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Abstract

The Causal Set Program is an approach to quantum gravity which postulates
that continuum spacetime is an approximation of a more fundamental structure -
a discrete collection of events equipped with a causal order. This work reviews
key elements of the program before introducing the Discrete Action on a causal

set. The focus of this dissertation is investigating the Benincasa-Dowker
Conjecture, which claims that, in the continuum limit, the mean of this action
over many ‘sprinklings’ of a manifold into a causal set gives the Einstein-Hilbert

action up to some boundary terms. We introduce a new methodology for
calculating the mean action on flat manifolds, and use both this and the old
methodology to investigate boundary terms from flat non-globally hyperbolic

spacetimes. We provide evidence for various manifolds with and without timelike
boundaries. We argue that these results imply that non-globally hyperbolic

spacetimes, and in particular spacetimes with holes, are generally suppressed in
the path integral over causal sets.
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Chapter 1

Introduction

1.1 Quantum Gravity

The search for a theory of Quantum Gravity (QG) remains one of the most

profound challenges for modern physics. General Relativity (GR) and Quantum

Field Theory (QFT), although excelling at explaining their respective regimes,

have proved individually incomplete when considering the smallest scale and

incompatible with each other in the assumptions they make about things as

fundamental as time and the topology of the universe.

For the case of GR, we see infinities in curvature Rρσµν = ∞ at the centre

of a black hole and at the big bang. For QFT the problem can be represented

by Z = ∞, where non-renormalizability becomes a significant issue when trying

to quantize the conjectured gravitational gauge boson (the graviton)[1]. At the

intersection of the two theories, we have the especially interesting SBH = ∞
infinite entanglement entropy of the black hole. The belief that these divergences

are not truly physical, but instead are mathematical artifacts of incomplete

theories, is one of the primary motivations for quantum gravity.

Conceptually, the problems aren’t any easier. General relativity is determin-

istic, where QFT is inherently probabilistic. GR has no need for an ‘observer’

nor difficulty asking the question of what is ‘measurable’, where these questions

are central to all of Quantum Mechanics. The backdrop of GR is a dynamic,

continuous manifold where matter and energy can influence the curvature. Mean-

while, QFT is formulated on a (usually) flat, fixed backdrop on which fields evolve

but which does not evolve itself, and where fields are ‘quantized’ into discrete

packages. Moreover, GR is fundamentally 4 dimensional in that it binds space and

time together so tightly that the concept of a ‘moment in time’ has no meaning

[2], whereas QFT is 3+1 dimensional in that we must foliate spacetime into

fixed moments in time for measurements to make sense.1 Gravity is also a local

theory, as opposed to QM where non-locality is an unavoidable concept when

considering phenomena like entanglement. Some, but far from all, of these issues

are remedied by taking the ‘sum over histories’ approach to quantum mechanics

1This is made even more problematic when we remember time is one of the things
being observed!
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over the ‘canonical quantization’ approach, which we will return to in more detail

in later. Refer to [3] for a more in depth discussion of these dichotomies.

To make matters even worse, quantum gravitational effects are only expected

to be directly observable near the Planck scale. This is far smaller than current

technology has the capacity to probe, with some estimates suggesting that to

detect the graviton we would need a collider the mass of Jupiter [4]. Furthermore,

the universe seems to have done its best to hide any natural evidence of quantum

gravitational effects. Data from the Big Bang, when energies were high enough for

QG effects to be significant, may have been ‘washed away’ by cosmic inflation, and

the singularities of black holes are ‘clothed’ by an observationally impenetrable2

event horizon.

The current impracticability of testing any proposed theory has led to many

competing models - most notably string theory [5] and loop quantum gravity

[6] - with mostly only theoretical considerations and an intuition of what the

universe ‘should’ look like to guide them. If there is one test then it is arguably

black hole thermodynamics, which has been described as ‘the closest thing we

have to confirmed results in quantum gravity’ [7]. Steven Hawking and Jacob

Bekenstein’s entropy formula provides a finite answer to the SBH = ∞ divergence,

but only by introducing a length cut off at the Planck scale [8]. This is roughly

the same scale at which we expect our other infinities to emerge and at which we

expect quantum gravitational effects to be prevalent. Any successful theory of

quantum gravity must reproduce both GR and QFT in their respective regimes

whilst also accounting for their failures. The fact that we expect these failures to

be roughly at the Planck scale can be seen as indicative that the long accepted

‘continuum’ on which both QFT and GR are performed is only an approximation

of a deeper structure. Could it be that the reason our theories stop making sense

at the Planck scale is that it simply isn’t physically meaningful to talk about

smaller lengths? Could spacetime itself be discrete?

1.2 Overview

The focus of this dissertation is the Causal Set Program, which posits that the

Lorentzian manifolds of GR are an emergent approximation of a more fundamental

structure - a discrete collection of elements equipped with a causal ordering, called

a Causal Set. The discreteness scale is, based on the arguments discussed, expected

to be on the order of the Planck length:

lP =
√
8πGℏ ≈ 1.6× 10−35m. (1.1)

Originally proposed by Bombelli, Lee, Meyer and Sorkin in 1987 [9], Causal

Set Theory (CST) has undergone considerable development. The kinematics of

the theory are relatively well understood, and there have been exciting recent

developments in producing an effective dynamics.

2Unless one wanted to fall in to the black hole and take some measurements, but
unfortunately the results of those tests would inevitably follow you to the singularity.
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The key components of this program are discreteness and causality,3 which

are seen as fundamental.

Causal Set Theory is also associated with one of the most important phe-

nomenological predictions of any theory of quantum gravity: the prediction of the

order of magnitude of the cosmological constant [10]. Despite being made from

largely heuristic arguments, with a more rigorous causal set dynamics needed to

fully justify it, the success of this prediction is one of CST’s greatest achievements.

In Chapter 2, we will more rigorously introduce the causal set approach and

give an overview of the kinematics of the theory.

In Chapter 3, we introduce two approaches to dynamics. The first are the so

called ‘bottom up’ sequential growth models, which are expected to be the most

fundamental approach to dynamics but are as yet not very well understood. The

second is a ‘top down’ approach, in which we define a discrete action on a fixed

causal set and use it to investigate dynamics in the continuum limit, thereby

acting as an intermediate regime. The focus of this dissertation will be on this

approach to dynamics.

Chapter 4, we give a brief overview of how the discrete action is defined,

and then introduce the Benincasa-Dowker Conjecture, which posits that the

continuum limit of our discrete action gives the Einstein-Hilbert action, up to

some boundary terms. We will then discuss what these boundary terms are

expected to be, and how they depend on the different assumptions we make about

the spacetime we are calculating the action on.

In Chapter 5, we introduce a new methodology for calculating the action

on flat manifolds, and introduce the concept of mutual information between

spacetime regions.

In Chapter 6, we will calculate the Mean Discrete Action (MDA) on various

manifolds with timelike boundaries in order to further probe an as yet relatively

unexplored case of the conjecture, providing further evidence that, in this case,

the action can be seen to diverge.

In Chapter 7, we will investigate how putting ‘holes’ in a manifold affects the

action on it, providing a partial answer to a problem initially posed by Bombelli

[9] in the first paper on causal set theory. We will also discuss how a specific type

of ‘interval’ between two points on a manifold without timelike boundaries might

cause its action to diverge.

Finally, in Chapter 8, we summarise our results, discuss how they may be

interpreted, and then discuss possible avenues for how research in this direction

might be extended.

3Motivation for placing such an emphasis on causality can also be drawn from
consideration of black holes, where its very definition is given by its causal structure.
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Chapter 2

Foundations and Kinematics

A good starting point when introducing Causal Set Theory is defining what a

causal set (or ‘causet’ for short) actually is.

Definition 2.0.1. A causal set is a locally finite partially ordered set. It is a

set C equipped with an order relation ⪯ called ‘precedes’ satisfying the following

axioms:

1. Reflexive: ∀x ∈ C, x ⪯ x.

2. Antisymmetric: ∀x, y ∈ C, if x ⪯ y and y ⪯ x then x = y.

3. Transitive: ∀x, y, z ∈ C, if x ⪯ y and y ⪯ z then x ⪯ z.

4. Locally Finite: ∀x, y ∈ C, |I(x, y)| < ∞,

where |I(x, y)| denotes the number of elements causally ‘between’ x and y. Space-

time points are thus represented by elements of C and the causal structure is

encoded by the relation ⪯.

Formally, I(x, y) := {z ∈ C | x ≺ z ≺ y} where we define that x ≺ y if and

only if x ⪯ y and x ̸= y.

|I(x, y)| denotes the cardinality of that subset.

This the clear analogue of the Alexandrov interval in general relativity, A[x, y],

which is the intersection of the future light cone of x and past light cone of y,

for some causally related points x, y in Lorentzian manifold M. Explicitly

A[x, y] := J +(x) ∩ J −(y) where J ± is the causal future(+) / past(-). This is

also known as a causal diamond.1

The first three axioms of definition 2.0.1 define a partially ordered set (or

poset) and are in agreement with the expected causal relationships on Lorentzian

manifolds. The local finiteness condition encodes the desired ‘discreteness’ into

our structure, and allows us to assign a ‘volume’ to a subset C′ ⊂ C by just

counting the number of elements in that subset: Vol(C′) = |C′|.
1The terms Alexandrov interval, causal interval, and causal diamond will be used

interchangeably.

8



2.1 How is a causal set a manifold?

The justification that enough information is encoded in these axioms to reproduce

the topology, metric, and differentiable structure of a continuum spacetime is

founded in theorems by Hawking [11] and Malament [12], which were then later

extended by Levichev [13], and most recently Parrikar [14]. These show that

the entire geometry of a (past and future distinguishing) d-dimensional manifold

(M, g) is encoded by its causal structure - up to its volume element
√
−gddx.

This missing piece cannot be reproduced from the causal order alone. We could

write this result as something like:

Causal Structure + Volume Element = Lorentzian Geometry.

For a causal set, its causal structure is encoded in our order relation, and the

missing volume element is conveniently provided by its discreteness as simply the

number of elements in a given region. This fantastic result motivates Sorkin’s

‘slogan’ for CST:

Order + Number = Lorentzian Geometry.

Placing causality as fundamental means any manifold produced from a causal

set must have a Lorentzian metric and henceforth all manifolds discussed are

assumed to be Lorentzian unless otherwise stated.

2.2 When is a causal set a manifold?

While we know that a causal set can encode all the information to reproduce

the geometry of a manifold, this is clearly not true for all causal sets.2 We need

a notion of when we can say that a given spacetime (M, g) can be seen as an

approximation of a causal set (C,⪯). To do this we need a faithful embedding:

Definition 2.2.1. A faithful embedding of a causal set (C,⪯) into a Lorentzian

manifold (M, g) is a map f : C → M preserving causal structure such that,

x ⪯ y ∈ C ⇐⇒ f(x) ⪯ f(y) ∈ M,

and such that the image f(C) is uniformly distributed in M with respect to

its volume measure. In this context we define that x ⪯ y ∈ M if and only if

x ∈ J −(y).

By uniformly distributed we mean that the number of elements embedded in

any given region of the manifold depends only on the volume of the region.

Definition 2.2.2 (Manifold-like). A manifold (M, g) is said to be ‘a good

approximation’ of a causal set (C,⪯) if there exists a faithful embedding from C
to M. The causal set can then be called manifold-like.

2A single element by itself fulfils the axioms of a causet.
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For this to be useful, and for the idea that spacetime is emergent from a

causal set to have any merit at all, we cannot have vastly different manifolds

approximating the same causal set. This leads us to the ‘Hauptvermutung’ or

central conjecture of CST:

Conjecture 2.2.1 (Hauptvermutung). If a causal set (C,⪯) can be faithfully

embedded into two Lorentzian manifolds (M, g) and (M′, g′), then the two

manifolds are ‘approximately isometric’.

Here ‘approximately isometric’ roughly means that the manifolds can differ

at scales smaller than the embedding scale. As discussed, in causal set theory our

discreteness scale is the Planck length, so manifold’s whose geometry differs only

at levels smaller than the Planck scale can be approximations of the same causal

set. This is fine as we don’t expect these scales to be physically meaningful.

This conjecture is not proven, and indeed a large part of the problem is

defining rigorously what this ‘approximately isometric’ actually means. [15].

However, the Hauptvermutung is supported by a large and growing body of

evidence, which comes in the form of finding ‘order invariants’ on a manifold-like

causal set which limit to manifold invariants in the continuum approximation.

Such results include dimension [16][17], distance [18][19], topology [20], and

curvature [21].

2.3 Which causal sets are manifolds?

While we now have a definition for whether a given causal set is ‘manifold-like’,

it is practically very difficult to determine when this is the case. Furthermore, we

also have the problem that the vast majority of causets are highly non-manifold-

like. The most significant entropic contribution to the sample space Ω of causal

sets comes from a specific class of non-manifold-like causets called the Kleitman-

Rothschild (KR) causets, consisting of only three ‘moments in time’. Given a

random n-element causal set, the probability of it being a KR causet actually

goes to 1 as n → ∞ [22].

For CST to be a successful theory we must recover general relativity in the

continuum limit, therefore manifold-like causets are the only ones we want to

consider. We thus have two questions:

1. How can we overcome the domination of non-manifold-like causal sets to

the entropy of the sample space?

2. How can we find the manifold-like causal sets which we hope to consider?

The answer to the first question we hope lies in the dynamics, which we will

return to later. The answer to the second question is a method for constructing

causal sets corresponding to a given manifold called sprinkling.
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Sprinkling

The idea of a sprinkling is that we generate our causal set by simply picking a

subset of points from a given manifold M and appending them to a causal set C,
along with inherited order relations ⪯ from the causal structure of the manifold.

The preservation of causal structure means that any C constructed this way is

embeddable in M, but there is subtlety in how we must pick our points. For this

to be a faithful embedding the image f(C) must be uniformly distributed in M.

A tempting but misguided approach is to fix a Lorentz frame, split M into a

lattice, and pick points regularly along it. In this frame, f(C) would (näıvely) be

uniformly distributed in M. However, by boosting our frame we would effectively

‘stretch out’ our lattice such that it was no longer uniform. By picking points in

this way we would have unintentionally produced a causal set approximated by a

manifold without isotropy!

