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Abstract

This work presents a review of Topological Quantum Field Theory (TQFT) in the con-

text of condensed matter. The focus is on Chern-Simons theory as the low-energy leading

contribution to 2+1 dimensional actions and how, when coupled to matter, results in frac-

tional exchange statistics. Further, examples of how TQFT is used in condensed matter

are discussed, including the Fractional Quantum Hall Effect and the Filling Anomaly in

Higher Order Topological Insulators.
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Chapter 1

Introduction

In the late 1800s, Lord Kelvin famously claimed that “there is nothing new to be

discovered in physics now. All that remains is more and more precise measurements”.

Three years later, Max Planck argued that the black body ultraviolet catastrophe could

be solved if light could only have discrete energies, from which the quantum revolution

emerged. However, topological aspects of quantum mechanics, which is one of the most

active fields of research in condensed matter today, is a much more recent concept. For

instance, the geometric phase was first discovered by Shivaramakrishnan Pancharatnam

in 1956 [1], but was only generalized in 1984 by Michael Berry, 84 years after the birth

of quantum mechanics [2].

In this work, topological concepts in Quantum Field Theory (QFT) will be discussed and

reviewed. Particular attention will be given to the Chern-Simons theory, which acts as

the basis of many Topological Quantum Field Theories (TQFTs). This is a particularly

important theory, as it is often the leading contribution in 2+1 dimensional systems, such

as in the Fractional Quantum Hall Effect (FQHE) or magnetic Higher Order Topological

Insulators (HOTIs). To see this, consider the theory of an U(1) gauge 1-form valued field

A(x) = Aµ(x)dx
µ (analogous to electromagnetism) on a manifold M = R × Γ, where Γ

is a 2-dimensional manifold and R represents time. For now, pretend that Γ is closed, so

that ∂Γ = 0. We may then consider what the leading term (in powers of A), of the most

general action on M is. The Lagrangian is integrated over M, so it must be a 3-form.

The only candidate for a first-order term is d ∗A, however, this is a total derivative and

integrates to 0. At second order, there are 2 candidates, A ∧ ∗A (which is not gauge

invariant), and A ∧ dA. For the second term, if ∂Γ = 0, meaning ∂M = 0, then

S[A] → S[A+ dχ] =

∫
M
(A ∧ dA+ dχ ∧ dA), (1.1)

= S[A] +

∫
M
d(χ ∧ dA) = S[A] +

∫
∂M

χ ∧ dA = S[A], (1.2)
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where we have used d2 = 0 and ∂M = 0. Therefore, the leading term in powers of the

gauge field is S[A] =
∫
MA ∧ dA, known as the Chern-Simons action (up to a constant

prefactor). Note that the action is metric-independent, making it a topological invariant.

Therefore, observables obtained from this action must also be topological invariants

- hence the Chern-Simons action is a TQFT. Given that we are often interested in

the low energy theory in condensed matter, the Chern-Simons action is often the

dominant term in this regime. However, the system should violate parity and time

reversal for this observation to be valid, as the action transforms non-trivially under

those transformations. As we will see in section 3.1, the Chern-Simons theory by itself

is quite unremarkable, as it predicts a vanishing field stress tensor, energy-momentum

tensor, and an empty phase space. However, when coupled to matter it gives rise to

interesting fractional exchange statistics, which will be discussed in detail. In fact, the

Chern-Simons action will be introduced in chapter 3, not as a leading order low-energy

theory, but as an action that supports charge-flux composites, which will obey fractional

exchange statistics due to the Aharonov-Bohm effect.

We will start in section 2 describing anyon theories, in particular, we will consider fusion,

braiding, and twisting of anyons, as well as two examples that will be relevant in our

discussion of the Chern-Simons theory and the FQHE. Then, the Chern-Simons action

is introduced in chapter 3. It will be shown that classically the theory is forbidden,

but quantum mechanically the action must have a quantized prefactor known as the

“level”. The theory will then be quantized in the path integral formulation of QFT,

for Abelian and non-Abelian gauge groups. We will end our discussion of the theory

with observations about the Hilbert space structure. In the remainder of the thesis,

two examples of topological quantum systems will be reviewed. In section 4, a gentle

introduction to the Fractional Quantum Hall Effect (FQHE) will be provided, which

inevitably (for Abelian states) will be described by a hierarchy of Chern-Simons terms.

Then, some comments will be provided about non-Abelian states. Finally, in section 5,

we will end our discussion with the filling anomaly in HOTIs, which will also be explained

in terms of an effective TQFT known as the Wen-Zee action.
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Chapter 2

Anyons

In this chapter, we will discuss particles with fractional exchange statistics. When two

particles are exchanged, the wavefunction describing the system picks up a phase eiθ,

where θ is known as the exchange angle. If θ is 0, then the particles are called bosons, if θ

is π then the particles are called fermions, and if θ is neither, then they are called anyons.

Let’s begin with a false proof that anyons cannot exist in nature. Suppose ψ(r⃗1, r⃗2) is

the wavefunction describing two particles. Then, let Ô be an operator that swaps the

positions of the particles. Then,

Ô2ψ(r⃗1, r⃗2) = Ôψ(r⃗2, r⃗1) = ψ(r⃗1, r⃗2), (2.1)

from which we conclude that Ô2 = 1. Therefore, Ô has 2 distinct eigenvalues, ±1, so

only θ = 0 or π are allowed. While the result is true in 3+1 dimensions, it is not a

valid argument and the result is not true in 2+1 dimensions. The reason is that we

cannot instantaneously switch the two particles; one must drag one into the position

of the other and vice-versa, and the way this is done matters. Suppose we are in 2+1

dimensions. Then, there are 2 topologically distinct ways to switch the particles directly

(without any unnecessary loops around each other) (fig. 2.1). Note that the two paths

are topologically distinct, if we tried to smoothly deform one path into the other, the

worldlines would intersect. This would imply that at some point the two particles are at

the same position. To be more precise, assume we have translation invariance so that we

are only interested in r⃗2 − r⃗1. Then, the manifold of the state space of the particles is

R× Γ2, where Γ2 = R2 \ {⃗0} is the space manifold and R represents time. The key point

is that Γ2 is not simply connected, meaning that there are topologically non-equivalent

loops. Likewise, if we followed the same analysis in 3+1 dimensions, then, the manifold

would be R×Γ3 where Γ3 = R3 \ {⃗0}. The difference here is that Γ3 is simply connected,

so all paths are topologically equal, and the way particles are braided around each other

does not matter. In this case, the argument above does hold and we only have bosons

and fermions.
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Figure 2.1: Two particles being exchanged in 2+1 dimensions (time going up). On the
left, the particles are being switched by an anticlockwise rotation, while on the right the
particles are exchanged by a clockwise rotation.

Considering 2+1 dimensions, we can construct an operator that switches the two parti-

cles anticlockwise, Û . As Û is a form of time evolution, it must be unitary Û Û † = 1,

so the eigenvalues are complex phases eiθ where we do not have any further restrictions.

Therefore, anyons are allowed in 2+1 dimensions. Nevertheless, we do live in a 3+1

dimensional universe, so fundamental particles can only be bosons or fermions. Hence,

particles obeying fractional exchange statistics must be quasiparticles: collections of mul-

tiple fundamental particles, collectively behaving as one. This is analogous to how atoms

in lattices collectively behave in a way that produces phonons. A further restriction is

that the low energy dynamics must be constrained in one dimension. A common way to

do this is simulating an infinite square well of a small length in the z-direction, so that

the energy gap to the first excited eigenstate is much larger than the energy scales in the

x and y directions. This, effectively, causes the dynamics to be on the xy plane, as those

on the z axis are suppressed.

2.1 Anyons as Flux-Charge Composites

In this section we will construct a simple model of Abelian anyons, charge-flux compos-

ites, following closely [3, 4]. Suppose we are in 2+1 dimensions and are able to attach

a flux Φ out of the plane, to a particle of charge q. For convenience, we will use the

notation to refer to such a composite as (q,Φ). Now, we may consider what happens if

two such particles are braided around each other as in figure 2.2. In order to discuss

this we must first consider the Aharanov-Bohm effect. If a charge q moves around a

loop with a flux Φ enclosed, the electron wavefunction picks up a phase exp[iqΦ/ℏ]
[5]. The particle on the left has a charge q and is moved around a loop enclosing a

flux Φ. Hence, due to the Aharanov-Bohm effect, this will add a phase of eiqΦ/ℏ to the

wavefunction. Note that this is a topological phase, as smooth deformations of the path
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Figure 2.2: Two charge-flux composites being exchanged anticlockwise around each other.

do not change the phase. All that matters is the “winding number”, the number of times

the particle has gone around the flux. Naively, one would think that if a flux Φ is moved

around a charge q, then the wavefunction also picks up a phase of eiqΦ/ℏ, which is what

is happening to the composite on the right. Therefore, the total phase obtained from

braiding the two charge-flux composites would be e2iqΦ/ℏ. However, this is famously not

the case [6]; the phase obtained for a complete rotation is eiqΦ/ℏ. This loop is equivalent

to exchanging the position of the composites twice, meaning that the exchange angle of

flux-charge composites is θ = qΦ/(2ℏ). Note that this is not restricted to either 0 or π:

hence, these composites exhibit fractional exchange statistics.

An interesting property of these anyons is that they can fuse into each other. Consider

a (q,Φ) and a (−q,−Φ) particle close together. The overall charge and flux are zero,

making a (0, 0) composite. However, this obeys trivial exchange statistics and is not

composed of anything; it is the vacuum. Therefore, we conclude that a (q,Φ) and a

(−q,−Φ) particle can annihilate, so we may refer to them as each other’s antiparticle.

Similarly, two (q,Φ) particles can fuse to a single (2q, 2Φ) particle, with an exchange angle

of θ = (2q)(2Φ)/(2ℏ). Likewise, a (2q, 2Φ) particle may “decay” into two (q,Φ) particles.

In this section, we will discuss the dynamics of anyon theories, following closely [3, 7]. We

will expand, and formalize this idea, as well as consider braiding of the quasi-particles.

2.2 Fusion

We can start by going back to the familiar examples of charge-flux composites. Consider

two (q,Φ) particles close to each other. If the position of these two particles coincides,

the system is indistinguishable from that of a single (2q, 2Φ) particle. Even if the two

particles are not in the same place, a distant observer braiding around them cannot tell
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the difference. This will be a common theme in all anyon theories, the possibility of

fusion into other particle types. However, we will have a further restriction, having a

finite number of particle types. The reason for this will become apparent in section 3.7.5.

In the case of charge-flux composites, this is satisfied when the double exchange angle

2θ = qΦ = 2πp/q (p and q coprime) is rational, which gives q particle types. This is

because all we can do is take q particles of one type and fuse them to a single particle

with an exchange angle θ = 0, equivalent to the identity. Hence, the only particle type

that exists in this theory is the particle we started with, fused with itself i times, where

i ∈ {1, ..., q = 0}. Fusion can be represented diagrammatically as in figure 2.3. This

Figure 2.3: Left: Fusion of two (q,Φ) composites to a single (2q, 2Φ) composite. Right:
A (q,Φ) and a (−q,−Φ) annihilating the the vacuum e.

leads us to another feature of anyonic theories, the existence of the “vacuum” or identity.

Sometimes we will draw this as a dashed line, and sometimes not at all. We can completely

specify the fusion rules by defining the particle n = (nq, nΦ), and the fusion rule is

n×m = m× n = a, (2.2)

a = (n+m) mod q, (2.3)

where × denotes fusion. The identity will always obey e × a = a × e = a. In addition,

if n and m can fuse to p, then it must be possible for p to decay into n and m. We

can also define the notion of antiparticles. A particle of type a is the antiparticle of a if

a× a = e. In non-Abelian theories, we will see that it is possible for two anyons to fuse

by several channels. If particles n and m can fuse into two different particles, p and q,

we will use the notation

n×m = p+ q. (2.4)

This being the case, one might wonder if antiparticles are still well-defined, as a particle

anti-particle pair could fuse into something other than the identity. However, if two

particles can fuse to the identity, then we will call them particle anti-particle pairs, with

the restriction that each particle only has a single anti-particle. Therefore, a particle

of type a can only annihilate to e with one single particle type, a. Particles can be

their own anti-particle (e always is), in which case we need not draw arrows in the

6



fusion diagram, in complete analogy to Feynman diagrams. Also in analogy to Feynman

diagrams, we can think of an a forward arrow as an a backward arrow.

A further restriction of fusion rules is the so-called “no transmutation principle”, which

states that if we start with a single anyon, of type a say, and after some time a single

particle comes out, then it must be an anyon of type a. This statement is equivalent to

local anyon charge conservation.

2.3 The N-matrices and Quantum Dimensions

Let us be more general with our notation. We can describe all possible fusion channels

with the N matrices,

a× b =
∑
c

N c
abc, (2.5)

where N c
ab is the number of distinct ways a and b can fuse into c. If N c

ab > 1, then

the fusion diagram should also have an index µ representing which channel happened.

Consider now repeated fusion of 4 anyons. We are interested in the number of possible

fusion channels, as each channel is one possible “state” of the system, so the number of

fusion channels is the dimension of the Hilbert space. This will become clearer in section

3.7.5. The way to tackle this is to fuse the particles one by one,

a× b× c× d =
∑
m1

Nm1
ab m1 × c× d, (2.6)

=
∑
m1m2

Nm1
ab N

m2
m1cm2 × d, (2.7)

=
∑

m1...m3

Nm1
ab N

m2
m1cN

m3
m2d

m3, (2.8)

from which we conclude that the dimension of fusing 4 anyons is

dim(H) =
∑

m1...m3

Nm1
ab N

m2
m1cN

m3
m2d

. (2.9)

Suppose that the anyons were instead created from the vacuum, e, and we are re-fusing

all particles. Then, by the no transmutation principle, the only particle that can come

out is m3 = e. This makes the dimension of n particles in the system

dim(H) =
∑

m1...mn−2

Nm1
ab N

m2
m1c...N

e
mn−2z, (2.10)

=
∑

m1...mn−2

Nm1
ab N

m2
m1c...δmn−2z, (2.11)

=
∑

m1...mn−3

Nm1
ab N

m2
m1c...N

z
mn−3y, (2.12)
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where we have used the fact that two anyons can fuse to the vacuum only if they are

antiparticles. We will see this expression for the dimension of the Hilbert space later in

section 3.7.5.

As an aside, consider a half-spin system. On its own, the Hilbert space is 2-dimensional.

