out would be in a pure state. But because different

starting conditions can lead to the same result, Hawking suggested that black holes break the

rule of keeping all information intact. So, this second option is often called information loss.

Fundamental laws of physics are typically not discarded unless it becomes evident that there are

no other viable alternatives. How can we potentially sidestep the problem of information loss?

While the first option is theoretically feasible, it’s deemed unattractive because it necessitates
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objects with finite energy but an infinite array of states. Consequently, it has rarely been

seriously considered [61, 26, 74].

For those unwilling to embrace the idea of information loss, an alternative option, a third one,

has gathered more attention.

• Equation (2.9) should be understood primarily as an approximation. In reality, Hawking

radiation doesn’t emerge in a truly mixed state. The information is conveyed through

intricate correlations among the Hawking photons, and the ultimate state of the evapora-

tion represents a pure state of the radiation field. Given its complexity, when we examine

small portions of this system, they appear thermal, which justifies the reasonably accurate

application of (2.9) as long as we’re not considering too many photons simultaneously.

There is a complete basis of such pure states whose dimensionality is the exponential

of the Bekenstein-Hawking formula, which thus can indeed be interpreted as counting

microstates. In this sense, equation (2.9) is called the coarse-grained entropy.

Option (3) might initially appear to be the most favorable choice among the three, but it en-

tails a more profound departure from conventional thinking than it might seem at first glance.

Equation (2.9) appears to be a consequence of widely accepted principles regarding the ap-

plicability of quantum field theory on scales significantly larger than the Planck scale. If this

equation were incorrect, shouldn’t we expect to detect this deviation from quantum field the-

ory in other aspects or observations? Since each of the three options has its own unattractive

characteristics, this situation is denoted as the black hole information problem.



Chapter 3

Models of Holographic Quantum

Gravity

3.1 Gauge/Gravity duality explained

In this section, we delve into the concept of the gauge/gravity duality [48], which serves as a

primary motivation for the exploration of black hole solutions in various dimensional contexts.

The gauge/gravity duality represents an intriguing correspondence between two distinct theo-

ries: Firstly, we have a quantum field theory existing within d-dimensional spacetime. On the

other side, we encounter a gravity theory inhabiting a d+ 1-dimensional spacetime, character-

ized by an asymptotic boundary of d dimensions. This duality is also frequently referred to

as AdS/CFT, owing to its frequent association with anti-de-Sitter spaces and conformal field

theories. Furthermore, it is often termed gauge-string duality, as it bridges the realm of quan-

tum field theories, often involving gauge theories, with string theories embedded in gravity.

An alternative name for this concept is “holography”, drawing a parallel with optical holo-

grams that encode three-dimensional images onto two-dimensional surfaces. Although initially

proposed as a conjecture, substantial empirical evidence has since mounted in support of its

validity, and it has been derived from physical arguments in various contexts. To commence our

exploration, we will begin by providing a detailed exposition of anti-de-Sitter spacetime, which

13
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serves as the foundational framework for many aspects of AdS/CFT. Anti-de-Sitter space is

the most straightforward solution to Einstein’s equations with a negative cosmological constant

and can be thought of as the Lorentzian counterpart to hyperbolic space, which historically

marked the inception of non-Euclidean geometries. Analogously, AdS/CFT furnishes us with

a fundamental paradigm for understanding quantum aspects of spacetime.

3.1.1 Anti-de-Sitter spacetime

The metric in AdS space can be written as

ds2AdSd+1
= L2

[
− (r2 + 1)dt2 +

dr2

r2 + 1
+ r2dΩ2

d−1

]
(3.1)

where the last term is the metric of a unit sphere, Sd−1. L is the radius of curvature. Notice that

in the vicinity of r = 0, the spacetime appears nearly flat. As we extend our scope to larger r

values, it becomes evident that both g00 and the metric on the sphere experience an expansion.

This expansion of g00 can be interpreted as an increase in the gravitational potential. To be

precise, a slowly moving massive particle encounters a gravitational potential V ∼
√
−g00.

When a particle initially at rest is placed at a substantial r value, it initiates an oscillatory

motion along the r direction, analogous to the behavior of a particle subjected to a harmonic

oscillator potential. This gravitational potential effectively confines particles within the vicinity

of the origin. In the case of a massive particle with finite energy, escape to infinity, r = ∞,

becomes an impossibility. However, a massless geodesic has the capability to reach infinity

and return within a finite period. An alternative perspective involves examining the Penrose

diagram of AdS. By factoring out a term of 1 + r2 in the metric (3.1) and introducing a new

radial coordinate, x, through dx = dr/(1+r2), which now exhibits a finite range. Consequently,

the Penrose diagram of AdS space takes the form of a solid cylinder, as depicted in figure 3.1.

In this diagram, the vertical direction corresponds to time, the boundary aligns with r = ∞, a

finite value of x. The spatial section of the cylinder’s surface represents Sd−1. While the metric

in (3.1) notably possesses an evident R × SO(d) symmetry, AdS boasts a more extensive set

of symmetries, specifically the full symmetry group SO(2, d). These symmetries can be more
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Figure 3.1: (a) Illustrated is the Penrose diagram for Anti-de-Sitter space, taking the form of
a solid cylinder. In this diagram, the vertical axis corresponds to the temporal dimension. The
boundary encompasses the temporal direction and includes a sphere, denoted as Sd−1, which
is here represented as a circle. (b) The diagram portrays a massive geodesic trajectory using
a solid line and a massless geodesic path using a dashed line for comparison. (Image credits:
[48])

obvious by regarding AdS as the hyperboloid

−Y 2
−1 − Y 2

0 + Y 2
1 + . . . Y 2

d = −L2 (3.2)

in R2,d. This depiction serves the purpose of explicitly grasping the symmetries. Nonetheless,

within this hyperboloid, the temporal dimension, t, is compact (representing the angle within

the [-1, 0] plane). However, in all physical contexts, we intend to consider this temporal direction

as non-compact.

The isometries of Anti-de-Sitter space are of great importance. Let’s recall the scenario in

flat space. When dealing with a massive geodesic in flat space, we can always transition to a

reference frame where it is at rest. In Anti-de-Sitter space, the same principle applies. If we

examine the oscillating path of a massive particle, we can “boost” to a frame where the particle

is stationary. Consequently, the moving particle remains unaware of its motion, and contrary

to appearances, there is no discernible “center” in Anti-de-Sitter space. The Hamiltonian is a

component of the symmetry group, in similar fashion to the Poincare group, offering multiple

options for a Hamiltonian. Once we select a specific Hamiltonian, such as the one responsible

for shifting t in (3.1), we establish a “center” and a concept of the lowest energy state, often
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represented by a particle situated at this designated “center”.

In certain applications, it proves advantageous to concentrate on a small region of the boundary

and treat it as R1,d. In fact, there exists a choice of coordinates where the Anti-de-Sitter metric

assumes the following form.

ds2 = L2−dt2 + dx⃗2d−1 + dz2

z2
(3.3)

in this metric, the boundary is positioned at z = 0, and we have slices that exhibit the Poincare

symmetry group in d dimensions, one temporal and d − 1 spatial dimensions. Interestingly, if

we perform the transformation t → ix0, we arrive at hyperbolic space, which is occasionally

referred to as Euclidean Anti-de-Sitter space! In these particular coordinates, we can also

readily identify another isometry that scales the coordinates (t, x⃗, z) as (t, x⃗, z) → λ(t, x⃗, z).

These coordinate systems feature a horizon located at z = ∞ and cover only a segment of

(3.1). These coordinates prove to be advantageous when we aim to explore a Conformal Field

Theory (CFT) existing within Minkowski space, namely R1,d−1.

The concept of the AdS/CFT correspondence postulates that all the physical phenomena within

an asymptotically anti-de-Sitter spacetime can be effectively explained by a local quantum field

theory existing on the spacetime’s boundary, represented as R × Sd−1. The symmetries of

anti-de-Sitter space act upon this boundary, transforming points on the boundary into other

points while preserving the boundary’s structure. This action precisely mirrors the operations

performed by the conformal group within d dimensions, which is SO(2, d). Consequently,

the quantum field theory is a conformal field theory. Remarkably, the rescaling symmetry

described in equation (3.3) corresponds to a dilatation effect on the boundary. As a result,

the boundary theory is scale invariant, without any dimensionful parameters. Typically, scale-

invariant theories also possess conformal invariance, which has a stress-energy momentum tensor

with a vanishing trace. The conformal group contains the Poincare group, dilatations, and

“special conformal transformations”, though the latter is of lesser significance here. Notably,

the conformal symmetry allows us to select an arbitrary radius for the boundary Sd−1, which

can be conveniently set to one. Additionally, in the context of a conformal field theory, the

stress tensor’s tracelessness implies that the field theory remains fundamentally unchanged
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whether it operates on a space with a metric gbµν or ω2(x)gbµν , with the understanding that this

introduces a well-defined conformal anomaly. It’s important to emphasize that we are referring

to the metric on the boundary, where the field theory is situated, and this metric remains fixed

and non-dynamical.

