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Abstract

Supersymmetry is the yet-unobserved symmetry between integer-spin-bosonic and
half-integer-spin-fermionic states, which evades the limitations of the Coleman-Mandula
theorem that restricts the symmetry groups of quantum field theories. The Minimally
Supersymmetric Standard Model (MSSM) is the simplest theoretical realisation of
supersymmetry that is compatible with the observed Standard Model (SM) of parti-
cle physics. In the contemporary landscape of beyond the SM (BSM) theory, beauty
decays involving b-hadrons act as sensitive probes to assess the experimental valid-
ity of new models of fundamental interactions, such as the MSSM. Building from
the foundations of supersymmetry and the construction of the MSSM, this report
presents a review on the formulation of the framework used to study MSSM effects
in beauty decays through the low-energy effective field theory (LEFT). Examples
of matching calculations to obtain Wilson coefficients at LO and NLO are given,
and the relevance of such an approach to constrain and challenge BSM models is
emphasised. Recent applications of this approach on beauty decay observables are
introduced to motivate the effectiveness of such an approach and provide a starting
point for further developments.
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Lorentz Convention and Notation

• µ, ν, · · · = 0, 1, 2, 3 indices for tensor representation of the Lorentz group

• α, β, · · · = (0, )1, 2(, 3) indices for Weyl (Dirac) Lorentz spinor representation

• ηµν = diag(−1, 1, 1, 1) Minkowski metric in (- + + +) signature

• {γµ, γν} = 2ηµν Dirac matrix Clifford algebra

• θα, ψα, χα, θ̄α̇, ψ̄α̇, χ̄α̇ common two-component Weyl spinors

• Ψα common four-component Dirac spinor

• εαβ = εα̇β̇ = −εαβ = −εα̇β̇ = εij =

(
0 1

−1 0

)
two-index Levi-Civita symbols

The author would like to acknowledge that the notation in this document has been largely
inspired by Prof. Kellogg S. Stelle’s The Standard Model and Beyond and Supersymmetry
courses, the text Supersymmetry and Supergravity (Wess & Bagger, 1992), and the review
The Standard Model effective field theory at work (Isidori, Wilsch, & Wyler, 2023).
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1 Introduction

The Standard Model (SM) of particle physics is arguably the most successful theory of
fundamental interactions in our modern understanding of the universe. It is the quan-
tum field theory (QFT) that codifies under the same picture three out of the four known
interactions, namely the electric, weak (under the electroweak) and strong forces. When
quantised, the SM gives rise to all the particles and force carriers that have been observed
in experiments of particle physics for over 50 years. After the discovery of the Higgs boson
at CERN in 2012 (Aad et al., 2012; Chatrchyan et al., 2012), every particle component
of the SM has been experimentally observed. Furthermore, the measurements of their
properties has yielded ever successful agreement with those predicted by the SM, with
no experiment finding disagreement at the 5σ level commonly accepted as the discovery
threshold. Nevertheless, lower-significance discrepancies and theoretical arguments have
pushed us to believe that the SM cannot be the final picture.

Efforts to understand physics beyond the SM (BSM) can be said to begin from its most
notable shortcoming: the absence of the interaction of gravity. Experimental hints such
as the anomalous magnetic dipole of the muon in Muon g − 2 (Abi et al., 2021), or
deviations in the W boson mass (CDF-Collaboration et al., 2022) provide contemporary
questions addressed by BSM theories. Beauty decays (or the decays of b-hadrons) in
particular act today as probes for new physics, being rare processes very sensitive to
underlying theories. Most notably, their experimental involvement in branching fraction
ratio, or angular distribution anomalies (Aaij et al., 2022), justify the interest of the
physics community in their direction to explore BSM phenomena.

Supersymmetry is the mathematical construction that, on the most basic level, pos-
tulates a new symmetry between bosonic and fermionic states of a theory. It is the only
symmetry that evades the Coleman-Mandula theorem, which restricts the form of the
internal symmetry groups of QFTs (Coleman & Mandula, 1967; Haag, Łopuszański, &
Sohnius, 1975). Moreover, it presents remarkable properties, such as the emergence of
supergravity when it is locally gauged or the elimination of quadratic divergences emerg-
ing from bosonic loops. Supersymmetry is a theoretical concept, and as such must be
realised if we are to observe it in nature. It is therefore most natural to extend the SM
in this direction, and its most basic implementation yields the theory of the Minimally
Supersymmetric Standard Model (MSSM). From the start, the MSSM presents a solu-
tion to the question of the Grand Unification of couplings when coupled with a SU(5)

unified BSM theory (Dimopoulos & Georgi, 1981) and yields a resolution of the hierar-
chy, or weak-scale-instability, problem. Moreover, it provides a natural explanation for
the emergence of electroweak symmetry breaking (EWSB) at the observed scale in the
SM, and provides potential candidates for cosmological dark matter particles. As such,
the MSSM (and its extensions), provide a fantastic variety of promising avenues for the
exploration of BSM physics.
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Despite its promising motivation, the experimental absence of superpartners imposes
that supersymmetry, if it is in fact a symmetry of nature, must be broken and that such
particles must be very heavy compared to experimental scales. Nevertheless, weak-scale
processes can still be affected by supersymmetric effects from virtual superpartners at
higher loop order. Wilsonian effective field theory (EFT) (Wilson, 1972) is a powerful
framework under which these hypothetical effects can be studied at chosen energy scales.
By viewing the SM under the modern light of an EFT, the MSSM can be matched onto
experimentally relevant effective theories to both constrain its parameter space, and so
its BSM effects, as well as to assess its phenomenological consistency with experiments
prior to any direct detection.

On this ground, this dissertation aims to develop the theoretical and phenomenological
framework commonly used to study MSSM effects in weak-scale physics, with a specific
emphasis on beauty decays. The goals of this report therefore are to:

• Provide a comprehensive review of the mathematical formalism used to develop
manifestly supersymmetric field theories (Section 3)

• Use the superspace and superfield formalism to introduce the MSSM and its flavour-
relevant interactions (Sections 4 and 5)

• Present the concepts underpinning effective field theory under the specific light of
the SMEFT and the LEFT (Section 6)

• Demonstrate computations of EFT Wilson coefficient matching at leading and non-
leading order (LO+NLO), using heavy-SM and MSSM examples (Section 7)

• Give a high-level introduction of specific applications of the EFT formalism in
studying MSSM effects in beauty processes (Section 8)

As such, this report presents a starting point for the more in-depth phenomenological
assessment of the question of supersymmetry found in contemporary literature.
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2 Standard Model and Beauty Decays

In this introductory section, we review the Standard Model and present beauty decays.

2.1 The Standard Model

The Standard Model (SM) is a field theory containing three generations of up-type and
down-type quarks (giving six quark flavours in total), three generations of leptons and
their corresponding neutrinos, 12 gauge vector bosons and a scalar boson (the Higgs). Be-
hind its success lies its foundation upon symmetries and group-theoretical constructions.
In fact, the SM is simply the most general renormalisable QFT, written in Lagrangian
form (made explicit in section 2.1.1), which respects the postulate of special-relativistic
invariance (invariance under the action of the Poincaré group) and gauges the direct-
product internal symmetry group SU(3) × SU(2) × U(1). After the marvellous success
of quantum field theory and renormalisation through quantum electrodynamics (QED),
efforts were made to find the unification of its formulation with the discovered W±

and Z (discovered later) bosons mediating the weak interaction. This culminated in
the Weinberg-Salam theory of electroweak unification (Weinberg, 1967; Salam & Ward,
1959), relying on Glashow’s SU(2) × U(1) electroweak symmetry group construction
(Glashow, 1959) with Yang-Mills (Yang & Mills, 1954) type gauge bosons acquiring mass
through the Higgs mechanism (Higgs, 1964). Further development following Gell-Mann’s
and Ne’eman’s eightfold way classification of mesons and baryons (Gell-Mann, 1961) led
to the development of quantum chromodynamics (QCD), introducing the final SU(3)

colour symmetry to the gauge group of the SM. Although extensions to the SM have
been proposed, to account for neutrino masses through right-handed neutrinos in the
seesaw mechanism (Yanagida, 1979) for example, its core form has remained unchanged
since the 1970’s. In its current form, it awaits significant tension with experiments to
lead the exploration of extensions or alternative theories.

In this section, the minimal SM in its most commonly seen form is presented (in Sec-
tion 2.1.1) as well as a discussion on the quark and lepton mass eigenstates (Section
2.1.2) giving rise also to the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In particular,
emphasis is placed on the misalignment of the quark mass and flavour bases inducing
flavour changing charged currents (FCCCs), and neutral currents (FCNCs) at higher
loops, through quark interaction with the W boson.

2.1.1 Particle Content and Lagrangian

The SM is a field theory written in the Lagrangian formalism, with particles arising from
the quantisation of each field, built upon the internal symmetries encoded by the direct-
product Lie group SU(3)C ×SU(2)L ×U(1)Y (the subscripts C,L and Y have been added
to the groups to distinguish the kind of symmetry to which they are associated). The
SU(3)C group encodes colour symmetry under which only quarks are charged, SU(2)L
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is the group associated to weak isospin and U(1)Y that associated to weak hypercharge.
The SM internal symmetry group is not realised globally, rather it is gauged to a local
symmetry by allowing the introduction of spacetime dependency in its transformations.
Finally, the SM is also required to be invariant under special relativity, and the repre-
sentation of the fields under the Poincaré group is associated to their quantum number
of spin.

The SM then divides its fields, and therefore particles, into matter (fermionic, half integer
spin, Grassmann-number-valued and anticommuting) and force (bosonic, whole integer
spin) fields, each transforming under a different representation of the three symmetry
groups. The spinor matter fields and Higgs-scalar field transform in either the trivial
or fundamental representation for each group, whereas the vector gauge fields transform
in an inhomogeneous modification of the adjoint representation for the symmetry they
gauge. From the violation of parity symmetry (Wu, Ambler, Hayward, Hoppes, & Hud-
son, 1957), each matter Weyl spinor field has left and right versions, with the exceptions
of neutrinos which are only left-handed in the minimal version of the SM considered in
this analysis. Table 1 gives a detailed breakdown of each field along with its spin and
representation with respect to the internal gauge group.

The SU(3)C × SU(2)L × U(1)Y gauge symmetry is built into the SM using a Yang-
Mills construction. To the groups in the direct product are associated coupling constants
g3, g2, g1 in the same order. In the case of the SU(3)C,SU(2)L non-Abelian groups, the
respective Lie algebras su(3) and su(2) follow the generator commutation relations:

[T ϑ, T σ] = ifϑστT τ for su(3) (2.1)
[ti, tj ] = iεijktk for su(2) (2.2)

In the case of the U(1)Y Abelian group, the respective Lie algebra u(1) is the trivial
algebra, containing only one generator which we can denote Y , the weak hypercharge.
To a choice of generators T ϑ, ti, Y respecting the Lie algebras there corresponds a choice
of representation, and the gauge fields for each symmetry group live in the Lie algebra:
Gµ = Gϑ

µT
ϑ,Wµ = W I

µ t
I , Bµ ≡ Bµ. If we take the transformation in an arbitrary

representation:

MC := eiξ
ϑ(x)Tϑ

, ML := eiθ
i(x)ti , MY := eiη(x)Y (2.3)

M :=MCMLMY = eiξ
ϑ(x)Tϑ+iθi(x)ti+iη(x)Y (2.4)

Then a gauge transformation on field φ(x) in an arbitrary representation, along with the
associated gauge fields, takes the form:

φ(x) →Mφ(x) (2.5)

Gµ →MCGµM
†
C +

i

g3
(∂µMC)M

†
C (2.6)
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Wµ →MLWµM
†
L +

i

g2
(∂µML)M

†
L (2.7)

Bµ →MYBµM
†
Y +

i

g1
(∂µMY )M

†
Y = Bµ − Y

g
∂µη(x) (2.8)

Having introduced the transformation under a representation, the covariant derivative
takes the (first for general gauge field Aµ = Aa

µT
a, then SM specific) form:

Dµ =∂µ + igAa
µT

a (2.9)
=∂µ + ig3G

ϑ
µT

ϑ + ig2W
i
µt

i + ig1Y Bµ (2.10)

Noting that the generators for the fundamental representations of SU(3)C,SU(2)L are
T ϑ = 1

2λ
ϑ, ti = 1

2σ
i respectively, we follow the representations in Table 1 to obtain the

following expressions for the gauge-covariant derivatives for each field in the minimal SM:

Dµφ = ∂µφ+
i

2
g2W

i
µσ

iφ+
i

2
g1Bµφ (2.11)

Dµ`
f
L = ∂µ`

f
L +

i

2
g2W

i
µσ

i`fL − i

2
g1Bµ`

f
L (2.12)

Dµq
f
L = ∂µq

f
L +

i

2
g3G

ϑ
µλ

ϑqfL +
i

2
g2W

i
µσ

iqfL +
i

6
g1Bµq

f
L (2.13)

Dµu
f
R = ∂µu

f
R +

i

2
g3G

ϑ
µλ

ϑufR +
2i

3
g1Bµu

f
R (2.14)

Dµd
f
R = ∂µd

f
R +

i

2
g3G

ϑ
µλ

ϑdfR − i

3
g1Bµd

f
R (2.15)

Finally, we define the Abelian and non-Abelian field strength tensors for Yang-Mills for
each gauge symmetry as:

Gϑ
µν = ∂µG

ϑ
ν − ∂νG

ϑ
µ + g3f

θστGσ
µG

τ
ν (2.16)

W i
µν = ∂µW

i
ν − ∂νW

i
µ + g2ε

ijkW j
µW

k
ν (2.17)

Bµν = ∂µBν − ∂νBµ (2.18)

We are now able to write the minimal SM Lagrangian. This contains a gauge-kinetic sec-
tor (2.19a), a matter-kinetic sector (2.19b), a Higgs scalar field sector (2.19c), a Yukawa
sector (2.19d) and a a ”theta” sector (2.19e). In the following, G̃ϑ

µν = 1
2εµναβG

ϑαβ, and
φ̃ = iσ2φ∗.

LSM =− 1

4
Gϑ

µνG
ϑµν − 1

4
W i

µνW
iµν − 1

4
BµνB

µν (2.19a)

− ¯̀f
Li /D`

f
L − ēfRi /De

f
R − q̄fLi /Dq

f
L − ūfRi /Du

f
R − d̄fRi /Dd

f
R (2.19b)

− |Dµφ|2 + µ2|φ|2 − 1

2
λ|φ|4 (2.19c)

−
(
[ye]fg ¯̀

f
Le

g
Rφ+ [yu]fg q̄

f
Lu

g
Rφ̃+ [yd]fg q̄

f
Ld

g
Rφ+ h.c.

)
(2.19d)

− g23θ3
32π2

Gϑ
µνG̃

ϑµν − g22θ2
32π2

W i
µνW̃

iµν − g21θ1
32π2

BµνB̃
µν (2.19e)
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Field Name Field SU(3)C SU(2)L U(1)Y

LH quark doublet qfL =

(
ufL
dfL

)
3 2 +1

6

RH up-type quark singlet ufR 3 1 +2
3

RH down-type quark singlet dfR 3 1 −1
3

LH lepton doublet `fL =

(
νfL
efL

)
1 2 −1

2

RH electron singlet efL 1 1 −1

Higgs doublet φ =

(
φ+

φ0

)
1 2 +1

2

Gluon Gϑ
µ - - -

W W i
µ - - -

B Bµ - - -

Table 1: SM flavour-basis field breakdown with their corresponding gauge group
representations. The doublet or singlet classification comes from the SU(2)L

representation and doublets are explicitly in column vector form. LH and RH stand for
left- and right-handedness.

2.1.2 Mass Eigenstates and the CKM Matrix

The gauge bosons and the fermions acquire mass by interacting with the Higgs boson in
the electroweak symmetry breaking (EWSB) phase: vector gauge bosons do this through
the covariant derivative term of (2.19c) and fermions through Yukawa interactions in the
(2.19d) sector. The Higgs potential as seen in (2.19c) is:

V (φ) = −µ2|φ|2 + 1

2
λ|φ|4 (2.20)

Therefore, if we take the Higgs complex doublet to have real vacuum expectation value
(vev) φ = 1√

2
(0, v), minimising the potential in (2.20) yields:

v2 =
2µ2

λ
(2.21)

In this vacuum configuration, examination of the SU(2)L × U(1)Y Lie group genera-
tors shows that there is only one remaining unbroken generator, Q := t3 + Y . Hence,
the symmetry breaking pattern is the classical electroweak to electrodynamics pattern
SU(2)L × U(1)Y → U(1)EM. Expanding the Higgs around the vacuum state and going
into unitary gauge, we lose three of the four degrees of freedom of the complex doublet
(corresponding to the three broken electroweak symmetry generators) and are left with
the physical Higgs h(x):

φ =
1√
2

(
0

v + h(x)

)
(2.22)
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Expanding LSM in unitary gauge around the Higgs vacuum configuration, the gauge
fields W i

µ and Bµ develop the following tree-level masses in the following eigenstate
arrangements:

mγ = 0 for Aµ := cos θWBµ + sin θWW
3
µ (2.23)

mW =
vg2
2

for W±
µ :=

1√
2
(W 1

µ ∓ iW 2
µ) (2.24)

mZ =
v

2

√
g21 + g22 for Z := cos θWW

3
µ − sin θWBµ (2.25)

With the Weinberg mixing angle θW being defined through:

sin θW =
g1√
g21 + g22

, cos θW =
g2√
g21 + g22

(2.26)

For fermions (the quark and lepton sectors), masses are given once again by a small
expansion around the Higgs vev. Taking (2.19d) and (2.22):

LSM = · · · − 1√
2
v
(
[ye]fg ē

f
Le

g
R + [yu]fgū

f
Lu

g
R + [yd]fgd̄

f
Ld

g
R + h.c. + h.o.t.

