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Abstract

Black hole information loss paradox has been a famous open question in theoretical physics for

a long time. A breakthrough based on holographic entanglement entropy, called the ”island

rule”, was proposed in 2019, which recovers the Page curve by considering the entanglement

between the black hole and its radiation.

In this dissertation, we introduce the idea of holographic entanglement entropy through some

simple examples in AdS3/CFT2. Then we review some important milestones of information

loss, including Page curve and black hole complementarity, which leads to the so-called ”central

dogma”. In the last part, we will see how holographic entanglement entropy can be applied to

the information loss problem, and how replica wormhole supports the island rule.
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Introduction

The origin of the black hole information paradox is back to 1973 when J. A. Wheeler [29]

first used the term – ”No-hair” to illustrate a property of classical black holes, which states

that a stationary black hole has no property other than a finite number of parameters. This

statement implies all the information of the matters forming and infalling a classical black hole

will completely lost. There was no problem until 1975 when Stephen Hawking, to support the

idea of black hole thermodynamics [6], introduced the quantum field theory to prove a black

hole can really radiate as a thermal object [21]. The radiation that the black hole releases

will finally result in the evaporation of the black hole. According to his calculation [22], the

black hole will break quantum information. More precisely, no matter what the ingoing state

is (pure state or mixed state), the outgoing state is a mixed state. This would certainly break

the unitary of the time evolution which is an axiom of quantum mechanics.

Since the original paradox appeared, there have been many variants proposed. A famous

one is the ”black hole cloning” which break the ”No-cloning Theorem”. To solve this problem,

Susskind et al. ([42], [41]) claim that the information does not only cross through the horizon

but is also reflected on the horizon, and more importantly no-one can see the information and its

copy at the same time. They argued that quantum mechanics can only be described locally and

individually, and this conjecture is historically called the Black Hole Complementarity (BHC).

However, a more tricky problem called ”Firewall Paradox” (or ”Almheiri-Marolf-Polchinski-

Sully (AMPS) Paradox”) [5] was mentioned 10 years later, which found that the paradox will
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still be even for a single infalling observer. As well as the discussion of the Firewall paradox is

increasing ([27], [44], [34], [35]), the information paradox becomes a hot point again.

In 1993, Don N. Page [33] assumed the unitary of black hole evaporation, and produced

the so-called Page curve. This curve indicates a different result from Hawking’s calculation, in

which the entropy of the Hawking radiation returns to zero finally and hence the information

is preserved. Page curve shows us a possible way to solve the information paradox. If one can

obtain the Page curve without the assumption of the unitary, the information paradox can be

solved.

During the end of the twentieth century, there was another story. The study of string theory

led Juan Maldacena [28] to discover the relation between the gauge theory and the quantum

gravity theory, which we call the AdS/CFT duality now. Maldacena’s remarkable discovery

has inspired many theorists to find more evidence to support this idea. In 2006, Shinsei Ryu

and Tadashi Takayanagi [40] proposed a formula to calculate the entanglement entropy in a

gravitational description, which is called the Holographic Entanglement Entropy (HEE). This

formula has later proven to be valid ([26], [15], [32]) and has some improved versions ([24], [18],

[17]). As well as holographic entanglement entropy strongly supports AdS/CFT duality, some

people find its potential application in information paradox.

A breakthrough appeared in 2019 when Geoffrey Penington [37] stated, by considering the

entanglement between the black hole and its radiation, that the contribution to the entropy

of the Hawking radiation includes not only the region outside the black hole but also a region

inside. This is the so-called ”island rule” which explains why the fine-grained entropy of the

radiation will return to zero finally and hence the information is preserved.

The main points of this dissertation will focus on introducing holographic entanglement

entropy, and how this idea will be helpful to the black hole information loss paradox.
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Chapter 1

Preliminary

In this chapter, we will briefly review some background required for the discussion of the HEE

and black hole information paradox. This chapter mainly contains three parts. The first part

is about black hole thermodynamics. We can find more details about that in [29] or [12]. In the

second part, we review some ideas from quantum information. A famous textbook by Nielsen

and Chuang in quantum information and quantum computing [31] could be a good reference.

The last and the most important part is about AdS/CFT correspondence. There are many

useful materials, such as [30], [14] and [25].

1.1 Black Holes

Soon after Albert Einstein discovered his famous equation of general relativity in 1915, Karl

Schwarzschild found the first (static vacuum) solution of Einstein’s field equation, with a hyper-

surface dividing the spacetime into two causally-independent regions. This hyper-surface is

called the event horizon, of which the internal area is called the black hole. The black hole

could be the most remarkable creatures in general relativity and has become one of the most

popular research objects in theoretical physics.
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1.1.1 Kerr-Newman black hole

A Kerr-Newman (KN) black hole is a charged, rotating vacuum solution of the Einstein-Maxwell

equations. The metric can be given in Boyer-Lindquist coordinates

ds2 = −∆− a2 sin2 θ

Σ
dt2−2a

sin2 θ(r2 + a2 −∆)

Σ
dtdϕ+

(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θdϕ2+

Σ

∆
dr2+Σdθ2

(1.1)

where

Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2 +Q2, a =
J

M
, (1.2)

As shown above, we see there are actually only three parameters to determine the metric – the

mass M , the angular momentum J and the electric charge Q 1 .

No-hair Theorem 2

No-hair theorem states that all stationary solutions of the Einstein-Maxwell equations can be

determined by only three independent parameters – mass, angular momentum and electric

charge, and all other properties are uniquely determined by these three parameters. One exam-

ple we have already seen is the KN solution (1.1). This theorem implies that the information

of the matter forming or infalling into a black hole will completely disappear, which could be

the beginning of the black hole information loss problem. However, it is worth noting that this

is a classical result.

1.1.2 Black hole thermodynamics

In 1973, Bardeen, Carter and Hawking [6] found the four laws of black hole mechanics, purely

derived from the classical Einstein’s field equations:

1Sometime there can be four or more finite numbers of parameters (including the magnetic charge), but we
only consider three here for simplicity.

2Precisely speaking, it is not a theorem but a conjecture since there is still no rigorous mathematical proof
for a general case.

4



• The Zeroth Law: Assuming the dominant energy condition, the surface gravity κ is

constant over the event horizon of a stationary black hole.

• The First Law: The mass M , the area of the event horizon A, the angular momentum

J and the electric charge Q satisfy

δM =
κ

8π
δA+ ΩHδJ + ΦHδQ. (1.3)

where κ is the surface gravity, ΩH is the angular velocity and ΦH is the electric potential.

• The Second Law: Assuming the weak energy condition and cosmic censorship, the area

of the event horizon A never decreases:

∆A ≥ 0 (1.4)

• The Third Law: It is impossible to reduce κ to zero by a finite sequence of operations.

We may compere the laws of black hole mechanics with the ordinary laws of thermodynamics

[20]:

• The Zeroth Law: The Temperature T is constant throughout a system in thermal

equilibrium.

• The First Law: The internal energy E, the entropy S, the angular momentum J and

the total electric charge Q satisfy

δE = TδS + ΩδJ + ΦδQ (1.5)

where T is the temperature, Ω is the angular velocity and Φ is electric potential.
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• The Second Law: In any physical process, the entropy cannot decrease

∆S ≥ 0 (1.6)

• The Third Law: It is impossible to reduce T to zero by a finite sequence of operations.

We can see the amazing similarity between the laws of black hole dynamics and ordinary

thermodynamics, which implies somehow a black hole may behave like a thermal object. It

should not be difficult to find the following corresponding relations:

T ∝ κ and S ∝ A. (1.7)

However, people did not believe this result because there was no evidence showing a classical

black hole could radiate just like other thermal objects. In 1975, Hawking [21] showed that

black hole can really create and emit particles by quantum mechanical effects, which we call the

Hawking radiation in the later time. He also found the specific expression of the temperature

of the black hole:

TH =
ℏκ

2πkBc
(1.8)

and the (Bekenstein-Hawking) entropy SBH of the black hole:

SBH =
Ac3

4Gℏ
(1.9)
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Generalized second law

Bekenstein [7] mentioned that as a full spacetime containing two parts – the black hole and the

outer region, the entropy of the whole system should be

Sgen = SBH + Soutside =
Ac3

4Gℏ
+ Soutside (1.10)

This is called the generalized entropy and should satisfy the generalized second law:

∆Sgen ≥ 0 (1.11)

We will later see the idea of generalized entropy inspires the improvements of the holographic

entanglement entropy formula.

1.2 Quantum Information

It should be clarified what we mean information before talking about information loss. The

information of a quantum system is usually described by an ensemble (or a statistical mix-

ture) of quantum states, {pi, |ψi⟩}, which is a collection of all possible (orthonormal) quantum

states that the system can adopt, together with the corresponding probability. If the state of

the system is known exactly, e.g. the state is |Ψ⟩ with the corresponding probability p = 1 and

the probability to adopt other state is zero, we say this system is in a pure state; otherwise,

the system is in a mixed state.