How can we reconcile the equivalence between a d + 1-dimensional bulk theory and a d-

dimensional one? Let’s consider a skeptical viewpoint. If we count the number of degrees

of freedom, it seems like there should be a contradiction due to the extra dimension in the bulk

theory. Specifically, if we examine the number of degrees of freedom at high energies in the

microcanonical ensemble, we can introduce an effective temperature. In a theory with massless

fields or no characteristic scale, we anticipate that entropy scales as S ∼ Vd−1T
d−1. Therefore,

if the boundary theory is a conformal field theory (CFT) on R×S3, then for significantly high

temperatures compared to the radius of S3 (T ≫ 1), we would expect the entropy to grow

exponentially as

S ∝ cT d−1 (3.4)

where c is a dimensionless constant representing the effective count of fields within the theory.

From a different perspective, the bulk theory appears to involve massless particles, such as

gravitons. While there could be additional fields, for now, let’s focus on the gravitons, which

provide a lower limit for the entropy. The entropy associated with these gravitons is unques-

tionably greater than the entropy stemming from the region where r is approximately 1. Within

this region, which has a volume of approximately one, we obtain

Sgas of gravitons > T d (3.5)

because it possesses d spatial dimensions. When T is sufficiently large, we observe that equation

(3.5) surpasses equation (3.4). This seems to present a conflict with the fundamental premise

of AdS/CFT. However, we are overlooking a crucial element: the presence of gravity within the

bulk theory. Gravity leads to the emergence of black holes, and black holes impose limitations
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on entropy. In AdS, black holes take the following form:

ds2AdSd+1
= L2

[
− (r2 + 1− 2gm

rd−2
)dt2 +

dr2

r2 + 1− 2gm
rd−2

+ r2dΩ2
d−1

]
(3.6)

where m is proportional to the mass and g is proportional to the Newton constant in units of

the AdS radius

g ∝ Gd+1
N

Ld−1
(3.7)

The gas of gravitons extends up to approximately rz ∼ T and possesses a mass on the order of

m ∼ T d+1. When T is sufficiently large, we can disregard the 1 in (3.6) when calculating the

Schwarzschild radius: rds ∼ gm ∼ gT d+1. As a result, the Schwarzschild radius surpasses the

system’s size for sufficiently high temperatures, T > 1/g. Consequently, the calculation in (3.5)

becomes invalid for such elevated temperatures. At elevated energies, we calculate the entropy

based on black hole entropy, which expands in proportion to the horizon’s area, S ∼ rd−1
s

g
. It

is worth noting that the Hawking temperature for sizable black holes follows T ∝ rs. The

black hole’s entropy can be expressed as SBH ∼ 1
g
T d−1. This agrees with the anticipated form

outlined in (3.4), with

c ∝ 1

g
∝ Ld−1

AdS

GN,d+1

(3.8)

hence, AdS/CFT establishes a connection between the entropy of a black hole and the conven-

tional thermal entropy of a field theory, yielding two significant implications. Firstly, it offers a

statistical interpretation for black hole entropy, addressing conceptual issues surrounding black

hole entropy. Furthermore, by representing black holes as ordinary thermal states within a uni-

tary quantum field theory, it demonstrates the consistency of these black holes with quantum

mechanics and unitary evolution. Secondly, it enables the calculation of thermal free energy

and other thermal properties in quantum field theories with gravity duals.

The number of fields scales inversely with g in equation (3.8), which quantifies the effective

gravitational coupling at the AdS scale. It represents the dimensionless constant measuring

the effective nonlinear interactions among gravitons. Consequently, for a weakly coupled bulk

theory, it is necessary for the field theory to possess a large number of fields. However, this is a
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Figure 3.2: (a) In a conformal field theory defined on the Euclidean plane, Rd, we have the
capability to apply various operators at the origin (r = 0). These operators generate specific
states on Sd−1 by executing the path integral of the field theory within the interior of Sd−1

while the operators are inserted. (b) Thanks to the Weyl symmetry inherent to the theory, we
can adjust the metric and reinterpret it as the metric for a cylindrical space, R× Sd−1. States
existing within this cylindrical context correspond one-to-one with operators residing on the
plane. This characteristic is a fundamental attribute of conformal field theories and is entirely
unrelated to the concept of AdS/CFT. (Image credits: [48])

necessary but not sufficient condition. An essential characteristic of a weakly coupled theory is

the presence of a Fock space structure within the Hilbert space. This structure facilitates dis-

cussions about single particles, two particles, and so on, with their energies being proportional

to the sum of the energies of individual particles with minor corrections. The dual quantum

field theory must exhibit a similar structural property. Large N gauge theories naturally exhibit

this structure. A large N gauge theory, based on the SU(N) or U(N) gauge group with fields

in the adjoint representation, allows the formation of gauge-invariant operators by taking traces

of fundamental fields, such as Tr[FµνF
µν ] or Tr[FµνDρDσF

µν ], all of which are local operators

evaluated at the same spacetime point. Additionally, double trace operators, representing the

product of two operators, can be considered. Such operators create a state when they act on

the field theory vacuum. In a general CFT, even without a known gravity dual, there exists a

correspondence between states on the cylinder, R×Sd−1, and operators on the plane, Rd. The

dimension of the operator corresponds to the energy of the associated state, where the scal-

ing dimension indicates how the operator transforms under scaling transformations mentioned

after (3.3). This correspondence arises when we consider an Euclidean cylinder, where the

Euclidean cylinder and the plane differ only by an overall Weyl transformation of the metric,

d(log r)2 + dΩ2 = 1
r2
[dr2 + r2dΩ2], resulting in them being equivalent in a CFT. An operator

located at the origin of the plane generates a state at a fixed r, which can be interpreted as

a state in the field theory on the cylinder (refer to figure 3.2). This state-operator mapping
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applies to any conformal field theory.

AdS/CFT establishes a connection between a state in the field theory on the cylinder and a

state in the bulk theory in global coordinates (3.1), as both sides share the same symmetries.

States or operators can be categorized based on their transformation properties under the

conformal group, characterized by the operator’s spin and scaling dimension, ∆. For instance,

the stress tensor operator, Tµν , generates a graviton in AdS, with the dimension of the stress

tensor being d. Single trace operators are associated with single-particle states in the bulk,

while multitrace operators correspond to multiparticle states in the bulk. A general argument,

derived from a straightforward analysis of Feynman diagrams, indicates that the dimensions of

multitrace operators are the sum of the dimensions of each single trace component, subject to

1/N2 corrections. Remarkably, the same analysis of Feynman diagrams reveals that the large

N limit of general gauge theories leads to a string theory [77]. The argument doesn’t specify

the exact type of string theory it implies; it simply suggests that we can organize the diagrams

into those that can be drawn on a sphere, plus those on the torus, and so on. As we increase

the genus of the surface, we introduce an additional factor of 1/N2. This resembles a string

theory with a string coupling parameter, gs, roughly proportional to 1/N . Importantly, the

strings present in the bulk align with the strings implied by this reasoning.

The preceding argument emphasizes that the large N limit is essential for achieving a weakly

coupled gravity theory. However, this doesn’t imply that we are confined to linearized solutions.

In a weakly coupled gravity theory, we can explore complete classical nonlinear solutions of the

equations, such as the black hole solutions mentioned earlier. Weak coupling implies that we

can disregard quantum gravity corrections or loop diagrams.

In string theory, the graviton represents the lowest oscillation mode of a string. The gravita-

tional coupling discussed earlier relates to the strength of interactions between strings. Nonethe-

less, there is an additional requirement for the validity of the gravity approximation. In gravity,

we treat the graviton as a point-like particle while disregarding all the massive string states.

The typical size of the graviton corresponds to the string length, ls, which is an extra parameter

beyond the Planck scale. To neglect the influence of the remaining string states, we require
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that

LAdS

ls
≫ 1, for gravity to be a good approximation (3.9)

This condition can be simplified as ensuring that the typical spatial scale is significantly larger

than the inherent size of the graviton in string theory. Emphasizing its importance, this condi-

tion must be satisfied in numerous practical instances to prevent gravity from yielding incorrect

results, even when dealing with a substantial number of fields. If equation (3.9) does not hold

true, then we must take into account the complete string theory within AdS. A notable char-

acteristic of string theory is the presence of massive string states with spins greater than 2. In

large N gauge theories, we can readily construct single-trace operators featuring higher spins,

such as Tr[FµνD
S
+F

µν ], where D+ represents a derivative along a null direction. These operators

possess relatively modest scaling dimensions at weak coupling, typically ∆ = 4 + S. Conse-

quently, they give rise to particles with spin S, whose bulk mass is of similar magnitude to

the inverse AdS radius. The presence of such lightweight string states invalidates the Einstein

gravity approximation. Therefore, for the gravity approximation to be reliable, the field theory

must exhibit strong interactions. This is a necessary condition, although not sufficient on its

own. The coupling must be powerful enough to give considerable dimensions to all the single-

trace operators with higher spins within the theory. In specific instances, we discover that this

quantity, (3.9), is directly proportional to a positive exponent of the effective ’t Hooft coupling

of the theory, denoted as g2YMN . Where gYM is the coupling constant of the gauge theory and

the additional factor of N arises from the exchange of N gluons among color-correlated parti-

cles, which amplifies their interactions in the context of large N By selecting a sizable value for

g2YMN , we can give significant dimensions to the higher spin states, leaving us with a lightweight

graviton and other lower spin states. In such cases, we anticipate that their interactions align

with those of Einstein gravity.