However, when a second half-integer spin is added to the system, the dimension of the

Hilbert space doubles to 4. In general, if there are N spins, the dimension of the Hilbert

space is dN , where d is the quantum dimension, which is 2 in this case. We can define

the quantum dimension da of particle a in a similar way,

dim(H(n)
a ) = dna , (2.13)

in the limit as n → ∞. Writing the fusion matrix N c
ab as [Na]bc, and noting that N c

ab =

N c
ba, we can write eq. 2.9 for the fusion of multiple a particles as

dim(H(n)
a ) =

∑
b

([Na]ab)
n , (2.14)

where the product is dominated by the largest eigenvalue of Na. Therefore, the quan-

tum dimension da is the largest eigenvalue of Na. We can also consider the eigenvector

corresponding to the largest eigenvalue, e⃗,

N c
abec = daeb. (2.15)

For a matrix with non-negative entries, there is only a unique eigenvector with all positive

elements, and it corresponds to the largest eigenvalue (this is known as the Perron-

Frobenius theorem [8]). Therefore, we know eb > 0 and, in order for eq. 2.15 to be

symmetric under exchange of a and b, we must have ea = da. Substituting this into eq.

2.15, we obtain the relationship between quantum dimensions of different anyons,

dadb = N c
abdc. (2.16)

Before continuing, it is worth giving a couple of examples that will come up later.

2.3.1 Fibonacci Anyons

Here we have two particle types, the vacuum e and another particle denoted τ . The

fusion rules are

τ × τ = e+ τ, (2.17)
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with other rules being fixed by the properties of the vacuum. As two τ particles can fuse

to the identity, it is its own antiparticle. The fusion matrix for τ is given by

Nτ =

(
0 1

1 1

)
, (2.18)

whose largest eigenvalue is the golden ratio,

dτ =
1 +

√
5

2
. (2.19)

2.3.2 Ising anyons

In this case, we have 3 particles, the vacuum and two non-trivial ones, often called ψ and

σ. The non-trivial fusion rules are

σ × σ = 1+ ψ, (2.20)

ψ × ψ = 1, (2.21)

σ × ψ = σ. (2.22)

From the fusion rules, we can tell that both σ and ψ are their own antiparticles. Again,

we can find the quantum dimensions, dψ = 1 and dσ =
√
2.

2.4 The F symbols

Throughout this section, we have assumed that the fusion operator × is associative. If

we want to preserve this we will need a way to explain what happens as we change the

order of fusions. The F symbols allow us to do just that; consider the two different ways

to fuse 3 anyons,

a

d

b c

i

a

d

b c

j

(2.23)

Both fusion diagrams are allowed. The only difference is the order in which we fuse

the particles, which we do not want to alter the end result. One can think of this as

representing the same result on a different basis. As such, there should be a way to
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convert from one basis to another,

a

d

b c

i
=
∑

j(F
d
abc)ij

a

d

b c

j

(2.24)

The F symbol is called the “fusion matrix”. In other words, the process on the left for a

particular intermediate state i is a linear superposition of the left diagram with different

intermediate states. We have also skipped a subtlety, as N c
ab may be greater than 1.

In this case, as explained earlier, the fusion diagram would have an index µ indicating

which mode happened, and this index would also be summed over. This would give the

F matrix another index, but it is not important for our analysis. Transforming a fusion

diagram with an F matrix is called performing an F -move.

The F matrices must satisfy a consistency relation, creatively called the “pentagon equa-

tion”, and comes from considering the fusion of 4 anyons, as shown in figure 2.4. Alge-

Figure 2.4: Performing various F -moves on the initial diagram (top left), we can reach
another diagram (top right) in two different ways. Both ways should be equivalent, giving
rise to the pentagon equation.

braically, the pentagon equation can be written as

(F fabk)il(F
f
icd)jk =

∑
m

(F lbcd)mk(F
f
amd)jl(F

j
abc)im. (2.25)

It turns out that if we consider more anyons, we get an equation of which the pentagon

equation is a special case, so they do not cause any further restrictions. This is a con-

sequence of MacLane’s coherence theorem [9, 3]. For some theories, the F matrices are
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uniquely determined from the fusion rules, whereas in other theories there are multiple

solutions.

2.5 Braiding, Twisting and the R matrices

We started our discussion of anyons by considering their exchange statistics in the

Abelian case. In this section, we develop the theory of the braiding of non-Abelian

anyons. One might ask what is non-commutative about non-Abelian anyons, the answer

is that non-Abelian anyons are associated with non-Abelian gauge groups, such that the

order in which particles are exchanged matters. For instance, if we have 3 non-Abelian

anyons, a, b and c, we can braid a around b and then c around b, or c around b first

and then a around b. These two processes will have distinct amplitudes in non-Abelian

theories.

We will start by considering the R matrices. Consider two anyons a and b, which will

eventually fuse to c. However, we have the option to swap the positions of the two anyons

before fusion, or to fuse them straight away. We are interested in the relationship between

these two processes. We can write this diagrammatically as figure 2.5 Here, whether the

Figure 2.5: Definition of the R matrices.

anyon is Abelian or non-Abelian matters. If the multiplicity of the fusion is N c
ab = 1

(ie the anyons are Abelian), then Rcab ∈ U(1). We may verify this with two reasons.

Firstly, U(1) is an Abelian group, so if we do this multiple times, the order will not

matter, which we expect from Abelian anyons. Secondly, this is something that can be

physically performed, so it should be a unitary operator. Consider now the case where

the multiplicity is N c
ab = 2. Then, labelling the fusion channels without braiding |µ⟩, and

with braiding |µ′⟩, (
|0′⟩
|1′⟩

)
= Rcab

(
|0⟩
|1⟩

)
, (2.26)

where now Rcab ∈ U(2). As U(2) is not Abelian, the order of braiding does matter. In

conclusion, Rcab is an N
c
ab by N

c
ab matrix. Similar to the F matrices, there is a consistency
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relation that the Rmatrices must satisfy. This is, again, creatively known as the “hexagon

equation”, see figure 2.6. Again, we can mathematically express the hexagon equation as

Figure 2.6: Performing various R-moves and F -moves on the initial diagram (the leftmost
one), we can reach another diagram (the rightmost one) in two different ways. Both ways
should give the same diagram, giving rise to the pentagon equation. Diagram obtained
from [10].

Rkac(F
d
bac)kiR

i
ab =

∑
j

(F dbca)kjR
d
ja(F

d
abc)ji. (2.27)

Again, for certain theories, there might only be a single set of solutions allowed by the

fusion rules, multiple solutions, or none at all. In fact, it can be proven that for any

set of fusion rules, there only exists a finite number of solutions to the pentagon and

hexagon equations. In other words, if we have found a set of solutions for F and R,

no small deformation of them will give another solution. This is a principle known as

Ocneanu rigidity [11]. It becomes apparent that the constraints given by the pentagon

and hexagon equations are so strong that it makes most anyon fusion rules inconsistent.

On the other hand, this very limiting property of anyon theories allows the construction

of “periodic tables” for anyon theories. A list of 5 to 6 particle types can be found at

[12]. So far, we have not found a modular anyon theory (those which do not have a

fermion with exchange angle π) that cannot be constructed from a Chern-Simons action,

or something closely related [3]. As such, the chapter 3 will be an in-depth introduction

to Chern-Simons theories.
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Chapter 3

Chern-Simons Theory

As discussed in the introduction, the Chern-Simons action is often a good description of

the low-energy dynamics in condensed matter physics. Moreover, it provides a way for

charge-flux binding to occur. This section is adapted from [13, 7, 14, 15, 16, 17]. We will

start by defining the Chern-Simons action, coupling it to matter, and observing that the

magnetic field associated with the vector potential looks like Dirac δ functions located

at the positions of the particles. We will then quantize the theory for both Abelian

and non-Abelian gauge groups and will end with some comments on the Hilbert space

structure.

3.1 Abelian Chern-Simons Theory

The pure Chern-Simons action of a vector potential A on a spacetime manifold M is

given by

SCS [A] =
k

4π

∫
M
A ∧ dA =

k

4π

∫
M
d3xϵµνρAµ∂νAρ, (3.1)

where k is known as the “level” of the theory. On its own, this is quite a simple theory,

as seen by the equations of motion.

δSCS
δAµ

=
k

2π
ϵµνρ∂νAρ =

k

4π
ϵµνρFνρ = 0, (3.2)

where F is the usual field strength tensor,

Fµν = ∂µAν − ∂νAµ. (3.3)

Therefore, there are no propagating degrees of freedom and k does not even affect the

equations of motion. Additionally, the Hamiltonian vanishes, and by the Hamilton equa-

tions, this represents a static configuration and hence an empty phase space. We also

note that the action breaks parity (under parity, the integrand picks up a negative sign)

13



and time reversal. Hence we only expect this action to come up in systems that break

parity, such as systems with a non-vanishing Hall conductivity, as we will show in section

4.2. We can couple the Chern-Simons action to matter with a current Jµ and charge q

as

S =

∫
M
d3x

k

4π
ϵµνρAµ∂νAρ − qAµJ

µ. (3.4)

If there are N particles, we can write the 0th component of the 4-current Jµ as

j0(x⃗) =
N∑
n=1

δ(x⃗− x⃗n), (3.5)

where x⃗n is the position of the nth particle. The equations of motion given by the Euler-

Lagrange equations are

δS

δAµ
=

k

2π
ϵµνρ∂νAρ − qJµ = 0. (3.6)

The 0th component of the equation reads

qJ0 = q

N∑
n=1

δ(x⃗− x⃗n) =
k

2π
(∇×A) =

k

2π
B, (3.7)

B(x⃗) =

N∑
n=1

Φδ(x⃗− x⃗n) (3.8)

where B is the magnetic field due to the vector potential A and Φ = 2πq/k. Hence, the

magnetic field looks like an infinitely thin flux attached to each particle. We recognise this

as charge-flux composites (q, 2πq/k), which has a double exchange angle of 2θ = 2πq2/k

(in units where ℏ = 1). Interestingly, this implies that B is sourced by charges, while the

other components of the equations of motion indicate that the electric field is sourced

by currents, which is the opposite of what happens in electromagnetism. In addition,

when particles are braided around each other, the phase picked up by the wavefunction

only depends on k and the topology of the path it takes, particularly its winding number

(how many particles are enclosed by the loop followed). As we will see, it is convenient to

think of the flux lines as loops closing at infinity, as this reveals that the Chern-Simons

theory computes the “linking number” of these knots. This gives us intuition about

why Chern-Simons is a topological theory; the action is a topological invariant of the

spacetime manifold, so the only quantities that can be calculated from it are themselves

topological invariants.

3.2 Gauge Invariance and Quantization of the Level

For the rest of the chapter, we will only consider the pure Chern-Simons action,

without coupling to other fields. This section is adapted from [13]. It becomes
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apparent that even in this special case, the action is not gauge invariant. Although

we seem to have shown that the action is invariant by considering transformations

of the form A → A + dχ in eq. 1.2, this was only under the assumption that we

had a closed spatial manifold. If this is not the case, then the action changes by a

boundary term. However, in the absence of magnetic monopoles, the boundary term

vanishes by Gauss’ law. Therefore, we shall now consider the simplest case in which

we do not have gauge invariance. As we will see, this implies that the classical the-

ory is not well defined, but at the quantum level, we just need the level k to be quantized.

We will start by compactifying the spatial manifold to S2 and perform a Wick rotation

into Euclidean signature t → τ = it. As the Chern-Simons action is of first order in

derivatives, it transforms under a Wick rotation by SCS → SECS = −iSCS . Now we

can choose a convenient gauge transformation χ = 2πτ/β. The Wick rotation turns

the time axis R into a thermal circle [3, 14] S1 with periodicity β, see appendix A for

more information. The gauge transformation of this form is chosen because it cannot be

continuously deformed to the identity map, as it winds around the thermal circle and

is hence non-contractible. These kinds of gauge transformations are often called “large

gauge transformations”. Before performing this gauge transformation, let us rewrite the

action as

SECS = −i k
4π

∫
S1×S2

d3xϵµνρAµ∂νAρ, (3.9)

= −i k
4π

∫
S1×S2

d3x(A0F12 +A1F20 +A2F01). (3.10)

where x is now Euclidean. Now, it is important to be careful, as there is a famous factor

of 2 which is easy to miss. Consider∫
S1×S2

d3xA1∂2(∂0χ). (3.11)

One might be tempted to claim this integral vanishes, as ∂0χ does not depend on the

variable with respect to which we are differentiating. However, as χ is in a topologically

non-trivial configuration, this may not hold. To see this, we can integrate by parts to

obtain

−
∫
S1×S2

d3x(∂2A1)(∂0χ), (3.12)

which certainly does not vanish (note there is no boundary term after integrating by parts
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as ∂(S1 × S2) = 0). Hence, we must integrate by parts to obtain∫
S1×S2

d3xA1F20 =

∫
S1×S2

d3x(−∂2A1)A0 −A1(∂0A2), (3.13)∫
S1×S2

d3xA2F01 =

∫
S1×S2

d3x(∂1A2)A0 +A2(∂0A1). (3.14)

Note that the sum of these terms makes another factor of A0F12, which lets us rewrite

the Euclidean Chern-Simons action as

SECS = −i k
2π

∫
S1×S2

d3x(A0F12) +
1

2
(A2∂0A1 −A1∂0A2). (3.15)

Now we can perform the gauge transformation A0 → A0 +
2π
β ,

SECS → SE′
CS = SECS − i

k

β

∫
S1×S2

d3xF12, (3.16)

= SECS − i
k

β

∫
S1

dτ

∫
S2

d2xF12. (3.17)

The integral over a closed surface of F12 is simply 2πn where n is an integer, due to the

Dirac quantization condition, which we will see several times. This quantization is deeply

tight with the fact that we have a compact gauge group, and is equivalent to placing n

magnetic monopoles inside the integration domain. The key point is that n is an integer,

this analysis is not based on the existence of magnetic monopoles, just on the fact that

this integral must be quantized.

SE′
CS = SECS − i

2πnk

β

∫
S1

dτ (3.18)

Finally, the thermal circle has periodicity β, so the integral over S1 is just β. Hence,

going back to Minkowski signature,

δSCS = 2πnk. (3.19)

Therefore, we have shown that the Chern-Simons action is not gauge invariant. This

means that classically, the theory is not consistent. However, at the quantum level, not

all is lost. Observables are obtained from the path integral Z, so as long as this is

invariant, the theory is gauge invariant.

Z =

∫
DAeiSCS [A] →

∫
DAeiSCS [A]+2πnk = e2πnkZ, (3.20)

so as long as the prefactor is 1, the theory is saved. This happens when the exponent is

a multiple of 2π, which forces the level k to be an integer. In conclusion, we have used

gauge invariance to show that the Chern-Simons level is quantized.
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3.3 Anyons and Wilson loops

We already saw in the introduction to this chapter how the Chern-Simons action allows for

a simple model of charge-flux composites obeying fractional statistics. In this subsection,

we will rediscover anyonic statistics from a more formal perspective [18]. Consider the

Chern-Simons path integral with a source Jµ,

Z[J ] =

∫
DA exp

[
i

∫
M
d3x

(
k

4π
ϵµνρAµ∂νAρ +AµJ

µ

)]
. (3.21)

We are interested in the dynamics of two particles moving and braiding around each

other. Let the spatial path in R2 of the particles be γ1 and γ2, both of which are closed.