We may act an arbitrary operator Û on this quantum system,

|ψ⟩ → |ψ′⟩ = Û |ψ⟩ (1.12)

then we measure this system again and obtain a new ensemble {p′i, |ψ′
i⟩}. If the probabilities pi =
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p′i, we say the information is preserved under the operator Û , i.e. the probability distribution

does not change.

1.2.1 Density Operator

Everyone should be familiar with quantum mechanics described by the state space as above.

However, there is an alternate formulation based on the density operator (or density ma-

trix). For a general ensemble {pi, |ψi⟩}, the density operator is defined as

ρ =
∑
i

pi |ψi⟩ ⟨ψi|. (1.13)

For a system in pure state |Ψ⟩, we can write the density operator as ρ = |Ψ⟩ ⟨Ψ|. We should

note that the eigenvalue of the density operator is the probability,

ρ |ψi⟩ = pi |ψi⟩ (1.14)

and this is the motivation of the definition of the density matrix. A way to characterize pure

or mixed states is to calculate Trρ2:

Trρ2 =
∑
i

p2i


= (Trρ)2 = 1 for pure states

< (Trρ)2 = 1 for mixed states

(1.15)
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The average of any observable Ô can be given in terms of density operator:

⟨Ô⟩ =
∑
i

pi ⟨ψi|Ô|ψi⟩

=
∑
ijk

pi ⟨ψi|ψj⟩ ⟨ψj|Ô|ψk⟩ ⟨ψk|ψi⟩

=
∑
ijk

pi ⟨ψk|ψi⟩ ⟨ψi|ψj⟩ ⟨ψj|Ô|ψk⟩

=
∑
jk

⟨ψk|ρ|ψj⟩ ⟨ψj|Ô|ψk⟩

=
∑
jk

ρkjÔjk = Tr(ρÔ)

(1.16)

Let {pi, ψi} be a quantum ensemble and an arbitrary transformation Û acting on it. The density

operator transforms as

ρ =
∑
i

pi |ψi⟩ ⟨ψi| → ρ′ =
∑
i

piÛ |ψi⟩ ⟨ψi| Û † = ÛρÛ † (1.17)

To preserve the information of system, we must have

⟨ψi|ρ|ψi⟩ = pi ≡ p′i = ⟨ψ′
i|ρ′|ψ′

i⟩ = ⟨ψi|Û †ÛρÛ †Û |ψi⟩ ⇒ Û †Û = 1 (1.18)

Hence, information preservation assumes the unitary of the transformation, which is an impor-

tant postulate of quantum mechanics. If a black hole can be seen as a quantum system from

the outside, the loss of information and the unitary of quantum mechanics cannot be both true.

This is the reason why people think there is a paradox.
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1.2.2 Quantum Statistics

Recall the Gibbs entropy formula from classical statistical mechanics:

SG = −
∑
i

pi ln pi (1.19)

From (1.14), we can easily extend the definition of entropy into quantum statistics by canonical

quantization,

SvN(ρ) = −Tr(ρ ln ρ) = −
∑
i

pi ln pi (1.20)

where pi are the eigenvalues of the density matrix ρ. This is called the von Neumann entropy

(or the quantum entropy). Here are some important properties of von Neumann entropy:

i. Lower bound: SvN(ρ) ≥ 0 and SvN(ρ) = 0 if and only if ρ is pure.

ii. Upper bound: SvN(ρ) ≤ lnN and SvN(ρ) = lnN if and only if ρ is totally disordered (or

totally mixed), i.e. ρ = 1
N
1N×N .

iii. SvN(ρ⊗ σ) = SvN(ρ) + SvN(σ).

iv. SvN(ÛρÛ
†) = SvN(ρ) where Û is unitary.

v. For non-negative numbers {λi} with
∑

i λi = 1, we have SvN(
∑

i λiρi) ≥
∑

i λiSvN(ρi).

There are two important inequalities of the von Neumann entropy:

(1) Subadditivity:

|S(A)− S(B)| ≤ S(A ∪B) ≤ S(A) + S(B) (1.21)

(2) Strong subadditivity:

S(A ∪B ∪ C) + S(B) ≤ S(A ∪B) + S(B ∪ C) (1.22)
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These two inequalities are rather complicated to prove if using typical quantum information

methods, but can be easily proven by holographic entanglement entropy. We will see this in

the next chapter.

The von Neumann entropy is not easy to calculate in general because of the logarithmic

function, hence we usually use the n-th Renyi entropy

S(n)(ρ) =
1

1− n
ln[Tr(ρn)] =

1

1− n
ln

[∑
i

pni

]
(1.23)

to evaluate von Neumann entropy. By the analytic continuation Re(n) > 1, we take the limit

lim
n→1

1

1− n
ln

[∑
i

pni

]
= − ∂

∂n
ln

[∑
i

pni

]∣∣∣∣∣
n=1

= − 1∑
i p

n
i

[∑
i

pni ln pi

]∣∣∣∣∣
n=1

= −
∑
i

pi ln pi = −Tr(ρ ln ρ)

(1.24)

where we use
∑

i pi = 1 at the last line. Consequently, we have

SvN(ρ) = lim
n→1

S(n)(ρ) (1.25)

This strategy is called the replica trick since we make n copies for the density matrix.

Density matrix for canonical ensembles

We calculate the density matrix of canonical ensembles for later use. Assume the canonical

ensemble reaches thermodynamic equilibrium, then the entropy SvN is maximized with definite

internal energy. We use the method of Lagrange multipliers to find the density matrix:

0 = δSvN =
∑
k

δρkk ln ρkk +
∑
k

ρkkδ ln ρkk (1.26)
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There are two constraints:

(1) Fixed Internal energy:

⟨H⟩ = Tr(ρH) =
∑
k

ρkkEk =⇒ δ ⟨H⟩ =
∑
k

δρkkEk = 0 (1.27)

(2) Normalization condition:

Trρ =
∑
k

ρkk = 1 =⇒ δ(Trρ) =
∑
k

δρkk = 0 (1.28)

Introducing Lagrange multipliers β and γ, we define the Lagrange function:

L = SvN + β ⟨H⟩+ γTrρ (1.29)

then we obtain

δL =
∑
k

δρkk [(ln ρkk + 1) + βEk + γ] = 0 =⇒ ρkk = exp(−βEk − γ − 1)

=⇒ ρkk =
exp(−βEk)∑
i exp(−βEi)

(1.30)

Recalling the partition function Z =
∑

k exp(−βEk) = Tr(e−βH), we can write the density

matrix as

ρ =
1

Z
e−βH (1.31)

We may find that this density matrix is very similar to the time evolution operator e−iHt, which

inspires us to regard β as the imaginary time it. It is just like Wick rotation! If the density

matrix has the form of (1.31), we call the system is in a thermal state.
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Thermal Correlation function

Recall the correlation function defined by

⟨Ô(τ, x)Ô(0, 0)⟩ = Tr
[
ρÔ(τ, x)Ô(0, 0)

]
(1.32)

Assume τ > 0 and −β < τ < β, then the thermal correlatio function

Gβ(τ, x) = −Tr[ρTEÔ(τ, x)Ô(0, 0)]

= − 1

Z
Tr[e−βHÔ(τ, x)Ô(0, 0)]

= − 1

Z
Tr[Ô(0, 0)e−βHÔ(τ, x)]

= − 1

Z
Tr[Ô(0, 0)e−βHÔ(τ, x)eβHe−βH ]

= − 1

Z
Tr[e−βHÔ(0, 0)Ô(τ − β, x)]

= − 1

Z
Tr[e−βHÔ(τ − β, x)Ô(0, 0)] = Gβ(τ − β, x)

(1.33)

where TE is the Euclidean time ordering. We can see the thermal correlation function has a

period of the imaginary time β. This is a characteristic for thermal states, and its temperature

is given by T = 1/β.

1.2.3 Entanglement

Entanglement is an essential difference between classical and quantum statistics. A classical

ensemble is just a collection of states, and there is no interaction between these states. A

quantum ensemble is more than that so that we cannot simply consider these states separately.

To better understand the idea of the entanglement, we consider a 2-qubit system as a Hilbert
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space H = HA ⊗HB. The basis of this Hilbert space is given by3

{|0⟩A |0⟩B , |0⟩A |1⟩B , |1⟩A |0⟩B , |1⟩A |1⟩B}

Then, we consider two states as follow:

|α⟩ = 1√
2
(|0⟩A |1⟩B + |1⟩A |0⟩B)

|β⟩ = 1√
2
(|0⟩A |0⟩B + |0⟩A |1⟩B) = |0⟩A ⊗ 1√

2
(|0⟩B + |1⟩B)

(1.34)

As shown in (1.34), we cannot write |α⟩ as a product state, which means these two sub-systems

A and B are entangled. Meanwhile, we can represent |β⟩ as a tensor product, which is not

entangled.

Because of the entanglement, given a state in the full system H, it is not always possible to

find a state in the sub-system which gives the same measurements. To get the information of

the sub-system, we define the reduced density matrix for sub-system A

ρA = TrBρ (1.35)

where TrB is called a partial trace over HB meaning taking trace only for states in HB.

