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Abstract

We review the principal ideas behind the literature on the topic of gravity monopoles,

which are defined as analogous to the well-studied electromagnetic ones. After

introducing the latter, we cover the former in the linearized regime, as well as a

general way to obtain their corresponding quantization condition, as a spin-2 gauge

theory. The duality-invariant interpretation of the Taub-NUT solution to Einstein

gravity is then presented, and its relation with the previous quantization condition.

Lastly, concepts from Cartan geometry are introduced and used to show a possible

condition for which the Bianchi identity is not satisfied, in a spontaneously broken

SO(1, 4) gauge theory, in a manner akin to the ’t Hooft-Polyakov monopole.
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Chapter 1

Introduction

1.1 Electromagnetism

In 1931 P.A.M. Dirac published[1] a paper postulating his famous equation for the

dynamics of a spin-1/2 particle, which predicted the existence of a new kind of

matter called antimatter. This revolutionary formula stemmed from his philosophy

of discovering new physics by seeking beauty and symmetry in nature’s equations.

A little less known, is the fact that it was only a few years later when he published

another scientific article, the consequence of which he was even more excited about.

This paper was on the nature of what is called the magnetic monopole.

Since Maxwell’s famous formulation of the equations of electrodynamics, which

describe the behaviour of electric and magnetic fields, it was noted that there was

an unaesthetic asymmetry about them. Although sources of single electric charge,

or monopoles, had already been detected in nature (e.g. electrons for negative

and protons for positive charge), not a single source of either positive or negative

“magnetic charge” had - no matter how close we look at any source of magnetic

field, we always find north and south poles1 in pairs, such that overall the charge

density is zero. That is, we always detect dipoles. The consequence of this being that

even though we have a term in Maxwell’s equations for the electric charge density

and current, ρe and je, we don’t have terms for the magnetic charge density and

1North and south poles are historical names analogous to positive and negative magnetic charge.
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current, ρm and jm. Therefore, under the exchange of electric and magnetic fields

the equations are clearly not symmetric. As well, even though these new magnetic

terms could be added artificially, the fact that magnetic fields are described by

a vector potential gave rise to purely geometric reasons which seemed to further

impose that this density (and thus current) had to be zero.

In his new paper, Dirac considered an infinite number of vertically aligned mag-

nets. The first would have its north pole at the origin, and its south pole right below.

The next would also be vertical, with its north pole right below the south pole of

the previous. If we continue this ad infinitum, and make each magnet infinitely

small, while still keeping each of them infinitely close to the next, the opposite poles

cancel out everywhere except at the origin. At this point, it looks like there is an

isolated north pole at the origin, a magnetic monopole, while the line of infinitely

small magnets becomes a singularity that cannot be observed, also called the Dirac

string singularity.

Thanks to this incredible new mathematical trick, Dirac found a solution for the

vector potential of a magnetic field that gives a non-zero magnetic charge density at

the origin! With such an exact solution, there was motivation to include the extra

magnetic density and current, which in turn made Maxwell’s equations perfectly

symmetric under exchange of the electric and magnetic fields. But there is more,

because when he quantized the system another direct consequence appeared: the

electric charge must be quantized! This is known as the Dirac quantization condi-

tion, and it states that if a single magnetic monopole exists in the universe, then

all electric charge must be quantized. Given that electric charge seems to come in

blocks in the universe, this would be a fascinating reason as to why.

Although the symmetry introduced to electrodynamics due to the inclusion of

magnetic monopoles was enough for Dirac, it is also a valid point of view that just

because a magnetic monopole can be added to the equations, it doesn’t mean it

should. However, in 1974 ’t Hooft[2] showed that a gauge theory with a compact

covering Lie group, coupled to a scalar field, leads to the existence of non-singular

topological solitons which look like a magnetic monopole from far away. Due to our
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understanding of particle physics and the standard model, we know that electro-

magnetism is obtained from a higher gauge theory, SU(2)×U(1)Y , which is broken

to U(1)e. Although the current standard model group SU(3) × SU(2) × U(1)Y is

not compact, it is expected that the gauge group of a more complete “grand unified

theory”, such as SU(5) or SO(10), will be. Since this topological soliton, called a

’t Hooft-Polyakov monopole, is also known to be equivalent to the Dirac monopole,

physicists around the world have been expecting these monopoles to be detected in

nature ever since. However, even to this day, no-one has been able to find them.

How has such a fundamental piece of one of our most well-understood theories been

able to elude us for so long?

This topic is introduced in chapter 2.

1.2 Gravity

For a lot of physicists, one of the earliest memories from our physics education, is

pairing Newton’s equation of gravity and Coulombs Law for electrostatics side by

side:

FN = −Gm1m2

r2
|| FC =

1

4πϵ0

q1q2
r2

(1.1)

and noticing the eerie similarity between them (granted, up to a constant). More

to the fact, if we consider the next-order corrections to Newtonian gravity, due to

Einstein’s theory of general relativity, we again obtain a theory which looks highly

similar to those from Maxwell’s electrodynamics!

Among the plethora of questions regarding the nature of both theories that this

has raised over time, and which are yet to be solved, a natural one to ask seems to

be whether Dirac’s monopole solution could be found in gravity, given its renewed

similarity with electrodynamics, and what the consequences would be. This is at

the heart of what this dissertation will review.

A. Zee considered[3] the existence of such a solution in gravity, for this linearized



4

(weak field) limit. He speculated on its consequences, like all mass (later we find its

energy) being quantized in a manner analogous to the Dirac quantization condition,

as well as what the place of such a solution in the complete theory could be. This

is covered in the beginning of chapter 3, along with a full general treatment of the

quantization condition for a spin-2 gauge theory (which is equivalent to linearized

gravity) that includes magnetic monopoles.

It is important to reiterate, that the similarity between gravity and electromag-

netism is only explicit at the linear level. However, via a process of many papers

and several authors, a solution to the non-linear Einstein field equations was found,

called Taub-NUT. It can be interpreted as corresponding to the spacetime surround-

ing a dyon - an object with mass and its dual, “magnetic” mass. In the linearized

limit, Taub-NUT reduces to Zee’s gravipole. This is covered in chapter 4 along with

its implication on the mass quantization condition.

Finally, in chapter 5 we give a brief overview of how Cartan geometry can be used

to describe gravity as a spontaneously broken SO(1, 4) gauge theory. It is shown

how this can be used to replicate the ’t Hooft-Polyakov monopole of an SO(3) gauge

theory, and extended to give the conditions in which the broken gravity theory could

yield analogous gravipoles.

Very interesting efforts are going into finding experimentally verifiable signatures

of rotating black holes with dual mass[4, 5], for which the solution is known as

Kerr-Newman-Taub-NUT. As well as analysing their thermodynamic properties[6].

In the future, uncovering the problem of the magnetic monopole in gravity could

teach us about the nature of this force, energy, electromagnetism and how they all

fit with the rest of the universe.



Chapter 2

The electromagnetic monopole

2.1 Dirac monopole

Maxwell’s equations of electromagnetism can be written in covariant form as ∂µF
µν =

jν with the Bianchi identity ∂µF̃
µν = 0, where the dual field strength is F̃ µν =

1
2
ϵµνλρFλρ. We can make these equations more symmetric by introducing a new cur-

rent in the Bianchi identity, such that ∂µF̃
µν = j̃ν and this new theory is self-dual.

In other words, under a π rotation:

 0 1

−1 0


F µν

F̃ µν

 →

 F̃ µν

−F µν

 (2.1)

 0 1

−1 0


 jν

j̃ν

 →

 j̃ν

−jν

 (2.2)

and the theory remains invariant.

In fact, if we look at Maxwell’s equations with both electric jν =(ρe, jm) and

5
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magnetic current j̃ν =(ρm, jm):

∇ · E = ρe (2.3)

∇×B = je +
∂E

∂t
(2.4)

∇ ·B = ρm (2.5)

∇× E = −jm − ∂B

∂t
(2.6)

we can see this is equivalent to the well-known invariance:

 0 1

−1 0


B

E

 →

 E

−B

 (2.7)

again, when applied with transformation (2.2).

Whilst considering the latter case, Dirac added a static point magnetic charge with

coupling g at the origin, such that equation (2.5) for ρm = 4πgδ(3)(r) reads:

∇⃗ ·B = 4πgδ(3)(r) (2.8)

which is solved by a magnetic field:

B = g
r

r3
(2.9)

with magnetic flux:

Φ = 4πg (2.10)

But what kind of smooth vector potential A, such that B = ∇⃗ × A, generates

this magnetic field? After all, from vector calculus we know that ∇⃗ · (∇⃗ ×A) = 0.

Dirac’s key to solving this[1] was to consider two scenarios; one of infinitesimally

small magnetic dipoles paired vertically, north-to-south, from the origin all the way
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along the positive z-axis to +∞, and another one that instead goes along the negative

z-axis to −∞. In spherical coordinates, the former gives the solution:

AS
r = AS

θ = 0, AS
ϕ = −g

r

1 + cos θ

sin θ
(2.11)

where we find a singularity along the positive z-axis of magnetic dipoles, called the

Dirac string singularity, and the latter gives the solution:

AN
r = AN

θ = 0, AN
ϕ =

g

r

1 − cos θ

sin θ
(2.12)

with the Dirac string singularity along the negative z-axis.

It is important to note that although the singularity at the origin is physical, the

rest of the Dirac string corresponds to an unphysical, or coordinate singularity. The

latter can be worked around by selectively using our two solutions in two different

coordinate patches. AN is used over all points excluding the negative z-axis, and

AS is used over all points excluding the positive z-axis. That way, for each solution

we avoid their respective Dirac string.

Because we assume that both solutions describe the same physical field, at the

points where the two charts intersect (that is, all points excluding the z-axis) they

must be related by a gauge transformation. This is:

AS
ϕ = AN

ϕ − 2g

r sin θ
(2.13)

which, due to the general form of all gauge transformations, can be re-written as:

AS
ϕ = AN

ϕ − i

e
S∇ϕS

−1 (2.14)

for

S = exp(2igeϕ) (2.15)
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Due to the nature of the spherical coordinate system, ϕ ∼ ϕ + 2π 1. Therefore,

the gauge transformation should be single-valued over this interval as well. As such,

S = exp
(
2igeϕ

)
= exp

(
2ige(ϕ+ 2πZ)

)
we find:

2ge = Z (2.16)

This is called the Dirac quantization condition, and it shows that if we have a

single magnetic monopole of charge g in the universe, then all electric charge must

be quantized as:

e =
n

2g
for n ∈ Z (2.17)

We can illuminate further what has just happened by looking at the Dirac monopole

from the fibre bundle formulation. In it, we obtain electromagnetism by finding the

gauge potential as a connection over a U(1)-bundle with 4-dimensional Minkowski

spacetime as base space.

But what happens if we change the topology of the base space? Ignoring the time

coordinate for simplicity, we remove the origin of R3 to obtain a base space which

belongs to the same homotopy class as S2. Now, the connection of the U(1)-bundle

over S2 requires two local charts to describe it. These can be our previous AN and

AS over their respective north and south charts. The transition function over their

overlap is the Abelian gauge transformation A → A + SdS−1, which brings us to

equation (2.14). Therefore, enforcing this to be single-valued over the range of ϕ

gives us the quantization condition 2.

It is interesting to note that instead of altering the Bianchi identity, as Dirac did

via the introduction of a Dirac string, we obtain the same solution by changing the

topology of the base space instead!

1∼ refers to an equivalence relationship. i.e. ϕ is cyclic over 2π.
2To read about the fibre bundle formalism and the Dirac monopole, see [7]
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There is a second way to derive the Dirac quantization condition that is more in

line with his original paper[1], and the calculations in this dissertation.

We begin with the potential of a magnetic monopole at the origin, A(r). The

wavefunction of a particle in this potential is found by making the substitution

p → p − eA to the solution for the Schrödinger equation of a free particle. This

corresponds to a change in phase:

⟨r|ψ⟩ → e−ieA·r⟨r|ψ⟩ (2.18)

The total phase change after going in a circle around the origin at constant θ is

∆ϕ = e

∮
A · dr (2.19)

= e

∫
(∇⃗ ×A) · dS (2.20)

= e

∫
B · dS (2.21)

= eΦ(θ) (2.22)

where Φ(θ) is the flux going through the cap with points at constant distance from

the origin, 0 < ϕ ≤ 2π, and polar angle that goes from zero to θ.

As θ → π, ∆α → 0. But since Φ(π) = 4πg, A is singular - our Dirac string again.

The Dirac veto states that the wavefunction is zero there, such that the discrepancy

in phase change is not a problem. However, it must be single-valued, such that

∆α = 2πn for n ∈ Z. Therefore, eΦ(π) = 2πn and our quantization condition is:

eg =
n

2
(2.23)

2.2 Solitons

A soliton is a stable solution to the equations of motion of a field theory which has

non-zero energy. In the context of gauge theories, we can obtain them by changing

the vacuum configuration of the fields at infinity.
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A simple example[8] is the sine-Gordon kink. It is equivalent to imagining an

infinite string of vertical pegs, each one attached to the next from the top and

bottom, being acted on by gravity. Clearly, if all the pegs are vertically aligned,

then that corresponds to a stable vacuum solution. In this scenario, the boundary

at infinity corresponds to the pegs infinitely far to the right and left. We can change

the boundary condition by turning by 180 degrees the peg at the boundary on the

right. In this case, the pegs in between would have to turn, in order to smoothly

connect the orientation of the two boundaries. Thus, each boundary condition

corresponds to a different solution of the whole field, with non-zero energy.

Extending this case to a scalar field in three-dimensional spacetime, with local

U(1) gauge invariance, we have the Lagrangian:

L = −1

4
FµνF

µν +Dµϕ
∗Dµϕ− V (ϕ) (2.24)

for V (ϕ) = (a2 − ϕ∗ϕ)2, constant a, Fµν = ∂µAν − ∂νAµ and Dµϕ = ∂µϕ+ ieAµϕ.

In polar coordinates, the potential has equilibria at ϕ = aeinθ, where n ∈ Z. Since

the vacuum manifold in field space is S1, we include the phase to reflect the fact

that as long as |ϕ| = a, we have the freedom to choose a direction in field space.

The integer in the phase ensure that the field in single-valued as 0 < θ < 2π, and it

defines different vacuum solutions.

If we impose that at the boundary the vector potential is in the pure gauge:

A
r→∞
=

1

e
∇(nθ) (2.25)

then Fµν = 0, Dµϕ = 0, and it corresponds to a vacuum solution. Now, assuming

that at the boundary the field is also in the previously mentioned vacuum solution,

we find:

H = −L (for a static configuration) (2.26)

and therefore H → 0 as r → ∞, and the solution has finite energy over the whole
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space.

In exchange for obtaining a stable, finite energy field configuration, we introduced

a vector potential with non-zero flux:

Φ =

∮
A · dl =

∫
Aθrdθ = −2πn

e
(2.27)

which is quantized!

In summary, for each value of n, we have a field configuration at infinity which

cannot be smoothly deformed via a gauge transformation to any of the other ones.

This configuration has finite energy, is stable, and due to the U(1) potential has a

non-zero electromagnetic field with quantized flux! This will be explained in more

detail in the next section.

2.3 The ’t Hooft-Polyakov monopole

In this case, we consider a gauge theory with a scalar field in the fundamental

representation of O(3):

L = −1

4
F aµνF a

µν +
1

2
Dµϕ

aDµϕa − 1

2
m2ϕaϕa − λ(ϕaϕa)2 (2.28)

where

Dµϕ
a = ∂µϕ

a + eεabcAb
µϕ

c (2.29)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + eεabcAb

µA
c
ν (2.30)

and |ϕ|2 = F 2 = −m2/4λ defines the broken vacuum submanifold.

After spontaneous symmetry breaking (SSB), what remains is an unbroken U(1)

symmetry (SO(3)
SSB−−→ SO(2) ≃ U(1)). Usually, the gauge with broken configu-

ration ϕa = (0, 0, F ) is chosen globally, such that we have the massless vector field

Aµ = A3
µ and field strength Fµν = ∂µAν − ∂νAµ.
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In his famous paper ’t Hooft[2] defined these quantities in a different gauge, where

the field breaks radially outwards in field space, and proposed the following gauge

invariant field strength:

Fµν =
1

|ϕ|
ϕaF a

µν −
1

e|ϕ|3
εabcϕ

a(Dµϕ
b)(Dνϕ

c) (2.31)

such that for

Aµ =
1

|ϕ|
ϕaAa

µ (2.32)

then

Fµν = ∂µAν − ∂νAµ −
1

e|ϕ|3
εabcϕ

a(∂µϕ
b)(∂νϕ

c) (2.33)

A key point to note is that since (2.31) is gauge invariant, we correctly recover the

expressions for the original gauge by simple substituting A3
µ ≡ Aµ ̸= 0 and ϕ3 = F

(with the rest being equal to zero).

Next, he proposed the spherically symmetric ansatz at the boundary:

ϕa = Fra/r (2.34)

Aa
i = εiab

rb

er2
(2.35)

Aa
0 = 0 (2.36)

which mixes spatial and gauge indices in spherical coordinates, such that at each

point in the boundary the fields aim radially outwards as defined in physical space.

He called this a hedgehog solution.
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Substituting into our expression for the field strength we find

F0i = 0 (2.37)

Fij = − 1

er3
εijkr

k (2.38)

such that

Bk =
rk

er3
(2.39)

which looks like the field of a magnetic monopole!

Since Ai = (1/|ϕ|)ϕaAa
i = (1/F )(Fra/r)(εiabrb/er2) ∝ εiabr[arb] = 0, it is the

scalar field part of (2.31) that is responsible for this magnetic monopole, only this

time the full spherically symmetric ansatz is singularity free![2] It is only at infinity

that our solution looks like a magnetic monopole.

For a theory with gauge symmetry G that undergoes spontaneous symmetry break-

ing into another group H, (G
SSB−−→ H) we are interested in the gauge transforma-

tions in G which are not related by H since this is the remaining symmetry. This is

precisely the coset space G/H.

Since the boundary at infinity in physical space is S2, we define an equivalence

relation for all two-spheres which are mapped onto G/H by whether they can be

continuously deformed into each other. With the appropriate group action3 this

becomes the second homotopy group, and it is labelled π2(G/H).

Being more specific, the field at the boundary in physical space is non-zero and

has constant magnitude but different angles in field space, such that it defines a map

from points in S2 to the manifold G/H. If this map can be continuously deformed

to a point, then the field at all points in the boundary can be smoothly deformed

to the same direction in field space, and thus we don’t have a soliton. Therefore,

if π2(G/H) is trivial, all field configurations in the broken state at the boundary

3two inequivalent loops are mapped to a different one, defined by travelling the first loop and
then the second.
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can be continuously deformed into the same location in coset group space, and no

soliton solution exists. However, if this group is non-trivial, then soliton solutions

are allowed via spontaneous symmetry breaking.

In our previous example the scalar field defined a map ϕ: S2 → SO(3)/SO(2) ≃

S2, such that π2(S
2) = Z (i.e. the group of integers under addition) is non-trivial.

Hence, we were able to find the magnetic monopole as a topological soliton.

Although our Dirac and ’t Hooft-Polyakov monopoles look very different - one has

a singularity at infinity and the other doesn’t, they correspond to the same solution

and can be related via the appropriate gauge transformation.

To do this, we first note that our previous result for the ’t Hooft-Polyakov

monopole is equivalent to a scalar field in the adjoint representation of SU(2), which

breaks into U(1). Since these are equivalent representations.

We begin by embedding our Dirac monopole in an SU(2) theory with adjoint

scalar field in the usual broken state ϕ3 = T 3F where Aµ = T 3A3
µ, such that:

At = Ar = Aθ = 0 and Aϕ = T 3
(
− g

r

)(1 − cos θ

sin θ

)
(2.40)

where we use the basis Aµ = Aa
µT

a.

It can be shown that:

S =

 cos θ
2

−e−iϕ sin θ
2

eiϕ sin θ
2

cos θ
2

 ∈ SU(2) (2.41)

such that it defines the gauge transformation

Aµ → SAµS
−1 +

2i

e
S∂µS

−1 (2.42)

ϕ→ SϕS−1 (2.43)
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and we have non-zero elements:

Aθ =
1

er
(T 1 sinϕ− T 2 cosϕ) (2.44)

Aϕ =
1

er
(T 1 cos θ cosϕ+ T 2 cos θ sinϕ− T 3 sin θ) (2.45)

ϕ = F (T 1 sin θ cosϕ+ T 2 sin θ sinϕ+ T 3 cos θ) (2.46)

which in Cartesian coordinates are our solutions (2.34)-(2.36)!

Thus, we can say ’t Hooft-Polyakov = Dirac up to a gauge transformation, such

that all “responsibility” for the magnetic monopole is moved from the scalar field

to the gauge field, introducing a Dirac string singularity in the process.

2.4 Instantons

If “Euclideanise” spacetime such that t→ it, the boundary at infinity for the whole

manifold turns to S3. Since a soliton solution over this space would also involve

boundary conditions which vary over time, this is instead called an instanton solu-

tion. There is much literature on the topic, and the reader is directed to [8] for a

good introduction.

Shifting our attention to Einstein-Cartan (EC) theory with complexified time,

the vector potential now defines a map from S3 to SO(4). Thus, by our previous

arguments, we are interested in π3(SO(4)), which is non-trivial, and we can have

instanton solutions without the need of spontaneous symmetry breaking.

Reference [9] lays out one such solution by considering EC’s equations of motion

without matter:

eabcde
a ∧ eb ∧Rcd = 0 (2.47)
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which is solved for a (anti-) self-dual field strength, R̃ab = 1
2
ϵabcdRcd = ±Rab since:

eabcde
b ∧Rcd = 2eb ∧ R̃ab (2.48)

= ±2Rab ∧ eb (2.49)

= ±2DTa (2.50)

= 0 (2.51)

where DT a = 0 is the cyclic identity of the Riemann tensor for zero torsion.

We simplify this further by noticing that since

R̃ = dω̃ +
1

2

(
ω̃ ∧ ω + ω ∧ ω̃

)
(2.52)

an (anti-) self-dual spin connection leads to an (anti-) self-dual curvature, and thus

we have an instanton solution for an equation of motion which is first order in the

tetrad field.



Chapter 3

Linearized gravity

3.1 Dirac monopole... again!

In 1985 Zee A. introduced[3] to linearized Einstein gravity, an analogue of the Dirac

monopole. Motivated by the well known similarity between Einstein’s equations in

this regime and Maxwell’s equations of electrodynamics, he speculated on whether

there could be physical examples of magnetic monopoles - as Dirac predicted them

for electromagnetism - in gravity, and what the consequences of this would be.

By perturbing the metric from flat Minkowski spacetime as gµν = ηµν + hµν , we

can define the potentials ϕ = h00 and ζ i = h0i, and therefore the spatial 1-forms

g = −∇⃗ϕ and B = −∇⃗ × ζ.

If we then substitute these into Einstein’s field equations, and choose what appears

to be the Lorentz gauge gµνΓλ
µν = 0 ⇒ 4∂ϕ/∂t+ ∇⃗ · ζ = 0, we obtain:

∇⃗ · g = −4πGρ (3.1)

∇⃗ ×B = −16πGK +
∂g

∂t
(3.2)

∇⃗ × g = 0 (3.3)

∇⃗ ·B = 0 (3.4)

17
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which look like Maxwell’s equations, for ρ and K the lowest order1 perturbations

of the energy-momentum tensor components T00 and T0i respectively. These indeed

correspond to our usual (we will get back to this later) notions of energy density

and momentum density respectively for the system.

Like for EM, equation (3.4) follows from the fact that for a smooth vector potential

∇⃗ · (∇⃗ × ζ) = 0 is inevitable. Thus, Zee proceeds along the lines of Dirac and

introduces the term:

∇⃗ ·B = 4πγδ(3)(r)2 (3.5)

such that γ corresponds to the magnetic/dual mass (as opposed to the usual “elec-

tric” mass) of what we now label as a gravitational magnetic monopole or gravipole.

Considering the action for a point particle in this perturbed metric:

S = −m
∫
dτ (3.6)

=

∫
dt
(
−m+m

[1

2
v2 +

1

8
(v2)2

]
−m

[
ϕ+

1

2
ϕ2 + ψ +

3

2
ϕv2

]
−mζ · v

)
3 (3.7)

The first and second terms are the relativistically corrected kinetic and potential

energy, respectively. The last term, which can be written as the line integral:

−m
∫
dx · ζ (3.8)

is the one of interest, since for a particle orbiting far enough away such that this

post-Newtonian approximation still applies, it is the total phase change in the wave-

function. Therefore, we can apply -exactly- the same arguments as in the last part

1of parameter ∼ (GM/r)1/2 which becomes smaller for the weak gravity limit
2Although not in the original paper by Zee, the writer of this dissertation included 4π to make

the connection with the end of sec. 2.1 clear.
3ψ = −g(4)00 /2− ϕ2 where g

(4)
00 is next order correction to h00.
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of sec. 2.1 and conclude the analogous mass quantization condition:

mγ =
Z
2

(3.9)

Moving on to the equations of motion of (3.7), we obtain an analogue of the Lorentz

law. A new force points away from the plane of rotation such that were there to be

a gravipole inside the sun, the orbital plane of the planet would no longer intersect

the central star - ideally something we could measure for our own sun!

This equation of motion is:

dv

dt
= −GM

r2
r̂ + v× γ

r2
r̂ (3.10)

Other speculations that Zee raises are:

1. If instead of a particle, we consider moving a given nucleus

around a gravipole, then our quantization condition would apply

to every possible nucleus, thus leading to the quantization of all

possible binding energies inside the nucleus. This, in turn, would

lead to some kind of constraints on the fundamental couplings of

nature. (At least for the strong and electromagnetic couplings.)

2. If mass is quantized, then so is photon energy. Although

our post-Newtonian approximation wouldn’t hold for the orbit of a

massless particle, we can consider the following thought experiment

- place a photon inside a stationary box. The increase in energy

of the box is equivalent to an increase in its mass, which can only

be increased in multiples of its smallest quantized value. However,

this energy comes purely from the photon, which therefore must
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also increase only in quantized amounts.

3. Friedman and Sorkin’s[10] topological solution of spacetime

contains spin-1/2 particle solutions. This could be motivation that

in some modified/generalized theory of gravity, the gravipole might

exist as a topological solution.

4. Montonen and Olive[11] proposed that in a quantized theory,

the magnetic monopole solutions form a triplet with the photon -

perhaps, the gravipole and graviton similarly form a representation

under some dual group.4

3.2 Spin-2 duality

In section 2.1, we saw that by adding a magnetic current to the Bianchi identity,

a new duality invariance of the theory appears - equations of motion remain the

same after a π rotation of the field strength and its dual. Paper [13] extends this to

linearized gravity by rotating the Riemann tensor and its dual into each other:

R′
λµρσ = cosα Rλµρσ + sinα Sλµρσ (3.11)

S ′
λµρσ = − sinα Rλµρσ + cosα Sλµρσ (3.12)

such that not only the equations of motion remain invariant, but also the action.

Therefore, defining an SO(2) invariance of the theory.5

Starting from this principle, [14] adds symmetric electric and magnetic sources

to linearized spin-2 theory, and develops a general equation for its quantization

condition, the derivation of which we will cover in this section and the next.

4In [12] he suggests that a possible solution to the cosmological constant problem could be to
change the dimensionality of the constant term of the Lagrangian, as was done for an interaction
term in the proton decay problem, by making the graviton some kind of composite particle of a
higher theory.

5The equations of motion are invariant under any GL(2,R) transformation, however only a
rotation will leave the action invariant.
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These electric and magnetic sources, Tµν and Θµν respectively, are conserved such

that ∂µT
µν = 0 and ∂µΘµν = 0. Since in our earlier example, the current and its dual

also had to transform under the SO(2) rotation, in this case we have the rotation

of our energy-momentum tensors:

T ′
αβ = cosα Tαβ + sinα Θαβ (3.13)

Θ′
αβ = − sinα Tαβ + cosα Θαβ (3.14)

Under this duality, the relations below hold:

Rαβλµ = R[αβ][λµ] (3.15)

For the trace reversed Θ̄αβ = Θαβ − (1/2)ηαβΘ, where Θ = ηαβΘαβ:

Rαβλµ +Rλαβµ +Rβλαµ = 8πGϵαβλνΘ̄ν
µ (3.16)

A very interesting point to notice that the paper doesn’t reference, is the fact

that this corresponds to breaking the cyclic symmetry of the Riemann tensor in

GR; DT = R∧ e, which can only happen for non-zero torsion! - This raises whether

by adding a magnetic monopole, we immediately add torsion to the system.

By permuting the indices, this leads to:

Rαβγδ −Rγδαβ = 4πG(ϵαβγλ Θ̄λ
δ − ϵαβλλ Θ̄λ

γ + ϵβγδλ Θ̄λ
α − ϵαγδλ Θ̄λ

β) (3.17)

The Bianchi identity:

∂ϵRαβγδ + ∂αRβϵγδ + ∂βRϵαγδ = 8πGϵϵαβρ(∂γΘ̄ρ
δ − ∂δΘ̄

ρ
γ) (3.18)

which reinforces the electric energy-momentum tensor conservation via:

∂µG
µν = 0 (3.19)
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And the Einstein field equations:

Gµν = 8πG Tµν (3.20)

These equations are now symmetric under our duality transformations. As a

result, we can obtain the same equations for the dual Riemann with the electric and

magnetic energy-momentum tensors rotated. And in the absence of any sources,

we recover the usual symmetries of the Riemann tensor and equations for linearized

gravity.

Next, we need to introduce an action in order to obtain our equations of motion.

Having said that, in order to invoke the variational principle, we need to introduce

the usual spin-2 field hµν = hνµ.

In a scenario without sources (i.e. Tµν = Θ̄µν = 0) the two identities (3.16) and

(3.18) imply the existence of our familiar symmetric tensor gauge field, such that:

Rµνλρ = ∂[λhµ][σ,ρ] (3.21)

However, when we introduce our corresponding energy-momentum tensors these

symmetries are broken. To proceed, we introduce two components that make up

the Riemann tensor; one that satisfies the vacuum symmetries and one that is fixed

by the magnetic energy-momentum tensor. The latter is defined by:

∂αΦαβ
γ = 16πG Θβ

γ (3.22)

where Φαβ
γ = Φ

[αβ]
γ since the magnetic energy-momentum is conserved; ∂βΘβ

γ =

1
16πG

∂[β∂α]Φ
[αβ]

γ = 0.

With this, we set:

Rλµαβ = rλµαβ +
1

4
ϵλµρσ

(
∂αΦ̄ρσ

β − ∂βΦ̄ρσ
α

)
(3.23)



23

where Φ̄αβ
γ = Φαβ

γ + 1
2

(
δαγ Φβ − δβγΦα

)
and Φα ≡ Φασ

σ.

Given this, it is straight forward to check that

Φ̄α = −1

2
Φα (3.24)

and

∂αΦ̄αβ
γ = 16πG Θ̄β

γ − ∂γΦ̄β (3.25)

such that rαβγδ satisfies the cyclic and Bianchi identities respectively:

rαβγδ + rγαβδ + rβγαδ = 0, ∂ϵrαβγδ + ∂αrβϵγδ + ∂βrϵαγδ = 0 (3.26)

Now we can define the usual symmetric tensor by: rαβγδ = ∂[αhβ][γ,δ] and with

yαβλ = ϵαβγδ∂γhδλ rewrite the curvature as:

Rλµαβ =
1

4
ϵλµρσ

(
∂αȲ

ρσ
β − ∂βȲ

ρσ
α

)
(3.27)

for

Y ρσ
β = yρσ β + Φρσ

β, Ȳ ρσ
α = Y ρσ

α +
1

2

(
δραY

σ − δσαY
ρ

)
, Y ρ ≡ Y ρσ

σ (3.28)

Next, we introduce explicit expressions for our electric and magnetic energy-

momentum tensors for a point source:

T µν =
uµuν

u0
δ(3)(x− z(x0)), Θµν =

vµvν

v0
δ(3)(x− z̄(x0)) (3.29)

where zµ and z̄µ are the world lines of the electric and magnetic charge respectively,

uµ = dzµ

dλ
and vµ = dz̄µ

dλ
.

Given this, to solve equation (3.22) a Dirac string is introduced with coordinates

yα(λ, σ). (λ, σ) parametrize its worldsheet, and since the string always starts at the
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point magnetic source, (λ,σ = 0) parametrizes its worldline.

The solution is:

Φαβ
γ = 16πGNvγ

∫
dλdσ(y′αẏβ − y′β ẏα)δ(4)(x− y(λ, σ)) (3.30)

where ẏα = ∂yα

∂λ
, y′α = ∂yα

∂σ
, N is the magnetic mass and the conserved magnetic

4-momentum Nvγ plays the role of the magnetic coupling.

Finally, the action from which (3.20) can be obtained is:

S[hµν(x), yρ(λ, σ)] =
1

16πG

∫
1

4
(ȲαβγȲ

αγβ − ȲαȲ
α)d4x+

1

2

∫
hµνT

µνd4x (3.31)

Interestingly, we vary the field hµν and the Dirac string yµ (as long as it remains at-

tached to the magnetic source), but we don’t vary the electric and magnetic sources,

which is a limitation of the linearized theory in general even just with electric sources.

For no magnetic source, this action reduces to:

SPF =
1

16πG

∫
1

4

(
− ∂λhαβ∂

λhαβ + 2∂λh
λα∂µhµα − 2∂λh∂µh

µλ + ∂λh∂
λh

)
(3.32)

which is called the Pauli-Fierz action, which describes a spin-2 gauge field as previ-

ously mentioned, and if we vary it by hαβ it gives Einstein’s linearized field equations.

Due to the freedom to choose a coordinate system, the action (3.31) must be dif-

feomorphism invariant, as well as invariant under translations of the Dirac string

(with an appropriate transformation of our spin-2 field) such that our Dirac string

remains classically unobservable.

If Y µν
α transforms in the form:

Ȳ µν
α → Ȳ µν

α + ∂αz
µν (3.33)

where zµν = z[µν], the Riemann tensor remains invariant, as does the first element

of (3.31) up to a boundary term.
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Now considering an infinitesimal diffeomorphism,

hµν → hµν + ∂µξν + ∂νξµ (3.34)

then

Y µν
γ → Y µν

γ + ϵµναβ∂α∂γξβ (3.35)

and

Ȳ µν
γ → Ȳ µν

γ + ϵµναβ∂α∂γξβ (3.36)

Thus we can write zµν = ϵµναβ∂αξβ and the first element of our action is indeed

invariant. The second, minimally coupled term is invariant (up to a boundary term)

because Tµν is conserved.

For a displacement of the Dirac string:

yα(λ, σ) → yα(λ, σ) + δyα(λ, σ) (3.37)

Φµν
α → Φµν

α + kµν α (3.38)

For the last, we don’t need to find the exact form of kµν α from (3.30), as long as

∂µk
µν

α = 0. Which must be the case since the magnetic energy-momentum tensor

is invariant under a displacement of the Dirac string (recall equation 3.22).

If we also apply a general diffeomorphism:

Y µν
α → Y µν

α + ϵµνρσ∂ρδhσα + kµν α (3.39)

For our previous condition, we can write kµν α = ∂ρt
µνρ

α, where tµνρ α = t
[µνρ]

α such

that ∂µk
µν

α = 0. This can be further simplified by tµνρ α = ϵµνρσ(aσα + sσα), where

aσα = a[σα] and sσα = s(σα). Choosing the appropriate diffeomorphism, δhµν = −sµν ,
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then

Y µν
α → Y µν

α + ϵµνρσ∂ρaσα (3.40)

such that for zµν = −1
2
ϵµνρσa

ρσ, we obtain (3.33).

An important point is that the spin-2 field is only varied for kµν α ̸= 0. However, yα

has support (the spacetime domain over which we vary) in the string locations, which

can’t intersect the electric mass worldline due to the Dirac veto. The consequence

of this is that the minimally coupled term in the action also remains invariant (i.e.

if δhµν ̸= 0 then Tµν = 0 and vice versa).

Thus, the first two elements of (3.31) remain invariant -as well as the Riemann

tensor- under translations of the Dirac string.

3.3 Quantization condition

With the linearized spin-2 theory set-up with magnetic and electric sources, [14]

describes the process of quantizing the system by following a recipe from Dirac[15]

to make the Dirac string quantum mechanically unobservable - which inevitably

leads to the charge quantization condition.

So far we’ve established that the Dirac string is classically unobservable due to

the invariance of the action under perturbations of the string. This induces first

class constraints (in a gauge y0 = λ) with conjugate momentum for each spatial
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coordinate (ym)

πm =
∂L
∂ẏm

(3.41)

=
∂L

∂Y αβ
γ

∂Y αβ
γ

∂ẏm
(3.42)

=
∂L

∂Y αβ
γ

∂Φαβ
γ

∂ẏm
(3.43)

=32πGNvγ
∂L

∂Y αβ
γ

∫
dλdσy′[αδβ]mδ

(4)(x− y(λ, σ)) (3.44)

= − 32πGNy′nvγ
∂L

∂Y mn
γ

(3.45)

where we used the fact that Y mn
γ = Y

[mn]
γ and assumed that x intersects a Dirac

string (otherwise it vanishes). Since this generates the change in the gravitational

field after a shift in the Dirac string, by varying the wave functional with respect to

the string location in the quantum theory we obtain:

1

i

δΨ

δym(σ)
= −32πGNy′nvγ

∂L
∂Y mn

γ

Ψ (3.46)

such that if δΨ = αΨ for small enough alpha,

Ψ → Ψ + δΨ (3.47)

= Ψ + αΨ (3.48)

= (1 + α)Ψ (3.49)

≈ eαΨ (3.50)

and the total phase change in the wave functional, after the string sweeps a two-

dimensional closed surface around an electric pole is:

∆Ψ = −16GNvγ

∫
∂L

∂Y mn
γ

(ẏmy′n − ẏny′m)dλdσ (3.51)

= −16GNvγ

∫
d3xϵmnp∂p

( ∂L
∂Y mn

γ

)
(3.52)
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where we used Gauss’s theorem on the last line.

Considering the first term in (3.31) -call this S1 =
∫
L1- we know

− 1

16πG
Gαβ =

δS1

δhαβ
(3.53)

= −∂ρ
(

∂L1

∂Y µν
σ

∂Y µν
σ

∂∂ρhαβ

)
(3.54)

= −∂ρ
(

∂L1

∂Y µν
β

)
ϵµνρα (3.55)

= −∂ρ
(

∂L1

∂Y µν
α

)
ϵµνρβ (A property6of L1 due to gauge invariance)

(3.56)

and substituting this into (3.52) we find

∆Ψ = 8πGNvγ

∫
d3xT 0γ = 8πGNMvγu

γ (3.57)

As usual, by imposing that the wavefunction is single-valued we obtain:

4GNMvγu
γ = n, n ∈ Z (3.58)

This is actually a relation for the 4-momenta of the poles:

4GPγQ
γ ∈ Z (3.59)

for Pγ = Muγ and Qγ = Nvγ.

In fact, if we choose the centre of momentum frame for the magnetic mass, we

obtain the relation:

4GEN ∈ Z (3.60)

and thus our quantization condition is for the energy, not the mass! Thus demon-

strating in more generality (within the linearized limit) that Zee’s speculation on

6By inspection it also imposes the contracted Bianchi identities.
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section 3.1 on quantization of energy rather than mass is more accurate.

Had we considered two dyons - poles with both electric and magnetic mass - each

with charges (P γ,Qγ) and (P̄ γ, Q̄γ) respectively, our quantization condition would

read:

4G
(
PγQ̄

γ − P̄γQ
γ
)
≡ 4GϵabQ

a
γQ̄

bγ ∈ Z (3.61)

where the last expression is explicitly duality rotation invariant, since ϵab is the

SO(2)-invariant Levi-Civita tensor, for the space with indices that determine charge

and dual charge.



Chapter 4

Taub-NUT

So far, in our quest for gravipoles we have looked at the concept of manually adding

them for linearized gravity, with the hopes that a higher theory will decompose to

this general solution. However, maybe there is no need for this, since there already

exists a solution to the full (non-linear) Einstein field equations which returns the

Zee gravipole! It is called the Taub-NUT spacetime.

4.1 Classical solution

In 1950 A. H. Taub[16] discovered the time-dependent part of the whole spacetime,

and in 1963, Newman, Tamburino and Unti[17] rediscovered in as a simple gen-

eralization of the Schwarzschild spacetime, with coordinates that cover the whole

manifold: both the stationary and time-dependent regions.

The Taub-NUT solution to the Einstein field equations is:

ds2 = −f(r)(dt+ 2l(k − cos θ)dϕ)2 +
dr2

f(r)
+ (r2 + l2)(dθ2 + sin2 θdϕ2) (4.1)

where

f(r) =
r2 − 2mr − l2

r2 + l2
(4.2)

30
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for k = 0, with parameters1 m and l.

The first parameter becomes the mass of the source in the Schwarzschild limit, and

it is generally accepted to be the electric mass (check out chapter 3 for terminology),

a notion that is nicely supported by the fact that it is always positive, since its sign

can be reversed by the coordinate transformation r → −r.

In the context of gravity monopoles, the second is called the NUT parameter,

and it is interpreted to be the dual/magnetic mass. If we let l = 0 and m ̸= 0 our

solution reduces to the Schwarzschild metric, and [18] uses the Weyl curvature of

Taub-NUT to show that for non-zero l geodesics will twist, although the possible

sources of the twist need to be investigated.

Shifting the constant k by k → k+α is equivalent to doing the coordinate transfor-

mation t→ t+ 2lαϕ2.

From now on, we take the generally adopted form, with k = 1:

ds2 = −f(r)(dt+ 4l sin2 1

2
θdϕ)2 +

dr2

f(r)
+ (r2 + l2)(dθ2 + sin2 θdϕ2) (4.3)

and it has a string-like singularity on the negative z-axis, for θ = π (for other values of

k the singularity changes location). This singularity is present for l ̸= 0. Otherwise,

our solution becomes Schwarzschild, which doesn’t have this kind of divergence.

The spacetime is asymptotically flat in the sense that as r → ∞, the Riemann tensor

decays as r−3. However, since there is a singularity at θ = π, for l ̸= 0 the spacetime

cannot be globally asymptotically flat.

1This solution also contains another parameter; ϵ = +1. It is what we refer to as the Taub-NUT
solution. This is also the only case which includes the Schwarzschild solution[18].

2[14] has a typo - equation (IV.3) should have a plus sign.
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By defining r± = m±
√
m2 + l2 such that:

f(r) =
(r − r+)(r − r−)

r2 + l2
(4.4)

we find some kind of singularity for f(r) = 0 at r = r±. In fact, these two hyper-

surfaces correspond to Killing horizons generated by ∂t.

For r < r+ and r > r+, f(r) > 0 ⇒ r is spacelike and t is timelike - the metric

is stationary. These regions are called NUT− and NUT+ respectively.

For r− < r < r+, f(r) < 0 ⇒ t is spacelike and r is timelike. This time-

dependent region is called the Taub region.

Some initial interpretations of the string singularity identified the solution with the

natural idealization of a semi-infinite massless source of angular momentum[19, 20],

where the source would be a thin semi-infinite spinning rod.

After noticing that in the linearized limit Taub-NUT gives the equivalent of a

magnetic monopole, [21] draws the analogy between the NUT solution and Dirac’s

theory of magnetic monopoles. It regards the source at the origin as a dyon - an or-

dinary mass (quantified by parameter m) together with a magnetic mass (quantified

by the NUT parameter l), such that the string singularity in the metric is analogous

to the Dirac string of the magnetic monopole.

Additionally, [22] supports the analogy by showing that a test mass in the station-

ary (NUT) region possesses the same properties as those of an electrically charged

particle orbiting a magnetic monopole. The case for the gravitational analogue of a

magnetic monopole on an electrically charged particle is yet to be made.

A curious contradiction, is the fact that since (4.3) has no central curvature sin-

gularity for l ̸= 0, it is not clear where the source of the field is located.

Returning to the string singularity, Misner[23] got around this problem by choosing

two charts with differing time coordinates.
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For 0 < θ < π/2, the metric is the previous (4.3), and for π/2 < θ < π, we

introduce t→ t̃ = t−4lϕ such that the two metrics join smoothly at θ = π/2. Since

ϕ = 0 and ϕ = 2π are identified in our coordinate system, that is ϕ ∼ ϕ + 2π, for

consistency our new time coordinate must have a periodicity of ∆t̃ = 8πl.

Thus, we manage to get rid of our string singularity, at the cost of a periodic

time coordinate, where all timelike curves that move along coordinate time are

closed (closed timelike curves)3. In fact, this periodicity is equivalent to the Dirac

quantization condition[21].

However, in this interpretation, there seems to be no argument to consider the

NUT parameter as a magnetic mass. At most, it is related to the periodicity of the

closed timelike curves.

4.2 Quantization condition

As previously mentioned, Taub-NUT is a full solution of Einstein’s equations that

contains duality invariance4. Therefore, it is a good example of what the spacetime

surrounding a gravitational monopole could be, with the closed timelike curves of

Misner’s interpretation presenting the analogous Dirac quantization condition.

This is extended by [14]. Although they are able to introduce external electric and

magnetic energy-momentum tensors into the spin-2 (i.e. gravity) linearized theory

(see section 3.2), the formulation of external sources that are covariantly conserved

in the non-linear regime is still incomplete. So in order to learn more about the

non-linear case, they develop their own way of obtaining the quantization condition,

and proceed to calculate the Poincaré charges of the Taub-NUT solution.

3This is only a problem in the NUT regions where t and t̃ are timelike.
4In the linearized limit, the tools from section 3.2 can be used to show that the Riemann tensor

for l = 0, m ̸= 0 is dual to l ̸= 0, m = 0.
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First, the Killing vectors for our metric (4.3):

ξt =
∂

∂t
(4.5)

ξx = − sinϕ
∂

∂θ
− cosϕ cot θ

∂

∂ϕ
+

(
2l cosϕ cot θ − 2l

cosϕ

sin θ

)
∂

∂t
(4.6)

ξy = cosϕ
∂

∂θ
− sinϕ cot θ

∂

∂ϕ
+

(
2l sinϕ cot θ − 2l

sinϕ

sin θ

)
∂

∂t
(4.7)

ξz =
∂

∂ϕ
− 2l

∂

∂t
(4.8)

For each of these, the components perpendicular to the time direction look exactly

like those for a 3d space with spherical symmetry:

ξX = − sinϕ
∂

∂θ
− cosϕ cot θ

∂

∂ϕ
(4.9)

ξY = cosϕ
∂

∂θ
− sinϕ cot θ

∂

∂ϕ
(4.10)

ξZ =
∂

∂ϕ
(4.11)

But what about the time direction components? Well, if to this space we add a

monopole vector potential, in order for the potential to stay invariant under active

rotation transformations, we also need to do an appropriate gauge transformation

such that δξBAi = LξBAi + ∂iΛB = 0.

Once these are found, applying everything is equivalent to adding a new coordinate

to the Killing vector fields, (e.g. a new ∂/∂λ direction), and putting the gauge

transformation there:

ξ̂X = − sinϕ
∂

∂θ
− cosϕ cot θ

∂

∂ϕ
+

(
2l cosϕ cot θ − 2l

cosϕ

sin θ

)
∂

∂λ
(4.12)

ξ̂Y = cosϕ
∂

∂θ
− sinϕ cot θ

∂

∂ϕ
+

(
2l sinϕ cot θ − 2l

sinϕ

sin θ

)
∂

∂λ
(4.13)

ξ̂Z =
∂

∂ϕ
− 2l

∂

∂λ
(4.14)

where λ is the conjugate to the generator of U(1) transformations, and the coordinate

on the U(1) fibres of the manifold.
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In this case, the rotationally invariant, monopole one-form field looks like:

A = 2l(1 − cos θ)dϕ (4.15)

where this is really in the coordinate basis of the chart with Dirac string along the

negative z-axis.

Thus, we can notice that for (4.3), the Killing vector fields have the same compo-

nents as those of a monopole with vector potential Ai ∼ g0i 5.

In fact, for an infinitesimal diffeomorphism xµ → xµ + ξµ, g0i → g0i + ∂0ξi + ∂iξ0.

Such that for ξµ = (Λ, 0, 0, 0), δg0i = ∂iΛ, and substituting our definition for the

vector field, Ai → Ai + ∂iΛ. Therefore, diffeomorphisms in the time direction are

equivalent to a gauge transformation of the vector potential, which is why the gauge

parameter λ is the time direction for (4.5-4.8).

Indeed, the Killing vectors for Taub-NUT form the algebra:

[ξa, ξb] = −ϵabcξc (4.16)

[ξa, ξt] = 0 (4.17)

where a,b,c ∈ {x, y, z}.

From this we can see that the isometries of Taub-NUT are generated by an su(2)×

u(1) Lie algebra, such that our spacetime is spherically symmetric (which upon initial

inspection of the metric isn’t explicitly clear) and stationary6.

With each Killing vector field there is an associated charge that is conserved along

geodesics; Q = m0uµξ
µ, where m0 is the rest mass of the particle following said

geodesic, and uµ its 4-velocity.

Thus, Pz = m0uµξ
µ
z = pϕ − 2lm0u0 is one such conserved quantity.

In classical electromagnetism, the additional component is due to the angular

5In the weak field limit, Ai = g0i
6ξt defines a Killing vector which is asymptotically timelike, however not globally since it gen-

erates the two Killing horizons r±
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momentum of the electromagnetic field, which in this analogous situation is 2lm0u0.

By requiring this angular momentum to be quantized in multiples of ℏ/2, which

is known to give the Dirac quantization condition, we obtain the quantization con-

dition:

4lm0u0 ∈ ℏZ (4.18)

We can indeed confirm that this is the same quantization condition obtained by

the periodicity of the time coordinate in Misner’s interpretation - since the time

dependence of the wavefunction, ψ ∝ e−
iEt
ℏ , and the closed timelike curves are

contractible, we require the wavefunction to be single-valued in their time period

∆t = 8πl. Therefore, we obtain (again):

E∆t

ℏ
= 2πZ (4.19)

4lm0u0 ∈ ℏZ (4.20)

for E = m0u0, where the orbiting particle only has electric mass, m0, and 4-velocity

uµ.

Resorting to the duality invariance of Taub-NUT, we conclude that this result

would look the same for a magnetic mass in the gravitational field of an electric

mass and vice versa.

Thus, the quantization condition (3.61) obtained in section 3.3 for the linearized

theory, also holds for the non-linear theory:

4G(PγQ̄
γ − P̄γQ

γ)

ℏ
≡

4GϵabQ
a
γQ̄

bγ

ℏ
∈ Z (4.21)

where the Minkowski metric is being used for the greek letter inner product.
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It can be checked by comparing (4.21) with (4.18) for:

Q̄1γ = (m, 0, 0, 0) (4.22)

Q̄2γ = (l, 0, 0, 0) (4.23)

Q1
γ = m0uγ (4.24)

Q2
γ = 0 (4.25)

where we are in the rest frame of the dyon Q̄a
γ.

In order to calculate the Poincaré charges via the treatment from [24], Taub-NUT

has to satisfy their specific requirements of asymptotic flatness at spatial infinity.

As we stated previously, this solution is not globally asymptotically flat due to its

string singularity - in spite of this, the aforementioned conditions are still satisfied.

Thus, as r → ∞ the metric should approach Minkowski spacetime as:

hrr = O(r−1) ; hrθ = O(1) ; hrϕ = O(1)

hθθ = O(r) ; hθϕ = O(r) ; hϕϕ = O(r) (4.26)

where the leading terms (of the mentioned order) in hrr, hrϕ, hθθ, hϕϕ should be

even under the inversion θ → π − θ and ϕ→ ϕ+ π, while the leading terms of hrθ,

hθϕ should be odd.

Likewise, for the conjugate momenta7:

πrr = O(1) ; πrθ = O(r−1) ; πrϕ = O(r−1)

πθθ = O(r−2) ; πθϕ = O(r−2) ; πϕϕ = O(r−2) (4.27)

with leading terms in πrr, πrϕ, πθθ, πϕϕ odd, and those in πrθ, πθϕ even.

These conditions are clearly satisfied for the metric (4.1) in the coordinate system

7They are defined as the conjugate momenta to the spatial components of the metric, for the
Taub-NUT Lagrangian. See ADM formalism.
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with k = 0, but not any other value, as otherwise they break the parity conditions.

Also, because these conditions are satisfied, we can use the Minkowski scalar prod-

uct for equation (4.21).

Finally, [14] uses the surface integrals defined by [24] to calculate the electric gen-

erators of Poincaré transformations at null infinity, which indeed form a symmetry

group of the system at the boundary due to the asymptotic behaviour of Taub-NUT

which we verified.

These generators, and therefore conserved electric charges of the Taub-NUT space-

time, are:

P 0 = m (4.28)

P i = 0 (4.29)

Jij = 0 (4.30)

J0i = 0 (4.31)

The first two are due to the translation invariance, hence (4.28) defines the en-

ergy and (4.29) the momentum. Whilst the last two are due to spatial rotational

invariance, such that (4.30) gives the angular momentum of the system.

We may have concerned earlier because the Killing vectors depend on the magnetic

mass, however, when we calculate the surface integrals these terms disappear due

to the parity constraints. Therefore, it is very nice to see the magnetic mass doesn’t

contribute to the electric Poincaré charges.

Interestingly, the zero angular momentum supports the interpretation of a dyon

source at the origin, which for the classical solution was a point of contention! (see

previous section). If we separate the magnetic and the electric mass, we gain angular

momentum. Such a solution belongs to what is called the Kerr-Newman-Taub-NUT

family of solutions.



Chapter 5

Higher theory of gravity

For the last chapter, we take inspiration from the ’t Hooft-Polyakov monopole to

try to find the conditions for a gravitational monopole, from a higher theory.

5.1 Cartan geometry

A natural way to extend the concepts from TP monopoles to gravity can be found

in the mathematics of Cartan geometry.1

The main concept behind its workings can be understood with the analogy of the

waywiser; an instrument used to measure physical distances on a road, which consists

of a wheel connected to a sick. As the wheel is rolled through a path without slipping,

the distance is measured by counting how many times it has rotated. Expanding

this idea to obtain more information about the road, we roll instead a sphere along

a closed path and compare how much it has rotated by the end.

Usually, when we want to describe a two-dimensional Riemannian manifold we

use an SO(2) connection, such that when we parallel transport a vector along a

closed path, it can tell us how much the vector has rotated in its two-dimensional

tangent space. We can extend this thought to the ball - to find out how much it

has rotated in its embedding 3d space, we instead use an SO(3) connection, and

instead of attaching tangent spaces at each point, we attach two-spheres. That is,

1For a detailed introduction, see [25, 26]

39
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we describe a manifold by rotating on top of it (without slipping) a homogeneous

space.

In fact, if the homogeneous space itself has more in common with the manifold,

it is better suited to describing it. Just like how rotating a sphere over a slight

deformation of another sphere is more useful than rotating it over a plane.

To describe Einstein-Cartan gravity in a Lorentzian manifold, we choose a de Sitter

homogeneous spacetime with an SO(1, 4) connection AAB. Inside this connection

are the degrees of freedom of the spin-connection and tetrad field. A way we can

separate them out is by introducing a scalar field ϕA and defining a projector:

PA
B = δAB − 1

ϕCϕC

ϕAϕB (5.1)

where we use the indices A,B,C ∈ {0, 1, 2, 3}. From here, we can define the spin-

connection and tetrad field:

eA = PA
CDϕ

C (5.2)

ωAB = AAB +
2

ϕCϕC

ϕ[AeB] (5.3)

where DϕA = dϕA + AA
Bϕ

B.

If we break the symmetry of the scalar field in the gauge ϕA ∗
= ϕ0δ

A
4

2, which we

can always find as long as ϕAϕA > 0, with constant ϕ0 we find the usual result from

Cartan gravity:

AAB =

 ωab ϕ0e
a

−ϕ0(e
a)T 0

 (5.4)

2 ∗
= means the equality holds within a particular gauge.
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with the usual SO(1,3) indices a, b, c ∈ {0, 1, 2, 3}. Such that:

eA
∗
=

ea
0

 (5.5)

ωAB ∗
=

ωab 0

0 0

 (5.6)

We can also define a field strength FAB = dAAB + AA
C ∧ ACB, such that if we

rearrange equation (5.3) we obtain:

RAB = FAB +
1

ϕCϕC

eA ∧ eB − 2

ϕCϕC

(
T [AϕB] − 1

2
d log(ϕDϕD)e[AϕB]

)
(5.7)

for RAB = dωAB + ωA
C ∧ ωCB. And in the previous gauge with broken symmetry:

RAB ∗
=

Rab 0

0 0

 (5.8)

To recover the dynamics of Einstein-Cartan gravity, we use the action:

S[A, ϕ] =

∫
eABCDEϕ

E ∧DϕA ∧DϕB ∧ FCD (5.9)

with ϕAϕA = const > 0. Since eaµ
∗
= δaBDµϕ

B = Dµϕ
a, with (5.8) the action above

reduces to the Einstein-Cartan action up to a constant.

Now we are dealing with a situation much more similar to that of a gauge theory,

since the degrees of freedom come only from a connection and scalar field with

SO(1, 4) local gauge invariance.
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5.2 Finding ’t Hooft

Taking a step back, we can use this formalism to describe the TP monopole from

section 2.3.

Starting with an SO(3) connection AAB and scalar field ϕA, we can redefine the

degrees of freedom using the SO(3) invariant Levi-Civita tensor:

AA =
1

2
ϵABCABC (5.10)

Then, we project the connection a bit differently to obtain:

ω̃AB = PA
CP

B
DA

CD (5.11)

where we can also define ω̃AB = 1
2
ϵABCΩC .

Expanding everything out, we obtain:

ω̃AB = AAB − 2

ϕDϕD

ϕ[BAA]DϕD (5.12)

= ϵABCAC − 2

ϕDϕD

ϕ[BϵA]ECACϕE (5.13)

such that:

ω̃A = AA − 1

ϕCϕC

ϕBϕ[BAC] (5.14)

= (ϕ̂BAB)ϕ̂A (5.15)

ω̃A
µ = Aµϕ̂

A (5.16)

where ϕ̂A = ϕA√
ϕBϕB

This is the same as ’t Hooft’s definition (2.32) for the new gauge invariant vector

field, Aµ = ϕAAA√
ϕBϕB

. Since ϕ̂A has unit magnitude, setting an SO(4) gauge corre-

sponds to choosing the direction in field space in which it breaks the symmetry. The

remaining degree of freedom is due to the remaining U(1) symmetry, and we can

isolate it to find it is indeed ω̃A
µ ϕ̂A = Aµ.
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For the field strength, we project like:

FAB = PA
CP

B
D

(
FCD +

1

ϕDϕD

DϕC ∧DϕD
)

(5.17)

FA
µν =

1

ϕCϕC

FB
µνϕBϕ

A +
1

ϕFϕF

PB
CP

E
Dϵ

A
BED[µϕ

CDν]ϕ
D (5.18)

= (FB
µνϕ̂B)ϕ̂A +

1

ϕFϕF

(δBC δ
E
D − 2

ϕGϕG

δEDϕ
BϕC)ϵABED[µϕ

CDν]ϕ
D (5.19)

and contracting with the field again to obtain the gauge invariant degree of freedom

we obtain:

Fµν = FA
µνϕ̂A (5.20)

= FB
µνϕ̂B +

1

ϕFϕF

(ϕ̂Aδ
B
C δ

E
D − 2

ϕGϕG

δEDϕ̂
[AϕB]ϕC)ϵABED[µϕ

CDν]ϕ
D (5.21)

= FA
µνϕ̂A +

1

(ϕDϕD)3/2
ϵABCϕ

ADµϕ
BDνϕ

C (5.22)

which is exactly equation (2.31)!

Thus, we have obtained again the gauge invariant re-definitions for the field

strength and connection.

5.3 Breaking SO(1, 4)

Turning to gravity, we proceed by describing it as a broken SO(1, 4) gauge theory, as

we learn at the beginning of this chapter. We have a scalar field ϕA and connection

AAB, but this time we project the connection as for the TP monopole:

ω̃AB = PA
CP

B
DA

CD (5.23)

But how does this compare to the projection that gives the spin-connection degrees
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of freedom from equation (5.3)? Well, we can calculate their difference to find:

ωAB − ω̃AB = AAB +
2

ϕCϕC

ϕ[AeB] − AAB +
2

ϕDϕD

ϕ[BAA]DϕD (5.24)

=
2

ϕCϕC

ϕ[AdϕB] (5.25)

which means:

ω̃AB ∗
= ωAB (5.26)

Thus, if the scalar field breaks in the manner ϕA = ϕ0δ
A
4 = const > 0 we have the

Bianchi identity:

D(ω̃)RAB = 0 (5.27)

But what if they are not equal? In that case, if we consider ωAB − ω̃AB = Y AB, we

have by definition:

D(ω̃)RAB = dRAB + ω̃A
C ∧RCB −RA

C ∧ ω̃CB (5.28)

= D(ω)RAB − Y A
C ∧RCB +RA

C ∧ Y CB (5.29)

where, by definition, D(ω)R = 0. Finally, setting Y AB = 2
ϕCϕC

ϕ[AdϕB] we find:

D(ω̃)RAB = − 2

ϕDϕD

ϕ[AdϕC] ∧R B
C − 2

ϕDϕD

ϕ[BdϕC] ∧RA
C (5.30)

which for ϕ[AdϕC] ̸= 0 breaks the Bianchi identity, and thus corresponds to some

kind of gravitational magnetic current!



Chapter 6

Conclusion

In this dissertation, we gave an overview of the different areas which tackle the

concept of monopoles in gravity. After introducing the electromagnetic monopole,

as defined by Dirac and ’t Hooft, we showed how Zee used the similarity between

Maxwell’s equations and linearized gravity to define a gravipole. Then, for a more

general treatment, we reviewed [14], which gives the general quantization condition

for a duality invariant spin-2 gauge theory, in other words linearized gravity. Of

course, since this all of this only works in the weak-field approximation, we are

left with the question of how a gravity monopole could be defined in the highly

non-linear theory of general relativity.

This gives way to a solution of the Einstein field equations called Taub-NUT. It is

duality invariant, and in one of its interpretations, it describes the spacetime around

a dyon - a point particle with the usual/electric mass as well as its dual/magnetic

counterpart. We point out the unnoticed fact that, by considering the Poincaré

charges of the manifold, [14] gives very good support for the interpretation that

Taub-NUT describes a spacetime with a source at the origin, rather than a rod of

infinite angular momentum - a point of contention in some of the literature.

Although Taub-NUT correctly reduces to Zee’s gravipole in the weak-field ap-

proximation, we invoke the spirit of Zee’s original paper, and consider another alter-

native: that the gravipole might actually be a part of a higher-theory, in a manner

akin to the ’t Hooft-Polyakov monopole. Doing so, we use Cartan geometry to re-

45
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produce ’t Hooft’s famous monopole solution, and then extend it to consider gravity

as a spontaneously broken SO(1, 4) gauge theory coupled to a scalar field in the

fundamental representation, which in the broken state breaks the Bianchi identity.

More precisely, the conditions which have to be satisfied for the scalar field to break

Bianchi are laid out.

It is important to note that π3(SO(5)/SO(4)) is trivial1, as well as the lower

homotopy groups. This suggests that regardless of condition (5.30), soliton solutions

cannot be found for this theory. However, the techniques described in chapter 5 are

still interesting, and further work could involve considering a broken SO(1, 4) theory

with five-dimensional spacetime, since this would allow for a gravipole, because for

the boundary of such a spacetime, π4(SO(5)/SO(4)) is not trivial and allows for

solitons.

It would also be interesting to expand the relationship between torsion and monopoles

to the non-linear case, which was pointed out in section 3.2. Especially with the

mathematics of Cartan gravity, since it seems that in the linearized regime, adding

externally a dual energy-momentum tensor goes hand-in-hand with including torsion

degrees of freedom.

1Complexify time to go from SO(1, 4) to SO(5)
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