3.1.2 An example: N = 4 Super Yang Mills

The preceding discussion presented a quite general overview. To get into specifics, we will

explore a particular example of a dual pair. We will commence with a discussion of the field
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theory, followed by an examination of the gravity theory. Throughout this exploration, we will

illustrate how various elements align between the two domains.

We direct our attention to a four-dimensional field theory that bears resemblance to quantum

chromodynamics. In quantum chromodynamics, we encounter a gauge field,Aµ, which consti-

tutes a traceless 3 × 3 matrix within the adjoint representation of SU(3). The corresponding

action is defined as follows

S = − 1

4g2YM

∫
d4xTr[FµνF

µν ]

Fµν = [∂µ + Aµ, ∂ν + Aν ]

(3.10)

We can extend this theory by considering a gauge group SU(N) or U(N), where Aµ is now

represented as an N × N matrix. In the case of quantum chromodynamics (QCD), fermions

in the fundamental representation are present. However, in this scenario, we adopt a different

approach by introducing fermions that transform within the adjoint representation. The ra-

tionale behind this choice is our desire to construct a supersymmetric theory. Supersymmetry

serves as a valuable tool for validating many of the predictions arising from the duality. While

the existence of the duality does not hinge on supersymmetry, finding a dual pair becomes

more manageable in its presence. Supersymmetry is a symmetry that establishes a relationship

between bosons and fermions. In a supersymmetric theory, both the bosons and their fermionic

counterparts belong to the same representation of the gauge group. By introducing a Majorana

fermion in the adjoint representation, we obtain an N = 1 supersymmetric theory. It’s impor-

tant to note that this theory lacks quantum conformal symmetry and exhibits a beta function,

similar to the theory with no fermions. Conversely, if we include four fermions denoted as

χα and six scalars labeled as ϕI , all residing in the adjoint representation and have specific

couplings, we create a theory endowed with maximal supersymmetry known as N = 4 super-

symmetric theory [28]. The Lagrangian of this theory is entirely determined by supersymmetry

and the choice of the gauge group. The action has the schematic form

S = − 1

4g2YM

∫
d4xTr

[
F 2+2(Dµϕ

I)2+χDχ+χ[ϕ, χ]−
∑
IJ

[ϕI , ϕJ ]2

]
+

θ

8π2

∫
Tr[F ∧F ] (3.11)
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there exist two crucial constants: the coupling constant,g2YM, and the θ angle. Supersymmetry

dictates all the relative coefficients in the Lagrangian. All fields are in a single supermulti-

plet under supersymmetry. Remarkably, this theory demonstrates both classical and quantum

conformal invariance, signifying that its beta function equals zero. In simpler terms, it retains

its coupling strength irrespective of energy scales. Once the coupling strength is determined,

it remains constant across all energy levels. Whether it is weak or strong, this characteristic

persists. The effective coupling constant is

λ = g2YMN (3.12)

the additional factor of N can be explained as follows: when two fields have their color and

anticolor entangled or summed over, there are N gluons that can be exchanged between them

while preserving this entanglement. The theory possesses an SO(6), or SU(4), R-symmetry

that rotates the six scalars and the fermions. An R-symmetry is a type of symmetry that does

not commute with supersymmetry, which is the case here because bosons and fermions belong

to different representations of SU(4).

Now, let’s get into the gravity theory, which is a string theory giving rise to a quantum me-

chanically consistent theory of gravity. Since we began with a supersymmetric gauge theory,

we also anticipate a supersymmetric string theory. Ten-dimensional supersymmetric string the-

ories are well-established, with one such theory, type IIB, consisting solely of closed oriented

strings. At long distances, this string theory reduces to a gravity theory known as type IIB

supergravity[67]. This supergravity theory encompasses the metric and other massless fields

mandated by supersymmetry, including a five-form field strength denoted as Fµ1...µ5, which is

entirely antisymmetric in its indices. Additionally, it is constrained to be self-dual (F5 = ∗F5),

analogous to the two-form field strength Fµν in electromagnetism. In four dimensions, charged

black hole solutions can incorporate the metric and the electric or magnetic two-form field

strength. Particularly, the near-horizon solution of an extremal black hole exhibits AdS2 × S2

geometry with a two-form flux on the AdS2 or the S
2, depending on whether it is electrically or

magnetically charged. A similar phenomenon arises in ten dimensions. There exist a solution
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to the equations that takes the shape of AdS5 × S5, featuring a five-form field along both the

AdS5 and S5 directions. This configuration has both electric and magnetic fields, which is

a result of the self-duality constraint on F5. According to the Dirac quantization condition,

magnetic fluxes on an S2 are quantized. In the context of string theory, the flux on the S5 is

also quantized ∫
S5

F5 ∝ N (3.13)

which is the same number of colors of the gauge theory. In ten dimensional supergravity, the

relevant equations of motions follow the action

S =
1

(2π)7l8p

∫
d10x

√
g(R− F 2

5 ) (3.14)

in addition to the self duality constraint, F5 = ∗F5. The equations of motion establish a

connection between the radii of AdS5 and S
5 with respect to N . Specifically, we find that both

radii are determined by L4

l4p
= 4πN , where lp is the Planck length. In the context of string

theory, we also have the string length ls = g
−1/4
s lp, which sets the string tension T = 1/(2πl2s).

Here, gs represents the string coupling determining the interaction strength between strings and

is derived from the vacuum expectation value of one of the ten-dimensional theory’s massless

fields, gs = ⟨eϕ⟩. In the gravity theory, there is an additional massless scalar field χ, which

acts as an axion with a periodicity of χ → χ + 2π. These two fields are associated with the

parameters g2YM and θ present in the aforementioned Lagrangian. It is natural to identify θ with

the boundary condition or expectation value for χ and g2YM with the string coupling gs.Namely,

g2YM = 4πgs. The precise numerical coefficient can be determined through the physics of D-

branes [60] or by applying the S-duality of both theories. Once this is done, we can express the

radii of AdS5 and S5 in terms of Yang-Mills quantities

L4

l4s
= 4πgsN = g2YMN = λ

L4

l4p
= 4πN

(3.15)

As we previously explained, to ensure a weakly coupled bulk theory, it is essential that N ≫
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1. Furthermore, for the Einstein gravity approximation to be reliable, a substantial effective

coupling is required. Consequently, we find ourselves in the following scenarios:

g2YM ≫ 1: Gravity is good, gauge theory is strongly coupled

g2YM ≪ 1: Gravity is not good, gauge theory is weakly coupled

under such extreme regimes, it is easy to do computations using one of the two descriptions.

The ’t Hooft limit [77], which deals with planar diagrams, corresponds to taking N → ∞ while

keeping g2YMNfixed. It can be advantageous to first approach the ’t Hooft limit, resulting in a

free string theory in the bulk, and then vary the ’t Hooft coupling λ from weak to strong. This

variation changes the AdS radius in string units. The behavior of the string is dictated by a

two-dimensional field theory with AdS as its target space (along with S5 and some fermionic

dimensions). This two-dimensional field theory is weakly coupled when the AdS radius is large

and strongly coupled when the radius is small, or when the gauge theory is weakly coupled.

When dealing with values of order one, g2YMN ∼ 1, one must utilize the full string theory

description or solve the complete planar gauge theory.

N = 4 super Yang-Mills theory possesses an S-duality symmetry, which interchangeably relates

weak and strong coupling regimes. One might be tempted to transition to a strong coupling

regime and then employ S-duality to return to a weakly coupled theory. However, this approach

is not effective. The bulk theory also exhibits an S-duality symmetry, and these two S-duality

symmetries are in a one-to-one correspondence. Therefore, to assess the validity of the gravity

description, we first apply S-duality on both sides to set gs < 1 and subsequently employ the

aforementioned criterion.

It is worth revisiting the problem of comparing the thermal free energy of the gauge theory

and the gravity theory while considering numerical coefficients. We examine the field theory in
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R3 × S1
β. The free energy at weak coupling is given by the formula:

−βF = V

∫
d3k

(2π)3

[
nbosons log(

1

1− e−β |⃗k|
) + nfermions log(1 + e−β |⃗k|)

]

−βF =
π2

6
V N2T 3

β = 1/T

(3.16)

where we used nbosons = nfermions = 8N2. At strong coupling, we take the Euclidean black brane

solution with τ ∼ τ + β

ds2 = L2

[
(1− z4

z40
)
dτ 2

z2
+

dz2

z2(1− z4

z40
)
+
dx2

z2

]
(3.17)

this is straightforwardly connected to the limit of large mass in equation (3.6). By requiring

the absence of a singularity at z = z0, we can establish the relationship β = πz0, as usual. The

entropy is determined by the familiar Bekenstein-Hawking formula [31]

S =
Area

4GN

=
L8VS5

4GN,10z30
=
π2

2
V N2T 3 (3.18)

computing the free energy from the entropy, we get

−βF = S/4 =
π2

8
V N2T 3 (3.19)

We observe that there exists a 3/4 factor difference between equations (3.19) and (3.16). This

doesn’t signify a contradiction with AdS/CFT; instead, it provides a prediction for how the

free energy varies when transitioning from weak to strong coupling. In line with general large

N principles, we anticipate the free energy to exhibit the following structure

F (λ,N)

F (λ = 0, N)
= f0(λ) +

1

N2
f1(λ) + . . . (3.20)

We anticipate that the function f0(λ) exhibits a smooth transition from f0 = 1 at λ = 0

to f0 = 3/4 at λ ≫ 1. Indeed, the leading corrections from both of these values have been
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calculated, and they align with our initial expectations [32, 23]. In this specific case, the function

f0 remains constant at large λ. However, there are instances where this function behaves as

f0 ∼
√

1/λ for large λ [1, 21].