Let the curve γa be parameterized by xµa(t) (x0a(t) = t). Then, we can write the source

corresponding to particle a as

Jµa (x⃗, t) = ẋµa(t)δ
(2)(x− xa(t)), (3.22)

Jµ = Jµ1 + Jµ2 , (3.23)

which makes the source term∫
M
d3xAµJ

µ =
∑
a

∫
M
d3xAµẋ

µ
aδ

(2)(x− xa(t)), (3.24)

=
∑
a

∫
dt
dxµa
dt

Aµ(xa(t)), (3.25)

=
∑
a

∮
γa

dxµaAµ(xa(t)). (3.26)

Defining non-local observables known as Wilson loops,

Wa = exp

[
i

∮
γa

dxµaAµ

]
, (3.27)

we can write the sourced path integral as

Z[J ] =

∫
DAW1W2e

iSCS [A] ≡ ⟨W1W2⟩. (3.28)

As the path integral is Gaussian, it can be solved exactly by a field redefinition Aµ →
Aclµ + aµ, such that DA = Da and Aclµ obeys the classical equation of motion,

k

2π
ϵµνρ∂νA

cl
ρ + Jµ = 0. (3.29)
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The path integral transforms as

Z[J ] =

∫
DA exp

[
i

∫
M
d3x

(
k

4π
ϵµνρ(Aclµ + aµ)∂ν(A

cl
ρ + aρ) + (Aclµ + aµ)J

µ)

)]
,

(3.30)

= exp

[
i

∫
M
d3x

(
k

4π
ϵµνρAclµ∂νA

cl
ρ +AclµJ

µ

])
(3.31)∫

Da exp
[
i

∫
M
d3x

(
k

4π
ϵµνρaµ∂νaρ + aµJ

µ +
k

4π
ϵµνρaµ∂νA

cl
ρ +

k

4π
ϵµνρAclµ∂νaρ

)]
,

= exp

[
i

∫
M
d3x

(
k

4π
ϵµνρAclµ∂νA

cl
ρ +AclµJ

µ

)]
(3.32)∫

Da exp
[
i

∫
M
d3x

(
k

4π
ϵµνρaµ∂νaρ + aµJ

µ − 1

2
aµJ

µ − k

4π
ϵµνρ∂νA

cl
µaρ

)]
,

= exp

[
i

∫
M
d3x

(
k

4π
ϵµνρAclµ∂νA

cl
ρ +AclµJ

µ

)]
(3.33)∫

Da exp
[
i

∫
M
d3x

(
k

4π
ϵµνρaµ∂νaρ +

1

2
aµJ

µ +
k

4π
ϵρνµaρ∂νA

cl
µ

)]
,

= exp

[
i

∫
M
d3x

(
k

4π
ϵµνρAclµ∂νA

cl
ρ +AclµJ

µ

)]
(3.34)∫

Da exp
[
i

∫
M
d3x

(
k

4π
ϵµνρaµ∂νaρ

)]
.

However, we are only interested in

Z[J ]

Z[0]
= exp

[
i

∫
M
d3x

(
k

4π
ϵµνρAclµ∂νA

cl
ρ +AclµJ

µ

)]
. (3.35)

Therefore, the generating functional takes the form eiS[A
cl]+iAcl

µ J
µ
, as we expect from a

quadratic action. Substituting in the form of Aclµ in Lorenz gauge, we obtain after a lot

of algebra,

Aclµ (x) =
1

2k

∫
M
d3yϵµνρ

∂νJρ

|x− y|
=

1

2k

∑
a

∮
γa

dxνaϵµνρ
(x− xa)

ρ

|x− xa|3
, (3.36)

Z[J ] = ⟨W1W2⟩, (3.37)

= exp

(
i

2k

∮
γ1

dxµ1

∮
γ2

dxν2ϵµνρ
(x1 − x2)

ρ

|x1 − x2|3

)
, (3.38)

= exp

(
2πi

k
Φ[γ1, γ2]

)
, (3.39)

Where

Φ[γ1, γ2] =
1

4π

∮
γ1

dxµ1

∮
γ2

dxν2ϵµνρ
(x1 − x2)

ρ

|x1 − x2|3
(3.40)

is the “linking number” of γ1 and γ2, an integer that counts the number of times one

curve winds around the other [19]. In reality, there are two kinds of terms, integrals over

γ1 and γ2, and integrals over γa twice. The latter are self-interaction terms that diverge
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but can be regularized, we will discuss the regularization procedure in section 3.4.

When Φ[γ1, γ2] = 1, i.e. the curves wind around each other once, ⟨W1W2⟩ = e2πi/k, the

same anionic phase we obtained while arguing that the Chern-Simons action generates

flux-charge composites. The main conclusion is that since the action is a topological

invariant, the observables obtained from it are also topological quantities, in this case

being knot invariants of the worldlines of two sources.

The analysis above can be generalized to r point sources braiding around each other.

Let particle a follow a closed path γa, and define a “link” to be the disjoint union of all

paths. Before we continue, recall that if A is a G gauge field, then we can decompose its

components in terms of the generators TC of the Lie algebra g = Lie(G), Aµ = AcµT
C .

Taking the gauge group to be G = U(1), the only generator of the Lie algebra u(1) is a

single integer n. Hence, we can write Aµ = A1
µn, but we will drop the group index as we

only have one generator. Using this, we can define the “Wilson Link” as

W [L] =

r∏
a=1

Wa[γa] =

r∏
a=1

exp

(
na

∮
γa

dxµaAµ

)
. (3.41)

Note that in the non-Abelian case, we will need a path-ordering operator, as will be

discussed in section 3.6. Using the Wilson Link, we can rewrite the path integral as

Z[J ] = ⟨W [L]⟩ =
∫

DAW [L]eiSCS [A], (3.42)

= exp

 i

2k

r∑
a,b=1

nanb

∮
γa

dxµa

∮
γb

dxνb ϵµνρ
(xa − xb)

ρ

|xa − xb|3

 , (3.43)

= exp

2πi

k

r∑
a,b=1

nanbΦ[γa, γb]

 . (3.44)

However, we note again that Z contains terms involving Φs[γa] = Φ[γa, γa] (known as the

“self-linking number”), which diverges. While earlier we simply ignored these terms, it

is possible to regulate them through a process called framing.

3.4 Framing

For any curve γa ⊂ L, we can choose a vector field perpendicular to γa everywhere, a

choice known as framing (see figure 3.1). We can define a closed loop γ′a by moving every

point in γa in the direction of the vector field. As the curves γa and γ′a don’t intersect

by construction (as long as the distance by which every point is moved is small and γa

is smooth), the self-linking number can be redefined to be Φs[γa] = Φ[γa, γ
′
a], which is

finite and well defined.
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Figure 3.1: Framing the Chern-Simons theory.

However, we note that Φs[γa] depends on the topology of the vector field being used to

extend γa into γ
′
a. This is problematic, so we need a description of how Φs[γa] transforms

under a change of framing. As Φ can only take integer values, the difference between two

choices of framing must also be an integer t. This integer is the difference in twists that

the two vector fields have around γa, see figure 3.2. From this, we conclude that under a

Figure 3.2: Two different choices of framing. The solid line represents γa, the dashed
line γ′a, and the arrows the vector field used to generate γ′a. A: γ

′
a does not wind around

γa, so Φs[γa] = 0. B: γ′a winds around γa once, so Φs[γa] = 1. Therefore, if we changed
framing from A to B, the integer t = 1.

change of framing,

Φs[γa] → Φs[γa] + t, (3.45)

⟨W [L]⟩ → exp

(
2πitn2a
k

)
. (3.46)
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To be precise, we say that Z = ⟨W [L]⟩ is a topological invariant of framed manifolds.

Framing is an important concept, as it makes the theory anomalous, and hence certain

Noether currents will not be conserved.

3.5 Aside: Chern-Simons Theory in a Torus

As the Chern-Simons action is a topological invariant, we expect the phase-space to

only depend on the topology of M. This happens to be true: the Chern-Simons phase

space is completely characterized by the class of topologically non-trivial Wilson loops.

For example, in M = R × R2, there are no non-trivial Wilson loops, as M is simply

connected. Therefore, the space of allowed non-trivial Wilson loops is 0 dimensional.

This corresponds to the fact that the phase space is empty in this spacetime manifold.

We already saw that the equation of motion predicts no propagating degrees of freedom,

but it is easier to observe that the Hamiltonian vanishes. Therefore, through Hamilton’s

equations, we reach the conclusion that q̇ = ṗ = 0. In contrast, consider a Chern-Simons

field on the surface of a torus, M = R× T 2. Then, the space of non-trivial Wilson loops

is 2-dimensional. One can define a Wilson loop around the handle (call this configuration

h), or around the azimuthal direction (a). Then, a general non-trivial Wilson loop can

be written as W = hh+ aa, (h, a ∈ Z), meaning h loops around the handle and a loops

around the azimuthal direction. Therefore, we conclude π1(M) = π1(T
2) = Z⊕ Z. The

two Wilson loops are U(1)-valued, as seen by eq. 3.27. Therefore, the Chern-Simons

phase space is P = U(1)× U(1) = T 2. Another important property of Chern-Simons in

topologically non-trivial spaces is the ground state degeneracy. To see this, consider the

equal time commutation relation (working in Coulomb gauge where A0 vanishes),

[A1(x⃗), A2(y⃗)] =
2πi

k
δ(2)(x⃗− y⃗). (3.47)

Defining the two non-contractible loops as γ1 and γ2, and the two non-trivial Wilson

loops as wi =
∮
γi
dxjAj , Wi = exp(iwi), we obtain the following commutation relation,

[w1, w2] =
2πi

k
, (3.48)

W1W2 = eiw1eiw2 , (3.49)

= e[w1,w2]eiw2eiw1 , (3.50)

= e2πi/kW2W1, (3.51)

where eq. 3.50 comes from the Baker–Campbell–Hausdorff formula. It turns out that

the smallest representation of the algebra followed by the Wilson loops, which we just

derived, has dimension k. This is the ground-state degeneracy on the torus. In general,

in a genus g surface, the ground state degeneracy is kg.

21



3.6 Non-Abelian Chern-Simons

In this section, we will attempt to quantize the Chern-Simons action for an arbitrary

gauge group G and ultimately fail. The reason is that the classical theory has a

symmetry, diffeomorphism invariance (being independent of the metric), which is broken

at the quantum level when we try to fix a gauge through the Faddeev–Popov procedure.

This is due to the newly introduced fields being inevitably coupled with a metric. The

solution is to add a metric-dependent term, the gravitational Chern-Simons action,

which will cancel the metric dependence in the path integral. This section is adapted

from a combination of [13] and [14].

3.6.1 Gauge Invariance and the Quantization of the Level

In order to generalize the concepts seen in the previous section to non-Abelian gauge

groups, we must use the language of differential geometry and bundles. For an introduc-

tion to bundles, refer to appendix B. As before, we need a 3-manifold M representing

spacetime, and a compact Lie group G, with Lie algebra g. Consider a principal G-bundle

with projection π : E → M, where E is the total space and M is the root space. Sections

of E are maps g : M → E which smoothly assign to each x ∈ M a point in E. We call

the g maps gauge transformations, which can be thought of as assigning a group element

to every point in spacetime. We can also consider infinitesimal generators of g(x), which

are in g, and so we think of g(x) as a g-valued function. Principal connections on E

are g-valued 1-forms on M, A(x) = A(x)µdx
µ, which is precisely our gauge field. As

Aµ ∈ g, we can expand Aµ in terms of a basis in g, Aµ = AaµT
a, where T a are the gener-

ators of the Lie algebra and a is the gauge group index. Now, we can ask what happens

to Aµ under gauge transformations, or in other words, what happens to the connection

under G-actions? We proceed in the usual way, by requiring the covariant derivative

Dµ = ∂µ + [Aµ, · ] to be invariant (similar to the process in Yang-Mills theory), and we

obtain

Aµ → A′
µ = g−1Aµg + g−1∂µg. (3.52)

We already saw for the Abelian case that gauge invariance is problematic for the Chern-

Simons action. Hence, we should check how the non-Abelian action transforms under

gauge transformations,

SCS [A] =
k

4π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (3.53)

=
k

4π

∫
M
d3xϵµνρTr

(
Aµ(∂νAρ − ∂ρAν) +

2

3
Aµ[Aν , Aρ])

)
, (3.54)
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which after a lot of algebra simplifies to

δSCS [A] =
k

4π

∫
M
d3xϵµνρ

(
∂µTr

[
(∂νg)(g

−1Aρ)
]
+

1

3
Tr
[
(g−1∂µg)(g

−1∂νg)(g
−1∂ρg)

])
,

(3.55)

=
k

4π

∫
M
d3xϵµνρ∂µTr

[
(∂νg)(g

−1Aρ)
]
+ 2πkw(g) (3.56)

The first term is the total derivative we saw in the Abelian case, and

w(g) =
1

24π2

∫
M
d3xϵµνρTr

[
(g−1∂µg)(g

−1∂νg)(g
−1∂ρg)

]
(3.57)

is the “winding number” of g, which is quantized [20]. In particular, it is an integer

up to a constant prefactor, which we can absorb into the normalization of the trace

(here, by Tr we mean a multiple of the Killing form on g, which can be fixed to make

w(g) ∈ Z). In conclusion, SSC → SCS + 2πkw(g), and by the same argument as in the

Abelian case, we must preserve the path integral, and this forces k ∈ Z. When w(g) ̸= 0,

we call g a “large gauge transformation”, as it wraps non-trivially around the gauge group.

3.6.2 Wilson Loops and the Path Integral

We have seen that the path integral can be rewritten as the expectation value of Wilson

loops. However, Wilson loops for non-Abelian gauge groups are slightly more complicated.

First, fix a representation R of G, and let γ be a closed curve in M. We can then define

Wilson loops as

WR[γ] = TrR

[
P exp

(
i

∮
γ
dxµAµ

)]
, (3.58)

where P is the path-ordering operator. This expression is analogous to the propagator

T exp
(
−i
∫
dtH

)
, T being the time-ordering operator. The path-ordering operator is

needed as the generators of the group at different points of the path do not commute.