)
(2.27)

Therefore we can see that the mass eigenstates with definite mass eigenvalues are given
by diagonalising the Yukawa mass matrices with biunitary transformations:

[ye]fg = U eL†
fm [ŷe]mnU

eR
ng (2.28)

[yu]fg = UuL†
fm [ŷu]mnU

uR
ng (2.29)

[yd]fg = UdL†
fm [ŷd]mnU

uR
ng (2.30)

The physical fermions (denoted with a hat) are now defined by absorbing the unitary
transformations applied to the mass matrices, making the Yukawa sector diagonal:

êfL/R = U
eL/R

fm emL/R, ûfL/R = U
uL/R

fm umL/R, d̂fL/R = U
dL/R

fm dmL/R (2.31)

=⇒ LSM = · · · − v√
2

∑
f

[ŷe]f ¯̂e
f
Lê

f
R +

∑
f

[ŷu]f ¯̂u
f
Lû

f
R +

∑
f

[ŷd]f
¯̂
dfLd̂

f
R + h.c.

+ . . .

(2.32)
Giving the fermion masses mef = v√

2
[ŷe]f ,muf = v√

2
[ŷu]f ,mdf = v√

2
[ŷd]f , where f is

any choice of generation. The diagonalisation of the Yukawa sector induces a mixing of
quark generations in the matter kinetic sector (2.19b) through their interactions with
W± bosons. This can be shown by expanding the charged current term in the covariant
derivative for the left-handed quarks:

−q̄fLi /Dq
f
L = · · · − ig2√

2

(
ūfL /W

+
dfL + d̄fL /W

−
ufL

)
+ . . . (2.33)

= · · · − ig2√
2

(
¯̂umL (UuL

mfU
dL†
fn ) /W

+
d̂nL +

¯̂
dnL(U

dL
nf U

uL†
fm ) /W

−
ûmL

)
+ . . . (2.34)
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= · · · − ig2√
2

(
¯̂umL V

CKM
mn /W

+
d̂nL +

¯̂
dnLV

CKM†
nm /W

−
ûmL

)
+ . . . (2.35)

To summarise, quark flavour changing charged currents (FCCCs) arise from the Cabibbo-
Kobayashi-Maskawa (Cabibbo, 1963; Kobayashi & Maskawa, 1973) matrix V CKM =

UuLUdL†, which in turn derives from the distinct biunitary transformations used to di-
agonalise the up-type and down-type quark masses in the Yukawa sector.

2.2 Beauty Decays and Phenomenological Relevance

Beauty decays are important flavour processes in experimental particle physics to probe
potential candidate theories of new physics beyond the SM. By a beauty decay we intend
a hadronic process in which a bottom b quark (originally known as the ”beauty” quark)
changes its flavour into another generation of quark. Due to quark confinement, these
processes involve b-hadrons, meaning hadrons which contain a b quark as one of its con-
stituents, which decay into a wide range of secondary products such as other hadrons or
leptons. Example of such SM beauty decays are B̄ → K̄∗`+`− and B̄s → µ+µ−. Being
very rare, these decays can place very stringent experimental bounds on what hypothe-
sised higher-energy BSM theories can imply.

Beauty decays are currently used to probe two specific SM phenomena in particular:
that of CP violation and of flavour-changing-neutral-currents (FCNCs). CP violation
is strongly related to the complex phase of the CKM matrix. Nevertheless, the CKM
mechanism alone is not sufficient to explain the observed baryon-antibaryon asymmetry
in the universe (Aaij et al., 2017), suggesting that new physics might be involved. Beauty
decays, especially b → s, are very sensitive to such a mechanism and therefore can pro-
vide important experimental insight into BSM processes that can possibly account for
this.

On the other hand, by FCNCs we intend processes through which quarks change their
flavour but not their electric charge, such as the process b→ sγ. In the minimal SM, there
is no tree-level vertex that can account for such a process, as the only flavour-violating
vertex is the charged W -boson-quark interaction (Section 2.1.2 and 5.2). Hence these
must happen at higher loop order. The strong suppression of FCNCs in the minimal
SM resulting from the Glashow-Iliopoulos-Maiani (GIM) mechanism (Glashow, Iliopou-
los, & Maiani, 1970) implies that new physics must also share the suppression of these
processes (Misiak, Pokorski, & Rosiek, 1997). This provides important restrictions for
BSM theories. In the case of the MSSM (Section 4), additional flavour changing vertices
are generated, and FCNC results from beauty decays can be used to restrict hypothetical
squark flavour violation (Behring, Gross, Hiller, & Schacht, 2012).

In contemporary analyses, beauty decays have gained substantial popularity for hinting
at the violation of lepton flavour universality (LFU). By LFU we intend the condition
that all leptons couple in exactly the same way to the gauge fields (except for mass dif-
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ference contributions). Two common observables associated to this LFU discrepancy are
the RK and R∗

K branching fraction ratios, defined as:

RK =
B(B+ → K+µ+µ−)

B(B+ → K+e+e−)
'SM 1 RK∗ =

B(B+ → K∗µ+µ−)

B(B+ → K∗e+e−)
'SM 1 (2.36)

While recent analysis has lowered the previous 4σ deviation from SM predictions to 3.1σ

(Aaij et al., 2022), this avenue further motivation for developing a framework in which
to study candidate NP effects on beauty processes.

In the current experimental landscape, beauty decays occur at energy ranges around the
electroweak scale despite the higher energies achieved in particle colliders. To explain
this we consider, for example, beauty decays as observed from CERN’s LHC proton-
proton collisions at the current energy of 13.6 TeV. This is initially much higher than
the electroweak scale. Nevertheless at bunch crossing, a proton-proton collision occurs
at the primary vertex, which subsequently produces more quarks (and antiquarks) each
sharing a part of that initial energy, of which only a fraction can bind into b-hadrons.
The eventual b-hadrons therefore decay at secondary vertices with energies greatly re-
duced from the initial 13.6 TeV to energies to the ∼ O(100) GeV range. We can use
this consideration to frame the discussion of this report under the EWSB presented in
Section 2.1.2.
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3 Supersymmetric Field Theory

In the simplest terms, supersymmetry can be said to posit a symmetry of nature that in-
trinsically relates ”matter” and ”force” particles in theories of fundamental interactions.
In this statement, we intend matter fields as fermions transforming as spinors under
Lorentz transformations (half-integer spins) and force fields as bosons transforming as
tensors (whole-integer spin), of which vector and scalar fields are a part of. Supersymme-
try transformations more specifically involve particles and their respective superpartners,
which are particles whose spin differs by a half compared to that of their base partner,
paired in a specific manner. A Lagrangian that is invariant under supersymmetry trans-
formations is then invariant under a ”rotation” of bosonic particles into their fermionic
superpartners and vice-versa according to said pairing. This section attempts to present
a foundational description of supersymmetry and the objects that transform under its
representations, as to motivate and facilitate the supersymmetric field-theoretical devel-
opment of the MSSM in the later Section 4.1

Before introducing supersymmetry formally, it is useful to consider the spinor representa-
tion in more detail. The Lorentz group, contained in the Poincaré group as the subgroup
of special-relativistic transformations, is the non-compact and not simply-connected Lie
group SO(3, 1) ⊂ Poincaré. Its Lie algebra so(3, 1) is isomorphic to the Lie algebra
spin(3, 1), which in turn is the Lie algebra for the group Spin(3, 1) ' SL(2,C), the simply-
connected double-cover of SO(3, 1). Weyl spinors are then defined as the two-component
Grassmann (anticommuting) fields ψα, ψ̄α̇ transforming in the two fundamental and con-
jugate representations of SL(2,C) respectively. Spinors transforming in the fundamental
representation, denoted (12 , 0), are defined as left-handed, while those transforming in
the conjugate representation (0, 12) are defined as right-handed.

It follows that four component Dirac spinors transform as (12 , 0) ⊕ (0, 12). This is made
explicit by choosing the Weyl representation of four component spinors and the Clifford
algebra, where (conventions as in (Wess & Bagger, 1992)):

γµ =

(
0 σµ
σ̄µ 0

)
, γ5 = γ0γ1γ2γ3 =

(
−i1 0

0 i1

)
(3.1)

σµ = (1, σ), σ̄µ = (1,−σ) (3.2)

Defining the usual projection operators PL = 1
2(1 + iγ5) and PR = 1

2(1 − iγ5), left and
right handed Weyl spinors can be packaged into Weyl-representation Dirac spinors as:

Ψ =

(
ψα

χ̄α̇

)
, ΨL = PLΨ =

(
ψα

0

)
, ΨR = PRΨ =

(
0

χ̄α̇

)
(3.3)

To manipulate two-component Weyl spinor indices, we can either employ complex con-
jugation or use the SL(2,C) invariant ε tensors (as defined in Notation and Conventions)

1The experienced reader is authorised to skip this review and pass directly to Section 4!
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as follows:

(ψα)
∗ = ψ̄α̇ (3.4)

εαβψβ = ψα, εα̇β̇ψ̄
β̇ = ψ̄α̇, εαγεγβ = δαβ , εα̇γ̇εγ̇β̇ = δα̇

β̇
(3.5)

Using these, we therefore have the Weyl spinor contractions (θθ) = θαθα = εαβθβθα and
(θ̄θ̄) = θ̄α̇θ̄

α̇ = εα̇β̇θα̇θβ̇ and we can therefore show:

(θθ) = −θαεαβθβ = −2θ1θ2, (θ̄θ̄) = 2θ̄1θ̄2 (3.6)

Finally, it is also useful to note that vectors, such as xµ, transform in the (12 ,
1
2) repre-

sentation of SL(2,C).

3.1 Coleman-Mandula and the Supersymmetry Algebra

Supersymmetry is not merely speculative in its nature. Rather, it is a unique kind of
symmetry which arises from the very nature of the mathematical description of symme-
tries in physical theories and its restrictions. Crucial in the historical development of
physical symmetries, the ”no-go” theorem of Coleman and Mandula (Coleman & Man-
dula, 1967) is a fundamental result which, through S-matrix considerations, provides a
proof for the only structure that continuous symmetries, that is symmetries described by
Lie or infinite-parameter groups, of special-relativistic theories may exhibit. Presenting
the theorem in a descriptive form, as almost exactly found in (Coleman & Mandula,
1967), the result states:

Coleman-Mandula Theorem
Let G be a connected symmetry group of the S-matrix, such that:

1. G contains a subgroup locally isomorphic to the Poincaré group

2. For any M > 0, there are only a finite number of one-particle states with mass less
than M

3. Elastic scattering amplitudes are analytic functions of the s and t Mandelstam
variables

4. The S-matrix is nontrivial such that any two one-particle momentum eigenstates
scatter

5. The generators of G, written as integral operators in momentum space, have dis-
tributions for their kernels

Then, G must be locally isomorphic to the direct product the Poincaré group P and an
internal symmetry group T (defined as an arbitrary group commuting with P), which
can in turn be generated by a semi-simple Lie algebra and so be, for example, a direct
product group.
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Hence G = P × T , which we can interpret in the words of the authors as ”the im-
possibility of combining space-time and internal symmetries in any but a trivial way”.
Supersymmetry bypasses the theorem by playing on its notion of a symmetry group.
By introducing anticommutator relations to its Lie algebras and therefore allowing for
spinor transformation generators, it was shown (Gol’fand & Likhtman, 1971) (and redis-
covered in many contemporary publications (Volkov & Akulov, 1972; Volkov & Soroka,
1973; Wess & Zumino, 1974b)) that Z2-graded Lie algebras are obtained for which the
Coleman-Mandula theorem does not apply in its strictest sense. Letting Mµν be the
generators of Lorentz transformations and Pµ the generators of spacetime translations
of even Z2-grading, together generating the Poincaré algebra, while odd grading is ap-
plied to the new (Weyl two-component) spinorial supercharges Qα and Q̄α̇, we obtain
the following Super-Poincaré algebra SP:

[Mµν ,Mστ ] =− iηνσMµτ + iηµσMντ + iηντMµσ − iηµτMνσ (3.7a)
[Pµ, Pν ] =0 (3.7b)

[Mµν , Pσ] =− iηνσPµ + iηµσPν (3.7c)
{Qα, Qβ} ={Q̄α̇, Q̄β̇} = 0 (3.7d)

{Qα, Q̄β̇} =2σµ
αβ̇
Pµ (3.7e)

[Qα, Pµ] =[Q̄α̇, Pµ] = 0 (3.7f)

It is worth mentioning that the above relations hold for N = 1 supersymmetry, with
N referring to the number of supercharges. For a different N , the supercharges are
supplemented with an index i = 1, . . . ,N and the fundamental relation (3.7e) is replaced
with {Qi

α, Q̄
j

β̇
} = 2σµ

αβ̇
δijPµ, although this will not be relevant for the analysis presented

in this report. With the graded Lie algebra modification, the symmetry group G examined
in the Coleman-Mandula theorem was then shown (Haag et al., 1975) to necessarily only
take the following modified form, which simply replaces the Poincaré algebra with the
Super-Poincaré algebra and keeps the remaining structure identical:

G = SP × T (3.8)

Finally, it is fundamental to highlight that supercharges satisfy the vanishing commuta-
tion relation (3.7f) and commute with internal symmetries (from the direct product in
(3.8)). This directly implies that particles and superpartners have the same mass and
quantum numbers with respect to the internal symmetries of a given theory.

3.2 Superspace and Superfields

To simplify the construction of supersymmetric theories, it is useful to briefly review
the concepts of superspace and superfields defined on superspace. These enable the con-
struction of Lagrangians that are manifestly supersymmetric invariant, useful to produce
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intelligible formulations of the MSSM, as well as offering a direct way of deriving super-
symmetry transformations on components of the same supermultiplet.

These concepts were first introduced by Salam and Strathdee (Salam & Strathdee,
1974b) to develop a method of deriving Wess-Zumino type supersymmetry transforma-
tions (Wess & Zumino, 1974b, 1974a), using group theoretic arguments. They rely on the
coset space construction of manifolds on which the Poincaré and Super-Poincaré groups
can act. The discussion in this report largely retraces the discussion by Tong (Tong,
2022) and uses results from- and convention close to that used in (Wess & Bagger, 1992).

3.2.1 Superspace

Poincaré transformations (i.e. Lorentz boosts combined with translations) act on Minkowski
R1,3 space. In the coset space construction, Minkowski space can be seen as:

R1,3 =
Poincaré
Lorentz

(3.9)

Let Mµν be the generators of Lorentz transformations and Pµ the generators of transla-
tions (i.e. momenta). Hence, for a Poincaré group element G(ω, x), we obtain the coset
representatives G̃(x) specified by the four-vector coordinate x as follows (Tong, 2022):

G(ω, x) = exp

[
i

2
ωµνM

µν − ixµPµ

]
= G̃(x) exp

[
i

2
ωµνM

µν

]
(3.10)

=⇒ G̃(x) = exp [−ixµPµ] (3.11)

Supersymmetry transformations in N = 1 are generated by the Weyl spinor super-
charge Qα and the conjugate supercharge Q̄α̇. It is noted that for a different number
of supercharges, the following discussion can be extended by summing over the index
i = 1, . . . ,N on products that include the supercharge Qi

α, although it will not be
needed. To parametrise the translation part of the transformation we use the vector
parameter xµ, transforming in (12 ,

1
2) of SL(2,C), and to parametrise the supersymmetric

translation we use the two-component Grassmann variables θα in (12 , 0) and θ̄α̇ in (0, 12).

The way to construct a Super-Poincaré group element from supercharges then is:

G(ω, x, θ, θ̄) = exp

[
i

2
ωµνM

µν − ixµPµ + iθαQα + iθ̄α̇Q̄
α̇

]
(3.12)

The coset space construction of superspace follows in exactly the same manner as Minkowski
space, except for the replacement of the Poincaré group with the Super-Poincaré group:

Superspace =
Super-Poincaré

Lorentz
(3.13)
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As for Minkowski, we can separate the Lorentz component of the Super-Poincaré trans-
formation to obtain a representative of the remaining coset:

G(ω, x, θ, θ̄) = exp
[
−ixµPµ + iθαQα + iθ̄α̇Q̄

α̇
]
L(ω) (3.14)

= S(x, θ, θ̄)L(ω) (3.15)

=⇒ S(x, θ, θ̄) = exp
[
−ixµPµ + iθαQα + iθ̄α̇Q̄

α̇
]

(3.16)

With L(ω) being a Lorentz transformation, then S(x, θ, θ̄) can be taken as such a repre-
sentative of the coset specified by the three parameters (x, θ, θ̄). We can now parametrise
superspace as the eight-dimensional space specified by these three ”coordinates”.

3.2.2 Superspace Transformations

We have defined superspace as the coset space of the Super-Poincaré group with respect
to the group of Lorentz transformations. Therefore, it is now possible to derive how the
coordinate triple (x, θ, θ̄) changes under the action of a superspace transformation.

We begin by considering whether a purely-spacetime transformation has the same ef-
fect as the typical translation operator. Using (3.16), we have that:

S(a, 0, 0)S(x, θ, θ̄) = exp [−iaµPµ] exp
[
−ixµPµ + iθαQα + iθ̄α̇Q̄

α̇
]

(3.17)
= exp

[
−i(xµ + aµ)Pµ + iθαQα + iθ̄α̇Q̄

α̇
]

(3.18)

Where the fact that
[
−iaµPµ,−ixνPν + iθαQα + iθ̄α̇Q̄

α̇
]
= 0 (using the commutator

identities in (3.7b) and (3.7f)) was used along with the Baker-Campbell-Hausdorff for-
mula:

exp[X] exp[Y ] = exp

[
X + Y +

1

2
[X,Y ] +

1

12
[X − Y, [X,Y ]] + . . .