We thus need to find some process of picking points that preserves Lorentz

invariance. The answer to this turns out to be a Poisson process. By randomly

sprinkling our points according to a Poisson distribution, we have that the

probability of picking n points from a region of M with volume V is:

Pn(ρ, V ) =
(ρV )n

n!
e−ρV , (2.1)

where ρ is a parameter called the density of the sprinkling. On average, the

number of points in a volume V is then given by ⟨N⟩ = ρV .

While a Lorentz transformation on such a configuration would still change

its microstate, its macroscopic properties are unchanged in that we still have

our uniform distribution of ⟨N⟩ = ρV . We could say that our transformed

configuration is ‘equally random’. By picking our points this way, we have

ensured that our embedding is faithful and that the resultant manifold will be

Lorentz invariant.

It is important to note that we can take many different sprinklings of the

same manifold M. Clearly, sprinkling at different densities will produce causal

sets with different cardinalities, and they will each be ‘approximately isometric’

to M at different embedding scales. More than this, due to the random nature

of sprinkling we can produce many different causal sets from the same density of

sprinkling! In this sense there is a whole class [C(M, ρ)] of causal sets that can

be faithfully embedded in M at embedding scale ρ. This is not at odds with the

Hauptvermutung, which says that the same causal set cannot approximate two

distinct manifolds, not that a manifold cannot be approximated by different causal

sets. In line with the Hauptvermutung we could define the class of manifolds

which are approximately isometric above some scale ρ as [Mρ] and summarise

this result as: ‘[C(M, ρ)] is well approximated by [Mρ]’.

Coarse Graining

It has been shown that there are some small causal sets which cannot be embedded

in d-dimensional Minkowski space Md [17]. This is problematic as this means

11



that by rearranging a small number of points in a manifold-like causal set we

can make it unembeddable. As we would like a theory that is invariant under

small quantum fluctuations, this indicates that the condition for a causal set to

be approximated by a manifold may be too strong. Instead, it may be that the

fundamental structure of spacetime is non-manifold-like, but we may regardless

recover the continuum by in some sense ‘zooming out’. For ρ < ρ′ we can see

C(M, ρ) as a ‘zoomed out’ version of C(M, ρ′). In analogy with this, for a large,

non-manifold-like causet C′, it sometimes possible to find some subset C ⊂ C′
such that C is well approximated by some manifold M even though C′ is not.
The process of finding such a subset is called coarse graining.

2.4 Representations and Analogues

While for most of this text we will be working in the continuum limit, it will be

useful going forward to have some visualisation of what a causal set might look

like on the scale of elements. We will also introduce some terminology and causal

set analogues to spacetime structures.

Hasse Diagrams

A given causal set is entirely described by its elements and its order relations, but

for large causets it would be extremely tiresome to explicitly and exhaustively

write out every single order relation. Instead, diagrammatic representations of

causal sets called Hasse Diagrams are often employed.

Figure 2.1: The Hasse Diagram of a causal set generated by sprinkling into M2.

Image credit [7].
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In these diagrams, each point corresponds to an element of the causet, and

the lines represent the causal structure. As we see in Figure 2.1, the only causal

relations drawn are links between ‘causally adjacent’ elements, where we interpret

the lower of the two points of the link to ‘precede’ the upper point. We can infer

all other causal relations from transitivity.

Terminology

For a given Causal Set C we can define the following:

Definition 2.4.1 (Link). A link is an irreducible order relation between two

elements of C. Formally, for any x, y ∈ C, we say that there is a link between x

and y if x ≺ y and there exists no z ∈ C such that x ≺ z ≺ y. We denote this

x ≺∗ y.

Definition 2.4.2 (Ancestor and Descendent). If x ≺ y then we say that y is a

ancestor of x and that x is a descendant of y.

Definition 2.4.3 (Past and Future). The future of x is the set of all descendants

of x, Future(x) = {y ∈ C |x ≺ y}. The past of y is the set of all ancestors of

y, Past(y) = {x ∈ C |x ≺ y}. We can then give an equivalent definition for the

causal interval as I(x, y) = Future(x) ∩ Past(y).

Definition 2.4.4 (Chain and Path). A chain is a subset of C such every pair

of elements is causally related. An n-chain is a chain consisting of exactly n

elements. A path is a chain such that no element has more than one link to its

past or to its future.

Definition 2.4.5 (Antichain). An antichain is a subset of C such that each

element is causally unrelated to each other. An inextendable antichain is an

antichain that is maximal in C, i.e. we can add no more elements of C to it and

it remain an antichain.

Analogues

A chain is the analogue of a timelike path in GR, and an obvious question is

how might we expect a particle to move along such a path. In GR, particles

follow geodesics and their future is determined by their initial position and

velocity. However, in CST, non-locality means that we cannot exactly define the

velocity of a particle at a given point, and particles are expected to be subject

to random acceleration called swerves away from the geodesic.3 These swerves

have astrophysically testable phenomenology and have been investigated in the

context of explaining high energy cosmic rays [23].

The analogue to a spacelike hypersurface4 in GR, is an inextendable antichain

A ⊂ C. By its definition, all other elements of C must lie either in the past or

3The analogue of a timelike geodesic in CST is the longest chain between two points.
4This is an example of a ‘Moment in Time Surface’ for globally hyperbolic spacetimes.

13



future of A. However, unlike spacelike hypersurfaces, this is not equivalent to

decomposing the space into a past and future due to the presence of ‘missing

links’ which bypass the antichain. If we identify A as the ‘present time’ then

these missing links would be equivalent to a past event influencing a future event

without ever being in the ‘present’. As a result, defining a ‘fixed time’ required by

the Hamiltonian in the canonical approach to quantum mechanics is not possible

and instead the ‘sum over histories’ interpretation is needed [24]. While not

perfect, our analogue is still useful, and a process of ‘thickening’ an antichain A
(which itself contains no causal relations and hence no information other than its

cardinality) by adding elements near its past an future, can be seen as a rough

analogue of taking a time-measurement [25].
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Chapter 3

Dynamics

So far we have described what a Causal Set is and how we might hope to recover

a continuous spacetime from it. We now need a model for how things might

change on a causal set. Without such a notion, our causet would produce a

spacetime which looked just like a manifold but where there were no equations of

motion and nothing could ever happen.

It will first be useful to describe the setting on which we want our dynamics to

take place. This is the set of causal sets, or sample space Ω. Whether we consider

all causal sets in that sample space depends on the situation. When modelling the

beginning of the universe we only want to consider past finite causets, whereas

when investigating the discrete action it is convenient to restrict to sets with a

fixed number of elements [24]. While it would be extremely convenient to restrict

our sample space to only manifold-like causal sets, there is no a-priori reason to

do so, and we instead hope that the unwanted non-manifold-like causets dynamics

will be suppressed by the dynamics.

As we want to reproduce quantum mechanics, we ultimately expect the

dynamics on Ω to be governed by some ‘quantum measure’ µ. In contrast with

classical measure theory, we must we replace the ‘countable additivity’ axiom

of the probability measure with a ‘quantum sum rule’ [26]. This is due to

interference between histories, and such a measure is necessary for governing

transition amplitudes in quantum sequential growth models. Unfortunately,

quantum measure theory is still very much in its infancy, and even if we had a

covariant, causal quantum measure we may still not be able to interpret it [27].

As such we need to start with a simpler case.

3.1 Classical Sequential Growth

The most notable successes in building a first principles dynamics1 for CST are

the sequential growth models. In particular, the stochastic Classical Sequential

Growth (CSG) model, as first proposed by Sorkin and Rideout [28], has been an

1This method of working only from the fundamental causal relations is the so called
‘bottom up’ approach.
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important step. Roughly speaking, the idea of these is to ‘grow’ a causal set,

element by element, in a process that follows certain rules. On our sample space

Ω, we define a natural partial order by saying one causet C ∈ Ω is related to

another causet C′ ∈ Ω if C ⊂ C′. This partial order of causal sets is called the

Poscau.

Figure 3.1: A representation of the Poscau, including all causal sets of cardinality

up to four, along with their order relations. Image Credit: [29].

The Poscau can be represented by a ‘Hasse diagram of Hasse diagrams’, as

shown in Figure 3.1, explicitly showing the relations. Starting from a single

element,2 we can ‘grow’ a causet by moving in ‘stages’ along the Poscau, with

a new element being ‘born’ into the causet at each stage, with some transition

probabilities of where to add it with respect to the other elements. The rules

that describe where this can be are summarised as:

Definition 3.1.1. (Transition Rules of CSG) [30].

1. Internal Temporality: New elements cannot be born to the past of an

existing element.

2. General Covariance: The probability of reaching a given causal set should

only depend on the start and end point of the Poscau. In other words it

should not matter which order elements are born.

3. Markov Sum rule: A new element must always be born. The sum of

probabilities of where to place an element in the next stage of the Poscau

must be unity.

4. Bell Causality: The probability of a new element being placed at a given

point in a causal set depends only on the elements in the past of that point.

2Note that we can start from any size causet, but starting from one is most demon-
strative.
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The ‘birth’ of each new element can be understood in this context as the

passage of time, which is an interpretation enforced by condition of internal

temporality. General covariance is the causet equivalent of diffeomorphism

invariance. The condition of Bell Causality, named after the paradoxically non-

local Bell inequalities, enforces a sense of locality to the growth. Philosophically,

this picture of accumulating events feels more natural as a reflection of how we

perceive time than the ‘Block Universe’ of GR [27]. Even with these restrictions,

there is still a large choice of growth parameters which result in different causal

sets, and without borrowing concepts from the continuum we can proceed no

further. However, this has not prevented further insights being drawn from these

models.

It has been shown that, in a universe evolved from this model, every element

must have a descendant [31]. As such, the causal set will always continue to

grow, even after an extreme collapse such as the big crunch or at the centre

of a black hole, in a phenomenon dubbed as ‘Causal Immortality’ [32]. In line

with this idea, certain choices of parameters have yielded causal sets reminiscent

of ‘Big Bounce’ cosmologies [33]. In this situation, there is a continual cycle of

growth and collapse, where after each ‘big bang’ after a collapse we will have a

new ‘renormalised’ set of parameters. From this perspective, the answer to the

fine-tuning problem could potentially lie in some kind of cosmological natural

selection [34], or simply in the fact that there have been so many cycles that

eventually some universe had to be conducive to life.

It has also been shown that, while causal sets produced by these models

are generally non-manifold-like, they are nothing like KR causets [30]. This is

significant as ‘proof of concept’ that the entropic domination of non-manifold-like

causets to the sample space can be overcome by dynamics as hoped. While we

must wait for an accepted quantum measure theory in order to have a good

chance at formulating a Quantum Sequential Growth model, this is a promising

start.

3.2 Continuum Dynamics

In contrast to the microscopic dynamics of sequential growth, we will now consider

an ‘intermediate regime’ of effective quantum dynamics based on the sum over

histories (SOH) approach to quantum mechanics. While less rigorously developed

than the canonical approach (which has been shown not to make sense from

the causal set perspective), the SOH approach promises to remedy many of the

conceptual issues that the canonical quantization brings [35], and was one of the

original motivations for CST [9]. Despite the incompatibility of the fundamental

dynamics with this approach, we hope that, as we move towards the continuum

limit,3 the dynamics will start to resemble a path integral.

When formulating CST as a path integral, each causal set acts as a history

3Strictly we speak only of a a continuum ‘approximation’ but we will use the terms
interchangeably in this context.
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with which we associate some complex amplitude. The partition function is then:

Z ≡
∑
C∈Ωn

e
i
ℏS(C), (3.1)

where Ωn is the sample space of all causets of cardinality n and S(C) is some

discrete action on a causal set. The best candidate for this, and an important

development for CST, is the discrete Benincasa-Dowker (BD) Action which we

will introduce shortly.

In order to recover GR from this the action, S(C), must be ‘slowly varying’

near the solutions to the Einstein Field Equations (EFE), and ‘quickly varying’

elsewhere [29]. The principal behind this idea is the stationary phase approxima-

tion, which is a well-regarded and widely used heuristic argument in quantum

mechanics. Here is the concept as presented by Richard Feynman [36]:

“Suppose that for all paths, S is very large compared to ℏ. One path

contributes a certain amplitude. For a nearby path, the phase is

quite different, because with an enormous S even a small change in S

means a completely different phase - because ℏ is so tiny. So nearby

paths will normally cancel their effects out in taking the sum - except

for one region, and that is when a path and a nearby path all give

the same phase in the first approximation (more precisely, the same

action within ℏ). Only those paths will be the important ones.”

This idea will be important in how we interpret our results later on.

There is hope that through this mechanism, and other path integral techniques,

we will be able to suppress not only non-manifold-like causets but also undesirable

spacetimes.

For the former there has been success in using the discrete action to show that

a class of non-manifold-like ‘bilayer causets’ is suppressed in the path integral.4

Although this is a smaller class than the dominant KR causets, it is still much

larger than the set of manifold-like causets and there is hope of generalising the

result [37].

To address the latter it is worth asking what we mean by an ‘undesirable

spacetime’. Clearly we want solutions of GR, but there is a sense in which this

is insufficient. As pointed out in [27], spacetimes with boundaries or holes5 are

perfectly good solutions to the EFE, and the fact that we have not observed holes

or boundaries in spacetime is not accounted for by GR. This problem was also

acknowledged in the original paper on CST [9].

To make matters worse from a GR perspective, it is not clear what spacetimes

we should consider ‘physically reasonable’. In [38], the conditions of inextendability,

4This was shown using the Saddle Point Approximation, which is a technique often
used when dealing with sharply peaked integrals with dominant contributions coming
from the complex plane.

5Note that we are not referring to black holes which are just points of infinite
curvature.
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isotropy, global hyperbolicity, and hole-freeness were listed as the most common

assumptions for an acceptable universe, but these cannot be taken as axiomatic

and are largely motivated by philosophical considerations. Another condition,

proposed by Hawking, for a spacetime to be considered physically reasonable is

causal continuity, which informally is the condition that as you move around a

manifold, your causal past shouldn’t be able to suddenly change as a new region

of a manifold is made accessible or inaccessible to you [39].

While we expect the fundamental structure to be the Causal Set, these

considerations are important as we hope to use what we know about the continuum

in order to draw insight in CST, rephrasing these GR concepts in terms of causets

to produce a dynamics.

The effect of dropping some of these conditions on the action of a spacetime,

and hence contribution from that type of spacetime to the path integral, is heavily

explored in Chapters 4 through 8.