Hence, eq 3.58 is just the trace of

(1 + iAaµ1(x1)T
adxµ11 )(1 + iAbµ2(x2)T

bdxµ22 ) ... (1 + iAzµn(xn)T
zdxµnn ), (3.59)

where we have divided the path γ into small steps of length dxi. From this, we can define

a link as the disjoint union of several paths, L = ∪ra=1γa, and a Wilson link as

W [L] =

r∏
a=1

WRa [γa]. (3.60)
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Finally, we can write the path integral for a general simple Lie gauge group G as

Z[A,L] = ⟨W [L]⟩ =
∫

DAeiSCS [A]W [L]. (3.61)

Witten proved that the expectation value of Wilson loops is a knot invariant, something

we expect from a topological theory. In particular, for SU(N) it can be shown to be the

HOMFLY polynomial, which in the special case of SU(2) becomes the Jones polynomial

[14, 21]. Note that the partition function is no longer Gaussian, as there are terms of

order 3 in powers of the gauge field. Therefore, the path integral cannot be evaluated

explicitly and we estimated it through a saddle point approximation. We will consider

the large k limit, as the exchange statistics go like 1/k and become small in this limit.

The path integral can be estimated as the sum of contributions near the stationary phase

(δSCS = 0). Here we already run into trouble, as it is hard to solve the equations of

motion in the first place. Nevertheless, in order to progress, let Aα be the αth solution to

the classical equations of motion. For convenience, also define SCS [A] = kICS [A], which

makes our first estimate of the path integral

Z ≈
∑
α

µ[Aα] =
∑
a

eikI[A
α], (3.62)

where µ[Aα] is the saddle point contribution of Aα. Next, we can improve the calculation

of Z to include fluctuations around the classical solutions. As usual, perform a field

redefinition Aµ = Aαµ + aµ, where DA = Da. This makes the action

SCS [A] = kI[Aα] +
k

4π

∫
M

Tr(a ∧Da) + ..., (3.63)

= kI[Aα] +
k

4π

∫
M
d3xϵµνρTr(aµDνaρ) + ..., (3.64)

where Dµ = ∂µ + [Aαµ, ·] is the covariant derivative. Now, the action is approximately

quadratic, so the path integral is Gaussian and can be solved. However, first we have to

fix the gauge on a, which we will do through the Faddeev–Popov gauge fixing procedure.

We will work in Lorenz gauge Dµa
µ = 0, which we can force in the path integral by

adding Faddeev-Popov-DeWitt ghosts (see appendix C for the derivation),

S[a] → S[a] + Sgf [ϕ, a] + iSgh[c̄, C], (3.65)

=

∫
M

Tr

(
k

4π
a ∧Da+ ϕ ∗D ∗ a+ ic̄D ∗Dc

)
, (3.66)

=

∫
M
d3xTr

(
k

4π
ϵµνρaµDνaρ + ϕDµa

µ + ic̄DµD
µc

)
, (3.67)

where ϕ, c̄, c are ghost fields, and c and c̄ anticommute. Most importantly, note that

the ghost fields are coupled to a metric. As we will see later, this breaks diffeomorphism
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invariance, which will come back to haunt us. The saddle point contribution becomes

µ[Aα] = eikI[A
α]

∫
DaDϕDc̄Dc exp

[
i

∫
M

Tr

(
k

4π
a ∧Da+ ϕ ∗D ∗ a+ ic̄D ∗Dc

)]
.

(3.68)

Note that the c̄ and c fields are decoupled from the others and can be directly evaluated,∫
Dc̄Dc exp

[
−
∫
M

Tr (c̄DµD
µc)

]
= det(DµD

µ), (3.69)

where we note that c and c are Grassmann variables. The rest of the path integral is

more complicated. It turns out that the first two terms can be evaluated to 1/
√

det(L−),

where L = ∗D + D∗ is an adjoint operator which maps odd forms into even forms and

vice-versa, and L− is the restriction of L which maps odd forms to even forms. To see

this, consider H = (a, ϕ), taking a to be a 1-form and ϕ a 3-form. Then, consider the

following

H ∧ ∗L−H = H ∧ (D + ∗D∗)H = H ∧DH +H ∧ ∗D ∗H (3.70)

= a ∧Da+ ϕ ∧ ∗D ∗ a, (3.71)

where we have used ∗∗ = 1 in an odd-dimensional manifold, and in that the result must

be a 3-form in order to be integrated. The terms in eq. 3.71 are the only ones that make

3-forms. Noting that eq. 3.71 is the remaining of the action up to rescaling of a and ϕ,

(and that ∗D ∗ a is a 0-form, so the ∧ is not needed), we can write the rest of the action

as ∫
DH exp

[
i

2

∫
M

Tr (H ∧ ∗(L−H))

]
=

1√
det(L−)

. (3.72)

Bringing this together,

µ[Aα] = eikI[A
α]det(DµD

µ)√
det(L−)

. (3.73)

However, now a few problems arise. Firstly, µ[Aα] depends on the metric. This should

not be surprising as Z itself, once the ghosts are introduced, depends on the metric.

Secondly, the ratio of determinants is complicated. It turns out that the absolute value is

the so-called “Ray–Singer torsion” [22], Tα of the connection Aα. However, the phase will

have to be regularized. Note that as DµD
µ is positive and self-adjoint, det(DµD

µ) ∈ R+,

but the phase of det(L−) is more complicated, as it diverges [14]. However, it can be

regularized, after which the phase depends on the signature of L−, the difference between

positive and negative eigenvalues. Unfortunately, this is also not well defined, but it can

be regularized once again, making the phase eiπη[A
α]/2, where the “eta invariant” is given
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by

η[Aα] =
1

2
lim
s→0

∑
λ ̸=0

exp

 iπ
4

∑
j

sign(λj)

 . (3.74)

where λj are the eigenvalues of the L− operator. Using the Atiyah–Patodi–Singer index

theorem, we can rewrite the eta invariant in terms of other quantities,

1

2
(η[Aα]− η[0]) =

c2(G)

2π
I[Aα], (3.75)

where c2(G) is a topological invariant known as the quadratic Casimir of G. The path

integral becomes

Z ≈ eiπη[0]/2
∑
α

exp

[
i

(
k +

c2(G)

2

)
I[Aα]

]
Tα. (3.76)

Nevertheless, the form of the path integral is not particularly important. The thing to

note is that it depends on η[0], which is not a topological invariant and depends on the

metric. Therefore, the path integral is not diffeomorphism invariant, meaning that a

classical symmetry is broken at the quantum level, so the theory is anomalous. This

anomaly is known as the “framing anomaly” but note this is not the same framing as the

one we discussed for regularizing Φs[γ].

3.6.3 The Framing Anomaly

In order to obtain a theory whose path integral is a topological invariant, we have to add

a counterterm to the original Chern-Simons action. As we do not want to change the

dynamics of the vector potential, the counterterm should not contain A itself. We also

require the contribution of this counterterm to be metric-dependent and to exactly cancel

the metric dependence on Z to obtain a topological invariant. We shall call this term the

“gravitational counterterm” as it depends on the metric. The term we are looking for is

known as the “gravitational Chern-Simons action”, as it has the same form, but is made

up of the Levi-Civita connection ω instead of the vector potential,

I[g] =
1

4π

∫
M

Tr

(
ω ∧ dω +

2

3
ω ∧ ω ∧ ω

)
. (3.77)

By the Atiyah–Singer index theorem again, we can write

Ξ =
1

2

η[0]

dim(G)
+

1

12

I[g]

2π
, (3.78)
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which is a topological invariant. Finally, this contribution makes the path integral well-

defined and a topological invariant of the spacetime manifold M,

Z = eiπ dim(G)Ξ
∑
α

exp

[
i

(
k +

c2(G)

2

)
I[Aα]

]
Tα. (3.79)

However, the addition of this counterterm comes at a cost. I[g] is not entirely well

defined, analogously to how SCS is not entirely well defined, as gauge transformations

can add 2πkn (n ∈ N) to its value. Similarly, “gauge transformations” in ω, known as

framing (again, this is a different framing to the one discussed when regularizing Φs[γ]),

can change the value of I[g] → I[g]+ 2πs (s ∈ N). This can be rephrased in the language

of bundles. Every oriented 3-manifold can have its tangent bundle trivialized. Such

trivialization is what we call framing. As there is no unambiguous value for I[g], one

must describe what happens to the path integral under a change of framing,

Z → exp

(
2πisdim(G)

24

)
Z. (3.80)

As a side note, if the gauge group happens to be G = SU(5), then dim(G) = 24, and the

phase obtained under a change of framing becomes unity. Therefore, there is no framing

anomaly in SU(5) Chern-Simons theory.

3.7 Hilbert Space Structure

In this section, we give insight into the structure of the Hilbert space obtained from

the non-Abelian Chern-Simons action, without reference to the path integral, a theory

developed by Witten and Atiyah. This section will mainly take the gauge group to be

SU(N), unless otherwise stated, and will work on a 3-manifold M = R × Σ. The main

source used for this section is [7].

3.7.1 The Phase Space and Hilbert Space Dimension

Let us start with the non-Abelian Chern-Simons action in the Coulomb gauge,

SCS =
k

4π

∫
M
d3xϵij Tr

(
AiȦj

)
. (3.81)

The corresponding equal time commutation relation obeyed by the gauge field is

[Aai (x⃗), A
b
j(y⃗)] =

2πi

k
ϵijδ

abδ(2)(x⃗− y⃗), (3.82)

constrained to the requirement of A begin a flat connection (F = dA+A ∧A = 0). The

resulting phase space after implementing this constraint, M , is called the “moduli space

of flat connections”, which looks like a compact manifold with some singularities. As we

will see, M will inherit a symplectic structure from the unconstrained phase space.
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It turns out, that finding the flat connections on Σ is something we have already done

for the special case Σ = T 2 in section 3.5. The solutions were parameterized by the

class of non-trivial Wilson loops. Here the same thing applies. For the gauge group

G = SU(N), there are N2 − 1 generators. In other words, there are N2 − 1 holonomies

for each non-contractible cycle. The added complication here is that one must identify

flat connections that differ by a gauge transformation. When this is done, one arrives at

the conclusion that the moduli space M had dimension (2g − 2)(N2 − 1), where g is the

genus of Σ. Note that as the Chern-Simons action is first order in derivatives, the Ai

describe both the positions and momenta of the system, meaning that the phase space P
is just the moduli space M . Roughly speaking, by Heisenberg’s uncertainty principle, we

expect a quantum degree of freedom per unit volume in phase space. AsM is compact, it

has a finite symplectic area, so we expect the Hilbert space on M to be finite-dimensional.

The question one might ask now is, what is the dimension of the Hilbert space H when

quantizing the SU(N) Chern-Simons action on a space manifold Σ? Let’s start with a

simple example. When Σ = S2, there are no non-contractible loops (or flat connections),

so there is one single state, dim(H) = 1. It can be shown that when G = SU(2), the

dimension of the Hilbert space corresponding to a space manifold with g > 1 is [23],

dim(H) =

(
k + 2

2

)g−1 k∑
j=0

[
sin

(
(j + 1)π

k + 2

)]2(g−1)

. (3.83)

For the case Σ = T 2 and g = 1, dim(H) = k + 1. Finally, it is possible to compute the

dimension of the Hilbert space by evaluating the path integral in the absence of sources

and under a cyclic time manifold S1 [24],

Z =

∫
DA exp

(
ik

4π

∫
S1×Σ

d3xS[A]

)
= dim(H). (3.84)

3.7.2 Adding Particles

We are finally at the point where we can add sources to the theory, which couple to the

vector potential as usual, Tr(AµJ
µ). The difference now is that the current must trans-

form under the Gauge group, as usual in non-Abelian Yang-Mills theory. Unfortunately

for us, this means we can’t just pick a static, non-dynamic background current, it carries

degrees of freedom. We will call this degree of freedom color, in analogy to QCD. As

usual, if we have a field that transforms under the fundamental representation of SU(N),

we can write the field as an N component vector, wγ , γ ∈ {1, ..., N}. As the gauge

group is SU(N), the quantify w†w = ww† is invariant. Further, we will define two field

configurations to be equivalent if w′ = eiθw. Without this restriction, wγ would span the
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space S2N−1,

w†w =
N∑
γ=1

|wγ |2 =
N∑
γ=1

(wReal
γ )2 + (wImag

γ )2 = κ, (3.85)

which is the equation of the surface of a 2N dimensional sphere. After associating

field configurations that differ by a complex phase, the resulting manifold becomes

S2N−1/U(1) = CPN−1. Consider the following action for w,

Sw =

∫
dt(iw†Dtw − κα), (3.86)

where Dt = ∂t− iα is the covariant derivative, and α is a new gauge field. This action has

a U(1) symmetry which associates w and eiθ(t)w. Further, the equation of motion of α is

w†w = ww† = κ, so the length constraint is satisfied. Therefore, the field configurations

allowed by the equations of motion span CPN−1. We can now couple this color degree of

freedom to the Chern-Simons field,

Sw =

∫
dt
(
iw†Dtw − κα− w†A0(t)w

)
, (3.87)

where A0(t) = A0(t, x⃗ = x⃗0) represents a stationary particle at x⃗0. The corresponding

equation of motion is

i
dw

dt
= A0(t)w, (3.88)

meaning that w precesses in a way dictated by the Chern-Simons field. It is now simple

to quantize this system, starting with the color. The commutation relations read

[wγ , w
†
γ′ ] = δγγ′ . (3.89)

Following the usual canonical quantization procedure, define a vacuum state |0⟩ as the

one which satisfies wγ |0⟩ = 0 ∀γ. From this, we can construct states in the Fock space

as

|γ1, ..., γn⟩ = w†
γ1 ...w

†
γn |0⟩ . (3.90)

Recall that classically we want the length w†w = ww† = κ. However, at the quantum

level, w†w ̸= ww†. A solution is to keep

Q =
1

2
(w†w + ww†) = w†w +

N

2
(3.91)

fixed and equal to κ. Note that this symmetric choice shifts the spectrum by N/2,

meaning that when N is even, Q is an integer, and when N is odd, Q is a half-integer.
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For convenience, it is better to define

κeff = κ− N

2
, (3.92)

and the quantization condition becomes κeff = w†w = n̂w ∈ N, where n̂w is the number

operator of the color degree of freedom. Hence, if κeff = 0, there are no particles and

the only allowed state is |0⟩. If κeff = 1, there is a single particle. As there are N types

of color particles, the Hilbert space contains N states, {wγ |0⟩}. If κeff = 2, then there

are two particles. However, not all pairs of wγ , wγ′ give rise to different states, by eq.

3.89, if γ ̸= γ′ then wγwγ′ |0⟩ = wγ′wγ |0⟩. Therefore, there are in total 1
2N(N + 1)

distinct states, which transform under the symmetric representation of SU(N). This

process generalizes, by considering higher κeff we can build all symmetric representations

of SU(N). A very similar analysis shows that if we quantize wγ with anti-commutators

instead of commutators, the resulting particles would transform under the anti-symmetric

representations of SU(N).

