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Abstract

We develop the Brans-Dicke theory of gravity in the context of varying constants of
Nature. Using the unimodular formalism of General Relativity, we create a platform
to provide physical relational times giving the evolution of physical constants. We
therefore review the ideas and experiments behind varying constants, mostly focus-
ing on the speed of light and the gravitational constant. Then, we apply this idea
to the energy conservation in cosmology, illustrating the arising patterns. Motivated
by a varying gravitational constant resulting from Mach’s principle, we develop the
unimodular formalism of varying constants in the Brans-Dicke theory. Doing so, we
obtain several original results, some of which can be compared with phenomenolog-
ical observation. Finally, we suggest how a varying Brans-Dicke parameter could be
linked to the Cosmological Constant problem.
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Infine, la mia più sconfinata riconoscenza e infinita gratitudine vanno alle persone
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“Humana ante oculos foede cum vita iaceret in terris oppressa gravi sub
religione quae caput a caeli regionibus ostendebat horribili super aspectu

mortalibus instans, primum Graius homo mortalis tollere contra est oculos
ausus primusque obsistere contra, quem neque fama deum nec fulmina nec
minitanti murmure compressit caelum, sed eo magis acrem irritat animi
virtutem, effringere ut arta naturae primus portarum claustra cupiret.

Ergo vivida vis animi pervicit, et extra processit longe flammantia moenia
mundi atque omne immensum peragravit mente animoque, unde refert

nobis victor quid possit oriri, quid nequeat, finita potestas denique cuique
quanam sit ratione atque alte terminus haerens. Quare religio pedibus

subiecta vicissim obteritur, nos exaequat victoria caelo.”

De Rerum Natura - Titus Lucretius Carus
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Chapter 1

Introduction

In this chapter, we present the three main background theories – Unimodular Gravity,
the Constants of Nature and the Brans-Dicke theories – to propel the investigation in
the next chapters. The first one provides the mathematical framework to rigorously
implement the idea of varying constants in General Relativity and in Brans-Dicke
theory. The second theory explores the philosophical and physical depths behind
constants and motivates why they could, paradoxically after all, be variable. Fur-
thermore, it provides an insight into the broad landscape of roles the speed of light
plays in physical theories. Finally, the third section introduces the Brans-Dicke the-
ory of gravity, from its connection with the idea of varying G to its fields equations,
employing Mach’s principle. The Brans-Dicke theory will be the basis for the original
research presented in Chapter 3, so it is particularly important towards the results
obtained and their interpretation. To conclude, section (1.4) summarises how the
ideas in these three sections empower Varying Constant Theories (VCT). We also
explain the aims of this research which will be reviewed and assessed in Chapter 4
in light of the obtained results.

1.1 Unimodular Gravity

In this section, we will explore the implementation of unimodular gravity in General
Relativity. In doing so, we will distinguish between two main formalisms: Einstein’s
pure unimodular gravity and the Henneaux-Teitelboim theory. The former is called
so because it was originally suggested by Einstein as a way to simplify calculation in
General Relativity by requiring that the determinant of the metric

√
−g = 1. In 1989,

the latter was proposed to generalise Einstein’s idea, allowing for a less restrictive
condition, i.e.,

√
−g = ∂µT µ, where T µ is a generic vector density. As we will see,

this extension allows to associate different constants with their respective conjugate
relational times, a central property of theory upon which most of the results in this
work are based.

1



1.1. UNIMODULAR GRAVITY CHAPTER 1. INTRODUCTION

1.1.1 Einstein’s pure unimodular gravity

Since its inception, Einstein’s Theory of General Relativity (EFE) has been the most
experimentally successful attempt at describing the phenomenon known as gravita-
tion [1]. Einstein’s theory victoriously survived experimental tests ranging from the
perihelion procession of Mercury to light deflection due to the Sun’s gravitational
field [1]. More recently, predictions from General Relativity have been tested in
more exotic phenomena such as gravitational lensing and gravitational waves [2],
once again confirming this theory.
However, one observational evidence controverts the Einstein Field Equations as
they were presented originally in the famous 1915 paper titled The Field Equations
of Gravitation [3]. In fact, the first field equations for a vacuum solution,

Rµν −
1

2
Rgµν = 0 (1.1)

predicted a dynamical universe with space evolving in time. Rejecting this predic-
tion, in 1917 Einstein introduced a parameter, Λ, called the cosmological constant. It
allowed the community to believe that the universe could remain static and eternal,
completely deprived of any evolving dynamic (the so-called Einstein static universe
solution). It was not long after his addition of Λ that Hubble discovered the relation-
ship between velocities and redshift of distant galaxies and concluded the opposite:
the universe was expanding. This experimental evidence combined with theoretical
works by Friedmann (the universe is expanding regardless of the value of Λ) led
Einstein to call Λ his biggest blunder, thus changing his views on the nature of the
Universe.
Since then, the necessity for the cosmological constant has been a matter of debate
until 1998, when it was proven that the expansion of the universe is accelerating, re-
quiring a positive cosmological constant [4]. Interestingly, Einstein’s biggest blunder
turned out to be a necessary addition to the field equations describing a dynamical
universe subject to an expansion possibly driven by Λ.

The appearance of the cosmological constant in the field equations has been since
then a matter of active debate from a theoretical point of view. In fact, it is not
clear, a priori, why Λ should be constant and how it actually enters the field equa-
tions. Einstein’s unimodular formulation of General Relativity has been an attempt
to better justify its appearance. Frivolously, before its inception, Λ would simply be
inserted in the Einstein-Hilbert action with matter as follows [5]:

SEH =
c4

16πG

∫
d4x

√
−g R +Sm → SEH =

c4

16πG

∫
d4x

√
−g (R− 2Λ)+Sm (1.2)

where Sm is the matter action. It is clear that using the full action above, when
deriving the EFEs, we arrive at a set of field equations where Λ, from a purely math-
ematical point of view, does not need to be constant. Varying action (1.2), we obtain
the field equations:

2



CHAPTER 1. INTRODUCTION 1.1. UNIMODULAR GRAVITY

δSEH

δgµν
= 0 ⇔ Rµν −

1

2
Rgµν + Λgµν =

8πG

c4
Tµν (1.3)

where we again stress that Λ is taken to be constant purely for the observational rea-
sons [4], but it does not need to be. The idea of unimodular gravity, first formulated
by Einstein himself as a mean to unify gravity and matter [6], starts from imposing
the constraint

√
−g = 1 to action (1.2), a condition that leads to preserving the

determinant of the metric when varying the action,

δ
√
−g

δgµν
= 0 (1.4)

Furthermore, consider the infinitesimal variation of the metric

δgµν(x) = ∇µkν +∇νkµ (1.5)

where kµ is the transformation’s gauge vector and x are the general coordinates,
under the infinitesimal coordinate transformation

xµ 7→ x′µ = xµ + kµ (1.6)

Using the chain rule on (1.4), we can get a full expression for the variation of
√
−g

the same way it is done in [7]:

δ
√
−g = 1

2

√
−ggµνδgµν = 0 =⇒ gµνδgµν = 0 (1.7)

where g = det gµν . Finally, we can plug (1.5) into the last expression of (1.7),
contract the indices with gµν , and arrive at a condition

∇µk
µ = 0 (1.8)

for the gauge vector kµ.
The transformations on kµ are called transverse diffeomorphisms. They can be in-
terpreted as symmetric properties of the metric and are naturally arising from the
unimodular constraint imposed on

√
−g. It is now possible to introduce the uni-

modular constraint by modifying the Einstein-Hilbert action with the addition of a
Lagrange multiplayer λ

SEH =
c4

16πG

∫
d4x

√
−gR−

∫
d4x λ(x)(

√
−g − 1) + Sm (1.9)

Varying this action with respect to the Lagrange multiplier scalar λ(x) gives the uni-
modular constraint

√
−g = 1. On the other hand, performing the usual variation

with respect to gµν gives the field equations

Rµν −
1

2
Rgµν +

8πG

c4
λ(x)gµν =

8πG

c4
Tµν (1.10)

3



1.1. UNIMODULAR GRAVITY CHAPTER 1. INTRODUCTION

Finally, by expressing (1.10) for λ and then taking its divergence we get

∇µλ = ∇νTµν −
c4

8πG

[
∇νRµν −

1

2
∇µR

]
= 0 (1.11)

which is equal to zero because of the energy-momentum conservation, i.e., ∇νTµν =
0 and because of the contracted Bianchi identities ∇νRµν − 1

2
∇µR = 0. Given that

and that λ is a scalar, we can write

∂µλ = 0 (1.12)

which tells us that λ is indeed an integration constant as we wanted. Therefore,
comparing (1.10) with (1.3), we see that the dynamics of both theories are the same
with the cosmological constant of

Λ =
8πG

c4
λ (1.13)

This result confirms once again that the cosmological constant can be derived in
the field equations by imposing the unimodular condition on the determinant of the
metric. However, as we will see in the next section, it is possible to go beyond this
result, introducing a formalism that will turn out essential for the implementation of
varying constants in cosmology [8].