Before we can do this, however, we must introduce what the action on a

causal set actually is.
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Chapter 4

Action and Conjectures

4.1 The d’Alembertian

The first step towards a causal set action is defining a discrete d’Alembertian on

a fixed manifold-like causal set.

The continuum d’Alembertian, □, is a local differential operator, and as such

its definition at a given point x ∈ M relies finding the limit of some quantity as

the distance between x and its ‘nearest neighbours’ y ∈ M goes to zero. This

is at odds with the fundamental nature of CST which has been shown to be

radically non-local on the Planck scale.

To demonstrate this, we consider a sprinkling into infinite Minkowski space

C(Md, ρ). The CST analogue of ‘nearest neighbours’ is links but, considering the

causal future of any x ∈ C, any elements ‘hugging the light cone’ will be only

one Planck unit of time apart from x, and hence linked to x, however spatially

separated it is. Every x is therefore linked to infinitely many other elements of

C. This non-locality is an unavoidable result of having a theory which is both

discrete and Lorentz invariant [40].

In order to recover locality in the continuum limit, these non local contribution

must in some sense cancel each other out.

The first proposal for a discrete d’Alembertian was given for a causal set

approximated by 2D Minkowski space [41][42], and was later generalised to a

d-dimensional family of operators [21][43].

The 2D discrete d’Alembertian for a function ϕ : C → R is given by:

B̂(2)ϕ(x) :=
1

l2

−2ϕ(x) + 4
∑

y∈L0(x)

ϕ(y)− 8
∑

y∈L1(x)

ϕ(y) + 4
∑

y∈L2(x)

ϕ(y)

 ,

(4.1)

for any x ∈ C, and where l is some length. The sets Lk(x) are defined as the set

of elements y ∈ Past(x) such that |I(x, y)| = k, i.e. there are k elements strictly

between x and y. For a non-manifold-like causet, the factor of 1
l2 is just so that

B̂(2)ϕ has the correct dimensionality, and the value of l is unimportant. However,
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for a two dimensional manifold-like causet C(M, ρ), we must use l = ρ−
1
2 .

While we could, in theory, apply this operator to any real-valued function on

any causal set, it was constructed with the continuum in mind, and the coefficients

are designed such that we will reproduce the continuum d’Alembertian for a 2D

manifold-like causal set. The fact that this is an alternating sum gives indication

into how the non-local contributions might cancel each other out.

To investigate how successful this is, we would like to show that, given some

scalar field on a manifold, ϕ : M → R, the value of B̂(2)ϕ(x)1 for a corresponding

sprinkled causal set, C, is close to □ϕ(x) for any given point x ∈ M.2 For any ρ,

we have a whole class [C(M, ρ)] of causets which are well approximated by M,

each generally giving a different value of B̂(2)ϕ(x). While the variance between

the values of B̂(2)ϕ for different sprinkling is very important, we would also like to

define a quantity that depends only on the manifold, scalar field, and sprinkling

density.

For this purpose, we associate a random variable B̂(2) to each class [C(M, ρ)]

based on the probability of finding some value of B̂(2)ϕ(x) when we randomly

generate a sprinkling. We are then interested in the expected value ⟨B̂(2)ϕ(x)⟩.
In fact, we indeed find that the non-local contributions cancel out and the

limit of the expected value is:

lim
ρ→∞

⟨B̂(2)ϕ(x)⟩ = □ϕ(x), (4.2)

for M = M2 and provided ϕ is of compact support with x not on the past

boundary of that support [44]. We can similarly define a discrete d’Alembertian,

B̂(4), for which we find an equivalent result for M = M4 [21].

By recovering the continuum d’Alembertian we have restored a sense of lo-

cality to CST. It is noteworthy that this locality is not expected to fully persist

as we continue to increase the scale and, in fact, this ‘cosmic non-locality’ is

interpreted as the source of dark energy [41].

Under certain additional assumptions to ensure that the non-local contribu-

tions do not contribute in the limit, this result can be generalised to arbitrary

dimension and curvature. We find, for a d-dimensional manifold M with Ricci

scalar R(x), that:

lim
ρ→∞

⟨B̂(d)ϕ(x)⟩ = □ϕ(x)− 1

2
R(x)ϕ(x), (4.3)

where B̂(d) is the d-dimensional discrete d’Alembertian [45].

1For the sake of brevity, we are using ϕ for both the scalar field on M and the
corresponding function on C. In the latter case, we really mean ϕ ◦ f , where f is a
faithful embedding of C into M.

2To ensure x ∈ M is in the sprinkled causal set, we can just add it by hand.
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4.2 The Action

Equation 4.3 shows us that our B̂(2) operator is not generally the d’Alembertian,

but instead actually encodes the curvature of the space. In fact, if we substitute

ϕ(x) = −1 into equation 4.3 then we see that the RHS is
R(x)
2 . To consider the

LHS, we substitute ϕ(x) = −1 into equation 4.1, and identify:

Definition 4.2.1 (Discrete Ricci Scalar).

R(2)(x) :=
1

l2
(4− 8N0(x) + 16N1(x)− 8N2(x)) , (4.4)

where x ∈ C and Nk(x) = |Lk(x)|.

In analogy with the Einstein-Hilbert Action:3

1

ℏS
(d)
EH :=

1

ld−2
P

∫
M

ddx
√
−g

1

2
R(x), (4.5)

we sum over all elements in the causal set to define:

Definition 4.2.2 (2D Benincasa-Dowker Action).

1

ℏS
(2)(C) :=

∑
x∈C

l2
1

2
R(2)(x) = 2N − 4N0 + 8N1 − 4N2 (4.6)

where N = |C|, Nk =
∑

x∈C Nk(x).

The length l2 can be seen as an analogue to the volume element d2x
√
−g, and we

notice that the prefactor of l2−d
P seen in the Einstein-Hilbert action is equal to

unity in two dimensions. Also note that the action is dimensionless, as we would

expect.

The variance between the value of the action on different sprinklings of a

manifold is very important to the path integral. We expect that physically

unreasonable manifolds will have large variance and hence there will be large

oscillations when integrating over the different sprinklings, causing them to cancel

each other out. However, we again seek a quantity that does not depend on our

specific choice of sprinkling.

The Discrete Action is given by the random variable Ŝ
(2)
ρ associated with the

probability of getting a specific value of S(2)(C) for a random sprinkling C(M, ρ).

Remembering Equation 2.1, the probability of picking k points from a region of

M with volume V with is:

Pk(ρ, V ) =
(ρV )k

k!
e−ρV .

The expectation of this random variable is then given by:

1

ℏ⟨Ŝ
(2)
ρ (M)⟩ = 2⟨N⟩ − 4

∫∫
ρ2P0(ρ, Vxy) + 8

∫∫
ρ2P1(ρ, Vxy)− 4

∫∫
ρ2P2(ρ, Vxy)),

(4.7)

3This is the cosmological convention.
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where integral bounds and volume elements have been omitted for brevity, and

Vxy is the volume of the causal interval, A[x, y] = J +(x) ∩ J −(y). The bounds

and volume elements are explicitly shown in Equation 4.9.

These integrals are the continuum equivalent of summing over the Lk sets, as

in Equation 4.1. We see that the coefficients are exactly as in the 2D Action.

Expanding out, we have that:

1

ℏ⟨Ŝ
(2)
ρ (M)⟩ = 2ρV − 4ρ2

∫∫ (
e−ρVxy − 2(ρVxy)e

−ρVxy +
(ρVxy)

2

2
e−ρVxy

)
,

(4.8)

where V := Vol(M), and we recall that ⟨N⟩ = ρV . To make this more concise,

we define an operator Ô2 := 1 + 2ρ d
dρ +

1
2ρ

2 d2

dρ2 . We then write the action, now

explicitly showing the integral bounds and volume elements, as:

Definition 4.2.3. (2D Mean Discrete Action (MDA)) [46]4.

1

ℏ⟨Ŝ
(2)
ρ (M)⟩ = 2ρV − 4ρ2

∫
M

d2x
√

−g(x)

∫
M∩J+(x)

d2y
√

−g(y)Ô2e
−ρVxy ,

(4.9)

We note that this can be formulated for general dimensions d ≥ 2, but d = 2

and d = 4 are the most explored.

We will give a more detailed discussion of the properties of this action and

ways to calculate it later. First, we want to know to what extent this is similar

to the Einstein Hilbert Action.

Conjecture 4.2.1 (Benincasa-Dowker Conjecture). The continuum limit of the

MDA, for any spacetime in d dimensions, is the Einstein Hilbert action SEH up

to some boundary terms [44].

4.3 Boundary Terms

The specific form of the conjecture is dependent not only on the type of boundaries

we see in the manifold, but also on more general properties like global hyperbolicity,

causal convexity, and causal discontinuity. To properly structure an investigation

of the boundary terms of the action under different assumptions about M, we

split the problem into cases.

4.3.1 Globally Hyperbolic Spacetimes

The first is the case that M is globally hyperbolic and of finite volume. This is

the most explored case, and we have seen that global hyperbolicity is one of the

most common assumptions for a ‘physically reasonable’ spacetime.

4Note that [46] differs from the correct action by a renormalisation factor of 2.
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In this case, the boundary ∂M will be achronal, meaning that it is nowhere

timelike.5 We can therefore split the boundary into a past and future ∂M =

Σ− ∪ Σ+, where Σ± is defined as the subset of ∂M through which all future(+)/

past(−) directed causal curves must leave M.6

The conjecture in this case is:

Conjecture 4.3.1 (M Globally Hyperbolic).

lim
ρ→∞

1

ℏ⟨Ŝ
(d)
ρ (M)⟩ = 1

ld−2
P

(∫
M

ddx
√

−g(x)
R
2
+ Vold−2(J)

)
, (4.10)

where J := Σ− ∩ Σ+ is the joint and Vold−2(J) is its (co-dimension 2) volume

[44].

Evidence

There is considerable evidence for Conjecture 4.3.1. Much of this evidence is

given for the case of the Alexandrov interval M = A[p, q].

When p, q ∈ Md, the joint for an interval of timelike height7 τ is a (d− 2)-

sphere, Sd−2, of radius
τ
2 . It was shown in [47] that, for all dimensions up to

d = 16, the action on M has the expected joint term Vol(J) = (τ2 )
d−2Sd−2. In

2D, this joint contribution presents itself as Vol(S0) = 2. This is independent

of the size of the interval, as first derived in [46], where the conjecture was also

shown to hold for the flat 2D triangle and cylinder.

The conjecture has been further supported by calculations for manifolds with

curvature. In conformally flat spacetime the expected contributions were found

for the diamond in two and four dimensions, and for the 2D slab and triangle

[48]. There is also evidence in the case of small causal diamonds with arbitrary

curvature [49].

The Joint Interpretation

The interpretation for why we get this joint contribution is motivated by the

invariance of the action under order reversal. The argument made in [48] goes as

follows:

In Equation 4.1 in our derivation for the action, we defined Lk(x) such that

it counted order relations to the past of x. Doing it this way is called the

retarded formulation. However, we could have equally defined Lk(x) to count

order relations to the future of x, which is called the advanced formulation.

In the retarded formulation, we argue that any x with at least three order

relations preceding it, as used for the 2D action (Equation 4.6), will provide the

‘correct’ contribution to the action. As ρ → ∞, the only elements which will not

5Note that while finite volume and global hyperbolicity implies achronality, the
reverse is not true.

6We can also define these in the presence of timelike boundaries but their union will
not give the whole of ∂M.

7Timelike height means the proper time between event p and event q.
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provide the correct contribution are those on the past boundary Σ− as there is

no ‘space’ under those elements.

Similarly we can argue that in the advanced case it is only the elements on

the future boundary which do not give the correct contributions. However, as the

action is invariant under changing formulations, we argue that the only elements

that potentially give the ‘wrong’ contribution are those in both Σ+ and Σ−, i.e.

the joint. It is argued that the elements here in some sense do not have enough

space to behave correctly.

Boundary Terms for GR

In general relativity we must also consider boundaries. When formulating the

Einstein Hilbert action on a manifold with a boundary we must include a Gibbons

Hawking York (GHY) boundary term to ensure we yield the correct field equa-

tions [50]. While, from Conjecture 4.3.1, we don’t expect the MDA to include

spacelike boundary contributions, there has been success constructing a causal

set analogue that approaches the spacelike GHY term in the continuum limit [47].

Furthermore, connections have been made between the joint contribution and

a certain formulation of the GHY null boundary term [51]. These results help

further the assertion that the MDA truly corresponds to the Einstein Hilbert

action.

From here on, we shall only consider manifolds that are subsets of Minkowski

space M ⊂ Md.

4.3.2 Non-Globally Hyperbolic Spacetimes

For the case that M is not globally hyperbolic, the situation is more complicated

as we must now consider regions which are not causally convex. To formally

define causal convexity, we need to define a new type of causal interval.

So far, our definition of A[x, y] has enforced that it is a subset of M. It will

be useful to define a new causal interval Ã[x, y] for any two points x, y ∈ M,

which is just the normal causal interval when we treat x and y as points in Md.

This can include points outside of M, in the ambient Minkowski space (see

Figure 4.1). We then have that A[x, y] = Ã[x, y] ∩M, and we can now define

causally convex:

Definition 4.3.1 (Causally Convex). Let M ⊂ Md, then we say that M is

causally convex if, for any x, y ∈ M, we have that Ã[x, y] ⊂ M.

So, a manifold is not causally convex if some causal curve can leave it and

come back in, as shown in Figure 4.1. We can then define the poke-over as the

subset Ã[x, y]\A[x, y]. We denote the volume of the poke-over region by θxy.
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Figure 4.1: A causally non-convex region labelled with Cartesian coordinates. A

causal interval A[x, y] is shown, bounded by the green line and the t-axis. The

corresponding interval Ã[x, y] is the region bounded by the green and red lines.

With this in mind, when considering some causally non-convex region M we

may make one of two assumptions:

Definition 4.3.2 (Regimes).

1. We consider causal sets C sprinkled from Md. When defining the action we

then define a link (x ≺∗ y) to be such that x and y are both in M and

Ĩ(x, y)8 ⊂ C(Md, ρ) is empty. When deriving the MDA this way we use

Vxy = Vol(Ã[x, y]), which does include the volume of the poke-over. We

interpret this as the manifold actually being embedded in Minkowski space,

and call this the embedded regime.