Within the gauge theory, there exist scalar fields with potential energy landscapes that feature

flat directions. This allows for the possibility of assigning expectation values to these fields while

having the vacuum energy fixed at zero, resulting in the spontaneous breaking of conformal

symmetry. While the conformal symmetry is restored at high energies, it remains broken at

lower energy scales. These flat directions correspond to diagonal matrices as expectation values

for the scalar fields. As a straightforward example, we can set ϕ1 = diag(a, 0, . . . , 0), with all the

other components being zero. This breaks the gauge group from U(N) to U(1)×U(N−1). In the

context of the gravity dual, this corresponds to placing a D3 brane at a position approximately

z ∼ 1/a in the Poincare coordinates (3.3). Intuitively, one might expect that gravitational

forces would push the brane toward the horizon. However, this force is exactly counteracted by

an electric repulsion stemming from the presence of the electric five-form field strength. The

massless fields associated with this D3 brane are linked to the fields within the U(1) factor,

while the massiveW bosons arising from the Higgs mechanism originates from strings extending

from the brane to the horizon. Interestingly, it is possible to formulate solutions corresponding

to general vacuum expectation values

ds2 = f−1/2(−dt2 + dx⃗2) + f 1/2(dy⃗2)

f = 4π
∑
i

l4p
|y⃗ − y⃗i|4

(3.21)

in this expression, x⃗ represents a three-dimensional vector, while y⃗ is a six-dimensional vec-

tor. The y⃗i are associated with the vacuum expectation values of the scalar fields, ϕ⃗ =

diag(y⃗1, y⃗2, . . . , y⃗N). This solution resembles a black brane with multiple centers. In principle,

we cannot rely on this solution in the vicinity of a single center due to the extremely high cur-

vature. However, when multiple centers coincide, we can trust the solution. For instance, if we

break U(2N) → U(N)×U(N) by assigning the expectation value ϕ1 = diag(a, . . . , a, 0, . . . , 0),

with a repeated N times, this solution remains reliable across all regions. In the ultraviolet
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Figure 3.3: (a) The structure of the black 3-brane solution (3.21) with (3.22) results in a
specific geometry. In the distant region, we have ten-dimensional flat space. As we approach
the vicinity of the horizon, the geometry transforms into AdS5 × S5. (b) Describing D-branes
involves understanding their excitations, which are illustrated by open strings residing on these
branes. These strings can begin and end on any of the N D-branes, giving us a total of N2

strings. In the low-energy regime, these excitations lead to the emergence of a U(N) gauge
theory known as N = 4 super Yang-Mills. (Image credits: [48])

(UV), for large |y⃗|, we have a single AdS geometry that splits into two AdS throats with smaller

radii as we progress toward lower values of |y⃗|. This describes the corresponding transition in

the gauge theory from the UV to the infrared (IR), where we encounter two decoupled confor-

mal field theories. This example illustrates a geometry that is solely asymptotically AdS near

the boundary but displays differences within the interior.

It is interesting to consider the solution (3.21) with [39]

f = 1 +
4πNl4p
|y|4

(3.22)

this provides a physical basis for deriving the gauge-gravity duality in this specific example

[47]. The solution becomes ten-dimensional flat space for |y⃗| ≫ N1/4lp. It represents an

extremal black D3 brane, as illustrated in figure 3.3. This brane spans 1 + 3 dimensions of

spacetime, denoted as t and x⃗, while it localizes in six additional dimensions represented by y⃗.

Transitioning to the near-horizon regime of this black D3 brane is done by taking y to small

values and omitting the 1 in (3.22). In cases where the string coupling is very small, gsN ≪ 1,

this system can be described as a set of N D3 branes. D3 branes are solitonic defects present

in string theory [59]. They are characterized by a simple string theory construction, revealing
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that they yield N = 4 super Yang-Mills theory at low energies.

Understanding the scalar fields is relatively straightforward: they originate from the motion

of the branes in the six transverse dimensions. Regarding the gauge fields, they emerge from

supersymmetry. Although a system of N identical branes typically exhibits an ordinary SN

permutation symmetry, for these branes, this symmetry extends to form a complete U(N)

gauge symmetry. As such, we have two descriptions of the brane: firstly, as a black brane, and

secondly, as a collection of D-branes. Now, we can approach the low-energy limit for each of

these descriptions. The low-energy limit of the D-branes leads to the N = 4U(N) super Yang-

Mills theory. Conversely, the low-energy limit on the gravity side corresponds to approaching

the vicinity of the black D3 brane’s horizon. In this region, the substantial redshift factor,

where f−1/2 → 0, results in very low energy to all particles residing within this near-horizon

zone. This region essentially corresponds to AdS5×S5. Assuming the equivalence of these two

descriptions, we have achieved the gauge-gravity duality.

3.2 BFSS model

In this section we are going to discuss the BFSS1 model [3], which was proposed as the first

nonperturbative formulation of a quantum theory that includes gravity. The lagrangian used

for this model is,

L =
1

2g
[trẊ iẊ i + 2θT θ̇ − 1

2
tr[X i, Xj]2 − 2θTγi[θ,X

i]] (3.23)

This is a quantum mechanical theory, where g is the coupling constant, X represent nine

N × N matrices, X i
a,b with i = {1, . . . , 9} and a, b = {1, . . . , N}, connected with 16 fermionic

superpartners θa,b which transform as spinors under SO(9), γi are gamma matrices. This

lagrangian (3.23) has a U(N) gauge symmetry. We can always fix the gauge, so that A = 0, as

done here.

It is worth noting that the same lagrangian was used before by [20] to study some properties of

1 Named after: T. Banks, W. Fischler, S.H. Shenker and L. Susskind.
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weakly coupled string theory. In that paper, The 11-D Planck length scale emerged naturally

as the dynamical length scale. This together with the fact that there was some evidence for the

large N limit of the quantum theory defined by (3.23) to be indeed Lorentz invariant motivated

the idea of using it as the basis for this model.

It is more convenient to rewrite (3.23) in units where the 11-D Planck length is 1.

L = tr

[
1

2R
DtY

iDtY
i − 1

4
R[Y i, Y j]2 − θTDtθ −RθTγi[θ, Y

i]

]
(3.24)

In here, R is called the compactification radius which is related to the coupling constant by

R = gls where ls is the length scale2, Y = X
g1/3

, and the gauge field is no longer fixed, so that

Dt = ∂t + iA. The SUSY transformation laws for (3.24) are,

δX i = −2ϵTγiθ (3.25)

δθ =
1

2

[
DtX

iγi + γ− +
1

2
[X i, Xj]γij

]
ϵ+ ϵ

′
(3.26)

δA = −2ϵT θ (3.27)

From this we get the Hamiltonian3,

H = R tr

{
ΠiΠi

2
+

1

4
[Y i, Y j]2 + θTγi[θ, Y

i]

}
(3.28)

In which Π is the canonical conjugate to Y.

3.2.1 Moving to large N

Although it was believed that large N gauge theories (i.e. QFT theories) have a string theory

(i.e. gravity) description [77]. The methodology for achieving this feat was not quite understood

in [3]. To do this properly one must follow the work done in [41] keeping in mind that BFSS is

2 In (3.24) this was set to 1
3 The epsilons ϵ & ϵ

′
in (3.26) are two independent 16 component anticommuting SUSY parameters
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a D0 Brane model. It is of great importance to understand why we are interested only in the

large N limit. To explain it simply, it is known that D-branes carry mass and charge, hence

they excite the bulk gravity modes and one can find supergravity solutions with the same mass

and charge. This might seem wrong at first glance because supergravity solutions describe

exclusively the long range fields of the D-branes, since supergravity is not expected to be valid

at short distances. However, General Covariance says that supergravity solutions are validated

as long as curvatures are locally small compared to the string scale (i.e. the Planck scale). For

a system with large number of branes (i.e. large N) the curvatures are small and hence the

supergravity solutions are valid even at small distance scale. The supergravity solution (i.e.

string theory) for this model is,

ds2 = α
′

(
− U7/2

4π2g
√
15πN

dt2 +
4π2g

√
15πN

U7/2
dU2 +

4π2g
√
15πN

U3/2
dΩ2

)
(3.29)

eϕ = 4π2g2

(
240π5g2N

U7

)3/4

(3.30)

to achieve the aforementioned conditions, we take the field theory limit

U ≡ r

α′ = fixed, g2 =
1

4π2

gs
α′3/2

= fixed, α
′ → 0. (3.31)

where U is an energy coordinate, r is the radial coordinate in flat space of d-branes, α
′
is the

string tension, gs is the string coupling. Note that gs = eϕ∞ where ϕ is called the dilaton in

string theory and ϕ∞ is the value very far away from the d-branes.

The effictive dimensionless coupling constant is g2eff ≈ g2NUp−3. Hence for D0 branes, or in

other words p = 0, our calculations are trusted in the high energy region geff ≪ 1 which gives

U > g2/3N1/3.