3.7.3 Wilson Lines

Let us calculate the probability amplitude of a particle starting and ending in the wγ

state. As we are dealing with a single particle, we are considering the κeff = 1 theory,

and particles transform under the N representation of SU(N).

in ⟨wγ |wγ⟩out =
∫

DαDwDw†eiSw[w, α; A0]wγ(t = ∞)w†
γ(t = −∞) =W [A0], (3.93)

which can be evaluated to,

W [A0] = Tr

[
P exp

(
i

∫
dtA0

)]
, (3.94)

where the trace is evaluated in the defining representation, and again P is the path

ordering operator. This object is known as a Wilson line. If one considers any time slice

Σ of the manifold, it could be the case that a Wilson line passes through it. Now, we

can see what happens to the Chern-Simons theory if we insert n Wilson lines. Let the

representation of each line be Ri, i ∈ {1, ..., n}, and be located at x⃗i. As an example, let

M = R× S2. We already saw that without Wilson lines there is a single state, as there

are no non-contractible loops. However, now we will get a different Hilbert space, Hi1...in .

Recall the constraint without sources is j12 = 0. In the presence of n Wilson lines w
(i)
γ ,

this condition reads

k

2π
fa12(x⃗) =

n∑
i=1

δ(2)(x⃗− x⃗i)w
(i)†T aw(i), (3.95)

where T a are the generators of SU(N), and the right-hand side takes the role of a current

with internal degrees of freedom wi which transforms under the gauge group. One can
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see from eq. 3.95 that the Dirac quantization condition applies to each fa12 individually,

which we expect to be true for a compact gauge group.

3.7.4 Dimension of the Hilbert Space

As before, it is easier to consider the weakly coupled (large k) limit. Firstly, we seem to

have a problem, as the integral over 1
4πf

a
12 ∝ 1

k ∈ Z, which for very large k, non-trivial

charges looks impossible. Therefore, we require the charges on the right-hand side of

eq. 3.95 to cancel each other out. This is equivalent to color charge in QCD, where by

confinement, we require the total color charge to vanish. This is only possible if baryons

transform under the trivial representation of the QCD group SU(3). In an analogous

way, we can take tensor products of the representations of each Wilson loop, Ri, and this

must have a decomposition that includes the trivial representation.

n⊗
i=1

Ri = 1p ⊕ ..., (3.96)

where p ∈ N is the number of times 1 appears in the decomposition. Each 1 gives a

different allowed state in the Hilbert space. Therefore, we conclude that

lim
k→∞

dim(Hi1...in) = p. (3.97)

However, this is an upper bound for large k. For two Wilson lines, we require R1 =

R2 so that the tensor product of representations has the trivial representation in its

decomposition, otherwise the Hilbert space is empty. Consider now three Wilson loops,

with representations Ri, Rj , Rk. We can write the tensor products as

Ri ⊗Rj =
⊕
m

Nm
ij Rm, (3.98)

Ri ⊗Rj ⊗Rk =
⊕
m1m2

Nm1
ij Nm2

m1k
Rm2 , (3.99)

where Nk
ij is the number of times Rk appears in the decomposition of Ri ⊗ Rj . We are

interested in the number of times the trivial representation, call it R1, appears in this

expansion,

dim(Hijk) =
∑
m1

Nm1
ij N1

m1k. (3.100)

Using the fact that N1
m1k

is non-zero only if m1 = k,

dim(Hijk) = Nk
ij . (3.101)
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Now consider 4 Wilson loops. We can calculate the tensor product of the representations

as

Ri ⊗Rj ⊗Rk ⊗Rk =
⊕

m1...m3

Nm1
ij Nm2

m1k
Nm3
m2l

Rm3 , (3.102)

from which we conclude that the dimension of the Hilbert space is

dim(Hijkl) =
∑
m1

Nm1
ij N l

m1k. (3.103)

It is easy to see that the general case is [25]

dim(Hi1...in) =
∑

m1...mn−3

Nm1
i1i2

Nm2
m1i3

...N in
mn−3in−1

, (3.104)

where we note that this is the same expression as the number of fusion channels of n

anyons to the vacuum (eq. 2.12)! In fact, the relationship between the dimension of the

Hilbert space and the fusion rules is not a coincidence. To see the full derivation, refer

to [26].

3.7.5 Fusion Rules

We shall start with a simpler example, SU(2)k (SU(2) gauge group and level k), whose

representations are labeled by its spin s. s takes half-integer values and corresponds to

the representation d, where d = 2s + 1. The tensor product of two representations is

given by

r ⊗ s = |r − s| ⊕ |r − s|+ 1⊕ ...⊕ r + s− 1⊕ r + s. (3.105)

The fusion rules for anyon types r and s look very similar, but with some subtleties.

Firstly, we require the spin of the representation, j, to be j ≤ k/2. The fusion rules are

obtained from throwing away any representations that do not obey this constraint and

some further restrictions. The correct version is

r × s = |r − s|+ ...+min(k − r − s, r + s). (3.106)

As an example, the fusion rules for k = 2 read

2× 2 = 1+ 3, 2× 3 = 2, 3× 3 = 1, (3.107)

with all fusions of the form d × 1 = d. These are the same fusion rules as the Ising

anyons we talked about in section 2.3.2, where 2 = σ and 3 = ψ. It turns out that this

is no coincidence, and the Ising anyons are related to the SU(2)2 Chern-Simons theory,

and play a role in the ν = 5/2 FQHE state, which we will briefly discuss in section 4.4.

In addition, the other example of non-Abelian anyons we saw, the Fibonacci anyons, are
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related to the SU(2)3 Chern-Simons theory (there are more particles than the Fibonacci

anyons present), and are thought to occur in the ν = 12/5 FQHE state.

We are now going to explain the general fusion rules for SU(N)k. This is mainly for

completeness and we are just going to explain the way they are calculated, but we will

not explain where they come from. We choose to do this since the process is quite

convoluted and not particularly illuminating. We begin by stating that in the same way

we were restricted to j ≤ k/2 in SU(2)k, here we are restricted to l1 ≤ k, where l1 is the

number of boxes in the first row of the Young tableau of the representation. In the case

of SU(2)k, l1 = 2s, so our generalization is consistent with what we know so far. Then,

define

t = l1 − k − 1. (3.108)

If t < 0, keep the diagram, and if t = 0, reject the diagram (as then l1 > k). When t > 0

things get more interesting. Starting from the rightmost side of the first row, and moving

downwards and left, remove t blocks from the Young tableau. Then, starting at the

bottom of the first column and moving up and right, add t boxes to the Young tableau.

Then, include a sign (−1)r−+r++1 to the diagram, where r− is the number of columns

that had boxed removed, and r+ is the number of columns that had boxes added. Then,

repeat the process until t ≤ 0. Let us do an example, the third fusion rule for SU(2)2

discussed above. The representations follow the decomposition

The first two terms on the right-hand side have t < 0, so we keep them. The third term

is more interesting as it has t = 1. So, we remove 1 block from the right of the first (and

only) row, shown in red, and we add a block on the bottom of the first column, shown in

green. As we are dealing with SU(2), a column of 2 blocks can be removed, giving us the

3 representation again. However, we have not yet talked about the sign. One column (the

fourth one) got a box removed, so r− = 1. Similarly, one row got a box added, so r+ = 1.

Therefore, this diagram is associated with a negative sign which cancels the second term

in the decomposition. This leaves us the expected result for the fusion, 3× 3 = 1.

3.8 Asides

Chern-Simons theory happens to be closely related to several other fields of physics. We

will greatly discuss its applications in condensed matter in the following chapters but also

want to give some intuition about other places in which it comes up. These examples are

adapted from [13].
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3.8.1 θ Term in Yang-Mills Theory

The 3D Chern-Simons theory is related to the 4D Yang-Mills [27] theory in a manifold

X with a boundary ∂X = M, in which the Chern-Simons theory resides. Using Stokes’

theorem,

SXCS [A] =
k

4π

∫
M=∂X

A ∧ dA =
k

4π

∫
X
d(A ∧ dA), (3.109)

=
k

4π

∫
X
dA ∧ dA =

k

4π

∫
X
F ∧ F, (3.110)

where we have used d2 = 0. The θ term in Yang-Mills theory is

Sθ[A] =
θ

16π2

∫
X
F ∧ F, (3.111)

which is the same as the bulk action equivalent to a boundary Chern-Simons term.

3.8.2 4D Gauge Theories and Spinors

The 4-dimensional action SXCS depends explicitly on F only, which is a gauge invariant

quantity. However, SXCS is a topological invariant of the spacetime manifold X. For the

theory to hold, for any two 4-manifolds X and X ′ that share the boundary, ∂X = ∂X ′ =

M, we must have the same path integral. This can be achieved if SXCS − SX
′

CS ∈ 2πZ. It

turns out, that this condition is equivalent to the following. If you perform surgery on X

and X ′, by reversing the direction of one of the manifolds, and joining them along their

common boundary, you obtain the manifold Y = (X ∪X ′)/M. If Y is a “spin manifold”

(a manifold that allows the existence of spinors), then the path integral for X and X ′

will be the same and the theory is consistent. In conclusion, 3D Chern-Simons theory is

deeply tied with 4D gauge theories involving fermions.

3.8.3 3D Quantum Gravity

Recall that the Chern-Simons action can be expressed in a coordinate-free manner using

1-forms, L = k
4πA ∧ dA. This is explicitly metric-independent, which forces the stress-

energy tensor to vanish,

TµνCS =
2√
|g|

δL
δgµν

= 0. (3.112)

This has several consequences. Firstly, the Hamiltonian (the 0, 0 component) vanishes.

Secondly, any diffeomorphism or transformation of coordinates leaves the action invariant.

These two properties are common to that of gravity, in particular, 3D quantum gravity

to first order is simply a Chern-Simons term [28].
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Chapter 4

The Fractional Quantum Hall

Effect

Perhaps one of the most active topological phases being researched is the Fractional

Quantum Hall Effect (FQHE). In this section, we discuss effective field theoretic models

of quantum Hall states. We will start with the classical Hall effect, then we will explain

the integer quantum Hall effect from the filling of Landau levels, and we will end our

discussion with a field-theoretic treatment. It will turn out that the Chern-Simons action

accurately describes the integer quantum Hall effect. Lastly, we will add an additional

quasi-hole field to our theory, which will explain the 1/m filling factor Abelian FQHE

states. Adding a hierarchy of fields analogous to that which explains the 1/m states, we

will explain any Abelian fractional state from a field-theoretic perspective. Note that this

is not how the FQHE is usually introduced. The usual way is to argue from the filling

of Landau levels what properties the ground state wavefunction should have, and then

guess the answer [29]. Laughlin was famously good at this, he explained the 1/m states

(known as the Laughlin states) in this fashion.

4.1 The Classical Effect

This section is mainly adapted from [30]. Suppose we have a 2+1 dimensional system,

such as the surface of a metal, with a large magnetic flux through it. Then, if an electric

field is applied and a current is induced, the charges will be deflected by the magnetic

field and cause a current density in the perpendicular direction to the applied E field

and external B field. To be more precise, consider the following setup (figure 4.1), The

classical equation of motion for electrons is given by the Lorentz force

mẍ = −eẏB, (4.1)

mÿ = −e(Ey − ẋB). (4.2)
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Figure 4.1: Setup for the classical quantum Hall effect. There is a B field perpendicular
to the plane, and an E field is applied in the y direction. Consequently, this will induce
a current in the x direction.

We can conveniently express both equations in terms of the complex representation of

position z = x+ iy,

mz̈ − iBeż = −ieEy. (4.3)

The solution to this differential equation is

z(t) = z0e
iωct + vdt+ z1, (4.4)

where ωc = eB/m is the cyclotron frequency, vd = Ey/B is the drift velocity, and z0, z1

are integration constants. Note that the drift velocity term is real, meaning the electron’s

velocity is in the x direction, perpendicular to both the E and B fields. We can calculate

the current density as

Jx = n(−e)vd, (4.5)

where n is the charge density. Finally, using Ohm’s law,(
Jx

Jy

)
=

(
σxx σxy

−σxy σxx

)(
Ex

Ey

)
, (4.6)

−σxy = − Jx
Ey

=
ne

B
= σH (4.7)

where σH is the Hall conductivity.
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4.2 The Integer Effect

It turns out that the analysis above is not the full story. The thermal de-Broglie wave-

length is proportional to T−1/2 (T being the temperature), so as the temperature drops,

quantum effects become more important. In addition, under large magnetic fields, the

energy levels of electrons become quantized into what are known as Landau levels. At

low temperatures and large B fields, the Hall resistivity (ρH = 1/σH), is not proportional

to the B field. Instead, it is quantized, see figure 4.2. The Hall resistivity has plateaus

Figure 4.2: Relationship between the Hall resistivity and the applied B field at low
temperature and high field. Instead of a linear relationship, the resistivity is quantized.
Figure obtained from [31].

at values of 1
ν
h
e2
, where ν ∈ N. As we will see, the integer ν happens to be the number of

filled Landau levels. The magnetic fields at which the plateaus occur is when the “filling

factor” ν = nϕ0/B ∈ N, and ϕ0 = h/e is the flux quantum. We can explain this effect as

the filling of Landau levels. Consider the Hamiltonian

H =
(−i∇⃗+ eA⃗)2

2m
, (4.8)

which is obtained by considering a free electron Hamiltonian and using the conjugate

momentum under a vector potential A, p → p + eA. The easiest way to proceed is by

picking the Landau gauge, A⃗ = Bxŷ (representing a B field in the z direction), which
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makes the Hamiltonian

H =
1

2m

(
−∂2x + (−i∂y + eBx)2

)
. (4.9)

As the Hamiltonian has bulk translation invariance along the y direction, we may factorize

the eigenstates as

ψ(x, y) = eikayϕka(x), (4.10)

where ka = 2πa/Ly and Ly is the length of the material along the y axis. Plugging this

ansatz into the time-independent Schrödinger equation,

(−i∂y + eBx)eikay = eikay(ka + eBx), (4.11)

(−i∂y + eBx)2eikay = (−i∂y + eBx)eikay(ka + eBx) = eikay(ka + eBx)2, (4.12)

Heikayϕka(x) = eikay
1

2m
(∂2x + (ka + eBx)2)ϕka(x) = Eeikayϕka(x), (4.13)

Eϕka(x) =

(
− ∂2x
2m

+
1

2
mω2

c (kal
2 + x)2

)
ϕka(x), (4.14)

where l2 = ℏ
eB . We note that the Schrödinger equation for ϕka is a simple harmonic

oscillator with frequency ωc, shifted to x0 = −kal2. Hence, the energy levels are

Ep = ℏωc
(
p+

1

2

)
. (4.15)

These are known as Landau levels. The corresponding ground state eigenfunctions look

like Gaussians centered at x0 and oscillating complex exponentials on y. As we will

explain the integer quantum Hall effect in terms of the filling of Landau levels, we must

calculate the degeneracy of each level p. The range of possible x values is Lx, hence