2. We consider causal sets C sprinkled only from M. When defining the action

we then define a link (x ≺ ∗ y) to be such that x and y are both in M
and I(x, y) ⊂ C(M, ρ) is empty. When deriving the MDA this way, we use

Vxy = Vol(A[x, y]), which does not include the volume of the poke-over. We

can interpret this as the manifold being all that there is, with no ambient

region for causal curves to pass through. We call this the isolated regime.

Timelike boundaries

Numerical simulations have indicated that for flat 2D manifolds with timelike

boundaries the action will diverge in the continuum limit [44]. We make a

conjecture for each regime:

8We define Ĩ(x, y) analogously to Ã[x, y].
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Conjecture 4.3.2 (Timelike Boundaries). For any 2D Lorentzian manifold M
in the presence of timelike boundaries of total timelike length T , we have that:

(a) Embedded Regime:

lim
ρ→∞

1

ℏ
1
√
ρ
⟨Ŝ(2)

ρ (M)⟩ = a0T. (4.11)

(b) Isolated Regime:

lim
ρ→∞

1

ℏ
1
√
ρ
⟨Ŝ(2)

ρ (M)⟩ = b0T, (4.12)

where a0 and b0 are dimensionless constants.

We thus expect the action to diverge as T
√
ρ in both regimes, but with a

different prefactor in each case. We note that while Conjecture 4.3.1 was made

for general dimensions, due to lack of evidence we only make these conjectures

in 2D. This is relatively unexplored in either regime as the presence of timelike

boundaries means the integral must be split into many parts depending on relative

position of x and y, making them quite complicated. We will see in Chapter 6

that calculations are especially difficult for the isolated regime. In that chapter,

for the flat 2D case, we will provide analytic evidence for Conjecture 4.3.2(a) and

numerical evidence Conjecture 4.3.2(b).

Non-Timelike Divergence

A manifold can fail to be globally hyperbolic without timelike boundaries. Ex-

amples of these are the ‘Null Doughnut’, ‘L-Piece’ and 2D ‘flat trousers’, which

will be discussed in depth in Chapter 7. A result for the flat trousers in [46]

found that the action diverged as log ρ, but there is no pre-existing conjecture

associated to regions of this form and as such we will save further remarks for

later.
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Chapter 5

Properties of the action

Now we have some indication of what results we expect to get for a given manifold,

let’s discuss some properties of the action and how we actually test it.

For the purposes of making calculations clearer later on, let’s break down

Definition 4.2.3 into more manageable parts.1 We will also simplify our notation

for the 2D MDA on some manifold M by dropping the prefactor of 1
ℏ , referring

to it simply as ⟨S(M)⟩, and defining:

Yρ(x) :=

∫
M∩J+(x)

d2y
√

−g(y)e−ρVxy , (5.1)

Xρ :=

∫
M

d2x
√

−g(x)Yρ(x). (5.2)

We then have that:

⟨S(M)⟩xy = 2ρV − 4ρ2Ô2

∫
M

d2x
√

−g(x)

∫
M∩J+(x)

d2y
√

−g(y)e−ρVxy

= 2ρV − 4ρ2Ô2

∫
M

d2x
√

−g(x)Yρ(x)

= 2ρV − 4ρ2Ô2Xρ, (5.3)

where we notice that Ô2 is independent of x and y, and hence the operator can

be applied before or after either of the integrals. The subscript xy indicates that

the action was calculated integrating over y and then x.

The Ô2 operator can be seen as killing off certain powers of ρ to avoid

divergences2, and its location in a calculation can have practical effects on

how easily Mathematica can evaluate certain integrals. We call this method of

integrating y and then x the standard method.

From a functional perspective, the calculation of Xρ for a given manifold M
is simply the integral of e−Vxy over all pairs of causally related points x, y ∈ M.

1Many texts will break the MDA down into ⟨Ŝ(M)⟩ =
∫
M Lρ(x). We break it down

a slightly different way as this is more fitting with a different technique for calculating
the action that will be introduced later.

2It can be easily seen that ρ−1 and ρ−
1

2 are annihilated by Ô2.
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Once we have Xρ, the rest of the pieces essentially boil down to regulating the

divergence to produce the right limit.

A key point moving forward is noticing that there are actually many ways we

could integrate over all causally related points x, y ∈ M, and hence finding Xρ,

which do not require us use the standard method.

An obvious other approach is to swap the order of the x and y integrals and

instead calculate:

Xρ =

∫
M

d2y
√

−g(y)

∫
M∩J−(y)

d2x
√

−g(x)e−ρVxy , (5.4)

which we will call the reverse method. However, there is little reason to believe

that calculating the integral this way would have any practical advantages over

the standard method.

5.1 The Diamond

For a quick example of how the MDA can be calculated using the standard method

we will re-derive the result for the 2D flat causal diamond = A[p, q] ⊂ M2, as

seen in Figure 5.1.

Figure 5.1: The 2D causal diamond labelled with null coordinates. The Joint

is indicated by the red dots, and for some x ≺ y ∈ , ∂J +(x) and ∂J −(y) are

shown in green.

We work with null coordinates centred at point p as this best fits the symmetry

of the problem. We clearly have Vxy = (uy − ux)(vy − vx), and hence:

Yρ(x) =

∫ L

ux

duy

∫ R

vx

dvy e
−ρ (uy−ux)(vy−vx) (5.5)
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is the contribution of from every interval A[x, y] for fixed x and,

Xρ =

∫ L

0

dux

∫ R

0

dvxYρ(x) (5.6)

is the sum of the contributions from every x ∈ . Putting it together we have:

⟨S( )⟩xy = 2ρLR− 4ρ2Ô2

∫ L

0

dux

∫ R

0

dvx

∫ L

ux

duy

∫ R

vx

dvy e
−ρ (uy−ux)(vy−vx)

= 2ρLR− 4ρ2Xρ

(now turning to Mathematica)

= 2− 2e−LRρ. (5.7)

This is the flat case so R(x) = 0, and we indeed find the joint term is equal

to 2 as expected from Conjecture 4.3.1, with the 2e−LR term clearly going to

zero as ρ → ∞.

It has been noted that when calculating the action this way it is far from

obvious that the value of 2 is actually coming from the joint, and it was suggested

that by finding some way to perform the x and y integrals simultaneously we

may be able to draw more insight from the result [48].

5.2 Fixed Intervals

A novel method for calculating Xρ is motivated by noticing that there is a

significant amount of symmetry in the calculation in Equation 5.7. Remembering

that we are working in flat space, so
√
−g = 1, we notice the contribution to Xρ

from any given interval, A[x, y] ∈ , is dependent only by the relative positions

of x and y. This is a form of translation invariance.

Definition 5.2.1 (Fixed Interval). For some manifold M ⊂ Md with coordinate

chart {xµ} and some constant c ∈ Rd, we define Wc := {Ã[x, y] ⊂ Md | yµ−xµ =

cµ for x, y ∈ M}. We call Wc the interval set and c its defining vector. A fixed

interval is an element i ∈ Wc.

Notice that all fixed intervals of defining vector c have the same volume,

Vc := Vol([i]c), where [i]c is just any representative ofWc. We may thus decompose

the set of Alexandrov intervals in M into sets of fixed intervals Wc. For each

value of c we also want a notion the size of Wc.

Definition 5.2.2 (Volume of Realisation). For a manifold M, the realisation set

on that manifold with defining vector c ∈ Rd, is given by Zc := {x ∈ M| x+ c ∈
M}. We then define the volume of realisation to be, a(c) := Vol(Zc). Clearly,

each point x ∈ Zc corresponds to a unique fixed interval Ã[x, x + c] ∈ Wc. In

this way, the volume of realisation is a measure of the number of fixed intervals

of defining vector c which we can fit into M, as shown in Figure 5.3.
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Figure 5.2: For a fixed interval of

defining vector c = (u, v), as shown

on the left, the volume of realisation

can be easily verified as a(c) = (L−
u)(R− v) for the diamond, as shown

on the right.

Figure 5.3: A demonstration of the

ways a given fixed interval fits into

the realisation set in the diamond.

For any x in the realisation region,

we see that the corresponding y is

indeed inside the diamond.

Since all i ∈ Wc have exactly the same volume, they give exactly the same

contribution to the action. The contribution from the whole of Wc is then just

the contribution from one fixed interval multiplied by the volume of realisation.

We can hence write:

Xρ =

∫
c∈Rd

a(c)e−ρVc . (5.8)

We call this method of decomposing the integral the weighted sum method.

We will put a subscript w on actions calculated with this method.

Diamond as a Weighted Sum

We will now show how we can calculate the action on using this technique.

In null coordinates, it is clear from Figure 5.1 that only fixed intervals with

defining vector c = (u, v) for 0 ≤ u ≤ L and 0 ≤ v ≤ R will have non-zero area

of realisation. For such a vector, we can see geometrically, in Figure 5.2, that the

area of realisation is given by, a(c) = (L− u)(R− v). Moreover, we clearly have

that Vc = uv. Hence, Xρ is given by:

Xρ =

∫ L

0

du

∫ R

0

dv(L− u)(R− v)e−ρ u v, (5.9)

and our action is then:

⟨S( )⟩w = 2ρLR− 4ρ2Ô2Xρ

= 2− 2e−LRρ. (5.10)

We have recovered exactly the same result as with the standard method (Equa-

tion 5.7.

As this formulation of the problem doesn’t care where any given interval

is, only how often it is realised, it cannot show us that the joint contribution
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actually comes from the joint as hoped. However, it can show how different kinds

of intervals contribute to the action. By restricting the maximum size of our

defining vector to some small parameters 0 < u < ϵ, and 0 < v < δ we find that:

⟨S( )⟩w(small) = 2ρLR− 4ρ2Ô2

∫ ϵ

0

du

∫ δ

0

dv(L− u)(R− v)e−ρ u v

= 2− 2e−δϵρ − 2δ2ϵ2ρ2e−δϵρ − 2δϵρe−δϵρ + 2Lδ2ϵρ2e−δϵρ

− 2LRδϵρ2e−δϵρ + 2LRρe−δϵρ + 2Rδ2ϵ2ρe−δϵρ. (5.11)

We see that, while our subleading terms are different, we still recover the

same result in the limit of ρ → ∞, for fixed ϵ and δ.

Figure 5.4: A 3D graph of the parameter space fρ(u, v) = (L− u)(R− v)e−ρ u v

for fixed ρ = 1000. We see that the contributions come almost entirely from the

null intervals (i.e. u or v ≈ 0).

Just from inspection, it is obvious that only small intervals should contribute,

and in fact we can see it explicitly by graphing the parameter space fρ(u, v) =

(L− u)(R− v)e−ρ u v for fixed ρ, as shown in Figure 5.4. As ρ → ∞, we clearly

have that e−ρuv → 0 for any non-zero volume uv. So, for large ρ, it is only as

we take uv → 0 that we imagine some non-zero contribution to the action might

be produced. As previously discussed, elements along the (future) light cone of

a given element are the ‘nearest neighbours’, giving intuition to why it is these

kind of intervals that contribute.

It is important to note that this result is not the same as just considering

links. While ϵ, δ can be arbitrarily small, they are still assumed to be non-zero

hence big compared to the density as ρ → ∞.

In fact, remembering that the different terms of Ô2 correspond to the different

types of order intervals that we are considering, we can find the contribution

from just links to the action directly by just performing the calculations from

Equation 5.7 or 5.10 without the Ô2 operator. In this case we find that the action

diverges as ⟨S( )⟩(links) ∼ ρ.

We will later see that this dependence only on ‘small’ intervals is general and

can be used to simplify certain calculations where the upper bound of the vector

parameter c might be complicated.
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5.2.1 When can we use the weighted sum method?

The method of decomposing the set of Alexandrov intervals into sets of fixed

intervals is general in flat space, and so is the definition of the realisation set and

volume of realisation. However, it is not generally true that all i ∈ Wc will have

the same volume.

For this reason, we have only described this method in the embedded regime.

In the isolated regime, fixed intervals in a causally non-convex manifold may not

have the same volume, as we may have poke-over. Hence, in the isolated regime,

this method would only be applicable to causally convex manifolds, for which it

is equivalent to the embedded regime.

5.2.2 How do we find the volume of realisation?

For a flat manifold M, working in the embedded regime, we can use a method

called cloning to find the volume of realisation. For some defining vector c,

to find the realisation set Zc, we clone our manifold, and translate it by c,

M− c := {x− c ∈ M}. The realisation set is then just the intersection of our

clone with M, i.e. Zc = (M− c) ∩M. This is clearly equivalent to our original

definition ( 5.2.2 ). This method is illustrated in Figures 5.5 and 5.6.

Figure 5.5: An example of using the

‘cloning’ method to find the volume

of realisation for a causal diamond.

The diamond is shown in blue and

its clone is in grey. Their spatial dis-

tance from one another is the green

fixed interval with defining vector

c = (u, v).

Figure 5.6: An example of the

cloning method for an arbitrary man-

ifold. The distance between the two

manifolds is shown by the green line

between two orange dots. Its volume

of realisation is given by a.

5.3 Non-Additivity

Another important property of the action is that it is not additive. If we consider

some disjoint partition of a causal set, C = C1 ∪ C2, then the action on either

region individually is given by only considering when x, y are both in that region.
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However, when considering the action on C as a whole, we must also consider

order intervals between the two regions, i.e. x ∈ C1, y ∈ C2. Hence we have

S(C) ̸= S(C1) + S(C2) A measure of these missing contributions is given by the

mutual information between these two regions and is defined by:

MI(C; C1, C2) = S(C)− S(C1)− S(C2). (5.12)

We would like to define a measure of the mutual information between two

manifolds, not just two causets. For this purpose, we define a 2D bilocal action,

in analogy with Equation 4.6, as:

S(C; C1, C2) = 2N(C1, C2)− 4N0(C1, C2) + 8N1(C1, C2)− 4N2(C1, C2), (5.13)

where N(C1, C2) is the number of elements in C1, and Nk(C1, C2) is the number of

order intervals, I(x, y), of cardinality k, with x ∈ C1 and y ∈ C2 [46].3

For some disjoint union of submanifolds X ,Y ⊂ M, we can now define the

discrete bilocal action as the random variable M̂I(X ,Y) associated with the

causal set mutual information, analogously to how we defined the discrete action

from the 2D action. We will henceforth denote the expectation value of this as,

⟨MI(X ,Y)⟩, and refer to it as the mutual information between the two regions.