]
(3.19)

Therefore, it is verified that the coordinate transformation induced by a purely spacetime
group action has the expected non-supersymmetric effect, that is:

x→ x+ a, θ → θ, θ̄ → θ̄ (3.20)

Now, we examine in the same manner how a purely Grassmann superspace transformation
affects the superspace coordinates, to understand how a supersymmetry transformation
affects a superfield (introduced in the following section 3.2.3). Therefore we are interested
in computing the explicit form of:

S(0, ζ, ζ̄)S(x, θ, θ̄) = exp
[
iζαQα + iζ̄α̇Q̄

α̇
]
exp

[
−ixµPµ + iθαQα + iθ̄α̇Q̄

α̇
]

(3.21)

We compute the commutator of the two exponentials:[
iζαQα + iζ̄α̇Q̄

α̇,−ixµPµ + iθαQα + iθ̄α̇Q̄
α̇
]

(3.22)
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= −[ζαQα, θ
βQβ]− [ζ̄α̇Q̄

α̇, θβQβ]− [ζαQα, θ̄α̇Q̄
β̇]− [ζ̄α̇Q̄

α̇, θ̄α̇Q̄
β̇] (3.23)

= ζαθβ{Qα, Qβ} − ζ̄α̇θβ{Q̄α̇, Qβ} − ζαθ̄β̇{Qα, Q̄β̇}+ ζ̄α̇θ̄β̇{Q̄α̇, Q̄β̇} (3.24)

= 2(θσµζ̄ − ζσµθ̄)Pµ (3.25)

With the commutator being proportional to Pµ, all higher commutators in the Baker-
Campbell-Hausdorff formula vanish and we arrive to:

S(0, ζ, ζ̄)S(x, θ, θ̄) = exp
[
−i(xµ + iθσµζ̄ − iζσµθ̄)Pµ + i(θα + ζα)Qα + i(θ̄α̇ + ζ̄α̇)Q̄

α̇
]

= S(x+ iθσζ̄ − iζσθ̄, θ + ζ, θ̄ + ζ̄) (3.26)

Hence, we obtain that the transformation affects both superspace and spacetime coordi-
nates and is given by:

x→ x+ iθσζ̄ − iζσθ̄, θ → θ + ζ, θ̄ → θ̄ + ζ̄ (3.27)

3.2.3 Superfields and Superfield Types

A superfield can now be defined as a field, transforming in any representation of the
Lorentz group (e.g. scalar, spinor or vector implemented by appending the correct index),
which is valued on the superspace coordinate triple (x, θ, θ̄), such as the scalar superfield
Φ = Φ(x, θ, θ̄), and transforms according to the transformation S(x, θ, θ̄) of (3.16) (Salam
& Strathdee, 1974b). Having derived the explicit transformation of the coordinates in
(3.20), (3.27), superfields hence transform in the following two ways:

Φ(x, θ, θ̄) → S(a, 0, 0)ΦS(a, 0, 0)† = Φ(x+ a, θ, θ̄) (3.28)
Φ(x, θ, θ̄) → S(0, ζ, ζ̄)ΦS(0, ζ, ζ̄)† = Φ(x+ iθσζ̄ − iζσθ̄, θ + ζ, θ̄ + ζ̄) (3.29)

Due to the Grassmann nature of the components of the Weyl spinors θα and θ̄α̇, the
Taylor expansion of superfields with respect to the θ and θ̄ parameters truncates exactly
after a finite number of terms. Consider the following, where we make use of (3.6) and
η2 = 0 for Grassmann η:

(θθ)θα = 2θ2θ1θα = 2θ2(θ1θα) = −2(θ2θα)θ1 = 0 (3.30)

Since either α = 1, 2. A similar result follows for θ̄θ̄. Hence, the highest order we can
achieve in a Taylor expansion of a superfield is a θθθ̄θ̄ term. If we take a scalar superfield,
it can be written in terms of arbitrary ordinary spacetime fields (i.e. depending on x

only), the collection of which can be said to define a supermultiplet:

Φ(x, θ, θ̄) = φ(x) + θψ(x) + θ̄χ̄(x) + θθM(x) + θ̄θ̄N(x)

+ θσµθ̄Vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θρ(x) + θθθ̄θ̄D(x) (3.31)

From (3.29), the transformation of the superfield implies the transformation of the indi-
vidual components of the multiplet (Ferrara, Zumino, & Wess, 1974). Superfields with
appended spinor or vector indices can also be obtained in the same manner, although
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they will not be required in the analysis considered in this report. The crucial obser-
vation is that, considering the spacetime-valued fields contained in the superfield, and
therefore the components of the supermultiplet, there is an equivalent number of bosonic
and fermionic (off-shell) degrees of freedom. For the bosonic contributions, we obtain
two real d.o.f.s from each φ,M,N and D scalar fields and eight real d.o.f.s from Vµ for a
total of 16. This matches the four real d.o.f.s for each of the four two-component spinors
ψ, χ, λ and ρ.

Given that superfields are representations of the Super-Poincaré group, we can ask
whether or not these are reducible or whether they can be further broken down into
further representations. Superfields are not in fact reducible, and the fermionic covariant
derivatives can be defined to divide their space:

Dα = ∂α + iσµαα̇θ̄
α̇∂µ (3.32)

D̄α = −∂̄α̇ − iθασµαα̇∂µ (3.33)

Where ∂α = ∂
∂θα and ∂α̇ = ∂

∂θ̄α̇
are partial derivatives with respect to the Grassmann

parameters, satisfying for example ∂βθα = δαβ . Now, chiral and anti chiral superfields
can be defined using the following conditions, as first proposed by (Ferrara et al., 1974):
a chiral field satisfies D̄α̇Φ = 0 while an antichiral field satisfies DαΦ = 0.

It follows that the conjugation of a superfield has the opposite chirality. From the vanish-
ing anticommutation relations of the fermionic covariant derivatives and the supersymme-
try transformation charges, the chiral and antichiral subspaces are invariant. Moreover,
neither of the chirality conditions are satisfied only trivially, although they impose restric-
tions on the forms of the superfields. Using the fact that D̄α̇(y

µ) := D̄α̇(x
µ+iθασµαα̇θ̄

α̇) =

0, we have that Φ(x, θ, θ̄) = Φ(y, θ) and hence we can perform the following simplifying
Taylor expansion:

Φ(x, θ, θ̄) = Φ(y, θ) = φ(y) +
√
2θψ(y) + θθF (y)

=φ(x) + iθσµθ̄∂µφ(x) +
1

4
θθθ̄θ̄�φ(x)

+
√
2θψ(x)− i√

2
θθ∂µψ(x)σ

µθ̄ + θθF (x) (3.34)

A similar expansion derived with an equivalent observation holds for antichiral super-
fields too. Examining the supermultiplet components, we again note the equivalence
between the number of bosonic and fermionic off-shell degrees of freedom. The complex
scalar fields φ and F each carry 2 real bosonic d.o.f.s for a total of 4, and the complex
two-component spinor ψ carries 4 real fermionic d.o.f.s.

Other than chiral and antichiral superfields, a further superfield that appears exten-
sively in superspace actions, including that of the MSSM, is the real vector superfield,
defined by the condition:

V (x, θ, θ̄) = V †(x, θ, θ̄) (3.35)
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From the reality condition, the real vector superfield cannot be chiral without being an-
tichiral. As for a usual spacetime gauge theory with real gauge fields Ai

µ, real superfields
are the supersymmetric representations containing such gauge fields and their supersym-
metric fermionic partners, the gauginos. Using the reality condition of (3.35), we obtain
(Wess & Bagger, 1992) the expansion:

V (x, θ, θ̄) =C(x) +
[
iθχ(x) + h.c.

]
+
[ i
2
θθ(M(x) + iN(x)) + h.c.

]
− θσµθ̄Vµ(x) +

[
iθθθ̄

(
λ̄(x) +

i

2
σµ∂µχ̄(x)

)
+ h.c.

]
+

1

2
θθθ̄θ̄

(
D(x) +

1

2
�C(x)

)
(3.36)

In the above, it is possible for the superfield V to be matrix valued, as will be for non-
Abelian supersymmetric gauge theory. Also, a d.o.f. count will show yet again the equal-
ity between the number of fermionic and bosonic off-shell d.o.f.s. Finally, it is important
to note that chiral, antichiral and vector superfields form irreducible representations of
the Super-Poincaré group.

3.3 Superspace Actions with Super Yang-Mills

The SM, as presented in Section 2.1, contains propagating fields of which the massive ones
obtain their mass from Higgs field and Yukawa potential interactions, all transforming
under specific representations of a local internal symmetry implemented through a Yang-
Mills construction. It is written in the Lagrangian formulation, which uses an action
that can be decomposed into sectors. Therefore, its supersymmetric extension requires
at least the following types of action terms:

• Kinetic terms for the matter fields

• Kinetic (field strength) terms for the gauge fields

• Potential terms

Firstly, actions employing superfields must be integrals over superspace in an analog way
to non-supersymmetric spacetime actions being integrals of Lagrangian densities over
spacetime. Schematically, the correspondence is:

S =

∫
d4xL(x) =

∫
d4xd2θd2θ̄`(x, θ, θ̄) (3.37)

with
∫

d2θ =
1

2

∫
dθ1dθ2,

∫
d2θ̄ = −1

2

∫
dθ̄1dθ̄2 =⇒

[∫
d2θ

]†
=

∫
d2θ̄ (3.38)

Secondly, integrals of Grassmann quantities respect the Berezin integration correspon-
dence between integrals and derivatives, with both integrals and derivatives also being
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anticommuting quantities:∫
dη = ∂η =

∂

∂η
,

∫
dη̄ = ∂η̄ =

∂

∂η̄
(3.39)

=⇒
∫

d2θθ2 =

∫
d2θ̄θ̄2 = 1 (3.40)

3.3.1 Basic Matter Superspace Actions

We can make some initial considerations on the simplest form of a superspace integral,
that of a simple unrestricted superfield given by equation (3.31):

S =

∫
d4xd2θd2θ̄Φ(x, θ, θ̄) (3.41)

First of all, using Berezin integration from equation (3.40) and the fact that ∂ηf = 0 for
f independent of η, as well as (3.31):

S =

∫
d4xd2θd2θ̄Φ(x, θ, θ̄) =

∫
d4xd2θd2θ̄(θθ)(θ̄θ̄)D(x)

=

∫
d4xD(x) (3.42)

Therefore a whole superspace integral on an arbitrary superfield only produces a com-
mon spacetime integral over the highest component D-term that it contains. Moreover,
under a supersymmetry transformation D changes by a total derivative term (Wess &
Bagger, 1992), therefore the action remains invariant under a supersymmetry transfor-
mation. With this consideration, we deduce that integrals of unconstrained superfields
(and therefore even products, sums, etc. of superfields) over the full superspace produce
viable supersymmetry-invariant integrals.

Imposing Lagrangians to satisfy a reality condition, we can take Φ to be chiral and
build the real action:

Schiral =

∫
d4xd2θd2θ̄Φ†Φ

=

∫
d4xd2θd2

[
· · ·+ θθθ̄θ̄[−∂µφ†∂µφ− iψ̄σ̄µ∂µψ + F †F ]

]
=

∫
d4x[−∂µφ†∂µφ− iψ̄σ̄µ∂µψ + F †F ] (3.43)

Where the final expansion comes from taking the highest component of the superfield
product using equation (3.34). This kinetic term, consisting of two (one propagating, one
not) scalar fields with a propagating Weyl spinor field, is the well-known kinetic term for
the free Wess-Zumino action (Wess & Zumino, 1974a). The auxiliary field F, whose role
is to match the number of bosons to fermions, has an algebraic on-shell equation fixing
it in terms of the remaining fields and discarding it as a field of physical value.
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The next component that we require is that implementing a potential term in super-
space. First, we observe that superspace integrals can also be taken for chiral fields
(3.34) over half of superspace, and that the resulting Lagrangian density changes by a
total derivative under supersymmetry transformations (Wess & Bagger, 1992):∫

d4xd2θΦ =

∫
d4xF (x) (3.44)

Hence, we can pick any functional W [Φ] required to be holomorphic in Φ which is chiral
D̄α̇W [Φ] = 0 and define the superpotential term as below, including the Hermitian
conjugation to ensure reality of the action term:

Ssuperpotential =

∫
d2θW [Φ] + h.c. (3.45)

With this form of Ssuperpotential, the only term contributing will be the F -term of the
holomorphic superpotential functional W [Φ]. By picking a function to specify the scalar
component of the W superfield in terms of the scalar component of the Φ argument
superfield (i.e. W (φ)) we obtain the following form for the superpotential superfield,
where the total derivative term will not contribute to the action and can be ignored:

W [Φ] =W (φ) +
∂W

∂φ

[√
2θψ + θθF

]
− 1

2

∂2W

∂φ2
θθψψ + ∂µU

µ (3.46)

The most general renormalisable superpotential term is a mixture of (not necessarily
diagonal) ”mass” bilinear coupling terms and ”Yukawa” trilinear coupling terms:

W [Φ] =
1

2
mijΦiΦj +

1

3
yijkΦiΦjΦk (3.47)

Matching a kinetic term with a superpotential term, we obtain the full Wess-Zumino
action (Wess & Zumino, 1974a) in superfield formalism:

SWZ =

∫
d4xd2θd2θ̄Φ†Φ+

[∫
d2θW [Φ] + h.c.

]
(3.48)

3.3.2 Super Yang-Mills Actions

From the direct product nature of the admissible symmetries of a supersymmetric special-
relativistic theory (3.8), it has already been stated that the mass and quantum numbers
of particle-superpartner pairs must be the same. More precisely, the Super-Poincaré
transformations must commute with the internal symmetry group T of the theory. Let
t = Lie(T ) be its Lie algebra, with generators satisfying the commutation relation:

[T i, T j ] = if ijkT k, {T i} ⊂ t (3.49)

Then, we must have that [S(x, θ, θ̄), T i] = 0, which specifically and importantly implies
that all components in a superfield must transform in the same representation of T .
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To implement Super Yang-Mills (SYM) constructions for gauge transformations, we
pick the superfield type that can contain vector gauge fields, the real vector superfield
V (x, θ, θ̄). It is defined as a superfield, rather than a constant, reflecting the superspace
dependence of local symmetries for a supersymmetric theory. Just as the gauge field
for non-supersymmetric theory, we take the real vector superfield to live in the Lie alge-
bra t, hence V = V aT a. Then a gauge transformation can be implemented by a chiral
superfield Λ(x, θ, θ̄), D̄α̇Λ = 0, as follows:

eV → eV
′
= e−iΛ†

eV eiΛ =⇒ V → V ′ (3.50)

With the explicit form of V ′ not required. Then, a suitable choice of Λ sets V of (3.36) to
the Wess-Zumino gauge (Wess & Bagger, 1992), for which only the physical fields (and
one auxiliary field) of V remain:

V (x, θ, θ̄) → V (x, θ, θ̄) = −θσµθ̄Vµ(x) +
(
i(θθθ̄λ̄(x) + h.c.

)
+

1

2
θθθ̄θ̄D(x) (3.51)

In this form, it is evident that the gauge field Vµ has a superpartner gaugino spinor field
λα. By combining a supersymmetry transformation with a subsequent Wess-Zumino
gauge transformation, the field V can be chosen to remain in Wess-Zumino gauge after a
Super-Poincaré transformation. To introduce a kinetic term for the superfield containing
the gauge and gaugino fields, we define the field strength superfield:

Wα = −1

4
D̄2(e−V Dαe

V ) (3.52)

Which undergoes the transformation:

=⇒ Wα →− 1

4
D̄2(e−iΛe−V eiΛ

†Dα(e
−iΛ†

eV eiΛ))

=− 1

4
D̄2(e−iΛe−V Dα(e

V eiΛ))

=− 1

4
D̄2
[
e−iΛDαe

iΛ + e−iΛe−V Dα(e
V )eiΛ

]
=− 1

4
e−iΛD̄2(e−V Dαe

V )eiΛ = e−iΛWαe
iΛ (3.53)

Given this transformation, we have the following invariant SYM action constructed in
a very similar fashion to non-supersymmetric Yang-Mills, where the trace is taken over
the gauge indices:

SSYM =

∫
d4xd2θTr(WαWα) + h.c.

=

∫
d4x
[
− 1

4
V a
µνV

aµν − iλ̄aσ̄µDµλ
a +

1

2
DaDa

]
(3.54)

In the above, V a
µν = ∂µV

a
ν − ∂νV

a
µ + gf bcaV b

µV
c
ν and the covariant derivative Dµ is as

in 2.9 (noting that Da is distinguished by its index as an auxiliary field, not a covari-
ant derivative). Finally, we define the transformations for chiral superfields in a given
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representation of the internal symmetry gauge group T as:

Φ →e−iΛΦ = e−iΛaTa
Φ = [e−iΛaTa

]ijΦj (3.55)

=⇒ Φ† →Φ†eiΛ
† (3.56)

Now, the chiral superfield kinetic term of (3.43) breaks gauge invariance. To write a
kinetic term coupling superfields to supergauge fields, we define the Kähler potential
term:

Φ†eV Φ = Φ†
i [e

V ]ijΦj → Φ†eiΛ
†
e−iΛ†

eV eiΛe−iΛΦ = Φ†eV Φ (3.57)

The partial action term containing the Kähler potential can be expanded to obtain the
following form, mostly recognisable from non-supersymmetric field theory:

SM =

∫
d4xd2θd2θ̄Φ†eV Φ

=

∫
d4x[−(Dµφi)

†(Dµφi)− iψ̄iσ̄
µDµψi + F †

i Fi

+
√
2i[(φ∗iT

a
ijψj)λ

a + h.c.] + (φ∗iT
a
ijφj)D

a] (3.58)

If instead we combine the kinetic Kähler potential term with the kinetic term for SYM,
we obtain the general form of a SYM action with coupled superfields, fundamental in the
formulation of the MSSM:

SSYM+M =

[∫
d4xd2θTr(WαWα) + h.c.

]
+

∫
d4xd2θd2θ̄Φ†eV Φ (3.59)

Insertion of a superpotential term of the type in (3.47) now must also simply follow the
requirement of preserving gauge invariance when it is transformed under a local symmetry
for the theory to be fully gauge invariant supersymetrically. As a final word on notation,
the following section on the MSSM (Section 4) adopts the scaling V → 2gV to present
the Lagrangian in canonical form.
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4 The Minimally Supersymmetric Standard Model (MSSM)

Supersymmetry is a hypothesised symmetry of nature which has to be realised within
the context of a theory. The most natural and simplest extension of the SM in this
direction is the Minimally Supersymmetric Standard Model (MSSM). From the super-
symmetric correspondence between fermionic and bosonic degrees of freedom, the MSSM
supplements each SM field with a supersymmetric counterpart, a superpartner. Every
integer spin boson in the SM is complemented with a half-integer spin bosino and every
half-integer fermion is combined with an integer spin sfermion (scalar fermion). Using
the framework developed in Section 3.2, we know that these are held in supermultiplets
bound by supersymmetric transformations. While this simplicity is the starting point
of this minimal extension to the SM, we soon see that further complications arise, such
as the necessary emergence of a second Higgs doublet or the experimentally-motivated
restrictions to interaction terms and mass-giving mechanisms.

