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Abstract

This dissertation is an introduction to the basic concepts of the Effective Field Theory. For

a low energy EFT to admit UV- completion, it must satisfy requirements of the underlying

full theory: localilty, unitarity, analyticity and Lorentz-invariance. These requirements result

in constraints on the scattering amplitudes that must be satisfied for the EFT to be UV-

complete. Following the S- program requirements in the forward scattering limit, one obtains

positivity constraints on the scattering amplitude. This leads to the positivity bounds on

Wilson coefficients, which have a wide range of applications in theoretical and experimental

physics. This procedure was explicitly shown for 2- to- 2 scattering of scalar fields, and

reviewed for the massive vector field 2- to- 2 scattering. Examples of applications of positivity

bounds on coupling constants, such as for the fermionic sector of Standard Model EFT were

then discussed.
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1 Introduction

The idea of Effective Field Theory (EFT) was pioneered by nobel- prize winning physicists Kenneth

Wilson and Steven Weinberg. Kenneth Wilson was working on renormalization group methods in

1960s- 1970s (see, e.g. [1]), exploring methods to describe field theories in the high- energy limit.

Weinberg was working on methods to derive empirical quantities in a systematic and effective

approach by exploring non- fundamental Lagrangians [2]. Wilson formulated his first prototype of

effective theory in 1965 in [3], describing an idea of separating degrees of freedom according to the

energy scale, as well as couplings associated with low energy effective models with corresponding

cutoff scales, the Wilson coefficients [4].

Effective Field Theory (EFT) now is a powerful tool to describe physics at a given energy scale

to a certain accuracy using Quantum Field Theory (QFT) consisting of a finite set of operators.

Thus, considering a system at a low energy, one can use EFT to predict low energy observables

without specifying details of the physics at high energies, in case it is unknown or difficult to

measure (e.g. a field is too heavy to detect). The low and high energy physics are separated by

a so- called cut- off scale Λ. This is sometimes referring to the maximum energy achieved in high

energy accelerator experiments, or cosmological observations. Although as years go by the highest

energy to be probed by colliders gets increased, it is currently impossible to imagine to be able to

measure (or experimentally achieve) high energies way above Λ.

Complete theories of the Universe that also include energies above Λ are ultraviolet (UV) theories.

These complete UV theories can be approximated in the low energy limit, giving us infrared (IR)

theories. For example the Standard Model (SM) in itself should be seen as an EFT, it has been

rigorously tested at different accelerators around the globe. However, it is expected that SM is

only valid up to some cutoff scale [5]. To systematically parameterize physics beyond the SM,

one uses Standard Model Effective Field Theory (SMEFT) [6], [7]. In a sense, each theory can be

viewed as an EFT: Quantum Electrodynamics (QED)- relativistic QFT, is an approximation to

SM, where all the SM particles have been integrated out except for photons and electrons.

To approach UV- completion of a theory, i.e. ensure that the theory is valid at any energy scale,

but is approximated by the low energy limit, one can follow two methods: top- bottom or bottom-

up.

In the top- bottom method, one starts with the UV- complete theory that includes both light

(m < Λ) and heavy (m > Λ) particles. Then, for the range where the light particles predominate,

one can integrate out heavy particle fields, leaving only light particles in IR regime, which gives

the desired EFT.

One can not always be sure that the theory can be UV- completed, that is when the bottom- up
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method is preferred: one starts with a low energy model, finds the light particle spectrum, and

then builds a UV- completion from it. Generally speaking one imposes assumptions about the

fundamental UV theory and as a result derives powerful constraints that have to be satisfied by

IR physics (EFTs). In case they cannot be satisfied by the low energy physics one concludes that

the UV completion with such initial assumptions is not possible. In the String Theory literature,

EFTs which do not admit a UV completion are referred to as part of the swampland [8], [9].

Building an EFT one adds operators in the Lagrangian that are local and preserve symmetries

of the theory. However, that leaves a huge freedom on space of allowed (initially unconstrained)

coefficients. Physical principles can reduce the freedom of this parameter space. For a low energy

EFT to be UV- completed, a number of constraints must be implemented [10]. Assuming that

the complete theory must obey the principles of QFT and relativity, namely unitarity, analyticity,

locality and Lorentz invariance [11], leads to the requirement that for a scattering event, the

associated scattering matrix Ŝ must be unitary, causal and analytic. This will constrain the

number of possible coefficients (couplings) added in the EFT Lagrangian. It will be seen in this

project that these constraints lead to positivity bounds of the couplings. These positivity bounds

in turn have a wide range of applications: they can be applied in the cosmological EFTs of scalars,

vectors and gravity [12] , [13], as well as studies beyond the Standard Model [14]. From the

relatively recent works, positivity bounds can be related to the Weak Gravity Conjecture (e.g. see

[15]), convexity of charged operators [16], pion scatterings [17].

Effective theory is also used to describe Quantum Chromodynamics (QCD), e.g. Heavy Quark

Effective Theory (or HQET) and non -relativistic QCD describe hadrons composite of heavy quarks

(bottom and charm) in the low energy region [18], [19]. Chiral perturbation theory describing

interactions of pions and nucleons at low momentum, developed in 1960s by Weinberg [20], where

one starts from UV- completed full theory however meets difficulties to analytically match onto

EFT, with progress on this matching made in [21].

In this project I explore what constraints these properties of Ŝ- matrix lead to, namely unitarity,

crossing symmetry, causality and analyticity. I will rederive some theorems like Optical theorem,

and will use the results of Schwartz reflection principle and Froissart bound, to calculate the

positivity constraints. I will consider an elastic 2-2 scattering of scalar fields. I will start with a

theory only including light fields and will rederive the corresponding scattering amplitude A(s, 0)

in the forward scattering limit t = 0, and by applying the positivity constraint on second derivative

of A(s, 0) w.r.t. s, the positivity bound on Wilson coefficient will be obtained. I will then add a

heavy field in the theory resulting in new terms in the Lagrangian, this is now the UV- complete

theory. By finding equations of motion for the heavy field, and substituting them back into the
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Lagrangian, one ’integrates out’ this heavy field bringing us back into the IR region with light

fields only. Thus, we get back to the initial low energy EFT with only light fields, and see that

the coefficients in the UV and EFT Lagrangians can be equated, giving result that the Wilson

coefficient must be positive.

I will then review a paper that explores vector field scattering: a more complicated case, due to

non- trivial scattering amplitude, as well as complications coming from the polarization of vectors.

Although all the cases considered in this dissertation are at the tree- level, there are a number of

works on computing scattering amplitudes beyond the tree- level: at loop Feynman diagrams, one

recent work example is [22]. In this paper 4- Higgs interactions are considered.
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1.1 Brief Review of Scattering Amplitudes

In what follows we will work in the flat metric convention is ηµν = diag(1,−1,−1,−1), which is

more frequently used in High Energy Physics.

1.1.1 Mandelstam variables

The main focus will be the two- particle → two- particle scattering amplitude. For 2-2 scattering

the momentum conservation at the vertex implies pµ1 + pµ2 = pµ3 + pµ4 , as depicted in figure 1.

Figure 1: Feynman diagram for 2- 2 scattering at tree level expressed in terms of s-, t- , u- channels.

The on- shell condition for free particles and external legs implies p2 = m2, for each particle, noting

that for internal lines on Feynman diagrams the particles are generally off-shell. For tree- level

diagrams, it is convenient to define a set of relativistic invariants encoding energies and momenta

of the scattering particles, called the Mandelstam variables:

s = (p1 + p2)
2 = (p3 + p4)

2

t = (p1 − p3)
2 = (p4 − p2)

2

u = (p1 − p4)
2 = (p3 − p2)

2,

(1)

noting that when reading literature with ηµν = diag(−1,+1,+1,+1), expressions for s, t and u

will include an opposite sign. Here, pi = (Ei, p⃗i), and pi · pj = pµpµ. From the on- shell condition

and momenta conservation law it follows that s+ t+ u =
∑4
i=1m

2
i = 4m2. It is useful to consider

an eikonal approximation, where in the ultra- relativistic case, masses of the scattering particles
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are so small allowing to write

s ≈ 2p1 · p2, t ≈ 2p1 · p3, u ≈ 2p1 · p4. (2)

The Mandelstam variables correspond to the centre of mass energy of the system.