0 ≤ −kal2 ≤ Lx. Noting that kn is quantized in steps of 2π/Ly, the number of possible

ka values for each Landau level p is

degeneracy =
LxLy
2πl2

=
Area B

ϕ0
=

ϕ

ϕ0
, (4.16)

where ϕ is the total flux through the surface. Define the filling factor ν as the number of

filled Landau levels,

ν =
Ne

degeneracy
=

Ne

ϕ/ϕ0
=
Ne

Nϕ
=
nB

ϕ0
, (4.17)

where Ne is the number of electrons, n is the number density and Nϕ is the number of

flux quanta. We can now express the Hall resistivity in terms of the filling factor as

ρH =
B

ne
=

1

ν

h

e2
. (4.18)

38



Therefore, if ν can only take integer values, then we have found the right quantization

condition. Note that if the chemical potential µ is anything except the exact energy of

one of the Landau levels, ℏωc(p+ 1/2), then exactly an integer number of Landau levels

are filled. However, in experiments what can be controlled is the magnetic field, not the

chemical potential. If the B field is anything except a particular discrete set of values

nϕ0/Z, then the chemical potential will sit excatly on a Landau level. Laughlin showed

that the Hall conductance must nevertheless be quantized [32]. Laughlin’s argument uses

the Byers-Yang theorem, which states that inserting a flux quantum ϕ0 through a hole

in the system leaves the wavefunction invariant [33]. The remainder of the subsection

is based on [3]. Suppose we set up a quantum Hall state on a disk with a hole in the

middle, such that the magnetic field is perpendicular to the disk and the electric field goes

radially around the annulus (see fig 4.3). Consider adiabatically inserting a flux quantum

Figure 4.3: Setup for Laughlin’s argument. A quantum Hall state on the surface of a
disk with an annulus through which a time-varying flux is inserted. By the Hall effect, a
radial current is induced.

through the annulus. By Faraday’s law, an emf E = −dΦ
dt is generated. By Ohm’s law,

I = σHE so

∆Q =

∫
dtI(t) = σH

∫
dtE(t) = −σH

∫
dt
dΦ

dt
= −σHϕ0. (4.19)

By the Byers-Yang theorem, after inserting the flux quantum we must return to the same

state in the bulk. The only thing that could have changed is that an integer number of

electrons r might have moved from the interior of the disk to the exterior, in which case

∆Q = −re, from which we deduce that σH = re2/h.

As an aside, consider the current in a system described by the Chern-Simons action,

SCS [A] =
k

4π

∫
d3xϵµνρAµ∂νAρ, (4.20)

Ji =
δSCS
δAi

= − k

2π
ϵijEj , (4.21)
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which directly implies by Ohm’s law a Hall conductivity of σH = k
2π , whereas we pre-

viously had σH = ν
2π (now we are using units in which e = ℏ = 1). In addition, as we

saw in section 3.2, the Chern-Simons level k must be an integer. Therefore, the Chern-

Simons action describes a system with a quantized Hall conductance, which must be a

multiple of 1/2π. This link between Chern-Simons and the integer quantum Hall effect

is quite suspicious, and indeed we can explain the integer quantum Hall effect as having

a leading Chern-Simons effective action. This is not surprising as it is the lowest-order

term in powers of A which can be written down and is gauge invariant, which has the

greatest contributions for low-energy, long-wavelength dynamics. What is even better is

that this analysis was remarkably simple. We did not have to consider Landau levels or

magnetic fields or solve the Schrödinger equation. In the next section, we will attempt

to describe the fractional quantum Hall effect from a field-theoretic perspective, in which

Chern-Simons theory will play an important role.

4.3 The Abelian Fractional Effect

While we have shown that the Hall conductivity must be quantized, with each plateau

being associated with the fact that the filling factor ν takes integer values, there also

exists quantized Hall states associated with fractional values of the filling factor. In the

last section, we saw how the integer quantum Hall effect could be explained if the leading

term of the theory was a Chern-Simons term. However, this seems to be a problem, as it

looks like it contradicts the existence of Hall states at fractional filling factors. To solve

this issue, we have to violate some assumptions taken in the derivation that ν can only

take integer values. The hidden assumption we took, was that there were no dynamical

degrees of freedom that may affect the low-energy physics, which should be true for any

system with an energy gap to excitations. It turns out that this is not entirely true, there

can be degrees of freedom that are gapped and do affect the low-energy physics. These

are topological degrees of freedom, which dictate the dynamics of the FQHE. In this

section, we describe the topological degrees of freedom needed to explain the FQHE. We

will first consider the Abelian Chern-Simons action, which will explain the FQHE states

with filling factor ν = 1/m, m ∈ Z. Then, we will generalize to other filling factors.

4.3.1 1/m Filling Factors

As explained in the introduction to this subsection, we will first consider an Abelian

U(1) gauge field, aµ, which will explain the 1/m Laughlin states. However, note that aµ

is not the vector potential of electromagnetism. Instead, it is an emergent field, which

comes about from the motion of the underlying electrons. It is completely analogous to

how phonons arise from the collective behavior of atoms in lattice sites. While there is

a relationship between aµ and electronic degrees of freedom, this will become apparent

later. This section is based on [7].
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As seen in section 3.1, the Chern-Simons action by itself gives rise to trivial dynamics. A

solution is to add a Maxwell term,

S[a] =
1

4g2

∫
d3xfµνf

µν +
k

4π

∫
d3xϵµνρaµ∂νaρ, (4.22)

where fµν = ∂µaν − ∂νaµ, and g is a coupling constant. The corresponding equations of

motion are

∂µf
µν +

kg2

4π
ϵνρσfρσ = 0. (4.23)

Firstly, we want to demonstrate that there is an energy gap to excitations (aka, the

particles described are massive). Define

f̃µ =
1

2
ϵµνρfνρ, (4.24)

fαβ = ϵµαβ f̃
µ, (4.25)

where the second equation is obtained by multiplying by ϵµαβ on both sides and using

ϵµαβϵ
µνρ = (δναδ

ρ
β − δραδνβ). This lets us rewrite the equations of motion as

∂µϵ
σµν f̃σ +

kg2

2π
f̃ν = 0, (4.26)(

∂µϵ
σµν +

kg2

2π
ηνσ
)
f̃σ = 0, (4.27)(

∂µ̃ϵσ̃µ̃ν +
kg2

2π
ηνσ̃

)(
∂µϵ

σµν +
kg2

2π
ηνσ
)
f̃σ = 0, (4.28)(

∂µ̃∂µ(δ
σ
σ̃δ

µ
µ̃ − δµσ̃δ

σ
µ̃) +

(
kg2

2π

)2

δσσ̃

)
f̃σ = 0, (4.29)(

∂µ∂µ +

(
kg2

2π

)2
)
f̃σ̃ = 0, (4.30)

where we have used ∂µf̃µ = 0. We recognize the final result as a Klein-Gordon equation

for a particle of mass kg2/2π. This result makes sense, as in the limit as g → ∞, the

mass becomes unbounded and there are no propagating degrees of freedom, exactly what

we would expect if the Maxwell term vanished.

For the remainder of this subsection, we will attempt to write down the path integral,

Z[Aµ] =

∫
DaeiSeff[a,A], (4.31)

for the ν = 1/m states and aµ is a dynamical U(1) gauge field. Here, by Aµ, we mean

the background electromagnetic field on top of the one required to create the Hall state

in the first place. In other words, we have to find the effective action Seff. We know that
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the electromagnetic field Aµ couples to the electron current Jµ. Hence, once we have a

relationship between the electron current Jµ and the emergent field aµ, we will have the

coupling between the two fields. As we need the current to be conserved, pretty much

the only term we can write down that is also gauge invariant is

Jµ =
1

2π
ϵµνρ∂νaρ. (4.32)

The normalization is chosen so that the Dirac quantization condition is satisfied, as

already seen in section 3.2, ∫
S2

d2xJ0 =
1

2π

∫
S2

d2xf12 ∈ Z, (4.33)

or in other words, the smallest allowed non-zero charge is 1. We therefore guess the

effective action to be

Seff =

∫
d3xAµJ

µ − m

4π
ϵµνρaµ∂νaρ, (4.34)

=

∫
d3x

1

2π
ϵµνρAµ∂νaρ −

m

4π
ϵµνρaµ∂νaρ, (4.35)

where m ∈ Z takes the role of the Chern-Simons level. We could also add an ϵµνρAµ∂νAρ

term but this just adds an integer contribution to σH and will be ignored, as we are only

interested in the fractional part. We can now calculate the Hall conductivity predicted

from this action. This is done by integrating out aµ (replacing it with its equation of

motion),

δSeff
δaµ

= −m

2π
ϵµνρ∂νaρ +

1

2π
ϵµνρ∂νAρ = 0, (4.36)

aµ =
1

m
Aµ. (4.37)

This gives an effective action for Aµ as1

Seff =

∫
d3x

1

4πm
ϵµνρAµ∂νAρ, (4.38)

which is the usual Chern-Simons action with a “fractional level” of 1/m. We have

already seen that the corresponding Hall conductance is σH = 1/2πm. Therefore, we

have successfully described 1/m Hall states from a field-theoretic perspective.

We still haven’t considered the dynamics of aµ. To do this, we can couple the emergent

field with its own particle current, jµ. It will turn out that jµ describes quasi-holes and

quasi-electrons in the system. For simplicity, set the electromagnetic field to 0. The

1Please note [7] had a typo, an extra 1/2π as a prefactor.
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equation of motion for aµ reads

1

2π
fµν =

1

m
ϵµνρj

ρ. (4.39)

Consider the simplest case, in which we have a static unit charge at the origin, j0 = δ(2)(⃗0),

j1 = j2 = 0. The equation of motion then becomes

1

2π
f12 =

1

2π
B =

1

m
δ(2)(⃗0). (4.40)

From this, we can conclude that the particles described by the current jµ are charged

under U(1)EM. This can be seen by eq. 4.32,

J0 =
1

2π
f12 =

1

m
δ(2)(⃗0), (4.41)

q =

∫
d2xJ0 =

1

m
. (4.42)

We also see directly from eq. 4.40 that a flux of ϕ0/m is attached to every particle of unit

charge (in units where e = ℏ = 1, ϕ0 = h/e = 2π). Hence, as the particles described by

jµ have flux attached to them and they are charged, they are flux-charge composites and

obey fractional exchange statistics. Recall the exchange angle for flux-charge composites

of charge q and flux Φ is θ = qΦ/2. For the charge density j0 = δ(2)(⃗0), q = 1 and

Φ = 2π/m, so the exchange angle is θ = π/m.

4.3.2 Other Filling Factors

Before generalizing the effective field approach to other filling fractions, let us summarize

what we have done so far. We started with the electron current Jµ in terms of the

emergent field aµ, eq. 4.32. Then, we coupled the EM field to its current and gave aµ a

Chern-Simons term. We can now define further emergent fields, like ãµ, which is related

to the quasi-particle current by

jµ =
1

2π
ϵµνρ∂ν ãρ, (4.43)

and give it a Chern-Simons term in the action,

Seff[a, ã, A] =

∫
d3xAµJ

µ − m

4π
ϵµνρaµ∂νaρ + aµj

µ − m̃

4π
ϵµνρãµ∂ν ãρ, (4.44)

=

∫
d3x

1

4π
ϵµνρAµ∂νaρ −

m

4π
ϵµνρaµ∂νaρ +

1

2π
ϵµνρaµ∂ν ãρ −

m̃

4π
ϵµνρãµ∂ν ãρ. (4.45)

We can now compute the Hall conductivity in the same way, integrating out ãµ,

Seff[a,A] =

∫
d3x

1

4π
ϵµνρAµ∂νaρ −

m

4π
ϵµνρaµ∂νaρ +

1

4πm̃
ϵµνρaµ∂νaρ, (4.46)

=

∫
d3x

1

4π
ϵµνρAµ∂νaρ −

m− 1/m̃

4π
ϵµνρaµ∂νaρ, (4.47)
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and then aµ,

Seff[A] =

∫
d3x

1

4π(m− 1/m̃)
ϵµνρAµ∂νaρ. (4.48)

From this, we conclude that the Hall conductivity is

σH =
ν

2π
, (4.49)

ν =
1

m− 1
m̃

. (4.50)

We can also use the arguments developed for the 1/m states to calculate the charge and

exchange angle. For a static quasi-hole at the origin that couples to a, the equations of

motion are

mf12 − f̃12 = 2πδ(2)(⃗0), m̃f̃12 − f12 = 0, =⇒ f12 =
2π

m− 1/m̃
δ(2)(⃗0). (4.51)

while if the current couples to ã,

mf12 − f̃12 = 0, m̃f̃12 − f12 = 2πδ(2)(⃗0), =⇒ f12 =
2π

mm̃− 1
δ(2)(⃗0). (4.52)

Hence, the fractional charges of the emergent quasiparticles are

q(a) =
1

m− 1/m̃
, (4.53)

q(ã) =
1

mm̃− 1
. (4.54)

For example, in the ν = 5/2 FQHE state, m = 3 and m̃ = 2, from which we obtain the

charges q(a) = 2/5 and q(ã) = 1/5, which has been measured experimentally.