The effective string coupling and curvature are small when,

g2/3N1/7 ≪ U ≪ g2/3N1/3 (3.32)

hence, the type IIA description is valid in this region.
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Now, let us study the low energy region. To do this, we may uplift the solution to eleven

dimensions. This is done by taking an uncharged black string along x11 and then boosting it

along x11 while taking the limit,

γ → ∞, γµ =
N

2πR2
11

= fixed (3.33)

where µ is the mass per unit length of the black string in its rest frame. As shown by [37] this

solution can not be trusted in regions where

U0 ∼ g2/3N1/9 (3.34)

For U0 ≪ g2/3N1/9 we get a Schwarschild black hole boosted along the eleventh direction. The

radius of the black hole in Planck units is given by,

(
rs
lp
)8 ∼ E1/2N1/2

g1/3
∼ U

7/2
0 N1/2

g7/3
(3.35)

So the gravity description is trusted where U0 ≫ g2/3N−1/7. For lower energies the system is

expected to behave as a single graviton.

Lattice simulations can be done on this model, as seen in [43, 22, 11, 10]

3.3 BMN model

BMN4 is a matrix model associated to the M-theory pp-wave background[9]. The M-theory

metric is

ds2 = −4dx−dx+ − [(
µ

3
)2(x21 + x22 + x23) + (

µ

6
)2(x24 + · · ·+ x29)]dx

+2

+ dx⃗2

F+123 = µ

(3.36)

4 Named after: David Berenstein, Juan Maldacena and Horatiu Nastase.



3.3. BMN model 33

In similar fashion to [3, 76, 71, 68] we take x− ∼ x− + 2πR, and 2p+ = −p− = N/R.

Having done this, the dynamics of this theory can be given by the matrix model with the action

S = SBFSS + Smass

SBFSS =

∫
dtTr

[
9∑

j=1

1

2(2R)
(D0ϕ

j)2 +ΨTD0Ψ+
(2R)

4

9∑
j,k=1

[ϕj, ϕk]2 +
9∑

j=1

i(2R)(ΨTγi[Ψ, ϕj])

]

Smass =

∫
dtTr

[
1

2(2R)

(
− (

µ

3
)2
∑

j=1,2,3

(ϕj)2 − (
µ

6
)2

9∑
j=4

(ϕj)2

)
− µ

4
ΨTγ123Ψ− µ

3
i

3∑
j,k,l=1

Tr(ϕjϕkϕl)ϵjkl

]
(3.37)

Where lp is set to 1. Note that t = x+ and ϕ = r
2π

where r is the physical distance in eleven

dimensions, and γ123 = γ1γ2γ3. SBFSS is the action of the BFSS model written in Maldacena’s

notation, comparing (3.37) to (3.24) we see that indeed ϕ is Y and Ψ is θ, with minor differences

due to conventions. Namely, 2REQ3.15 = REQ3.2 and lp is normalized such that
√
α′ = lpg

−1/3.

Smass breaks the symmetry SO(9) → SO(6)× SO(3) and gives mass to the scalar and fermion

fields, it also adds a Myers effect term[54].

3.3.1 How BMN is different compared to BFSS

This model (3.37) has the SUSY transformation rules,

δϕi = ΨTγiϵ(t)

δΨ =

(
1

(2R)
D0ϕ

iγi +
µ

6(2R)

3∑
i=1

ϕiγiγ123 −
µ

3(2R)

9∑
i=4

ϕiγiγ123 +
i

2
[ϕi, ϕj]γij

)
δA0 = ΨT ϵ(t)

ϵ(t) = e−
µ
12

γ123tϵ0

(3.38)

Imposing δΨ = 0 we find the solutions 5

[ϕi, ϕj] = i
µ

6R
ϵijkϕ

k i, j, k = 1, 2, 3 ϕ̇i = 0 for all i and ϕi = 0 for i = 4, . . . , 9 (3.39)

5 This condition is imposed to get the fully supersymmetric solutions of (3.37)
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From this, we see that the number of solutions is discrete. Hence, solving the full quantum

mechanical problem of the ground state wavefunction is not needed. In contrast to BFSS, which

had the issue of having to undergo such tiresome calculation.

Thermodynamic simulation of the BMN model has been done in [19], as well as lattice analysis

[17, 2, 66].

3.4 Ungauged model

The ungauged model [50] is a variant of the BFSS model, in which we treat the SU(N) sym-

metry as being global instead of gauging it. To illustrate how this is done, consider the BFSS

action

S =
1

g2

∫
dtTr

(
1

2
(DtX

I)2 +
1

2
ψαDtψα +

1

4
[XI , XJ ]2 +

1

2
iψαγ

I
αβ[ψβ, X

I ]

)
(3.40)

Where the covariant derivative is defined as DtB = ∂tB+ i[At, B] and At is the gauge field. To

treat the SU(N) symmetry as a global symmetry, we simply set At = 0 in (3.40). The resulting

theory has a singlet subsector identical to the original one, but it introduces non-singlet states.

3.4.1 Supersymmetric properties of the ungauged model

First, we would like to know whether setting At = 0 alters the supersymmetric properties. We

have the Qa operators that were generating the SUSY transformation in the original theory

Qϵ = − 1

g2
Tr

(
ẊIψγIϵ+ i

1

2
[XK , XL]ψγKLϵ

)
(3.41)

Where γKL = 1
2
(γKγL − γLγK). We would like to know if these operators commute with the

resulting hamiltonian6

[Qa, H] = −Tr(ψaG) (3.42)

6 The resulting hamiltonian is the usual hamiltonian we get from (3.40) with At set to zero
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Where G is the SU(N) symmetry generators.7 From this we see that (3.42) vanishes in singlet

states, but does not on non-singlet states. Hence, the non-singlet states are not supersymmetry

multiplets. Furthermore, computing the anticommutators

{Qα, Qβ} = 2Hδαβ + 2Tr(GXI)γIαβ (3.43)

In the ungauged model we get a non-zero right hand side. This is because the supersymmetry

tranformation only close up to SU(N) transformations, which are gauge transformations. How-

ever, we can still extract some useful information from this algebra. Namely, we can deduce

that non-singlet states, as well as singlet states, have non-negitave energy. Recalling that the

supercharges are are self-adjoin Q†
α = Qα and gamma matrices are traceless, one can sum over

the spinorial indices to get

32H =
16∑
α=1

{Qα, Qα} =
16∑
α=1

{Q†
α, Qα} ≥ 0 (3.44)

We could redefine the Hamiltonian to preserve some of the supersymmetry.

HSUSY = H − Tr(X1G) (3.45)

By doing this, we break the SO(9) symmetry to SO(8) but preserve half of the supersymmetry,

namely those whose spinorial parameter obeys

(γ1 + 1)ϵ = 0 (3.46)

We also recover the standard SUSY algebra

{Q · ϵ, Q · ϵ′} = 2HSUSYϵ · ϵ
′

(3.47)

7G = i
2g2 (2[DtX

I , XI ] + [ψα, ψα])
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3.4.2 Similarities with the original model

Although we have been examining the differences between the original (i.e gauged) and the re-

sulting (i.e ungauged) model, they can be much more similar. To see this, consider the original

theory with an additional external quark in some representation R̄. The simplest way to achieve

this is by adding the operator TrR̄Pe
i
∫
Atdt which completely breaks the supersymmetery. Al-

ternatively, the operator8 of the form TrR̄Pe
i
∫
dt(At+X1) preserves half of the supersymmetries

[46, 65], this corresponds to the Hamiltonian (3.45). Hence, the ungauged model is similar to

the original model with these operators inserted in.

Another important point is that the BFSS model was introduced with the specific purpose of

deriving the S-matrix for 11-dimensional M-theory. The BFSS proposal focuses on a highly

restricted energy regime within this matrix model. In this extremely low-energy limit, we

delve deep into the bulk region, where the 11th dimension becomes significantly larger in scale

compared to other relevant quantities. In this regime, the physical behavior is anticipated

to faithfully reproduce that of the full 11-dimensional theory. It appears that the distinction

between the gauged and ungauged models becomes indistinct as we approach such low energies,

where the energy E scales inversely with the number of degrees of freedom N (E ∝ 1/N).

Hence, the ungauged model is as good as the gauged one in this low-energy regime.

3.5 The simplest model yet

We have discussed three important models: BFSS, BMN and the ungauged model. Although

each model was simpler than the one before it to some extent, they all involve quantum field

theory. In this section, we will discuss a system built fully by ordinary quantum mechanics.

This is considered to be the simplest dual of a spacetime goverened by Einstein gravity [49].

8 These operators are famously known as the Wilson loop operators
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3.5.1 Construction and Motivation

Consider a quantum system made out of interactiong harmonic oscillators and Majorana

fermions. Their lagrangian would have the rough form

LB ∝
∑
A

[
ẋ2A + ω2x2A+

(∑
B,C

FABCxBxC

)2
]

LF ∝
∑
A

[
ψAψ̇A + i

∑
B,C

F̃ABCxAψBψC

] (3.48)

Where FABC and F̃ABC are coupling costants9. The total lagrangian would be the sum LB+LF .

Notice the simplicity of construction, nothing but interacting bosonic and fermionic ocillators.