1.1.2 Scattering Kinematics

In this project the scattering events are assumed to be elastic. That implies that ingoing and

outgoing states are indistinguishable: e.g. for 2-2 scattering m1 = m3,m2 = m4. In other words

this process refers to no kinematic energy loss: neither of each particle, nor of the system in

total. Moreover, an additional constraint can be imposed on the angle of the scattering: forward

scattering limit. Assuming the particles scatter at 0 angle implies t = 0. Thus, we imposed

momentum and energy conservation on the scattering process.

1.1.3 Ŝ- matrix derivation via perturbative QFT

In this section the method of deriving Ŝ -matrix is explored.

The Hamiltonian as an operator Ĥ generates time evolution via a unitary operator Û = e−iĤ∆t.

It can be broken down into a free part ĤS
0 and interaction part ĤS

int in Schrödinger picture as (3)

ĤS = ĤS
0 + ĤS

int. (3)

Now we move to the interaction picture, which is a hybrid of the Schrödinger and Heisenberg

pictures, in the sense that both operators and states have time dependence and we want to see

how they evolve over time. For the operators we use the free evolution operator Û0 = e−iĤ0∆t as

ĤI = Û−1
0 ĤSÛ0 = Û−1

0 (ĤS
0 + ĤS

int)Û0, (4)

noticing that if there is no interaction ĤS
int = 0, then eqn. (4) simply gives a Hamiltonian in

Heisenberg picture. In Schrödinger picture all operators are time- independent, in the interaction

picture the Hamiltonian now has time dependence, but only on its interaction part, as the free

part commutes with the unitary evolution operator and thus remains time independent:

ĤI
0 (t) = Û−1

0 ĤS
0 Û0 = Û−1

0 Û0Ĥ
S
0 = ĤS

0 and ĤI
int(t) = Û−1

0 ĤS
intÛ0 ̸= ĤS

int. (5)
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The states, on other hand, evolve with full time evolution operator Û = e−itĤ
S

as (6)

|Ψ(t2)⟩S = Û(t2 − t1)|Ψ(t1)⟩S . (6)

Moving to the interaction picture via |Ψ(t)⟩I = Û−1
0 |Ψ(t)⟩S , we see a state evolves from t1 to t2 in

the following way:

|Ψ(t2)⟩I = Û−1
0 (t2)Û(t2 − t1)Û0(t1)|Ψ(t1)⟩I = Û(t2, t1)|Ψ(t1)⟩I . (7)

Differentiating (7) with respect to time,

d

dt
(UI(t, t0)) =

d

dt
(eitH

S
0 e−i(t−t0)H

S

e−it0H
S
0 ) = iHS

0 UI(t, t0)−ieitH
S
0 (HS

0 +H
S
int)e

−i(t−t0)HS

e−it0H
S
0 ,

(8)

gives the Schrödinger evolution equation that has to be solved for UI(t, t0):

d

dt
(UI(t, t0)) = −iHI

intUI(t, t0). (9)

Note the initial condition for evolution operator at t0: ÛI(t0, t0) = 1. Then one can compute ÛI

from (9) using perturbation theory via Dyson expansion of −i
∫
dtĤI ÛI , to get Dyson series of the

form:

ÛI(t, t0) = 1 − i

∫ t

t0

dt′ĤI(t
′) + (−i)2

∫ t

t0

dt′
∫ t′

t0

dt′′ĤI(t
′)ĤI(t

′′) + ...

= 1 − i

∫ t

t0

dt′ĤI(t
′) +

(−i)2

2!

∫ t

t0

dt′
∫ t

t0

dt′′T (ĤI(t
′)ĤI(t

′′)) + ...

= Te
−i

∫ t
t0
dt′ĤI(t

′)
,

(10)

where T is time ordering operator defined so that

TÂ(t)B̂(t′) = Θ(t− t′)Â(t)B̂(t′) + Θ(t′ − t)B̂(t′)Â(t). (11)

Then taking initial state at time ti |i⟩ its propagation into the final state at time tf is determined

by evolution operator |f⟩ = ÛI(tf , ti)|i⟩ and the amplitude is

A = ⟨f |ÛI(tf , ti)|i⟩ . (12)
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The |i⟩ and |f⟩ states form a complete basis of Hilbert space at t = ±∞, respectively. We can

compute amplitude A of scattering of incoming m particles with momenta p1, p2, ..., pm in far past

ti → −∞ into outgoing n particles with momenta q1, q2, ..., qn in far future tf → ∞ by considering

an Ŝ- matrix:

A =out ⟨q1, q2, ..., qn|p1, p2, ..., pm⟩in =in ⟨q1, q2, ..., qn|Ŝ|p1, p2, ..., pm⟩in. (13)

Noting that A must be translation invariant to be non-zero, implying
∑m
i=1 pi =

∑n
i=1 qi. Splitting

the Ŝ- matrix into free and non- trivial propagation parts Ŝ = 1+ iT̂ , for initial and final momenta

being unequal, we are left with iT̂ part, so one defines reduced matrix element Ap→q as

in⟨q1, q2, ..., qn|Ŝ|p1, p2, ..., pm⟩in =in ⟨q1, q2, ..., qn|iT̂ |p1, p2, ..., pm⟩in = (2π)4δ(4)(

m∑
pi

−
n∑
qi

)iAp→q.

(14)

Recalling that 1- particle state with momentum p in the far past can be written in terms of the

creation operator and the true vacuum Ω as |p⟩in = â†p(−∞)|Ω⟩, where creation and its conjugate,

annihilation, operators obey usual ladder commutation relations. This allows us to construct Fock

basis of Hilbert space for multiparticle state |p1, ..., pm⟩in of particles far separated in the far past

and similarly for out states. Thus, writing amplitude A in (13) in terms of evolution operator like

in (12) and using expression for UI(tf , ti) obtained in (10) one finds:

A = lim
t→∞

⟨q1, ..., qn|T (e−i
∫ t
−t
dt′ĤI(t

′))|p1, ...pm⟩

= lim
t→∞

n∏
i=1

(2E(q⃗i)

∫
d3yie

iqiµy
µ
i )

m∏
i=1

(2E(p⃗j)

∫
d3zje

ipjµz
µ
j )

× ⟨Ω|t : ϕ̂I(y1)...ϕ̂I(yn) : T (e−i
∫
dtHI ) : ϕ̂I(z1)...ϕ̂I(zn) : |Ω⟩t

∣∣∣∣
y0i=t,z

0
i =−t

.

(15)

Knowing the form of the interacting Hamiltonian ĤI , the exponent can be expanded giving terms

of free propagation, and terms of interactions with 1 vertex, 2 vertices, etc., containing correlation

functions that can be evaluated using Wick’s theorem.
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1.2 Construction of the EFT Lagrangian

To compute the scattering amplitude at low energies all the information needed is encoded in the

EFT Lagrangian. The method from lectures in [23] will be closely followed alongside [24].

The assumption of locality leads to a separation of scales: short distance Lagrangian coefficients Ci

and long- distance matrix elementsMij . Then one can define observables verified by experiments as

a product of coefficients and matrix elements Oi =
∑
i CiMij . To write down an EFT Lagrangian

one has to determine the field content. For example for low energy EFT the Lagrangian will

only have light fields, and we must specify their masses, spins and symmetries. In general, in

d spacetime dimensions, any Lagrangian density has mass dimension d. Any Lagrangian can be

written as a sum of local, gauge and Lorentz invariant operators Oi of dimension D and coefficients

ci of dimension (d−D):

L(x) =
∑
i

ciOi(x), (16)

where each term is of dimension d. Thus we can summarize all possible gauge and Lorentz invariant

operators of dimension D ≤ d, for d = 4:

1, ϕ, ϕ2, ϕ3, ψ̄ψ, ϕ4, ϕψ̄ψ,DµϕD
µϕ, ψ̄i /Dψ,X2

µν , (17)

where ϕ is a scalar field, ψ is a Dirac (fermion) spinor field, covariant derivative Dµ = ∂µ + igAµ,

and gauge field strength Xµν = ∂µAν − ∂νAµ + . . ., and all other possible operators are either a

combination of the mentioned ones, or vanish during integration over spacetime.