Before delving into the technicalities of presenting a mathematical formulation of the
MSSM, it is useful to briefly review the reasons why supersymmetric extensions of the
SM are worth considering. The first is the resolution of the hierarchy problem (Di-
mopoulos & Georgi, 1981) regarding the quadratic divergences in the mass of the Higgs
boson, which require a fine-tuning hypothesis to explain their surprising cancellation.
By introducing fermionic superpartners, whose mass divergence is of logarithmic order,
supersymmetry implying mass degeneracy between the bosonic and fermionic states ex-
actly explains the absence of such divergences.

The second theoretical issue which supersymmetry in the SM solves has to do with
the hypothesis that, just as weak-scale SU(3)C ×U(1)EM gauge symmetry is the residual
gauge group after breaking of SU(3)C × SU(2)L × U(1)Y, that very same gauge group
would be a residual of a larger group, such as SU(5). Simply stated, this conjectures that
the gauge groups (and coupling constants) should unify at higher energy scales. Using
renormalisation group evolution (see Section 6.2) of g1, g2, g3 using just the SM does
not cause their three trajectories to cross at a single point, while adding supersymmetry
causes the meeting to be exact (Dimopoulos, Raby, & Wilczek, 1981).

Finally, there are indirect observations that are compatible with and support the ar-
gument that supersymmetry could be realised in nature. For example, considerations on
grand unification led to prediction of a heavy top quark (Bagger, 1996), or the dark matter
properties hint at compatibility with the MSSM light neutralino (see later) (Kane, 2002).
It is also worth noting that all of these issues receive an explanation simultaneously by
the incorporation of supersymmetry, which derived from disparate considerations (Sec-
tion 3.1), into the SM.

Having discussed the theoretical motivations behind the MSSM, the aim of this sec-
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tion is to use the superspace and superfield formalism mainly developed in Sections 3.2
and 3.3 to formulate the MSSM in Lagrangian form. The details of the less-trivial terms
present in the Lagrangian, notably the R-parity conserving superpotential and sponta-
neous supersymmetry breaking (SSB) from the soft-breaking term is discussed (Sections
4.2.3, 4.2.4). Finally, we obtain the mass-basis particles (in Section 4.3) that are present
in the theory.

4.1 MSSM Particle Content

We begin the discussion of the MSSM formulation by considering its particle contents.
Table 2 presents a breakdown of each MSSM field and its corresponding internal symme-
try gauge group representations. Each supermultiplet containing matter particles (and
the Higgs) is represented through chiral superfields, denoted ΦX , while gauge supermul-
tiplets are represented through real vector superfields VY . Superpartners to minimal SM
particles are denoted with a tilde, such as ˜̀f

L. As seen for example in (3.43) or (3.54),
each superfield also contains off-shell bosonic degrees of freedom which have no kinetic
term in the action, i.e. D and F terms. These will yield algebraic equations of motion
(see Section 4.2.6) which will lose on-shell degrees of freedom. Since these are not real
particles and are only required to close supermultiplet transformations off-shell, they are
not, and will not be considered as, physical fields. Also, in order to have right-handed
quark and lepton fields represented as chiral superfields, we must intend Φu, Φd and Φe

to contain the charge-conjugated versions of the desired particles. The physical particles
can be then re obtained by undoing the conjugation.

A notable difference between the SM and MSSM is the presence of two separate scalar
Higgs doublets, namely H1 and H2 contained in ΦH1 and ΦH2 , each with their corre-
sponding Higgsinos. This derives from the form of superfield Yukawa couplings in the
general superpotential term of (3.47). While the minimal SM (2.1.1) employs the conju-
gated Higgs doublet φ̃ to produce Yukawa mass terms for up-type quarks, (3.47) presents
no opportunity to include a conjugate chiral superfield. A second Higgs doublet chiral
superfield, H2 in this case, must then be used to produce Yuwaka-type terms for up-type
quark superfields.

4.2 The MSSM Lagrangian

Using the superfields and representations discussed in Section 4.1, we can write down an
explicit expression for the action of the MSSM. For convenience, we define the Lagrangian
through SMSSM =

∫
d4xLMSSM, separating the superspace integrals from the spacetime

integral, to obtain a Lagrangian not depending on superspace coordinates. LMSSM is pre-
sented in equation (4.1). Its form mostly follows that presented by Kuroda in (Kuroda,
1999), with the important addition of three generations of (s)quark and (s)lepton super-
fields indexed by f = 1, 2, 3, which their original discussion does not consider but is given
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Field Name Field Particle Contents SU(3)C SU(2)L U(1)Y

LH (s)quark Φqf q̃fL =

(
ũfL
d̃fL

)
, qfL =

(
ufL
dfL

)
3 2 +1

6

RH up (s)quark Φuf ũcfR , ucfR 3̄ 1̄ −2
3

RH down (s)quark Φdf d̃cfR , dcfR 3̄ 1̄ +1
3

LH (s)lepton Φ`f
˜̀f
L =

(
ν̃fL
ẽfL

)
, `fL =

(
νfL
efL

)
1 2 −1

2

RH (s)electron Φef ẽcfR , ecfR 1̄ 1̄ +1

Higgs/Higgsino (1) ΦH1 H1 =

(
H0

1

H−
1

)
, H̃1 =

(
H̃0

1

H̃−
1

)
1 2 −1

2

Higgs/Higgsino (2) ΦH2 H2 =

(
H+

2

H0
2

)
, H̃2 =

(
H̃+

2

H̃0
2

)
1 2 +1

2

Gluino / gluon VC G̃ϑ, Gϑ
µ - - -

Wino / W VL W̃ i, W i
µ - - -

Bino / B VY B̃, Bµ - - -

Table 2: MSSM flavour basis breakdown of superfields and their physical particle
supermultiplet contents. The additional c superscript, such as in uc, denotes a

requirement to intend the field as the conjugate of the physical one. Vectors denote
SU(2)L doublets. LH and RH stand for left- and right-handedness.

explicitly in this report. The soft supersymmetry breaking term Lsoft is given explicitly
in equation (4.14), as it is not strictly part of the main structure of the MSSM but rather
can change depending on the model.
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LMSSM =

∫
dθ2

[
1

4
WYWY +

1

2
Tr(WLWL) +

1

2
Tr(WCWC)

]
+ h.c. (4.1a)

+
3∑

f=1

∫
dθ2dθ̄2Φ†

`f
e2

(
g2

1
2
σiV i

L+g1
1
2
Y`VY

)
Φ`f (4.1b)

+
3∑

f=1

∫
dθ2dθ̄2Φ†

ef
e2

(
g1

1
2
YeVY

)
Φef (4.1c)

+

3∑
f=1

∫
dθ2dθ̄2Φ†

qf
e2

(
g3

1
2
λϑV ϑ

C +g2
1
2
σiV i

L+g1
1
2
YqVY

)
Φqf (4.1d)

+
3∑

f=1

∫
dθ2dθ̄2Φ†

uf e
2
(
−g3

1
2
λ∗ϑV ϑ

C +g1
1
2
YuVY

)
Φuf (4.1e)

+

3∑
f=1

∫
dθ2dθ̄2Φ†

df
e2

(
−g3

1
2
λ∗ϑV ϑ

C +g1
1
2
YdVY

)
Φdf (4.1f)

+

∫
dθ2dθ̄2Φ†

H1
e2

(
g2

1
2
σiV i

L+g1
1
2
YH1

VY
)
ΦH1 (4.1g)

+

∫
dθ2dθ̄2Φ†

H2
e2

(
g2

1
2
σiV i

L+g1
1
2
YH2

VY
)
ΦH2 (4.1h)

+
3∑

f,g=1

[
[ye]fg

∫
dθ2(ΦH1 · Φlf )Φeg + h.c.

]
(4.1i)

−
3∑

f,g=1

[
[yu]fg

∫
dθ2(ΦH2 · Φqf )Φug + h.c.

]
(4.1j)

+
3∑

f,g=1

[
[yd]fg

∫
dθ2(ΦH1 · Φqf )Φdg + h.c.

]
(4.1k)

− µ

∫
dθ2(ΦH1 · ΦH2) + h.c. (4.1l)

+ Lsoft (4.1m)
+ Lfixing + Lghost (4.1n)

4.2.1 The Gauge and Matter Kinetic Sectors

Sectors (4.1a)-(4.1h) contain the kinetic terms for both matter and gauge fields. Sector
(4.1a) specifically contains the three field strength terms for the colour, isospin and
hypercharge gauge symmetries in the direct product gauge group SU(3)C × SU(2)L ×
U(1)Y, arranged in three action terms of the type in (3.54). Sectors (4.1b)-(4.1h) employ
the Kähler potential of (3.58) to couple each of the superfields to the gauge superfields
in the correct representations according to Table 2. Considering three generations of
quarks and leptons, there are three copies of each kinetic term, one for each generation.
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It is worth noting that the ”right-handed” quark chiral superfields, transform under the
conjugate representations of SU(3)C and therefore according to the generators −λ∗ϑ, with
λϑ being the usual Gell-Mann matrices. Also, their weak hypercharge is negative with
respect to the one expected in the minimal SM.

4.2.2 The Superpotential Sector

Sectors (4.1i)-(4.1l) contain the superpotential terms for the MSSM interactions, incor-
porated as in (3.45). Collecting the terms written separately in the Lagrangian and
arranged in a way that can be confronted with the general renormalisable superpotential
of (3.47), the MSSM superpotential is:

WMSSM = −µΦH1 · ΦH2+
3∑

f,g=1

[ye]fg(ΦH1 · Φlf )Φeg

−
3∑

f,g=1

[yu]fg(ΦH2 · Φqf )Φug

+

3∑
f,g=1

[yd]fg(ΦH1 · Φqf )Φdg (4.2)

In the above, the dot is defined as Φ ·Ψ = εijΦiΨj for SU(2)L doublets. It is clear that
we can associate µ with a mass-contributing term for the Higgs superfields. The remain-
ing terms instead provide Yukawa couplings that will contribute to the development of
mass for the matter superfields after electroweak symmetry breaking, analysed in detail
in Section 4.3. From term (4.1j), it is also seen that the Higgs superfield doublet H2 acts
as the φ̃ field for the up-type quark superfield.

All terms of WMSSM respect gauge invariance, as required. For example, we consider the
Yukawa term for the up-type quark superfield. First, summing the weak hypercharges
for the term yields 1

2 + 1
6 − 2

3 = 0. Secondly, an SU(2)L transformation gives:

(ΦH2 · Φqf )Φug →εij [e−2g2iΛL ]ik(ΦH2)k[e
−2g2iΛL ]jl(Φqf )lΦug

= ([e−2g2iΛL ]ik[e
−2g2iΛL ]jlε

ij)(ΦH2)k(Φqf )lΦug

= (det[e−2g2iΛL ])εkl(ΦH2)k(Φqf )lΦug

= εkl(ΦH2)k(Φqf )lΦug = (ΦH2 · Φqf )Φug (4.3)

Where the unit determinant follows from:

det[e−2g2iΛL ] = e−2g2iΛa
Ltr[Ta] = e0 = 1 (4.4)

Finally, we consider an SU(3)C transformation where, in the following, σ, τ and ρ are
taken to be explicit SU(3)C indices:

(ΦH2 · Φqf )Φug →(ΦH2 · (e−2g3iΛϑTϑ
)στ (Φqf )

τ )(e2g3iΛ
ϑT ∗ϑ

)σρΦ
ρ
ug
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= (ΦH2 · (Φqf )
τ )(e−2g3iΛϑTϑ

)στ (e
2g3iΛϑT †ϑ

)ρσΦ
ρ
ug

= (ΦH2 · (Φqf )
τ )(e−2g3iΛϑTϑ

)στ (e
−2g3iΛϑTϑ

)†ρσΦ
ρ
ug

= (ΦH2 · (Φqf )
τ )δρτΦ

ρ
ug = (ΦH2 · Φqf )Φug (4.5)

The other terms follow similar transformations that guarantee their gauge invariance.

It is worth mentioning that the −µΦH1 · ΦH2 term is usually included within the soft
breaking component of the Lagrangian, Lsoft, as in (Misiak et al., 1997). Nevertheless,
the term is supersymmetric invariant, and therefore can be considered as part of WMSSM
superpotential.

4.2.3 R-Parity

While the superpotential WMSSM respects supersymmetry, the gauge symmetries of the
theory, renormalisability and is holomorphic in the superfields, there are some additional
terms that have been omitted. This is because they produce phenomenology inconsis-
tent with experiments that can be fully removed by adding the symmetry of R-parity, or
matter parity, to the MSSM.

Under R-parity (Fayet & Iliopoulos, 1974; Farrar & Fayet, 1978), each field in a su-
permultiplet transforms by an overall integer phase φ(x) → ηRφ(x) with ηR = πR(φ)

given by the parity function. More specifically, minimal SM fields can be assigned the
R-parity ηR = +1 simultaneously with superpartners obtaining the phase ηR = −1. Si-
multaneous transformation of the superspace coordinates by θ → −θ, θ̄ → −θ̄ ensures
that each supermultiplet transforms by a single overall phase. As shown in (Farrar &
Weinberg, 1983), this formulation is equivalent to defining the parity function from the
quantum number of the MSSM fields:

πR(φ) = (−1)2Sφ(−1)3(Bφ−Lφ) (4.6)

WMSSM is symmetric under R-parity transformations. As an example, we consider the
following:

πR(H1) = (−1)2·0(−1)0 = +1 (4.7)

πR(˜̀
f
L) = (−1)2·0(−1)3(0−1) = −1 (4.8)

πR(ẽ
f
L) = (−1)2·0(−1)3(0−1) = −1 (4.9)

=⇒ (ΦH1 · Φ`f )Φeg → (+1)(−1)2(ΦH1 · Φ`f ) = (ΦH1 · Φ`f ) (4.10)

Invariance of all other terms follows similarly. We can attempt extending WMSSM with
parity violating terms. Examples of terms breaking R-parity invariance that can be
added to (4.2) are the following (Martin, 1998):

W∆L =
1

2
yfgh(Φ`f · Φ`g)Φeh + y′fgh(Φ`f · Φqg)Φdh + µ′f (Φ`f · ΦH1) (4.11)
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W∆B =
1

2
y′′fghΦufΦdgΦdh (4.12)

Using the results in (4.8) and (4.9), we can for example show that the first term of W∆L

is odd under R-parity:

(Φ`f · Φ`g)Φeh → (−1)3(Φ`f · Φ`g) = −(Φ`f · Φ`g) (4.13)

Besides R-parity, both W∆L and W∆B respect all of the usual requirements for being
part of WMSSM. Taking these additions integrated over superspace to define interaction
vertices, we can see that (4.11) contains an overall lepton number increase of 1, while
(4.12) contains an overall baryon number increase of 1. Hence, these terms violate either
lepton or baryon universality.

The most striking result of including these terms in the superpotential is the decay
of the proton, which can for example happen in the process p+ → π0e+ mediated by bot-
tom squarks. With results from Super-Kamiokande observing its longest lifetime limit
as 1.67 × 1034 years (Ikeda, 2015; Bajc, Hisano, Kuwahara, & Omura, 2016), R-parity
is justified as an additional symmetry restricting the form of the MSSM superpotential.
It is worth noting that R-parity violation can be included in supersymmetric extensions
to the SM beyond the MSSM (Barbier et al., 2005), although it will not be a topic of
discussion beyond simple observations in this report.

4.2.4 Soft-Breaking Terms

The result that particles sharing a supermultiplet must be degenerate in mass (and share
the same quantum numbers) implies experimentally that superpartners should be ob-
served, for example, at the same energies as observed particles in particle colliders. If we
examine the experimentally observed SM particles in Table 1, no two boson-fermion pairs
can be seen to have the same gauge group quantum numbers. Therefore, it is concluded
that no superpartners have been observed in nature. To maintain supersymmetry as a
valid hypothesised symmetry of observable nature, it is possible to arrange for its break-
ing such that additional mass is developed for the unobserved particles. In the generality
of supersymmetric theories, the first two fundamental models of supersymmetry breaking
(SSB) were proposed by Fayet and Iliopoulos and subsequently by O’Raifertaigh.

In the Fayet-Iliopoulos mechanism of SSB (Fayet & Iliopoulos, 1974), it is required that
two chiral superfields interact with a vector superfield, such as in supersymmetric QED
(SQED). The D-term of the vector superfield then can develop a non-zero vev and cause
the scalar potential, produced by solving its associated algebraic equation of motion, to
give different masses to bosons and fermions coupling to it. Similarly to broken internal
symmetry giving rise to a massless Goldstone boson, SSB via the Fayet-Iliopoulos mech-
anism gives rise to a massless fermion (Iliopoulos & Zumino, 1974; Salam & Strathdee,
1974a) (due to the spinorial nature of the conserved charges and currents of supersym-
metry), which is typically called a Goldstino.
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In O’Raifertaigh’s mechanism of (O’Raifeartaigh, 1975), SSB can be achieved with three
or more chiral superfields and the requirement of using a vector superfield is dropped. By
including a linear term in the superpotential, F -term integration again produces mass
differences within the same supermultiplet, and a Goldstino arises.

Unfortunately, neither mechanism is acceptable when supplementing theory with the
experimental success of the observed SM (Chung et al., 2005). The Fayet-Iliopoulos
mechanism fails by requiring extensions of the MSSM respecting further U(1) symme-
tries, which predicts particles that are too light for experiment. O’Raifertaigh’s mecha-
nism fails when considering the mass implications from the vanishing supertrace relation,
which are again too light.

To avoid the experimental limitations imposed by describing an explicit mechanism for
supersymmetry breaking, we include a Lsoft term (4.1m) which is to be intended as an
effective contribution to the MSSM Lagrangian (similar to those discussed in Section
6). Its effective nature can be justified as supersymmetry being spontaneously broken
at high scales, with the effects being mediated to lower scales by messenger fields, such
as as a consequences of coupling to supergravity or anomalies. Nevertheless, it is a soft-
breaking term in the sense that all of its terms are renormalisable (notably different from
the higher-dimensional effective terms later considered in Section 6), other than being
gauge invariant, and do not give rise to quadratic divergences, although clearly explicitly
breaking supersymmetry. Its form is given by:

Lsoft =− 1

2
[mG̃G̃

ϑG̃ϑ +mW̃ W̃
iW̃ i +mB̃B̃B̃ + h.c.] (4.14a)

−m2
H̃1
H†

1H1 −m2
H̃2
H†

2H2 +
[
b(H1 ·H2) + h.c.

]
(4.14b)

−
3∑

f,g=1

[
[M2

˜̀ ]fg
˜̀†f
L
˜̀g
L + [M2

ẽ ]fg ẽ
c∗f
R ẽcgR (4.14c)

+ [M2
q̃ ]fg q̃

†f
L q̃

g
L + [M2

ũ ]fgũ
c∗f
R ũgR + [M2

d̃
]fgd̃

c∗f
R d̃gR

]
(4.14d)

−
3∑

f,g=1

[
[Aẽ]fg(H̃1 · ˜̀fL)ẽ

cg
R − [Aũ]fg(H̃2 · q̃fL)ũ

cg
R + [Ad̃]fg(H̃1 · q̃fL)d̃

cg
R + h.c.

]
(4.14e)

Where, in the above, Hermitian conjugation also acts to transpose SU(2)L doublets.
(4.14a) provides the mass-adjusting terms for gluinos, (4.14b) terms contributing to Higgs
masses and electroweak symmetry breaking, and (4.14c),(4.14d) provides mass contribu-
tions for sfermions (squarks and sleptons). Finally (4.14e) contains additional trilinear
scalar interactions weighted by the [AX̃ ] mixing angle matrices.
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4.2.5 Comment on Gauge Fixing and Ghost Fields

The terms (4.1a)-(4.1l) in LMSSM can be considered to be part of the formulation of
the MSSM at the classical level. In order to quantise the theory, we use a path inte-
gral approach. The correlators are obtained by the functional derivatives of the sourced
generating functional Z[J, Jα, Jµ] = eiW[J,Jα,Jµ], including a factorisation of Z by the
volume of gauge orbits. This sourced generating functional is supposed to be intended
schematically, with the sources J, Jα and Jµ standing for the scalar, spinor and vector
sources needed for the different Lorentz representations of fields present in the MSSM.

The two terms in (4.1n), namely Lfixing and Lghost, then provide the gauge-fixing and
Faddeev-Popov ghost terms to account for the BRST quantisation of the MSSM theory
at the path integral level. The explicit form of these terms is very extensive and not
required by this analysis, but can be found in (Kuroda, 1999) or (Rosiek, 1990) (and its
erratum (Rosiek, 2002)).

4.2.6 The Scalar Potential from Auxiliary Fields

In Section 3.31, we have seen that chiral and vector superfields both contain components,
namely the FX and Dϑ, Di, D fields (where X is a given supermultiplet label, coming
from the chiral and vector superfields respectively), that do not contain on-shell d.o.f.s.
This is because their equations of motion do not contain kinetic terms and are purely
algebraic. When their solution is substituted back into the action, they give rise to ad-
ditional interactions between the physical fields as additions to the potential chosen for
the theory. This contribution is called the scalar potential, and in the case of the MSSM
it holds part of the contributions for the mass-giving terms for its particles. Using the
superpotential to gather terms contributing to particle masses will be crucial in Section
4.3 to rotate field multiplets into the physical mass basis of the MSSM.

To derive the form of the scalar potential, we remain in the generality of a SYM theory
coupled to matter chiral superfields and a superpotential from Section 3.3, in particu-
lar combining equation (3.59) with a gauge invariant (but general) superpotential (3.46).
Collecting the actions integrated over superspace coordinates, we obtain the general form
(Ewerth, 2004a):

L =− 1

4
V a
µνV

aµν − iλ̄aσ̄µDµλ
a +

1

2
DaDa − (Dµφ)

∗
i (D

µφ)i − iψ̄iσ̄
µDµψi

+ F ∗
i Fi +

√
2i(φ∗iT

a
ijψjλ

a + h.c.) + gDaφ∗iT
a
ijφj +

(
∂2W

∂φi
Fi −

1

2

∂2W

∂φi∂φj
+ h.c.

)
(4.15)

Applying the Euler-Lagrange condition with respect to the real fields Da and F ∗
i , we

obtain the algebraic equations of motion for the auxiliary fields:

∂L
∂Da

− ∂µ
∂L

∂∂µDa
=

∂L
∂Da

= Da + gφ∗iT
a
ijφj = 0 =⇒ Da = −gφ∗iT aφj (4.16)
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∂L
∂F ∗

i

− ∂µ
∂L

∂∂µF ∗
i

=
∂L
∂F ∗

i

= Fi +

(
∂W

∂φi

)∗
= 0 =⇒ Fi = −

(
∂W

∂φi

)∗
(4.17)

By performing these substitutions in the inverse fashion, we can rewrite the Lagrangian
as:

L =− 1

4
V a
µνV

aµν − iλ̄aσ̄µDµλ
a − (Dµφ)

∗
i (D

µφ)i − iψ̄iσ̄
µDµψi

+ i
√
2(φ∗iT

a
ijψjλ

a + h.c.) +
(
−1

2

∂2W

∂φi∂φj
+ h.c.

)
− F ∗

i Fi −
1

2
DaDa (4.18)

Observing the final two terms, we define the scalar potential as:

Vaux = F ∗
i Fi +

1

2
DaDa

=

(
∂W

∂φi

)∗(∂W
∂φi

)
+

1

2
g2(φ∗iT

a
ijφj)

2 (4.19)

From this expression, we can note that the scalar potential, as the name suggests, arises
from the scalar components φi of the superfield coupled to the gauge symmetry. There
is no contraction of higher spinor or vector terms in the supermultiplet.

Clearly, the MSSM contains a more complex gauge symmetry group than the single
non-Abelian considered, but the scalar potential terms can still be collected easily. Each
vector superfield with gauge index a contributes a single term of the type 1

2D
aDa, while

each chiral superfield labelled by X contributes (FX)†FX . We take ϑ as a SU(3)C index
and i as a SU(2)L index, as well as labelling φX the scalar component for the X multiplet.
The total F -term contributions are given schematically by:

∑
X

(FX)†FX =
∑
X

∑
ϑ,i

∣∣∣∣∂WMSSM
∂(φX)ϑi

∣∣∣∣2 (4.20)

The D-term contributions for a given gauge group come from products of the scalar fields
in non-trivial representations of the group weighted by the generators of the correspond-
ing representation, as:

Da = −gG
∑
T

∑
X

(φX)†T aφX (4.21)

Combining F and D term contributions of (4.20) and (4.21), the scalar potential of the
MSSM can be descriptively given as:

Vscalar,MSSM = −
∑
X

∑
ϑ,i

∣∣∣∣∂WMSSM
∂(φX)ϑi

∣∣∣∣2 − 1

2

∑
G∈T

g2G

(∑
T

∑
X

(φX)†T aφX

)2

(4.22)

With T = SU(3)C×SU(2)L×U(1)Y and G running over the groups in the direct product
and gG the g1, g2 and g3 coupling constants.
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4.3 MSSM Mass-Basis Particles

4.3.1 Electroweak Symmetry Breaking in the MSSM and tanβ

As in the minimal SM, the mechanism that most fundamentally contributes to the masses
of MSSM particles is the development of the vevs for the two Higgs fields we have intro-
duced. As in Section 2.1.2, the Higgs configuration that performs the SU(3)C×SU(2)L×
U(1)Y → SU(3)C × U(1)EM EWSB is that minimising its self-interaction potential.

A full derivation of the two Higgs vevs is covered in Appendix A, based on the discussion
present in (Kuroda, 1999). In short, the terms of the Higgs self-interaction potential can
be recovered in the scalar potential (4.22) and the soft breaking terms (4.14). With a
choice of gauge, the two Higgs doublets assume the configuration:

H1 =
1√
2

(
v1
0

)
, H2 =

1√
2

(
0

v2

)
(4.23)

Using the vevs of the two doublets, we can also define the following β angle:

tanβ =
v2
v1

=⇒ v2 = v21 + v22, v1 = v sinβ, v2 = v cosβ (4.24)

4.3.2 Mass Matrices, Physical Particles and the Super-CKM Basis

Having discussed EWSB using the two Higgs doublets required by the MSSM, it is now
possible to observe how the superpartners to the minimal SM fields obtain their masses
in the broken phase. The diagonalisation of superpartner mass matrices is important in
identifying the mass basis fields which are commonly used to study the physical interac-
tions in the MSSM. These appear both in the interaction vertices of Section 5 and the
Feynman diagrams of Section 7. The explicit derivations for all of these mass matrices
has been performed and verified with the literature ((Cho, Misiak, & Wyler, 1996) and
(Kuroda, 1999) for generation-independent matrices) by collecting contributions from in-
tegrated out F and D fields (the scalar potential of (4.22)), from the soft supersymmetry
breaking term (4.14), from the Higgs-superfield interactions and from the Yukawa terms.
Two fully explicit examples of calculations can be found in Appendix B.

First, it is useful to re-express the W and Z boson masses in terms of the combined
vevs of the two Higgs doublets (Kuroda, 1999) (which compared to the minimal SM adds
the square of the vevs):

m2
W =

1

4
g22v

2 (4.25)

m2
Z =

1

4
(g22 + g21)v

2 (4.26)

v2 = v21 + v22 (4.27)
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The first derived mass term is that for neutral Higgs particles, coming from the small
field expansion around the vev of the two Higgs doublets. The four real fields obtained in
this way contain one scalar, one pseudoscalar and two Goldstone fields. The two matrices
collecting these physical states are:

Mϕ0 =

(
m2

A sin2 β +m2
Z cos2 β −(m2

A +m2
Z) cosβ sinβ

−(m2
A +m2

Z) cosβ sinβ m2
A cos2 β +m2

Z sin2 β

)
(4.28)

Mχ0 = (m2
H1

+m2
H2

)

(
sin2 β − sinβ cosβ

− sinβ cosβ cos2 β

)
(4.29)

Where:

m2
H1

= m2
H̃1

+ |µ|2 (4.30)

m2
H2

= m2
H̃2

+ |µ|2 (4.31)

m2
A = m2

H1
+m2

H2
(4.32)

This is followed by the two charged Higgs fields obtained by diagonalising the following
matrix:

Mφ± = (m2
H1

+m2
H2

+
g22
4
v2)

(
sin2 β − cosβ sinβ

− cosβ sinβ cos2 β

)
(4.33)

The following superfield types come from a mixing of Higgsino and SU(2)L × U(1)Y
gaugino (wino and bino, or equivalently wino, zino and photino) terms after symmetry
breaking. These linear combinations of fields can be both charged or neutral under the
residual U(1)EM gauge symmetry, giving rise to charginos and neutralinos respectively.
The chargino mass matrix, giving two fields, is given by:

M2
χ̃± =

(
mW̃

√
2mW cosβ√

2mW sinβ µ

)
(4.34)

The neutralino mass matrix instead gives four fields and is given by:

M2
χ̃0 =


mB̃ 0 −mZsW cosβ mZsW sinβ

0 mW̃ mZcW cosβ −mZcW sinβ

−mZsW cosβ mZcW cosβ 0 −µ
mZsW sinβ −mZcW sinβ −µ 0

 (4.35)

The following mass matrices all involve the superpartners of SM matter fields, namely
squarks and sleptons. In Section 2.1.2 it was discussed how rotation of the flavour basis
quarks and leptons into the mass basis is done through biunitary transformations, also
giving rise to the CKM matrix. In preparing the mass matrix for squarks, it is convenient
to apply the same flavour-to-mass-basis transformations (Ewerth, 2004a) for the quarks,
obtaining the super-CKM basis (Dugan, Grinstein, & Hall, 1985) for squarks. This is
convenient to use because we only deal with virtual squark effects (Hall, Kostelecky, &
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Raby, 1986) and so do not have incoming or outgoing mass-basis squarks in interactions.
The squark and slepton transformations are:

νfL → UνL
fg ν

g
L

efL → U eL
fg e

∗g
L ec∗fR → U eR

fg e
c∗g
R

ufL → UuL
fg u

g
L uc∗fR → UuR

fg u
c∗g
R

dfL → UdL
fg d

g
L dc∗fR → UdR

fg d
c∗g
R

(4.36)

We also define the following combinations of matrices:

M2
˜̀ → U eL†M2

˜̀U
eL =: (M2

ẽ )LL M2
ẽ → U eR†M2

ẽU
eR =: (M2

ẽ )RR

M2
q̃ → UuL†M2

q̃U
uL =: (M2

ũ)LL M2
ũ → UuR†M2

ũU
uR =: (M2

ũ)RR

M2
q̃ → UdL†M2

q̃U
dL =: (M2

d̃
)LL M2

d̃
→ UdR†M2

d̃
UdR =: (M2

d̃
)RR

(4.37)

The mixing angle matrices transform as:

Aẽ → 1√
2
v1U

eL†AẽU
eR =: (M2

ẽ )LR

Aũ → − 1√
2
v2U

uL†AũU
uR =: −(M2

ũ)LR

Ad̃ → 1√
2
v1U

dL†Ad̃U
dR =: (M2

d̃
)LR

(4.38)

And the Yukawa matrices transformations:
ye → 1√

2
v1U

eR†yeU
eL =:Me

yu → − 1√
2
v2U

uR†yuU
uL =:Mu

yd → 1√
2
v1U

dR†ydU
dL =:Md

(4.39)

The first mass matrices that we give are those for selectrons (and smuons, staus) and
sneutrinos. There are six selectrons, matching the left and right-handed degrees of free-
dom of the three fermionic generations, and three sneutrinos from the single left-handed
neutrinos. The selectron and sneutrino mass matrices are:

M2
ẽ =

(
(M2

ẽ )LL +M2
e + 1

2(m
2
Z − 2m2

W ) cos 2β1 (M2
ẽ )LR −Meµ tanβ

(M2
ẽ )

†
LR −Meµ tanβ (M2

ẽ )RR +M2
e −m2

Zs
2
W cos 2β1

)
(4.40)

M2
ν̃ = (M2

ẽ )LL +
1

2
m2

Z cos 2β1 (4.41)

Now, we give two separate matrices for the up and down squarks of the three generations
and their ”left” and ”right” handed components (each matrix is 6× 6):

M2
ũ =

(
(M2

ũ)LL +M2
u + 1

6(4m
2
Z −m2

Z) cos 2β1 (M2
ũ)LR −Muµ cotβ

(M2
ũ)

†
LR −Muµ

∗ cotβ (M2
ũ)RR +M2

u + 2
3m

2
Zs

2
W cos 2β1

)
(4.42)

M2
d̃
=

(
(M2

d̃
)LL +M2

d − 1
6(m

2
Z + 2m2

W ) cos 2β1 (M2
d̃
)LR −Mdµ tanβ

(M2
d̃
)†LR −Mdµ

∗ tanβ (M2
d̃
)RR +M2

d − 1
3m

2
Zs

2
W cos 2β

)
(4.43)

With the squark matrices given, all the mass-basis particles can now be obtained in terms
of these mass matrices, and hence we can proceed to the quantisation of the superpartner
fields.
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5 MSSM Quantisation

This section presents an overview of the quantisation of the MSSM theory, necessary for
the analysis presented in Section 7. The superpartner propagators are given (in 5.1), to-
gether with a reduced subset of the vast amount of vertices that involve the new particles
(and the two Higgs doublets, in 5.2). Particular emphasis is placed on the vertices that
play a part in quark and squark flavour-changing interactions, contrasting the only W

boson vertex in the minimal SM producing generational mixing.

As discussed in Section 2.2 and will be elaborated in Section 6.1 (when talking about the
LEFT), our interest lies in the MSSM contributions at the energy scale around EWSB.
For this reason, the propagators and vertices will refer to the particles in their mass-
basis form, derived in the diagonalisation of the MSSM mass matrices in Section 4.3.2.
The contributions presented in this section is a subset of those (with a slightly different
notation) given in (Rosiek, 1990) (and its erratum (Rosiek, 2002)).

5.1 Particle and Superpartner Propagators

We begin by giving the diagrammatic form of the propagators for the particles and their
superpartners, together with the contribution they represent in the computation of the
expressions from Feynman diagrams.

The gauge boson propagators for photons, Z and W± bosons and gluons, as also found
in the minimal SM are the following:

γµ ν Z,W±µ ν gµ ν

Their momentum space contribution is:

D(G)µν(p) =
iηµν

p2 +m2 − iε
(5.1)

The fermionic gaugino (mixed with Higgsino) propagators, for the gluino, chargino and
neutralino respectively, are the following:

g̃β α χ̃±β α χ̃0β α

Their momentum space contribution to Feynman diagrams is:

D(G̃)αβ(p) =
−i(γ · k +m)ab
p2 +m2 − iε

(5.2)

The matter particles and superpartner propagators are given below for leptons, quarks,
sleptons and squarks respectively.
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e, µ, τ

νe, νµ, ντ

β α u, c, t

d, s, b

β α ẽ, µ̃, τ̃

ν̃e, ν̃µ, ν̃τ

ũ, c̃, t̃

d̃, s̃, b̃

They are either fermions or scalars and therefore contribute:

D(M)αβ(p) =
−i(γ · k +m)ab
p2 +m2 − iε

D(M̃)(p) =
−i

p2 +m2 − iε
(5.3)

Finally, the charged and neutral Higgs propagators, both scalars, are represented dia-
grammatically as:

H±, G±
H0, h0, G0, A0

Their scalar contribution is:

D(H̃)(p) =
−i

p2 +m2 − iε
(5.4)

5.2 Relevant Vertices

In this section, we concentrate on giving the subset of vertices that are directly rele-
vant for tree-level quark flavour changing charged interactions and for loop level FCNCs
(Misiak et al., 1997). To avoid unnecessary complication for the MSSM-exclusive vertices,
the reader is invited to consult (Rosiek, 1990) for their precise numerical mathematical
contribution in diagrams. The first vertex that we consider is the SM W boson and
quark flavour changing interaction, the only flavour changing interaction in the minimal
SM. Its diagrammatic form and contribution are given by:

W±

uf

dg

=
(
− ie√

2sW

)
V CKM∗
fg γµPL (5.5)

In the MSSM, a second tree-level flavour changing charged current is present, that given
by the charged Higgs scalars. This introduces the following diagrammatic vertex

H±

uf

dg

At one-loop level, there are many more interaction vertices that can appear to contribute
to flavour-changing currents. To simplify matters, we only give those that will be used
in the later Section 7. Commencing with the down-quark up-squark chargino vertex, we
have the vertex:
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χ̃±
(x)

df

ũg

Similarly, charginos can interact with leptons and sneutrinos, through the vertex:

χ̃±
(x)

ef

ν̃g

We now concentrate on the down-quark down-squark gluino interaction:

g̃(a)

df(b)

d̃g(c)

Finally, we give a vertex that is not flavour-changing but will be required later on, that
is the squark to photon interaction that will be present in a penguin contribution:

p

k

γ

µ
d̃f

d̃g

As can be seen, the MSSM contains many more flavour-changing interactions than the
minimal SM, suggesting the potential of MSSM effects to affect flavour-changing beauty
decays growing exponentially at each higher loop order.
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6 Effective Field Theory, SMEFT and LEFT

6.1 Effective Field Theory

When considering the additional free parameters, that the MSSM presents (such as soft-
breaking masses or the Higgs vev β angle) all, except for the minimal SM parameters,
lack explicit experimental determination. Moreover, acknowledging the vast amount of
possible interactions that the Lagrangian (4.1) contains, as seen in Section 5, a method
of projecting the approximate overall effects of supersymmetry onto weak energy-scale
processes must be developed if we wish to study its contributions specifically to beauty
decays. Not only is it computationally infeasible to consider every possible contribution
to a particular process from all the coupled degrees of freedom, but making exact pre-
dictions requires us to trust a model at arbitrary energy scales and fully, rather than
partially, determine its constants and couplings from experiment. In the specific case of
the MSSM, where superpartners have not been observed in experiments, this is especially
troublesome.