1.1.2 Henneaux-Teitelboim theory

Generalising Einstein’s idea, Henneaux and Teitelboim formulated a fully diffeomorphism-
invariant extension of the unimodular condition by introducing the divergence of a
vector field density as follows [9]:

√
−g = ∂µT µ

Λ (1.14)

where the range of the index is µ = 0...3.
We will focus now on condition (1.14) as this will become central to our develop-
ments of unimodular time and other times. Therefore, following [9], it is possible to
write action (1.2) as the sum of two actions:

S = S0 + SU (1.15)

where S0 is, in our case, the EH action, but it could be any base action, whereas SU

is the unimodular term defined as:

SU =

∫
d4x Λ ∂µT µ

Λ (1.16)

which, combined with S0, and integrated by parts, leads to the final result

S0 → S = S0 +

∫
d4x Λ ∂µT µ

Λ = S0 −
∫
d4x (∂µΛ)T µ

Λ (1.17)

4



CHAPTER 1. INTRODUCTION 1.1. UNIMODULAR GRAVITY

where S0 is a base action which, for the moment, is the EH action as defined in
(1.2), but will be modified to Brans-Dicke in the following sections. It is also impor-
tant to note that in (1.17) Λ is not anymore, a priori, the cosmological constant, but
just a scalar, which happens to appear in the EFEs as a result of being an integration
constant. This allows us to transform the cosmological constant from a fixed param-
eter to an integration constant, which will be such only in the equations of motion.
In fact, calculating the equations of motion from action (1.17) we arrive at

δS

δΛ
=
δS0

δΛ
+
δSU

δΛ
= 0 ⇔

√
−g = ∂µT µ

Λ (1.18)

δS

δT µ
Λ

=
δSU

δT µ
Λ

= 0 ⇔ ∂µΛ ≈ 0 (1.19)

Firstly, equation (1.18) is the Henneaux-Teitelboim condition introduced in (1.14).
This proves that the condition holds on the level of the equations of motion. On the
other hand, (1.19) proves that now Λ is a constant only on the shell, i.e., when it
obeys the equation of motion.

For now, we wish to understand the relation between Λ and the vector density T µ
Λ ,

as well as what the interpretation of this density could be.
An important insight into this question is achieved by considering the 3 + 1 foliation
of space-time induced by the ADM formalism in SU . Upon the 3 + 1 splitting of the
time and space components of T µ

Λ as T µ
Λ = T 0+T i, where i = 1, 2, 3, the unimodular

action (1.16) becomes

SU =

∫
dt d3x (Λ Ṫ 0

Λ + Λ ∂iT i
Λ) (1.20)

This shows that T 0
Λ is the canonical conjugate of Λ as they form a canonical pair of

variables in the Hamiltonian formalism. Furthermore, following [9], the only prop-
agating mode of T µ

Λ is the zero-mode of its time component as defined below:

TΛ =

∫
d3x T 0

Λ (1.21)

This zero-mode TΛ defines a time [10] that is naturally canonical to the cosmologi-
cal constant. Importantly, the notion of a canonical time to a constant is intimately
related with relational quantum mechanics [11] and, more generally, the problem
of time in quantum mechanics. This allows to create relational times which depend
on their canonical pair (the constant) instead of an absolute parameter time t. As
we will see, this formalism provides a powerful implementation of Leibniz’s idea of
relational events, and, therefore, times [12].
Having established this framework where the cosmological constant forms a con-
jugate pair with the identified unimodular time TΛ, we can generalise this to any

5



1.2. THE CONSTANTS OF NATURE CHAPTER 1. INTRODUCTION

constant of nature appearing in our base action S0. In fact, instead of having only
one constant in the unimodular term, we could have a full vector of constants called
α conjugate to a set of different corresponding relational times Tα. Since any α is
conjugated with its Tα, we start to see here how some physical constants will become
relational clocks, determining the evolution of other constants. Using this generali-
sation in action (1.16), we arrive at an additional unimodular-like term in the action,

Sα =

∫
d4xα ∂µT µ

α (1.22)

which, to conclude, will give us the full action

S = S0 −
∫
d4xα ∂µT µ

α (1.23)

From this point on, we will be able to use the formalism introduced in action (1.23)
to derive a set of time evolution equations for different constants. Following this
procedure, we will manage to demote any constant appearing in the base action
to mere constants of motion, thus obtaining the set of relational times canonical to
them. The constant and the associated time will form a canonical conjugate pair as
prescribed by the Hamiltonian formalism, as we will see in the next chapter. These
times will then be used to provide evolution parameters for other constants, as we
will see. To conclude, we will mostly focus our investigation on using the Brans-
Dicke action as a base theory for reasons that will become clearer later. This will be
the core of Chapter 3 and its results.

1.2 The Constants of Nature

“ Tempora Mutantur et Nos Mutamur in Illis ”

What makes the Reality we perceive unique? What is the property, the character-
istic so deeply connected to our Universe to make it one of a kind, and therefore
differentiable from anything else? Something of this sort should certainly be the
pillar of the world, a unique feature, so exclusive to the Universe to actually make it
The Universe. As such, it most definitely would need to be a fixed property, eternal
and equal everywhere and at the heart of anything else populating the Universe: it
should be constant, a constant.

In fact, as the word suggests, constants are values that not only remain the same
everywhere and at any time (in the past and in the future), but also, and in parts
because of their universality, they are the fundamental constituents of every physical
theory. This is because their spacetime invariance characterises uniquely a set of
phenomena (which is the case for some constants) or even the essence of the Uni-
verse (which is the case for three constants). Bringing this concept to an extreme,

6



CHAPTER 1. INTRODUCTION 1.2. THE CONSTANTS OF NATURE

imagine a Universe where the very constant that make it such vary, not being con-
stant anymore. Since these constant are the essence, the origin, the Aρχή of the
Universe, changing them would result in changing the Universe. In other words, the
Universe would not be the same one as before, it would become another Universe,
since its most fundamental identifier are subject to change. This inevitably leads to
think that, since the constant are not invariant, then some other property of the Uni-
verse must be the truly fundamental one, and what is better then the quantity these
constant are changing with respect to for this role. If we assume time-dependent
constants (it will turn out that this is not the only possibility), it is then time the next
subject of our interest.

As we have seen before, the generalised unimodular formalism provides excellent
definitions of times for the evolution of the constants, but it also does much more
then that. It enables us to implement Leibniz’s idea of relational times, so intimately
connected with the problem of time in quantum mechanics [13]. Finally, it shows
us Nature’s subtle irony: certain constants vary while other provide definition of the
relational times, but this situation can be reversed. This leads to a racy ambiguity,
where the role of a constant and that one of a time can be interchanged and mixed:
where the ultimate truth lies is a question for the future.

Therefore, in this section, we explore the heuristic and the ideas behind the con-
cept of a constants and their potential variability in time. Firstly, we investigate
the nature of constants, understanding why they arise, what property makes them
similar or differentiate them into categories and how they relate to the physical
laws. Secondly, subsection (1.2.2) presents the experimental hints and evidences
for varying constants. Furthermore, it also reviews the early theoretical works on
the subject, developing an intuition for the next chapters. Finally, subsection (1.2.3)
provides a crucial specification to the ideas illustrated before: the “different” speeds
of light. It does so by showing how a single constant like c could have different roles,
depending on the phenomenon it describes. This differentiation will turn out to be
very important in Chapter 3, where “different” speeds of light can lead to different
scenarios in the context of energy conservation.