For an EFT Lagrangian the same rules apply as for any other Lagrangian, but now the dimension

of allowed operators D does not have to be smaller than d: one can include higher dimension

operators due to extra scale ΛD−d, which also ensures that coefficient c is dimensionless:

LEFT =
∑
i

ciOi
ΛD−d . (18)

Λ corresponds to the cutoff scale that separates UV and IR regimes. The coefficients ci are

known as Wilson coefficients or Low Energy Constants, which in the ’bottom -up’ method are

a priori undetermined and unconstrained, and can be fixed by using experimental data. In the

’top - bottom’ method these coefficients are determined by matching with factors in front of the

computed amplitudes from UV- complete theory. For SMEFT the Lagrangian would be of form:

L = LSM +
∑
d>4

L(d), (19)
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where Standard Model Lagrangian is
∑
i

∑4
d=0

ciO
(d)
i

Λd−4 and the second term is a sum of possible

Lagrangians containing invariant higher dimension operators [25].

1.3 Crossing Symmetry

In this section it will be shown that the S- matrix satisfies crossing symmetry and the consequences

of it. The 4- particle scattering amplitude A(s, t, u) can be expressed as a function of two Man-

delstam variables only: s and t, since the on- shell condition gives s + t + u = 4m2. Recalling

from section 1.1.1: s = (p1 + p2)
2 = (p3 + p4)

2, t = (p1 − p3)
2 = (p4 − p2)

2 . Relabelling particle

momenta pi to i, and anti- particle momenta −pi to i′ one can express 2-2 scattering in s-, u- and,

t- channels depicted in 1 as:

1 + 2 → 3 + 4, for s- channel

1 + 3′ → 2′ + 4, for t- channel

1 + 4′ → 2′ + 3, for u- channel

(20)

One should define physical regions (often called physical domains) of s−, t−, u− channels corres-

ponding to respective scattering amplitude A(s, u). From the on- shell condition, as well as dis-

cussion on analyticity in 1.5 the physical region is defined for s ≥ 4m2, which implies t ≤ 0, u ≤ 0,

for s-channel, where s is the center of mass energy.

Alternatively, one could consider scattering in u- channel, then the physical region can be analyt-

ically continued to u ≥ 4m2,t ≤ 0, s ≤ 0. Similarly, for u- channel t ≥ 4m2,u ≤ 0, s ≤ 0.

One can also define Mandelstam triangle: the region between the tree physical domains 0 <

s, t, u < 4m2, shown in figure 2. Mandelstam triangle is the interior region enclosed by lines

t = 4M2, s = (m+M)2, u = (m+M)2, here m =M is taken for simplicity [26].

The Mandelstam triangle describes region with analytic amplitude allowing to analytically extend

into each of s-, t- and u- channel domains [27].
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Figure 2: Mandelstam triangle: the region enclosed by lines t = 4M2, s = 4M2, u = 4M2. The
physical regions of 2-2 scattering in s-, t-, u- channels is highlighted in grey.

The crossing symmetry [28] imply that for 4 scalar particles the amplitudes of s- and u- channels

are related by

A1+2→3+4(s, t) = A1+4′→2′+3(u, t). (21)

Analogously, s- and t- channels are related as

A1+2→3+4(s, t) = A1+3′→2′+4(t, s). (22)

For four indistinguishable scalars, the crossing symmetry relation can be simplified to

A(s, t) = A(u, t) = A(t, s). (23)

This result will be used in the analytical analysis of the amplitude. The crossing symmetry is the

fundamental property of S- matrices that ensures relativistic invariance of the theory, as it provides

invariance of physical processes under e.g. rotation from s- channel to the t- channel. Another

important consequence of crossing symmetry is an additional branch cut in the complex s- plane. In

section 1.5 one branch cut is obtained to be starting from s = (mi +mj)
2 = (2m)2 (for mi = mj)

towards infinity along the real s axis. The other branch cut must exist at s = (mi − mj)
2 =

0, for mi = mj towards −∞ along real s axis [29]. These expressions are derived for the elastic

case, and for the inelastic scatterings there is additional contribution from the intermediate states.

It should also be noted that for particles with a spin the exchange of s- and u- channels is not as

trivial, and in general is not equivalent to crossing symmetry.
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1.4 Unitarity

Time evolution is a unitary process, implying that Ŝ- matrix must be unitary. In this section

we will see how this leads to an Optical Theorem which has important results used in deriving

positivity bounds.

Assume some initial state |i⟩ transforms into a different state |i′⟩ as |i′⟩ = Ŝ|i⟩ and similarly

the final state ⟨f | tranforms into a different state ⟨f ′| = ⟨f |Ŝ†, then due to the transformation

invariance of the expectation values and conservation of the probability,

⟨f ′|i′⟩ = ⟨f |Ŝ†Ŝ|i⟩ = ⟨f |i⟩, ∀f, i. (24)

We can immediatly conclude unitarity: (24) implies that Ŝ†Ŝ = 1. For Ŝ being the scattering

matrix, it would leave the initial and final states untransformed, so the unitarity would be even

more trivial. However, this is not the same for non- trivial interactions: by writing Ŝ = 1 + iT̂ ,

Ŝ†Ŝ = (1 − iT̂ †)(1 + iT̂ ), (25)

which gives

T̂ †T̂ = i(T̂ † − T̂ ) ̸= 1. (26)

Putting (26) between the states gives

⟨f ′|i′⟩ = ⟨f |T̂ †T̂ |i⟩ = ⟨f |i(T̂ † − T̂ )|i⟩ = i(⟨i|T |f⟩)∗ − i⟨f |T |i⟩ = i(2π)4δ(4)(pf − pi)(A
∗
f→i −Ai→f ),

(27)

where we related Ŝ to the reduced scattering matrix A, same way as in (14). We can write this in

terms of imaginary part of the scattering amplitude as follows

2iIm(A) = A−A∗ = −⟨f |T̂ T̂ †|i⟩ =
∑
n

( n∏
k=1

∫
d4qk
(2π)4

1

2Ek

)
⟨pf |T †|qk⟩⟨qk|T |pi⟩, (28)

where we inserted complete basis of some intermediate states that we are summing over |qk⟩ =

|q1, ...qn⟩. Then (26) can be expressed as

Ai→f −A∗
i→f =

∑
n

( n∏
k=1

∫
d4qk
(2π)4

1

2Ek

)
(2π)4δ(4)(

∑
i

pi −
∑
k

qk)A
∗
pi→qk

Api→qk . (29)

Now qk states can be seen as final states of the amplitudes from initial and final states |i⟩ and |f⟩.
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Using the notation

dΠα ≡
n∏
k

d4qk
(2π)42Ek

. (30)

Putting everything together, one gets an Optical theorem:

2Im(Ai→f ) =
∑
α

∫
dΠαA

∗
f→αAi→α. (31)

For elastic scattering with forward limit case, initial and final momenta are the same so |i⟩ = |f⟩,

thus the Optical theorem (31) takes form:

2Im(Ai→i) =
∑
α

∫
dΠα|Ai→f |2. (32)

This expression can be written in terms of conserved energy in the center of mass (CoM) frame

ECoM and the cross section σi→α:

Im(Ai→i) = 2ECoMpi
∑
α

σi→α, (33)

meaning the imaginary part of the forward scattering amplitude is given by a total cross section

of initial states scattering into all possible final states α. We can deduce from this expression a

positivity bound due to ECoM > 0 and σi→α > 0 by definition, therefore

Im(Ai→i) > 0. (34)

This is an important result that helps deriving positivity constraints. It also means that for

forward scattering limit, A(s, t, u) seen as just a function of s: A(s), in the complex s- plane has

only values in the upper half plane. We can analytically extend the amplitude to the lower half

plane, by expressing it in terms of the amplitude in the upper half plane. This can be achieved via

the Schwartz reflection principle [30]: for a function A(s) analytic in some region, and real when

z is real, A(s)∗ = A(s∗). Thus, the analytically extended amplitude in the lower half plane equals

to the amplitude in the upper half plane but with the complex conjugate of its argument.
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1.5 Causality and Analyticity

The condition of causality means that any relevant event occurring in the system may influence

the evolution of the system only in the future and not in the past. In a relativistic theory it means

that local operators must vanish outside the lightcone: [O1(x),O2(0)] = 0, for x2 > 0, where x is

a 4- vector. Many papers explore how analyticity arises from the causality (see, e.g. [10]). The

procedure of how the causality requirement leads to the dispersion relation was first described in

[31]. We need the scattering amplitudes to be analytic in the complex s- plane (up to the branch

cuts and poles). This, in turn, will lead to the positivity constraint on c.