The theory of developing actions to describe physics in specific ”regions” of energy scales
is known as effective field theory (EFT). Theoretically, this modifies the viewpoint that a
single theory must be valid at all scales. Theories can now be the effective manifestations
of higher-energy, more fundamental constructions. Experimentally, the relevance of EFT
is tied to most human observations happening at specific scales, at which higher-energy
components can be integrated (or averaged) out, such as very massive d.o.f.s. For ex-
ample, the LHC at CERN is operating its Run 3 data-taking at 13.6 TeV (or 1.36× 104

GeV) for proton-proton collisions. This is many orders of magnitude below the expected
GUT or Planck scales of 1016 and 1019 GeV where we expect new physics. Under this
light, the SM is now understood to be the leading term of a ”low-energy” EFT (Isidori
et al., 2023) of a model which contains BSM physics. The EFT approach of projecting
the physics contained in a high-scale theory down to lower-scale observable phenomena,
described exclusively by the low-scale fields, is called the ”top-down” approach to EFT.

While the following approach will be only briefly discussed, it is also possible to use
the formalisms of EFT to place model independent constraints on new theories. This is
known in the literature as the ”bottom-up” approach. By assuming that experimental
tensions with theory derive from effective contributions to a low-scale action, such as the
SM intended as such, it is possible to impose a-priori what the low-scale appearance of
new physics with unknown UV completions should be.

6.1.1 The Wilsionian Effective Lagrangian

The foundational work on EFT was laid by Wilson (Wilson, 1972), initially inspired the
study of Landau theory and later extending to the development of the renormalisation
group (RG) and its equations (Landau, 1937; Wilson, 1983). As mentioned previously,
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the success of EFT lies in allowing theories typically not regarded as renormalisable
through higher dimensional effective operators. The following discussion is based on that
in (Isidori et al., 2023) and (Georgi, 1993).

A core requirement of quantum field theories is that they must be renormalisable in the
standard procedures with the introduction of a finite number of counterterms. At the La-
grangian level for a d = 4 dimensional theory, this implies that all field-composite terms
must be of dimension ≤ 4 excluding the dimension brought by coefficient couplings, with
the Lagrangian itself being of mass dimension [L] = 4. From the Klein-Gordon, Dirac
and Yang-Mills kinetic terms for scalar, spinor and vector fields respectively, we extract
their mass dimension:

[L] = 4 = [∂µφ∂
µφ] = 2[∂] + 2[φ] = 2 + 2[φ] =⇒ [φ] = 1 (6.1)

[L] = 4 = [iψ̄γµ∂µψ] = [∂] + 2[ψ] = 1 + 2[ψ] =⇒ [ψ] =
3

2
(6.2)

[L] = 4 = [∂µAν∂
µAν ] = 2[∂] + 2[A] = 2 + 2[A] =⇒ [A] = 1 (6.3)

Hence, a term like the Yukawa φψ̄ψ is renormalisable from its dimensionality ([φ]+2[ψ] =

4) and can be included in a Lagrangian (provided that it also respects the local gauge
symmetries of the theory), while a four-fermion term (ψ̄ψ)(ψ̄ψ) of dimension 6 typically
cannot.

Terms such as the four-fermion operator can nevertheless appear in effective actions.
The derivation of a Wilsonian effective Lagrangian can be understood at the level of
path integrals. Let Λ be a given energy scale at which we want to derive an effective
theory. Schematically, we let φL and φH represent light and heavy fields with charac-
teristic masses m and M respectively such that m < Λ < M (these can be taken to be
the maximum and minimum masses for the two groups of fields). By comparison with
Λ, these set the low and high energy scales for effective analysis of the theory. Then
the sourced generating functional for the theory L[φL, φH ] is given by the following path
integral over light and heavy field configurations:

Z[JL, JH ] =

∫
DφL

∫
DφH exp

[
iS[φL, φH ] + i

∫
d4x(φLJL + φHJH)

]
=

∫
DφL

∫
DφH exp

[
i

∫
(L[φL, φH ] + φLJL + φHJH)

]
(6.4)

The effective action is then defined as the remnant Lagrangian after performing path-
integration over the heavy fields φH (Isidori et al., 2023):

Z[φL] =

∫
DφL

∫
DφH exp

[
i

∫
(L[φL, φH ] + φLJL)

]
=

∫
DφL exp

[
i

∫
(LEFT[φL] + φLJL)

]
(6.5)
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The remaining effective Lagrangian LEFT is independent of the φH heavy fields and,
being the path integral a measure over all possible field configurations, contains their
averaged contributions at the level of Λ. Formally, such a decoupling of light and heavy
fields is encoded in the Appelquist-Carazzone theorem (Appelquist & Carazzone, 1975).
Although the effective Lagrangian is fully independent of heavy fields, it is precisely the
action of integrating over them that gives rise to non-renormalisable vertices composed of
the remaining light fields, such as the four-fermion operator previously considered when
we consider the spinors to be light.

6.1.2 The Operator Product Expansion and Effective Hamiltonians

The higher-dimensional operators produced follow two conditions (Georgi, 1993) which
guarantee that the EFT requires only a finite number of parameters to perform calcu-
lations at any arbitrary, but finite, precision. The first condition is that there must be
a finite number of operators for every specific dimension d > 4 (even if d itself is not
limited). The second is that the coefficients of these operators must be bounded above
from O(1/Λd−4), with Λ being the previously chosen scale. Considering these conditions,
the form of the effective Lagrangian is given by the following operator product expansion
(OPE) (Isidori et al., 2023):

LEFT = LL +

∞∑
d=5

∑
i

1

Λd−4
C(d)
i O(d)

i (6.6)

In the above, LL is the remaining part of the original Lagrangian L which includes only
renormalisable terms of dimension ≤ 4. The O(d)

i is a d-dimensional operator, indexed by
i taking only a finite number of values. Its coefficient C(d)

i is called its Wilson coefficient
and represents the coupling strength of the effective interaction. The infinite sum repre-
sents the contributions given by all the possible higher-dimensional operators composed
of light fields, respecting the previously mentioned conditions. For a precision of choice,
the infinite sum can be chosen to truncate at a specific dimension, introducing further
approximation. A discussion on how to obtain the effective operators for a given theory
from symmetry arguments is postponed to Section 6.3 under the example of the SM EFT.

For the purposes of the analysis presented in Section 7, it is useful to introduce the effec-
tive Hamiltonian. This is obtained through the Legendre transform of the Lagrangian,
noting that there is no modification to the conjugate-pair-product part as no fields are
added in the construction of the effective Lagrangian. Again, this expression can be
truncated at a chosen finite dimension.

HEFT = · · · −
∞∑
d=5

∑
i

1

Λd−4
C(d)
i O(d)

i (6.7)
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6.2 Renormalisation Group Evolution

We present here a summary on the renormalisation group (RG) and its application to
EFT. The renormalisation group equations (RGEs) are the set of differential equations
relating the values of couplings at different energy scales, under the fundamental assump-
tion that physical observables are invariant under the arbitrary nature of such a scale.
First approached in (Stueckelberg & Petermann, 1951) and subsequently formalised in
(Gell-Mann & Low, 1954), they play the central role in Wilsonian EFT of evolving effec-
tive couplings between scales where fields are integrated out.

Let µ be a sliding scale appearing, for example, from using a MS renormalisation scheme
to evaluate divergent loop integrals from a BSM theory. Let gi be an arbitrary coupling
for a chosen theory, then its scale evolution (dependence on µ) is given by the RGE
(Weinberg, 1996):

µ
dgi
dµ

= βi(. . . , gj(µ), . . . ) (6.8)

Each coupling ”constant” has an associated function βi which governs its evolution, that
might depend on all other scale varying couplings of the theory. This differential equation
can be very complex to solve based on the theory in question. As seen in Section 6.3
discussing the SMEFT and LEFT, there is usually theory specific effort in understanding
RGE solutions.

We now consider an EFT which, alongside coupling constants, contains Wilson coef-
ficients. When inserting effective operators in interactions, there are additional diver-
gences that cannot be absorbed through field renormalisation and require effective op-
erator renormalisation (Buchalla, Buras, & Lautenbacher, 1996). Those divergences can
be absorbed by renormalisation inside the bare Wilson coefficients:

C〈0〉
i = ZC

ijCj = Ci + (ZC
ij − δij)Cj (6.9)

Where the second separation has been made in the direction of the addition to the counter
term Lagrangian. By demanding the bare coefficients to be independent of scale, Wilson
coefficients also absorb a dependence on µ. The RG equation for the Wilson coefficients
of a specific theory is given by (Buras, 2020):

µ
dCi
dµ

=
1

(4π)2
γij(µ)Cj(µ) (6.10)

The matrix γij is called the anomalous dimension matrix and encodes the mixing of
dependence between the considered Wilson coefficients (or, alternatively, operators). The
entries of γ can contain the couplings of the underlying theory, and run with them. With
its specific form once again depending on the EFT in question, these are the RGEs used
to run the couplings away from the matching scale. Finally, the higher-dimensional terms
in the renormalised Lagrangian take the form:

LEFT = · · ·+
∞∑
d=5

∑
i

1

Λd−4
C(d)
i (µ)O(d)

i (µ) (6.11)
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The dependence of the operators on the sliding scale O(µ) is to be noted, as they can
contain further constants that run with scale such as gluon couplings.

6.3 Standard Model Effective Field Theories

6.3.1 SMEFT

It has already been stated that the modern viewpoint on the SM is to regard it as the
renormalisable sector of an EFT of a more fundamental theory. If we take the SM to
be valid up to an energy scale ΛBSM after which we expect new-physics contributions
to become relevant, we can introduce the larger theory of the SMEFT using (6.6) and
(6.11):

LSMEFT = LSM +
∞∑
d=5

∑
i

1

Λd−4
BSM

C(d)
i (µ)O(d)

i (µ) (6.12)

We can choose ΛBSM as a scale that allows us to integrate out MSSM effects and project
them onto the SMEFT, although the form of the effective operators O(d)

i in (6.12) remains
to be found. While this report does not discuss the model-independent constraining of
BSM contributions, the bottom-up approach introduced in Section 6.1 does play a part.
Although their dimensionality clearly is not restricted, the effective operators should obey
the same symmetries as the renormalisable theory. Hence, enumerating all the possible
terms that are Poincaré invariant and respect the gauge group SU(3)C ×SU(2)L ×U(1)Y
makes the bottom-up approach reproduce all of the possible effective operators of the
SMEFT. It is worth noting that the SMEFT is formulated prior to EWSB, which is why
the LEFT is introduced in Section 6.3.2.

Infinite enumeration of all O(d)
i is not possible, but results for specific dimensions d

are well known in the literature, in particular those for dimensions d = 5 and d = 6

which are used in this report. The first complete enumeration of d = 5, 6 operators for
the SMEFT is due to (Buchmüller & Wyler, 1986), in which all the 81 possible terms can
be found (up to Hermitian conjugation and combination of different generations). As an
example, we reproduce the single d = 5 Weinberg term (Weinberg, 1979) and the d = 6

four-left-lepton operator in the SM notation of Table 1:

O(5)fg
φφ`` = (εij ¯̀cfL φj)(ε

kl`gLφl) (6.13)