4.3.3 Generalization

This procedure of coupling new fields to the currents of previous ones recursively can be

easily generalized. Consider N emergent fields aiµ and the action2

Seff[a
i
µ, A] =

∫
d3x

1

2π
tiϵ

µνρAµ∂νa
i
ρ −

1

4π
Kijϵ

µνρaiµ∂νa
j
ρ, (4.55)

where Kij encodes all the couplings between emergent fields and ti specifies which com-

bination of fields represents the electron current. For example, the analysis above with 2

emergent fields used ti = (1, 0), and

Kij =

(
m −1

−1 m̃

)
. (4.56)

2Please note that [7] had a typo, they did not negate the second term, which means their following
conclusions are wrong by a sign
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We can perform the same analysis by integrating our emergent fields with their equations

of motion, which are given by

δSeff
δaiµ

= − 1

4π
Kijϵ

µνρ∂νa
j
ρ − ∂σ

(
1

2π
tiϵ

νσµAν −
1

4π
Kjiϵ

νσµajν

)
, (4.57)

=
1

2π
tiϵ

µσν∂σAν −
1

2π
Kijϵ

µνρ∂νa
j
ρ =

1

2π
ϵµνρ(ti∂νAρ −Kij∂νa

j
ρ), (4.58)

=⇒ tiAρ = Kija
j
ρ, (4.59)

ajρ = (K−1)jitiAρ. (4.60)

This makes the effective action for the EM field

Seff[A] =

∫
d3x

1

4π
ti(K

−1)ijtjϵ
µνρAµ∂νAρ. (4.61)

As usual, the filling factor is given by the “level” of the effective Chern-Simons term for

A,

ν = ti(K
−1)ijtj , (4.62)

σH =
ti(K

−1)ijtj
2π

. (4.63)

In addition, we can work out the charge of each quasi-particle by coupling a current

jµ = (δ(2)(⃗0), 0, 0) to akµ and setting the background field Aµ = 0. The resulting equation

of motion is

δSeff
δaiµ

= − 1

2π
Kijϵ

µνρ∂νa
j
ρ + δki j

µ = 0, (4.64)

1

4π
Kijϵ

µνρf jνρ = δki j
µ, (4.65)

1

2π
f jαβ = ϵαβµ(K

−1)jkjµ. (4.66)

Using the definition of the electron current,

Jµ =
1

2π
tiϵ

µνρ∂νa
i
ρ,=

1

4π
tiϵ

µνρf iνρ, (4.67)

=
1

2
tiϵ

µνρϵνρσ(K
−1)ikjσ, (4.68)

=
1

2
tiϵ

µνρϵνρ0(K
−1)ikδ(2)(⃗0), (4.69)

J0 = ti(K
−1)ikδ(2)(⃗0), (4.70)

q(ak) =

∫
d2xJ0 = ti(K

−1)ik. (4.71)
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Therefore, the quasi-hole charge associated with field akµ is ti(K
−1)ik. In terms of the

exchange statistics, we can see from eq. 4.66,

1

2π
f j12 = (K−1)jkδ(2)(⃗0), (4.72)

so each quasi-hole of type j has an attached flux of size 2π(K−1)jk. Hence, each quasi-

hole is a flux-charge composite. The exchange angle for switching the positions of a k

particle with a j particle is therefore,

θjk = π(K−1)jk. (4.73)

This analysis, obtained from the action in eq. 4.55, is almost enough to classify all Abelian

FQHE states. All it misses is the “shift” (related to the degeneracy of the ground state)

when we consider quantum Hall states in manifolds with a non-trivial topology. But, for

quantum Hall effects in a flat disk, this is all there is.

4.4 The Non-Abelian Fractional Effect

As one might expect, Chern-Simons theory with non-Abelian gauge groups gives rise to

non-Abelian exchange statistics. We already saw this in section 3.6, the SU(2)2 Chern-

Simons theory describes Ising anyons, and SU(2)3 describes Fibonacci anyons plus some

others. Both of which are non-Abelian, so one might naively expect the non-Abelian

states to follow the same hierarchy but with a different gauge group. Unfortunately, this

is far from the truth. Firstly, in our analysis above, we wrote the current to which the

EM field couples as 1
2π ϵ

µνρ∂νaρ = 1
4π ϵ

µνρfνρ. This is a reasonable guess as it is gauge

invariant. However, if the gauge group is not U(1), then this is no longer true. The

usual way to make a gauge invariant quantity in Yang-Mills theories is to take the trace.

However, this does not help us as while it is true that 1
4π ϵ

µνρTr(fνρ) is gauge invariant,

it also vanishes. Nevertheless, advancements have been make by considering the gauge

group U(N) = U(1) × SU(N)/ZN or similar [34]. The EM field can couple to the U(1)

factor, but coupling the U(1) factor to the rest is more complicated [35]. Other attempts

include mapping the interacting electrons under a magnetic field B, to one of interacting

flux-charge composites under a magnetic field B − 2ϕ0n, with each electron having a

flux attached to them of size 2ϕ0 [36]. This is known as the composite fermion theory.

Other non-field theoretic approaches include guessing the answer, which after all worked

for the Laughlin ν = 1/m states. In particular, the Pfaffian wavefunction is thought to

describe the ν = 5/2 non-Abelian state [37]. However, as of now, there lacks a complete

description of the non-Abelian states.
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Chapter 5

Filling Anomaly in Higher Order

Topological Insulators

5.1 Introduction

As we have seen, the Chern-Simons action is not gauge invariant in a manifold with

a boundary. To cancel this non-gauge invariance, one must add to the action a local

boundary term. The addition of this term often creates a surplus charge in the mani-

fold, known as a filling anomaly. Famously, the FQHE has a filling anomaly, which is

to be expected as we have shown that it can be expressed as a series of Chern-Simons

terms. More recently (May 2023), a similar filling anomaly in Higher-Order Topologi-

cal Insulators (HOTIs) with C2n symmetry was understood in terms of the low-energy

effective field theory [38]. In this chapter, we review this result as an example of how

TQFT is used in condensed matter. HOTIs are topological crystalline insulators (the

energy spectrum in the bulk is gapped), with gapless topological defects. The defects

in question are corners at the boundary and disclination defects. Disclination defects

are geometrical defects in which the discrete local rotational invariance is broken. An

example of a C4 disclination defect is shown in figure 5.1. As these defects are the only

gapless ones, they dominate the low-energy dynamics and often carry a fractional charge

[41]. As such, when we consider the action describing a C4 HOTI, we will consider the

curvature (or rather, the spin connection) as one of the dynamic fields. However, even

in the absence of corner and disclination defects, there remains an excess charge in the

bulk, known as a filling anomaly. This filling anomaly will be explained in terms of the

non-gauge invariance of a Wen-Zee (WZ) term in the action, which must be compensated

by a boundary Gromov-Jensen-Abanov (GJA) term. Thanks to this addition, the theory

does not require a gapless edge mode, but rather a coupling between electromagnetism

and the extrinsic curvature in the gapped boundary theory. The GJA term induces a

charge on the boundary, related to the integral over the extrinsic curvature, explaining

the filling anomaly.
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Figure 5.1: A C4 disclination defect. On the left figure, a square lattice is shown which
is missing one of the four sections (shown in grey), and the side right side of the purple,
and bottom side of the blue sections, represent the same line. On the right, the lattice
has been curved to join the purple and blue regions. Note that every point except the
center has a local C4 symmetry, while the center has a C3 symmetry. In the limit as the
lattice spacing vanishes, this space becomes isomorphic to a cone with deficit angle π/2,
and the Riemann curvature becomes a Dirac δ function [39]. Image obtained from [40].

5.2 The Wen-Zee and Gromov-Jensen-Abanov Actions

Suppose we are on a 2+1 dimensional spacetime manifold M = R×Γ, where R represents

time and Γ the spatial manifold, which in general will have a boundary ∂Γ. As R has no

boundary, ∂M = R× ∂Γ. We will insist that the boundary is gapped (there is an energy

gap to excitations), and coupled to an external electromagnetic field A = Aµdx
µ and the

spin connection ω. For more information on the spin connection in 2+1 dimensions, see

appendix D. For a gapped system, we expect the bulk action to be a local functional of

the fields. This is because if there exists an energy gap ∆E, any correlations arise at

lengths of order 1/∆E, which is small compared to the long wavelength dynamics we are

interested in. We can hence write the action as

S[A, e, ω] =

∫
M

Lloc(e, F,R) + Ltop(A, e, ω), (5.1)

where Lloc is some general local contribution, which is invariant under electromagnetic

U(1) gauge symmetry and local SO(2) rotations of the frame eai , defined in appendix

D. F = dA is the electromagnetic field strength and R = dω is the curvature. Ltop is a

topological term, which is gauge invariant up to a boundary term. Note that the action

described above is the bulk action, so any non-gauge invariance by a boundary term can

be compensated by local counter terms in the boundary theory.

We are interested in energy levels much lower than the energy gap, 1
∆E

∫
A d

2xρ ≪ 1,

where ρ is the electromagnetic energy density and A is the area of a primitive unit cell.
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This means that

Aρ

∆E
=
ϵ0
2

AF 2
i0

∆E
+

1

2µ0

AF 2
12

∆E
≪ 1, (5.2)

AF 2
µν

∆E
≪ 1, (5.3)

Given this condition, the leading terms in the action are those with the fewest powers of

A. As explained in section 1, it is not possible to write a term with a single field that is

gauge invariant up to a boundary term. However, with two fields, there are several terms

we can write down, including

A ∧ dA, (5.4)

ω ∧ dω, (5.5)

A ∧ dω, (5.6)

the first two are individual Chern-Simons terms, and the last is known as the Wen-Zee

action up to a constant prefactor. In order to isolate the C4 HOTI filling anomaly, we

can force the Hall conductivity to vanish (and hence not worry about the quantum Hall

filling anomaly) by picking the level of the Chern-Simons term of A to be zero. Moreover,

we are only interested in the charge distribution, found by taking functional derivatives

with respect to A, so the term ω∧dω is irrelevant and will therefore be neglected. Hence,

the leading contribution to Ltop is

Stop = SWZ =
s̄

2π

∫
M
A ∧ dω, (5.7)

=
s̄

2π

∫
M
d3xϵµνρAµ∂νωρ, (5.8)

where s̄ is the “orbital spin per particle” [38], and is related to the Hall viscosity. Varying

the Wen-Zee action with respect to the vector potential, we obtain an expression for the

ground state 4-current,

Jµ =
δSWZ

δAµ
=

s̄

2π
ϵµνρ∂νωρ, (5.9)

ρ = J0 =
s̄

2π
R̃, (5.10)

where R̃ = ϵ0νρ∂νωρ = ∂1ω2 − ∂2ω1 is the spatial curvature on Γ1. In particular, a

disclination defect of deficit angle α at x⃗0, causes a curvature R̃ = αδ2(x⃗ − x⃗0) [39] in

the limit as the lattice spacing vanishes (this can be understood as when a vector is

parallel transported around a conical singularity, it rotates by the deficit angle). As we

are interested in low-energy, long-wavelength dynamics, we will use this approximation.

In a C4 HOTI, the most common disclination defect has a deficit angle of α = π
2 (although

1In ref [38], the authors incorrectly quote the charge density over neutrality to be ρ = s̄
2π

dω, and then
call dω = R, which is an abuse of notation
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π and 3π/2 are also possible), in which case the charge of the defect is Q = 2
2π × π

2 = 1
2 ,

where we have used s̄ = 2 as it has been shown that 2D magnetic, C4 symmetric HOTIs

are governed by a WZ action with s̄ = 2 [42]. Integrating the charge density over all

space, we find the total charge above neutrality,

Qbulk =
s̄

2π

∫
Γ
d2xR̃. (5.11)

However, in flat geometries where ω = 0, Qbulk vanishes. Therefore, the Wen-Zee action

alone does not explain the filling anomaly. Now, consider the boundary theory. We require

the overall action to be U(1) gauge invariant. Hence, consider the Wen-Zee action under

a gauge transformation2,

SWZ[A,ω, s̄] → SWZ[A+ df, ω, s̄], (5.12)

= SWZ[A,ω, s̄] +
s̄

2π

∫
M
df ∧ dω, (5.13)

= SWZ[A,ω, s̄] +
s̄

2π

∫
M
d(f ∧ dω), (5.14)

= SWZ[A,ω, s̄]−
s̄

2π

∫
∂M

f ∧ dω, (5.15)

where we have used d2 = 0 in eq. 5.14, and Stokes law in eq. 5.15. The negative

sign arises from the change in orientation of ∂M used in Gauss’ law to the convention

described in [43]. The local boundary counter term that cancels this non-gauge invariance

is the Gromov-Jensen-Abanov action. Let K be the extrinsic curvature of ∂M, which

depends on the embedding of ∂M in R × R2, and is defined in appendix E. From this,

we can write the GJA term,

SGJA[A,K, s̄] =
s̄

2π

∫
∂M

A ∧K, (5.16)

=
s̄

2π

∫
∂M

d2xϵµ̄ν̄Aµ̄Kν̄ . (5.17)

The extrinsic curvature differs from the spin connection evaluated at the boundary by a

closed form (for proof, see the supplementary information of [43]),

∂µ̄α = (ω|∂M)µ̄ +Kµ̄, (5.18)

where by (ω|∂M)µ̄ we mean the following. Let σµ̄ be a coordinate on ∂M. The embedding

of ∂M can be characterized by embedding functions Xµ(σα). From this, we can define

a tensor field fµµ̄ = ∂µ̄X
µ that allows us to project tensors in M to ∂M by ωµ̄ = fµµ̄ωµ.

Please note that for convenience, we have used a different convention for the range of

indices in the appendix. Using this, we can see how the GJA term transforms under a

2In ref [38], the authors miss the factor s̄/2π in eq. 5.13, but correct it on the next line
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U(1) gauge transformation,

SGJA[A,K, s̄] → SGJA[A+ df,K, s̄], (5.19)

= SGJA[A,K, s̄] +
s̄

2π

∫
∂M

df ∧K, (5.20)

= SGJA[A,K, s̄] +
s̄

2π

∫
∂M

df ∧ (dα− ω), (5.21)

= SGJA[A,K, s̄]−
s̄

2π

∫
∂M

df ∧ ω, (5.22)

= SGJA[A,K, s̄] +
s̄

2π

∫
∂M

f ∧ dω. (5.23)

Here we have used the fact that df ∧ dα = d(f ∧ dα) (as d2 = 0) is a total derivative and

over a closed manifold the integral vanishes, and that d(f ∧ ω) = df ∧ ω + f ∧ dω, from
which the left hand side vanishes when integrated by Stokes law, as ∂2M = 0. The extra

term is the same as the one obtained for the WZ bulk action but with the opposite sign.

5.3 The Filling Anomaly

Therefore, we are forced to conclude that if the boundary has a gap to excitation, then the

leading order term in the action is the Wen-Zee action, which is not gauge invariant. This

must be compensated by a GJA counterterm that induces a current on the boundary. In

other words, the action describing the system is

Stotal =
s̄

2π

(∫
M
A ∧ dω +

∫
∂M

A ∧K
)
, (5.24)

is U(1) gauge invariant. The inclusion of the GJA term to the action also gives rise to a

non-vanishing 4-current in the boundary,

J µ̄FA =
s̄

2π
ϵµ̄ν̄Kν̄ , (5.25)

where FA stands for filling anomaly. We can work out the charge above neutrality in the

boundary by integrating over the µ̄ = 0 term,

Qboundary =

∫
∂Γ
J0
FA =

s̄

2π

∫
∂Γ
dxK̃, (5.26)

where K̃ = K1
3 is the spatial curvature in ∂Γ. Therefore, the total charge over neutrality

in a magnetic HOTI is given by

QFA =
s̄

2π

(∫
Γ
d2xR̃+

∫
∂Γ
dxK̃

)
= s̄χd, (5.27)

3The authors just have
∫
∂Γ

K, which again is an abuse of notation.
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where we have used the Gauss-Bonnet theorem [44, 38] and χd is the Euler characteristic

of Γ (V −E+F , where V is the number of vertices, E is the number of edges and F is the

number of faces in a graph inscribed within Γ), equivalent to how many times the function

α winds around ∂Γ [43]. In the absence of disclination defects, and assuming Γ ∼= D2

(the 2D disk), then χd = 1, and we recover the known result of a charge above neutrality

of s̄. In the absence of disclinations, R̃ = 0, and all the charge is concentrated in the

boundary, consistent with observations [45]. In conclusion, we have explained the filling

anomaly in C4-symmetric, magnetic HOTIs by insisting on having a U(1) gauge invariant

local theory and considering the leading terms in the bulk action. The only terms we can

write down transform by a boundary term, which is canceled by a counter term in the

boundary theory. This boundary term induces an anomalous current responsible for the

filling anomaly.
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Appendix A

Cyclic Time and Thermal Physics

In this section, we argue that a Wick rotation, τ = it, turns the usual path integral into

the thermal partition function. In doing so, the manifold associated with time goes from

being isomorphic to R to S1. A single particle with position q moving in a potential V (q)

has a corresponding thermal partition function

Z[β] = Tr e−βH , (A.1)

where H is the Hamiltonian and β is the inverse temperature. Let us now write a path

integral for this expression. The path integral the amplitude for a given state |qi⟩ to

evolve into some other state |qf ⟩ is,

⟨qf | e−itH |qi⟩ =
∫ q(t)=qf

q(0)=qi

DqeiS , (A.2)

where S is the action. We can already appreciate a similarity between these two de-

scriptions, one being ruled by e−βH and the other by e−itH . To be more explicit, let us

perform a Wick rotation τ = it. The classical action transforms as

S =

∫ t

0
dt′

[
m

2

(
dq

dt′

)2

− V (q)

]
, (A.3)

= −i
∫ −iτ

0
dτ ′

[
−m

2

(
dq

dτ ′

)2

− V (q)

]
= iSE , (A.4)

where SE is the Euclidean action. Now, to make the connection with thermal field theory,

suppose the particle evolves by an Euclidean time τ = β.