1.2.1 The Essence of a Constant

“ Multa sunt quae esse concedimus; qualia sunt? Ignoramus. ”

What is a constant? It is a simple question at the heart of our understanding of Re-
ality, the very basis of the fundamental phenomena constructing this Universe, that
will prove rather deceptive and elusive to grasp. We will, nevertheless, try our best
to succeed. To shed some light on this topic, it is enlightening to distinguish the
domains of constants: mathematical and physical ones. Our main interest will pivot
around the latter, but we believe it will be useful to briefly mention mathematical
constants and their relevance to this investigation. Mathematical constants are fun-
damentally different from physical ones in one property: they cannot be measured,

7



1.2. THE CONSTANTS OF NATURE CHAPTER 1. INTRODUCTION

and therefore, they are all dimensionless numbers without any uncertainty. In this
regard, they are certainly more abstract than physical ones, as they appear as re-
curring numbers across mathematics, almost being structures of the model we use
to describe Nature. Another interesting fact about mathematical constants is that
some of them appear in physical laws, but no measured physical constants appear
in mathematics. The most evocative example is, by far, the most ancient constant
known: π. It is defined as [14]

π :=
C

d
(1.24)

i.e., the ratio of the circumference of a circle (a 2D object, more generally, a 1-sphere
S1) to its diameter. It appears in any classical physical law possessing some periodic
property [15]; it plays a role in General Relativity, being in the EFE constant κ = 8πG

c4

[5], to Quantum Mechanics, e.g., in the Uncertainty Principle [16], defining reduced
Planck’s constant as ℏ = h

2π
. The proliferating appearance of π in so many different

fields is incredible, but its most striking property is indeed its constancy: the value
of π is invariant in space, time and other dimensions (π is the same no matter the di-
mension in which a n-sphere is considered [17]). This happens because π is actually
the ratio of two geometrical quantities that, by the construction of space, are related
exactly by it: no matter what, when one is changed, the other one will change pro-
portionally, producing always the same value of π. This suggests the first intuition
on what a constant is: a fixed value linking two concepts or quantities (which of-
ten might not be evidently related, see subsection (1.2.3)) so defining their absolute
and universal nature. From this definition, we can easily understand why such a
profound quantity like a constant must be invariant in space, time and dimensions:
if it was not, it would not describe the n-sphere anymore, but something else. The
relationships between abstract elements of an n-sphere define π and π defines those
relationships.

As we will see for physical constants, equations, numbers and functions describe
how a system evolves and interacts with other systems, but constants provide the
essential information of what that system is, its fundamental nature that makes it
different from anything else and equal to anything sharing the same constant. This
is due to the principle of identity of indiscernible [18]. This powerful idea, expressed
in its more concrete as well as abstract realisations, has been at the heart of great
discoveries such as the equivalence of mass and energy (where the constant c is re-
ally the link between the two) or the equivalence principle [19]. Now that we have
established the starting point of our constants discussion, we can explore the more
natural topic of physical constants.

What is a constant? A physical one, this time. Expectedly, a physical constant usually
is a dimensional numerical value arising in the description of a natural phenomenon.
As such, it arises in the same way whenever that phenomenon, its outcomes or
other qualitatively relatable phenomena, are experienced, making it the characteris-
tic and often defining property of the phenomenon. The crucial point is that physical
constants are the result of measurements and dimensional, meaning they carry in-
formation about the measurement convention. Units intrinsically distinguish these
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quantities. Some constants measure velocity (the state of motion of an object), oth-
ers measure charge, mass, other temperature and more. We could, more abstractly,
define physical constants, following [20], as any parameter that cannot be explained
by the theory it describes. This highlights the first fork in our analysis: fundamen-
tal and non-fundamental constants. In fact, while the first ones cannot possibly be
determined in terms of any other parameter of the theory, the second ones are of-
ten made up of fundamental constants or are kept because of historical uses. More
specifically, fundamental constants are impossible to compute from the theoretical
framework as this would mean they obey some dynamical equation; resultantly, they
would not be constant anymore. Conversely, from the experimental point of view,
the fundamental constants must and have been measured, thus confirming the valid-
ity of the theory and fixing the value of the constant up to the experiment’s accuracy.

Following the idea behind fundamental constants, Weinberg defined them as “con-
stants that appear in the laws of nature at the deepest level that we yet understand,
constants whose value we cannot calculate with precision in terms of more fundamen-
tal constants, not just because the calculation is too complicated (as for the viscosity
of water or the mass of the proton) but because we do not know of anything more
fundamental”[21]. This definition remarks the nature of fundamental constants:
they create the basis upon which our physics, our understanding of Reality is con-
structed. They quite literally define the Universe, giving the what property of objects
as described for mathematical constants. Another crucial point is that fundamen-
tal constants retain their title until another more general theory can explain their
origin. Therefore, when we discuss variable fundamental constants, whether they
are varying with time [22] (as we will consider here), with respect to space [23] or
something else, or they are just dynamical quantities explained by a more general
theory, the constants will lose their fundamental character. This will expectedly and
drastically change their nature, leading to, as an example above all, a speed of light
that is no longer observer-invariant, that breaks Lorentz invariance [24] and energy
conservation.

We conclude by analysing the current set of fundamental physical constants and
by providing a classification in which three constants stand out above all the oth-
ers. As aforementioned, physical constants could be divided into fundamental and
non-fundamental ones; the former cannot be expressed in terms of anything more
fundamental but can be combined to give the latter. These are the constants de-
scribing the four fundamental interactions known thus far: electromagnetism, weak
interaction, strong interaction and gravity. Therefore, considering these theories, we
have 22 unknown constants in total[20]: six Yukawa couplings for the quarks, three
Yukawa couplings for the leptons, two parameters for the Higgs field, four param-
eters for the CKM matrix, three couplings for the symmetry group of the Standard
Model, a phase for the QCD vacuum [25] and, finally, the speed of light, the gravi-
tational constant and Planck’s constant.
Interestingly, most of these fundamental constants come from the Standard Model
and are related to the individual particles, fields, and their symmetries. They are,
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moreover, different in nature from c, G and ℏ, as these appear to be more universal
and less specific to a particular physical phenomenon as the Standard Model ones.
This is hardly a coincidence, as fundamental constants can be divided into three
different subcategories: constants characteristic of a particular system, constants
characteristic of a class of physical phenomena, and truly universal constants [26].
It is clear how the Standard Model constants belong predominantly to the second
category, while c, G and h are part of the universal constants, as they describe the
very structure of Reality. Furthermore, as observed in [26], [27] and [28], they have
the property of being concept synthesisers and reference scales for physical theories.
Firstly, equations like E = c2m, E = ℏω and Gµν = 8πG

c4
Tµν show how each of these

three constants allows linking concepts that are apparently unrelated. They are the
conversion, the bridge between different aspects of the same Reality. Secondly, c
and ℏ set the physical scale of applicability of theories: the speed of light determines
an upper bound for causality, establishing when systems become relativistic, while
Planck’s constant defines the scale of quantum phenomena. The same role is not
clearly defined for G, even though it could be interpreted as setting the scale at
which gravitational phenomena become relevant [27]. Nevertheless, we clearly see
how these three constants play a more fundamental and differentiated role than the
others, to the point that we might be tempted to call them, in an ecclesiastic spirit,
the Holy Trinity.

1.2.2 Constants that Vary

“ Πάντα ρϵι̃ ”

In the previous subsection, we have explored the properties that substantiate and
differentiate constants. As exemplified, an essential property of a constant is, tauto-
logically, its constancy in time, space, dimensions, etc. More generally, a fundamen-
tal constant, to be such, should not have any dependency whatsoever, whether it is
from other constants or from the structure of Reality. It is an absolute, a quantity
only measurable and, if we wish, a Deo datum. However, the idea at the heart of
this work challenges this view by asking: what if the fundamental constants of Na-
ture are not actually constant? That means that among the many mechanisms that
could result in varying constants models, we assume fundamental constants to be
varying in the sense of being subject to evolution, resulting in their dynamics. This
postulate inevitably leads to the second question of evolution with respect to what.
In this work, we will use the idea of relational times as parameters determining the
evolution of the constant, as provided by the unimodular formalism. Lastly, we will
only consider physical constants appearing in the Einstein-Cartan, and Brans-Dicke
actions provided with a perfect fluid matter content. This is the case because the
unimodular formalism presented in section (1.1) was originally designed to be ap-
plied to gravitational types action. Resultantly, from the 22 fundamental constants
mentioned earlier, the ones associated with the Standard Model will be neglected,
even though they could become the object of future studies.

10
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Firstly, we would like to explore the heuristic behind varying constants, so as to
understand why such a hypothesis could, after all, not be too insane. Everything
started with the possibility that G, the gravitational constant, could vary depend-
ing on cosmic time. In 1938, Dirac formulated the Large Number Hypothesis [29],
creating the basis for varying constants. He noticed a remarkably close coincidence
between two ratios, namely that [30]

N1 =
e2

Gmpme

≃ 2× 1039 (1.25)

N2 =
cH−1

0

e2m−1
e c−2

≃ 2× 1040 (1.26)

where N1 is the ratio of electrostatic to gravitational force between the proton and
the electron, while N2 is the ratio of the Hubble horizon radius today, H−1

0 , to the
classical electron radius. Intrigued by their closeness, he thought that the two num-
bers should be the same up to a factor of order unity such that

N1 = N2 ×O(1) (1.27)

Suppose that this relationship was valid, then we expect it to hold at all cosmological
times, from the beginning of the Universe till our time. However, N2 is not a constant
ratio, as it depends on H−1

0 , the current Hubble radius. Since the Universe is expand-
ing [4], H−1

0 varies in time accordingly, making N2 varying. But a non-constant N2,
by virtue of relation (1.27), requires also N1 to vary over time. Dirac interpreted this
fact as a varying G over cosmological time as G ∝ t−1. Alternatively, one could also
explain a varying N1 as a constant G but a varying fine structure constant according
to α ∝ t

1
2 . Interestingly, a third possibility would be that the Hubble radius in N2

is constant but the speed of light is varying similarly to VSL theories [24]; though
fascinating, this scenario would require a whole discussion itself tangential to this
work.
Several experimental tests have been conducted to check the variability of G [31]
[32] [33] [34], from Solar System constraints to binary pulsars to stellar constraints
all the way up to cosmological one [20], converging on similar variations for G. For
example, the change in G over time was estimated using binary pulsars to be [35]

Ġ

G
= (1.0± 2.3)× 10−11 yr−1 (1.28)

suggesting a minimal, but measurable change in G over time.

On the other hand, we might interpret (1.27) as an equation where G is constant
but α is varying. We now follow this line of reasoning. This possibility is particularly
interesting as it will closely relate to the variability of c, as we will see. Plenty of
different experiments have been performed to test the variability of α, ranging from
quasar spectra [36] to atomic clocks [37] and absorption lines spectra [38], includ-
ing measurements of CMB in the WMAP mission [39]. However, among all these
different measurements, the most interesting, constraining, and sensitive one is the
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Oklo event [38]. Approximately 1.8×109yr in Gabon a Uranium deposit reached the
critical phase of fission reaction due to the extreme coincidence of favourable condi-
tions (abundance of naturally enriched 235U , low concentration of neutron absorbing
materials and water presence that acted as moderator), turning into a natural nu-
clear reactor [20]. The fission continued for a few million years consuming part of
its fuel. Imagine what a strange and breathtaking experience it would be to witness
the spontaneous beginning of fission in a primordial Earth, millions of years before
Fermi managed to start the first man-made nuclear reaction! The reason why the
Oklo phenomenon quickly became relevant for testing the variability of α is the ratio
of two isotopes of samarium found in the mine. While the ratio between 149Sm and
147Sm is usually 0.9, the same ratio in the Oklo mine was measured to be around
0.02 [30]. This discrepancy in the measurements could be attributed to a change in
α [40], as the Oklo reaction happened in a past enough time. Several studies were
conducted on the constraints put on the variability of α by the Oklo phenomenon,
leading to the most stringent one of [41]:

α̇

α
= (0.2± 0.8)× 10−17 yr−1 (1.29)

It shows that the fine structure constant might indeed vary with time. Together with
Dirac’s Large Number Hypothesis and the observations made regarding a varying G,
this result motivates our work on the possibility that further physical constants might
vary. However, before mentioning the last notable motivation for varying constants,
we will show how a varying α links particularly well with a varying speed of light.

The fine structure constant is defined as [42]

α :=
e2

ℏc
(1.30)

where e is the electron’s charge, ℏ is the reduced Planck’s constant and c is our
beloved speed of light. If, as we have just seen, α varies with time, given its com-
posite structure, a natural question arises: which component of α is varying? Since
α is a ratio, the electric charge e could be varying, while ℏc is constant, a possibility
considered by [43]. Equally, e could be perfectly constant, while either ℏ or c would
be varying. Finally, in principle, all three constants could be varying to give the ob-
served variation in α. The main difference between the first and second scenario,
and also the main reason why someone would choose to fix ℏc while making e vary-
ing, is that in the first case, Lorentz invariance would be preserved while breaking
charge conservation. In the second case, Lorentz invariance would be clearly bro-
ken. For simplicity, we leave out the case of a varying ℏ, being sure that a varying c
would be sufficiently heretic.
Therefore, in the context of Varying Speed of Light theories, we will consider that a
varying α is actually a varying c with e and ℏ both constants. It is here that a cru-
cial point arises: varying dimensional constants do not have any meaning physically
[24]. This is because dimensional constants can only be measured as a ratio to a
unit of measurement. It only makes sense to have dimensionless constants varying,
as these are pure numbers without dimensions. However, it is possible to consider
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varying c models where the whole dimensionless fine structure constant is varying,
while the ratio of the other dimensional constants is kept fixed. This will be the
basis of our next developments, where we will consider a set of constants, labelled β
appearing in the Einstein-Cartan action. We will postulate that these constants vary
with respect to physical relational times as defined in section (1.1), arising from the
generalised unimodular term.

To conclude, we briefly mention the last main reason why we believe that constants
could vary. This is more of a heuristic motivation, extensively based on the more
abstract interpretation of the meaning behind the laws of physics. As pointed out by
[44] and [45], the appearance of General Relativity in physics drastically changed
our understanding of Reality. Neither because of its complete and extended model
of gravity nor because of its successful tests, but because of the fundamental change
it provided to our logic. It allowed us to change from a strictly static and rigid view
of spacetime to a fluid and dynamic one. This freed our view of the world, allowing
us to run in the wild landscape of a mutable Reality that led to so many new insights
and discoveries. Likewise, we believe that there should not be any limitation on
imagining a Universe where constants might change, leading to new and exciting
models of Reality.

1.2.3 The Speed of Light

Speed is conventionally a dimensional quantity ([L
T
]) that relates perhaps the two

most fundamental concepts of Nature: time and space. It is really a conversion fac-
tor between the two. The faster something moves through space, the more this space
is converted into time, keeping track of the temporal interval required to complete
that distance. As such, the concept of speed is intrinsically a variable one, making
it a purely dynamical quantity associated with objects, rather than a fundamental
one determining the nature of such objects. As an example, it would be illogical to
presume that the speed at which an electron is moving is defining the essence of an
electron. The electron is such no matter its state of motion, as this can change due
to external influences, but its intrinsic properties like charge and mass are not only
unique but also, and most importantly, unchangeable. It would be madness to de-
fine, to substantiate any particle by the speed at which it propagates in the Universe,
as this would be subject to changes, thus not making it an absolute property unique
to that particle.

This is not, however, the case for the photon, or, to be more abstract, for any particle
lacking mass. Any massless particle travels at the speed of light, and any particle that
is travelling at the speed of light must be massless [46]. As surprising as it might be,
what is colloquially called “the speed of light” is the intrinsic property defining any
massless particle, because of a simple but rather incredible occurrence: the speed of
light is constant. How exactly can something like the speed of a particle be always
fixed, to the point of becoming an invariant between reference frames? How did it
happen that a concept traditionally variable not only became constant but, as such, it

13



1.2. THE CONSTANTS OF NATURE CHAPTER 1. INTRODUCTION

became the fundamental property defining intrinsically the nature of a particle, thus
ascending to the primary role of constant of Nature? To answer these questions, we
need to ask where this speed first appeared, and we need to explore the deeper idea
underlying the commonly known speed of light as the speed at which a photon, i.e.,
electromagnetic waves, propagate in spacetime.

Everything began with the early experiments on magnetostatic and electrostatic.
Electricity and Magnetism are characterised, as most physical phenomena, by two
constants: the electric vacuum permittivity, ϵ0, and the magnetic vacuum perme-
ability, µ0. The first one describes the electric field density forming as a result of a
charge, while the second one models the strength of the magnetic field formed by
moving charges. Interestingly, when combined, they have the same dimensions of
a velocity [42]. This remained a coincidence until Maxwell unified electricity and
magnetism. If we consider the Maxwell’s equations [42]

∇ ·E = − ρ

ϵ0
(1.31)

∇ ·B = 0 (1.32)

∇×E = −∂B
∂t

(1.33)

∇×B = µ0

[
J + ϵ0

∂E

∂t

]
(1.34)

where J is the electric current density, we can take the curl of equation (1.33) and,
using standard vector identities, we obtain

∇2E =
∂

∂t
(∇×B) (1.35)

And, using substituting equation (1.34) inside, we obtain

∇2E = ϵ0µ0
∂2E

∂t2
(1.36)

Following a similar procedure, we have the same equation for the magnetic field

∇2B = ϵ0µ0
∂2B

∂t2
(1.37)

Conclusion? Both equations above have the form of the wave equation [47], i.e.,

∇2x =
1

v2
∂2x

∂t2
(1.38)

where v is the speed of the propagation of the wave. By analogy with this equation,
it is straightforward to see that

c0 =
1

√
ϵ0µ0

(1.39)
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where c0 is now the speed at which every electromagnetic wave propagates in the
vacuum. This value is constant, as it is made itself of two constants coming from
electric and magnetic phenomena. Strangely enough, electric charges give rise to
electromagnetic waves, the speed of which is constant. This is our first encounter
with one of the many roles the speed of light takes: it is the fundamental constant
of electromagnetism. As we will now see, following [28], there are other roles this
concept can take.

The speed of light appears as well in the Lorentz transformations as the spacetime
constant, and, to differentiate it from the other roles, following [28], we will label it
as cST . If we consider the line element for Minkowski flat space

ds2 = gµνdx
µdxν (1.40)

(1.41)
= −c2STdt2 + dx2 + dy2 + dz2 (1.42)

we immediately understand that here the speed of light acts as a fixed conversion
factor between time and space coordinates, so that they are fully unified in a 4-
vector, forming spacetime coordinates. Furthermore, by fixing the speed of light and
assuming nothing travels faster like Einstein did, we can define a causal structure
in spacetime. In fact, depending on the sign of the Minkowski line element, two
spacetime events can be separated by the following intervals [48]

ds2 < 0 ⇔ Time-like interval (1.43)

ds2 = 0 ⇔ Light-like interval (1.44)

ds2 > 0 ⇔ Space-like interval (1.45)

This shows how the speed of light, being a universal invariant constant between ref-
erence frames, fixes the causality of events in spacetime: physical phenomena could
only be time-like or light-like, while space-like phenomena break causality, as they
would propagate faster than light. Lastly, cST also enters the famous E = mc2ST for-
mula, becoming a conversion factor between energy and mass. In the next chapters,
we will see that cST enters the gravitational metric gµν with the same role discussed
here (as a causality constant relating space and time), so we will label it cg to differ-
entiate it from the other types.

The third different type of speed of light appears in General Relativity. When con-
sidering the Einstein Field Equations, we have that

Gµν =
8πG

c4FE

Tµν (1.46)

where this time cFE is a conversion factor between the gravity part of the field equa-
tions and the matter content. As discussed in [28], this speed of light is ultimately
equivalent to cST in the Newtonian limit. This equivalence is however only valid
in the context of General Relativity, and it will still be important to differentiate it
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when considering the variability of constants. Finally, [28] also shows how the speed
of light enters the linearised field equations, being the speed at which gravitational
waves propagate. This turns out to be, once again, the same as cST , confirming that
the speed of light is actually the maximum speed of propagation of information and
thus causality.

We have seen how the speed of light plays different roles in physics, ranging from the
propagation’s speed of electromagnetic waves to the structure constant of spacetime
determining causality. By doing so, we understand that the concept of the speed of
massless particles is fundamentally related to the maximum speed of propagation of
information in general, whether this is via photons or gravitational waves. Having
established its different roles, we can now properly differentiate them when consid-
ering the variation of c, depending on whether this speed of light comes from the
Einstein-Hilbert action, from the gravitational metric or from the energy density ρ.

1.3 Brans-Dicke: a scalar-tensor theory of gravity

Following our discussion from section (1.1), we now focus on which base action S0

we could use. Thus far [22] [49] [50], S0 has always been taken to be the Einstein-
Cartan action, leading to a relatively small number of parameters that could be used
as α or β. Furthermore, there is no reason why, a priori, we should avoid using any
other physical action as a base theory S0, ranging from quantum field theory ones to
the full standard model Lagrangian. These will potentially encounter renormalisa-
tion problems related to the constants used (e.g., the distinction between bare and
physical mass), but could still be interesting fields of research. Nevertheless, here we
will focus on purely gravitational theories, specifically investigating the outcomes of
applying the varying constant formalism to the Brans-Dicke theory. There are two
main reasons why we chose to use the Brans-Dicke action as S0: its inclusion, by
construction, of a varying gravitational constant (via Mach’s principle) and the pres-
ence of the dimensionless parameter ω. Therefore, we will review the foundational
ideas and results of this theory, highlighting how its unique feature nicely connect
with the idea of varying constants.

1.3.1 Mach’s principle

Imagine to be floating in empty space. You are surrounded by never never-ending
void, and the only available reference points are distant fixed stars visible in the
background. Suddenly, you start to rotate around yourself, thus experiencing your
arms and legs being pulled away from you. This is nothing but the centrifugal force
caused by the rotation: your body’s inertia is opposing to the rotation, hence the out-
ward force. However, more interestingly, the fixed stars of the background are also
rotating, prompting the question: why do you experience centrifugal force when the
background stars are rotating? Is there any connection between you and far dis-
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tant object that seems incapable of influencing you from a distance? This thought
experiment, inspired by [51], is at the heart of the idea of Mach’s principle and its
consequences for General Relativity and the Brans-Dicke theory.

Another way to formulate this idea is to think about Newton’s famous ”Bucket Exper-
iment”. If we imagine a bucket containing water rotating on itself, we would notice
that after some time has passed, the surface of the water will have changed shape.
It will go from being completely flat to having a paraboloidal shape, with the water
touching the bucket’s side higher than the one in the centre. This will be the result
of the inertia of the water opposing the motion induced by the rotation. Once the
bucket stops rotating, the water’s rotation will also slow down, eventually reaching
the flat state it originally started from. If, however, the bucket is still but the entire
universe around is rotating, Newton’s conclusion was that the water on the surface
would still be flat, since it is not moving and the universe’s rotation would affect the
water’s inertia. Disagreeably to Newton, Mach claimed that the water in the bucket
would still change shape [52], and thus the inertia would be affected, even when
the bucket is not moving but the universe around it is.

More fundamentally [53], this thought experiment becomes crucial in the context
of the dichotomy between absolute and relative space and time. In fact, considering
two buckets filled with water, one rotating and the other not, how can we appreciate
their difference? This would certainly be possible by noticing that the water’s sur-
face of the rotating bucket is different from the stationary one. But with respect to
what? Only by comparing them to an absolute fixed space background, with respect
to which one bucket is rotating and the other one is not, we would be able to tell
the buckets’ states. This evidence led Newton to believe that the rotation with re-
spect to absolute space is why the two buckets differ. However, Mach pointed out that
an essential assumption in Newton’s interpretation of the bucket experiment would
radically change its outcomes. In fact, Mach argued that Newton’s conclusions were
only valid in a hypothetical empty universe, where any source of matter has been
removed. Furthermore, these conclusions still hold true only if it is assumed that
physical systems retain their properties even when put in full isolation from the rest.
However, Mach’s key intuition was that such conditions of pure empty space are,
at best, ideal, and in the actual physical universe there is always matter present,
undermining Newton’s central assumption. Following this line of thought, the two
buckets can be compared not relative to absolute space, but rather with respect to
the background fixed stars, an example of the matter in the universe. Therefore, this
suggests that the difference in the inertia of the two buckets can be observed with
respect to the masses of the background stars, establishing a link between the local
inertia and the matter content of the universe.
This is exactly what we mentioned in the example before: because the inertial mass
of an object and the matter content of the universe relate to each other, Mach be-
lieved that also the water in the fixed bucket would change its shape if the universe
is rotating.
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Having developed an intuition on how the inertia of rotating objects related to
distance references in their background, we can summarise Mach’s principle more
formally: the geometry of space-time, and hence, the inertial properties of every
infinitesimal test particle, is required to be determined by the distribution of mass-
energy throughout the universe [54] (pag. 303). On more heuristic and philosoph-
ical grounds, a universe subject to Mach’s principle would not carry any notion of
absolute space and time, but rather it would only allow the notion of quantities
such as motion relatively to some other reference. This idea is precisely the base of
Einstein’s theory of General Relativity. In fact, generalising Mach’s principle, he pos-
tulated a theory of gravity where only relative motion is observable, thus disallowing
any privileged reference frame. Furthermore, he postulated that inertia should be
related to the gravitational interaction with matter only, and that the geometry and
metric structure of the universe is entirely determined by its matter content [55].