Moreover, the von Neumann entropy with respect to the reduced density matrix ρA

SA ≡ S(ρA) = −Tr(ρA ln ρA) (1.36)

is called the entanglement entropy of the sub-system A.

Again, we take |α⟩ as an example. The reduced density matrix for sub-system A is given

3We use |a⟩A |b⟩B = |a⟩A ⊗ |b⟩B

14



by

ρA = TrBρ =
1

2
(|0⟩A ⟨0|A + |1⟩A ⟨1|A) =

1

2
12×2 (1.37)

which is totally mixed. We can see that although the total system is in a pure state, the sub-

system A is in a (maximal) disordered state. It tells us that complete knowledge of the total

system doesn’t lead to complete knowledge of the subsystem. This is the biggest difference

between classical and quantum system, and it comes from entanglement.

Moreover, we calculate the entanglement entropy

SA = −Tr(ρA ln ρA) = ln 2 = −Tr(ρB ln ρB) = SB (1.38)

which means there are 2 qubits are entangled. Hence, we can use the entanglement entropy to

measure entanglement.

For pure state, e.g. ρ = |α⟩ ⟨α|, the von Neumann entropy is zero SvN(ρ) = 0 and the

entanglement entropy is non-zero, SA = SB = ln 2 ̸= 0. Hence, the entanglement entropy

provides a good measurement of entanglement for pure states, and the information is stored in

entanglement between A and B. Moreover, as we have seen from the above example, we can

prove that the entanglement entropy SA = SB for pure states.

For mixed state, the entanglement entropy is no longer a good measure of entanglement

since it mixes quantum and classical correlations. For example, we consider a separable system

ρ̃ = ρA ⊗ ρB which is obviously not entangled. However, we can find that the entanglement

entropy is still non-zero SA = SB ̸= 0 but the von Neumann entropy of the total system

SvN(ρ) = S(A∪B) = SA+SB. Instead, we usemutual information to measure entanglement,

which is defined by

I(A;B) = S(A) + S(B)− S(A ∪B) (1.39)

For pure state, we can find I(A;B) ̸= 0. For non-entangled mixed states, e.g. ρ̃ = ρA⊗ ρB, the
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mutual entanglement is zero Ĩ(A;B) = 0 and there is no (classical and quantum) correlation.

1.2.4 Fine-grained entropy vs Coarse-grained entropy

We have seen that the von Neumann entropy or the entanglement entropy is invariant under

the unitary time evolution and does not satisfy the second law of thermodynamics. Obviously,

it is not the ordinary thermal entropy. This is a motivation to distinguish two kinds of entropy:

• Fine-grained entropy: It is just another name of von Neumann entropy, which is

invariant under the unitary evolution.

• Coarse-grained entropy: When we don’t know exactly the density matrix ρ of the

system, but only know the measurement of a subset of physical observable Oi. Then

we find all possible density matrices ρ̃ such that ⟨Oi⟩ = Tr(ρ̃Oi). The maximum von

Neumann entropy SvN(ρ̃) over all ρ̃ is chosen to be the coarse-grained entropy. The

coarse-grained entropy obeys the second law of thermodynamics

According to these definitions, it is easy to find

Sfine ≤ Scoarse (1.40)

because we use ρ̃ as a candidate of ρ which provides a upper bound.

In summary, the coarse-grained entropy is a statistical quantity, which is like a cheap version

of the fine-grained entropy. The ordinary thermodynamics entropy is coarse-grained, since we

fix the internal energy or the volume and then maximize the entropy. Beikenstein-Hawking

entropy is also a coarse-grained entropy because it increases as time. Now a natural question

is what is the fine-grained entropy for a black hole? As we will see later, it is given by the

quantum extremal surface.
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1.3 Conformal Field Theory

Roughly speaking, a Conformal Field Theory (CFT) is a quantum field theory invariant under

conformal transformations, containing Poincaré, dilation and special conformal transforma-

tions.

1.3.1 Conformal Group

Consider the metric tensor gµν in a d-dimensional spacetime. A conformal transformation of

the coordinates is an invertible mapping x→ x′ such that

g′µν(x
′) = Ω2(x)gµν(x) (1.41)

for some non-zero function Ω(x). In other words, a conformal transformation is a local dilata-

tion. As we can check, conformal transformations form a group that we call the conformal

group. One special case is when Ω(x) ≡ ± 1, the conformal group reduces into the Poincaré

group.

For simplicity, we assume the spacetime is flat, i.e. gµν = ηµν = diag(−1, 1, . . . , 1). It can

be proved that, for d > 2, the most general infinitesimal conformal transformation xµ → x′µ =

xµ + ϵµ(x) obeys [14]

ϵµ(x) = aµ + αxµ +Mµ
νx

ν + 2(x · b)xµ − bµx2 (1.42)

where we can identify each term into a kind of transformations (See Table 1.1).

We can redefine these generators (See Table 1.1) as following:

Jµν =Mµν J(d+1)d = D

J(d+1)µ = 1
2
(Pµ −Kµ) Jdµ = 1

2
(Pµ +Kµ)

(1.43)
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Transformations Generators
(translation) x′µ = xµ + aµ Pµ = −i∂µ
(dilation) x′µ = αxµ D = −ixµ∂µ
(rotation) x′µ =Mµ

νx
µ Mµν = i(xµ∂ν − xν∂µ)

(SCT) x′µ = xµ−bµx2

1−2b·x+b2x2 Kµ = −i(2xµxν∂ν − x2∂µ)

Table 1.1: Conformal transformations and the generators

then the new generators obey the Conformal algebra:

[Jab, Jcd] = i(η̃adJbc + η̃bcJad − η̃acJbd − η̃bdJac) (1.44)

where η̃ab = diag(−1,−1, 1, . . . , 1). As we can check, the conformal algebra is isomorphic to

so(2, d).

1.3.2 Primary operators

According to the conformal algebra, we can see that Pµ and Kµ can be considered as the raising

and lowing operators with respect to D.

[D,Pµ] = −iPµ, [D,Kµ] = iKµ (1.45)

It is natural to define the ground state of D,

Kµ |ϕ0⟩ = 0 (1.46)

which is annihilated by Kµ. The ground state is not unique, and we call all these states the

primary states. We can also define the primary operator Φ(x) such that

Φ(x) |0⟩ = |ϕ0(x)⟩ (1.47)
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According to the definition of the primary state, the primary operator should obeys

[D,Φ(0)] = −i∆Φ(0), [Kµ,Φ(0)] = 0 (1.48)

where ∆ is called the scaling dimension of the operator Φ.

1.3.3 Correlation function

The conformal symmetry provides a powerful restriction on quantum fields. As a consequence,

the form of the correlation function in CFT is rather simple,

⟨Φ1(λx1) · · ·Φn(λxn)⟩ = λ−∆1−∆2−···−∆n ⟨Φ1(x1) · · ·Φn(xn)⟩ (1.49)

Specially the two-point function has the form,

⟨Φ1(x1)Φ2(x2)⟩ =
c12

|x1 − x2|2∆
, ∆1 = ∆2 ≡ ∆ (1.50)

where c12 is constant and it must vanish if ∆1 ̸= ∆2.

1.4 Anti-de Sitter Spacetime

A (d+1)-dimensional Anti-de Sitter (AdS) Spacetime4 is a maximally symmetric space with an

negative constant curvature, which is a solution of Einstein’s equations with negative cosmo-

logical constant:

Rµν −
1

2
Rgµν = −Λgµν (1.51)

where Λ = −d(d−1)
2ℓ2

and ℓ is called the AdS radius.

A nice way to think of AdSd+1 is to embed it into a (d+2)-dimensional Minkowski spacetime

4We consider the (d+1)-dimensional case here for later convenience.
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Md+2 as a hyperboloid sub-manifold:

T 2
1 + T 2

2 −X iX i = ℓ2, i = 1, . . . , d. (1.52)

An important point is that the Minkowski spacetime Md+2 has the signature (2, d), which means

it has two time-like coordinates rather than one. Hence, the metric for Md+2 is

ds̃2 = −dT 2
1 − dT 2

2 + dX idX i (1.53)

We could also see that AdSd+1 has an isometry group, SO(2, d), from the symmetry of the

Minkowski spacetime Md+2, which has the same symmetry with CFTd. It is an evidence of

holographic principle.

To obtain the induced metric for AdSd+1, it would be better using the global coordinates

as follow: 

T1 = ℓ cosh ρ cos τ

T2 = ℓ cosh ρ sin τ

X i = ℓ sinh ρΩi

(1.54)

where Ωi are the parameters for a (d-1)-sphere, i.e.
∑

i Ω
2
i = 1. By taking (1.54) into (1.53), it

is not hard to find the global metric for AdSd+1:

ds2 = ℓ2(− cosh2 ρdτ 2 + dρ2 + sinh2 ρdΩ2
d−1) (1.55)

where dΩ2
d−1 is the metric of (d-1)-Sphere and dΩd−1 = dθ2+sin2 θdΩ2

d−2. This metric has only

one time-like coordinate as expected, and we should also note that the time coordinate τ has

a natural period of 2π, but we still define τ in real number, τ ∈ R.

For better understanding of AdS spacetime, we introduce some other useful coordinate
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systems for AdS Spacetime:

(1) Static coordinates: Introducing r = ℓ sinh ρ and t = ℓτ in (1.55), we have

ds2 = −fdt2 + 1

f
dr2 + r2dΩ2

d−1 (1.56)

where f = 1+ r2

ℓ2
. Its components are independent of time, and hence it is static. It also

has a similar structure with the Schwarschild metric. Since it covers the whole spacetime,

it is also called the global coordinates sometimes.

(2) Conformal coordinates: Introducing tan θ = ℓ sinh ρ, we have

ds2 =
ℓ2

cos2 θ

(
−dτ 2 + dθ2 + sin2 θdΩ2

d−1

)
(1.57)

where ℓ2

cos2 θ
is a conformal factor. It is easy to see that this metric is conformal related

to the metric of a cylinder R× Sd, and hence has the same causal structure.

(3) Poincaré coordinates: Introducing the new coordinate system:

t = ℓ
sin τ

cos τ − Ωd sin ρ
,

z = ℓ
cos ρ

cos τ − Ωd sin ρ
,

xi = ℓ
Ωi sin ρ

cos τ − Ωd sin ρ
,

(1.58)

then we have the metric

ds2 =
ℓ2

z2
(−dt2 + dxidxi + dz2) (1.59)

which only covers a small region of the AdS spacetime, called the Poincaré patch. This

patch is bounded by a causal diamond, so we call it ”Poincaré”.

In many cases, we prefer to consider an asymptotically AdS spacetime with a conformal
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boundary. While approaching its boundary, it has the same geometry with the AdS geometry.

1.5 AdS/CFT Duality

The AdS/CFT correspondence could be one of the most famous examples of the holographic

principle [8]. This duality was first discovered by Juan Maldacena [28] when he studied the

low-energy limit of brane systems in string theory. The exact description hasn’t been found

yet, but a general one can be given by following [19]:

Statement. Any relativistic conformal field theory on R× Sd−1 can be interpreted as a theory

of quantum gravity in an asymptotically AdSd+1 × M spacetime. Here M is some compact

manifold that may or may not be trivial.

More roughly speaking, the CFT is living on the boundary of the AdS spacetime. Now a

natural question is how to relate these two descriptions. The answer is using the ”dictionary”.

There are two main dictionaries. One is the BDHW dictionary (or extrapolate dictio-

nary), of which the basic idea is that we can ”push” an operator in AdS to its boundary to

obtain an operator in CFT. The other one is called the GKP-W dictionary, which can be

simply interpreted as

ZCFT = ZAdS+fields (1.60)

where the partition function of the CFT should be equal to the one of the AdS plus the fields

on it. We should notice that the AdS/CFT duality is telling there are two descriptions for the

same things, the AdS description or the CFT one. We cannot use both descriptions at the

same time!
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Chapter 2

Entanglement Entropy in AdS/CFT

In this chapter, we will introduce the general methods to calculate the entanglement entropy in

CFT and the holographic entanglement entropy. More precisely, we will focus on examples in

AdS3/CFT2. More detailed discussions in entanglement entropy and quantum field theory can

be found in [10],[11] and [13]. For higher dimensional cases of the holographic entanglement

entropy, a textbook by Rangamani and Takayanagi [38] would be very helpful, so would a

shorter review by Ryu and Takayanagi [39]. We will also use the path integral representation

for operators, which has been introduced in Appendix A. It would be very helpful if the reader

views Appendix A before this chapter.

2.1 Entanglement Entropy in Conformal Field Theory

A general calculation of the entanglement entropy is based on the replica trick (1.25) and here

we will use the following:

SA = −Tr(ρA ln ρA) = − ∂

∂n
Tr(ρnA)

∣∣∣∣
n=1

(2.1)
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So our first task is to evaluate Tr(ρnA). According to Appendix A, the reduced density matrix

over a sub-system A can be represented by

ρA = TrAcρ = (2.2)

where we glue the cut of the region other than A together and leave the region A open. Its

element can be obtained by restricting the boundaries,

(ρA)ij = ⟨i|ρA|j⟩ = (2.3)

Hence, the traces of ρnA are given as the partition function Zn(A) on a n-sheeted Riemann

surface Rn:

Z2(A) ≡ Trρ2A =
∑
i,j

⟨i|ρA|j⟩ ⟨j|ρA|i⟩ =

· · ·

Zn(A) ≡ TrρnA =

(2.4)
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where we glue the boundaries of the same index by taking traces (See the blue lines). As

a result, Zn(A) is given by path integral on n-sheeted Riemann surface Rn with boundary

conditions

ϕm(τ = 0−, x) = ϕm+1(τ = 0+, x), ϕn(τ = 0−, x) = ϕ1(τ = 0+, x), 1 ≤ m ≤ n (2.5)

where x ∈ [u, v]. Then for a normalized reduced density matrix ρA, we have TrρnA = Zn(A)
Zn .

Specially for n = 1, we have TrρA = 1. Hence, the replica trick gives

SA = − lim
n→1

∂

∂n

Zn(A)

Zn
(2.6)

It could be very complicated to calculate Zn(A) on such a n-sheeted Riemann surface Rn.

Hence, the next step is to simplify the calculation by taking a conformal transformation that

maps the n-sheeted Riemann surface Rn to a single Riemann surface C, such that

Zn(A) =

∫
[Dϕ]Rn exp

[
−
∫
Rn

dxdτL[ϕ(τ, x)]
]

≡ ZC(A) =

∫
[Dϕ1Dϕ2 · · ·Dϕn]C exp

[
−
∫
C
dxdτ(L[ϕ1(τ, x)] + · · ·+ L[ϕn(τ, x)])

] (2.7)

with boundary conditions

ϕi(τ = 0+, x) = ϕi+1(τ = o−, x), x ∈ [u, v], i = 1, . . . , n (2.8)

where the original fields ϕ on each sheet are mapped onto a single surface C and hence we have

n fields. By considering these n fields together as a field with n components on a complex plane

C, we can finally represent Zn(A) in terms of some correlation functions (See [10] and [11] for

details) and then the entanglement entropy can be calculated.

In general, the calculation of entanglement entropy in CFT is still complicated and we
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cannot obtain an exact result in many cases, even if we follow the previous steps. It is common

to use numerical methods to calculate them, but we do have precise results for some simple

cases. For example, we consider the entanglement entropy for the vacuum state in CFT2 at a

single interval. Suppose A is a single interval of length LA. Then the entanglement entropy is

given exactly by

SA =
c

3
log

LA

ϵ
(2.9)

where c is the central charge of the CFT and ϵ is the UV cut-off because this entropy is actually

divergent. We will later see this result can be also obtained from the geometry of the dual AdS

spacetime.

2.2 Holographic Entanglement Entropy

2.2.1 HRT Formula and Quantum Extremal Surface

In 2006, after checking in many numerical computations, Shinsei Ryu and Tadashi Takayanagi

[40] made an argument that the entanglement entropy in a (d+1)-dimensional CFT can be

obtained from the area of d-dimensional minimal surfaces in AdSd+2, in a way similar to

the Bekenstein-Hawking formula for black hole entropy. Soon later, Hubeny, Rangamani

and Takayanagi extended the time-independent case that Ryu and Takayanagi considered

into the time-dependent one [24], which is summarized as the so-called Hubeny-Rangamani-

Takayanagi (HRT) formula (2.10).

Consider A a spatial sub-region of the boundary of some asymptotically-AdS geometry,

where the CFT is living (See Fig 2.1). The entanglement entropy for the sub-system A is given

by

SA =
Area(γA)

4G
(2.10)
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Figure 2.1: A spatial sub-region A on the conformal boundary of some asymptotically AdS
geometry. γA is a the RT-surface. RA is the region bounded by A and γA.

with minimal surface γA that extremes the area. As we can see, this formula (2.10) is very

similar with the Bekenstein-Hawking formula (1.9). The surface γA is called RT-surface with

the following requirements:

• co-dimension two, i.e. γA has two fewer dimensions than AdS space-time,

• space-like surface with external area in AdS,

• anchored to the AdS boundary, i.e. ∂γA = ∂A,

• homologous (continuous deformable) to A,

• If there are several external surfaces, pick the one with minimal area.

The HRT formula is original a hypothesis and then proven to be valid in many cases (See [26],

[15], [32]).

Some improvements of HEE formula

After the HRT formula was proposed, people made a sequence of improvements. In 2013,

Lewkowycz and Maldacena [26] added the contribution of the fields in the area RA, where RA

is the area bounded by a region A and a surface γA (See Fig 2.1),

S(A) =
Area(γA)

4G
+ Sfield(RA) (2.11)
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with minimal surface γA that extremes its area. This formula provides a quantum corrected

version to HRT formula, and after that Faulkner, Lewkowycz and Maldacena [18] argue it in a

higher order.

Engelhardt and Wall [17] improved it further, which is valid at arbitrary order.

S(A) =
Area(γA)

4G
+ Sfield(RA) (2.12)

with minimal surface γA that extremes
[
Area(γA)

4G
+ Sfield(RA)

]
. We should notice that the surface

γA in (2.12) is different from the one in (2.10) and (2.11), because they extremes different

objects. This improved surface (2.12) is called the quantum extremal surface (Quantum

Extremal Surface (QES)) and the corresponding entropy (2.12) is the generalized entropy

of RA. It is a generalization of the generalized entropy of black hole.

In later discussion, we will assume the stationary RT-formula (2.10), and use it to calculate

HEE for some examples.

How to find external surface in AdSd+1?

Following the HEE formula (2.10), a natural question is how to find the RT-surface γA in

AdSd+1? Suppose the induced metric of γA is given by

ds2γ = hµνdx
µdxν , µ, ν = 0, 1, . . . , d− 2 (2.13)

then of which the area is

Area(γA) =

∫ √
hdd−1x (2.14)

where h is the determinant of the metric hµν , i.e. h = dethµν .
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Assume the metric of the asymptotic AdSd+1 is given by

ds2 = gABdX
AdXB, A,B = 0, . . . , d (2.15)

and X(xµ) is the extremal surface. we can write the induced metric as

ds2γ = gAB
∂XA

∂xµ
∂XB

∂xν
dxµdxν = hµνdx

µdxν (2.16)

So the area is a functional of X(xµ), and we can use Euler-Lagrange equations with boundary

condition ∂γA = ∂A to find the external surface. Now we have a general method to find the

RT-surface. Let us see the following examples.

2.2.2 Example: Vacuum state in (1+1)-dimensional CFT in R1,1

Consider a 2D CFT in vacuum and a region A be an internal of length LA. Without the loss

of generality, we choose

x ∈
[
−LA

2
,−LA

2

]
. (2.17)

It is dual to Poincaré AdS3,

ds2 =
ℓ2AdS

z2
(−dt2 + dx2 + dz2) (2.18)

with the boundary at z = 0. In the static case, there is a natural time coordinate t and hence

γA will live in a Cauchy slice (i.e. fixed-t slice) according to the time-translation invariance.

Since the vacuum state is static, we can use the time translation invariance and choose a fixed-t

surface, namely t = 0. Then we have the reduced metric

ds2 =
ℓ2AdS

z2
(dx2 + dz2) (2.19)
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The Area (or Length in this case) of the RT-surface is given by

Length(γA) =

∫
γA

ds =

∫
γA

ℓAdS

z

√
dx2 + dz2 = ℓAdS

∫ LA/2

−LA/2

dx
1

z

√
1 + z′2 (2.20)

where z′ = dz
dx
. As mentioned in Section 2.2.1, the length of γA is a functional of z(x) and we

use the method of variation to find the curve z(x) extremize Length(γA). Let the Lagrange

function L = 1
z

√
1 + z′2 , the the Euler-Lagrange equation is

0 =
∂L
∂z

− d

dx

∂L
∂z′

= − 1

z2

√
1 + z′2 − d

dx

z′

z
√
1 + z′2

(2.21)

By solving (2.21), we find the geodesic is actually a semi-circle shown in Fig 2.2, which satisfies

z2 + x2 = (
LA

2
)2 (2.22)

Taking (2.22) back to (2.20), we will find this integral is divergent. Hence, we need to introduce

Figure 2.2: The CFT is living on a spatial line, and we choose a sub-region A = [−LA/2, LA/2].
The RT-surface γA is a semi-circle (See red curve). Since the length of γA is divergent, we have
to set a cut-off (See blue line).

a UV cutoff ϵ and obtain

Length(γA) = 2ℓAdS log(
LA

ϵ
) (2.23)
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Hence, the holographic entanglement entropy is given by

SA =
Length(γA)

4G
=
ℓAdS

2G
log(

LA

ϵ
) (2.24)

Recalling the fact in AdS3/CFT2 the the central charge for the CFT is given by

c =
3ℓAdS

2G
(2.25)

We can write the HEE as following,

SA =
c

3
log

LA

ϵ
(2.26)

and this agrees with the result in the CFT case (2.9).

2.2.3 Holographic proof of sub-additivity and strong sub-additivity

As mentioned before, the proofs of the subadditivity and strong subadditivity are rather difficult

in quantum mechanics, but they are quite easy and obvious from the viewing of holographic

principle! Firstly, we prove the subadditivity (1.21) and again we consider the lowest dimension

case shown in Fig 2.3. As we can see, the length of the black curve is shorter than the sum of

the lengths of the red and green curves, since the black curve is a geodesic. According to the

RT formula (2.10), it is easy to show

S(A ∪B) ≤ S(A) + S(B) (2.27)

and then the subadditivity (1.21) is proven. Similarly, we can prove the strong subadditivity

(1.22) from Fig 2.4. As we can see, the green curve is shorter than the black one, as well as the
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Figure 2.3: Holographic proof of strong subadditivity: According to the RT formula, the black
curve represents SA∪B, the red one is SA and the green one is SB.

red one is shorter than the blue one. Hence, we have

Length(γB)+Length(γABC) = red+green ≤ blue+black = Length(γAB)+Length(γBC) (2.28)

and the strong subadditivity is well proven. This elegant proof was first provided by Headrick

Figure 2.4: Holographic proof of strong subadditivity [20]: the green curve is SABC , the black
curve plus the blue curve is SAB + SBC , and the red curve is SB

and Takayangi in 2007 [23], which values the holographic principle as a powerful tool.

2.2.4 Holographic Entanglement Entropy at finite size

Consider a CFT2 on R × S1
L describing the vacuum state on compact space, x ∈ S1

L, where L

is the perimeter of the circle. This is dual to static AdS3 (See Fig 2.5) with the metric,

ds2 = −(1 +
r2

ℓ2AdS

)dt2 +
1

1 + r2

ℓ2AdS

dr2 + r2dφ2 (2.29)
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We consider the region A with φ ∈ [−φA, φA] and choose the Cauchy surface Σ : t = 0 (See

Figure 2.5: AdS3/CFT2 Figure 2.6: Cauchy slice t = 0 in
AdS3/CFT2

Fig 2.6). Following the general method mentioned above, we can find that

r(φ) = ℓAdS

(
cos2 φ

cos2 φA

− 1

)− 1
2

(2.30)

is geodesic at t = 0 and the holographic entanglement entropy for this case is

SA =
c

3
log

(
L

πϵ
sin

(
πLA

L

))
(2.31)

where c = 3ℓAdS

2G
is the central charge of the CFT and LA is length of A.

If we consider the non-compact limit, i.e. L is sufficiently large such that LA ≪ L, we have

SA =
c

3
log

(
L

πϵ
sin

(
πLA

L

))
≈ c

3
log

(
L

πϵ
· πLA

L

)
=
c

3
log

(
LA

ϵ

)
(2.32)

which reproduces the result for the vacuum CFT2 we have already obtained above (2.26).

2.2.5 Holographic Entanglement Entropy at finite temperature

We move to the case that the CFT is defined at an infinite size but at a finite temperature.

For example, we consider a CFT2 on S1
β × R, where S1

β shows that it has a period β of the

imaginary time. Hence, it indeed describes a thermal state on non-compact space x ∈ R and
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is dual to the planar Bañados-Teitelboim-Zanelli (BTZ) black hole with metric:

ds2 = −
r2 − r2+
ℓ2AdS

dt2 +
1

r2 − r2+
dr2 +

r2

ℓ2AdS

dx2 (2.33)

Again, we consider a sub-region A = [−LA/2, LA/2]. Following a similar process with Section

2.2.2, We can find the extremal surface satisfies

dr

dx
=

r

ℓ2AdS

√
(r2 − r2+)

(
r2

r2∗
− 1

)
, r∗ = r+ coth

(
LA

2
r+

)
(2.34)

where x ∈ (−LA/2, LA/2). The HEE can be finally obtained by

SA =
c

3
log

(
β

πϵ
sinh

(
πLA

β

))
(2.35)

where β =
2πℓ2AdS

r+
and c = 3ℓAdS

2G
.

In the low temperature limit, β → ∞, we have

SA =
c

3
log

(
β

πϵ
sinh

(
πLA

β

))
≈ c

3
log

(
β

πϵ
· πLA

β

)
=
c

3
log

(
LA

ϵ

)
(2.36)

which comes bake to the result in the non-compact vacuum state (2.26).

2.2.6 Holographic Entanglement Entropy at finite size and finite

temperature

Now we consider a more complex case with both finite size and finite temperature, e.g. a CFT2

on a torus S1
β ×S1

L. It describes thermal state on S1
L and is dual to global BTZ black hole. The
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metric of the global BTZ black hole is given by

ds2 = −
r2 − r2+
ℓAdS

dt2 +
ℓAdS

r2 − r2+
dr2 + r2dφ2 (2.37)

which has a horizon at r = r+. Without loss of generality, we set ℓAdS = 1 and the radius of

the boundary circle R = 1, hence the perimeter L = 2πR = 2π.

Since the metric is static, we choose a Cauchy slice as usual, e.g. t = 0. Then, the metric

reduces to

ds2 =
1

r2 − r2+
dr2 + r2dφ2 (2.38)

However, we should find that there will be two different homotopy types for the extremal surface

sharing boundary with A (shown in Fig 2.7) because of the existence of the BTZ black hole.

Figure 2.7: Two homo-
topy types of the extremal
surfaces (See red and blue
curves) because of the exis-
tence of the black hole.

Figure 2.8: Two kinds of ex-
tremal surfaces (See red and
blue curves) homologous to
A. Note the blue one is dis-
connected.

Figure 2.9: When A is large
compered with the whole
system, RA covers almost
every parts except the black
hole.

As we can see from Fig 2.7, γA is homologous to A but γAc is not. Alternatively, we consider

a disconnected surface (See Fig 2.8)

γ′A = γAc ∪H (2.39)

where H is the horizon of the BTZ black hole. We can verify that γ′A is homologous to A since

∂RA = γ′A∪A (See Fig 2.9). Hence, γ′A satisfies all the conditions of the RT-surface. According
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to the rule of the RT-surface, we should choose the minimal surface,

SA = min

{
Area(γA)

4G
,
Area(γ′A)

4G

}
(2.40)

Hence, there are two cases worthwhile to consider:

I. If A is sufficiently small compared to the whole system (See Fig 2.8) such that the length

of γA is smaller than of γ′A, then γA is chosen to be the RT-surface, of which the function

is given by

r(φ) = r+

(
1− cosh2(r+φ)

cosh2(r+φA)

)− 1
2

(2.41)

and the HEE is

SA =
Length(γA)

4G
=
c

3
log

[
β

πϵ
sinh

(
LφA

β

)]
=
c

3
log

[
β

πϵ
sinh

(
2πRφA

β

)]
(2.42)

If taking the limit R → ∞ while keep the length of A, LA = 2RφA, fixed, then we get

SA =
c

3
log

[
β

πϵ
sinh

(
πLA

β

)]
(2.43)

which gives the infinite size limit and returns to the above result at non-compact size but

at a finite temperature (2.35).

II. If A is sufficiently large compared to the whole system (See Fig 2.9) such that the length

of γA is larger than of γ′A, then γ′A is chosen to be the RT-surface. The HEE can be

verified to be

SA =
c

3
log

[
β

πϵ
sinh

(
R

β
(π − φA)

)]
+
c

3
πr+ (2.44)

where γAc contributes to the first term and the horizon H contributes to the second term
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1.

As the size of the region A increasing, there is a critical point φ∗
A that transitions between Case

I (2.42) and Case II (2.44), which is explicitly given by

φ∗
A(r+) =

1

r+
coth−1(2 coth(πr+)− 1) (2.45)

and depends on the value of r+.

We can plot the graph of the holographic entanglement entropy changing with the size of

the sub-region (shown in Fig 2.10). For whom is familiar with information loss problem, this

Figure 2.10: The blue curve shows the entropy by the connected extremal surface, namely small
A. The red curve shows the entropy by the disconnected extremal surface, namely large A. SA

has a critical point at φA = φ∗
A because of the choice of the RT-surface.

curve is very similar to the Page curve (See Fig 3.1). This is one of the motivations of the

island rule (3.12).

In the case of φA = π, the region A actually covers the entire CFT, and then we have

SA = Sthermal
CFT . On the other hand, the γAc contribution just vanishes in this case and only the

Bekenstein-Hawking contribution remains SA = SBH. Hence, a natural outcome gives

SBH = SA = Sthermal
CFT (2.46)

1The second term is just the Bekenstein-Hawking entropy of the BTZ black hole.
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Chapter 3

Black Hole Information Paradox

Hawking showed that a pure state black hole 1 will evaluate into a thermal state, which breaks

the unitarity of quantum mechanics [22]. This is the main contradiction of the black hole

information paradox. In this chapter, we will review some important milestones in information

paradox. Then, we will introduce some latest discoveries about the island rule and replica

wormholes.

3.1 Unitary Evaporation

First, we review the whole evolution of a black hole. At the beginning, the black hole is formed

from the gravitational collapse. The collapse happens so fast that the area of the horizon

increases very rapidly, during which there is almost no radiation. Once the black hole appears,

it will emit thermal radiation, and its mass gradually decreases over time. The original pure

state is split into two parts, the black hole and its radiation. Obviously, the entropy of radiation

is non-zero because of the entanglement. Typically, after waiting for a long time, the black hole

will evaporate completely and the Hawking radiation is fully emitted.

According to Hawking’s calculation, the black hole evaporates as well as more and more

1Here we mean a black hole from the collapse of a pure state and we will only consider this kind of black
hole in this chapter.
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radiation is emitted. Hence, the entropy of the radiation increases until the black hole evap-

orates completely (shown as the blue curve in Fig 3.1), and we cannot read information from

such a mixed state. In 1993, by assuming the unitary of the evaporation, Page [33] obtained a

different curve (See the black curve in Fig 3.1).

Figure 3.1: [] Shown as the blue curve, Hawking indicated that the entropy of the Hawking
radiation increases as time and reaches a maximum when the black hole fully evaporates. On the
other hand, the unitary of the evaporation leads to the entropy increasing but then decreasing
back to zero finally (shown as the black curve). This critical time is called the Page time.

To derive the Page curve, we introduce a useful theorem first.

Theorem (Page Theorem). For any bipartite system HAB = HA ⊗HB, we have

∫
dU

∥∥∥∥ρA − 1

|A|

∥∥∥∥
1

≤

√
|A|2 − 1

|A||B|+ 1
(3.1)

where dU is the Haar measure, | · | is the dimension of the Hilbert space and ∥ · ∥1 is L1 norm

defined by ∥M∥1 = Tr
√
M †M .

An important corollary of the Page theorem is following.

Corollary. If 1 < |A| ≪ |B|, then we have

∫
dU

∥∥∥∥ρA − 1

|A|

∥∥∥∥
1

≈

√
|A|
|B|

≈ 0 (3.2)
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In other words, if the degrees of the freedom of the sub-system A is relatively small enough, A

is very closed to a micro canonical ensemble.

At early time when the black hole just forms, there is almost no radiation, hence we have

the degrees of freedom of the radiation is much smaller than the black hole, |Rad| ≪ |BH|.

According to the above corollary, we obtain

Sfine(Rad) ≈ ln |Rad| ≡ Scoarse(Rad) ∝ tT (3.3)

Also because of ln |Rad| ≪ ln |BH|, we have

Scoarse(Rad) ≪ Scoarse(BH) (3.4)

As the evaporation process proceeds, the mass of the black hole gradually decreases, as well

as the Hawking radiation increases. Hence, there will be a moment we call the Page time

when Scoarse(Rad) ≈ Scoarse(BH).

Consider the moment long after the Page time, we have |Rad| ≫ |BH|, then again by the

corollary, the fine-grained entropy of the black hole is given by

Sfine(BH) ≈ Scoarse(BH) =
A

4G
≈ 0 (3.5)

since the black hole almost evaporates completely. For a pure state black hole, we should also

have

Sfine(Rad) = Sfine(BH) ≈ 0 (3.6)

Hence, the fine-grained entropy of the radiation is back to zero, and we obtain the Page curve.

The importance of the Page curve is that it points us a practical way to solve the information

paradox. If we can obtain Page curve without the assumption of the unitary, we solve the
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paradox.

3.2 Complementarity, Firewall and Central Dogma

3.2.1 Black Hole Complementarity and Firewall

As mentioned in Section 1.2, if we assume the unitary of the evaporation, the information of

the in-falling objects will be preserved in the Hawking radiation. However, this assumption will

cause a contradiction with the quantum ”no-cloning” theorem.

Theorem (”No-cloning” theorem). Consider a Hilbert space H = HA ⊗ HB ⊗ HC. There is

no unitary operator such that

U |ψ⟩A |0⟩B |ϕ⟩C = |ψ⟩A |ψ⟩B |ϕ⟩C (3.7)

Briefly speaking, the ”no-cloning” theorem tells us that it is impossible to copy the quantum

information. The only way to send the quantum information is to lose it. Let us see an example

to explaining why black hole results quantum cloning.

Consider an observer Alice (denoted by ”A”) on a ”nice”2 slice Σ1, carrying some quantum

information, jumps into the black hole. In a later time (shown as the ”nice” slice Σ2 in Fig

3.2), another observer Bob (denoted by ”B”) can recover Alice’s information from the radiation.

However, we may notice that Alice’s information will appear on Σ2 at both A′ and B if we

assume the evaporation to be unitary. This is what we call the black hole cloning, and it is

conflict with the ”no-cloning” theorem.