To understand the analytical structure of the amplitude, one has to understand whether it has

any singularities and determine them. To find the poles and branch cuts of this function we use

Källén- Lehmann spectral representation, following the method from [32].

Start with a two- point function, the corresponding correlator is ⟨Ω|Tϕ(x)ϕ(y)|Ω⟩. Insert the

identity operator expressed as a sum over complete set of states in the Hilbert space:

1̂ = |Ω⟩⟨Ω|+
∑
λ

∫
d3p

(2π)32Ep(λ)
|λp⟩⟨λp|, (35)

where λp are boosted states of λ0, which in turn are the eigenstates of Hamiltonian H with mo-

mentum 0, so that the boosted states are also eigenstates of H with momentum p. We also assume

that the states λp are relativistically normalised. Here, Ep(λ) ≡
√
|p|2 +m2

λ, and mλ corresponds

to the mass of the boosted state. Noting that one- point functions ⟨Ω|ϕ(x)|Ω⟩⟨Ω|ϕ(y)|Ω⟩ are just

constants that vanish by shift symmetry. The two- point function then can be written as

⟨Ω|ϕ(x)ϕ(y)|Ω⟩ =
∑
λ

∫
d3p

(2π)32Ep(λ)
⟨Ω|ϕ(x)|λp⟩⟨λp|ϕ(y)|Ω⟩. (36)

Using Poincare (Lorentz and translation) invariance of the wavefunctions, one can rewrite (36) in

terms of the scalar Wightman function D(x−y;mλ) =
∫

d3p
(2π)32Ep(λ)

e−ipµ(x
µ−yµ). However, taking

it one step further and time ordering the correlator (x0 > y0), yields the Feynman propogator

DF (x− y;mλ) =
∫

d4p
(2π)4

i
p2−m2

λ+iϵ
e−ipµ(x

µ−yµ) with pµ = (Ep(λ), p⃗) so that:

⟨Ω|ϕ(x)ϕ(y)|Ω⟩ =
∑
λ

∣∣⟨Ω|ϕ(0)|λ0⟩∣∣2DF (x− y;mλ). (37)

Defining the spectral density function ρ(M2) =
∑
λ(2π)δ(M

2 −m2
λ)
∣∣⟨Ω|ϕ(0)|λ0⟩∣∣2 the expression
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for two- point function in (37) can be rewritten in terms of Källén- Lehmann spectral representation:

⟨Ω|ϕ(x)ϕ(y)|Ω⟩ =
∫ ∞

0

dM2

2π
ρ(M2)DF (x− y;M). (38)

By Fourier transforming the two - point function we get the following spectral decomposition:

∫
d4xeip·x⟨Ω|Tϕ(x)ϕ(0)|Ω⟩ = iZ

p2 −m2 + iϵ
+

∫ ∞

4m2

dM2

2π
ρ(M2)

i

p2 −M2 + iϵ
, (39)

where Z is called field- strength renormalisation, and m is the physical mass of a single particle,

defined as energy eigenvalue at rest, to see the schematic form of this spectral function see figure

3.

Figure 3: Källén- Lehmann spectral representation ρ(M2) as a function of M2, giving a delta
function spike at 1- particle state at m2, some intermediate bound states, and two- particle and
multiparticle states starting from (2m)2.

By looking at the analytic structure of this function on complex p2- plane, the first term corresponds

to an isolated simple pole an p2 = m2 coming from one- particle intermediate states. The second

term gives the branch cut beginning at p2 = (2m)2 along the positive real p2 axis to infinity, and

corresponds to the 2- particle and multiparticle states with rest masses M > 2m.

The branch cut correspond to the region in complex s plane where A(s, 0) is not analytic, i.e. for

s ≥ 4m2 along real axis of s to infinity. The above analytic structure of the two- point function also

extends to the scattering amplitude with the addition of a branch cut due to crossing symmetry.

In the forward scattering limit t = 0, in addition to the pole at s = m2, there is another pole at

u = m2 =⇒ s = 4m2 − u = 3m2 chosen to be on the real axis. Although the poles and branch

cuts are not analytic, the A(s) function is still analytic everywhere else, including in the region

between the poles, 0 < s < 4m2, which is often called an unphysical region, due to the fact that

there is a Dirac spike at s = m2 corresponding to one- particle obeying on- shell condition, and

14



two- particle state for s ≥ 4m2, and nothing else in between (we do not consider contribution from

extra spikes of bound states from composite particles), see figure 4. However, these poles can be

subtracted from the amplitude.

Figure 4: Complex s- plane illustrating singularities on the real axis coming from analytical argu-
ments of amplitude A(s,t =0,u) in forward scattering limit t= 0. The first pole is at m2, second
pole is at 3m2− t = 3m2, in the t= 0 limit. Here the branch cut on the right side is chosen to start
from µb = 4m2 going to +∞, and branch cut on the left side starts at point −µb+4m2−t = −t = 0
going to −∞ [33].

We start from the already pole- subtracted amplitude and use Cauchy’s integral formula for analytic

regions of the amplitude [34]:

A(s, t) =
1

2πi

∮
C

dµ
A(µ, t)

µ− s
, (40)

with pole at µ = s, and the closed counterclockwise contour C contains this pole. For A(s,t) being

analytic, one can differentiate it using result of Cauchy’s differentiation formula

∂nA(s, t)

∂sn
=

n!

2πi

∮
C

dµ
A(µ, t)

(µ− s)n+1
. (41)

One can consider any number of differentiation n, but for reasons to be seen later, we choose

n = 2. For the forward scattering limit t = 0, so then u can be expressed as a function of s:

u = 4m2 − s =⇒ A(s, t, u) = A(s, 0) and we compute

∂2A(s, 0)

∂s2
=

2!

2πi

∮
C

dµ
A(µ, 0)

(µ− s)3
. (42)

We split the contour integral into a sum of ordinary integrals
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1

2

∂2A(s, 0)

∂s2
=

1

2πi

(∫ 0

−∞
dµ

A(µ+ iϵ, 0)

(µ+ iϵ− s)3

+

∫ −∞

0

dµ
A(µ− iϵ, 0)

(µ− iϵ− s)3

+

∫ 4m2

∞
dµ

A(µ− iϵ, 0)

(µ− iϵ− s)3

+

∫ ∞

4m2

dµ
A(µ+ iϵ, 0)

(µ+ iϵ− s)3

+

∫
C±∞

dµ
A(µ, 0)

(µ− s)3

)
,

(43)

where the infinitessimal parameter ϵ was added to ensure the curve is not on the branch cuts/

poles, but just a bit below or above it. See the integration contour on figure 5.

Figure 5: Analytic structure of the 2- 2 scattering amplitude at tree level in the forward scattering
limit t=0.

The last term in (43) can be rewritten in terms of polar coordinates, changing µ = Reiθ and dµ =

Rieiθdθ for 0 < θ ≤ 2π. At ±∞, µ− s ≈ µ , so the integral takes form

1

2πi

∫
C±∞

dµ
A(µ, 0)

µ3
=

1

2π

∫ 2π

0

dθA(µ, 0)

R2e2iθ
. (44)

We can now use Froissart- Martin bound [35], which shows how due to analyticity, locality

and unitarity of the Ŝ- matrix, the high energy growth of the amplitude is bound guarantee-

ing that contours in the complex s- plane are closed at infinity [24]. Applying Froissart bound
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limR→∞A(µ, 0) = µln2µ = Reiθln2(Reiθ), (44) becomes

1

2π

∫ 2π

0

dθ
Reiθln2(Reiθ)

R2e2iθ
∼ ln2R

R
→ 0, as R→ ∞. (45)

The integrand converges as desired, so the last term in (43) vanishes for R → ∞. Note that

for n = 1, the integrand would be of the form ln2(R) which diverges for R → ∞. Therefore,

the minimal number of differentiation n required for the boundary term to converge is n = 2. By

’flipping’ the limits of the 4th integral terms in (43) (and picking up the minus sign), the remaining

terms can be combined as

1

2

∂2(A(s, 0))

∂s2
=

1

2πi

(∫ 0

−∞
dµ

A(µ+ iϵ, 0)

(µ+ iϵ− s)3
−
∫ 0

−∞
dµ

A(µ− iϵ, 0)

(µ− iϵ− s)3
+

∫ ∞

4m2

dµ
A(µ+ iϵ, 0)−A(µ− iϵ, 0)

(µ− s)3

)
.

(46)

Defining the discontinuity function, and rewriting the last term in (46),

Disc(A(µ, 0)) = A(µ+ iϵ, 0)−A(µ− iϵ, 0). (47)

Meanwhile the first two terms in (46) get a shift in their integration parameter: µ→ −µ, dµ→ −dµ,

as well as the integration limits get swapped, resulting in

1

2

∂2(A(s, 0))

∂s2
=

1

2πi

(
−
∫ ∞

0

(−dµ)A(−µ+ iϵ, 0)

(−µ− s)3
+

∫ ∞

0

(−dµ)A(−µ− iϵ, 0)

(−µ− s)3
+

∫ ∞

4m2

dµ
Disc(A(µ, 0))

(µ− s)3

)
.

(48)

Shifting focus onto the first two terms in (48): make a substitution µ = µ′ − 4m2 and dµ = dµ′.

Considering the limits of
∫∞
0

: limµ→0(µ
′ = 4m2 − µ) = 4m2 and limµ→∞ µ′ = +∞. Therefore,

limits of the integral become
∫∞
4m2 and first two terms of (48) now become

1

2πi

(∫ ∞

4m2

dµ′A(−µ′ + 4m2 + iϵ, 0)

(−µ′ + 4m2 − s)3
−

∫ ∞

4m2

dµ′A(−µ′ + 4m2 − iϵ, 0)

(−µ′ + 4m2 − s)3

)
(49)

Substituting the on-shell condition 4m2 − s = u into the denominator to get

1

2πi

(∫ ∞

4m2

dµ′
(
−A(−µ

′ + 4m2 + iϵ, 0)

(µ′ − u)3
+
A(−µ′ + 4m2 − iϵ, 0)

(µ′ − u)3

))
(50)

Due to crossing symmetry, amplitudes satisfy,

A(s, 0, u) = A(u, 0, s) = A(4m2 − s, 0, s) (51)
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then,

A(−µ′ + 4m2 − iϵ, 0) = A(µ′ + iϵ, 0). (52)

So (50) can be rewritten using (52):

1

2πi

∫ ∞

4m2

dµ′
(
A(µ′ + iϵ, 0)−A(µ′ − iϵ, 0)

(µ′ − u)3

)
(53)

By changing the integration parameter µ′ → µ and rewriting equation (53) with discontinuity

function (47), and putting it back into (48) gives:

1

2

∂2(A(s, 0))

∂s2
=

1

2πi

∫ ∞

4m2

dµ

(
DiscA(µ, 0, u)

(µ− s)3
+
DiscA(µ, 0, u)

(µ− u)3

)
. (54)

From Schwartz reflection principle A(s∗) = A(s)∗ it follows that

2iImA(µ) = A(s)−A(s)∗ = A(s)−A(s∗) = A(µ+ iϵ, 0)−A(µ− iϵ, 0) = Disc(A(µ, 0)) (55)

Thus, the expression (54) becomes

1

2

∂2(A(s, 0))

∂s2
=

1

π

∫ ∞

4m2

dµIm(A(µ))

(
1

(µ− s)3
+

1

(µ− u)3

)
(56)

In section 1.4 it is shown how unitarity results in Optical theorem: Im(A(µ)) > 0. Also terms,

1
(µ−s)3 and 1

(µ−u)3 = 1
(µ−4m2+s)3 , are positive, as long as s is chosen to be in the interval 0 < s <

4m2. This, in turn, leads to the formulation of the positivity constraint,

∂2A(s, 0)

∂s2
> 0. (57)

This result can be generalised to any number n of derivatives taken (although, we do require

n > 2 to ensure the contour integrals C±∞ are infinite in the limit µ → ∞ so it vanishes due to

Froissart-Martin bound):

[
∂nA(s, 0)

∂sn

]
EFT

=

[
n!

π

∫ ∞

µb

dµIm(A(µ, 0))

(
1

(µ− s)n+1
+

1

(µ− u)n+1

)]
UV

> 0, (58)

where µb is the scale at which the branch cut begins [24].
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1.6 Flavour Constraints from Unitarity and Analyticity

The results from unitarity and analyticity of scattering amplitudes has many applications, one of

them will be reviewed in this section: the resulting constraints on fermion operators in the SMEFT

as described in [36]. This letter demonstrates how regardless of the form of new higher energy phys-

ics that might emerge, if it satisfies the axioms of unitarity and analyticity it will produce flavour

constraints on corresponding interactions. It was shown previously how by imposing analyticity

on the scattering amplitude in the complex s- plane, in the forward scattering limit, by imposing

Froissart bound and Optical Theorem, one achieves positivity of the nth derivative w.r.t. s of

scattering amplitude (for n ≥ 2 ) (58). In the section 2 it is shown how this positivity constraint

results in positivity bounds of the Wilson coefficients. This principle of applying IR consistency to

find bounds in the corresponding EFT is also used to constrain fermionic scatterings.

As mentioned in equation (19), in SMEFT the Lagrangian may include higher mass dimension

operators. For the fermion section of SMEFT dimension- 8 operators are considered, however there

are also works exploring analyticity effect on fermion scattering via mass dimension- 6 operators as

in [37]. It should be noted that for higher- dimension operators the UV scale is much greater than

masses of fermions in the SM. Here, the operators are taking form of cmnpq∂
2(ψ̄mψn)(ψ̄pψq), with

flavour indices m,n,p,q of the fermionic fields and the corresponding coupling (Wilson coefficient)

c, additionally it should be noted that one requires an even number of each flavour. The fields

considered in this paper ([36]), are

• Left- handed quark Q and lepton L multiplets, where Q and L are doublets of SU(2)

• Right- handed up and down quarks u and d, and lepton e, where u,d as well as Q are triplets

of SU(3).

Each field has a generation (or family) index running from 1 to Nf , in Standard Model Nf = 3.

Working in the unbroken phase of the SMEFT, fermions are considered effectively massless /∂ψ = 0.

To ensure Lagrangian operators are written in terms of the corresponding generators, for fields ψm

charged currents are defined in terms of the corresponding symmetry group generators: τ I for

SU(2) and T a for SU(3) as:

Jµ[ψ]mn = ψ̄mγµψn, Jµ[ψ]Imn = ψ̄mτ
Iγµψn,

Jµ[ψ]amn = ψ̄mT
aγµψn, Jµ[ψ]Imna = ψ̄mτ

IT aγµψn.

(59)
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The corresponding (self- quartic) operators are then written as

for ψ = Q,L, e, u, d : O1[ψ] = −cψ,1mnpq

(
∂µJν [ψ]mn

)(
∂µJν [ψ]pq

)
for ψ = Q,L : O2[ψ] = −cψ,2mnpq

(
∂µJν [ψ]

I
mn

)(
∂µJν [ψ]Ipq

)
for ψ = Q, u, d : O3[ψ] = −cψ,3mnpq

(
∂µJν [ψ]

a
mn

)(
∂µJν [ψ]apq

)
for ψ = Q : O4[Q] = −cQmnpq

(
∂µJν [ψ]

Ia
mn

)(
∂µJν [ψ]Iapq

)
,

(60)

where cmnpq is a Wilson coefficient written as a tensor in flavour space, which due to its self-

hermition and symmetry conditions leaves
N2

f (N
2
f+1)

2 real operators for each field choice in each

line. There are also other operators mixing different fields (cross- quartic), resulting in the total

basis of 10 sets of operators. One of the examples discussed in the paper is 2-2 scattering of right-

handed leptons e, with corresponding operator O1(e), then the s2 contribution to the forward

amplitudes is shown to be:

Ae−e+e−e+ = Ae−e−e+e+ = 4ce,1mnpqαmβnβ
∗
pα

∗
qs

2, (61)

where α, β are vectors corresponding to the incoming particle states. Utilising result coming from

the unitarity and analyticity arguments expressed in (57) and (58), one obtains the following

positivity bound: ce,1mnpqαmβnβ
∗
pα

∗
q > 0. Expressing this in terms of density matrices on Hilbert

space of dimension Nf : ραmq = αmα
∗
q , and given that the density matrices ραmq and ρβnp are

pure (unit trace), implies condition on the Wilsonian coefficient: ce,1αβ > 0. This result was then

implemented as flavour conserving operators must have positive coeffic, ients. with the implication

that interaction violating lepton lumber is allowed provided existence of the flavour- conserving

operators. Thus, there is relation between violation and conservation of flavour quantum numbers

which can, in turn, be related to CP- violation condition described in [38]. This relation was

then derived for each scattering, corresponding to self- quartic and cross- quartic operators, all

resulting in positive bounds on corresponding Wilsonian coefficients. To summarise, the flavour-

violating Wilsonian coefficients are bounded by the flavour- conserving coefficients. These results

were investigated in the lepton flavour- violating µ → e+e−e+ decay proposed experiment Mu3e

[39].
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2 Scattering of Scalar Fields

In this section we consider 2-2 scattering, with corresponding amplitude A(s,t) expressed in terms

of 2 Mandelstam invariants s = (p1 + p2)
2, t = (p1 − p3)

2. As discussed before, at high energies we

assume the tenets of the S- program: it should be analytic, unitary, local and obey the crossing sym-

metry. These S- matrix axioms at high energies (UV- complete theory) will lead to constraints on

Wilson coefficients for low energy EFT. Consider the elastic 2-2 scattering ϕ(x), ϕ(x) → ϕ(x), ϕ(x)

with a Lagrangian

L = −1

2
∂µϕ∂µϕ− 1

2
m2ϕ2 +

c

4!Λ4
∂µϕ∂µϕ∂

νϕ∂νϕ, (62)

where Λ is the energy cut- off. Although no inital constraint is applied on c from a low energy

EFT part of view: it can be both positive or negative, later it will be shown that c can only be

positive for theory to be UV- completed. The scattering matrix we wish to compute is

S = lim
T→∞

⟨p3, p4|T Ŝ|p1, p2⟩−T , (63)

which can be computed by performing a reduction procedure to get the LSZ formula [32], which

further can be Fourier transformed and after performing spatial and momentum integral, imposing

on- shell condition one gets an expression

out⟨q1, q2|p1, p2⟩in
∣∣∣∣
p21,2,q

2
1,2→m2

= trivial +
∏
j=1,2

(
q2j −m2

i
)
∏
i=1,2

(
p2i −m2

i
)

× ⟨Ω|T ϕ̂(q1)ϕ̂(q2)ϕ̂(−p1)ϕ̂(−p2)|Ω⟩,

(64)

where the product terms will exactly cancel out factors from Feynman propagators, leaving us with

”amputated” propagation terms.

To compute the correlator one needs the interacting Hamiltonian

H =

∫
d3x(π2 − L) = H0 +Hint. (65)

Here the Hamiltonian has a complex structure and for simplicity we will use interacting part of

the Lagrangian without loss of any information:

e−i
∫
Hintdt = ei

∫
d4xLint = e

ic
4!Λ4

∫
d4x∂µϕ∂µϕ∂

νϕ∂νϕ (66)
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Computing the correlation function

⟨Ω|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)|Ω⟩ =
⟨0|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)ei

∫
d4xLint |0⟩

⟨0|Tei
∫
d4xLint |0⟩

= ⟨0|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)e
ic

4!Λ4

∫
d4x∂µϕ∂µϕ∂

νϕ∂νϕ|0⟩,
(67)

where the denominator’s main role is to cancel out all the contribution coming from bubble (dis-

connected) Feynman diagrams. Recalling the field ϕ̂ can be written in terms of creation and

annihilation ladder operators:

ϕ̂(x) =

∫
d4p

(2π)4
(â(p)e−ip·x + â†(p)eip·x), (68)

where the annihilation mode
∫

d4p
(2π)4 â(p)e

−ip·x corresponds to incoming particles at the vertex, and

the creation mode
∫

d4p
(2π)4 â

†(p)eip·x corresponds to the outgoing particles. So the derivative of the

field for incoming particles gives

∂µϕ = ∂µ(â(p)e
−ip·x) = −ipµâ(p)e−ip·x = −ipµϕ, (69)

and similarly for outgoing particles

∂µϕ = ∂µ(â
†eip·x) = ipµϕ. (70)

The main contribution to the scattering part is the tree level term, so expanding exponent in (67)

the corresponding term gives

ic

4!Λ4

∫
d4x⟨0|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)

[
(−ipµ1ϕ(x))(−ip2µϕ(x))(ipν3ϕ(x))(ip4νϕ(x))

+ (−ipµ1ϕ(x))(−ipν2ϕ(x))(ip3µϕ(x))(ip4νϕ(x))

+ (−ipµ1ϕ(x))(−ipν2ϕ(x))(ip3νϕ(x))(ip4µϕ(x))
]
|0⟩,

(71)

where we wrote 3 different ways of contracting momenta, corresponding to s-, t-, u- channels. The

expression in (71) can be computed via Wick’s contraction, where incoming fields ϕ(xi), (with

i=1,...,4 ) are contracted with fields from the vertex ϕ(x). Counting the permutations of such

contractions gives an extra factor of 24 which cancels out the 4! factor in front of the expression,

and 3 channels give an extra factor of 1
3 . Each Wick contraction will give a Feynman propagator
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factor

ic

4!Λ4

∫
d4x(−ipµ1 )(−ip2µ)(−ipν3)(−ip4ν)

1

(2π)12

∫
d4k1

∫
d4k2

∫
d4k3

ie−ik1·(x1−x)

k21 −m2 + iϵ
× . . .

× ie−ik4·(x4−x)

k24 −m2 + iϵ
+ perm(p2↔3 and p2↔4),

(72)

where k4 = −(k1+k2+k3), therefore there is no integral for it. Fourier transforming at each external

point
∫
d4xie

ipi·xi gives an expression for ⟨Ω|Tϕ(p1)ϕ(p2)ϕ(p3)ϕ(p4)|Ω⟩. That allows us to perform

the vertex and external point integrals, and then one gets delta function factors (2π)4δ(4)(pi − ki)

so then momenta integrals
∫

d4ki
(2π)4 can be performed with delta functions setting ki = pi. Since

there is no momentum integral for k4, there will be one delta function still left in the expression:

(2π)4δ(4)(p4 − k4) = (2π)4δ(4)(p4 + p1 + p2 + p3). This can now be plugged back into (64).

As mentioned before due to expression in (64) the factors of i
k2i−m2+iϵ

are canceled out (taking

ϵ→ 0 ) so (64) now can be written as simply:

out⟨q1, q2|p1, p2⟩in
∣∣∣∣
p21,2,q

2
1,2→m2

=
ic

3Λ4
(2π)4δ(4)(q1 + q2 − p1 − p2)

×
(
(p1 · p2)(p3 · p4) + (p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3)

)
.

(73)

Comparing with expression in (14), allows to write

Asp→q =
c

3Λ4
(p1 · p2)(p3 · p4)

Atp→q =
c

3Λ4
(p1 · p3)(p2 · p4)

Aup→q =
c

3Λ4
(p1 · p4)(p2 · p3).

(74)

For the rest mass of the particle being so much smaller than its energy one can apply the Eikonal

approximation described in (2): s = (p1 + p2)
2 ≈ 2p1 · p2, similarly for u- and t- channels, giving

an extra 1
22 factor. The expression in (74) (dropping p→ q subscript) becomes

As =
c

12Λ4
s2

At =
c

12Λ4
t2

Au =
c

12Λ4
u2

(75)

In the forward scattering limit t = 0, the on-shell condition: s+u+t = 4m2, gives u2 = (4m2−s)2

so the full amplitude is

A = As +Au =
c

12Λ4
(s2 + u2) =

c

12Λ4
(16m4 − 8m2s+ 2s2), (76)
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From the analytic arguments of the amplitude described is section 1.5, where we showed how

Cauchy’s integral formula together with Optical theorem results in positivity bound, it follows

that:

∂2A(s0, t = 0)

∂s20
=

c

3Λ4
> 0, (77)

giving the important result that c > 0. Thus, the initially unconstrained coefficient c now is

bound to be positive. This is the positivity bound [40], which in [11] is shown to be consitent with

causality assumption based on speed of propagation.