However, Einstein’s implementation of Mach’s principle is only partial in his the-
ory. It has been pointed out [56] that Mach’s principle is, to some extent, conflicting
with the other founding principle of General Relativity: the equivalence principle.
While the former has somehow a global nature, as it relates the local inertia of a
particle to the global energy-momentum tensor of the universe, the latter strictly
applies locally, as tidal forces are negligible only locally, since they can differentiate
gravitational acceleration from inertial. Moreover, going beyond this tension in the
founding principles of the theory, the non-fully-Machian nature of General Relativity
arises when considering some particular solutions to the field equations. Specifically,
the Minkowski spacetime solution posses inertia but it does not contain any matter
[57], the Gödel rotating universe [58] breaks the idea of relative motion introduc-
ing a preferred (and hence absolute) direction of motion, and finally the Taub-NUT
model provides a curved solution which is singularity free, in contradiction with one
formulation of Mach’s principle [59]. Motivated by the desire to fully implement
Mach’s principle in General Relativity, Brans and Dicke decided to develop their the-
ory of scalar-tensor gravity, as we will see in the next section.

1.3.2 Varying G and Mach’s principle

The main aim of the Brans-Dicke theory of gravity is to provide an extension of
General Relativity fully inclusive of Mach’s principle. To do so, a central observation
is necessary: Dirac’s Large Number Hypothesis [29]. As we have illustrated in section
(1.2), Dirac noticed a deep connection between cosmological numbers and atomic
ones, which lead to the following idea. A striking result is obtained when considering
a hollow-mass sphere containing two particles attracting each other gravitationally
[60]. An equation for the inertial force experienced by one of the two particles that
is fixed in a rest reference frame can be obtained as

Finertia = bmMaGαrβcγ (1.47)

where b is a dimensionless constant set to one, m is the mass of the particle, M is the
mass of the spherical shell, r is the radius of the shell and a is the acceleration of the
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sphere relative to the particle [61]. Furthermore, α, β and γ are constants as well.
To match the dimensions on the LHS and on the RHS of equation (1.47), we must
have that α = 1, β = −1 and γ = −2. Finally, equating equation (1.47) to Newton’s
second law leads to

GM

Rc2
∼ 1 (1.48)

where G is the gravitational constant, c2 is the speed of light in the vacuum and
M and R are the total mass and radius of the observable universe. Interestingly,
expressing (1.48) in terms of G leads to

G ∼ Rc2

M
(1.49)

which in turn suggests a fundamental relationship between the gravitational con-
stant G and the total mass M of the observable universe. Indeed, recasting (1.49) as
G ∼ G(M), where G becomes effectively a function of the total mass M , we clearly
see that the gravitational constant can be treated as a function of M . This result is
exactly the desired implementation of Mach’s principle. In fact, we have managed
to express mathematically how the geometry of space-time should be determined
by the mass distribution of the universe: the inertia experienced by an accelerated
observer relative to distant matter is equivalent to a gravitational force acting on a
fixed observer due to distant accelerated matter [62].

Additionally, relation (1.49) suggests that either the ratio R
M

= constant, or that
the gravitational constant should be a locally variable quantity, determined by the
mass distribution about the point. Discarding the first possibility due to an expand-
ing universe which requires a changing R implying matter-conservation violations to
keep the ratio constant, we have finally arrived at the full implementation of Mach’s
principle which naturally leads to a variable G dependent on the mass distribution
of the Universe.

1.3.3 Brans-Dicke Theory

In this subsection, we review the work presented in [62], highlighting the most rele-
vant results for our future extension. Given the observations in the previous section,
it is now natural to think of G as a variable function, changing from position to posi-
tion depending on the matter distribution. Since it is desirable that this new G-field
is coordinate independent, it should be chosen to be a scalar field. Furthermore,
considering where G appears in the Einstein-Hilbert action (1.2) and setting c = 1,
we can see that

ϕ :=
1

G
∼ M

R
(1.50)

where the scalar field ϕ has the correct dimensions of G, i.e., [ϕ] = MT 2

L3 . We could,
in the spirit of varying constants, not set c = 1 above and actually see that a varying
speed of light might lead to a varying G, while M and R are constant. However,
we will not consider this case here, as it will be the object of future work [63]. It
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is now possible to precede and generalise action (1.2) including a scalar field of the
variation of G with respect to the coordinates. We start from the Einstein-Hilbert
action inclusive of a matter Lagrangian term

S =

∫
d4x

√
−g

[
R +

16πG

c4
Lm

]
(1.51)

where Lm is the matter Lagrangian density containing all non-gravitational fields.
We then multiply action (1.51) by G−1, substitute in the Ricci scalar term ϕ as
the varying gravitational constant, and include a general Lagrangian density for the
scalar field, depending both on the field and its derivatives [62]

S =

∫
d4x

√
−g

[
ϕR +

16π

c4
Lm + Lϕ(ϕ, ∂µϕ)

]
(1.52)

This new action contains the scalar field ϕ which is coupled to mass and geome-
try. This, therefore, leads to a non-purely geometrical theory of gravity, as part of
gravitational phenomena are described by the scalar field coupled to the Ricci scalar.
Additionally, given its scalar nature, we might expect that ϕ obeys some second-order
wave equation such as

2ϕ = ρscalar (1.53)

where ρscalar acts as a scalar matter source term for (1.53). Therefore, following this
and minimal dimensional consistency, we can arrive at a form for Lϕ which would
give us, when varied, the desired wave equation for ϕ:

Lϕ = −ω
ϕ
gµν ∂µϕ ∂νϕ (1.54)

which can then be inserted into (1.52), leading to the full Brans-Dicke action

SBD =
c4

16π

∫
d4x

√
−g

[
ϕR− ω

ϕ
gµν ∂µϕ ∂νϕ

]
+ Sm (1.55)

where Sm is a general matter action.
The parameter ω is a dimensionless coupling constant which can take any value,
made such by including the factor ϕ−1. Also, it is possible to recover Einstein’s the-
ory in the limit where ω → ∞. The Lagrangian density term introduced for the scalar
field has the form of a kinetic term for ϕ. This is actually the case, as this term will
provide the dynamical evolution of the scalar field. Furthermore, the kinetic term’s
introduction assures the full diffeomorphism’s invariance of the action and the con-
servation of the energy-momentum tensor via ∇µT

µν = 0 [64]. It is also possible to
include a general potential V (ϕ) [65], thus arriving at an action with full kinetic and
potential terms for ϕ, but, in the following, we will not include it.

We can now proceed to derive the field equations of Brans-Dicke theory in the Jor-
dan frame using action (1.55). Firstly, we derive the field equation for ϕ, by varying
(1.55) with respect to ϕ and ∂µϕ

2ϕ =
gµν ∂µϕ ∂νϕ

2ϕ
− ϕR

2ω
(1.56)
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where the d’Alambertian operator is defined as

2ϕ =
1√
−g

∂µ[
√
−g ∂µϕ] (1.57)

Secondly, using equation (1.56), we can vary action (1.55) to obtain the modified
field equations as

δSBD

δgµν
= 0 ⇔ δSg

δgµν
+
δSm

δgµν
= 0 (1.58)

where Sg is the gravity action inclusive of the Brans-Dicke kinetic term, while Sm is
a generic matter action giving the energy-momentum tensor as

δSm

δgµν
= −1

g

δg

δgµν
Lm − 2

δLm

δgµν
:= Tµν (1.59)

where g = det(gµν) and the variations above have been obtained using the chain
rule. Thus, we arrive at the field equations:

Rµν −
1

2
Rgµν −

ω

ϕ2

(
∂µϕ∂νϕ−

1

2
gµν ∂αϕ∂

αϕ

)
−1

ϕ

(
∇µ∂νϕ− gµν2ϕ

)
=

8π

ϕc4
Tµν (1.60)

where the third term on the RHS is obtained by including gµν explicitly in action
(1.55) to account for a more general curved space-time. Obviously, the field equa-
tions (1.60), as expressed here, should be interpreted as ϕ adding geometrical con-
tributions to (1.60) to model the full gravitational field (metric plus scalar field).
Conversely, if the terms involving ϕ are moved to the RHS of the equations, we see
that they present a relation between space-time geometry and a matter content not
only given by the usual Tµν but also by a scalar field ϕ. Finally, we can arrive at a
more compact and evocative form for equation (1.56) by considering contraction of
the field equations (1.60) with gµν . This leads to

R = − 8π

ϕc4
Tµν −

ω

ϕ2
+
ω

ϕ2
∂αϕ ∂

αϕ+
3

ϕ
2ϕ (1.61)

which is then used for the Ricci scalar in equation (1.56) to obtain

2ϕ =
8π

2ω + 3
T (1.62)

where T = gµνTµν is the trace of the energy-momentum tensor. Equation (1.62)
clearly shows that the ϕ field has as source term the matter content of the solutions,
described by the energy-momentum tensor. Therefore, it is reasonable to assume
that the scalar field acts as an auxiliary geometrical contribution to the usual field
equations, justifying its appearance on the LHS. Furthermore, equation (1.62) has
the desired form of a wave equation for ϕ, as we initially hoped for in (1.53), pro-
viding us with an expression for the evolution of ϕ. Specifically, it is interesting to
consider a solution for (1.62) found for a quasi-flat universe with matter content ρ:

ϕ = 8π
4 + 3ω

6 + 4ω

(
t

t0

) 2
4+ω

ρ0t0 (1.63)
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where ρ0 is the matter density at a given time t = t0. Noteworthily, this solution is
compatible with (1.48); when the matter density is small, G = ϕ−1 becomes large,
which physically implies the disappearance of inertia which is precisely Mach’s prin-
ciple’s prescription. Therein the inertia of a particle is directly related to the uni-
verse’s matter content. This result justifies Brans and Dicke’s intentions of including
Mach’s principle in a theory of gravitation by generalising Einstein’s theory.

Finally, efforts have been made to measure the value of the parameter ω to under-
stand if, physically, the Brans-Dicke theory is distinguishable from General Relativity.
The two theories are equivalent in the limit ω → ∞, so a high value of ω would
suggest that Brans-Dicke is essentially equivalent to General Relativity. Recent ob-
servations made with the Cassini Saturn Probe [66] set the value of ω at ω > 4×104,
much greater than the value close to unity proposed by Brans and Dicke. This sug-
gests that, at least in the Solar System, Brans-Dicke is indistinguishable from General
Relativity, so the latter is preferred. However, the question of which theory is correct
on cosmological scales is still open and more observations are required.

1.4 Overview and Aims

In this work, we will study three ideas that are, in appearance, separated, unifying
them to develop several varying constants scenarios. To begin, we consider the spec-
ulation that Natural constants might not be that constant after all. We investigate
what the Universe would look like if the value of a certain physical constant evolved
with time. This possibility has been initially considered by Dirac in his Large Number
Hypothesis [29] and has, ever since, attracted increasing interest, particularly in the
cases of a varying G and α. More recently [24], Albrecht and Magueijo have devel-
oped a theory in which the speed of light can vary, called the Varying Speed of Light
(VSL) theory. Besides providing an alternative explanation to the open cosmological
problems, VSL created a new conceptual landscape: if c can vary along with G and
α, imagination is really the only limit to which constants vary.

It is precisely in this context that the second idea considered in this work arises.
How can we provide a rigorous mathematical framework describing the evolution
of multiple physical constants and their respective evolutions’ times? The answer is
promptly provided by the idea of unimodular gravity. Initially formalised by Einstein
as a first attempt to solve the Cosmological Constant problem, it was extended by
Henneaux and Teitelboim (HT) to include a more general framework for Λ to be
a mere constant on-shell. Following their idea [22], Magueijo generalised the HT
formalism to allow any constant appearing in the Einstein-Cartan to vary. Further-
more, HT formalism provides excellent definitions of relational times [22] that can
be used as a parameter for the evolution of our constants. Therefore, the generalisa-
tion of unimodular gravity, as presented in section (1.1), turns out to be the perfect
mathematical platform to develop varying constants theories, rigorously exploring
this idea and its consequences.
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We have now the heuristic, the why of our work lying in the idea of varying con-
stants and the method, the machinery, the how built from the unimodular gravity
formalism. All we are missing is the what: what are we applying all of these ideas
and mathematics to? For the idea of varying constants, one of the earliest attempts at
formalising it in a theory of gravity was the Brans-Dicke theory. Hoping to develop an
extension of General Relativity that would fully incorporate Mach’s principle, Brans
and Dicke proposed a varying gravitational constant [62], formalised as a scalar field
called ϕ. Motivated by their early insight, this dissertation extends the unimodular
formalism to the Brans-Dicke theory, producing original results in the field of varying
constants. Specifically, the aim of this work is an open-ended exploration of energy
conservation in a Brans-Dicke cosmological model of the Universe. Therefore, the
main results in this dissertation will be various energy conservation scenarios given
by different varying constants or combinations of them. Furthermore, as part of a
future publication [63], some of the results obtained in this dissertation will be anal-
ysed in greater detail, providing insights and possibly a solution to the Cosmological
Constant problem.

To conclude, this dissertation is structured as follows. In Chapter 1, we have in-
troduced the necessary background to our results. We review the unimodular for-
malism and show how its generalisation provides a development platform for the
idea of varying constants. We provide extensive motivations for the variation of nat-
ural constants, ranging from more speculative ones to actual experimental pieces of
evidence. We also review the Brans-Dicke theory, developing the intuitions behind
it, as well as its main results and observational constraints.
Secondly, in Chapter 2, we review the main applications of VSL and the cosmologi-
cal problem it aims to solve. Furthermore, we provide an extensive derivation of the
minisuperspace formalism for both the Einstein-Hilbert and Einstein-Cartan actions.
Also, we present the foundational results obtained in [22] applying the varying con-
stant idea to energy conservation scenarios in the Universe.
Finally, in Chapter 3, we present the original results of this research. They include
several scenarios of varying constants applied to Brans-Dicke cosmologies, leading
to different energy conservation laws. We also lay the foundations of our future
developments in the Cosmological Constant problem. Let the fun begin!
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Chapter 2

Varying Constants: Developments

In this chapter we present an additional motivation supporting the idea of varying
constants and we provide examples of its implementation in the conservation of
energy on cosmological scales. Firstly, we show how currently open problems in cos-
mology can be solved by the Varying Speed of Light theory. This provides not only a
straightforward application of the idea of varying constants, but it also supports the
heuristic behind why the constant of Nature should be varying. Secondly, we derive
the Einstein-Hilbert and the Einstein-Cartan actions in minisuperspace (MSS), show-
ing their equivalence when the torsion-free condition is assumed. This will give the
Hamiltonian which will be used to obtain our results. Finally, we combine the MSS
form of the Einstein-Cartan action with the unimodular generalisation presented in
section (1.1) to obtain multiple energy conservation scenarios for different varying
constants. This last section will be predominantly a review of [22], which will form
the basis for our original results in Chapter 3.

2.1 Open problems in Cosmology

In this section, we present the main open problems in the standard Big Bang cos-
mology. These are the Horizon, the Flatness and the Cosmological Constant prob-
lems. They are normally explained with a period of accelerated expansion in the
early stages of the Universe, called inflation. Inflationary cosmologies provide solid
models to account for the Horizon and Flatness problems, while they can partially
explain the Cosmological Constant one [67]. Among their main shortcomings is the
requirement of a physical mechanism to drive inflation which is, to this date, still
experimentally undetermined [68]. We therefore present an alternative explanation
to inflation, the Varying Speed of Light theory, where the speed of light is assumed
to have transitioned from a high value in the early Universe to the lower one we
observe today. This theory provides solid explanations to these problems, opening
the possibility to alternative cosmological models.
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2.1.1 Horizon problem

The Cosmological Principle [69] postulates that the spacial distribution of matter
in the Universe is homogeneous, i.e., equally distributed, and that, when consid-
ered from large scales, it appears to be isotropic, meaning that it should look the
same from every direction. Homogeneity and isotropy are at the heart of modern
cosmology and represent the central assumption behind the Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric. Besides it being assumed as a first principle,
and therefore not requiring, a priori, any justifications, observations [70] have con-
firmed a very isotropic universe. In fact, measuring the Cosmic Microwave Back-
ground Radiation temperature of very distant regions of the universe, it was possi-
ble to establish an outstanding similarity between them, setting their temperature
to T0 = 2.726 ± 0.010 [70]. This value turns out to be remarkably similar through
different regions of the universe that are causally-disconnected. To illustrate this,
lets remember that, according to the Big Bang cosmology, the Universe has, in this
moment, a finite age, called t0. If we consider the cosmological distance defined by
this age, ct0, we have the furthest distance some photons could have travelled to us.
Obviously, this maximum distance stretches from Earth into every direction, but light
coming from one direction to the Earth could not have had enough cosmic time to
travel to the opposite direction. In other words, light from a region of the universe
cannot affect (is not in causal contact) with another directly opposite region. Nev-
ertheless, both regions appear to be perfectly homogeneous, showing a remarkable
equivalence of their Cosmic Microwave Background Radiation temperature.

Lets illustrate this issue in more detail. We consider a photon originating from the
surface of last scattering, when the phase transition between a very hot to a colder
universe happened, leading to the recombination era which ultimately allowed pho-
tons to start to prorate freely into the Universe. For simplicity, we will assume a
radial motion, and, given our working assumption, we will use the FLRW metric to
model the early homogeneous and isotropic Universe, which takes the form [5]

ds2 = −c2N(t)2dt2 + a(t)2
[

dr2

K(r)2
+ r2(dθ2 + sin θ2dϕ2)

]
(2.1)

where a(t) is the scale factor, K(r) =
√
1− kr2 and k is the Universe’s curvature,

which we will assume to be flat, giving K(r) = 1. Given radial motion, the line
element above simplifies to

ds2 = dt2 + a2dr2 = 0 (2.2)

since for radial motion dθ = dϕ = 0 and we have assumed N(t) = 1 and c = 1.
Rearranging (2.2) for the distance travelled in a given time interval, we obtain∫ r2

r1

dr =

∫ t2

t1

dt

a(t)
(2.3)

where t1 is the time the photon was emitted and t2 is the time when it is received,
which in our case is the current age of the universe. Furthermore, considering the
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Robertson-Walker line element for the Universe’s spacial slice only at a fixed time
t = t0 [5], we have

dσ2 = a20dr
2 ⇔ dr =

dσ

a0
(2.4)

where a0 = a(t0). Substituting this expression into (2.3), we obtain

∆r = a(t2)

∫ t2

t1

dt

a(t)
(2.5)

where the integration of the 3D spacial line element dσ gives the total distance
travelled by the photon ∆r (i.e., its proper distance) and we choose the time t0 to be
the present age of the Universe coinciding with the photon’s detection time t2. The
time t1 is the emission of the photon, which could be at t1 = 0, i.e., the Big Bang, or
at t1 = tls, i.e., when the photo left the surface of last scattering. In the first case, this
expression gives us the maximum proper distance a photon emitted at the Big Bang
has travelled, and its called the particle horizon. To obtain an explicit expression for
the maximum proper distance travelled, we assume a radiation dominated universe,
as it was in its very early stages until approximately 47 000 years after the Big Bang,
for which a(t) = Ct

1
2 , where C is some proportionality constant. Therefore, if t2 =

t0 = t, the current age of the universe and t1 = 0, we get

∆r = Ct
1
2

∫ t

0

du

Cu
1
2

= 2t (2.6)

On the other hand, if we would like to obtain the same expression for the particle
horizon in the matter dominated era, we need to consider the scale factor for matter,
which is a(t) = Dt

2
3 , where D is once again a proportionality constant. This era

started 47 000 years after the Big Bang, but it was not until 380 000 [71] years that
photons could finally freely travel into the rest of the Universe. This event is called
the surface of last scattering, marking the time from which we are receiving the first
photons from the early Universe. Therefore, the maximum distance traveled by a
photon from the surface of last scattering time until now is given by

∆r = Dt
2
3

∫ t

0

du

Cu
2
3

= 3t (2.7)

where, in this case, t1 = 0 coincides with the time of last scattering and not with the
Big Bang. Focusing on the surface of last scattering, we can re-insert the speed of
light in expression (2.6) to obtain the particle horizon for causal interaction in the
early universe as [48]

∆r = 2ct ≈ 0.27Mpc (2.8)

This means that at the time of last scattering, causal interaction between photons
could only happen if they were separated by a distance equal or inferior to 0.27Mpc.
If, at that time, photons had a greater separation, they could have not possibly inter-
acted, thus evolving independently until our time. However, as stated above, we ob-
serve that causally disconnected regions of the Universe appear to be extremely ho-
mogeneous. This is exactly the Horizon problem: how could causally disconnected
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regions of the Universe evolve independently to the point of having essentially the
same radiation’s temperature? As we will see in the next subsection, inflation will
provide an answer, but not the only one.

2.1.2 Flatness problem

Another shortcoming of the current cosmological model is the Flatness problem.
When defining the Universe’s total energy density as [5]

Ωtotal = Ω+ ΩΛ (2.9)

we can re-express the first Friedmann equation as

Ωtotal − 1 =
k

a2H2
(2.10)

where k is the curvature and H = ȧ
a

is the Hubble’s parameter. If we have a flat
universe (one for which k = 0) we immediately see from (2.10) that Ωtotal must
equal to one at all times for the first Friedmann equation to hold. This is the case for
the current universe, where since

Ωm + ΩΛ ≈ 1 (2.11)

the total energy density is close to the critical one. If, however, the curvature is
not zero, Ωtotal evolves with time because of the dependence of a2H2 in (2.10). To
understand better this time evolution, as we have seen above, we consider the de-
pendence of the scale factor on cosmological time. If we consider either a radiation
dominated or matter dominated universe, we find that

aH ∝ t−
1
2 ⇔ Ωtotal − 1 ∝ t (2.12)

aH ∝ t−
1
3 ⇔ Ωtotal − 1 ∝ t

2
3 (2.13)

where the first equation applies to the evolution of Ωtotal in a radiation dominated
Universe, while the second equation applies to a matter dominated one. In both
cases, we notice that the total energy density increases with time. This time de-
pendence implies that, since we have a total energy density close to unity today,
it should have been the same in the early universe, otherwise, over time, it would
have evolved to be a different value. In fact, estimates on nucleosyntesis constrain
the value of the total energy density at [48]

|Ωtotal − 1| ≤ 10−16 (2.14)

which indeed confirms the closeness to one. For earlier times, this value would be
even smaller. This is the flatness problem: this initial condition on Ωtotal so that the
universe would evolve to have a curvature k = 0 is way too specific. If this condi-
tion would have been slightly different, the Universe would have evolved radically
different from how we observe it today. Therefore, we conclude that such fine-tuned
initial conditions are hard to explain in the current cosmological models.
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2.1.3 Cosmological constant problem

The last and most important open problem in cosmology is the Cosmological Con-
stant one. It would be restrictive to regard it as a purely cosmological problem, as
it arises from the comparison of measurements and predictions coming from very
different fields of physics. In fact, as we have seen, General Relativity predicts the
existence of a cosmological constant in the field equations as a geometrical contribu-
tion, responsible for the dynamical nature of the universe. This results in including
the cosmological constant on the LHS of the field equations as

Gµν + Λgµν =
8πG

c4
Tµν (2.15)

where we can define the energy density of the cosmological constant to be

ρ =
Λc2

8πG
(2.16)

This is regarded as the the purely geometrical cosmological constant problem [24],
and it is distinct from the vacuum energy problem we will see below.

On the other hand, following a different approach, it is possible to consider the
cosmological constant as a source term for the field equations, thus moving Λ on
the RHS of equation (2.15): this is the approach were the cosmological constant
represents the vacuum energy density [72]. In this case, the cosmological constant
becomes part of the energy momentum tensor giving the spacetime geometry due
to the Universe’s matter content, and it can be equivalently treated as the vacuum
energy density ρvac [73]. This vacuum energy density is made up of three main
components: the bare cosmological constant, the quantum fluctuations and contri-
butions form particles and interactions that are yet not accounted for in the Stan-
dard Model [73]. In fact, according to quantum field theory [74], the vacuum has
a non-zero energy density due to particle creation and annihilation: this energy, as
any other form of matter, creates curvature, modifying the geometrical structure of
spacetime. