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Abstract

This dissertation tells a story about gauge theories and spinors from the early 1920s to the late 1980s. The

first chapter investigates the meaning behind gauge theories and gives a concrete picture of what is meant

by gauge symmetry. We later investigate the inception of gauge invariance in the context of Weyl’s unified

approach to gravity. A later section introduces torsion and the significance of boundary terms. Specifically,

in Einstien’s teleparallel theory, an overlooked boundary term in the original formalism provides a new

look at extrinsic curvature in the presence of torsion. We investigate the geometric aspect of gauge

theories in the formal language of fibre bundles and apply this notion to gravity. The original ECKS

approach of coupling spinors to gravity is modernised using the first-order gravity formulation found

in supergravity. We also highlight problems with translations of the Poincare group in ECKS. The final

chapter reviews subsequent work by Professor Kellogg Stelle and Professor Arkady Tseytlin in symmetry

breaking from the (Anti-)De Sitter to Lorentz group, inducing gravity. It shows how some issues with the

Poincare transformations found in ECKS are explained in a rigorous non-linear framework.
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Chapter 1

Introduction

1.1 Emergence of Gauge theories

1.1.1 Demystifying Gauge Symmetries

Gauge theories generally have a somewhat paradoxical importance in physics; many say gauge symme-

tries do not change the underlying physics, but in the same breath describe them as the bedrock of current

physics. To understand gauge theories, local and global transformations, redundancies, and symmetries

must be well defined. For this discussion, symmetry breaking is left out as this is beyond the scope of this

dissertation. Much of this discussion is a review of [34].

To give an intuitive description, imagine you have a perfectly spherical and uniform ball in front of you.

If you close your eyes and someone performs a rotation transformation on the ball, when you observe

the ball again, you won’t be able to tell the difference before or after rotation. This means rotations are

a symmetry of the ball.

Figure 1.1: Rotation of a uniform sphere remains identical before and after rotation

Put succinctly, a symmetry changes the system from one state to another without changing the prop-

erties of the system. Using this definition, symmetries are observable attributes of a system. On the other

4



1.1. Emergence of Gauge theories Chapter 1. Introduction

hand, a redundancy changes the description of a system without changing the state of said system.

Let’s say your system is now a box with a falling ball and a stall. In this context, a global transformation

would be rotations of the entire system by 45 degrees without changing the physics on the inside.

Figure 1.2: Rotating a ball falling in a box by 45 degrees, demonstrating a global transformation

As you can see from the perspective of someone inside the box, there is no perceived change in the

physics in either state; hence, the system is deemed to have a global rotational symmetry. You could

argue that the systems are not identical from an outside observer’s perspective; however, this is irrelevant

for physicists as we live inside the "box" (universe).

Now, instead of rotating the entire system, rotate the blue stall. This is an example of a local transfor-

mation.

Figure 1.3: Rotating a stall in a box by 45 degrees, demonstrating a local transformation

As you can see, if you rotate the block on the inside, the result will be the ball smacking the floor

instead of the stall; hence, from the perspective of an observer inside the box, physics has changed.

Before continuing, a distinction between transformations is required. Thus far, only active transfor-

mations have been considered. Instead, let’s look at a different type of transformation. One which merely

changes the way we describe a system. Take, for example, a ball on a number line, where we consider

the number line to be our coordinate system. Moving the ball is an active transformation, as the ball

has moved. On the other hand, moving the number line is a passive transformation, as this changes the

description/coordinate of the ball but doesn’t move it.
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1.1. Emergence of Gauge theories Chapter 1. Introduction

0

0

Figure 1.4: Active transformation by moving the ball

0

Figure 1.5: [34] Passive transformation by moving the number line

A system that is invariant under a passive transformation has redundancies and under an active trans-

formation symmetries.

By extending mathematical formalisms, redundancies are introduced in the systems descriptions. To

track these redundancies the notion of a "bookkeeper" [34] is introduced. The distinguishing feature of

an active and passive transformation is that the bookkeeper changes automatically with a passive trans-

formation, however this isn’t always the case for active transformations.

1.1.2 Weyl’s Unified Theory

Before getting into the nitty-gritty EC formalism and coupling spinors to gravity, one must address the

vast body of work that came before. The aim of the physicists at the time was to unify General Relativity

and electromagnetism. Starting in 1918, the German physicist, Herman Weyl, wondered if the magnitude

of a vector in Riemann space should remain constant along a given path (parallel transport).

Definition (Parallel Transport [3]): Let xα(λ) be an affinely parameterised worldline with the

tangent vector dxα

dλ . A vector, Sβ , is parallelly transported along the worldline if:

dxα

dλ
∇αS

β = 0 (1.1)

Loosening the metricity condition, he introduced a one-form to the Levi-Civita connection. Weyl postu-

lated this was the Coulomb potential [36]:

∇αgµν = Aαgµν (1.2)

Theorem 1 (Uniqueness of the covariant derivative [3]). Let ∇µ be the covariant derivative on some

manifoldM. If the covariant derivative is torsion-free, then the connection coefficients are uniquely given by

the Christoffel symbol and non-metricity condition.
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1.1. Emergence of Gauge theories Chapter 1. Introduction

∇αgµν = ∂αgµν − Γρ
αµgνρ − Γρ

ανgµρ = Aαgµν (1.3)

∇νgµα = ∂νgµα − Γρ
νµgαρ − Γρ

ναgµρ = Aνgµα (1.4)

∇µgαν = ∂µgαν − Γρ
µαgνρ − Γρ

µνgαρ = Aµgαν (1.5)

Taking (1.2) + (1.3) - (1.4) reveals the connection is [32]:

Γα
βµ =

{
α
βµ

}
− 1

2
gαρ (Aβgρµ +Aµgρβ −Aρgµβ) (1.6)

Where
{
α
βµ

}
is the connection for Riemannian geometry. Performing what he named a "gauge trans-

formation". Weyl re-scaled the metric tensor and added a term to the Coulomb potential leaving the

connection invariant [32]. Therefore, the geodesic equations are invariant under Weyl transformations

[36]:

gµν → Λ (x) gµν (1.7)

Λ (x) = expλ (x) (1.8)

Aα → Aα + ∂αλ (1.9)

Γα
βµ → Γα

βµ (1.10)

As long as physical observables are left invariant, gauge transformations are permissible. This encapsu-

lates the goal of gauge theory, finding the dynamics of redundant (nonphysical) degrees of freedom. This

theory, unfortunately, fell flat on its head. Einstein pointed out: the proper time interval varies under a

Weyl transformation.

Definition (Proper time interval [3]): The proper time interval, ∆τ , is the time interval measured

by a clock travelling along a parallel worldline. In mathematical terms:

∆τab =

∫ λb

λa

(gµνT
µT ν)

1
2 dλ (1.11)

Where Tµ = dxµ

dλ , is a tangent vector to the worldline xµ(λ).

To illustrate this using (1.1), the infinitesimal change in a vector along a worldline is:
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1.1. Emergence of Gauge theories Chapter 1. Introduction

dSβ

dλ
= −Γβ

ραS
ρ dx

α

dλ
(1.12)

Plugging (1.11) into the definition of vector magnitude [32]:

d

dλ

(
L2
)
=

d

dλ
(gµνL

µLν) (1.13)

dL

dλ
= L

Aα

2

dxα

dλ
(1.14)

Integrating from some initial position x0(λ0) to x1(λ1) on the worldline xα implies [32]:

L1 = L0 exp

∫ x⃗1

x⃗0

Aα

2
dxα (1.15)

This would mean the proper time interval, ∆τ , depends on the non-metricity condition.

∆τ01 =

∫ λ1

λ0

T0

(
exp

∫ x⃗1(λ)

x⃗0(λ0)

Aα

2
dxα

) 1
2

dλ (1.16)

T0 = (gµνT
µT ν |λ0)

1
2 (1.17)

Hence violating the principle of Gauge Invariance.

Side Note: There are propositions to modify the proper time to remove the exponential, however,

this is beside the point of gauge theories. If a set of transformations modify physical quantities, then

gauge invariance is broken and one should move on. Modifying the metricity condition is the cause of

this theory’s downfall and in my opinion should be avoided.

Despite the theories’ downfall, the inception of gauge transformations led to scientific breakthroughs in

particle physics. Later in 1929, Weyl revisited gauge transformation in Quantum mechanics. He believed

phase rotational invariance manifested as a local phenomenon in quantum field theory. Weyl looked at

the Dirac Lagrangian, L, and considered a global phase transformation of the electron’s wavefunction.
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1.1. Emergence of Gauge theories Chapter 1. Introduction

L = Ψ̄(γµ∂µ −m)Ψ (1.18)

Ψ→ eiλΨ, Ψ̄→ e−iλΨ (1.19)

L → L (1.20)

Where λ is a constant here. This transformation is called a global U(1) transformation and hence U(1)

is a symmetry of the Dirac Lagrangian. Analogues to 1.2, consider an electron beam hitting an isolated

diffraction grating apparatus. A global phase transformation, physically speaking, would be placing a

phase shifter before the electron beam hits the diffraction grating. The diagram below depicts what is

occurring:

Figure 1.6: An active global phase transformation of an electron beam (red) before diffraction (first
black line). The image on the left is the diffraction grating experiment with no phase transformation.
The diagram on the right is after a global phase change (blue box). The red triangle represents the

diffracted electron beam.

Since the equations of motion for the electron remain the same under a global phase transformation, an

observer inside the box will not see any change in the diffraction grating experiment. Now consider a

local phase transformation, where λ→ λ(x)

Ψ→ eiλ(x)Ψ (1.21)

∂µΨ→ eiλ(∂µΨ+ iΨ∂µλ) (1.22)

L ̸→ L (1.23)

Because of the extra x dependence in λ the Dirac Lagrangian is not invariant under an active local U(1)

transformation. This local phase transformation presents itself in the physical world by placing a phase

shift after the diffraction grating. After the diffraction grating the electron’s wavefunction disperses so

the phase transition only occurs on part of the wavefunction, hence λ(x) pics up a positional dependence.

9 9



1.1. Emergence of Gauge theories Chapter 1. Introduction

The local transformation looks as follows:

Figure 1.7: An active local phase transformation of an electron beam (red) before diffraction (first black
line). The image on the left is the diffraction grating experiment with no phase transformation. The

diagram on the right is after a local phase change (blue box). The red triangle represents the diffracted
electron beam.

A vector field, A, and covariant derivative, D, are introduced to remove invariant terms. The field, A

acts as a dynamic bookkeeper of local transformation, allowing physicists to view the local transformation

as merely a passive transformation. This reveals a U(1) local redundancy in the Dirac Lagrangian.

Aµ → Aµ − ∂µλ (1.24)

Dµ = ∂µ + iAµ (1.25)

L → L = Ψ̄(iγµDµ −m)Ψ (1.26)

These transformations removed the physical nature of a local transformation, so instead of viewing the

local transformation as active (presented in 1.7), the local transformation is merely a change in local

coordinates. So, in physics, this is a redundancy in the description when referring to a local gauge

symmetry. Much like the Levi-Civita connection defined in GR, the bookkeeper A is also a connection with

an associated curvature F . In the Yang-Mills section, this is defined in great detail using the language

of differential geometry and fibre bundles. Taking this a step further and including a kinetic term in the

Dirac Lagrangian yields the QED Lagrangian:

L = −1

4
FµνFµν + Ψ̄(iγµDµ −m)Ψ (1.27)

Fµν = 2∂[µAν] (1.28)

Theorem 2 (Noether’s Theorem). Every Lie Group symmetry of the Lagrangian gives a corresponding con-

servation law.