2.1 Integration of heavy fields at high energy scales

Including fields heavier than the cutoff scale Λ in the theory brings us to the UV region, where the

scattering might include some intermediate process, see a sketch 6.

Figure 6: A schematic illustration of Feynman diagram for 2-2 scattering process at tree level in
IR and UV regions.

Recall for initial IR Lagrangian the action is:

SEFT =

∫
d4x(−1

2
∂µϕ(x)∂µϕ(x)−

1

2
m2ϕ(x)2 +

c

4!Λ4
∂µϕ∂µϕ∂

νϕ∂νϕ), (78)

for a single scalar field with light mass m, m ≪ Λ, allowing to use the eikonal approximation for

computing amplitudes of 2-2 elastic forward scattering. As result, one obtains a constraint on c,

c > 0, arising from analyticity and unitarity of the S-matrix.

Now we look at the massive case and how the same constraint result on c can be obtained from an

explicit UV completion. This can be done by completing the initial scalar theory within the UV

regime, i.e. high energy, M ≫ Λ.

By adding a massive field χ(x) with mass way above energy scale M ≫ Λ, the complete theory

becomes as follows,

SUV =

∫
d4x(−1

2
∂µϕ(x)∂µϕ(x)−

1

2
∂νχ(x)∂νχ(x)−

1

2
m2ϕ(x)2−1

2
M2χ(x)2+

α

Λ
∂µϕ(x)∂µϕ(x)χ(x)).

(79)
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Or, alternatively, the Lagrangian is

LUV = −1

2
∂µϕ(x)∂µϕ(x)−

1

2
∂νχ(x)∂νχ(x)−

1

2
m2ϕ(x)2− 1

2
M2χ(x)2+

α

Λ
∂µϕ(x)∂µϕ(x)χ(x), (80)

where α is the coupling factor.

We begin by ’integrating out’ the massive field χ(x), which at tree level means the following process:

1. Use the Euler- Lagrange equation to obtain the equation of motion for χ(x).

2. Solve the subsequent equation of motion.

3. Substitute the solution back into the UV Lagrangian one started with to obtain the expression

for low energy (EFT) Lagrangian.

To begin, the Euler- Lagrange equation gives,

−M2χ+
α

Λ
∂µϕ∂µϕ− ∂µ(−∂µχ) = 0 (81)

which can be rewritten as

α

Λ
∂µϕ∂µϕ =M2χ− ∂µ∂

µχ. (82)

To solve for χ one takes the plane wave form solution

χ(x) = exp(ikµχ
µ), (83)

and the derivative

∂µχ(x) = ikµχ(x). (84)

(84) can be substituted into (82), and the following can be obtained,

α

Λ
∂µϕ∂µϕ =M2χ− (ikµ)2χ = (M2 + k2)χ. (85)

Or alternatively, χ can be expressed in terms of the operator □:

χ =
α

Λ

1

M2 −□
(∂µϕ∂µϕ). (86)

Taking expression in (85) and multiplying by χ, gives

−χ□χ =
α

Λ
χ∂µϕ∂µϕ−M2χ2. (87)
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Integrating both sides,

−
∫
d4xχ□χ =

∫
d4x(

α

Λ
χ∂µϕ∂µϕ−M2χ2). (88)

Take left hand side (LHS) of (88) and integrate by parts to get

∫
d4xχ□χ = −

∫
d4x∂µχ∂

µχ, (89)

where the boundary term vanishes for x→ ∞. By substituting this result from (89) into (88),

∂µχ∂
µχ =

(
α2

Λ2(M2 −□)
∂µϕ∂µϕ

)
∂νϕ∂νϕ−M2χ. (90)

Using (90) to substitute back into the UV regime Lagrangian (80), one gets,

LUV = −1

2
∂µϕ∂µϕ− 1

2
m2ϕ2 +

α2

2Λ2

(
1

M2 −□
∂µϕ∂µϕ

)
∂νϕ∂νϕ. (91)

To simplify the last term in (91), use series expansion 1
1−x ≈ 1 + x + x2 + · · ·, leaving only the

leading term, getting

LUV = −1

2
∂µϕ∂µϕ− 1

2
m2ϕ2 +

α2

2Λ2

1

M2
∂µϕ∂µϕ∂

νϕ∂νϕ. (92)

It is sufficient now to equate (82) and (92). Which as a result produces the following expression of

c

c =
12Λ2α2

M2
, (93)

which is automatically positive, given that Λ, α, M are real. Thus, at tree level one obtains the

same constraint on Wilson coefficient c via both top- bottom and bottom- up methods. This shows

that the assumptions made in deriving positivity bounds are consistent.
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3 Scattering of Vector Fields

For a low energy EFT it was shown that scattering amplitudes must satisfy certain inequalities,

so the theory can be UV- completed and agree with local, unitary, analytic and Lorentz-invariant

requirements. Unlike for the scalar case with zero spin particles, for particles with nonzero spin

the extension of those results is more subtle due to non- trivial crossing relations.

3.1 Massless Case: Maxwell field

First I will write brief recap of massless vector field. One can write Maxwell (vector) field:

Âµ(x) =

∫
d3k⃗

(2π)32E(k⃗)

3∑
α=0

ϵµα(k⃗)

(
âα(k⃗)e

(−ik·x) + â†α(k⃗)e
(ik·x)

)
, (94)

where Âµ obeys the Heisenberg picture equal time commutation relation and the ladder operators

âα and â†α obey the usual commutation relations of form [a, a†].

The polarization vector is ϵµs (k⃗) = (0, e⃗s(k⃗)), and one can choose the basis

ϵµ0 =



1

0

0

0


, ϵµ1 =



0

1

0

0


, ϵµ2 =



0

0

1

0


, ϵµ3 =



0

0

0

1


, (95)

so that together with the on- shell wavevector, the polarization vectors satify: k ·ϵ(1,2)(k⃗) = 0, k ·

ϵ(0)(k⃗) = |⃗k|, k·ϵ(3)(k⃗) = −|⃗k|. The polarizations for α = 0 are called scalar polarizations, for α =

1, 2 are the physical (or transverse) polarizations, and α = 3 are the longitudinal polarizations. One

should note that in a scattering polarization is not an invariant quantity: there is no conservation

of polarisation in a scattering. Unless the experiment is set up in such a way that we have definite

polarization, when a polarizer is applied to the incoming and outgoing particles so that all the

polarization is known. The propagation of the Maxwell field is given by the correlator:

⟨0|TÂµ(x)Âν(x)|0⟩ = −ηµνDF (x− y), (96)

where DF is the massless scalar Feynman propagator,

DF =

∫
d4k

(2π)4
ie−ik·x

k2 + iϵ
. (97)
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Decomposing the Maxwell field into the annihilation and creation modes Âµ = A+
µ + A−

µ , taking

its derivative one gets for ingoing particles:

∂µ(A
+)µ = −i

∫
d3k

(2π)32E(k⃗)
e−ik·x

3∑
α=0

k · ϵα(k⃗)âα(k⃗), (98)

and outgoing particles:

∂µ(A
−)µ = i

∫
d3k

(2π)32E(k⃗)
eik·x

3∑
α=0

k · ϵα(k⃗)â†α(k⃗). (99)

Unlike in the scalar case, when considering vectors, e.g. photons (Maxwell) fields, we need the

context of QED and its concepts of spinors, e.g. electrons. From the LQED one gets,

ĤI = e

∫
d3xψ̄γµψAµ, (100)

which is used to compute the correlator corresponding to a scattering.

3.2 Massive case: Proca field

In this section I will cover some basics of the massive vector field: Proca field, following [41]. Recall

that the Klein-Gordon describes the scalar field giving the equation of motion, (□+m2)ϕ = 0. A

Dirac field describes the spinor field which gives equation of motion: (i/∂ −m)ψ = 0. A Maxwell

field describes the massless vector field, with Maxwell equation □Aµ = 0 in Lorenz gauge, coming

from Maxwell Lagrangian:

LMaxwell = −1

4
FµνF

µν − 1

2
(∂µAν)

2. (101)

The Proca field describes the massive vector field. Then the Lagrangian of the Proca field is:

LProca = −1

4
FµνF

µν +
1

2
m2AµA

ν − jµA
µ (102)

where, jµ = (ρ, j⃗) is a current.