Someone may think the horizon splits spacetime into two causal independent regions, so no

observer can see both copies at the same time. This could be right. If Bob does want to see

Alice’s copy, he has to jump into the black hole as well. We wish he is also lucky enough to

2Here ”nice” means small curvatures such that the semi-classical approximation is valid.
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Figure 3.2: A on a ”nice” slice Σ1 is infalling into the black hole, carrying some quantum infor-
mation. After a long time, Another observer B on ”nice” slice Σ2 can recover the information
of A from the Hawking radiation, as well as the copy of the information A′ appears on the same
Cauchy slice

find Alice, or receive the message that Alice sent to him (See the red arrow in Fig 3.2), before

he collides the singularity. As a result, he will obtain two copies of the information and breaks

”no-cloning” theorem again. However, according to Susskind et al. [42], Alice will never have

enough time to send her message. She must send the message within the Planck time, and it

is impossible!

To solve this problem, Susskind, Thorlacius and Uglum [42] argued that no single observer

can see both A′ and B, based on the following three postulates:

• Postulate 1: The process of formation and evaporation of a black hole, as viewed by

a distant observer, can be described entirely within the context of standard quantum

theory. In particular, there exists a unitary S-matrix which describes the evolution from

infalling matter to outgoing Hawking-like radiation.

• Postulate 2: Outside the stretched horizon of a massive black hole, physics can be

described to good approximation by a set of semi-classical field equations.

• Postulate 3: To a distant observer, a black hole appears to be a quantum system with

discrete energy levels. The dimension of the subspace of the states describing a black hole
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of mass M is the exponential of the Bekenstein entropy S(M).

We may notice this is a fact that unitary quantum mechanics evolution on ”nice slice” is

contradicted with ”unitary” of the black hole evaporation, whether it can be observed or not.

However, we can give an new interpretation. If nobody can see both copies on a ”nice” slice,

why should such a slice exist? As a result, Susskind et al. ([42], [41]) proposed the so-called

black hole complementarity, which states that quantum mechanics only need to describe

the experience of individual observer, who are appropriately restricted by causality in what

they do.

We may compare it to Bohr’s complementarity principle or Heisenberg uncertainty principle,

which are essential parts of the consistency of quantum mechanics. Black hole complementarity

could also be an essential part of the consistency of some quantum gravity theory.

However, like what happened in the past, not every people satisfy with this interpretation.

In 2013, Almheiri, Marolf, Polchinski and Sully [5] made an argument against the black hole

complementarity, which is now called the AMPS paradox or ”Firewall problem. They

introduced the fourth postulate:

Postulate 4: A freely infalling observer will experience nothing out of ordinary when cross-

ing the horizon.

which comes from the Rindler approximation near the horizon. We can find for an infalling

observer, the horizon is nothing but just Minkowski spacetime. The basic idea of the AMPS

paradox is that the fourth postulate is contradicted with the first three postulates of the BHC

(especially the first postulate), and this will lead to the entanglement-monogamy problem.

After all, the ”Firewall” paradox is still an open question, and it is not directly related to our

main topic so we will not talk about it in detail here.
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3.2.2 Central Dogma

The three postulates of the BHC are summarized into one single idea called the central dogma

[3], which states as follow:

Statement (Central Dogma). As seen from the outside, a black hole can be described in terms

of a quantum system with Area/(4GN) degrees of freedom, which evolves unitarily under time

evolution.

That is, we can replace a black hole with some spacetime around (up to some cut-off surface)

with a quantum system, which evolves unitarily. The central dogma is still a controversial topic

till now. For example, Unruh and Wald [43] think the first postulate can be given up with but

the fourth postulate can be adopted. We should emphasize that the information loss problem

is a paradox only if the central dogma is true.

3.3 The entropy of Hawking Radiation

3.3.1 Island Rule

According to the discussions we have already had, it should be an natural idea to use the

holographic entanglement entropy formula (2.12) to calculate the fine-grained entropy of the

black hole ([1], [37], [4]),

Sfine(BH) = min
X

{
extX

[
Area(X)

4G
+ Sfield(ΣX)

]}
(3.8)

where X is the QES and can be in the black hole interior, ΣX is the region between the QES

and some UV cut-off surface (See Fig 3.8). According to this formula (3.8), the fine-grained

entropy of the black hole relies on its interior. Although some black holes are seen the same

from the outside, the different black hole has a different interior and hence have a different
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fine-grained entropy. We find that there are at least two extremal surfaces for a pure state

black hole. One is near the horizon X ≈ H and the other is near the singularity X ≈ ∅.

Hence, the Bekenstein-Hawking entropy Scoarse(BH) may not be equal to Sfine(BH) since the

horizon may not minimize Sfine(BH), and this will result the Page curve for the black hole. Let

us do a simple check.

Figure 3.3: [3] The fine-grained en-
tropy of the black hole depends on the
green region ΣX between the QES X
and some cut-off surface.

Figure 3.4: [3] The generalised en-
tropy of the vanishing surface X ≈ ∅
increases (See green curve), as well
as the one of the non-vanishing sur-
face decreases (See yellow curve). By
considering the minimum, we obtain
the Page curve for the black hole (See
black curve).

At early time when the black hole just forms, the QES should be the one near the singularity

X ≈ ∅ for a pure state black hole. Since the area of X nearly vanishes and there is no radiation

emitted yet, we have the fine-grained entropy is close to zero,

Sfine(BH) = Sgen(X ≈ ∅) ≈ Sfield(ΣX) ≈ 0 (3.9)

While more radiation is escaping out of the cut-off surface, the entropy Sfield(ΣX) is increasing

because of the entanglement with the radiation within the cut-off surface (shown as the green

line in Fig 3.4).
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At the ending stage of black hole evaporation, the QES is near the horizonX ≈ H. Since the

QES is very close to the horizon and the region ΣX becomes significantly small, the contribution

of the fields on ΣX almost vanishes. Hence, we have

Sfine(BH) = Sgen(X ≈ H) ≈ Area(H)

4G
≈ Scoarse(BH) (3.10)

As the evaporation is processing, the area of the horizon decreases, and hence the coarse-

grained entropy of the black hole deceases (shown as the yellow line in Fig 3.4). After all,

the fine-grained entropy of the black hole is chosen to be the minimum of these two extremal

surfaces,

Sfine(BH) = min{Sgen(X ≈ ∅), Sgen(X ≈ H)} (3.11)

Hence, it satisfies the Page curve (shown as the black curve in Fig 3.4). However, the story is

not complete yet because what we need is the Page curve for the Hawking radiation.

Since there is either the black hole or the radiation in the spacetime, a natural guess is that

all regions other than ΣX contribute to the fine-grained entropy of the radiation, and these

regions may be disconnected 3. Hence, we give a similar formula for the Hawking radiation

(See also Fig 3.5):

Sfine(Rad) = min
X

{
extX

[
Area(X)

4G
+ Sfield[ΣRad ∪ ΣIsland]

]}
(3.12)

where X is the extremal surface that extremes
[
Area(X)

4G
+ Sfield[ΣRad ∪ ΣIsland]

]
. The region

ΣIsland is called the island. Moreover, we should differ this with the coarse-grained entropy of

radiation,

Scoarse(Rad) = Sfield(ΣRad) (3.13)

3We have seen this case before in the example of the global BTZ black hole (See Section 2.2.6).
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Again, we check the fine-grained entropy for the radiation follows the Page curve.

Figure 3.5: [3] There are two dis-
connected regions contributing to
Sfine(Rad). The blue one is in the
black hole interior called the island,
the other (See black curve) is out of
some cut-off surface.

Figure 3.6: [3]

Similarly to our discussion for the evaporating black hole, we have X ≈ ∅ at early time,

and obviously the island vanishes as well ΣIsland ≈ ∅. In this case, the fine-grained entropy for

the radiation is approximately equal to the thermal entropy outside the cut-off surface,

Sfine(Rad) ≈ Scoarse(Rad) (3.14)

and again it increases over time since the radiation escapes out of the cut-off surface (See the

green line in Fig 3.6). At later time when the horizon minimize the fine-grained entropy, i.e.

X ≈ H and the black hole almost evaporates fully Area(H) ≈ 0, we have

Sfine(Rad) ≈ Sfield[ΣRad ∪ ΣIsland] (3.15)

and we can prove that Sfield[ΣRad ∪ ΣIsland] ≈ 0 since the island provides a purification of the

outgoing radiation (See the yellow line in Fig 3.6). Consequently, we recovers the Page curve

for the Hawking radiation (shown as the black curve in Fig 3.6).
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3.3.2 Entanglement Wedge Reconstruction

Now we need to make some clarification on the central dogma (3.2.2). What do we mean the

degrees of freedom of the black hole here? We should emphasize that the degrees of freedom of

the black hole are not equal to those seen from the outside. An evidence comes from the island

rule.

We notice the the fine-grained entropy formula for the black hole (3.8) only depends on the

region ΣX (See Fig 3.3). This means that all the information of the black hole is stored in the

region ΣX . Hence, not every part of the black hole interior contributes to the degrees of the

freedom of the black hole, but to the degrees of the freedom of the radiation, i.e. the island

belongs to the the degrees of the freedom of the radiation.

Moreover, we can prove that Sfield(Σ1) = Sfield(Σ2) if Σ1 and Σ2 are causally related (or they

are in the same causal wedge). Hence, the information is actually stored in a area called the

entanglement wedge (See Fig 3.7) since two causal related Cauchy surfaces carry the same

information.