5.3.1 The Causal Set Euler Characteristic

For an obvious example of non-additivity, we can consider taking some causal

diamond and splitting it into subdiamonds.

As shown in Figure 5.7 each subdiamond is a causal diamond in its own right.

We saw in Equations 5.7 and 5.10 that the action is independent on the size of

the diamond. Hence each subdiamond will also give a contribution of 2 and so

clearly:

⟨S( )⟩ = 2

̸=
9∑

i=1

⟨S(i)⟩ = 2× 9 = 18. (5.14)

This is because we did not take into account the mutual information.

In fact, in [46], it was shown that for some partition of the causal diamond into

subdiamonds, as ρ → ∞ the mutual information between any adjacent regions

was −2 and the mutual information between any non-adjacent regions was 0.

By analysing these contributions, it was proposed that by dividing any causally

convex4 manifold M into causal subdiamonds, the action on that region as a

whole is given by:

⟨S(M)⟩∞ = 2(F − E + V ), (5.15)

3The normalisation is off by a factor of 2 in this paper.
4When working in the embedded regime, we can relax this condition to simply any

manifold without timelike boundaries.
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Figure 5.7: A causal diamond split into 9 subdiamonds by orange lines.

where F is the number of subdiamonds (or faces), E is the number of edges

between subdiamonds, and V is the number of vertices between subdiamonds.

We only include vertices which some timelike curve could traverse from one region

into another. For the case shown in Figure 5.7 we have 9 faces, 12 edges, and 4

vertices so ⟨S(M)⟩∞ = 2× (9− 12 + 4) = 2 as expected.

This is strikingly similar to the Euler characteristic for a polyhedron, and we

will henceforth call it the ‘causal set characteristic’. The fact that this seems

to be constant (i.e. ⟨S(M)⟩∞ = 2 for all globally hyperbolic 2D manifolds),

motivates a comparison of this to the Gauss-Bonnet Theorem, although it is not

believed to be related.

5.3.2 Mutual information from a Weighted Sum

It will be useful later to have some method of finding the mutual information

between two regions using the weighted sum technique.

In analogy with the realisation set we define:

Definition 5.3.1 (Mutual Information Set). For a manifold M = M1 ∪M2 and

a defining vector c, the mutual information set of for the pair of submanifolds is

given by, ZMI
c = {x ∈ M1 |x+ c ∈ M2} ∪ {x ∈ M2 |x+ c ∈ M1}.

Again, we call a(c) = Vol(ZMI
c ) the volume of realisation.

To demonstrate this, we consider a causal diamond with a ‘split’ at v = R
2

such that it is partitioned into two regions 1 and 2.
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Figure 5.8: The volume of realisation

for some defining vector c = (u, v)

where v ≤ R
2 . The split is shown in

orange.

Figure 5.9: The volume of realisation

for some defining vector c = (u, v)

where R
2 ≤ v ≤ R. The split is

shown in orange.

As we already know what the action on each of the individual regions must

be, we can calculate the mutual information:

⟨MI( 1, 2)⟩ = ⟨S( )⟩ − ⟨S( 1)⟩ − ⟨S( 2)⟩

= (2− 2e−LRρ)− (2− 2e−LR
2
ρ)− (2− 2e−LR

2
ρ)

= −2 + 4e−
1
2
LRρ − 2e−LRρ. (5.16)

To find this directly using the weighted sum method, we must split the

volumes of realisation into two cases based on parameter v of the defining vector

c = (u, v):

• Case 1: 0 ≤ v ≤ R
2

a = (L− u)v. (5.17)

• Case 2: R
2 ≤ v ≤ R

a = (L− u)(R− v). (5.18)

These volumes of realisation can be easily determined geometrically, as shown in

Figures 5.8 and 5.9.

Our integral is then given by:

Xρ =

∫ L

0

du

∫ R
2

0

dv(L− u)ve−ρuv +

∫ L

0

du

∫ R

R
2

dv(L− u)(R− v)e−ρuv, (5.19)

and hence our mutual information is given by:

⟨MI( 1, 2)⟩ = 2ρV − 4ρ2Xρ

= −2 + 4e−
1
2
LRρ − 2e−LRρ, (5.20)

where there is no total volume associated with the mutual information so we take

V = 0. We see that this method correctly reproduces the expected result from

equation 5.16.
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Chapter 6

Timelike Boundaries

Using the equipment so far discussed, we will now calculate the action on var-

ious regions with timelike boundaries in order to test Conjecture 4.3.2(a) and

Conjecture 4.3.2(b). The simplest region to do this is the causal rectangle.

6.1 The Rectangle

A causal rectangle is a manifold with two timelike boundaries (both of length

T ), and two (past and future) spacelike boundaries (both of length L).

Due to the timelike boundary, when trying to calculate the action with the

standard method, we must split the integral into several regions depending on the

relative positions of x and y. While we do not expect the length of the spacelike

boundary to effect the action, it is convenient to pick L = 2T as this minimises

the number of integration regions we must consider.

Figure 6.1: The causal rectangle is shown split integration regions of x by orange

lines.

As seen in Figure 6.1, there are three regions of x we must consider: , , .

As we will show later, we need not consider so many regions when using the
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weighted sum method. However, the weighted sum method only works in the

embedded case, and we are interested in the contribution of timelike boundaries

in both regimes. As such, it is useful to start with the standard method. We will

use Cartesian coordinates (t, z) as this best reflects the symmetry of the problem.

The volume Vxy is then given by:

Vxy = (uy − ux)(vy − vx) =
1

2
· (ty − tx − zy + zx)(ty − tx + zy − zx), (6.1)

where we used u = 1√
2
(t− z) and v = 1√

2
(t+ z).

6.1.1 Region I

Region I is just the causal triangle , shown in Figure 6.2, which is causally

convex so we can calculate this without first choosing a regime.

Figure 6.2: The causal triangle is shown in Cartesian coordinates. For two points

x ≺ y ∈ in the triangle, ∂J +(x) and ∂J −(y) are shown in green.

The action of this causal triangle is given by:

⟨S( )⟩xy = 2ρT 2 − 4ρ2
∫ T

0

dtx

∫ T+tx

T−tx

dzx

∫ T

tx

dty

∫ zx+(ty−tx)

zx−(ty−tx)

dzy Ô2e
−ρ Vxy

=
1

3
ρT 2

[
−18ρT 2

2F2

(
1

2
, 1;

3

2
,
3

2
;−T 2ρ

2

)
+24ρT 2

2F2

(
1

2
, 1;

3

2
,
5

2
;−T 2ρ

2

)
− 24ρT 2

2F2

(
1

2
, 2;

3

2
,
5

2
;−T 2ρ

2

)
−8ρT 2

2F2

(
1, 1; 2,

5

2
;−T 2ρ

2

)
+ 3ρT 2

2F2

(
1, 1;

5

2
, 3;−T 2ρ

2

)
+6
(
ρT 2 − 3

)
2F2

(
1, 1;

3

2
, 2;−T 2ρ

2

)
+ 60

]
− 12

√
2
√
ρTF

(
T
√
ρ

√
2

)
, (6.2)
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where F (x) is the Dawson Function, and pFq (a1, ..., ap; b1, ..., bq;x)) is the

generalised hypergeometric function.

This is indeed the action of the causal triangle as if we were treating it as

a manifold by itself, as well as the contribution to the action of the rectangle

when viewed as subregion of . This is because there are no points in the causal

future of x ∈ that are also in or .

As the triangle is globally hyperbolic, we expect get the usual joint contribution

of 2 in the infinite density limit. Indeed, taking a series expansion of ρ about

infinity we see the action converges as ⟨S( )⟩∞ = 2 + 2
T 2ρ +O( 1

ρ2 ), in line with

Conjecture 4.3.1.

Weighted Sum

To consider this as a weighted sum, we parameterise our defining vector as

c = (w, h), where h = ty − tx is the timelike ‘height’ of a fixed interval, and

w = zy − zx is the spacelike ‘width’. From equation 6.1, the volume is then

Vc = Vxy = 1
2 · (h

2 − w2).

Figure 6.3: For a fixed interval of

defining vector c = (w, h), as shown

on the left, the volume of realisation

can be easily verified as a(c) = (T −
h)2 for the triangle, as shown on the

right.

Figure 6.4: The causal triangle is

shown in blue with its ‘clone’ shown

in black. The volume of realisation

is labelled a.

We see from Figures 6.3 and 6.4 that the volume of realisation is only

dependent on the height of the interval, and is given by a = (T − h)2.

Our mean action is then:

⟨S( )⟩w = 2ρT 2 − 4ρ2Ô2

∫ T

0

dh

∫ h

−h

dw (T − h)2 e−ρ 1
2
·(h2−w2)

= 2
√
2
√
ρtF

(
t
√
ρ

√
2

)
. (6.3)

We see that Mathematica provides a much more compact solution using

this method and, again expanding ρ about infinity, we see the behaviour of this

function in the limit is ⟨S( )⟩∞ = 2 + 2
T 2ρ +O( 1

ρ2 ), as expected.

It is worth noting that Mathematica is unable to prove analytically that

Equation 6.2 and Equation 6.3 are the same. It turns out that moving the

position of the Ô2 operator in Equation 6.2 before the integral also gives a
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different solution which Mathematica also cannot show is analytically equivalent,

though we know that they must be. We therefore argue that they are all the

same and Mathematica is simply unable to prove it. Numerically plotting the

difference between the two solutions shows that they only differ up to a very

small error - which we can attribute to the inherent inaccuracies of floating point

calculations - further confirming the equivalence.

6.1.2 Region II

Region II, or , is causally non-convex. As such, we must choose a regime. Firstly,

we must note that the contributions we will calculate for region two, in either

regime, will not be the same as the action ⟨S( )⟩. This is because we will be

considering intervals with x ∈ and y ∈ . What we will calculate is actually

⟨S( )⟩+ ⟨MI( , )⟩, where ⟨MI( , )⟩ is the mutual information between the two

regions. We will denote our calculated quantity ⟨C( )⟩

Embedded Regime

When we do not have to account for poke-over, we see that we must split the

y integral into two regions when using the standard method. These regions are

dependent on the position of x and we call them i and ii, as shown in Figure 6.5.

Figure 6.5: The left half of the causal rectangle is shown, with the boundary

between regions I and II shown in orange. A point x in region II, along with

the boundary of its causal future ∂J +(x), is shown in green. The purple line

partitions J +(x) into regions i and ii.
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Again, our interval volume is given by Vxy = 1
2 · (ty − tx − zy + zx)(ty − tx +

zy − zx).

For clarity we write the y integral first:

Yρ(x) =

∫
J+(x)

d2y =

∫
y ∈ i

d2y +

∫
y ∈ ii

d2y

=

∫ tx+zx

tx

dty

∫ zx+(ty−tx)

zx−(ty−tx)

dzy e
−ρ Vxy +

∫ T

tx+zx

dty

∫ zx+(ty−tx)

0

dzy e
−ρ Vxy .

(6.4)

Hence, the contribution to the action from this region is given by:

⟨C( )⟩xy = 2ρT 2 − 4ρ2Ô2

∫
x∈

d2x

∫
J+(x)

d2y

= 2ρT 2 − 4ρ2Ô2

∫ T

0

dtx

∫ T−tx

0

dzx Yρ(x)

=
1

4

√
ρT

(
−2

√
ρT 2F2

(
1, 1;−1

2
, 2;−T 2ρ

2

)
−3 2F2

(
1, 1;

1

2
, 2;−T 2ρ

2

))
+
√
2πerf

(√
ρT
√
2

)
− 2

√
ρTe−

ρT2

2 ,

(6.5)

where erf(x) is the error function.

Expanding this result around ρ at infinity, we see this contribution diverges

as:

⟨C( )⟩∞ = −1 +
1

2

√
π

2
T
√
ρ+O(

1

ρ
). (6.6)

Isolated Regime

For the isolated regime, we must now differentiate between regions with poke-over

and regions without. As shown in Figure 6.6 we split the y integral into three

regions: i, ii, and iii.
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Figure 6.6: The left half of the causal rectangle is shown, with the boundary

between regions I and II shown in orange. A point x in region II, along with

the boundary of its causal future ∂J +(x), is shown in green. The purple lines

partition J +(x) into regions i, ii, and iii.

For y ∈ i or y ∈ ii, we have that A[x, y] ⊂ without having to do any extra

work, and hence we can use the same volume Vxy as before.

However, for y ∈ iii, there will be some volume of poke-over θxy. From

Figure 6.7, we can see that this is given by θxy = 1
4(ty − zy − tx − zx)

2. The

volume of the interval that is entirely inside is just Vxy − θxy.

Figure 6.7: The left half of the causal rectangle is shown, with the boundary

between regions I and II shown in orange. A point x in region II, and y in region

iii, along with the causal interval between them, A[x, y], is shown in green. The

poke-over is the region shown bounded between the red line and the t-axis.
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Our integral over y is then given by:

Y ′
ρ(x) =

∫
y∈i

d2y +

∫
y∈ii

d2y +

∫
y∈iii

d2y

=

∫ tx+zx

tx

dty

∫ zx+(ty−tx)

zx−(ty−tx)

dzy e
−ρ Vxy +

∫ T

tx+zx

dty

∫ (ty−tx)+zx

(ty−tx)−zx

dzye
−ρ Vxy

+

∫ T

tx+zx

dty

∫ (ty−tx−zx)

0

dzye
−ρ (Vxy−θxy). (6.7)

The contribution to the action from this region is thus:

⟨C ′( )⟩xy = 2ρT 2 − 4ρ2Ô2

∫
x∈

d2xY ′
ρ(x)

= 2ρT 2 − 4ρ2Ô2

∫ T

0

dtx

∫ T−tx

0

dzx Y
′
ρ(x). (6.8)

Unfortunately, Mathematica is unable to analytically calculate this expression.

Splitting the integrals apart, we find that it is unable to calculate the x integral

for y ∈ ii and is not even able to do the y integral for y ∈ iii. Instead, we will

use this expression to numerically calculate ⟨S( )⟩.