Using the Euler- Lagrange equation on the Proca Lagrangian one gets,

□Aν − ∂ν(∂µA
µ) +m2Aν = jν = 0, (103)
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for zero- current. Note for the Maxwell field m = 0, this expression simplifies to the Maxwell

equation of motion □Aµ = 0. By differentiating (103) on both sides with ∂ν one gets the expression

∂νA
ν =

1

m2
∂νj

ν = 0, (104)

for conserved current ∂νj
ν = 0 or absence of current jν = 0. Putting this back into (103) one gets

an equation of motion of the same form as Klein- Gordon:

(□+m2)Aν = 0. (105)

From now on I will follow the approach described in the section 3 in [42] for a massive spin - 1

field and review the steps. The EFT is constructed using the bottom - up method, and then with

the assumption of UV- completion constraints and positivity bounds are derived. Starting with

a massless vector field Aµ (or Maxwell field), the corresponding EFT Lagrangian will have terms

with field strength tensor Fµν and its derivatives, combined with cutoff ΛA and an undetermined

coupling coefficient g∗ appearing in the Lagrangian as 1
g2∗
. Then one should note that for g∗ ∼ 1

the theory would have strong coupling near ΛA, and one would have to subtract the light loops,

see [43] for improved positivity bounds used to deal with loops. However, for g∗ ≪ 1, and if one

applies positivity bound on it so it g∗ > 0, then contribution of these loops will be neglegible and

one can still consider only tree- level positivity bounds.

The massive spin- 1 field appears via symmetry breaking process, that generates new terms in the

Lagrangian with ϕµ = Dµϕ = ∂µϕ+mAµ (noting that ϕ here transforms non- linearly under gauge

symmetry transformation). This process is described via the Stückelberg mechanism: introducing

a scalar field which makes an Abelian gauge theory massive but preserves the gauge invariance

[44]. The corresponding cutoff scale now is Λϕ and for the low energy EFT we have m≪ ΛA/ϕ.

Considering 2-2 scattering, at the tree- level to compute the amplitude, a unitary gauge is applied

ϕ = 0, as well as Λ3
ϕ = mΛ2

A is taken, then the relevant terms in the Lagrangian are:

g2∗LEFT ⊃− 1

4
F νµF

µ
ν − 1

2
m2AµA

µ +
m4a0
Λ4
ϕ

(AµA
µ)2

+
m4

Λ6
ϕ

(
a3AµAν∂

µAρ∂
νAρ + a4AµAν∂ρA

µ∂ρAν + a5AµA
µ∂αAβ∂

βAα
)

+
1

Λ4
A

(
c1F

µ
ν F

ν
ρ F

ρ
σF

σ
µ + c2(F

2
µν)

2

)
+
m4

Λ6
ϕ

(
C1AµA

νFαµFαν + C2F
2
µνAαA

α

)
.

(106)

Using the helicity and transversity formalism described in [45]: spin projections are orthogonal to
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the scattering plane; for 2-2 scattering of massive particles with a complete set of polarizations one

can derive positive bounds, both at and away from the forward scattering limit. Then to find the

scattering amplitudes, one uses polarization vectors ϵµ in the transversity basis (107):

ϵµτ=±1 =
i√
2m

(p,E sin(θ)± im cos(θ), 0, E cos(θ)∓ im sin(θ))

ϵµτ=0 = (0, 0, 1, 0)

. (107)

Then by taking each term in the Lagrangian (106) and computing the respective elastic scattering

amplitudes at tree- level in the transversity basis up to a factor of 1
g2∗
, in the forward scattering

limit t = 0, following procedure in [46], one gets a set of expressions for the amplitudes. Invoking

result in (58), one sums all the obtained amplitudes Ai, just like it was explicitly done for the

scalar field 2-2 scattering, to use the positivity bound

∑
i

∂2Ai
∂s2

> 0. (108)

one gets the following set of requirements for positivity bounds:

a0 > 0, c1 > 0, c1 + 2c2 > 0, a3 + C1 > 0, for Λ2
A = Λ3

ϕ/m. (109)

The positivity bounds for weak vector boson scattering (VBS) (e.g. ZZ → ZZ scattering) at

the LHC is discussed in [47], where quartic- gauge- boson coupling is described by 18 dimension-

8 operators, and by assuming UV- completion of the theory new constraints on coefficients of

these operators are derived, leaving only 2% of the initial full parameter space that allows UV-

completion. One should also note that only even - dimensional operators conserve baryon and

lepton numbers, so usually the focus is on dimension- 6 and dimension- 8 operators [48]. For elastic

scattering processes mixing different particle species, positivity bounds on the transversal quartic-

gauge-boson couplings are derived in [49], showing that they exclude ≈ 99.3% of the parameter

space at the LHC.

30



4 Conclusion

In this project I reviewed some basic concepts of the Effective Field Theory. EFT describes rel-

evant physics below an energy cutoff Λ, what is called an IR region, without including physics at

higher energy, UV region, into the framework. Quantities in Quantum Field Theory depend on

the large energy cutoff, or equivalently, in position space, on a small distance cutoff. Low energy

EFTs are used to describe a wide range of physics: from particle interactions to phenomenological

models of the Universe.

However, for a low energy theory to be a complete full fundamental theory, one requires UV-

completion, meaning that EFT will have constraints coming from the full UV- complete theory.

One must determine the number of parameters from the small distance scale that are relevant at

the large distance scale. There is also importance of the degrees of freedom from the underlying

theory that appear at large distances (IR region).

Effective Field Theory is also an efficient way of characterizing new physics: it describes new phys-

ics in terms of coefficients of higher dimension operator, and includes contraints resulting from

analyticity, locality, gauge and Lorentz invariance.

In this project I have reviewed the S- matrix program: requirement of analyticity (and causality),

unitarity, locality on the scattering matrix Ŝ. An example of Standard Model Effective Field The-

ory (SMEFT) resulting in flavour constraints of fermion scatterings was reviewed: for generalized

elastic bounds any flavor-violating Wilson coefficients is constrained by the flavor-conserving coef-

ficients.

Results from analyticity, unitarity and crossing symmetry were then viewed in the context of

the 4-particle scattering amplitude, expressed as a function of the two Mandelstam variables

s = (p1 + p2)
2 and t = (p1 − p3)

2, that satisfy the crossing symmetry relation, the optical the-

orem and the Froissart-Martin bound of the S-matrix program. I have reviewed top- bottom and

bottom- up methods: first one is allowing one to move from UV- complete fundamental theory to

a low energy approximation EFT, the latter one starts from experimentally verified observables

and build respective EFT and examines whether the theory can be UV- completed.

The UV theory is assumed to satisfy the S-matrix axioms, which give rise to EFT constraints in

the IR region: positivity bounds on Wilsonian coefficients. A positivity bound on the coupling c

was rederived for scalar elastic forward 2-2 scattering. Thus, it was rederived how the dispersion

relation arguments force the positivity condition: the scattering amplitude in the forward scat-

tering limit t = 0 A(s) at the tree level will include an ∼ s2 term with some coefficient in front,

then this coefficient was shown to be strictly positive. These positivity bounds can be extended

away from the forward scattering limit via Legendre Polynomial properties as described in [27],
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[50]. Moreover, the properties of the partial wave expansion can also be used to derive an infinite

series of non-forward scattering positivity bounds as in [51].

Another case briefly reviewed in this dissertation was for massive vector fields of the spin- 1, which

is generally a more complicated case due to non- trivial scattering amplitude and the polarization

vectors. I followed the steps described [42], where the bottom- up method is used for the EFT

construction. One starts with a massless vector Aµ (Maxwell field) and then gets a massive field

(Proca field) via Stückelberg mechanism. Then for a 2-2 vector field scattering, an EFT Lagrangian

with only relevant terms was demonstated. Using the helicity and transversity formalism the scat-

tering amplitudes were then computed. Using the positivity bound obtained from analyticity and

unitarity requirements of A(s, t, u), the corresponding positivity constraints on Wilson coefficients

were then shown.

Although all the cases considered in this dissertation are at the tree- level, as a suggestion for

further discussion, one could focus on computing scattering amplitudes beyond the tree- level: at

loop Feynman diagrams, e.g. 4- Higgs interactions described in [22].
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