The emergent spacetime is described at finite temperature, consisting of a black hole in a “box

universe”. The term “box universe” means a universe where the gravitational potential becomes

large as we go away from the black hole horizon. Hence, all outgoing excitations will get back to

the black hole as illustrated in figure 3.4. Our quantum system does not have a spatial extent,

but the emergent gravity system lives in a higher dimensional spacetime, which has a spatial

extent. This is important since this universe is governed by Einstein’s equations. As we will

see, we can use Einstein equations to deduce predictions about how the quantum system would

behave at strong coupling. Moreover, we can compute the black hole quasinormal modes which

gives information about the excitations around the black hole [13]. In the real world, such

information could be extracted from the LIGO/VIRGO observations as done in [25]. Seeing

these modes emerge from the quantum simulation of the system we are discussing motivates

the believe that we are witnessing something which behave as a black hole in the laboratory.

Now we go into a deeper dive to shed more light into the arguments we made here.

9 For the purpose of emphasizing simplicity, our discussion is quite general for now. Later on the system will
have a specific set of couplings.



38 Chapter 3. Models of Holographic Quantum Gravity

Figure 3.4: As pointed out by the red arrows, the outgoing excitation will eventually come back
to the black hole due to the gravitational potential becoming larger as we move away from the
horizon. this is what meant by a box universe. (Image credits: [49])

3.5.2 The Quantum Mechanics

The quantum mechanics of this model is the same as the BMN theory without gauging. To see

this, we would like to give an explicit form for the bosonic and fermionic action. Starting with

the bosonic action,

SB =

∫
dt

N2−1∑
a=1

[
9∑

I=1

1

2
(ẊaI)2 − 1

4

λ

N

9∑
I,J=1

(N2−1∑
b,c=1

fa
bcX

aIXJb
)2]

(3.49)

where XaI denotes the bosonic degrees of freedom transforming as a vector of SO(9) with

I = 1, . . . , 9 being the SO(9) vector index and a = 1, . . . , N2 − 1 is the SU(N) adjoint index

with structure constants fa
bc coming from the SU(N) generators algebra [Tb, Tc] = iTaf

a
bc. λ

is the coupling constant, and the factor of N is related to the charge of the dual black hole

solution as will be seen later. We can think of the XI as an N ×N matrix with zero trace and

rewrite the kinetic and interaction term of (3.49) as

SB =
N

λ

∫
dtTr

{
9∑

I=1

1

2
(ẊI)2 +

1

4

9∑
I,J=1

[XI , XJ ]2

}
(3.50)
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note that the variables were rescaled to pull out the coupling constant.

The fermionic action has the form

SF =
N

λ

∫
dt

[
1

2
ψαaψ̇αa +

i

2
ψαaΓI

αβψ
βbXIcfa

bc

]
=
N

λ

∫
dtTr

[
1

2
ψαψ̇α +

1

2
ψαΓI

αβ[ψ
β, XI ]

]
(3.51)

where repeated indecies are summed. The fermions, ψαa, transform as a real 16 component

spinor under SO(9) and are also in the adjoint representation of SU(N) with α = 1, . . . , 16.

In the second expression, ψα is thought of as a matrix with SU(N) indecies, ψα = (ψα)ij.

The gamma matrices, ΓI
αβ are real and symmetric SO(9) matrecies, obeying clifford algebra

{ΓI ,ΓJ} = 2δIJ .

The bosonic and fermionic degrees of freedom in (3.49) and (3.51) are related through super-

symmetry, which will not be discussed in detail here. The punch line is this: the full action

SB + SF is fixed by all these symmetries up to the coupling constant λ. This constant is

dimensionful and has dimensions of energy cubed. Hence, the only relevant quantity is the

dimensionless ratio of λ to some other relevant energy scale. For instance, when the system

is considered at finite temperature, the relevant ratio is T/λ1/3. Now, we would like to add

another term to the action which reinstates the harmonic oscillator frequencies

Sω = −N
λ

∫
dtTr

[
2ω2

3∑
I=1

(XI)2 +
ω2

2

9∑
I=4

(XI)2 +
3i

4
ωψΓ1Γ2Γ3ψ + 2iω

3∑
I,J,K=1

ϵIJKX
IXIXk

]
(3.52)

which breaks the symmetry, SO(9) → SO(3)×SO(6), indeed this is the same symmetry group

of the BMN model. ϵIJK is the typical epsilon tensor in three dimensions. Having this term

added, we see that the full action SB + SF + Sω is simply describing a collection of interacting

fermionic and bosonic oscillators. It is worth mentioning that the terms in (3.52) have helped

in some other numerical computations [55].

We are interested in the regime where the effective coupling is strong (i.e. λ/T 3 ≫ 1), this

means

ω ≪ T ≪ λ1/3, N−5/9λ1/3 ≪ T, N ≫ 1 (3.53)
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in which the system is strongly coupled. These conditions involve the temperature T because

the dimensionless effective coupling at temperature T is given by λ/T 3. We see that the effective

coupling is N independent, this is due to the N terms in (3.50) & (3.51) being chosen to cancel

the factors of N that arise in the effective coupling. For high temperatures with λ/T 3 ≪ 1,

the system is weakly coupled and hence not interesting. The interesting features emerge as the

coupling become strong. the second condition in (3.53) is concerned with the gravity dual that

will be discussed shortly.

3.5.3 The Gravity dual

The gravity dual of this system is a black hole solution in a ten dimensional spacetime. The

SO(9) symmetry is manifested in this solution as the rotations on an 8 dimensional sphere.

The black hole is a solution of an action with the Einsten term, a Maxwell term and a scalar

field

S =
1

16πGN

∫
d10x

√
g

[
R− 1

2
(∇ϕ)2 − e

3
2
ϕ

4
FµνF

µν + . . .

]
(3.54)

The dots denote some other fields which will be zero for our solution. Note that the scalar field

sets the Maxwell field coupling, e
3
2
ϕ.

The simplest solution of this action is the ten dimensional Schwarzschild solution

ds2 = −fdt2 + dr2

f
+ r2dΩ2

8, f = 1− r7s
r7
, Fµν = 0, ϕ = constant (3.55)

Where dΩ2
8 describes the unit radius metric on the eight dimensional sphere. The solution

(3.55) is similar to the Well-known four dimensional Schwarzschild solution with the two spheres

replaced by an eight sphere, and 1/r → 1/r7 in the metric since it is the solution to Laplace

equation in nine spatial dimensions. Unfortunately, a quantum mechanical description of this

simple solution is not known. Hence, a slightly more complicated solution must be considered.

Namely, a charged black hole solution. The relation between its charge and the electric flux on
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the sphere can be given by Gauss law

N =
1

16πGN

∫
S8

e
3
2
ϕ ∗ F =

1

16πGN

∫
S8

e
3
2
ϕE⃗ · dS⃗ (3.56)

where N is an integer because of charge quantization. This charge, N , is the same integer N of

the SU(N) discussed in the quantum theory. This charged black hole solution is characterized

by a few parameters, the charge N , the mass and the value of ϕ at infinity [39]. Notice that ϕ

is no longer constant since the flux in (3.56) depend on the coupling.

The regime we are interested in is when the mass, of this charged black hole, is near its lowest

possible value for a given charge N . The final form of the metric and scalar field, which is

gauged by (3.56), is

ds2 =
√
N
C1/8

2π
ρ9/20

[
4

25

(
− ρ2hdτ 2 +

dρ2

ρ2h

)
+ dΩ2

8

]
, eϕ =

(2π)2C3/4

Nρ
21
10

(3.57)

where

h = 1−
(ρ0
ρ

) 14
5 , C = 240π5, τ =

5

2

λ1/3t√
C
, GN = 8π6 (3.58)

in (3.58) t should be viewed as being normalized in similar fashion to the quantum mechanical

system. Also note that λ here is the same λ that was identified as the coupling constant in the

quantum theory.

This metric has a number of important features:

• The over all factor of gtt goes to zero at the horizon, ρ = ρ0, and increases monotonically

when ρ → ∞. This can be viewed as a relativistic analog of a gravitational potential

in which the particle can not escape due to the ever-increasing potential as the particle

moves away from the horizon. It is in that sense we describe this black hole as being

in a box. Where the walls of this box are determined by this increasing gravitational

potential.

• The metric has a factor of
√
N which gives an overall factor of N2 when inserted to the

action (3.54), keeping in mind that we are in 10 dimensions. Hence, N2 is the relevant

parameter to think about to make the gravitational dual weakly coupled. In other words,
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N must be large. This is equivalent to saying that the metric (3.57) is in Planck units.

Hence, as explained in previous sections10, we need to consider large N for the curvature

to be small.

• The parameter ρ0 can be given in terms of temperature by using Hawking’s formula

T

λ1/3
=

7ρ0

aπ
√
C

(3.59)

where the temperature is set by the condition that the euclidean version of the metric

with periodic time tE ∼ te +
1
T
should have no singularity at the horizon. We are able to

calculate the entropy in relation to the temperature, which is equal to:

S =
Area

4GN

= C̃N2

(
T

λ(1/3)

)9/5

, C̃ = 413/5152/5
(
π

7

)14/5

(3.60)

Using this result, we can deduce other thermodynamic quantities like the energy and the

free energy. The entropy’s dependence on temperature follows a straightforward power

law pattern. Moreover, the solution (3.57) exhibits an asymptotic scaling symmetry.