6.1.3 Putting it together

We now have an analytic result for the contribution of Region 2 in the embedded

regime, and an expression which we can use for numerical integration for the

isolated regime. Noticing that and are just mirror images of each other and

by symmetry must give exactly the same contribution, we have:

⟨S( )⟩ = ⟨S( )⟩+ 2⟨C( )⟩ (6.9)

Embedded

For the embedded case, we see that adding the analytic form of each of the

contributions gives:1

⟨S( )⟩ = −ρT 2

(
2F2

(
1, 1;−1

2
, 2;−T 2ρ

2

)
− 3 2F2

(
1, 1;

1

2
, 2;−T 2ρ

2

))

+

√
ρT
(
4F
(
T
√
ρ√
2

)
+
√
πerf

(√
ρT√
2

))
√
2

+ ρT 2
(
−e−

ρT2

2

)
. (6.10)

Expanding this result around ρ at infinity, we see that the action diverges as:

⟨S( )⟩∞ = T

√
π

2

√
ρ+O(

1

ρ
). (6.11)

1For this calculation we used the weighted sum expression for the triangle action
⟨S( )⟩w.

43



This is the result predicted by Conjecture 4.3.2(a). Noticing that when we

consider both left and right timelike boundaries of the rectangle, the total length

of timelike boundaries is 2T , we identify our constant from the conjecture as:2

a0 =
1

2

√
π

2
. (6.12)

By looking at the series expansions of each component of ⟨S( )⟩ we can

identify where the contributions are coming from. We have:

: A contribution of 2 from the joint.

: A contribution of 1
2

√
π
2T

√
ρ from the left timelike boundary of the rectangle

and a contribution of −1 from the ’edge’ mutual information between and

: Same as but for the right timelike boundary.

In fact we can easily see that if we simply add the limits of each region we recover

⟨S( )⟩∞ =
√

π
2T

√
ρ+O(1ρ).

Isolated

For the isolated case, we go as far as we can analytically, using the integrals in

Equation 6.8 that Mathematica could calculate, and the analytic form of ⟨S( )⟩,
then filling in the gaps with numerical integration. Fixing T and L,3 we can plot

values of ρ up to ρ = 1000.

Figure 6.8: A data plot of the expected action on the rectangle with 2T = 1 in

the isolated regime, plotted in red for various values of ρ up to ρ = 1000. The

blue line is the conjectured result b0(2T )
√
ρ where we have taken b0 = 0.6959.

From the data shown in Figure 6.8, we have found the approximate value of

the constant from Conjecture 4.3.2(b) as:

b0 ≈ 0.6959. (6.13)

2This result for the case of L = 2T was found by Hana Gas in her MSc project 2022:
private communication by Fay Dowker.

3This was tested for many values of T and L.
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The mean action of the rectangle in the isolated regime is then:

⟨S′( )⟩∞ ≈ 0.6959(2T )
√
ρ. (6.14)

6.1.4 Tall and Wide

As further evidence of the effectiveness of the weighted sum method, we now

calculate the action on a rectangle of arbitrary spacelike length L and timelike

height T . To do this, we must actually split the problem into two cases.

Wide Rectangle: (L ≥ T )

Figure 6.9: For a fixed interval of

defining vector c = (h,w), as shown

on the left, the volume of realisa-

tion can be easily verified as a(c) =

(T − h)(L− |w|) for the wide causal

rectangle, as shown on the right.

Figure 6.10: The wide causal rectan-

gle is shown in blue with its ‘clone’

shown in black. The volume of reali-

sation is labelled a.

For the wide case, as shown in Figures 6.9 and 6.10, for any fixed interval with

defining vector c = (w, h), it’s volume of realisation is given by a = (T−h)(L−|w|).
The largest h such that the interval will fit somewhere in the rectangle is hmax = T ,

and hence the largest w we will consider when integrating w over [−h, h] is

wmax = T ≥ L . This is important as if w > T the interval would not fit in the

manifold and a would be negative. Our mean action in this case is:

⟨S( )⟩w = 2ρTL− 4ρ2
∫ T

0

dh

∫ h

−h

dwÔ2 (T − h)(L− |w|) e−ρ 1
2
·(h2−w2) (6.15)

=

√
ρ
(√

πT erf
(√

ρT√
2

)
− 2L

(
ρT 2 − 1

)
F
(
T
√
ρ√
2

))
√
2

+ ρT
(
L− Te−

ρT2

2

)
. (6.16)

Tall Rectangle: (L ≤ T )

In this case we can have h > L. For these values of h we cannot integrate w

over [−h, h], as w > L is never realised in the Tall Rectangle and the associated

a(w, h) would be negative and thus meaningless.
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Figure 6.11: On the left, we show

a fixed interval of defining vector

c = (h,w), for h > L and w < L. On

the right, we show the tall causal rect-

angle in blue, along with its clone in

black. As in the wide rectangle, the

volume of realisation is easily seen to

be a(c) = (T − h)(L− |w|).

Figure 6.12: On the left, we show

a fixed interval of defining vector

c = (h,w′), for h > L and w′ > L.

On the right, we show the tall causal

rectangle in blue, along with its clone

in red. We see that we have no vol-

ume of realisation.

As shown in Figure 6.11 and Figure 6.12, we have to split up our integral:

⟨S( )⟩w = 2ρTL− 4ρ2

(∫ L

0

dh

∫ h

−h

dwÔ2 (T − h)(L− |w|) e−ρ 1
2
·(h2−w2)

+

∫ T

L

dh

∫ L

−L

dwO2 (T − h)(L− |w|) e−ρ 1
2
·(h2−w2)

)
(6.17)

=
1

2
e−

ρT2

2

(√
2π

√
ρ

(
T
(
L2ρ+ 1

)
erf

(
L
√
ρ

√
2

)
e

1
2
ρ(L2+T 2)

−T
(
e

L2ρ
2

(
L2ρ+ 1

)
− 1
)
e

ρT2

2 erf

(√
ρT
√
2

)
+L
(
1− ρT 2

)
erfi

(
L
√
ρ

√
2

))
− 2ρ

(
e

L2ρ
2 (L− T )(L+ T )

−LTe
ρT2

2 + T 2
)
), (6.18)

where erfi(x) is the imaginary error function.

For both the tall and the wide rectangle, expanding ρ around infinity gives:

⟨S( )⟩∞ = ⟨S( )⟩∞ = ⟨S( )⟩∞ =
√

π
2T

√
ρ+O(1ρ).

It is worth noting that, while the expression for ⟨S( )⟩w only gives the correct

limiting value if we use values such that L ≤ T , our expression for ⟨S( )⟩w
gives us the correct limiting value even if we substitute in some L ≤ T . This is

because only ‘small’ intervals contribute to the action. In fact, by only considering
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arbitrarily small intervals in for the wide rectangle we have:

⟨S( )⟩w = 2ρT 2 − 4ρ2
∫ ϵ

0

dh

∫ h

−h

dwÔ2 (T − h)2 e−ρ 1
2
·(h2−w2) (6.19)

=

√
ρ

√
2

(
2LF

(
ϵ
√
ρ

√
2

)(
ρϵ
(
ρϵ2(T − ϵ)− 3T + 2ϵ

)
+ 1
)

+
√
πT erf

(√
ρϵ

√
2

))
− Lρ

(
ρϵ2(T − ϵ)− 2T + ϵ

)
− ρϵe−

ρϵ2

2

(
−ρTϵ2 + T + ρϵ3

)
. (6.20)

And we see that the in the limit the result is still ∼
√

π
2T

√
ρ+O(1ρ).

6.1.5 Limiting Cases

Having expressions for the action when L and T are of arbitrary length imme-

diately raises the question: What is the limiting case? Now any fixed non-zero

L, T , however small, will still be large compared to the discreteness scale as we

take ρ → ∞. Instead, we can ask what happens when we take L or T to be the

discreteness length ρ−
1
2 . For the case that T = ρ−

1
2 , for any density we will have

that T is effectively only one element wide, and is hence equivalent to a path. We

will call this construction PMDA. Taking take ρ → ∞ is then just equivalent to

taking the path to be infinitely long. Similarly, we call the L = ρ−
1
2 limiting case

of the rectangle AMDA, where this is equivalent to an infinitely long antichain.

If we call an infinitely long path defined in the usual sense P , and an antichain

defined in the usual sense A, then we can actually very easily calculate the 2D

action (Equation 4.6) S(P) and S(A). This allows us to directly compare the

how the MDA and the 2D action behave on ‘the same’ causal set. Note that we

reinstate the factor of 1
ℏ in this subsection.

Path

For the path, each element x ∈ P will have exactly one link, one order interval of

cardinality 2, and one order interval of cardinality 3 to its past. Hence:

R(2)(x) = (4− 8N0(x) + 16N1(x)− 8N2(x))ρ

= (4− 8× 1− 16× 1− 8× 1)ρ

= 4ρ. (6.21)

As there will be T
√
ρ elements in this path, we have that:

1

ℏS
(2)(P) =

∑
x∈P

R(2)(x)

2
ρ−1 = 2T

√
ρ. (6.22)
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To compare this with the limiting case of the rectangle, we substitute L = ρ−
1
2

into Equation 6.16 to get:

1

ℏ⟨S(PMDA)⟩∞ =
√
2eπerf

(
1√
2

)
√
ρT −

√
2eπ

√
ρT +

√
π

2

√
ρT +

√
ρT

≈ 0.942T
√
ρ. (6.23)

Antichain

R(2)(x) = (4− 8N0(x) + 16N1(x)− 8N2(x))ρ

= (4− 8× 0− 16× 0− 8× 0)ρ

= 4ρ. (6.24)

As there will be T
√
ρ elements in this antichain, we have:

1

ℏS
(2)(A) =

∑
x∈C

R(2)(x)

2
ρ−1 = 2T

√
ρ. (6.25)

To compare this with the limiting case of the rectangle, we substitute T = ρ−
1
2

into Equation 6.18 to get:

1

ℏ⟨S(AMDA)⟩∞ =

√
π

2
erf

(
1√
2

)
+ L

√
ρ− 1√

e

≈ 0.249 + L
√
ρ. (6.26)

Result

While we recover the correct form of divergence, the prefactors are extremely

different and in particular for the antichain case we find the action is dependent

on L which is very wrong. However, these results do not conflict with Conjec-

ture 4.3.2(a), as the conjecture is only defined for a fixed manifold, and we have

defined PMDA and AMDA such that their boundary lengths change with the

density.

6.2 The Circle

The weighted sum method is most effective for symmetric regions, so a circular

region is an obvious manifold to consider. The standard method would be

extremely difficult for this manifold.

6.2.1 The Expected Result

Before we calculate the action, we will work out what we expect the result should

be. This means the length of the timelike boundary of a circle must be determined.
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This length is given by the proper time of a path along that boundary, which we

must calculate.

Figure 6.13: A causal circle of radius R, centred at (0, 0 is shown in blue. The

right side of the timelike boundary is the curve between φ = −π/4 and φ = π/4.

In M2, our metric is given by:

ds2 = −dt2 + dz2. (6.27)

A circle of radius R centred at (0, 0) is described by:

t2 + z2 = R2. (6.28)

Parameterizing with t = R sin(φ) and z = R cos(φ), our timelike boundary is

represented by φ ∈ [−π
4 ,

π
4 ], as seen in Figure 6.13.

The proper time τ of (one side of) the boundary is then:

τ =

∫ τ1

τ0

dτ (6.29)

=

∫ π/4

−π/4

dφ ·

√(
dt

dφ

)2

−
(
dz

dφ

)2

(6.30)

= R

∫ π/4

−π/4

dφ ·
√

cos2(φ)− sin2(φ) (6.31)

= R ·
√

2

π
Γ
(
3

4

)2
≈ R · 1.198. (6.32)

Using our value of a0 = 1
2

√
π
2 from Equation 6.12, and the fact that we

must multiply our answer from Equation 6.32 by two (for each side of circle),
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Conjecture 4.3.2(a) then says that the limit of the mean action should be:

⟨S( )∞ = 2R ·
√

2

π
Γ
(
3

4

)2
× 1

2

√
π

2
×√

ρ

= RΓ
(
3

4

)2√
ρ. (6.33)

6.2.2 The Calculation

To calculate the mean action on the circle, we must determine the volume of

realisation. As shown in Figure 6.14 and Figure 6.15, we can use our ‘cloning’

technique to see that the volume of realisation is actually just given by the area

of intersection between two circles of equal radii R with centers separated by

Euclidean distance d.

Figure 6.14: On the left, we show a

fixed interval of defining vector c =

(0, h) of Euclidean length d = h. On

the right, we show the causal circle

in blue, along with its clone in black.

Figure 6.15: We show the causal cir-

cle in blue, with the realisation vol-

ume associated with defining vector

c = (h, 0) labelled by a.

This is is a solved problem [52] and is given by:

a(d) = 2R2 · arccos
(

d

2R

)
− 1

2
· d ·

√
4R2 − d2. (6.34)

As seen in Figure 6.16 and Figure 6.17, we notice that this area is only

dependent on the length d of the interval and not on the angle an interval makes

to the t axis. This is because rotating an interval is equivalent to rotating its

realisation set around the circle. Thus, due to symmetry, all realisation sets whose

defining vectors c have Euclidean length d, have the same volume of realisation.
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Figure 6.16: On the left, we show a

fixed interval of defining vector c =

(w, h), of Euclidean length d. On the

right, we show the causal circle in

blue, along with its clone in black.

Figure 6.17: We show the causal cir-

cle in blue, with the realisation vol-

ume associated with defining vector

c = (w, h) labelled by a.

In Cartesian coordinates, we label our defining vectors by c = (w, h) and thus

have d =
√
w2 + h2. Our volume of realisation in this coordinate system is then:

a(w, h) = 2R2 · arccos
(√

h2 + w2

2r

)
− 1

2
·
√

h2 + w2 ·
√

4R2 − h2 − w2.

(6.35)

The maximum size of interval we can fit in the circle is dmax = 2R. Remembering

that Vxy = 1
2(h

2 − w2), we can now calculate the mean action:

⟨S( )⟩w = 2ρ · πR2 − 4ρ2Ô2

∫ 2R

0

dh

∫ h

−h

dw a(w, h) e−
ρ
2
(h2−w2). (6.36)

Technically, we have cheated by taking these integration bounds, as for

w, h ≈ R we have d ≈ R2
√
2, meaning we are considering intervals which do not

fit in the circle. However, as we expect contributions from large intervals to be

suppressed in the limit as ρ → ∞, we argue that this will not effect the final

result.
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Figure 6.18: A data plot of the expected action on the rectangle with R = 1 in

the embedded regime, plotted in red for various values of ρ up to ρ = 10000. The

blue line is the conjectured result
√

π
2T

√
ρ. We see that the conjectured result is

a good fit to the data.

Even with this slight approximation, Mathematica still cannot analytically

compute this integral. Instead, fixing R, we can compute numerical results up to

ρ = 10000 where, as seen in Figure 6.18 we find that it is in complete agreement

with the conjectured result from Equation 6.33.
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Chapter 7

Holes

As discussed in Section 3.2, we don’t expect a physically meaningful spacetime to

have holes. With this in mind, we will consider two manifolds. The first is the

a causal rectangle with a smaller causal rectangle removed from its centre, and

the second is a causal diamond with smaller causal diamond removed from its

centre. We will refer to these as the Timelike Doughnut TD and Null Doughnut

ND respectively. We will work in the embedded regime for most of this chapter

as it makes calculations significantly simpler, but will return to discuss how these

results are expected to differ from the isolated regime at the end of the chapter.

7.1 Embedded Regime

7.1.1 The Timelike Doughnut

To make our calculation as simple as possible, we define our Timelike Doughnut

TD to be as symmetric as possible, as shown in Figure 7.1.

Figure 7.1: A symmetric case of the Timelike Doughnut. It is constructed such

that α = T−γ
2 and β = L−δ

2 .
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We will call the outer rectangle (without the hole) , and call the hole .

It is, of course, simplest to use the weighted sum method. In fact, if we

consider the problem from the perspective of mutual information, we can also

further simplify it. We have:

⟨S(TD)⟩ = ⟨S( )⟩ − ⟨S( )⟩ − ⟨MI( , )⟩. (7.1)

As we already know, the form of ⟨S( )⟩ and ⟨S( )⟩ from Chapter 6, we

can determine ⟨S(TD)⟩ from ⟨MI( , )⟩ using Equation 7.1 with no more work

than if we were to calculate ⟨S(TD)⟩ directly.
By inspection, the volumes of realisation when considering ⟨MI( , )⟩

appear simpler than those associated with ⟨S(TD)⟩, so we choose to calculate

⟨MI( , )⟩.

Figure 7.2: The volume of realisation

for 0 ≤ h ≤ 1
2(T −γ) is shown as two

areas. The first is bounded between

the grey boundary of the clone and

the red line, and represents intervals

which go from the doughnut into the

hole. The second is bounded between

the boundary of the hole and the red

line, and represents intervals which

go from the hole into the doughnut.

Both these areas are equal and are

labelled a.

Figure 7.3: The volume of realisa-

tion for 1
2(T −γ) ≤ h ≤ 1

2(T −γ)+γ

is shown as two areas. The first is

bounded between the grey bound-

ary of the lower clone and the lower

spacelike boundary of the rectangle,

and represents intervals which go

from the doughnut into the hole. The

second is bounded between the grey

boundary of the upper clone and the

upper spacelike boundary of the rect-

angle, and represents intervals which

go from the hole into the doughnut.

Both these areas are equal and are

labelled a.

As shown in Figure 7.2 and Figure 7.3, we must split the volumes of realisation

for ⟨MI( , )⟩ into three cases based the height parameter of the defining vector

c = (w, h). The form of these volumes of realisation can be easily calculated as:

• Case 1: 0 ≤ h ≤ 1
2(T − γ)

a = 2(|w|(γ − h) + βh). (7.2)

• Case 2: 1
2(T − γ) ≤ h ≤ 1

2(T − γ) + γ

a = β(γ − 2h+ T ). (7.3)
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• Case 3: 1
2(T − γ) + γ ≤ h ≤ T

a = 0. (7.4)

It is worth noting that for these volumes of realisation to be accurate, we

must assume that the outer timelike boundaries of the rectangle are far enough

away from the timelike boundaries of the hole such that no causal curves starting

in the hole could reach the outer timelike boundaries.

The mutual information is then given by:

⟨MI( , )⟩ = −4ρ2Ô2

[∫ 1
2
(T−γ)

0

dh

∫ h

−h

dw 2(|w|(γ − h) + βh)e−ρ 1
2
·(h2−w2)

+

∫ 1
2
(T−γ)+γ

1
2
(T−γ)

dh

∫ h

−h

dw β(γ − 2h+ T )e−ρ 1
2
·(h2−w2)

]
= −1

8

√
ρ

[
8
√
2πγerf

(√
ρ(T − γ)

2
√
2

)
+ 2β

√
ρ(T − 3γ)

(
ρ(T − γ)2 − 4

)
+
√
2β
(
−
(
ρ2(T − 3γ)(T − γ)3

)
+ 4ρ(T − 7γ)(T − γ) + 32

)
F

(
(T − γ)

√
ρ

2
√
2

)
+ 4

√
2β
(
ρ(γ + T )2 − 4

)
F

(
(T + γ)

√
ρ

2
√
2

)
+
√
ρe−

1
8
ρ(T−γ)2

(
8γ(γ − T )− ρ(T − 3γ)(T − γ)3

)]
. (7.5)

So, from Equation 7.1, we have:

⟨S(TD)⟩ =
1

8

√
ρ

[
2
√
2

(
L
(
γ2ρ− 1

)
F

(
γ
√
ρ

√
2

)
− 2

√
πγerf

(
γ
√
ρ

√
2

))
+ 4

√
2

(
√
πT erf

(√
ρT
√
2

)
− 2L

(
ρT 2 − 1

)
F

(
T
√
ρ

√
2

))
+
√
2β
(
−
(
ρ2(T − 3γ)(T − γ)3

)
+ 4ρ(T − 7γ)(T − γ) + 32

)
F

(
(T − γ)

√
ρ

2
√
2

)
+ 4

√
2β
(
ρ(γ + T )2 − 4

)
F

(
(T + γ)

√
ρ

2
√
2

)
+ 8

√
2πγerf

(√
ρ(T − γ)

2
√
2

)
+ 2γ

√
ρ
(
4γe−

γ2ρ
2 − L

)
+ 8

√
ρT
(
L− Te−

ρT2

2

)
+ 2β

√
ρ(T − 3γ)

(
ρ(T − γ)2 − 4

)
+
√
ρe−

1
8
ρ(T−γ)2

(
8γ(γ − T )− ρ(T − 3γ)(T − γ)3

)]
. (7.6)

Finally, by expanding around ρ at infinity we have:

⟨S(TD)⟩∞ =

√
π

2
(T + γ)

√
ρ, (7.7)
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where we remember that T + γ is only half of the total length of timelike

boundaries.

So we see that by adding a hole with timelike boundaries to the rectangle, we

just add the usual contribution of those timelike boundaries to the action. This

is consistent with a0 =
1
2

√
π
2 for Conjecture 4.3.2(a).

As we expect that it is only small intervals which contribute to the boundary,

the condition that no timelike curves from inside the hole can reach the boundary

is unnecessary as contributions from such intervals would be negligible. In fact,

by only considering arbitrarily small intervals in Case 1 of Equation 7.5, we would

have also recovered the correct behaviour as ρ → ∞.

We can isolate the effect of the hole more explicitly by identifying the left

and right timelike boundaries of the outer rectangle, and hence turning the space

around the hole into a cylinder. We call this new manifold the ‘Cylindrical

Doughnut’ CD and we call the outer cylinder Cl.
As we defined our Timelike Doughnut such that no causal curves from inside

the hole could reach the timelike boundary, the mutual information between the

hole and exterior of our new Cylindrical Doughnut must be exactly the same as

for the Timelike Doughnut, i.e.

⟨MI( , )⟩ = ⟨MI(Cl, )⟩ =ρ→∞ −2

√
π

2
γ
√
ρ. (7.8)

The causal cylinder has no timelike boundaries and no joint, and hence we have

⟨S(Cl)⟩∞ = 0, as shown in [48]. We also know that ⟨S( )⟩∞ =
√

π
2γ

√
ρ, so we

therefore have that:

⟨S(CD)⟩∞ = ⟨S(Cl)⟩∞ − ⟨S( )⟩∞ − ⟨MI(Cl, )⟩∞ =

√
π

2
γ
√
ρ. (7.9)

These results are in support of Conjecture 4.3.2(a).

If we imagine pushing the boundaries of either of our doughnuts out to infinity,

then we are just left with Minkowski space with a hole in it and see that that too

must have a divergent action. We argue that the adding any holes with timelike

boundaries to a manifold will cause its action to diverge.

7.1.2 The Null Doughnut

The Null Doughnut ND is a causal diamond with a smaller causal diamond

removed from the centre. To calculate the action on the Null Doughnut, a

perfectly valid approach would be to do exactly the same thing as for the

Timelike Doughnut by choosing the most symmetric case, calculating the mutual

information between the interior and the exterior, and perform a sum analogous to

Equation 7.1. However, we notice that the Null Doughnut can also be constructed

by taking a causal diamond, splitting it up into nine subdiamonds, and then

removing the centre diamond.

Remembering Section 5.3.1, we actually have a shortcut for finding the limit

of the action on a region partitioned into subdiamonds which accounts for all the

mutual information between regions: the causal set characteristic!
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Figure 7.4: The Null Doughnut is shown partitioned by orange lines into 8

subdiamonds, where subdiamond 9 is the hole. The green dots show the vertices,

and the green dashes show the edges.

As shown in shown in Figure 7.4, we do not count edges between ND and

the hole, and we do not count the vertices at the top and bottom of the hole, as

we defined vertices to only be counted if a timelike curve can go through it. We

hence have 8 faces, 8 edges, and 2 vertices.

Our causal set characteristic, and hence the action, is given by:

⟨S(ND)⟩∞ = 2× (8− 8 + 2) = 4. (7.10)

If we imagine pushing the outer boundaries of ND to infinity and hence

removing the outer joint term, then we argue that the consequence of adding a

null hole to a space is just that we must add 2 to the action. At first glance this

is somewhat of a ludicrous result, as it would mean we could add an arbitrary

number of null holes of arbitrary size to a spacetime and barely change the action.

However, this is simply a result of us working in the embedded regime. While

we are calculating the action on a region with a hole, we are assuming that this

region is part of an underlying spacetime that is hole free.

If we truly wish to test the effect of adding a hole to a spacetime we must

work in the isolated regime. However, that does not mean that these are useless

results. We hope to draw insight into what form the isolated results will take by

considering the embedded ones.
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7.2 Isolated Regime

Working in the isolated regime poses many more problems than the embedded.

Not only must we forbid poke-over - which is a difficult task in itself due to

the number of regions we must consider and the difficulty Mathematica has

performing the kinds of integrals involved - but we must also now be be more

careful with which y are actually causally related to a given x.

For instance, as shown in Figure 7.5, in the embedded case the causal future

of an x below the hole will just be the usual light cone, and can continue through

the hole to the other side. This is because we are assuming there is some space

for a causal curve to traverse and end up on the other side. However, in the

isolated regime the causal future of x ends at the hole, as we are not assuming

there is any space outside of the doughnut for a causal curve to pass through.

Figure 7.5: The boundary of the causal future of some x in the Timelike Doughnut

is shown in green. In the embedded regime we consider it to continue to the upper

spacelike boundary of the rectangle, where in the isolated regime we consider it

to stop at the lower spacelike boundary of the hole.

As such, the calculations for either doughnut will require many different

integration regions, with little hope that Mathematica could produce a good

result.

Rather than attempt to calculate them, we will try to infer what we can from

the embedded case.

Timelike Doughnut

As with the embedded case, contributions to the action come when Vxy is very

small. For the Timelike Doughnut we see that the only way to minimise Vxy is

to consider small intervals. As such, we argue that the contribution from the

intervals which passed ‘over the hole’ in the embedded case (that we can no longer

consider in the isolated regime) is negligible. Hence the contribution comes as

usual just from the timelike boundaries.

In line with conjecture Conjecture 4.3.2(b), we expect that the action on

the Timelike Doughnut in the isolated regime will be the same as Equation 7.7

58



in the embedded regime, but with the prefactor constant b0 ≈ 0.6959 replacing

a0 =
1
2

√
π
2 .

Null Doughnut

For the null doughnut, we again argue that the fact that we cannot consider

intervals which crossed the hole to be of no significance, as the contribution from

these intervals is, in general, negligible. However, in this case we there is actually

another way to minimise Vxy other than just considering small intervals.

As seen in Figure 7.6, if we take x to be very close to the bottom right

boundary of the hole and y to be very close to the top right boundary of the hole,

then Vxy will be very small and hence we expect intervals of this form to give

a contribution. We will call such intervals squeezed intervals as their volume is

squeezed very small by the null boundaries.

Figure 7.6: A squeezed interval near a null hole is shown. The volume between

the green lines and the hole boundary Vxy, where the volume between the red

lines and the hole boundary is the poke-over θxy. The green and red lines bound

the causal interval between x and y.

In order to investigate how we expect these squeezed intervals to contribute

to the action, we will consider a simple case. We can then use the result of the

simple case to infer what the form of the action of the Null Doughnut - and more

general causally non-convex manifolds without timelike boundaries - will be.
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7.2.1 The L-Piece

The L-Piece L is a causally continuous, causally non-convex manifold with no

timelike boundaries. From Figure 7.7 we can see that it possesses the right kind

of boundaries for squeezed interval contributions to emerge. We shall calculate

the action on this region.

Figure 7.7: The L-Piece is shown in null coordinates. The boundary between the

integration regions of x, i.e. regions I and II, is shown in orange.

As shown in Figure 7.7, we must split the integral into two regions of x which

we label I and II.

Region I

As shown in Figure 7.8, given an x ∈ I, we have two integration regions of

y which we label i and ii. For y ∈ i, there is no poke over, and we take

V
(i)
xy = Vxy = (uy − ux)(vy − vx). For y ∈ ii, there is poke over and, as shown in

Figure 7.9, the poke over volume is given by θxy = (T2 − vx)(uy − T
2 ). Therefore,

the volume associated to this integral is V
(ii)
xy = Vxy − θxy.
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Figure 7.8: The boundary of the

causal future of x ∈ I is shown in

green. The purple line separates the

integration regions of y, which we

call i and ii.

Figure 7.9: The boundary of the

causal interval between x ∈ I and

y ∈ ii is shown in green and red. The

part bounded between the red line

and the boundary of the L-Piece is

the poke over region. The area of

this region can be easily calculated

in terms of the coordinate positions

of x and y.

The y integral for x ∈ I is then given as:

Y
(I)
ρ (x) =

∫
y∈i

d2y +

∫
y∈ii

d2y

=

∫ T
2

ux

duy

∫ T

vx

dvye
−ρVxy +

∫ T

T
2

duy

∫ T

T
2

dvye
−ρ(Vxy−θxy), (7.11)

and integrating over x gives us:

X
(I)
ρ =

∫ T
2

0

dux

∫ T
2

0

dvxY
(I)
ρ (x). (7.12)

Region II

As we can see in Figure 7.7, region II is simply a causal diamond. There is hence

only one region of y which we must consider, as shown in Figure 7.10.

The integral for x ∈ II is thus given as:

Y
(II)
ρ (x) =

∫ T

ux

duy

∫ T

vx

dvye
−ρVxy (7.13)

and integrating over x gives us:

X
(II)
ρ =

∫ T

0

dux

∫ T
2

0

dvxY
(II)
ρ . (7.14)
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Figure 7.10: The boundary of the causal future of x ∈ II is shown in green. We

can see we just integrate y over this region as usual for a causal diamond.

Putting it together

The action on the the L piece is thus:

⟨S(L)⟩ = 2ρ
3T 2

4
− 4ρ2Ô2(X

(I)
ρ +X

(II)
ρ )

= 0.5T 2ρe
T2ρ
4 Ei

(
−T 2ρ

)
− T 2ρe

T2ρ
4 Ei

(
−T 2ρ

2

)
+ 0.5T 2ρe

T2ρ
4 Ei

(
−T 2ρ

4

)
+ T 2ρe−

T2ρ
4 Ei

(
−T 2ρ

2

)
− T 2ρe−

T2ρ
4 Ei

(
−T 2ρ

4

)
− T 2ρe−

T2ρ
4 log (2)

− 2e
T2ρ
4 Ei

(
−T 2ρ

)
+ 4e

T2ρ
4 Ei

(
−T 2ρ

2

)
− 2e

T2ρ
4 Ei

(
−T 2ρ

4

)
+ 4 log (T ) + 2 log

(
ρ

4

)
− 2Chi

(
T 2ρ

4

)
+ 2Shi

(
T 2ρ

4

)
+ 2γ

+ 2 + 4e−
T2ρ
4 Ei

(
−T 2ρ

2

)
− 4e−

T2ρ
4 Ei

(
−T 2ρ

4

)
− 4e−

T2ρ
4 log (2)− 2e−

3T2ρ
4 ,

(7.15)

where Chi(x) denotes the hyperbolic cosine integral, Shi(x) denotes the

hyperbolic sine integral and Ei(x) denotes the exponential integral. Expanding

this result around ρ at infinity we have:

⟨S(L)⟩∞ = 2γ + 4 log(T )− 2 log(4T 2) + 2 log(T 2ρ) = 2γ +
1

8
log T 2ρ, (7.16)

where γ is the Euler-Mascheroni constant.

Flat Trousers

This result is strikingly similar to a result calculated by Benincasa and Dowker

in [46] for a causally convex region of 2D flat trousers T . In general, Trousers is
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a model spacetime used to represent a topology changing process where a single

space is split into two separate pieces. This is generally seen as an undesirable

spacetime and it has been shown that quantum fields behave badly on it. It

was argued in [32] that this bad behaviour was due it being causally discontinuous.

Benincasa found that the action on the 2D flat trousers was given by:1

⟨S(T )⟩∞ = 8 log(
ρT 2

4
) + 8(γ − 1). (7.17)

We see exactly the same form of logarithmic divergence was found in this

case, even along with the same mysterious occurrence of the Euler-Mascheroni

constant.

This result is interesting, as T is a causally convex region, so it shows causal

convexity is insufficient for a manifold to have a stable action. However, we

also cannot attribute the divergence of its action to causal discontinuity. The

L-Piece is causally non-convex and causally continuous, while the trousers region

is causally convex but not causally continuous. As such, it appears that neither

of these properties can be the cause of the logarithmic divergence.

Despite the causal convexity of the trousers, the identification of certain

regions in their construction means that the trousers also have instances of

squeezed intervals. In fact, the divergent region considered in [46] is visually

almost identical to the L-Piece. We expect that in the case of the Null Doughnut,

which also contains instances of fixed intervals, and is both causally non-convex

and causally discontinuous, the action would also diverge as log(ρ).

We make the tentative conjecture that this will be the form of divergence for

all non-globally hyperbolic manifolds without timelike boundaries.

1We get Equation 7.17 from the result in [46] accounting for the new normalisation
of the action and changing to our T variable.
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Chapter 8

Discussion

8.1 Summary

Causal Set Theory postulates that the key components of reality are discreteness

and causality.

In Chapter 1 the need for a theory of quantum gravity and motivations for

assuming that spacetime might be discrete were discussed, where we saw that,

without some cut off length, many important quantities in QFT and GR can be

shown to diverge.

In Chapter 2, we introduced the fundamentals of causal set theory. We gave

the definition of a causal set, and gave arguments that not only can a causet

completely encode the information for a spacetime, but it can do so ‘approximately’

uniquely. We also posed the problem that the vast majority of causal sets are

non-manifold-like, then described a method for producing embeddable causal sets

from a manifold, called sprinkling. We also saw that due to the lack of good

analogue for a spacelike hypersurface, we must consider only the SOH formulation

of QM when considering causal sets.

In Chapter 3, we introduced the dynamics of causal sets. We briefly discussed

the progress towards producing a ‘bottom up’ model of microscopic dynamics,

before focusing on an approach based on the sum over histories framework in

the continuum limit. We discussed what we hope to achieve by formulating this

intermediate dynamics, and how we might, from a causal set perspective, rule

out many types of spacetimes which are seen in GR as physically unreasonable.

In Chapter 4, we introduced the Mean Discrete Action and various conjectures

surrounding it. While the most explored case is how the action works on globally

hyperbolic spacetimes, we instead took a less travelled approach in attempting to

show what might go wrong if we drop this condition. We also introduced two

different regimes in which we can test the action in the case that a manifold is

not causally convex.

In Chapter 5, we introduced a new methodology for calculating the action

on a flat manifold, giving examples in how we might use it to gain new insight

about old problems. We also introduced the mutual information between two

spacetime regions, and the special case of the causal set characteristic for globally
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hyperbolic spacetimes. We demonstrated how the new methodology can also be

applied to directly calculating the mutual information between spacetime regions.

In Chapter 6, we calculated the action on various manifolds with timelike

boundaries, and in Chapter 7 we analysed how adding holes to a spacetime might

cause its action to diverge. We can summarise our key, novel results as follows:

1. The action of the causal diamond is two,1 and can be derived by considering

only small intervals - shown analytically using the weighted sum method.

2. The action of the causal rectangle (of arbitrary fixed total timelike height

T and spacelike length L) in the embedded regime is 1
2

√
π
2T

√
ρ2 - shown

analytically using the weighted sum method.3 In the isolated regime the

action is ≈ 0.6959T
√
ρ.

3. The action on the limiting case of the causal rectangle in the embedded

regime, as we take L or T to the discreteness length and hence approximate a

path or antichain respectively, do not give the correct form of the divergence

as if we calculated using the 2D Action.

4. The action of the a causal circle of fixed radius is given by 1
2

√
π
2T

√
ρ, where

T is the total length of its timelike boundaries - shown numerically in the

embedded regime.

5. The action of the Timelike Doughnut is 1
2

√
π
2 (T + γ)

√
ρ, where T is the

total timelike height of the outer boundaries and γ is the total timelike

height of the boundaries of the hole - shown analytically in the embedded

regime.

6. The action of the Null Doughnut is four - shown using the Causal Set Euler

characteristic in the embedded regime.

7. The action of the L-Piece is of the form ∼ log(T 2ρ), where T is the Null

length of (one side of) the equal sided diamond.

Lets now address the implications of these results.

8.2 Discussion

It was suggested in [48] that we could better identify the true origin of the joint

contribution by simultaneously integrating over x and y, without choosing the

standard or reverse order of integration. While we have successfully produced

such a formulation in our weighted sum technique, this unfortunately has not

made the origin of the joint term any clearer. While we want to show that it

1Finding the action on the diamond to be 2 is not a novel result, but the methodology
and evidence that it works for small intervals is.

2This was previously shown only for L = 2T .
3Again we stress that ‘total timelike height’ includes both sides of the boundary.
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is only intervals near the joint which produce the result, when we look at the

problem in terms of volumes of realisation it appears that the contribution from

any small interval must come from everywhere in the manifold, and we have hence

not isolated the joint term.

Our results for manifolds with timelike boundaries provide strong support for

Conjecture 4.3.2(a) and Conjecture 4.3.2(b). We have seen for various manifolds

in the embedded regime that the action is proportional to the total timelike

length of its boundary, even when the boundary is curved as for the circle. It

was confirmed that the prefactor in this case is a0 =
1
2

√
π
2 . We also saw that for

the rectangle, moving to the isolated regime only changes the prefactor constant,

which we found to be approximately 0.6959. We provided an argument that this

will be the same for other manifolds with timelike boundaries in this regime. This

is an especially important result as we expect the isolated regime to be a truer

test of the effects of adding boundaries.

From the point of view of stationary phase heuristics, these results provide a

strong indication that any spacetime with timelike boundaries will be suppressed

in the path integral. We are in fact interested not in a continuum limit, but a

continuum approximation, and hence in our final theory we do not expect ρ to

be infinite but just very large. For any region with timelike boundaries, we then

see that its action will be very large and thus the variance between sprinklings

will cause their contributions to the path integral to cancel each other out. In

a similar vein, we have shown that adding a hole with timelike boundaries to a

space also causes the action to blow up. While this was only analytically shown

for the embedded regime, analysis of the type of contributions we get to the

action in this case gives a strong argument that the same will be true in the

isolated regime. This is an inkling of an answer to the question of why we don’t

see holes in spacetime, despite them being valid solutions to the EFEs.

For non-globally hyperbolic regions without timelike boundary - such as the

flat trousers, L-piece, and null doughnut - we saw that in the isolated regime, they

all diverge logarithmically. We do not have a conjecture associated to this, or even

an idea of what shared property of these spacetimes causes this divergence from

a GR perspective (beyond failure to be globally hyperbolic). We propose that

the presence of ‘squeezed intervals’ is the cause of this divergence. Supposing this

form of logarithmic divergence survives into four dimensions, where we expect

our discreteness scale to be on the order of the Planck length, we would then see

that plugging in the Planck density, ρ = l−4
P , as our discreteness scale gives us

log(ρ) ≈ 320.

While this is clearly large compared to the result of S = 2 for globally

hyperbolic spacetimes, it is very small compared to the value of
√
ρ ∼ 1069 for

regions with timelike boundaries. We could argue that these spacetimes are

therefore ‘less suppressed’ in the path integral.

The interpretation of ‘squeezed intervals’ is an interesting question in itself.

They represent two causally related spacetime points which can only be connected

by a null curve. Generally, for two points in a causal set there will be many

different ‘paths’ of order relations to connect the points together, where for
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this squeezed interval we could interpret Vxy being so small as the points being

connected by only one link. It is tempting to associate some form of entropy

with this idea, where the fewer paths that connect two distant points, the less

favourable the configuration is. However, this argument is entirely heuristic

and, as we saw with the limiting case of the rectangle, finding a correspondence

between our action in the continuum limit and the behaviour of elements on the

fundamental level is not straight forward.

On the topic of entropy, there is an extremely speculative, but very interesting

connection between the joint term and the entropy of a black hole. If we consider

our case of the embedded null doughnut - where we pushed our outer boundaries

out to infinity, leaving only an empty flat space with a null hole in - then we find

that the contribution from this hole to the overall action is 2. In the 4D case, our

joint term is more general and is actually given by the area of a 2-sphere. So, our

result would be that in a universe where we count all intervals except those that

intersect a region bounded by a null hypersurface, the action is given by the area

of a 2-sphere. This is strikingly similar to the entropy formula of a black hole.

The study of black hole entropy from a causal set perspective has had past

success and is an active area of research. It has been shown that in two dimensions,

the entropy of the black hole can be calculated by counting links which cross over

the horizon [53]. Moreover, in an alternative definition of entropy (via spacetime

mutual information between two regions of a causal diamond truncated by a

causal horizon), it was recently shown that the entropy limited to the area of

intersection between the boundaries of the causal diamond and the horizon [54].

However, tempting as this interpretation of the joint term may be, the

argument is entirely heuristic and as yet we do not know how the action and

entropy might be related. In fact, we do not as of yet understand what the effect

of adding this extra term to the gravitational action is at all.

8.3 Going Forward

There is much work to be done moving forward. A useful and likely relatively

easy task would be to extend the calculation on the flat causal rectangle to four

dimensions using the weighted sum method. While the usefulness of this method

is restricted to flat manifolds in the embedded regime, extending it to results in

higher dimensions should be generally simple.

While this dissertation has focused more on the testing how the action works

on non-globally hyperbolic spacetimes than providing evidence for Conjecture 4.3.1

there is still much more work to be done in the latter case. Specifically, showing

that the conjecture holds for arbitrary curvature with no caveats would give

much more weight to the assertion that the MDA truly limits to the Einstein

Hilbert action. If it turns out to be true, then this would be an important step

to overcoming the entropic domination of non-manifold-like causal sets.

As we defined our action with the continuum limit of a manifold of certain

dimension in mind, it is only causal sets corresponding to these manifolds in
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which non-local effects cancel out and we recover a local action. For a general

non-manifold-like causal set of cardinality N, it has been shown that the action is

of order N2, and would hence be suppressed in the path integral [48].

However, the very fact that we have to manually pick the dimension of the

manifold, rather than it emerging it naturally, indicates that our continuum

regime is not the final story. This problem is natural to us having taken a top

down approach, where the action was designed to reproduce the Einstein Hilbert

action. For a final theory we hope the answer lies in Quantum Sequential Growth.

We stress that to justify our stationary phase heuristics further, we also

need a better understanding of how these path integrals actually behave. The

introduction of the discrete action means that such work has now been able to

begin, and has been used to find evidence of phase transitions in causal sets

[55][56].

While we focused on finding the mean of the action over sprinklings, another

direction to take is to explicitly investigate its variance. This would help provide

more weight to the idea of contributions cancelling out in the path integral.

If our conjectures and heuristic arguments prove true, then we would fi-

nally have an answer to why we don’t observe holes or ‘physically unreasonable’

spacetimes.
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