By varying the QED action w.r.t A you find:

10 10



1.1. Emergence of Gauge theories Chapter 1. Introduction

δS[A,Ψ; δA] =

∫
d4x(∂νF

νµ + Ψ̄iγµΨ︸ ︷︷ ︸
−Jµ

)δAµ (1.29)

∂νF
νµ = Jµ (1.30)

∂µ∂νF
νµ = 0 (1.31)

This shows the true power of gauge theory and Noether’s theorem; simply through symmetry, you can

find all the local dynamics of a theory. Noether currents act as a rule book for gauge particles to follow.

11 11



1.2. Einstien-Cartan and Teleparralelism Chapter 1. Introduction

1.2 Einstien-Cartan and Teleparralelism

Einstein’s approach followed Weyl’s trail of thought, instead of loosening the metricity condition, torsion

was the next candidate [43]. These theories, including Weyl’s, are an extension of Riemannian geometry.

The aim was to extend the number of degrees of freedom to include electromagnetism. From 1925-1930

Einstien developed his theory of Teleparallel; publishing the following papers on the matter [6] [8] [9]

[7].

Einstein began by considering definition (1.1) in the context of a "4-dimensional continuum"[43] and

affine connection.

Definition (Continuum/C∞ n-Manifold [2][41]): Let M =
⋃

i∈I Ui such that Ui ⊂ M and

dim(M) = n. Let ϕ : Ui → Rn be a bijective function such that ϕi (Ui) is open. ∀i, j ∈ I, one

has ϕj ◦ ϕ−1
i : ϕi (Ui ∩ Uj) → ϕj (Ui ∩ Uj) has continuous partial derivatives. V ⊂ M is open if

ϕi (Ui ∩ V ) is open for all i ∈ I. Assuming the topology of M is Hausdorff, {ϕi|i ∈ I} is called an

atlas of M. The equivalence class of atlases forms a differentiable manifold. Any ϕi : Ui → Rn is

called a chart/coordinate system.

ϕi

ϕ−1
i ϕ−1

j

ϕj

M

Ui
Uj

ϕi(Ui)

Rm

ϕj ◦ ϕ−1
i

ϕj(Uj)

Rm

Figure 1.8: Diagram of open coverings mapping from a manifold to Rn

Consider the vector, Sµ, infinitesimally pushed along a geodesic [3]:

(dS)
µ
= −Γµ

ανS
αdxν (1.32)

Einstein asked what if the connection isn’t fully symmetric about α and ν? Leaving the symmetry of the
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1.2. Einstien-Cartan and Teleparralelism Chapter 1. Introduction

connection ambiguous is the punchline of his research. Including an anti-symmetric component reveals

a new field called torsion.

Tρµ
β = 2Γβ

[ρµ] (1.33)

The logical question to ask at this point is why is the difference between two connections, which are not

tensors, equal to a tensor?

Γ′σ
αµ =

∂x′σ

∂xβ
∂xρ

∂x′µ
∂xτ

∂x′α
Γβ
τρ +

∂x′σ

∂xβ
∂2xβ

∂x′α∂x′µ
(1.34)

Γ′σ
αµ − Γ′σ

µα =
∂x′σ

∂xβ
∂xρ

∂x′µ
∂xτ

∂x′α
(
Γβ
τρ − Γβ

ρτ

)
(1.35)

Hence there is no contradiction. Following Theorem 1, if the metricity condition holds the connection

coefficients are uniquely given by the Christoffel symbol and torsion tensor:

∂αgµν + ∂νgµα − ∂µgαν − Γρ
αµgρν − Γρ

ανgρµ − Γρ
ναgρµ (1.36)

−Γρ
νµgρα + Γρ

µνgρα + Γρ
µαgρν = 0

Γβ
αν =

{
β
αν

}
+

1

2

(
T β

αν − Tνβα + Tαν
β
)

(1.37)

=
{
β
αν

}
+Kαν

β (1.38)

Where Kαν
β is the contorsion tensor.

One might naively think the connection’s symmetric part is left untouched; hence, the geodesic equations

remain the same. However, this is far from the truth. The symmetric part of the connection is [3]:

Γβ
(αν) =

{
β
αν

}
+ T(αν)

β (1.39)

1.2.1 Torsion and curvature

Geometrically speaking, what does a connection with torsion mean?

The following derivation was adapted from [26] and [41]. Defining an infinitesimal parallelogram

ABCD on a differentiable manifold M . The coordinates of each point are {xµ(A)}, {xµ(A) + ϵµA},

{xµ(A) + ϵµA + δµA} and {xµ(A) + δµA} respectively.

13 13
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A

B

D

C

V (A)

ϵA

δA

Figure 1.9: Infinitesimal parallelogram for a connection endowed with torsion.

Defining the first path as ABC, if the vector V (A) ∈ TAM is parallelly transported to B along ABC

then VABC(B) ∈ TBM is denoted as:

V µ
ABC(B) = V µ(A)−V β(A)Γµ

νβ(A)ϵ
ν︸ ︷︷ ︸

dV β(A)

(1.40)

Then parallelly transporting to C:

V µ
ABC(C) = V µ

ABC(B)− V β
ABC(B)Γµ

νβ(B)δν (1.41)

= V µ(A)− V β(A)Γµ
νβ(A)ϵ

ν −
(
V β(A)− V ρ(A)Γβ

νρ(A)ϵ
ν
)

(1.42)

×
(
Γµ
λβ(A) + ∂αΓ

µ
λβ(A)ϵ

α
)
δλ

= V µ(A)− V β(A)Γµ
νβ(A)ϵ

ν − V β(A)Γµ
λβ(A)δ

λ (1.43)

− V β(A)
(
∂αΓ

µ
λβ(A)− Γρ

αβ(A)Γ
µ
λρ(A)

)
ϵαδλ +O

(
ϵ2, δ2

)

Where in 1.42, Γ(B) was taylor expanded about ϵ. Performing the same calculation for the path ADC

one finds:

V µ
ADC(C) = V µ(A)− V β(A)Γµ

νβ(A)ϵ
ν − V β(A)Γµ

λβ(A)δ
λ (1.44)

−V β(A)
(
∂αΓ

µ
λβ(A)− Γρ

αβ(A)Γ
µ
λρ(A)

)
δαϵλ +O

(
ϵ2, δ2

)
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1.2. Einstien-Cartan and Teleparralelism Chapter 1. Introduction

Taking the difference between the two vectors at C:

V µ
ADC(C)− V

µ
ABC(C) = V β(A)

(
−∂αΓµ

λβ(A) + Γρ
αβ(A)Γ

µ
λρ(A) (1.45)

+ ∂αΓ
µ
λβ(A)− Γρ

αβ(A)Γ
µ
λρ(A)

)
δαϵλ

= V β(A)Rµ
βλαδ

αϵλ (1.46)

Hence the Riemann curvature tensor is defined in the usual sense:

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓρ

µσ + Γρ
µλΓ

λ
νσ − Γρ

νλΓ
λ
µσ (1.47)

Looking at the structure of 1.28 there are notable similarities between the Field strength tensor and the

Riemann tensor. As we’ll see later, this leads to a compelling and natural argument for coupling spinors

to gravity.

The way curvature manifests itself is by "rolling" the tangent space over the manifold, on the other hand,

torsion introduces a "twist" [11] to this tangent space. Adapting calculations from David Tong’s lecture

series on General relativity [41]: Take two infinitesimal vectors ϵp = ϵµ∂µ, δp = δµ∂µ ∈ TpM and

parallel transport the vectors along each other s.t:

δp

ϵp

ϵr

δr

p

r

t

q

s

Figure 1.10: [41] Image of infinitesimal open parallelogram due to torsion.

ϵµr = ϵµp − Γµ
νρ(p)δ

ν
p ϵ

ρ
p (1.48)

Where r has coordinates xµ(p) + δµp . Similarly, the point calculating the parallel transport of δp along ϵp:

δµs = δµp − Γµ
νρ(p)ϵ

ν
pδ

ρ
p (1.49)
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1.2. Einstien-Cartan and Teleparralelism Chapter 1. Introduction

Where s has coordinates xµ(p)+ ϵµp . Now if you parallel transport any vector along δs and ϵr you end up

with the points respectively q and t with coordinates:

q : xµ(q) = xµ(p) + δµp + ϵµr (1.50)

= xµ(p) + δµp ϵ
µ
p − Γµ

νρ(p)δ
ν
p ϵ

ρ
p (1.51)

t : xµ(t) = xµ(p) + ϵµp + δµs (1.52)

= xµ(p) + ϵµp + δµp − Γµ
νρ(p)ϵ

ν
pδ

ρ
p (1.53)

As you can now see the difference in coordinates xµ(q) and xµ(t) is torsion tensor:

xµ(q)− xµ(t) = Tνρ
µϵνpδ

ρ
p (1.54)

Visually speaking, "torsion measures the failure of the parallelogram to close" [41].

1.2.2 Einstien Hilbert action

Einstein’s next constructed the Einstein-Hilbert action [16]. Since these are Einstein’s equations with no

matter content, there is a neat trick where you vary w.r.t the tensor density of the metric instead [6]:

S =

∫
Rµνg

µνd4x (1.55)

δS [δg;Γ, g] =

∫
(Rµν) δg

µνd4x (1.56)

Rµν = 0 (1.57)

Ṙµν + ∂ρKνµ
ρ − ∂νKρµ

ρ +Kρλ
ρKνµ

λ −Kνλ
ρKρµ

λ = 0 (1.58)

Where the Ricci tensor made from the levi civita symbol is ˙Rµν . From the Palitani formalism, it is clear

even the original Einstein equations are modified.

As every good physicist does, Einstein neglected a boundary term.

Inspired by the Gibbons–Hawking–York boundary term [48][12][14], the action is redefined similarly.

This may seem pedantic; however, if you wanted to perform path integrals on M, M must have no

boundary. In neglecting this term Einstien has implicitly assumed a closed universe. As will be demon-
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strated later, consider a spacetime foliated by time. If each time leaf is compact (no boundary), then the

Hamiltonian evaluates to zero. Therefore, the total energy inside the universe, even when considering

matter, evaluates to zero.

δS [δΓ;Γ, g] =

∫
M

(
∂ρδΓ

ρ
νµ − ∂νδΓρ

ρµ + δΓρ
ρλΓ

λ
νµ (1.59)

+ Γρ
ρλδΓ

λ
νµ − δΓρ

νλΓ
λ
ρµ − Γρ

νλδΓ
λ
ρµ

)
gµνd4x

=

∫
M
−∂ρgµνδΓρ

νµ + ∂νg
µνδΓρ

ρµ (1.60)

+
(
δΓρ

ρλΓ
λ
νµ + Γρ

ρλδΓ
λ
νµ − δΓρ

νλΓ
λ
ρµ − Γρ

νλδΓ
λ
ρµ

)
gµν

+ ∂ρ (δΓ
ρ
νµg

µν − δΓν
νµg

µρ) d4x

Side Note: δΓα
νµ is a tensor as the variation of the Christofell symbol is a tensor, and the variation of

torsion is a tensor, hence the difference in notation.

The full derivative term is called the Palatini identity. Remarkably, Einstein discovered this well before

Palatini did in his first paper on teleparallelism. The power of the Palatini identity is explicitly seen here,

as you can derive equations of motion on general geometries without explicitly defining the connection.

At this point, one needs to be careful when deriving the boundary, ∂M. Using Stokes’s theorem on the

full derivative term gives:

δS [δΓ;Γ, g] =

∮
∂M

d3y
√
|h|nλ

(
gµνδΓλ

νµ − gµλδΓν
νµ

)∣∣
∂M + . . . (1.61)

Where hµν is the transverse metric and nλ is the normal of ∂M. The induced metric is hijeiαe
j
β where

eiα =
(

∂xi

∂xα

)
∂M

and nαnα = ϵ [22]. Now, putting this all together, one finds the new total action:

δΓλ
νµ =

1

2
gβλ (∂νδgβµ + ∂µδgβν − ∂βδgνµ) +

1

2
δ
(
Tλ

νµ − Tµλ
ν + Tνµ

λ
)

(1.62)

δΓν
νµ =

1

2
gβν (∂µδgβν) + δT ν

µν (1.63)

nλg
µνδΓλ

νµ =
nβ

2
(hµν + ϵnµnν) (2∂νδgβµ − ∂βδgνµ) (1.64)

Here I have used gαβ = hαβ + ϵnαnβ , δgαβ vanishes on ∂M and the tangential derivative also vanishes

∂βδgµνe
β
i = 0.

nλ
(
gµνδΓλ

νµ − gµλδΓν
νµ

)∣∣
∂M = −n

β

2
hµν (∂βδgµν) + 2hβνnµδTµβν (1.65)

= −δ
(
2hαβ∇βnα

)
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1.2. Einstien-Cartan and Teleparralelism Chapter 1. Introduction

Here, there is a subtlety that has to be accounted for. Since the boundary of a manifold is a submanifold,

one would like to define the normal vectors of the submanifold. To define the extrinsic curvature of a

submanifold, one requires the notion of a tangent space and the Weingarten map. As we’ll see, this causes

problems for foliating spacetimes with torsion.

Definition (Tangent and dual space [45]): Every point p on a manifold has a corresponding tan-

gent space, TpM , where the tangent space and manifold have the same dimensions. The vectors

inside this space are the directional derivatives of smooth functions evaluated at every point on the

manifold. The basis of TpM are partial derivatives {∂/∂xρ}, where xν are the local coordinates.

The dual space T ∗
pM is a vector space of functions that map elements of the tangent to the real num-

bers. The dual space has the same dimensions as the manifold and has elements called 1-forms.

Differentials, dxν form the basis of the dual space. If s ∈ T ∗pM acts on v ∈ TpM this is the same as

⟨s, v⟩ ∈ R, where ⟨s, v⟩ = sνv
µ ⟨dxν ,∂µ⟩ and ⟨dxν ,∂µ⟩ = δνµ.

Definition (Weingarten map and extrinsic curvature [45]): The Weingarten map χ describes the

change of the normal vector along ∂M:

χ : Tp(∂M) −→ Tp(∂M) (1.66)

v 7−→ ∇vn

As you can see, the mapping is self-adjoint. Meaning ⟨u, χ(v)⟩ = ⟨χ(u),v⟩ for all u,v in the tangent

space ∂M.

The extrinsic curvature, K directly follows:

K : Tp(Σ)× Tp(Σ) −→ R (1.67)

(u,v) 7−→ ⟨u,χ(v)⟩ (1.68)

Here I’d like to define torsion w.r.t to vectors x,y in the tangent space [45]:

T (x, y) = ∇xy −∇yx− [xy] (1.69)

Where [x,y] is the lie derivative of y in the direction x.

Consider a 3 + 1 decomposition of a Lorentizian manifold with a connection endowed with torsion.

WhereM =
⋃

t∈R St [22]. From the definition above, the Weingarten map may no longer be an endo-
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1.2. Einstien-Cartan and Teleparralelism Chapter 1. Introduction

morphism for this type of foliation [13].

⟨x,χ(y)⟩ = ∇x(⟨y,n⟩︸ ︷︷ ︸
=0

)− ⟨n,∇yx⟩ (1.70)

= −⟨n, (∇xy − T (x, y)− [x,y])⟩ (1.71)

Taking n = dt, such that t ∈ X(M) [13]

⟨dt, [x, y]⟩ = ⟨dxα,∂β⟩ ∂αt
(
xρ∂ρy

β − yρ∂ρxβ
)

(1.72)

= ∂βt
(
xρ∂ρy

β − yρ∂ρxβ
)

(1.73)

= xρyβ (∂β∂ρt− ∂ρ∂βt) = 0 (1.74)

However ⟨n,T (x, y)⟩ isn’t necessarily 0. Hence, the Weingarten may no longer self-adjoint. Via Frobe-

niuses first theorem [46][45], the distribution ⟨t⟩⊥ is non-integral, which means you may not be able to

define a regular foliation structure for a connection endowed with torsion on a manifold foliated by time.

As one can tell, torsion is no trivial object, to the point where standard formalisms become far more con-

voluted. There are instances where these boundary terms, including torsion, are no longer differentiable

[5]; however, further discussion is beyond the scope of this dissertation.

STOTAL =

∫
M
Rµνg

µνd4x+ 2

∮
∂M

d3y
√
|h|K (1.75)

Where K is the trace of the extrinsic curvature. One finds the following equations when varying the new

action:

δS

δΓ
= −∂βgαϕ − Γϕ

βµg
µα − Γα

νβg
νϕ + δαβ

(
Γϕ
νµg

νµ + ∂νg
ϕν
)
+ Γρ

ρβg
ϕα = 0 (1.76)

Another slight error in Einstien’s work. The volume element must be diffeomorphism invariant; hence,

the equations taken from the action cannot be in terms of the tensor density.

Throughout the rest of the papers from 1925-1928, Einstein made valiant attempts to unify electro-

magnetism and gravity. Most attempts included inserting tensors into the metric or developing ansatz

for actions. In later work, the Weitzenbock Connection was introduced. The connection admits zero

curvature but nonzero torsion, opening the door to a wide field of study.
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1.2. Einstien-Cartan and Teleparralelism Chapter 1. Introduction

1.2.3 Boundary conditions and ADM energy in GR

The explicit reason for cancelling this boundary term can be illustrated by considering a simplified Hamil-

tonian formulation of GR. Most calculations follow and build on the ADM section in [30]. I will adapt

the interpretation for extended Riemannian geometry on the manifold (M, g). Consider the case where

there is no matter content, no torsion and spacetime is floated by non-intersecting leaves of constant time

such thatM =
⋃

t∈R St [30]:

ds2 = −N2dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
(1.77)

Where N and N i are the lapse and shift functions, respectively (shows how coordinates are related

between leaves). A few concepts must be laid out before substituting values into the Einstein-Hilbert

action.

Firstly the spatial covariant derivative Dj , the spatial connection γijk and the spatial Riemann tensor

(3)Ri
lkm [13]:

DjA
i = ∂jA

i + γijkA
k (1.78)

γijk =
1

2
hil (∂jhkl + ∂khjl − ∂lhjk) (1.79)

(3)Ri
lkm = ∂kγ

i
lm − ∂mγikl + γiknγ

n
lm − γimnγ

n
kl (1.80)

The spatial Riemann tensor describes the intrinsic of the leaves. Additionally, the extrinsic curvature of

each leaf is as follows [13]:

m = ∂t −Nk∂k (1.81)

Lmhij = −2NKij (1.82)

= mα∇αhij − hkjDiN
k − hkiDjN

k (1.83)

= mα
[
∂αhij − Γk

αjhik − Γk
αihjk

]
+ · · ·

= ∂thij −NkDk(hij) + · · ·

= ∂thij −DiNj −DjNi (1.84)

∴ Kij =
1

−2N
(∂thij −DiNj −DjNi) (1.85)

Where I have used the Dk(hij) = 0. Finally using the Gauss-Codazzi equations [13] the full Riemann
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1.2. Einstien-Cartan and Teleparralelism Chapter 1. Introduction

tensor is expressed in terms of the extrinsic curvature and spatial Riemann tensor [1]:

√
−gR = N

√
h
[
KijK

ij −K2 + (3)R
]
− 2∂t

(√
hK
)
+ 2∂i

[√
h
(
KN i −DiN

)]
(1.86)

Hence the full action takes the form:

S =

∫
d4xN

√
h
[
KijK

ij −K2 + (3)R
]
+ Sboundary (1.87)

Excluding the boundary term the action is in terms of N , N i and hij . Varying the action w.r.t N i and N

give the Hamiltonian and momentum constraints respectively. Finally varying the intrinsic metric gives

the evolution equation. The next step is finding the conjugate momenta to define the Hamiltonian [30]:

πij =
δS

δ∂thij
=
√
h(Kij −Khij) (1.88)

Using the Legendre transform and neglecting boundary terms [30]:

H =

∫
d3x
√
h
(
NH+N iHi

)
(1.89)

H = h−1πijπij − (3)R− 1

2
h−1π2 (1.90)

Hi = −2hikDj

(
h−

1
2πjk

)
(1.91)

π = hijπij (1.92)

The Hamiltonian formalism has hij and πij as dynamic, implying δH
δN = δH

δNi = 0, hence H = Hi = 0

[30]. The equations of motion are [30]:

∂thij =
δH

δπij
(1.93)

∂tπ
ij = − δH

δhij
(1.94)
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An immediate problem arises; the Hamiltonian vanishes! The resolution to this lifeless universe is to

add boundary terms. Boundary terms are neglected when calculating 1.93 and 1.94. These terms would

indeed generate boundary terms. If constant leaves are compact then no surface term would exist, hence

in a closed universe, the Hamiltonian is indeed zero, even in the presence of matter [30]. Consider the

case where this is not the case and the leaves are asymptotically flat. One can evaluate boundary terms

in the limit of r →∞. Since the leaves are asymptotically flat hij = δij +O
(
1
r

)
and πij = O

(
1
r2

)
. Hence,

δhij = O
(
1
r

)
and δπij = O

(
1
r2

)
. Additionally, assume N = 1 +O

(
1
r

)
and N i → 0 in the limit of r →∞

[31]. When varying πij , the surface term, defined as an S2 sphere of constant r is [30]:

∫
S2

dA

(
−2N ihiknj

1√
h
δπjk

)
(1.95)

Where nj is the unit normal and dA is the area element. Now taking the limit as r →∞:

hij ∼ δij +
1

r
, dA ∼ r2, 1√

h
∼
√
r, δπij ∼ 1

r2
, N i ∼ 1

r
(1.96)

lim
r→∞

(∫
S2

dA

(
−2N ihiknj

1√
h
δπjk

))
∼ r2 1

r

(
1

r
+ δij

)√
r
1

r2
= 0 (1.97)

Hence the boundary term for πij has no effect. However, when varying hij this is no longer the case. Two

surface terms arise from these variations. Firstly from varying 1√
h

in Hi.

H =

∫
dx3
√
h
(
N iHi + · · ·

)
(1.98)

δH[h,π; δdet(h)] =

∫
dx3
√
h
[
−2hikN iDj

(
δh−

1
2πjk

)]
+ · · · (1.99)

δh = hhlmδhlm (1.100)

∴ δH[h,π; δdet(h)] =

∫
dx3
√
h
[
−2hikN iDj

(
δh−

1
2πjk

)]
+ · · · (1.101)

=

∫
dx3
√
h
[
Dj

(
hikN

ihlmδhlmh
−1/2πjk

)]
+ · · · (1.102)

=

∫
S2

dA
(
njhikN

ihlmδhlmh
−1/2πjk

)
+ · · · (1.103)
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Taking the limit:

lim
r→∞

(∫
S2

dA
(
njhikN

ihlmδhlmh
−1/2πjk

))
(1.104)

∼ lim
r→∞

(
r2
(
δik +

1

r

)
1

r

(
δlm − 1

r

)
1

r

√
r
1

r2

)
= 0

Where I have used that @ O
(
1
r

)
hijhij = 3 ⇒ hij = δij − O

(
1
r

)
. Hence this boundary term doesn’t

contribute. Finally, the second boundary term comes from varying (3)R. A nice approach I haven’t seen

is linearising the spatial Riemann tensor before the calculation. Since the space is asymptotically flat this

is a reasonable procedure to do in the limit of r →∞:

hij = δij + δhij (1.105)

δ(3)Rijkl =
1

2
[∂j∂kδhil + ∂i∂lδhjk − ∂j∂lδhik − ∂i∂kδhlj ] +O

(
δh2ij

)
(1.106)

δ(3)R = ∂i∂jδhij − ∂2δhjj (1.107)

Plugging this into the Hamiltonian reveals:

δH
[
δh;h,N,N i

]
=

∫
−Nδ(3)R+ · · ·

√
hd3x (1.108)

=

∫
−N

(
∂i∂jδhij − ∂2δhjj

)
+ · · ·

√
hd3x (1.109)

(1.110)

Integrating by parts reveals a boundary term [30]:

δH
[
δh;h,N,N i

]
= −

∫
S2

dA Nni (∂jδhij − ∂iδhjj) (1.111)

N ∼ 1 +
1

r
(1.112)

∴ lim
r→∞

(
δH
[
δh;h,N,N i

])
∼ r2

(
1 +

1

r

)
1

r2
∼ 1 (1.113)

As you can see, this means this boundary term will not generally vanish and will contribute to the Hamil-

tonian. Integrating by parts reveals a second boundary term that does vanish:

lim
r→∞

(∫
S2

dA nj
(
δhij∂

iN − δhkk∂jN
))

(1.114)

∼ lim
r→∞

r2
1

r

1

r2
= 0
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1.3. Fibre bundles and Cartan’s structure equation Chapter 1. Introduction

The non-vanishing boundary term is referred to commonly in literature as the ADM energy for an asymp-

totically flat end [30]:

lim
r→∞

(
−
∫
S2

dANni (∂jδhij − ∂iδhjj)
)

= δEADM (1.115)

(1.116)

where

EADM = lim
r→∞

∫
S2

dAni (∂jhij − ∂ihjj) (1.117)

The prescription is to consider a modified Hamiltonian [30]:

H
′
= H + EADM (1.118)

H
′
andH give the same equations of motion, however with theEADM term inH

′
the leaves are no longer

compact. This is because EADM , in effect, cancels out the non-zero boundary term when varying hij .

Hence the true Hamiltonian for an asymptotically flat space in GR is H
′

[30]. Regge and Teitelboim [31]

first discovered the need for a surface term in 1974 for the Hamiltonian formalism of GR. The reasoning

is extended to the GHY boundary term formulated earlier on. This is done to ensure consistency when

calculating the boundary of a black hole. The reason for showing a simplified example is to illustrate the

importance of boundary terms even in the context of the 3 + 1 decomposition of spacetime.

1.3 Fibre bundles and Cartan’s structure equation

1.3.1 Fibre Bundles

Let’s outline some crucial concepts before coupling spinors to gravity. The language of fibre bundles

provides a rigorous mathematical structure for gauge field theories on general differential manifolds.

The most notable gauge theory in electromagnetism is Yang-Mills. The theory impressively unifies the

weak and strong forces. The definitions in this section closely follow Geometry, topology and physics by

Nakahara [26], Frederic Schuller’s lecture series on the Geometrical Anatomy of Theoretical Physics [33]

and for mathematical rigour Topology, Geometry and Gauge fields by Gregory L.Naber [25].

Definition (Principle bundles [25] [26]): A coordinate bundle consists of several components:

A total space P and a base manifold M with a surjective map π that takes points from the total

space and projects them down to the base manifold. The inverse map π−1(l), l ∈ M (canonical
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1.3. Fibre bundles and Cartan’s structure equation Chapter 1. Introduction

trivialisation, s = π−1) defines the set points on P known as the fibre over l.

Figure 1.11: [25] The following is a depiction of a fibre F over a point x ∈M

Say there’s a non-empty intersection of open coverings on the base manifold, Ui ∩ Uj ̸= ∅. How

do you get from fibres described over Ui to fibres described in Uj?

In the same way, differentiable manifolds look locally like Rn; the total space locally looks like

U × G. Where G is the structure group of the principle bundle. Much like a coordinate, the local

trivialisation takes a point from the total space to U ×G, via Ψ(ψ,U), where ψ : s(U)→ U ×G.

Figure 1.12: [25] The following depicts a map from the total space to the local trivialisation. Note
there are a few changes in notation. Notably P is the surjective map π and V is the open covering

on the base manifold instead of U

We now have the toolkit to define the transition function gji(l) := ψj(l) ◦ψ−1
i (l) which tasks you
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1.3. Fibre bundles and Cartan’s structure equation Chapter 1. Introduction

from different open covers, sj = gjisi. The following diagram illustrates precisely what is going on:

gij(l) = ψi,l ◦ ψ−1
j,l

u

ψ−1
i,lψ−1

j,l

F F

fi gij()fj

Figure 1.13: [26] Illustration of transition function gij(l) : G→ G acting on the fibre F , where the
point u ∈ π−1(l)×G

In the same way that the equivalence class of atlases form a differentiable manifold, the equiv-

alence class of coordinate bundles defines a principle bundle. Note: this is not the most general

bundle; the principle bundle is a fibre bundle with fibres F ∈ G. The principle is usually denoted as

P(M,G).

A few more tedious definitions are required to know precisely what is going on from the geometric per-

spective when talking about gauge theories. To understand how to gauge potentials look geometrically a

few more notions need to be solidified: vector bundle, cotangent bundle and frames.

Definition (Vector bundle [26] ): When the fibre, F of a fibre bundle (E, π,M,F,G) is a vector

space, the fibre bundle is known as a vector bundle. Let F = Rk/Ck, where k is the fibre dimension

and dim (M) = m. The transition function is characterised by GL
(
k,Rk/Ck

)
.

Definition (Tangent/Co-tangent bundle [26]): A tangent bundle TM is the union of all the tan-

gent spaces of the base space M . This is denoted as follows:

TM =
⋃
p∈M

TpM (1.119)

An open covering {Ui} of M with the coordinate xρ = ψi(p). The total space of the coordinate
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1.3. Fibre bundles and Cartan’s structure equation Chapter 1. Introduction

bundle is denoted as:

TUi =
⋃

p∈Ui

TpM (1.120)

TUi is the direct product Ui×Rm and mapping for a local piece π : TUi → Ui, where π−1(p) = (p, V ).

The vector V is an element of the tangent space evaluated at point p s.t V = V ρ(p)∂ρ. Taking a local

section of Ui on M a nice visualisation of what π is doing. One could imagine a piston squashing the

total space onto the base space leaving an imprint on the base space.

Uip

TUi

TpM

π

Figure 1.14: Visualisation of a local piece of the total space, TUi projecting a vector V ∈ TpM to p
[26]

For a tangent bundle, the structure group takes an interesting form. Consider the intersec-

tion of two charts, p ∈ Ui ∩ Uj . The vector V now has two different coordinate representations(
Ui, x

β
)
,
(
Uj , y

β
)

s.t:

V = V β ∂

∂xβ

∣∣∣∣
p

= V̄ β ∂

∂yβ

∣∣∣∣
p

(1.121)

The relation between the two representations is:

V̄ β =
∂xβ

∂yµ
V µ = Gβ

µV
µ (1.122)

Where the matrix Gβ
µ ∈ GL (m,R) is non-singular. This matrix represents the structure group of

a tangent bundle. It can be thought of as a rotation of the fibre coordinates. The definition of a

Cotangent/dual bundle is very similar to the tangent bundle except for the basis of the cotangent
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space T ∗
pM with chart (Ui, x

µ)) has the basis {dxµ}. The cotangent bundle is denoted as:

T ∗M =
⋃
p∈M

T ∗
pM (1.123)

For an intersection of open coverings Ui ∩ Uj , the transformation between basis is as follows:

dyµ = dxν
∂yµ

∂xν

∣∣∣∣
p

(1.124)

ω = ωµdx
µ = ω̄µdy

µ (1.125)

ωµ = ω̄ν
∂yµ

∂xν

∣∣∣∣
p

= Gµ
ν(p)ω̄ν (1.126)

In this case however G(p) is the transition function gji(p).

Definition (Frames[26]): Each fibre of a tangent bundle has a basis {∂µ} given by the altas (Ui, x
µ).

If M has a metric, then the same orthonormal basis {eµ} is a vector field on Ui. They define the

local frame on Ui.

Finally, there is a small discussion about associated bundles.

Definition (Associated bundles [26] ): One can construct an associated bundle from a principle

bundle, P (M,G).

G acts on the left of a fibre, F of the associated fibre bundle, (E, π,M,G, F, P ). The action g ∈ G on

P × F is:

(u, f)→
(
ug, g−1f

)
(1.127)

For the associated bundle the map πF from the total space to base space is less trivial than the

bog standard fibre bundle definition. Firstly the total space of the associated fibre bundle is the

equivalence class of the quotient group:

E = P × M

G
(1.128)

πF : E →M (1.129)

πF (u, v) = π(u) (1.130)

Where π(u) is the map from the total space, P of the principle bundle to the base space, M . πF is

still well defined as the π(ug) = π(u). Note if the transition function (given a representation) for an

associated bundle and principle bundle then there is a bundle isomorphism between the two. Hence
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if the transition function of E is ρ (gij), where gij is the transition function for the principle bundle.

The best way to see how an associated bundle manifests itself is through an example (Lecture 20

[33]).

Take the tangent bundle TM with an m-dimensional base space M endowed with a metric. There is

an associated frame bundle LMRm , where LM denoted as:

LM =
⋃
p∈M

LpM (1.131)

LMRm = LM × Rm (1.132)

Where LpM is a set of frames for at p. Defining a chart (Ui, x
µ) on M , where TpM has the basis

{∂µ} on Ui. The frame {Xα} at p is as follows:

Xα = Xµ
α ∂µ|p (1.133)

Note Xµ
α ∈ GL(m,R) so the frame has linearly independent elements. The structure group of the

associated bundle is G = GL(m,R). The right and left actions take the form for g ∈ GL(m,R) and

f ∈ F :

({X} , g)→ {X} g (1.134)

Xβ →Xαg
α
β (1.135)

fα → g−1α
βf

β (1.136)

Now take the intersection of two open coverings p ∈ Ui

⋂
Uj with coordinates xµ and yµ respectively

one has:

Xα = Xµ
α ∂µ|p = X̄µ

α ∂̄µ

∣∣
p

(1.137)
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This implies that Xµ
α = ∂xµ

∂x̄ν X̄
ν
α, hence the transition function is the same as the transition function

for TM . From the definitions laid out above a bundle isomorphism is now able to be defined between

LM and TM

LMRm TM

MM

πF π

idM

η

Figure 1.15: The following illustrates a bundle isomorphism between an associated bundle and
principle bundle [33]

The frame bundle will become useful later on in formulating general relativity in the context of fibre

bundles, by restricting the structure group of the frame bundle and introducing Veilbeins.

Having established the correct toolkit, one can begin by defining a connection on a principle bundle. This

will show how a gauge potential transforms in the total space. The field strength tensor in Yang-Mills is

a form of curvature tied to the connection. The connection gives rise to a covariant derivative in a given

vector bundle.

1.3.2 Local connection and gauge potential

Following the definition of the connection on the principle bundle, one can pullback the connection to

the base manifold M . Since the pulledback connection is defined only at a point on the base manifold,

it’s considered a "local" connection. The best analogy I can give is a physical one. Imagine a wooden

board, representing the base manifold and nails representing the fibres. The projection is like hammering

the nails into the wooden board, the way the "local" connection is felt on the base manifold is by running

your finger across the wooden board and feeling the heads of the nails at each point.

Extending this notion to an open covering, {Ui} on the base manifold, M with a local section si

defined on each open set. The pulledback one form Ai on Ui is denoted as [25][33][26]:

Ai : Γ(TUi)→ TeG (1.138)

Ai := s∗iω ∈ g⊗ Ω1 (Ui) (1.139)

Note that Γ(TUi) just means a section of the tangent space of Ui
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P

P

Ui

πsi

◁G

Figure 1.16: Shows a map diagram of the local representation of a connection [33]

Note that ◁G : P → P ×G→ P [33] is denoted as the right action of G on P, this follows the description

in the definition of the principle fibre bundle. Ai is the gauge potential we see in physics, and in Dr

Frederic’s lectures, they are denoted as a "Yang-Mills field" [33]. The local trivialisation of the principle

bundle, P is pulledback to the open cover Ui to form a local representation of ω on Ui [33]:

ϕi : Ui ×G→ P (1.140)

ϕ∗iω : Γ (T (Ui ×G))→ TeG (1.141)

The Yang-Mills field and local representation are related by [33]:

(ϕ∗iω)u (a, b) = Adg−1 (Ai(a)) + Ξg(b) (1.142)

Where u ∈ Ui × G and a ∈ Tu0
Ui, b ∈ Tu1

G. The Maurer-Cartan form, Ξg : TgG → TeG. This a lie

algebra valued 1-form takes in a left-invariant vector field from a Lie algebra Lg∗X|h and spits out X|h.

To visualise this let’s take the manifold of the Lie group G:

e
X

g
X

Ξg (X|g)

G

Figure 1.17: A left-invariant vector field that generates the tangent vectors from a push toward Lg∗.
The first tangent plane is X|e the second is Lg∗X|e = X|g
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Note: For simplicity, the notation will change slightly as the objects we are now dealing with are matrices

so X|e = X(e), Lg∗X|e = X(g)

Lets now take a look at constructing the Maurer-Cartan form for a general linear group, GL (d,R) on

an "open submanifold" [25] Rd2

. The coordinate entry function, xij , is denoted as xij(g) = gij , gij s.t

g ∈ GL(d,R). Now we can construct a basis for the Maurer-Cartan form. In this case let { ∂
∂xij

∣∣
e
} be

the basis for the lie algebra, g and
{
Ξij
}

is the left invariant R-valued 1 form on G. The dual basis is{
Ξij(e) = dxij(e)

}
, where e is the identity element of the group G. Now take the left-invariant vector

field X ∈ g and define it using matrix notation s.t (pg 292 [25]):

X(e) = Xij ∂

∂xij

∣∣∣∣
e

(1.143)

X(g) =

(
n∑

k=1

gikXkj

)
∂

∂xij

∣∣∣∣
g

=

(
n∑

k=1

xik(g)Xkj

)
∂

∂xij

∣∣∣∣
g

(1.144)

Applying the Maurer-Cartan to the above vector field one finds [25]:

Ξ(g)ij(X(g)) =

d∑
h=1

(g−1)ihdxhj(g)

(
d∑

k=1

xlk(g)Xkm

)
∂

∂xlm

∣∣∣∣
g

(1.145)

=

d∑
h=1

d∑
k=1

(g−1)ihghkXkj (1.146)

= Xij (1.147)

Hence we recover the generating vector field [25]:

Ξ(g)(X(g)) = X(e) (1.148)

The most important part is seeing how this applies to gauge theories seen in physics. More specifically

what a gauge transformation means from the perspective of differential geometry.
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1.3.3 Gauge maps and connection transformation

Let’s say you have a principle bundle P (M,G) and want to see how the local representation of the one

form on P changes between charts. Constructing the following:

P

Ui Uj

sjsi

Figure 1.18: Map diagram of how two open sets on the base manifold M relate to the principle Bundle
[33]

1.18 defines two open sets on the base manifold, M with the local cross-sections si and sj .

Lemma 3. Let a Principle-bundle P (M,G) and a g-valued one form, ω that satisfies the definition of a

connection. Let the trivialisations (Ui, ψi) and (Uj , ψj) have the intersection Ui ∩ Uj ̸= ∅ and the transition

function gij . The relation between the local connections is [25] :

Aj = adg−1
ij
◦ Ai +Ξij (1.149)

Where Ξij = g∗ijΞ. Put in more explicit terms for p ∈ Ui∩Uj and v ∈ TpM, Aj(p)(v) = gij(p)
−1Ai(p)(v)gij(p)+

Ξgij(p) (gij∗v(p)) [25]

Now defining the Maurer-Cartan form the way physicists usually see it.

Let α be a curve in the base manifold M and α′(0) = v then [25]:

Ξgij(p)

(
(gij)∗p (v)

)
= Ξgij(p)

(
(gij)∗p (α

′(0))
)

(1.150)

= Ξgij(p)

(
(gij ◦ α)′ (0)

)
(1.151)

=
(
L(gij(p))

−1

)
∗gij(p)

(
(gij ◦ α)′ (0)

)
(1.152)

=
(
L(gij(p))

−1 ◦ gij ◦ α
)′

(0) (1.153)

=
d

dt

[
(gij(p))

−1
(gij ◦ α) (t)

]∣∣∣∣
t=0

(1.154)

= (gij(p))
−1

(gij ◦ α)′ (0) (1.155)

= (gij(p))
−1
dgij(p)(v) (1.156)
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Looking back, a local U(1) transformation is clearly defined in this scheme. Since the g12(p) ∈ U(1) for

p ∈ U1 ∩U2. Note to do this one must define the chart (V, x) over the base manifold s.t V ⊆ U2 ∩U1, this

ensures the pullback one-forms on the base manifold have the same basis [26]:

g12(p) = eiλ(p) (1.157)

∴ A2µ = e−iλ(p)A1µe
−iλ(p) + i∂µλ(p) (1.158)

= A1µ + i∂µλ (1.159)

Where the components of the one forms were taken for succinctness. Note: The normal gauge potential

in physics is Ak = iAk.

Consider again the frame bundle LM over M . When defining a chart (Ui, xi) on a smooth manifold, this

automatically induces a local section si : Ui → LM s.t (Lecture 22 [33]):

si(p) :=

(
∂

∂x1i
, · · · , ∂

∂xmi

)
∈ LpM (1.160)

Now defining two charts (U1, x) , (U2, y) s.t U1 ∩ U2 ̸= ∅ one finds an interesting transformation of the

gauge potentials (Lecture 22 [33]):

(A2)
i
jµdx

µ =
(
g12(p)

−1
)i

k (A1)
k
lν (g12(p))

l
jdy

ν +
(
g12(p)

−1
)i

k∂ν (g12(p))
k
jdy

ν (1.161)

(g12(p))
i
j =

∂yi

∂xj
(1.162)

⇒ (A2)
i
jµ =

∂yν

∂xµ

(
∂xi

∂yk
(A1)

k
lν
∂yl

∂xj
+
∂xi

∂yk
∂2yk

∂xν∂xj

)
(1.163)

One notes something quite striking that this connection transforms in a similar manner to the Levi-

Civita connection. The one-form connection also has a notion of curvature known as the field strength

tensor, much like the Riemann curvature tensor the one-form connection has the two-form curvature, Ω.

However, the indices i, j are lie algebra indices of the general linear group.
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1.3.4 Curvature

The curvature two-form is defined via the covariant exterior derivative and is characterised by the Cartan

structure equation. Taking the definition of the connection on a principle bundle P (M,G) endowed with

a connection ω [25]:

Ω(p)(v,w) = (Dω)p (v,w) (1.164)

= (dω)p(v,w) + [ωp(v),ωp(w)] (1.165)

The full derivation of the covariant derivative is lengthy but straightforward. It involves splitting up the

tangent vector space at each point of the total space into two horizontal and vertical subspaces. From this,

the covariant derivative only acts on the horizontal subspace. Additionally, left and right group actions on

the connections reveal the transformation properties between open coverings of the base manifold. The

full derivation can be seen in [26] and [25]. Now written more succinctly, the Cartan structure equation

takes the form [25]:

Ω = dω +
1

2
[ω,ω] (1.166)

Note: [ω,ω] is the wedge product determined by the Lie bracket in g, so [ω,ω]p(v,w) = [ωp(v),ωp(w)]−

[ωp(w),ωp(v)] = 2 [ωp(v),ωp(w)] [25].

The right action, σ on the curvature is [25]:

σ∗
gΩ = σ∗

g

(
dω +

1

2
[ω,ω]

)
(1.167)

= σ∗
g(dω) +

1

2
σ∗
g([ω,ω]) (1.168)

= d
(
adg−1 ◦ ω

)
+

1

2
([σ∗

gω, σ
∗
gω]) (1.169)

= adg−1 ◦
(
dω +

1

2
[ω,ω]

)
(1.170)

= adg−1 ◦Ω (1.171)

Additionally, the curvature is skew symmetry and bilinear. As we’ll see this has implications on the local
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field strength tensor.

The local field strength tensor is the pullback of the curvature two-form by the same local section,

s : U → P , as the gauge potential [25]:

F = s∗Ω (1.172)

= d (s∗ω) +
1

2
[s∗ω, s∗ω] (1.173)

= dA+
1

2
[A,A] (1.174)

Following similar motions as 1.149 for p ∈ Ui ∩ Uj and v,w ∈ TpM , with the sections si : Ui → π−1(Ui)

and sj : Uj → π−1(Uj) then [25]:

(sj
∗Ω)p (v,w) = Ωsj(p)

(
(sj)∗p (v), (sj)∗p (w)

)
(1.175)

(sj
∗Ω)p (v,w) = gij(p)

−1 (si
∗Ω)p (v,w)gij(p) (1.176)

⇒ (F j)p = gij(p)
−1 (F i)p gij(p) (1.177)

The Riemann curvature admits the same structure as the field strength two-form:

R = dΓ+
1

2
[Γ,Γ] (1.178)

This can be constructed by having a frame bundle with the right action group, O(m), as seen in the def-

inition of the frame bundle. As we’ll see when picking the correct structure group, the local connections

admit enough structure to contain the Riemann curvature tensor plus some other values.

1.3.5 Bianchi Identity

Before moving on to the next section, there is a very useful identity when taking the covariant derivative

of the curvature, the Bianchi Identity [26]:

(DΩ)p (v,w,x) = 0 (1.179)
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1.3.6 Torsion revisited

Torsion on a principle bundle is introduced via soldering one-form, θ ∈ Ω1 (P ) ⊗ V . Instead of the one

form being a g valued entity, it is a V valued entity, where V is the representation space of the structure

group, G. The conditions the soldering form must follow are [33]:

• V is a linear representation space of G, s.t dim(V ) = dim(M)

• ∀X ∈ Γ (TP ) , θ
(
XV

)
= 0

• Lg ◦ (Rg)
∗θ = θ

• The solder form has values in a linear representation V of G such that an associated vector bundle

P ×G V to the tangent bundle, TM is a bundle isomorphism.

The torsion form Θ is defined as the exterior covariant derivative of solder from s.t:

Θ = Dθ (1.180)

=
1

2
[ω, θ]+ dθ (1.181)

Since the solder form is V values a gauge transformation occurs in the defining representation s.t:

θj(p)(v) = gij(p)
−1θi(p)(v) (1.182)

Where the point p ∈ Vi ∩ Vj and (Vj , ϕj), (Vi, ϕi) are local trivialisation’s in a principle bundle. Pulling

back the solder form to the base manifold yields the torsion tensor where s∗Θ = T .

1.3.7 General relativity reformulated

Restricting the structure group of the frame bundle to the lie algebra SO(3, 1) produces the correct

structure for general relativity.

Theorem 4 (Connection reduciblility). "Given a fibre metric g of an associate vector bundle (E,Fm, G, P )

and Q(M,H) the reduced sub bundle of the fibre bundle P (M,G). A connection, Γ in P is reducible to a

connection in Q if and only if Γ is a metric connection." [21]

The principle fibre bundle, P (M,SO(3, 1)), where M is endowed with a metric, g is a sub-bundle of

the frame bundle LM . In fibre bundle language g is a global section of a (0, 2) tensor bundle over the
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base manifold M :

g = gµνdx
µ ⊗ dxν (1.183)

Defining an orthonormal frame at a point p gives rise to the tetrad formulation of general relativity, some-

times referred to as vierbiens.

Taking the soldering form and pulling it back to the base Lorentzian manifold via a local section forms

a tetrad basis (obviously defining local coordinates). The soldering form can be expressed in terms of a

natural basis of R4, where dim(M) = 4, only looking at the components of the soldering form:

s∗θi (X) 7→ ei ∈ Λp
(
T ∗
pM,R4

)
= eiµ (X) dxµ (1.184)

⇒ g (X,Y ) = ηijs
∗θi (X)⊗ s∗θj (Y ) (1.185)

⇒ eiµe
j
νηij = gµν (1.186)

Similarly one can define a dual vector basis ei = ei
µ∂µ for the tetrads, where eaµeaν = δµν .

Additionally, the connection components pulled back from the frame bundle define the spin connection

on the Lorentzian manifold. The spin connection is related to the Levi-Civita connection via the soldering

form:

s∗ωi
j = (ωs)iµjdx

µ ∈ Λp
(
T ∗
pM, so3,1

)
(1.187)

Now following the same procedure as 1.149 a gauge transformation is as follows:

(ωs
2)

i
µj =

(
Λ−1

)i
k(ω

s
1)

k
µl (Λ)

l
j +

(
Λ−1

)i
k∂µ (Λ)

k
j (1.188)

The above is equivalent to saying the tetrads transform under a gauge transformation Λ−1e,Λ ∈ SO(3, 1),

this is the first instance of an Einstien Cartan/gauge theory of gravity. Note, significantly the Lorentz

transformations now have a position dependence, revealing a hidden guage redundancy in general rela-
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tivity.

To prove this, first take torsion expressed on the base Lorentzian manifold:

dea + (ωs)ab ∧ eb = 0 (1.189)

⇔− ∂µeaνdxµ ∧ dxν = (ωs)aµbe
b
νdx

µ ∧ dxν (1.190)

−
[
∇µe

a
ν +

��
��Γλ

µνe
a
λ

]
dxµ ∧ dxν = (ωs)aµbe

b
νdx

µ ∧ dxν (1.191)

− δρν∇µe
a
ρdx

µ ∧ dxν = (ωs)aµbe
b
νdx

µ ∧ dxν (1.192)

eaρe
b
ν∇µeb

ρdxµ ∧ dxν = (ωs)aµbe
b
νdx

µ ∧ dxν (1.193)

⇒eaρ∇µeb
ρ = (ωs)aµb (1.194)

⇒Γρ
µν = ea

ρ
(
∂µe

a
ν + (ωs)aµbe

b
ν

)
(1.195)

The anti-symmetry of the wedge product and the fact that the Levi Civita connection is symmetric was

used. Pushing this a step further by transforming the tetrads as follows:

(ωs
2)

a
µb = ēaρ∇µēb

ρ (1.196)

=
(
Λ−1

)a
ce

c
ρ∇µ

[
(Λ)

d
bed

ρ
]

(1.197)

=
(
Λ−1

)a
ce

c
ρ∇µ [ed

ρ] (Λ)
d
b +

(
Λ−1

)a
ce

c
ρ∇µ

[
(Λ)

d
b

]
ed

ρ (1.198)

=
(
Λ−1

)a
c(ω

s
1)

c
µd (Λ)

d
b +

(
Λ−1

)a
c∂µ (Λ)

c
b (1.199)

Hence completing the proof. Note that physics and maths conventions are flipped for a gauge transfor-

mation g → g−1. The spin connection also has a corresponding curvature:

Ωa
b = dωa

b + ωa
c ∧ ωc

d (1.200)

Which transforms from one local trivialisation (basically a gauge transformation) to another as follows:

Ωj = Adg−1
ij
◦Ωi (1.201)

39 39



1.3. Fibre bundles and Cartan’s structure equation Chapter 1. Introduction

Reformulating the Einstien Hilbert action regarding the spin connection and tetrads, we reach the first-

order formulation of gravity, sometimes referred to as the tetradic Palitini action [27]. The action changes

as follows.

S =

∫
d4x
√
−gR (Γ)→

∫
d4xeΩs(ω) (1.202)

Where Ω = ea
µeb

νΩab and e =
√
−g Both reproduce the same results for standard general relativity but

are viewed from different perspectives. The first-order formulation, without torsion, provides a clear way

of coupling spinors to general relativity. The first-order formulation of gravity does, however, deviate

when torsion is included.

This importantly allows for the Dirac action to be defined in curved space-time.
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Chapter 2

Coupling Spinors to Gravity

2.1 Spinors

2.1.1 Spin representation

One must first understand representation theory to incorporate Lorentz algebra into the language of

spinors. This can be explained succinctly in the language of covering spaces.

Spinors are not vectors or tensors; hence, they do not transform linearly under the Lorentz group. A

simple and powerful description is double covering. To prevent the use of stereographic projections, let’s

look at spinors in the non-relativistic setting and consider SO(3) and its double cover SU(2). The ideas

can be extrapolated up a dimension to SO(3, 1) and the double covering Spin(3, 1).

SO(3) is topologically equivalent to a three-sphere with equivalent antipodal points. This means paths

on the three-sphere loop around themselves. In mathematical terms, the fundamental group of SO(3)

is Z2 . What exactly does this mean? Consider Dirac’s famous belt with axis rotations along the belt.

The space of rotations is represented by a sphere of radius π with equivalent antipodal points along the

boundary. The axis twists as it’s pushed along the belt; the rotation of the axis represents a vector inside

the space of rotations. So, for example, consider a belt with only one twist (2π twist); the path the axis

takes is represented by:
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Figure 2.1: The circle (left) is a slice of the rotation phase space as the axis is pushed along the Dirac
belt (right)

No matter how much you try to twist the belt, the antipodal points will never touch; hence, in this

phase space, a 360-axis rotation along the belt does not equal the identity. I.e. the path in the phase space

can never be warped in such a way to allow for a contraction to the trivial path (identity no twisting along

the belt). Denoting the 360-axis rotation path as p in the phase space, what happens if you perform a

720-degree rotation (p + p)?

Figure 2.2: The circle (left) is a projective slice of the rotation phase space as the axis is pushed along
the Dirac belt (right)

To illustrate, if the paths are deformed, one can see that a 720 rotation along the Dirac belt results in

a contractable path. This is because antipodal points now meet at the boundary.
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Figure 2.3: The phase space shows a deformed path of the axis, which can be contracted down to the
identity

For a 720-axis rotation, antipodal points join at the boundary so that the path can be contracted

down to the identity. I.e. a 720 twist in the Dirac belt is equivalent to the belt with no twists. How

does this relate to a Spinor? This means the spinor changes state under a π, SO(3) transformation. The

double cover SU(2) in the fundamental representation is the spin representation of SO(3). There is a

2-1 surjective homomorphism from SU(2) to SO(3). This translates to the Pauli matrices generating the

non-relativistic spin representation. Spinors transform correctly under the fundamental representation

of SU(2). Similarly, for relativistic spinors, the double covering of SO(3, 1), Spin(3, 1) is required to

transform a spinor properly.

Following this, an additional fibre bundle structure can be used to understand how this spin structure

is added to general relativity. A spin bundle is formed from a principle bundle with the structure group

Spin(3,1) with a surjective homomorphism to the Orthonormal frame bundle.

2.1.2 Clifford algebra

Consider the anticommutation relation of the Dirac matrices for a general metric:

{γµ(x),γν(x)} = 2gµνI (2.1)

Reformulating in the Clifford algebra in terms of Vielbeins [47]:

γµ(x) = eµ
a(x)γa (2.2)

⇒ {γa,γb} = 2ηabI (2.3)

Where the indices a, b = 0, 1, 2, 3. Conveniently, spinors transform in the spinor representation of
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SO(3, 1). The gamma matrices form the generators of SO(3, 1) in the spin representation s.t:

Sab =
1

4
[γa, γb] (2.4)

Hence, the Lorentz transformations are characterised by:

S[Λ(x)] = exp

(
1

2
λab(x)Sab

)
(2.5)

Applying a local Lorentz transformation (all in physics convention) to the Dirac action one must define

the covariant derivative [41]:

Dµψ = ∂µψ +
1

2
ωab
µ Sabψ (2.6)

Leaving the Dirac Lagrangian invariant under a local Lorentz transformation:

ψ → S [Λ]ψ (2.7)

ωµ → S[Λ]ωµS[Λ
−1]+ S[Λ]∂µS[Λ

−1] (2.8)

Dµψ → ∂µ (S[Λ])ψ + S[Λ]∂µψ +
[
S[Λ]ωµS[Λ

−1]+ S[Λ]∂µS[Λ
−1]
]
S[Λ]ψ (2.9)

→ S[Λ]Dµ (2.10)

⇒ψ̄ (iγµDµ −m)ψ → ψ†S[Λ]†γ0 (iγµS[Λ]Dµ − S[Λ]m)ψ (2.11)

∴ L → L (2.12)

Plugging this new spin connection into a generalised Dirac action gives rise to the Dirac action in curved

spacetime.
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2.1.3 Coupling fermions to gravity

The generalised Dirac action for fermions in curved space-time is [47]

S =

∫
dx4e

(
ψ̄ (iγµDµ −m)ψ

)
(2.13)

Where e =
√
−g and the fermions are promoted to Grassman variables. One at this point might be

tempted to put this equation on the right-hand side of the Einstien equation; however, fermions/spinors

are fundamentally quantum objects; hence, there is no comparison to a macroscopic system. Due to the

Pauli exclusion principle, fermions cannot occupy the same energy level with the same spin state; hence,

macroscopically sourcing curvature in general relativity with fermions results in a complicated "many-

body problem"[41].

This is not to say that curvature cannot be sourced by fermions; for example, neutron stars would have

most of the curvature sourced by the fermions, just that the calculations are arduous.

2.2 Utiyama-Sciama-Kibble (ECKS) approach

This approach marries spinors, torsion and general relativity interestingly and intuitively. The approach

was developed in three separate papers [44] [35] [20]. Kibble begins his paper by introducing the topic

of global Poincare invariance. Consider the Lagrangian transforming under an infinitesimal push:

x̄µ = xµ + ϵaµ (2.14)

L̄(x) = L(x− δx) = L(x)− ϵ∂µ (aµL(x)) (2.15)

δL = −ϵ∂µ (aµL(x)) (2.16)

(2.17)

Where a simple Taylor expansion was performed, under an infinitesimal transformation, the Lagrangian

varies by a total derivative, hence if one remembers back to the original derivation of the Lagrangian

the term gets waked out when varying the action, so this won’t change the equations of motion. Since

L(x)|x
1

x0
= 0, where x1 and x0 are extremal points. Now take a look at the action under rotations,
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reflections and boosts (Lorentz group) xµ → Λµ
νx

ν :

L(x)→ L̄(x̄) (2.18)

S =

∫
L(x)d4x =

∫
L̄(x̄)d4x̄ (2.19)

=

∫
L(x)

∣∣∣∣∂x̄∂x
∣∣∣∣ d4x (2.20)

As you can see the Jacobian evaluates to 1 since det
(
∂x̄
∂x

)
= ±1. Generalising this to the larger ISO(3, 1)

Poincare group isn’t much of a stretch.

Definition (Poincare Group [28]): A d-dimensional group Lie group defining the isometries of a

d+1 dimensional Minkowski spacetime. The most straightforward representation of ISO(3,1) comes

from a 5x5 matrix representation.

ISO(3, 1) =


 Λ a

0 1

 ∈ GL5(R), Λ ∈ O(3, 1) a ∈ R4

 (2.21)

The transformations of the smaller O(3, 1) Lorentz group are characterised as follows:

Time reversal: (t, x, y, z)→ (−t, x, y, z)

Parity reversal: (t, x, y, z)→ (t,−x,−y,−z)

Proper Orthochronous: This is a subgroup, SO+(3, 1), of the Lorentz group characterised by trans-

formations forward in time and restricted by the light cone. Rotations SO(3) and boosts make up

this group. Boosts describe the transformation between relative inertial frames.

Poincare algebra fully encapsulates the properties of the group through commutation relations of

generators:

[Pµ, Pν ] = 0 (2.22)

[Mµν , Pρ] = ηµρPν − ηνρPµ (2.23)

[Mµν ,Mρσ] = ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ (2.24)

Where M and P represent generators of Lorentz and translation groups, respectively.

Following the first-order formulation found in the context of Supergravity [10], Kibble’s work is a lo-

cal Poincare gauge theory of gravity, where the spin connection transforms in the Lorentz group, and
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the vierbiens compensate for the space-time translations. In the first-order formalism, the connection

ω = ω(e) +K(ψ) [10] now includes torsion. First, defining the covariant derivative:

∇̃µV
ab···c
ν de···f = DµV

ab···c
ν de···f − Γρ

µλV
ab···c
ρ de···f (2.25)

⇒∇̃µV
ab···c
ν de···f − ∇̃νV

ab···c
µ de···f = DµV

ab···c
ν de···f −DνV

ab···c
µ de···f (2.26)

− TµνρV ab···c
ρ de···f

Where V is a mixed Lorentz (p,q) tensor and (1, 0) general vector. Dµ transforms the Lorentz aspect of

the tensor and Γ is the usual connection. Explicitly the Lorentz aspect of the mixed tensor transforms as:

DσV
ab···c
µ de···f = ∂σV

ab···c
µ de···f (2.27)

+ ωa
σlV

lb···f
µ de···f + ωb

σlV
al···f
µ de···f · · · (2.28)

− ωl
σdV

ab···c
µ le···f − ωl

σeV
ab···c
µ dl···f · · · (2.29)

Also under this new covariant derivative the tetrads, much like the metric, follow a metricity condition,

sometimes referred to as the tetrad postulate [10]:

∇̃µe
a
ν = ∂µe

a
ν + ωµ

a
be

b
ν − Γσ

µνe
a
σ = 0 (2.30)

Putting this all together the first formulation of gravity take takes the form:

δS [δω] =

∫
d4xeδΩ (2.31)
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The variation of the Ω has a neat trick that tidies up the calculation:

δΩab = ∂µδω
ab
ν dxµ ∧ dxν + δ

(
ωa
µcω

cb
ν

)
dxµ ∧ dxν (2.32)

= ∂µδω
ab
ν dxµ ∧ dxν + δ

(
ωa
µc

)
ωcb
ν + ωa

µcδ
(
ωcb
ν

)
dxµ ∧ dxν (2.33)

= Dµδω
ab
ν − δωac

ν ω
b
µc − δωcb

ν ω
a
µc (2.34)

+ δ
(
ωa
µc

)
ωcb
ν + ωa

µcδ
(
ωcb
ν

)
dxµ ∧ dxν

= Dµδω
ab
ν dxµ ∧ dxν (2.35)

⇒1

2
δΩab

µν = D[µδω
ab
ν] (2.36)

Note a few techniques have been used here. Firstly the curvature two form is antisymmetric about a, b;

hence the terms in 2.35 are cancelled. Additionally, the variation of the spin connection is promoted to

a (1,1) Lorentz and (0,1) general mixed tensor for the same reasons as the Levi Civita symbol. Plugging

this into the action and using 2.26:

δS [δω] =

∫
d4xeea

µeb
ν2D[µδω

ab
ν] (2.37)

=

∫
d4xeea

µeb
ν
(
2∇̃[µδω

ab
ν] + Tµν

ρδωab
ρ

)
(2.38)

=

∫
d4xe2∇̃[µ

(
ea

µeb
νδωab

ν]

)
+ eea

µeb
νTµν

ρδωab
ρ (2.39)

=

∫
d4xe2

(
∂[µ

(
ea

µeb
νδωab

ν]

)
+ Γµ

[µλea
λeb

νδωab
ν]

)
+ · · · (2.40)

=

∫
d4x2∂µ

(
eea

µeb
νδωab

ν

)
− 2∂µ(e)ea

µeb
νδωab

ν︸ ︷︷ ︸
∂µe=e{λλµ}

+ · · · (2.41)

=

∫
d4x

(
T ρ
ρaeb

ν − T ρ
ρbea

ν + T ν
ab

)
δωab

ν + 2∂µ
(
eea

µeb
νδωab

ν

)
(2.42)

At this point, we notice a striking feature. If no spinors couple to gravity, then there is no torsion. Adding

spinor content to the Palitini formalism, one finds [10]:

δS 1
2
[δω] = −1

2

∫
d4xeδ

(
Ψ̄γµ
←→
D µΨ

)
(2.43)

= −1

2

∫
ΨγµSabΨδω

ab
µ (2.44)

⇒Tabµ =
1

2
κ2Ψ̄γµSabΨ (2.45)
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Note the Lorentzian signature (− + ++) is used here. This induces a sign change in the Dirac action.

Plugging this into 1.55 reveals a quartic Ψ term in the action [10]:

S =
1

2

∫
d4xe

[
1

κ2
R− Ψ̄γµ

←→
D µΨ+

1

16
κ2
(
Ψ̄γµSνρΨ

) (
Ψ̄γµSνρΨ

)]
(2.46)

Where R is the Riemann curvature tensor constructed from the Levi Civita connection. At this point, one

can stop and consider this an SO(3, 1) frame bundle theory where the connection is now endowed with

torsion. Note this is an equation for the massless Dirac action; the Dirac action with mass takes a more

general form. The bundle construction is the same as GR, with the additive of torsion. Professor João

Maguejo considered this type of theory in the cosmological setting. The quartic fermion term produces a

bounce, preventing the formation of singularity [24] [29].

In his original work, Kibble doesn’t stop there and considers the entire Poincare group. Such treatment of

the tetrads as gauge fields of spacetime translations is still a hot topic of discussion, with some agreeing

that such a formulation is possible and others convinced this is not possible [18].

Following the same arguments Kibble used. Consider the Poincare transformation of the spinor field

actively now where spacetime coordinates are fixed. In such a framework, the spinor transforms as:

xµ → x̄µ = Λµ
νx

ν + aν (2.47)

Ψ̄(x̄) = S [Λ]Ψ(x) (2.48)

For infinitesimal local transformations:

Λµ
ν = δµν + ϵµν (2.49)

δxµ = ϵµνx
ν + δaµ (2.50)

Where ϵµν is an infinitesimal antisymmetric push. Notice since the infinitesimal transformations are all

coordinate dependent ϵ(x)x+ a(x) can be denoted as σ(x). Specifically, Hehl in [15] believes this dimin-

ishes the role of the Lorentz transformation; however, one must remember these local transformations

retain their original properties. ϵ(x) is still a local Lorentz rotation, and a(x) is still a local translation;
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hence there is no issue. Simply Taylor expanding the spinor field about the coordinate reveals [40]:

δΨ(x) =
1

2
λabSabΨ(x)− δxν∂νΨ(x) (2.51)

∂µδΨ =
1

2
∂µ
(
λab
)
SabΨ− δxλ∂λ∂µΨ+

1

2
λabSab∂µ (Ψ)− ∂µ

(
δxλ
)
∂λΨ (2.52)

Introducing the same covariant Dµ as the other subsection removes the inhomogeneous third term in

2.52 from the last term in 2.8. Finally, Kibble considers a vierbein field to deal with the last term in 2.52.

In this sense, the vierbeins act as active general coordinate transformations.

Since the last term is proportional to ∂µΨ, one must consider a field that multiplies the covariant deriva-

tive. Hence one considers [40]:

DaΨ = eµaDµΨ (2.53)

Where δ (DaΨ) =
1

2
λcbScbDaΨ(x)− λbaDbΨ− δxµ∂µDaΨ (2.54)

Now, under this consideration, the Dirac Lagrangian is invariant up to a total derivative δLΨ = −∂µ (δxLΨ).

Unfortunately, this theory has no direct analogy to the standard view of gauge theories, leading to am-

biguities in treating the vierbeins. From the perspective of fibre bundles, the spin connection and tetrad

(solder form) cannot transform under different groups; hence, this theory admits a different underlying

structure to a gauge theory. Some claim that it is possible to reconcile the translation issue in the context

of an affine Poincare bundle [37]; however, this would result in a different mathematical structure pro-

posed by Kibble and Sciama. Instead, the problem can be resolved by considering the symmetry breaking

of a larger group.
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Symmetry breaking to gravity

Much like the standard model, one can consider a symmetry-breaking mechanism, where the structure

group of a fibre bundle breaks down to SO(3, 1) or the more generalised theory including torsion. Fol-

lowing the work of Professor Kellogg Stelle [38][39], Professor Arkady Tseytlin [42], R. F. Sobreiro et

al[36], F. W. Hehl [15] and others [19]. The de Sitter groups SO(p, q) where p + q = 5 requires gauge

symmetry breaking so that vierbeins emerge. An extended version of the Higgs mechanism induces sym-

metry breaking and different actions. In these theories general relativity emerges as a limiting case.

The emergence of gravity presents itself through an Inönü-Wigner contraction [17] [23].

Definition (Inönü-Wigner contraction): The mechanism by which a new Lie algebra is obtained

by taking the limit of a parameter inside another Lie algebra, which alters the structure constant.

Specifically for this discussion, the de Sitter algebra is spontaneously broken to the Lorentz group SO(3, 1).

Consider an SO(3, 2) frame bundle, with an associated connection ωAB . The generators of the de Sitter

group have the following commutation relation [36]:

[
JAB , JCD

]
= −1

2

[(
ηACJBD + ηBDJAC

)
−
(
ηADJBC + ηBCJAD

)]
(3.1)

Where ηAB = (1, 1, 1,−1,−1). The Yang-Mills curvature follows the same structure as 1.166. The (Anti-

)De Sitter group can denoted as SO(3, 2) = SO(3, 1) ⊗ S(4) where S(4) = SO(3, 2)/SO(3, 1) (cosets)

[36]. A convenient way of actualising the decomposition is by projecting out A = 5 such that J5a = Ja
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and a ∈ {0, 1, 2, 3}. The group commutation relations appear as [36]:

[
Jab, Jcd

]
=− 1

2

[(
ηacJbd + ηbdJac

)
−
(
ηadJbc + ηbcJad

)]
(3.2)[

Ja, Jb
]
=
1

2
Jab, (3.3)[

Jab, Jc
]
=
1

2

(
ηacJb − ηbcJa

)
(3.4)

Where ηab ≡ diag(1, 1, 1,−1). As you can see this group decomposition has a striking similarity with the

Poincare group. The. Additionally, the connection transforms as:

ω → g−1

(
1

κ
d+ ω

)
g (3.5)

Notice an arbitrary dimensionless parameter next to the exterior derivative. This will become an integral

component of the Inönü-Wigner contraction.

Since the connection is lie algebra-valued, it can be decomposed in terms of the generators as follows

[36]:

ω = ωABJ
AB (3.6)

= ωabJ
ab + θaJa (3.7)

Notice these so(3, 2) indices, not the matrix indices seen before. Infinitesimally expanding g = exp(κζ) ≈

I+ κζ and decomposing ζ = αabJ
ab + ξaJ

a:

(I− κζ)
(
1

κ
d+ ω

)
(I+ κζ) = ω + dζ + κωζ − κζω −���κζdζ −���κ2ζζ (3.8)

⇒ω → ω + dζ + κ [ω, ζ] = ω +Dζ (3.9)

⇔A+ θ + d (α+ ξ)+ κ [A+ θ,α+ ξ] (3.10)

A+ θ +D (α+ ξ)+ κ [θ,α+ ξ] (3.11)

Where D· = d ·+κ [A, ·] Plugging the commutation relations for De Sitter group into 3.11 one arrives at

[36]:

52 52



Chapter 3. Symmetry breaking to gravity

Aab 7−→ Aab +Dαab +
κ

4
(θaξb − θbξa) (3.12)

θa 7−→ θa +Dξa + καabθb. (3.13)

The contraction to the Poincare group manifests itself by including a mass parameterm such that [36]:

A→ κ−1A (3.14)

θ → κ−1mθ (3.15)

With this new parameter, the commutation relations of the De-sitter change as follows [36]:

[
Jab, Jcd

]
= −1

2

[(
ηacJbd + ηbdJac

)
−
(
ηacJbc + ηbcJad

)]
(3.16)[

Ja, Jb
]
=
m2

2κ2
Jab (3.17)[

Jab, Jc
]
=

1

2

(
ηacJb − ηbcJa

)
(3.18)

When the mass parameter is very small and the coupling parameter is high (occurs at low energies),

the De-Sitter algebra undergoes a contraction to the Poincare group. This causes the total transformation

to reduce to [36]:

Aab → Aab +Dαab (3.19)

θa → θa − αa
bθ

b (3.20)

How exactly is this actualised physically? In Professor Kellogg’s scheme, a non-polynomial action is

introduced; this is because the Pontryagin action is a topological term (F ∧ F ), where FAB = dωAB +

ωA
C ∧ ωC

B . Instead, an auxiliary field yA is placed in the action [38].

L = mϵµνρσFµν
ABFρσ

CDϵABCD − λ(yAyA +m−2) (3.21)

yA was first implemented in [4] and comes from spontaneous symmetry breaking in supergravity. λ(x) is

a scalar density Lagrange multiplier, and m has [L]−1, where L denotes units of length and yAyA = −m−2

is a constraint.
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Depending on the choice of y, the Lagrangian is either SO(3,1) or Poincare invariant. Choosing

y0 = (0, 0, 0, 0,m−1) the effective lagrangian is [40]:

L = ϵµνρσFµν
abFρσ

cdϵabcd (3.22)

Where the lowercase Latin indices run from zero to 3. This implies a symmetry breaking from SO(3, 2)→

SO(3, 1). However, a more general gauge can be chosen. The generator Jab forms the little group

H = SO(3, 1). An element g ∈ SO(3, 2) near the identity can be written as:

g = exp (ζaJa)h (3.23)

For h ∈ H and ζa is a parameter in the quotient space SO(3, 2)/SO(3, 1) [38]. The general representation

of yA is defined as [40]:

ya = m−1 (ζa/ζ) sinh(mζ), y5 = m−1 cosh(mζ) (3.24)

Where ζ = ζaζa is the Goldstone field produced from the symmetry breaking pattern SO(3, 2) →

SO(3, 1). The Goldstone field transforms non-linearly, where ζ → ζ
′

[40]:

g0 exp (ζ
aPa) = exp

[
ζ

′a (g0, ζ) Pa

]
h0 ( g0, ζ) (3.25)

where g0 ∈ SO(3, 2) and h0 ∈ SO(3, 1). ζ
′

and h0 are non-linear functions.

Consider the field Ψ(x) that transforms linearly under an irreducible representation ρ of SO(3, 2) and

a field Ψ̄(x) that contains fields transforming ζ, h non-linearly in SO(3, 1) indicies.

The relation between these fields is as follows [38]:

Ψ̄(x) = ρ [exp (iζa(x)Pa)] Ψ(x) (3.26)

54 54



Chapter 3. Symmetry breaking to gravity

Using 3.25 Ψ̄ transforms as follows [40]:

Ψ̄′ = σ [h1(ζ, g)] Ψ̄ (3.27)

How does General Relativity (Einstien Cartan variant) emerge from such a structure?

The SO(3, 2) gauge potential, ωAB , can be deconstructed into what is referred to as "non-linear

realisations"[38] of SO(3, 2); the well-known spin connection, ω̄ab and vierbein fields.

The vierbien and spin connection takes the following form:

ēµ
aJa = m−1θ̄aµJa (3.28)

ēaµJa → hēµ
aJah

−1 (3.29)

ω̄ = A (3.30)

1

2
iω̄′ab

µ Jab = h

(
1

2
iω̄ab

µ Jab

)
h−1 + h∂µh

−1 (3.31)

A new Cartan curvature is defined from the bared spin connection and tetrad field [40]:

F̄ ab
µν = R̄µν

ab −m2
(
ēµ

aēν
b − ēνaēµb

)
(3.32)

R̄ = dω̄ + ω̄ ∧ ω̄ (3.33)

F̄µν
a5 = m

(
D̄µēν

a − D̄ν ēµ
a
)

(3.34)

D̄µēν
a = aµēν

a + ω̄µ
a
bēν

b. (3.35)

Replacing the curvature in the effective lagrangrain with F̄ reveals the following effective action [36]:

Seff =
1

8πG

∫ [
1

2Λ2
F̄ a

b ⋆ F̄a
b + F̄ a5 ⋆ F̄a5 +

1

2
ϵabcoF̄

abēcēo +
Λ2

4
ϵabcē

aēbēcēȷ
]

(3.36)

m2 = κ2/2πG

Note the Hodge dual is over M4 The first and second terms are topologically invariant, the third is the

standard Einstien-Hilbert term, and the last is the cosmological constant.
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3.1 Discussion

In this framework, Kibble’s original translational treatment of the vierbien fields is fully actualised via a

symmetry-breaking mechanism. The vierbein gauge transformation in this theory is the desired passive

transformation; hence, this theory is a gauge theory in the purest sense. The rest of Professor Kellogg and

Professor West’s work details this theory’s underlying fibre bundle structure and holonomy by introducing

a development operator. Starting from the De-Sitter group and introducing a non-linear symmetry break

mechanism, an effective gravitational theory emerges.

These types of induced gravity theories also have some interesting consequences depending on the choice

of vierbein. For example, Professor Arkady’s [42] paper details instanton solutions that emerge from a

topologically invariant term in the action.

The theory is quite rich; however, it is complicated. The non-linear realisation of the De-Sitter is not

trivial. Another question still stands: is it possible to quantize theories with non-compact gauge groups?

[42] Furthermore, does it make sense to treat gravity as gauge theory?
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Conclusion

This dissertation starts by discussing the meaning of gauge theories in modern theoretical physics, start-

ing from the inception of gauge theories, where Weyl attempted to extend general relativity, to the most

successful application of gauge theory in quantum mechanics. The second section highlights the possi-

bility of extending general relativity by considering an antisymmetric component to the connection; in

deriving the field equations for a connection with torsion, an overlooked boundary term was calculated

and was found to have the same form as the Gibbons-Hawking-York boundary term. The later part of the

section underlines the obstacles facing this boundary term. Furthermore, this section solidifies the impor-

tance of including boundary terms by calculating the ADM energy for a 3 + 1 decomposition of general

relativity. Without such boundary terms, calculating scattering amplitudes in QFT for something like the

region outside a black hole is impossible. The fibre bundle section introduces gauge theories’ underlying

and hidden structure through the formal language of fibre bundles. General relativity is reformulated

using fibre bundles, and a hidden Lorentz symmetry (redundancy) emerges. This hidden symmetry un-

covers a greater spin structure, allowing spinors to be coupled to gravity through the spin connection.

The penultimate section goes through a modern formulation of gravity with torsion. It shows the source

of torsion is spinors whilst highlighting the issue of an active Poincare transformation and treating the

vierbein as a compensatory gauge field. Additionally, the role of torsion in gravity isn’t clear as there

are experimental limitations for observing phenomena at the Planck scale [10] (rather convenient if you

want to write an unfalsifiable theory). The final section reinterprets the compensating veirbein field.

Induced gravity theories produce veirbeins through a non-linear symmetry-breaking mechanism, much

like the Higgs mechanism.

However, a looming question still stands: does it make sense to view gravity as a gauge theory? What

can be said with relative certainty is there is a Lorentz redundancy present in the universe, allowing for

spinors to be coupled to gravity. In that sense, this dissertation has fulfilled its goal of coupling spinors

to gravity. However, Einstein Cartan theories of gravity are still in their infancy, with lots of leeway
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for exploration. This dissertation is a preliminary for a further joint investigation with Professor João

Maguejo into the dynamics of a black hole in the context of torsion and spinors coupled to gravity. This

project will be an extension of [24].
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