When t → γt and ρ → ρ/γ, the metric undergoes a rescaling by a factor of γ−9/20.

While the entire action experiences an overall rescaling by γ−9/5, which accounts for the

temperature variation in (3.60). Additionally, since the action undergoes rescaling, this

implies that the equations of motion remain unchanged (i.e. invariant). Consequently,

physical observables exhibit straightforward scaling properties. In simpler terms, this so-

lution signifies a critical system manifesting scaling behavior. This isn’t an exact scaling

symmetry of the quantum theory, but it constitutes a scaling symmetry of the classical

equations. From the standpoint of the classical theory (i.e. large N limit), this scaling

symmetry is as good as a true scaling symmetry. Notably, correlation functions of spe-

cific local boundary perturbations exhibit a power law pattern over time, in the fashion

⟨O(t)O(0)⟩ ∝ t−2ν where ν depends on the specific operator [69]. In essence, the gravity

solution says that the quantum system discussed earlier develops a distinctive critical

behavior at strong coupling when λ/T 3 ≫ 1. It’s essential to note that the action and

10 Section (3.2.1)
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the metric we discussed are well-suited for ρ values significantly smaller than one. The

constraint ρ ≪ 1, which is not immediately apparent from (3.57), originates from effects

present in the comprehensive string theory description, which we’ve excluded here for

the sake of simplicity. Thankfully, when temperatures are relatively low, T ≪ λ1/3, we

find that ρ0 ≪ 1. Consequently, the horizon, along with its environment, lies within a

region that we can accurately describe using gravity alone. The limitation on the upper

temperature range in (3.53) follows from this condition. Remarkably, this temperature

regime in which the metric can be trusted coincides precisely with the strongly coupled

regime of the matrix model.

The solution presented thus far holds true under the condition that ω ≪ T . The gravita-

tional solution for a more general scenario, i.e. ω ∼ T , can be considered [19]. Although

specifics will not be provided here. This broader solution involves more fields. Addition-

ally, phase transitions occur when ω ∼ T . While we’ve primarily focused on the regime

(3.53) for conceptual clarity. However, for the purposes of simulating black holes, both

quantum and classical, we can indeed consider a scenario where ω and T are comparable.

3.5.4 The possibility of a quantum simulation

In a previous study [55], the gravity-based prediction (3.60) regarding entropy was subjected to

a numerical montecarlo computation within the quantum mechanical system. This was carried

out for specific values of T , ω, and N . Namely:

T

λ1/3
= 0.3,

ω

T
= 0.8, N = 16 (3.61)

The outcome demonstrated a deviation of merely 13% from the gravity prediction (3.60), falling

well within the numerical margin of error. For the parameters specified in (3.61), a rough

estimation can be made regarding the number of qubits required for a quantum simulation of the

model within a range where agreement with gravity becomes apparent. A tentative calculation

involves 8N2 qubits attributed to the 16N2 Majorana fermions. As for bosons, although the
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Hilbert space is of infinite dimension, the most crucial excitation levels are expected to fall

within the range of n ∼ λ1/3/ω. Thus, the expected number of qubits would be

nq ∼ N2

[
8 + 9 log2

(
λ1/3

ω

)]
∼ 7000, for N = 16,

λ1/3

ω
∼ 4 (3.62)

This quantity falls within the same order of magnitude as the count of logical qubits required

to perform integer factorization at a quicker pace than a classical computer [64]. Naturally,

one should anticipate the presence of error correction overhead. However, our particular sce-

nario might involve less demanding error correction requirements due to our focus on a finite-

temperature setting. In essence, a quantum computer capable of breaking RSA encryption

might very well possess the capability to simulate black holes! In this regard, a quantum simu-

lation would involve testing additional observables, including predictions for quasi-normal mode

frequencies and correlation functions of operators. Moreover, it could investigate inquiries far

removed from equilibrium, like the emergence of a black hole or its subsequent evaporation. On

a more intriguing note, such simulation could potentially offer insights into how the geometry

of the emergent spacetime is intricately encoded within the quantum state of the quantum

mechanical system. It is important to highlight that the “universe” being described by the

quantum system is essentially quite diminutive. Its effective size, measured in Planck units,

is considerably modest and doesn’t approach the vast expanse of our observable universe. To

illustrate the disparity, we can contrast the entropy of our universe, which is on the order of

Sour ∝ 10122, with the entropy outlined in (3.60), which approximates S ∼ 340 for the values

provided in (3.61). Another hurdle of quantum simulation involves the count of gates or basic

operations required, which can be estimated as follows. The Hamiltonian is a sum of numerous

terms. The quartic term ,(3.50, involves 92×N4 terms, where the 92 arises from the summation

over I and J indices, and N4 from the SU(N) indices. Similarly, the cubic term from (3.51)

involves 162×9×N3 terms. These terms collectively amount to approximately 107 for the spec-

ified parameters in (3.61). The inclusion of fermion operators result to an additional overhead

of log2(16N2) when expressed in qubit terms[14]. Moreover, for the creation and annihilation

operators of bosons, a substantial overhead of order λ1/3/ωis anticipated. These factors add

up to an approximate count of 108 , representing the total gates required to implement the
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Hamiltonian.

To establish the thermal state, we would need to apply the Hamiltonian across a number of

time steps, at least of order λ1/3/T . Remarkably, this gate count seems to be comparable to

the number required for breaking RSA encryption, at least considering these approximations.



Chapter 4

What is next

Since we already talked about models of holographic quantum gravity, its important to shed

more light on the significant role played by quantum computers. In the last section of chapter

3 we had a taste of the importance of quantum simulation and its relation to quantum grav-

itational theories. In this chapter we would like to dive a little deeper, discussing the state

quantum computers are in today and what to expect next.

let’s first understand the concept of quantum simulation. Quantum computers leverage the

principles of quantum mechanics to process information in a fundamentally different way from

classical computers. At the heart of quantum computing is the qubit, the quantum analog of

the classical bit. Unlike classical bits, which can only represent 0 or 1, qubits can exist in a

superposition of states, enabling them to represent a vast array of information simultaneously.

Quantum simulation harnesses this unique feature to replicate and study complex quantum

systems that would be impractical or impossible to simulate using classical computers. The

ability to explore the quantum behaviors of particles, molecules, and even entire quantum

field theories has immense implications for fields ranging from materials science to quantum

chemistry.

The study of the aforementioned models in the last chapter involves grappling with plenty

of quantum degrees of freedom and intricate interactions. Classical computational methods

46
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often fall short in accurately capturing the quantum behaviors of these systems. Solving them

classically may require an exponential amount of computational resources, rendering them

computationally intractable.

This is where quantum computers come into play. Quantum simulation offers a promising path

to explore and comprehend the quantum dynamics of holographic models efficiently. Namely,

quantum computers have a certain number of promised advantages:

1. Efficient Simulation: Quantum computers can efficiently simulate complex quantum sys-

tems, including those described by holographic models, by exploiting quantum parallelism.

This enables researchers to study the quantum behaviors of these models more effectively.

2. Insights into Quantum Gravity: Holographic models like BFSS and BMN hold the key

to understanding fundamental aspects of quantum gravity. Quantum simulations can

provide insights into the quantum gravity phenomena embedded within these models,

potentially shedding light on the nature of spacetime and black holes.

3. Ungauged Models: Beyond BFSS and BMN, ungauged models with their unique com-

plexities can also be explored using quantum simulations. These models, which may lack

certain symmetries, are equally challenging to study classically.

While the potential of quantum simulation in the context of holographic models is undeniably

exciting, it is essential to acknowledge the challenges that lie ahead. Building and operating

practical quantum computers is still in its infantile stage, and they face hurdles related to error

correction, scalability, and noise.

Nonetheless, as quantum hardware and algorithms advance, the capability of quantum com-

puters to simulate and explore the quantum dynamics of holographic models will likely expand.

This promises not only a deeper understanding of quantum gravity but also potential break-

throughs in related fields, such as condensed matter physics and quantum chemistry.

The importance of developing quantum computers can not be denied [64]. we would like to

give a taste of how important the development of quantum computers is .
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The cryptographic protocols we currently rely on to safeguard our online privacy could be at risk

from future quantum computers. In response to this threat, researchers are actively developing

“quantum-resistant” protocols. These protocols are founded on computational problems that

we believe would remain challenging even for quantum computers. An alternative avenue is

quantum cryptography, where quantum states are exchanged within a quantum communication

network. The security of quantum communication hinges on the principle that any attempt

to eavesdrop on quantum communication unavoidably disturbs the system, making any such

intrusion detectable. (Quantum cryptography is a fascinating aspect of quantum technology in

its own right [78, 8], but it falls outside the scope of our discussion.) The choice between these

approaches may depend on the specific requirements of the user [52].

Quantum computing represents such a profound departure from conventional information pro-

cessing methods that its long-term implications are difficult to predict. However, based on

our current understanding of quantum computing’s capabilities, using quantum computers to

simulate quantum systems remains the most promising application with far-reaching potential.

Enhanced techniques in computational quantum chemistry, for instance, may eventually yield

substantial advancements in fields like pharmaceuticals, agriculture (e.g., nitrogen fixation), and

environmental sustainability (including energy storage, production, and carbon sequestration)

[51].

In contrast, while algorithms for integer factoring will likely disrupt electronic commerce in

the near future, its long-term impact may not be as profound. It’s crucial to highlight that

quantum computers have limitations. Notably, we don’t anticipate quantum computers effi-

ciently solving exact solutions to NP-hard1 optimization problems [7]. While there exists a

general approach to expedite exhaustive search for solutions using quantum computers (known

as Grover’s algorithm), the acceleration in this case is quadratic [30], meaning that a quantum

computer can find a solution in time proportional to the square root of the time required by a

classical computer. Assuming both the classical and quantum computers operate at the same

1 NP-hard, or non-deterministic polynomial-time hardness, is the defining property of a class of problems
that are informally “at least as hard as the hardest problems in NP”. For example, a problem H is NP-hard
when every problem L in NP can be reduced in polynomial time to H; that is, assuming a solution for H takes
1 unit time, H’s solution can be used to solve L in polynomial time [45].
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clock speed (performing the same number of operations per second), a quantum computer can

find a solution that is 2n bits long in the time it takes a classical computer to find a solution

that is n bits long, for large n. This quadratic speed-up may have future importance.

However, for tasks like factoring large numbers or simulating quantum systems, the speed-

up achieved by quantum computers is far more dramatic. The runtime for simulating an n-

qubit quantum system using a classical computer, particularly in challenging scenarios, grows

exponentially with n. In contrast, the runtime for simulating the same system on a quantum

computer scales as a power of n. This discrepancy is a game-changing advantage.

4.1 Quantum computers today

It’s essential to highlight that, as of now, quantum computers are not yet fully practical. Over

the past four decades, various approaches to constructing quantum hardware have emerged

and advanced. However, both the number of qubits (quantum bits) and the accuracy of our

quantum processors remain relatively limited. A notable milestone in 2019 was achieved by the

Google AI Quantum group [24], known as “quantum computational supremacy” [34, 62].

One of the profound claims about quantum physics is that classical systems generally cannot

efficiently simulate quantum systems. This is a fundamental distinction between the quantum

and classical realms, and validating it experimentally is of great importance. Can we identify

a task performed by a quantum computer that would require an unfeasibly long time on any

existing classical computer?

Using superconducting quantum technology, the Google group created a programmable quan-

tum computer named Sycamore, featuring 53 operational qubits arranged in a two-dimensional

array. They executed up to 20 layers of two-qubit gates and measured all the qubits at the

end. Due to potential hardware errors, the final measurement provided the correct output

only once in 500 runs. However, by repeating the computation millions of times in just a few

minutes, they obtained a statistically significant result. Simulating what Sycamore achieved in

a few minutes would take at least several days on the most powerful classical supercomputer
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currently available [40]. Moreover, as the number of qubits increases, the cost of classical simu-

lation grows exponentially, making it increasingly impractical. Sycamore, a single chip nestled

inside a dilution refrigerator, outperforms a classical supercomputer that occupies two tennis

courts and consumes megawatts of power. This illustrates quantum computing’s remarkable

capabilities.

Admittedly, the specific task accomplished by Sycamore may not have immediate practical

applications beyond demonstrating quantum computational supremacy. However, it demon-

strates that quantum hardware is sufficiently functional to produce meaningful results in sce-

narios where classical simulation is immensely challenging. This encourages further exploration

for more meaningful applications.

The term “NISQ” (Noisy Intermediate-Scale Quantum) has emerged to describe this new

quantum era [63]. “Intermediate scale” signifies that today’s quantum devices with over 50

well-controlled qubits cannot be efficiently simulated by the most powerful existing classical

supercomputers. “Noisy” reminds us that these devices are not error-corrected and are limited

by noise, which affects their computational power. For physicists, NISQ technology is exciting

because it provides new tools to explore highly complex many-particle quantum systems in a

previously inaccessible regime. It may also have applications beyond physics, but that remains

uncertain. NISQ is not expected to revolutionize the world on its own, at least not immediately.

Instead, it represents a step toward the development of more powerful quantum technologies

in the future.

In the most advanced multi-qubit quantum processors currently available, the probability of

a two-qubit quantum gate making a significant error is slightly less than 1%. This limitation

led to the inability of the 53-qubit Sycamore device to execute circuits with more than 20 time

steps. We currently lack compelling arguments that a quantum computation with around 100

qubits and fewer than 100 time steps can effectively solve practical problems.

One approach to leverage NISQ devices is to seek approximate solutions to optimization prob-

lems using a hybrid quantum/classical approach. This strategy relies heavily on powerful clas-

sical processors and attempts to enhance their capabilities with a NISQ co-processor. However,
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it remains uncertain whether this hybrid method can outperform the best classical hardware

running the most efficient classical algorithms for solving similar problems. This is a substantial

challenge, considering that classical methods have undergone decades of refinement, while NISQ

processors are just becoming available now. Nevertheless, we must explore and experiment to

determine its effectiveness. Vibrant discussions are ongoing among potential users, hardware

providers, and quantum algorithm experts. As we gain experience with NISQ technology, we

will gain insights into its performance and potential applications.

Despite their notable limitations, NISQ processors have the potential to prepare and investigate

exotic quantum states that were previously beyond the reach of laboratory experiments.

Classical computers face significant challenges when simulating quantum dynamics, particularly

in predicting the evolution of highly entangled quantum states over time. Quantum computers

possess a distinct advantage in this regard. It’s worth recalling that the field of classical

chaos theory, which deals with the extreme sensitivity of classical dynamical systems to initial

conditions (e.g., weather prediction challenges), made significant progress in the 1960s and 1970s

once classical computers enabled the simulation of chaotic systems. Similarly, the emerging

ability to simulate chaotic quantum systems, characterized by the rapid spread of entanglement,

is expected to advance our understanding of quantum chaos. Valuable insights may be collected

even using noisy quantum devices equipped with approximately 100 qubits.

It’s important to distinguish between analog and digital quantum simulation. Analog quantum

simulation involves systems with numerous qubits whose dynamics mimic those of the model

system under investigation. Conversely, digital quantum simulation entails gate-based uni-

versal quantum computers that can simulate any desired physical system when appropriately

programmed and can serve various purposes.

Analog quantum simulation has been a vibrant field of research for the past two decades [42, 29].

Digital quantum simulation with general-purpose circuit-based quantum computers is still in

its early stages. Some experimental platforms can serve both analog and digital simulation

purposes, while others, like trapped neutral atoms and molecules, excel as analog simulators.

Analog quantum simulators have grown increasingly sophisticated and are already employed to
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study quantum dynamics in regimes that may challenge classical simulators [12, 79]. They can

also create highly entangled equilibrium states of quantum matter and investigate their static

properties [18, 53, 70].

However, analog quantum simulators face limitations due to imperfect control, as the actual

quantum system approximates the target system of interest. As a result, analog simulators are

best suited for studying universal features—properties relatively robust against minor sources

of error. A significant research challenge is identifying accessible quantum system properties

that withstand errors while remaining challenging for classical simulations.

It’s foreseeable that analog quantum simulators will eventually be surpassed by digital quantum

simulators, which can be rigorously controlled using quantum error correction. Nevertheless,

analog quantum simulators will likely remain relevant for many years due to their lower overhead

cost. Therefore, in the quest for near-term quantum technology applications, the potential of

analog quantum simulators should not be underestimated.

In the near term, circuit-based simulations of quantum matter may be cost-prohibitive, espe-

cially for realistic simulations of many-particle systems requiring numerous gates. However,

circuit-based methods offer greater flexibility in studying various Hamiltonians and preparing

initial states. Therefore, it’s crucial to explore both digital and analog simulation approaches,

recognizing that experience with near-term digital simulators will establish foundations for more

ambitious simulations in the future. This same perspective applies to broader applications of

NISQ technology.

4.2 Quantum computers tomorrow

In the NISQ era, quantum devices will not benefit from the protective shield of quantum error

correction, and the presence of noise significantly constrains the scale of computations that can

be reliably performed using NISQ technology. Looking to the future, we anticipate overcoming

these noise-related limitations through the implementation of quantum error correction (QEC)

and the development of fault-tolerant quantum computing (FTQC). However, it’s essential
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to acknowledge that QEC comes with a substantial overhead in terms of both the number of

qubits and logic gates required [27, 16]. This overhead depends on the specific algorithms being

executed and the quality of the hardware.

To illustrate, if we assume an error rate of approximately 0.1% per entangling two-qubit gate

(which represents an improvement over current hardware), running high-impact applications

in quantum chemistry or materials science could necessitate more than one hundred thousand

physical qubits [44, 15]. Even though the quantum system explored previously needs the scale

of a thousands of qubits as seen in (3.62), this projection signifies a considerable leap from where

we foresee quantum technology in the next few years, with a few hundred physical qubits at

our disposal. Achieving the scale of hundreds of thousands or even millions of physical qubits

will likely be a gradual process and may take a significant amount of time.

While quantum computing may hold significant importance to the advancement of the holo-

graphic models discussed in chapter 3, this impact might still be several decades away. The

exact timeline remains uncertain, considering that quantum technology is still in its early

stages, with various competing approaches. It’s important to acknowledge that an unforeseen

breakthrough could potentially reshape the landscape and accelerate progress in unexpected

ways.
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