O(6)fghl
```` = (¯̀fLγµ`

g
L)(

¯̀h
Lγ

µ`lL) (6.14)

Nevertheless, the approach provided by (Buchmüller & Wyler, 1986) in the derivation of
the effective operators produces a redundant basis. In such a basis, some operators can
be re-expressed in terms of others when applying techniques such as field redefinitions
and integration by parts under the action integral, or the use of equations of motion for
the theory. The accepted non-redundant basis for the SMEFT, referred to as the Warsaw
basis, was derived first in (Iskrzynski, 2010) (in Polish) and later collected in (Grzad-
kowski, Iskrzyński, Misiak, & Rosiek, 2010). The total number of dimension 5 and 6
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terms in the Warsaw basis is 60, 21 less than the previously considered redundant basis.
Both the approach of a redundant and non-redundant basis has been introduced here
because they can be applicable to two types of matching, namely off-shell and on-shell
discussed in Section 6.4.

In the wider scope of this exploration on MSSM effects on beauty decays, it is worth
mentioning that effective operators for the SMEFT need not conserve neither baryon or
lepton number. These arise in the minimal SM as accidental symmetries deriving from
available global U(1) rotations and hence effective operators can violate these. In fact,
baryon or lepton number is violated for odd d (Helset & Kobach, 2020). We can either
justify suppression of such terms based on the BSM theory to be matched or directly
impose B and L conservation as additional global symmetries for the theory.

6.3.2 LEFT

While the SMEFT can be seen as a frontier of our understanding of the SM, the analysis
presented in this report targets energy ranges around the EWSB scale. The appropriate
EFT derived from the SM for this scale is the Low Energy EFT (LEFT), used in Section
7. When SSB reduces the gauge symmetry of the SM in the pattern SU(3)C × SU(2)L ×
U(1)L → SU(3)C ×U(1)EM, the physical Higgs field h (the remaining one after imposing
unitary gauge), W and Z bosons in particular develop mass alongside the matter fields
from the Yukawa interactions. In this broken phase, the LEFT is obtained by integrating
out h, W±, Z and the heaviest top quark t. Hence, the remaining fields beside the
photon and gluons (γ, g) are the 5 quarks (u, d, c, s, b) and the leptons (`, µ, τ, ν`, νµ, ντ ).
Therefore, the LEFT resembles a modern perspective take on the Fermi theory of weak
interactions (Fermi, 1934). Similarly to how effective operators are derived in the SMEFT
case, (Jenkins, Manohar, & Stoffer, 2018b) presents a derivation and a full enumeration of
all operators for the chosen dimensions d = 5, 6. These are not worth repeating explicitly
as the matching of MSSM effects onto LEFT operators involves only a certain subset
of these when specifying to beauty decays and are included in Section 7. The LEFT
Lagrangian is:

LLEFT = LQCD×QED +
∞∑
d=5

∑
i

1

Λd−4
EWSB

C(d)
i (µ)O(d)

i (µ) (6.15)

Matching MSSM effects to the LEFT can be done in either one of two ways, of dif-
fering asymptotic precision. We describe the first. As an extension to the minimal
SM, it is natural to calculate effective contributions from the MSSM at an energy scale
ΛBSM = ΛMSSM above the top quark mass, but below the mass of the lightest superpart-
ner. This requires calculating the Wilson coefficients for SMEFT effective operators, then
running these down to the EWSB scale µW ∼ O(mW ) using the SMEFT RG equations
of the form (6.10) (Jenkins, Manohar, & Trott, 2013, 2014; Alonso, Jenkins, Manohar,
& Trott, 2014). Then EWSB is performed by expanding around the Higgs vev, and
integrating out the h,W±, Z fields to obtain the LEFT result. Finally, the LEFT RG
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equations can be used to evolve the operators and coefficients down to the mass-scale of
the remaining heaviest field, the bottom quark.

While this approach performed in multiple steps is favourable to produce a better descrip-
tion of the low-energy physics (Isidori et al., 2023), it goes beyond the level of complexity
of this report. The second, easier approach is that to directly perform the matching of
MSSM effects onto the LEFT, integrating heavy fields from the MSSM and SM at and
above the top quark mass-scale simultaneously. Once the Wilson coefficients have been
calculated, they can be run down with the LEFT RG equations (Aebischer, Fael, Greub,
& Virto, 2017; Jenkins, Manohar, & Stoffer, 2018a) to the scale of the bottom quark
mass, once again.

6.3.3 Comment on Evanescent Operators

In reality, the operators in (6.15) have to be supplemented with one additional class of
effective operators, that of evanescent operators. These appear in dimensional regulari-
sation when we deform away from a four-dimensional spacetime integration to evaluate
divergent integrals.

While these are fundamental for the correct calculation of MS renormalised Wilson co-
efficients in the MSSM matching, the technicalities of the procedure go beyond the level
of this report.

6.4 Diagrammatic Matching

In this section, an outline for the method of computation of Wilson coefficients of MSSM
effects in the LEFT is given. The C(d)

i can be computed using Feynman diagrams. The
fundamental idea is to require an equivalence of the UV-complete and effective theories
at the chosen matching energy scale Λ. This can be achieved in two ways (Isidori et al.,
2023).

The first, known as off-shell matching, involves requiring the low-energy and UV-complete
quantum effective actions (not Wilsonian) to agree to the chosen order in Λ. The defini-
tion of irreducibility in 1PI to be taken is the light-line irreducibility (1LPI), where we
say that a diagram is irreducible if it remains connected when a light particle line is cut.
The contributing Feynman diagrams are then imposed to agree and the Wilson coeffi-
cients for a redundant basis of operators (not simplified using the equations of motion)
are solved for. This is the method used in Section 7.

The second, on-shell matching, requires that for any given scattering process of light
particles, the amplitudes computed using the effective or UV-complete theory agree. In
this case, a non-redundant basis can be used although all diagrams must be computed
for this approach.
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Schematically, the off-shell and on-shell matching conditions, in the case of matching
the MSSM to the LEFT, are respectively given by:

ΓLEFT[φL] = ΓMSSM[φL] 〈β|SLEFT|α〉 = 〈β|SMSSM|α〉 (6.16)

Where α, β are initial and final states of light fields φL only. Off-shell matching in
a redundant basis can be reduced to a non-redundant basis by subsequent use of the
equations of motion. Instead of guaranteeing full equivalence in both approaches, we can
introduce a further approximation, that of choosing the specific processes to match. Here,
we require matching 1LPI or full diagrams contributing to specific scattering processes
only. In this case, only a subset of effective operators is generated and the running given
by RGEs may gain imprecision. Once again, this is a further approximation used in
Section 7.
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7 Beauty Decays in the MSSM

In this section of this report, we present the phenomenologically-relevant framework
to study the effect of hypothetical MSSM fields on beauty decays, which were initially
presented in Section 2.2. Using the EFT formalism developed in Section 6, the commonly
used −∆B = ∆S = 1 effective Hamiltonian will be presented in 7.1. Part of the MSSM
formulated in Section 4, with its particles in the mass basis and their interactions of
Section 5, will be projected onto the LEFT by employing off-shell diagrammatic matching
up to non-leading (one-loop) order (NLO). We first calculate a simple leading (tree-level)
order (LO) SM contribution to a tree-level Wilson coefficient in Section 7.2.2 as an
introductory calculation for diagrammating matching. We then fully calculate a flavour-
changing one-loop process (again integrating out only heavy SM fields), to demonstrate
an NLO calculation of which the generalisation is applicable to MSSM loops. Following
the lines of the previous box-diagram calculation, the closely related chargino-squark box-
diagram will be presented, together with the Feynman diagram contribution that allows
the (very involved) computation of its Wilson coefficient contribution (in Section 7.2.4).
Finally, a gluino-squark contribution to a photon penguin diagram will be discussed (in
Section 7.2.5), to introduce part of the further complications to be considered when
calculating MSSM diagrams, and to conclude the NLO discussion.

7.1 B Decays Effective Hamiltonian

Based on the discussion in Section 2.2, we wish to perform the EFT matching of MSSM
effects onto the LEFT, as to explore its potential effects between the energy scales of
EWSB and the mass of the b quark, typically explored in contemporary particle collid-
ers. As discussed in Section 6.3.2, the light degrees of freedom that are part of the LEFT
are the 5 light active flavours of quarks (u, d, c, s, b), the six leptons (e, µ, τ, νe, νµ, ντ )

and the two gauge bosons (collecting the 8 gluons) (g, γ). These interact in the SM
broken phase of QCD × QED, or SU(3)C × U(1)EM. The analysis is chosen to involve
effective operators of dimension at most d = 6. We also choose the additional imposition
of baryon and lepton number conservation as a forced symmetry of operators, differently
from their accidental nature in the MSSM (excluding the enforcement of R-parity).

With this background, we are able to introduce the effective Hamiltonian for beauty
decays −∆B = ∆S = 1 (Ali, Lunghi, Greub, & Hiller, 2002a; Cho et al., 1996; Ewerth,
2004a):

HEFT = · · · − 4GF√
2

[∑
q=u,c

2∑
i=1

V CKM
qb V CKM∗

qs Cq
iO

q
i +

∑
q=u,c,t

10∑
i=3

V CKM
qb V CKM∗

qs Cq
iOi

]
(7.1)

Some common constants, such as CKM matrix V CKM elements, have been factorised
out from Wilson coefficients for convenience. The new constant appearing is the Fermi
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constant, defined as:

GF =

√
2g22

8m2
W

(7.2)

The effective operators that enter (7.1) are the following (where T ϑ are the generators
of SU(3)C, Gϑ

µν its field strength tensor and Fµν the field strength for the EM gauge
symmetry):

Oq
1 = (s̄LγµT

ϑqL)(q̄Lγ
µT ϑT abL) (7.3a)

Oq
2 = (s̄LγµqL)(q̄Lγ

µbL) (7.3b)

O3 = (s̄LγµbL)
∑
q

(q̄Lγ
µqL) (7.3c)

O4 = (s̄LγµT
ϑbL)

∑
q

(q̄Lγ
µT ϑqL) (7.3d)

O5 = (s̄Lγµ1γµ2γµ3bL)
∑
q

(q̄Lγ
µ1γµ2γµ3qL) (7.3e)

O6 = (s̄Lγµ1γµ2γµ3T
ϑbL)

∑
q

(q̄Lγ
µ1γµ2γµ3T ϑqL) (7.3f)

O7 =
e

g23
mb(s̄Lσ

µνbR)Fµν (where σµν =
1

2
[γµ, γν ]) (7.3g)

O8 =
1

g3
mb(s̄Lσ

µνT ϑbR)G
ϑ
µν (7.3h)

O9 =
e2

g23
(s̄LγµbL)(¯̀Lγ

µ`L) (7.3i)

O10 = −e
2

g23
(s̄LγµbL)(`Lγ

µiγ5`L) (7.3j)

Where in (7.3j), an additional factor of −i is included for matching conventions with
the literature. Of the above, the operators i = 1 and 2 are known as the current-
current operators, 3-6 as the QCD penguin operators, 7 and 8 the electromagnetic and
chromomagnetic dipoles, and finally 9 and 10 the semileptonic operators. With b mass
of dimension [mb] = 1, the operators in (7.3g),(7.3h) are of dimension d = 5. All other
operators are of dimension d = 6, as limited by the chosen matching. While the LEFT
contains many more operators, this subset is widely accepted to produce the Wilson
coefficients with the greatest contributions to b decay observables (Bobeth, Misiak, &
Urban, 2000; Lunghi, Masiero, Scimemi, & Silvestrini, 2000) and furthermore allows
closed matching of the subprocesses discussed in Section 7.2. A last comment to be
made is the inclusion of e and g3 coupling constants in some operators, needed to define
a loop expansion of the Wilson coefficients in terms of the strong coupling as discussed
in Section 7.5.
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7.2 MSSM-LEFT Diagrammatic Matching

The diagrammatic matching that we will perform on MSSM contributions to beauty de-
cays is of the off-shell type at the scale Λ = µW ∼ O(mW ). As discussed in Section 6.4,
this involves matching 1LPI MSSM diagrams to NLO to 1PI diagrams of the effective
theory at the chosen energy scale, and we will restrict to matching certain subprocesses
that participate to the decay B̄ → K̄(∗)`+`−. As discussed in (Bobeth, Buras, & Ewerth,
2005; Bobeth et al., 2000), these subprocesses are: b → s`−`+, b → sγ b → sZ, b → sqq̄

where q = u, c, and b→ sg.

It is to be noted that all the fields participating in the chosen subprocesses involve the
light fields of the LEFT only, especially b → sqq̄ excludes the possibility of a heavy top
quark process. Furthermore, a number of these subprocesses contribute to each other.
For example b→ sγ can be directly involved subprocess of b→ s`−`+, or b→ sg can be
involved in b→ sqq̄.

As previously mentioned, for the purposes of this report only a very limited exemplary
portion of (7.3) are examined. These specifically belong to the processes b → s`−`+,
b → sγ and b → sqq̄. For these processes, the discussion was loosely based on (Bobeth
et al., 2000; Ewerth, 2004a).

7.2.1 Wilson Coefficient Loop Expansion

For convenience in matching at separate loop orders, we define the loop expansion of the
Wilson coefficients by exploiting a rescaling of the SU(3)C QCD constant including its
RG dependence:

αs(µ) =
g23(µ)

4π
(7.4)

The loop expansion at any scale µ is then given by (Bobeth et al., 2005):

Cq
i (µ) = Cq(0)

i (µ) +
αs(µ)

4π
Cq(1)
i (µ) +O(αs(µ)

2) (7.5)

In this expansion, the coefficient Cq(n)
i represents from matching the n-loop MSSM con-

tributions. We stop at the order O(αs) as we consider only NLO effects. This can be
defined because each additional virtual gluon line closing a new loop contributing to the
process will have to produce two coupling constants from its two internal vertices. The
coefficients in (7.3) are normalised in g3 such that (7.5) always holds.

7.2.2 A Tree Contribution to b→ sqq̄

As a model LO contribution, the matching of the decay b→ suū mediated by a single W
boson is considered. This decay appears as part of the b→ sqq̄ at tree level and involves
only SM fields and so is a simple and instructive example.
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Figure 1: Tree contribution via W boson exchange contributing to b → suū subprocess
matching

First, we note that the scattering involves four light (compared to the matching scale µW )
quark fields as initial and final particles. Therefore we expect the operators Ou

1 ,Ou
2 , . . .

to O6 to be generated by the UV theory matching. To simplify the discussion, we antic-
ipate that only the Ou

2 operator is in fact generated (Bobeth et al., 2000). Secondly, we
note that this decay is a tree level decay, therefore the contribution that it generates will
only be included in Cu(0)

2 . With these observations, Figure 1 shows the 1LPI diagram and
its corresponding LEFT vertex. In this section, all references to the Wilson coefficient
are supposed to be intended as Cu

2 = Cu
2 (µW ).

First we calculate the LEFT contribution. Using Ou
2 = (s̄LγµuL)(ūLγ

µbL) and (7.1),
the interaction part of the effective Hamiltonian and the Feynman rules give:

V LEFT
αδετ (p1, p2, p3, p4) =

(
i
4GF√

2
V CKM
ub V CKM∗

us Cu
2

)
×
(
−i(γ · p2 +ms)

p22 +m2
s

)
αβ

(γµPL)βγ

(
−i(−γ · p4 +mu)

p24 +m2
u

)
γδ

×
(
−i(γ · p3 +mu)

p23 +m2
u

)
ερ

(γµPL)ρσ

(
−i(−γ · p1 +mb)

p21 +m2
b

)
στ

(7.6)

Where the indices α, β, γ, δ, ε, ρ, σ, τ are Dirac spinor indices which are summed over (can
be summed over horizontally without a metric). Amputating the external propagators
(and renaming letters), we remain with the contribution of the effective vertex only:

V LEFT
αβγδ |amp =

(
i
4GF√

2
V CKM
ub V CKM∗

us Cu
2

)
(γµPL)αβ(γ

µPL)γδ (7.7)

Now we must compute the equivalent diagram in the UV complete theory. We state two
assumptions (Buras, 2020) that we make: all external momenta are neglected and all
masses from light particles are also neglected (although this last assumption will not be
required in this particular example). Using the Feynman rules on Figure 7.9, along with
the quark-W vertex rule given in Section 5.2, we obtain the following contribution:

V MSSM
αδετ (p1, p2, p3, p4) =

(
ie√
2sW

V CKM∗
us

)(
− ie√

2sW
V CKM
ub

)(
iηµν

(p1 + p3)2 +m2
W

)

54



×
(
−i(γ · p2 +ms)

p22 +m2
s

)
αβ

(γµPL)βγ

(
−i(−γ · p4 +mu)

p24 +m2
u

)
γδ

×
(
−i(γ · p3 +mu)

p23 +m2
u

)
ερ

(γνPL)ρσ

(
−i(−γ · p1 +mb)

p21 +m2
b

)
στ

(7.8)

Amputating the external propagators, enforcing the assumption of vanishing external
momenta and using the definition of the Fermi constant GF in (7.2), we obtain:

V MSSM
αβγδ |amp =

(
ie√
2sW

)2

V CKM
ub V CKM∗

us

(
iηµν
m2

W

)
(γµPL)αβ(γ

νPL)γδ

= −ig
2
2

2

1

m2
W

V CKM
ub V CKM∗

us (γµPL)αβ(γµPL)γδ

= −i4GF√
2
V CKM
ub V CKM∗

us (γµPL)αβ(γ
µPL)γδ (7.9)

By comparing the two expressions (7.7) and (7.9), we come to the following condition:

−1 = Cu
2 = Cu(0) +O(αs) (7.10)

By neglecting the charged Higgs contribution, justified for small tanβ (Ewerth, 2004a),
we deduce that this is the only tree level contribution (see Section 5.2) and so the up-
sector Wilson coefficient of the second current-current operator is:

Cu(0)
2 = −1 (7.11)

This corresponds with the value found in the literature (Bobeth et al., 2000; Ewerth,
2004a) (noting the slight difference that the authors calculate Cc(0)

2 and state its equality
with Cu(0)

2 ).

7.2.3 Example of Loop Contribution to b→ s`−`+

The second diagram that we consider for NLO matching is the ”box” diagram and is
presented in Figure 2. These types of diagrams contribute to b → s`−`+ decays and at
1LPI take part in generating the C9 and C10 Wilson coefficients simultaneously, making
it a good example to consider. As in Section 7.2.2, the change of quark flavour is due to
W boson interactions but these occur within the loop and so yield a more complicated
matching. Observing the loop, we can see that it is composed of two bosonic and two
fermionic fields. Hence, we expect the contribution from the diagram to converge in the
naive order of ∼ 1

k2
, where k is the loop momenta. Therefore, it suffices that in the

following we do not prepare the integrals for dimensional regularisation.

We begin by calculating the Feynman diagram contribution from the full theory. In
the following, we note that the +iε terms are omitted, but that the Feynman prescrip-
tion is nevertheless intended to calculate propagator integrals. This analysis is based on
the box diagram analysis in (Buras, 2020), albeit for a different process and with an even
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Figure 2: One-loop level box diagram contributing to the b→ s`+`− process matching

more explicit presentation.

The diagram in Figure 2 gives the contribution (highlighting again the implied +iε terms
for loop propagators):

V MSSM
αια′ι′ (p1, p2, p3, p4)

=

∫
d̄4k

[(
−i(γ · p2 +ms)

p22 +m2
s

)
αβ

(
−i(γ · (k + p2 + p3) +mt)

(k + p2 + p3)2 +m2
t

)
γδ

(
−i(−γ · p1 +mb)

p21 +m2
b

)
ει

×
(
−i(γ · p4 +m`)

p24 +m2
`

)
α′β′

(
−iγ · k
k2

)
γ′δ′

(
−i(−γ · p3 +m`)

p23 +m2
`

)
ε′ι′

×
(

iηµν
(k + p1 + p2 + p3)2 +m2

W

)(
iηρσ

(k + p3)2 +m2
W

)
×
(
− ie√

2sW
V CKM
tb (γνPL)δε

)(
ie√
2sW

V CKM∗
ts (γρPL)βγ

)
×
(
− ie√

2sW
V CKM
tb (γσPL)δ′ε′

)(
ie√
2sW

V CKM∗
ts (γµPL)β′γ′

)]
(7.12)

As previously discussed, we assume that the external momenta for the process can be
neglected and we amputate the external propagators of the diagram to give:

V MSSM
βεβ′ε′ |amp

=

(
ie√
2sW

)4

V CKM
tb V CKM∗

ts (−i)2i2(γµPL)δε(γµPL)β′γ′(γνPL)βγ(γνPL)δ′ε′

×
∫
d̄4k

(γ · k +mt)γδ(γ · k)γ′δ′

(k2 +m2
t )k

2(k2 +m2
W )2

(7.13)

=

(
− e2

2s2W

)2

V CKM
tb V CKM∗

ts (−i)2i2(γµPL)δε(γµPL)β′γ′(γνPL)βγ(γνPL)δ′ε′

×
∫
d̄4k

((γρ)γδkρ +mtδγδ)(γ
σ)γ′δ′kσ

(k2 +m2
t )k

2(k2 +m2
W )2

(7.14)

=
4GF√

2
m2

W

(
e2

2s2W

)
V CKM
tb V CKM∗

ts (γµPL)δε(γµPL)β′γ′(γνPL)βγ(γνPL)δ′ε′(γ
ρ)γδ(γ

σ)γ′δ′
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×
∫
d̄4k

kρkσ
(k2 +m2

t )k
2(k2 +m2

W )2
(7.15)

To proceed, we must compute the value of the integral:

Iρσ =

∫
d̄4k

kρkσ
(k2 +m2

t )k
2(k2 +m2

W )2
(7.16)

This can be done using a Passarino-Veltman type reduction argument (Passarino & Velt-
man, 1979): since we have neglected the external momenta pi, the only tensor structure
that we have available for the integral to obtain tensor indices is the Minkowski metric.
Therefore we deduce that:

Iρσ = ηρσI (7.17)

Where I is now a scalar to be calculated. By contracting both sides of (7.17), we obtain
a scalar integral which can be fully calculated using Wick rotation to a Euclidean space.

ηρσηρσI = 4I = ηρσIρσ =

∫
d̄4k

k2

(k2 +m2
t )k

2(k2 +m2
W )2

=

∫
d̄4k

1

(k2 +m2
t )(k

2 +m2
W )2

(7.18)

Firstly we note that, due to the contraction, the factor of k2 producing an IR divergence