Figure 3.7: Σ1 and Σ2 are two partial Cauchy surfaces, sharing the same domain of dependence.
They carry the same information which is stored in this causal diamond called the entanglement
wedge

A more precise statement is called the ”entanglement wedge reconstruction hypothesis” [3],

which says that if we have a relatively small number of qubits in an unknown state but located

inside the entanglement wedge of the black hole, then by preforming operations on the black
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hole degrees of freedom, we can read off the state of the qubits.

3.3.3 Replica wormholes

After the island rule is discovered, a derivation similar to the replica trick (1.25) explains further

why the island rule is reasonable ([36], [2]). First, we consider the evaporating black hole that

is topologically equivalent to the following pure state,

|Ψ⟩ = (3.16)

The entry of the density matrix ρ = |Ψ⟩ ⟨Ψ| is given by adding boundary states on the exterior,

ρij = ⟨i|Ψ⟩ ⟨Ψ|j⟩ = (3.17)

By taking the trace of the density matrix, we glues the boundaries.

Trρ =
∑
i

⟨i|Ψ⟩ ⟨Ψ|i⟩ = (3.18)
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However, when we consider Tr(ρ2), there are two cases for connecting the interiors:

Tr(ρ2) =
∑
i,j

⟨i|Ψ⟩ ⟨Ψ|j⟩ ⟨j|Ψ⟩ ⟨Ψ|i⟩

= + + · · ·
(3.19)

where the first term is called the Hawking saddle and the second term is called the replica

wormhole saddle. We can find that the replica wormhole saddle is just (Trρ)2,

= (3.20)

If the Hawking saddle is dominant, we have Tr(ρ2) < (Trρ)2. Hence, the radiation is in a mixed

state. If the replica wormhole saddle is dominant, we have Tr(ρ2) ≈ (Trρ)2, which is satisfied

only for pure states. So the radiation is in a pure state. In this way, we explain why the state

of the radiation will return pure at the ending stage of the evaporation, and this derivation

strongly supports the island rule.
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Chapter 4

Discussion

4.1 Conclusion

We have introduced what is the holographic entanglement entropy and seen many examples.

Then we discussed the black hole as a quantum system. Next, we applied the idea of holographic

entanglement entropy to the information paradox and used the island rule to recover the Page

curve of the Hawking radiation.

After all the discussion we have had, we may be able to solve one question now. What is the

missing part in Hawking’s original calculation? The answer is the black hole interior. Hawking

only considered the exterior and obtained the coarse-grained entropy of the radiation. Because

of the disorder from the entanglement with a part of the black hole’s interior, the entropy seen

from the outside is non-zero. Therefore, the information seems to be lost. In other words, some

part of the information is stored within the black hole interior, namely the island. By including

the contribution of the island, we obtain all the information again.
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4.2 Open Questions

Although the information paradox seems to be solved, it is actually far from that. First, our

analysis is still qualitative. We know the information is preserved, but we don’t know the details

of this process and how to decode the information from Hawking radiation. For example, how

to choose the cut-off surface? What is the exact state of the black hole? Second, since we know

there is entanglement between the black hole and its radiation, is there any choice to break the

entanglement? How can we do so and what if we break the entanglement?

There are some even more fundamental problems with this solution. We haven’t had an

exact description for AdS/CFT correspondence. How much can we believe in the AdS/CFT

tool? Moreover, there is no experimental evidence for string theory till now. A more depressing

fact is that we have not observed Hawking radiation from any experiment so far. The whole

story seems to be imaginary. After all, our theory of quantum mechanics is still incomplete.

We should really ask ourselves. Do we really have the solution? Or even do we really have a

paradox?

4.3 To the Infinite

The last part is for sci-fi fans. Here we assume the information paradox is well solved. We

know exactly what happened during the evaporation of the black hole and how to decode the

information from the radiation. We may ask is there any potential application of the black

hole? One of the main topics of this dissertation is the quantum entanglement. Based on this

principle, we can at least improve two kinds of technologies – quantum encryption and quantum

computer.

We already know quantum entanglement plays an important role in these areas. One of the

technological difficulties is how to stabilize the entangled states. As we have seen, there exists
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entanglement between the black hole and its radiation. Suppose this entanglement is rather

stable because of its geometric nature. First, we know that we cannot decode the information

from the radiation until waiting for a period of time called the ”scrambling time”. It is sufficient

to imagine some kind of quantum encryption based on this idea. A similar idea is provided in

the latest paper by Brakerski [9]. Second, we can use (micro) black holes to build quantum

computers. A recent paper also talk about this possibility [16]. A black hole is also a good

storage of information because if its storage capacity. A simple calculation shows that

Area ∼ S ∼ logN (4.1)

where N is the degrees of the freedom (we may simply consider it as the number of bits). This

relation indicates that we only need a relatively small space to store an extremely large number

of data. Finally, this may be the answer to many questions, such as the Fermi paradox. It is

possible that the information supporting the existence of advanced extraterrestrial life is very

common in our universe. However, it is encoded by some technology based on black holes and

we cannot read it, so we simply think they don’t exist!

Certainly, creating micro black holes is not an easy task, at least for now, but we believe

crazy technology is born from crazy theory!

53



Appendix A

Path integral representations for states

and operators

We introduce a method to represent quantum states or operators by path integral. This ap-

pendix is mainly based on the lecture notes by Thomas Hartman [20]. In this dissertation,

this representation is used in the entanglement entropy in CFT (See Section 2.1) and replica

wormholes (See Section 3.3.3).

A.1 Transition amplitudes

Transition amplitudes measure the probability of a system transforming from one state to

another. A transition amplitude under evolution by e−βH can be defined by a Euclidean path

integral:

⟨ϕ2|e−βH |ϕ1⟩ =
∫ ϕ(τ=β)=ϕ2

ϕ(τ=0)=ϕ1

DϕeSE [ϕ] (A.1)

which we can regard as a ordinary integral over some manifold with boundary conditions at

the time coordinate, and this integral depends on the topology of the manifold. For example, if

the space is a line (or a plane for higher dimensions), the path integral is defined on Rd−1×Lβ,
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where Lβ is an internal of length β,

⟨ϕ2|e−βH |ϕ1⟩ = (A.2)

or similarly, if the space is a circle (or a sphere for higher dimensions), the path integral is

defined on Sd−1 × Lβ,

⟨ϕ2|e−βH |ϕ1⟩ = (A.3)

A.2 Wave functional

A wave function can be defined as a path integral with an open cut

|Ψ⟩ = |ϕ1(τ)⟩ = e−τH |ϕ1⟩ =
∫ ϕ(τ=β)=??

ϕ(τ=0)=ϕ1

DϕeSE [ϕ] = (A.4)

More generally, we can consider any path integral with an open cut Σ as a quantum state on

Σ, and the topology can be rather complex. For example,

|X⟩ = (A.5)
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A.2.1 Ground State

Consider a state |A⟩ expanded in terms of energy eigenstates:

|A⟩ =
∑
n

an |n⟩ , H |n⟩ = En |n⟩ (A.6)

Then taking |A⟩ to evolve over a long Euclidean time (i.e. τ → ∞), we have

lim
τ→∞

e−τH |A⟩ = lim
τ→∞

∑
n

ane
−τEn |n⟩ ≈ e−τE0a0 |0⟩ ⇒ |0⟩ ∝ lim

τ→∞
e−τH |A⟩ (A.7)

According to (A.4), the ground state on a line can be represented as

|0⟩line ∝
∫ ϕ(τ=0)=??

ϕ(τ=−∞)=0

Dϕe−SE = (A.8)

which is a path integral on a semi-infinite plane, with an open cut at the edge. Similarly, for

the ground state on a circle,

|0⟩circle = (A.9)

which is a semi-infinite Euclidean cylinder.

A.3 Density Operator

Recalling the definition of the density operator (1.13), we find it is defined by ket states and

bra states, and hence can be represented as a path integral with two open cuts. For example,
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we consider a pure state on a circle, ρ = |Ψ⟩ ⟨Ψ|,

ρ = e−βH = (A.10)

where we glue the boundaries of the ket state and the bra state and leave two open cuts.

A.4 Thermal Partition Function

For a thermal state at temperature T = 1/β, the thermal partition function is given by

Z(β) = Tre−βH =
∑
i

⟨ϕi|e−βH |ϕi⟩ =
∑
i

(A.11)

By summing over i, we need to glue the top and the bottom of the cylinder together. As a

result, the thermal partition function on a circle is equivalent to a path integral on a torus:

Z(β)circle = (A.12)

Similarly, the thermal partition function on a line is equivalent to a path integral on an infinitely

long cylinder of period β:

Z(β)line = (A.13)
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List of Acronyms

QFT Quantum Field Theory

HEE Holographic Entanglement Entropy

CFT Conformal Field Theory

AdS Anti-de Sitter

BTZ Bañados-Teitelboim-Zanelli

KN Kerr-Newman

QES Quantum Extremal Surface

HRT Hubeny-Rangamani-Takayanagi

BHC Black Hole Complementarity

AMPS Almheiri-Marolf-Polchinski-Sully
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