⟨qf | e−βH |qi⟩ =
∫ q(β)=qf

q(0)=qi

Dqe−SE
(A.5)
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Now consider the trace over of e−βH ,

Tr e−βH =

∫
dqi ⟨qi| e−βH |qi⟩ , (A.6)

=

∫
dqi

∫ q(β)=qi

q(0)=qi

Dqe−βH , (A.7)

=

∫
q(0)=q(β)

Dqe−βH . (A.8)

From this, we can conclude that a Wick rotation of the quantum path integrals allows

us the write the thermal partition function in terms of a path integral subject to the

constraint that all paths q(τ) are periodic, with periodicity β. This is analogous to

setting the equivalence τ = τ + β, meaning that the manifold describing the possible

values of τ is isomorphic to S1.
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Appendix B

Brief Introduction to Bundles

Throughout this work, it is assumed that the reader is comfortable with basic differential

geometry, including topological spaces, manifolds, differential forms, connections, covari-

ant derivatives and curvature. However, many aspects of section 3.6 are deeply tied to

the idea of bundles. This appendix will mostly follow [46]. To define bundles, we need

three ingredients, a topological space M known as the “base space”, another topological

space E, known as the total “space”, and a continuous map

π : E → M. (B.1)

The map π is known as the projection. Fixing a point p ∈ M, the preimage of the

projection at p is known as a fibre, Fp,

Fp = preimπ({p}). (B.2)

Therefore, one can express the total space E as the union of all the fibres. If all fibres are

isomorphic to each other, Fp ∼= F ∀p ∈ M, then (E, π,M) is a fibre bundle with typical

fibre F . Next, one can define a section of a bundle as a map

σ : M → E, (B.3)

such that π ◦ σ = idM, the identity map on M. Suppose M represents spacetime and

E is a Lie group G. Then, sections of the bundle (E, π,M) are maps from spacetime to

an element of the group. In other words, a section of the bundle assigns to each point

in spacetime an element of G. This is just what we call a local gauge transformation.

Moreover, we define the principal G-connection on E as a g-valued 1-form. As a quick

aside, we know that in non-Abelian Yang-Mills theory, the vector potential takes values in

the Lie algebra of the gauge group. This is exactly the same as a G-connection. Therefore,

the gauge field is what we call a principal connection in the principal bundle. Finally, we

say that a fibre bundle with typical fibre F is trivial if E ∼= M×F . The topic of bundles
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is a very big topic, and we have only scraped the surface. Nevertheless, this should be

sufficient to understand any mention of bundles in this dissertation.
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Appendix C

Faddeev-Popov-DeWitt Gauge

Fixing Procedure

This working out is adapted from [47]. We would like to work in a modified Lorenz gauge,

F (a) = Dµa
µ = 0. (C.1)

The way to do that is to add a functional Dirac δ function to the path integral which

ensures we have chosen the gauge that guarantees eq. C.1 is satisfied. Then, we will

express the functional δ function in terms of new fields. We will end by dividing by the

volume of the gauge orbit to ensure the path integral converges. As the first step is to add

a δ function to make sure we are on the right gauge, let us find what gauge transformation

that is. Suppose we are on a field configuration which does not satisfy eq. C.1, and want

to perform a gauge transformation to obey the gauge condition,

a′µ = aµ +Dµχ∗, (C.2)

Dµa′µ = Dµaµ +DµDµχ∗ = 0, (C.3)

χ∗ = − 1

DµDµ
Dνaν . (C.4)

Here one has to worry whether 1/DµDµ is defined, as DµDµ could have zero modes.

It turns out that in perturbation theory it is straightforward to give meaning to this

operator, and non-perturbatively it has to do with the Gribov ambiguity [48]. We can

continue by defining a functional Dirac δ function in the way one might expect,∫
DχδF (χ− χ∗(a)) = 1. (C.5)

Inserting this into the path integral,

Zold =
∫

Daµ
∫

DχδF (χ− χ∗(a))e
iSCS [a]. (C.6)
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The functional δ function obeys

δF (F (a)) =
δF (χ− χ∗(a))∣∣∣det( δF (a′)

δχ

)
|χ∗

∣∣∣ , (C.7)

where a′ solves F (a′) = 0. Rearranging the equation for δF (χ−χ∗(a)), the path integral

becomes

Zold =
∫

Daµ
∫

Dχdet

(
δF (a′(x))

δχ(y)

)
δF (F (a

′))eiSCS [a]. (C.8)

In this particular case,

F (a) = Dµa
µ, (C.9)

F (a′) = Dµa
µ +DµD

µχ, (C.10)

δF (a′(x))

δχ(y)
= DµD

µδ(3)(x− y). (C.11)

So an explicit expression for the path integral is

Zold =
∫

Daµ
∫

Dχdet(DµD
µ)δF (Dµa

µ +DµD
µχ)eiSCS [a]. (C.12)

We can now perform a field redefinition to get rid of any χ in the path integral,

aµ → aµ −Dµχ, (C.13)∫
Daµ →

∫
Daµ, (C.14)

eiSCS [a] → eiSCS [a], (C.15)

the last of which is a consequence of the quantized level as already discussed. Implement-

ing this field redefinition and dividing by the volume of the gauge orbit
∫
Dχ,

Zold =
∫

Daµ
∫

Dχdet(DµD
µ)δF (Dµa

µ)eiSCS [a], (C.16)

Znew =
Zold∫
Dχ

=

∫
Daµ det(DµD

µ)δF (Dµa
µ)eiSCS [a]. (C.17)

Finally, we may express the determinant and the functional δ function in terms of new

fields

δF (Dµa
µ) =

∫
Dϕei

∫
d3xTr(ϕDµaµ), (C.18)

det(DµD
µ) =

∫
Dc
∫

Dce−
∫
d3xTr(cDµDµc), (C.19)
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which makes the final expression for the path integral

Znew =

∫
Daµ

∫
Dϕ
∫

Dc
∫

DceiS , (C.20)

where

S =

∫
M
d3xTr

(
k

4π
ϵµνρaµDνaρ + ϕDµa

µ + icDµD
µc

)
(C.21)
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Appendix D

The Spin Connection

We will make heavy use of the spin connection in sections 3.6 and 5. Therefore, while we

assume the reader is comfortable with differential geometry, we will recall some important

results. In particular, we will point out that the spin connection has a single degree of

freedom in 2+1 dimensions in a manifold of the form R×Γ, R signifying time and Γ being

a spatial manifold. This section is based on [43, 49]. We will start by defining a frame

βµa and the corresponding co-frame (β−1)aµ, where a ∈ {0, 1, 2} represents the vector or

co-vector, and µ ∈ {0, 1, 2} are the components. The definition of the spin connection ω,

given a connection Γbca, and a vielbein (β−1)aµ,

ωabµ = (β−1)cµΓ
a
cb. (D.1)

As we have chosen time to be different in the sense that the manifold Γ at any time slice

is the same, let us separate the time and space sections,

vµ = βµ0 nµ = (β−1)0µ, (D.2)

EµA = βµA eAµ = (β−1)Aµ , (D.3)

where A ∈ {1, 2}. For this manifold and for a metric connection, we can restrict spin

connection to only have anti-symmetric spatial components,

ωa0µ = ω0
bµ = ω(AB)

µ = 0, (D.4)

where the parenthesis denotes symmetrization of indices, and we have raised the index

in the last expression with δAB. We can see now that the metric connection is now a

simple 1-form, as opposed to the general case in which it is a matrix-valued 1-form. As

A,B only range over 2 values, and ω is anti-symmetric, we can write

ωABµ = ϵABωµ, (D.5)
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where ϵAB is the Levi-Civita symbol and ϵ12 = 1. Using the frames, we can now define a

metric for the 3-manifold as

γµν = eaµe
b
νδab γµν = EµaE

ν
b δ

ab. (D.6)

If we are only interested in the spatial metric in Γ, this is given by gij = eAi e
B
j δAB.

Consider now Cartan’s structure equations (we will call ω = ωµdx
µ the one form, and

Rab =
1
2R

a
bµνdx

µ ∧ dxν the curvature 2-form),

Rab = dωab + ωac ∧ ωcb. (D.7)

Using ωAB = ϵABω, ϵ
A
Cϵ

C
B = −δAB, and ω ∧ ω = 0 by contraction of symmetric and

anti-symmetric indices,

Rab = ϵABdω, (D.8)

which means that RAB is anti-symmetric with respect to the exchange of indices, and

hence can be written as RAB = ϵABR (and only has spatial components), so

R = dω. (D.9)

This is a remarkably simple result and explains how the spin connection depends on

sources of curvature.
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Appendix E

The Extrinsic Curvature

In this chapter, we develop the notion of the extrinsic curvature, used in section 5.2.

Further, we will use the notation developed in Appendix D but will work at the level

of the connection and embedding functions. As the extrinsic curvature depends on the

particular embedding of ∂M, we must characterize this mathematically. This is done

through embedding functions Xµ(σα), where α ∈ {0, 1} are directions in ∂M. While

Xµ(σα) is not a tensor, we can build one as

fµα = ∂αX
µ. (E.1)

This tensor allows us to pullback covectors from M to ∂M. For example,

nα = fµαnµ. (E.2)

Using the metric on M, γµν , we can swap the indices on fµα ,

fαµ = γαβγµνf
ν
β . (E.3)

As one might expect we can use this map to pullback vectors,

vα = fαµ v
µ. (E.4)

With this information, one can construct a covector normal to ∂M,

Nµ =
1

2
ϵµν1ν2ϵ

α1α2fν1α1
fν2α2

, (E.5)

which has the property

Nα = fναNν =
1

2
ϵµν1ν2ϵ

α1α2fµαf
ν1
α1
fν2α2

= 0. (E.6)
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The last step comes from the fact that α runs from 1 to 2, and α1 ̸= α2 because of the

contraction with the Levi-Civita symbol. By the pigeonhole principle, α must be equal to

either α1 or α2. Suppose α = α1, then, the exchange of µ and ν1 is antisymmetric on the

Levi-Civita symbol but symmetric on the f tensors, meaning the contraction vanishes.

As Nµ has a vanishing projection to ∂M , we conclude it is normal to the surface. Nµ is

normalized,

NµNµ =
1

2
(Nµϵµν1ν2f

ν1
α1
fν2α2

)ϵα1α2 =
1

2
ϵα1α2ϵ

α1α2 = 1, (E.7)

where we have used Nµϵµνρf
ν
αf

ρ
β = ϵαβ. Further, for a surface which does not vary

in time, nµN
µ = 0 [43]. Now, we need to define the derivative on ∂M, but this will

need a connection. The one we use comes from requiring that the vielbein is covariantly

conserved,

Dµβ
ν
a = ∂µβ

ν
a + Γνρµβ

ρ
a − βνb ω

b
aµ = 0, (E.8)

which has the solution

Γµνρ = βµa∂ρ(β
−1)aν + βµaω

a
bρ(β

−1)bν . (E.9)

Using the connection, we define the covariant derivative on ∂M, D̊α. As an example,

consider its action on a mixed field Uµβ ,

D̊αU
µ
β = ∂αU

µ
β + ΓµναU

ν
β − Γ̊γβαU

µ
γ , (E.10)

where

Γµνα = Γµνρf
ρ
α, (E.11)

Γ̊αβγ = fαµ ∂γf
µ
β + fαµΓ

µ
νγf

ν
β . (E.12)

The covariant derivative can be used to define the second fundamental form [50],

IIµαβ = D̊βf
µ
α = ∂αf

µ
β + Γµνρf

ρ
αf

ν
β −

(
fγσ∂αf

σ
β + fγσΓ

σ
νρf

ρ
αf

ν
β

)
fµγ , (E.13)

= ∂αf
µ
β + Γµνρf

ρ
αf

ν
β − fγσ∂αf

σ
β f

µ
γ − fγσΓ

σ
νρf

ρ
αf

ν
β f

µ
γ , (E.14)

f δµII
µ
αβ = f δµ∂αf

µ
β + f δµΓ

µ
νρf

ρ
αf

ν
β − f δµf

γ
σ∂αf

σ
β f

µ
γ − f δµf

γ
σΓ

σ
νρf

ρ
αf

ν
β f

µ
γ = 0, (E.15)

where the last equality comes from f δµf
µ
α = δδα. This makes the first and third terms

cancel, as well as the second and fourth terms. As fµαNµ = 0 by construction, we reach

the conclusion that we can write the second fundamental form as

IIµαβ = NµKαβ, (E.16)
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for some tensor Kαβ. We can easily find an explicit expression for Kαβ by multiplying

both sides by Nµ (recall NµN
µ = 1),

Kαβ = NµII
µ
αβ = NµD̊βf

µ
α . (E.17)

Consider

D̊β(Nµf
µ
α ) = (D̊βNµ)f

µ
α +NµD̊βf

µ
α = 0, (E.18)

where we have used the Leibniz rule explained in [43], and that Nµf
µ
α = 0. From this, we

conclude that Kαβ = −fµa D̊βNµ. Next, we define the extrinsic curvature as

Kα = ϵβγnβKγα = −ϵβγnβfµγ D̊αNµ, (E.19)

= −tγfµγ D̊αNµ = NµD̊αt
µ, (E.20)

where we have used the fact that ϵαβnβ = tα is a spatial tangent vector, tµ = fµγ tγ , and

have flipped the sign and the action of the derivative in the same way as before.
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