in the denominator of the integral has disappeared, making this integral fully convergent
upon Wick rotation. Secondly, this particular integral presents some complexity but is a
well-known and common integral in the literature: it is part of the Inami-Lim family of
weak-process integrals and has both been calculated explicitly in (Inami & Lim, 1981)
and (’t Hooft & Veltman, 1979). Performing the contraction and using the result found
in the literature:

=⇒ ηρσ
4

∫
d̄4k

1

(k2 +m2
t )(k

2 +m2
W )2

= − iηρσ
64π2m2

W

(
4B0

(
m2

t

m2
W

)
+ 1

)
(7.19)

Where B0(x) is part of the Inami-Lim functions and is defined explicitly as:

B0(x) =
1

4(1− x)
+

x

4(1− x)2
log x (7.20)

Now, we can return to computation of the full contribution of equation (7.15). Using
the properties of the Gamma matrices, we can rearrange to the following contribution
for the amputated diagram:

V MSSM
αβα′β′ |amp

=− i
4GF√

2
m2

W

(
e2

2s2W

)
V CKM
tb V CKM∗

ts

ηρσ
64π2m2

W

×
(
4B0

(
m2

t

m2
W

)
+ 1

)
(γνγργµPL)αβ(γµγ

σγνPL)α′β′
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=− i
4GF√

2
V CKM
tb V CKM∗

ts

e2

s2W

1

16π2
1

4

(
4B0

(
m2

t

m2
W

)
+ 1

)
(γµPL)αβ(γ

µ(1 + iγ5))α′β′

(7.21)

This is the final result that will be used for LEFT matching. Now considering the
diagrams in 2 with the effective vertices O9 and O10, we obtain the contribution:

V LEFT
αδα′δ (p1, p2, p3, p4)

=

(
i
4GF√

2
V CKM
tb V CKM∗

ts Ct
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g23

(
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p22 +m2
s
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−i(−γ · p1 +mb)

p21 +m2
b

)
γδ

×
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p23 +m2
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(
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`

)
γ′δ′
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(
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V CKM
tb V CKM∗
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(
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p22 +m2
s

)
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(γµPL)βγ

(
−i(−γ · p1 +mb)

p21 +m2
b

)
γδ

×
(
−i(−γ · p3 +m`)

p23 +m2
`

)
α′β′

(γµ(−iγ5))β′γ′

(
−i(γ · p4 +m`)

p24 +m2
`

)
γ′δ′

(7.22)

We can proceed to amputate the external propagators to obtain:

V LEFT
αβα′β′ |amp =

(
i
4GF√

2
V CKM
tb V CKM∗

ts Ct
9

)
e2

g23
(γµPL)αβ(γ

µ)α′β′

+

(
i
4GF√

2
V CKM
tb V CKM∗

ts Ct
10

)
e2

g23
(γµPL)αβ(γ

µ(−iγ5))α′β′ (7.23)

In the above, the separation with the γ5 comes from expansion of the left-handed pro-
jection operator. Now, we can finally compare the full theory and LEFT expressions
to calculate the contribution of the W boson box diagram to the Wilson coefficients at
NLO:

e2

g23
Ct
9 =

e2

g23
Ct(0)
9 +

e2

16π2
Ct(1)
9 + · · · = − e2

16π2
1

s2W

1

4

(
4B0

(
m2

t

m2
W

)
+ 1

)
(7.24)

e2

g23
Ct
10 =

e2

g23
Ct(0)
10 +

e2

16π2
Ct(1)
10 + · · · = e2

16π2
1

s2W

1

4

(
4B0

(
m2

t

m2
W

)
+ 1

)
(7.25)

We note that the equality between left and right sides is not a strict equality, in the sense
that these are only partial contributions to the C9,10 coefficients coming from the specific
diagram. A further simplification can be made. Due to the Glashow-Iliopoulos-Maiani
(GIM) mechanism (Glashow et al., 1970), any constant term in these contributions will
disappear by the unitarity of the CKM matrix used in the definition of the effective
Hamiltonian (7.1).2 Using this, we can finally conclude with a one loop expression for
the partial contribution to the Wilson coefficients:

Ct(1)
9 = − 1

s2W
B0

(
m2

t

m2
W

)
(7.26)

2The author would like to thank Prof. Andrzej J. Buras (of the Technical University of Munich) for
his correspondence and help pertaining to such results.
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Figure 3: Chargino box diagram depicting an MSSM contribution to b→ s`+`−

Ct(1)
9 =

1

s2W
B0

(
m2

t

m2
W

)
(7.27)

This result is in fact in agreement with the literature (Bobeth et al., 2000).

7.2.4 An MSSM Contribution to b→ s`−`+

Now that the matching of a box diagram has been presented, this method can be ap-
plied in a fundamentally identical manner to computing box diagrams composed of the
MSSM fields. As depicted in Diagram 2, it is in fact the sum of these 1LPI diagrams
that determines the full expressions for the Wilson coefficients.

The chosen diagram is chargino-squark-sneutrino diagram taking part in the b→ s`−`+

subprocess, as seen in Diagram 3. While evaluating the full contribution is of too great
a complexity (from the integrals, superpartner mass-diagonalisation matrices and decou-
pled gluinos assumption (Bobeth et al., 2005)), we derive the expression for the Feynman
diagram and state the resulting Wilson coefficient contribution from the literature. An
observation to be made is that, as the previous W boson box, the naive degree of diver-
gence of the integral is ∼ 1

k2
, coming from the virtual two fermion and two scalar lines,

hence we expect the integral to converge when Wick rotated to Euclidean space and not
require renormalisation. Using the Feynman rules, the MSSM vertices in Section 5 and
the explicit contributions in (Rosiek, 1990)3:

Vαβα′β′ab(p1, p2, p3, p4)

=

∫
d̄4k
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p24 +m2
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x
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x
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(
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p21 +m2
b

)
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×
(
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s

)
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(
−i(−γ · (k + p3) +mχ̃±

x
)

(k + p3)2 +m2
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)
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(
−i

(k + p2 + p3)2 +m2
t̃

)(
−i

k2 +m2
ν̃`

)
3The ZX and Y X

(Y ) matrices in this diagram are part of the notation in (Rosiek, 1990) which we will
not reintroduce to avoid unnecessary complexity.
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(7.28)

By evaluating the expression and equating the contribution to the previously-derived
LEFT diagram expression (7.23) using the O9,10 operators, the Wilson coefficient contri-
butions found in the literature (Bobeth et al., 2005), with the functions defined within
it, are:

δCt(1)
9 = − 1

s2W
[B`¯̀

9 ]
(0)

X̃
(7.29)

δCt(1)
10 =

1

s2W
[B`¯̀

10]
(0)

X̃
(7.30)

The δC notation has been used this time to stress that these are only a parts of the full
Wilson coefficients. This procedure can be repeated for all Feynman box diagrams of the
MSSM theory to produce the full NLO contribution to the Cq(0)

9,10 and Cq(1)
9,10 .

7.2.5 A Further MSSM Contributions in b→ sγ

To conclude with the discussion on matching, we very briefly present photon ”penguin”
diagrams. These constitute one-loop flavour changing interactions that emit a photon
from the internal virtual loop and can be regarded as the elementary beauty-to-strange
flavour changing neutral current. These contribute to b → s`−`+ decays indirectly,
producing a dilepton (one lepton and one anti-lepton) from the outgoing photon line.
Diagram 5 shows how the sum of possible photon penguin diagrams in the MSSM con-
tribute to the C2,7 Wilson coefficients of the O2,7 operators in (7.3b) and (7.3g).

An exemplary photon penguin MSSM diagram is the virtual squark-gluino mediated
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Figure 5: Effective O2 and O7 operators that participate in the photon penguin matching

diagram, in 4. As in Section 7.2.4, we only limit to giving the Feynman diagram contri-
bution using the Feynman rules and stating that the LEFT matching can be done in a
very similar fashion to that in (7.23) with the O2,7 vertices. This specific diagram has
been chosen for three reasons. The first is the peculiarity of including a massless particle
on one of the external lines. This breaks the possibility of neglecting external momenta,
and hence matching has to be done keeping both momenta and external masses (Buras,
2020). The second is the inclusion of a top squark, which in many analyses can be taken
to be light compared to the other squark flavours (Lunghi et al., 2000). The third is the
inclusion of the gluino line, which on the contrary can be taken to be one of the heaviest
particles in the decoupled gluino approximation (Ewerth, 2004a).

From the Feynman diagram 4, the derived expression is:

Vαβµab(p1, p2, p3, p4)

=

∫
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(7.31)

There is one final observation we can make regards the O2 operator as in Diagram 5.
This is part of a divergent loop, and so plays a part in the complication of renormalising
Wilson coefficients discussed in the literature.
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8 Implications, Discussion and Conclusion

In this report, we have begun with the description of supersymmetry as a justified and
important hypothetical symmetry of nature and have examined one of its possible re-
alisations in the theory of the SM, through the Minimally Supersymmetric Standard
Model. We have discussed its less-trivial components, such as R-parity symmetry or the
emergence of a scalar potential, and developed the technology required to be able to
perform calculations on it, by exploiting the superspace and superfield formalism that
arises naturally from the Super-Poincaré symmetry.

In order to understand the MSSM’s effect and phenomenological interplay in the context
of beauty decays, processes that are of fundamental importance for the contemporary
probing of new physics, we have developed the framework of effective field theory and
explained how the SM can be seen as the remnant, renormalisable part of a SMEFT
incorporating BSM effects. By discussing renormalisation group evolution, we have pre-
sented the LEFT as the relevant EFT for processes occurring under the EWSB scale.
Within the LEFT, we have demonstrated how higher-scale physics, such as that arising
from virtual loop MSSM interactions, can be matched to lower-energy processes through
the calculation of example Wilson coefficients at LO and NLO. In summary, we have
re-traced the developed of a robust and phenomenologically relevant framework in which
the MSSM can be both challenged by indirect experimental observations and can benefit
from a constraining of its unobserved parameters.

To conclude this report, we would like to include a brief discussion on two cases in
which LEFT analysis of MSSM effects has been successfully applied in the literature4,
to provide a starting point for potential future work and avenues for exploration.

The first application of the framework developed in this report is the use of Wilson
coefficients to constrain squark flavour-violating parameters, as presented in (Behring et
al., 2012). As has been seen, virtual squark loops participate to flavour changing neutral
currents in the MSSM. Taking this one step further, by assuming that the squark mass
matrices that give rise to the mixing have small off-diagonal entries, we can more directly
tie Wilson coefficients to single parameters appearing in this non-diagonal structure. In
order to do this, we use the mass insertion approximation (MIA) (Hall et al., 1986; Gab-
biani & Masiero, 1989) for which the up squark matrix, for example, takes the following
form (as seen in the publication):

M2
ũ =

(
(M2

ũ)LL (M2
ũ)LR

(M2
ũ)

†
LR (M2

ũ)RR

)
, (M2

ũ)LR =

0 0 0

0 0 (∆u
23)LR

0 0 (∆u
33)LR

 (8.1)

4The author thanks Prof. Gudrun Hiller (of the Technical University of Dortmund) for the helpful
insight and elucidation relating to the cases discussed in this section.

62



We also define the following MIA parameter:

(δXij )PQ =
(∆X

ij )PQ√
(m2

X̃i
)PP (m2

X̃j
)QQ

(8.2)

In this approximation, we can employ a Taylor expansion and the GIM mechanism to
extract relevant MIA parameters from Wilson coefficient contributions. For example,
the chargino loop contribution (which exchanges virtual squarks) to C7 in the light stop
approximation can be approximated to:

Cχ̃±

7 =
V CKM∗
cs

V CKM∗
ts

λt
g2

m2
W

m2
q̃

(δu23)LRF (8.3)

Where λt and F are defined in the appendix of (Behring et al., 2012). The publication
argues, for example, that the parameter (δd23)LR can in this way be constrained from C7
observed in B̄ → Xsγ decays, or that (δu23)LR can be constrained mostly by measuring C9
and C10 coefficients. This has phenomenological implications on the branching fraction
of the B̄s → µ+µ− process, which can be pursued experimentally.

A second interesting example, pertaining less to constraining MSSM parameters and
more on a higher-level view of the theory, can be found in discussions on lepton flavour
universality. We have seen that current hints of anomalies in the RK and RK∗ branch-
ing fraction ratios have suggested a violation of LFU, and effort has been directed in
suggesting new BSM physics responsible for this. In this landscape, leptoquark models
(containing particles with both lepton and baryon numbers) have been some of the most
promising (Aaij et al., 2022), but a potential connection can also be made to extensions
of the MSSM. In fact, as discussed in (Hiller & Schmaltz, 2014), it is possible for scalar
leptoquark effects to be equivalently given by superpartners of left-handed quark dou-
blets interacting in such a way to generate R-parity violating terms (as in Section 4.2.3).
An EFT analysis of this hypothetical scenario shows that this would induce effects in the
C′
9 and C′

10 Wilson coefficients for the flipped chirality operators5:

O′
9 = (s̄γµPRb)(¯̀γ

µ`), O′
10 = (s̄γµPRb)(¯̀γ

µγ5`) (8.4)

While this is disfavoured in the way that this effect affects the RK , RK∗ ratios, it can be
used to constrain R-parity violating couplings while allowing experimentally interesting
discussions on extending the MSSM into R-parity violating models. One might speculate
that combining this with future Hyper-Kamiokande measurements on proton decay, for
example, might allow us to understand the real possibility for extensions to the MSSM
arising from R-parity violation.

These two cases represent only a fraction of the efforts in understanding supersymmetric
extensions of the SM, but provide important examples of theory and observation working

5These are introduced in a more conventional notation than that adopted in the rest of this report.
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together to advance our knowledge of the fundamental interactions. One can hope that,
through theoretical advancements and valuable phenomenological analyses like these, a
more complete picture of our theories of reality will become more and more clear in time.
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A Derivation of MSSM Higgs Vevs

The vevs of the two Higgs doublets in the MSSM are obtained by minimising the Higgs
potential, given by the self-interactions of the two Higgs doublets. The terms that expand
to give the Higgs potential are the F terms in the µ self-interaction, the D terms from the
Higgs kinetic term and the soft-breaking terms in Lsoft. Collecting these contributions
as given in (Kuroda, 1999):

−VH1,H2 =− µ(H†
1H1 +H†

2H2)

− 1

8
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†
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To minimise, we proceed with complex differentiation (which should be intended by
components):
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By picking H1 and H2 to be explicitly orthogonal, the final (H†
2H1)H2 and (H†

1H2)H1

mixed terms disappear and each condition fixes the single free entry in each doublet as
a constant. We can pick those constants to simply be 1√

2
v1 and 1√

2
v2 such that the vevs

are given by:

H1 =
1√
2

(
v1
0

)
H2 =

1√
2

(
0

v2

)
(A.5)

B Example Derivation of MSSM Mass Matrices

All of the mass matrices have been re-derived from the relevant terms coming from the
fully expanded MSSM Lagrangian. To show how they are derived, we consider two
different examples: that of the chargino mass matrix and that of the up-type squark
matrix. All MSSM Lagrangian terms used in this section are found in (Kuroda, 1999)
or are extensions of the terms found therein when adding quark and lepton generations
(which the original publication does not consider).
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B.1 Charginos

The chargino mass matrix calculation is useful because it combines mass contributions
coming from the Higgsino fields, gauginos (both in the flavour and mass bases) and
Higgsino-gaugino interactions. The relevant terms that generate chargino mass terms
are the Higgs µ term, the soft-breaking term and the Kähler potential Higgs kinetic
terms (for both H̃1 and H̃2). The relevant parts are:

LH1·H2 = −µ
[
H̃−

1 H̃
+
2 + h.c. + . . . ] + . . . (B.1)

Lsoft = −1

2
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2mW

[
cosβH̃−
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+ + sinβH̃+

2 W̃
− + h.c.

]
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First, we transform the electroweak gauginos using W̃± = 1√
2
(W̃ 1 ∓ iW̃ 2) (and that the

two are complex conjugates of each other), so that we can re-express the contraction in
the soft breaking term as:

W̃ iW̃ i = W̃ 1W̃ 1 + W̃ 2W̃ 2 + W̃ 3W̃ 3 = W̃ 3W̃ 3 + 2W̃+W̃− (B.4)

Now we collect the terms for each pair of fields, keeping in mind that there is also a
hermitian conjugation part:

W̃+, W̃− : −mW̃

W̃+, H̃−
1 : −

√
2mW cosβ

H̃+
2 , W̃

− : −
√
2mW sinβ

H̃−
1 , H̃

+
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In matrix form (and adding the hermitian conjugation contribution), we retrieve the
result in Section 4.3 from:

−
(
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2

)( mW̃

√
2mW cosβ√
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)
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B.2 Up-Squarks

The derivation for up-type squarks, especially introducing multiple generations, is more
complicated. The first mass contribution we consider is that from the soft-breaking term
(both the additional explicit mass terms and the trilinear mixing angle terms):

Lsoft = · · · − [M2
q̃ ]fg q̃

†f
L q̃

g
L − [M2

ũ ]fgũ
c∗f
R ũgR + [Aũ]fg(H̃2 · q̃fL)ũ

cg
R + . . . (B.7)

In the above, summation is assumed. Rotating into super-CKM basis, the direct mass
terms yield diagonal (with respect to ”left-handedness” and ”right-handedness” of squarks)
matrix contributions of (M2

ũ)LL for left squarks and (M2
ũ)RR for right squarks (the ma-

trices are in flavour space). To find the contribution from the mixing angle, we now use
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the vev for the second Higgs doublet H2 and the result:

(H̃2 · q̃fL) =
1√
2

(
0 v2

)( 0 1

−1 0

)(
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)
= − v2√

2
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In super-CKM basis, combining with ũcgR this gives a L-R mixing (off-diagonal in the
mass matrix) contribution proportional to (M2

ũ)LR.

To work out all remaining contributions we must turn to the scalar potential gener-
ated by integrating out D and F fields, as in (4.22). Expanding fully, the part of the
scalar potential contributing to up squark masses involves the terms:
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2
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Following the prescription to calculate the terms in the scalar potential, we proceed with
differentiating:
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2
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Squaring the contributions as in |F |2 and rotating into super-CKM basis, we obtain left-
/right diagonal contributions of exactly the M2

u minimal mass matrix squared. Repeating
the procedure by differentiating with the Higgs terms (of which only H0

1 and H0
2 give

nonzero contributions), we obtain the following contribution:

|F |2 ∝ · · · − µ cotβ[yu]fgũ
f
Lũ

cg
R + h.c. + . . . (B.12)

Rotating into super-CKM basis, the Yukawa coupling matrix becomes the Mu matrix.
We now move to using the D term contributions to produce more mass terms. We start
with left handed up squarks:
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ũf∗L ũ
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Combined, these give a contribution in flavour space proportional to the diagonal matrix:

∝ 1

6
(4m2
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Repeating the calculation for the (SU(2)L neutral) right up squarks:
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Finally, collecting all of the derived terms into a single matrix combining flavour space
and left-right handedness, we obtain the matrix present in Section 4.3.2:
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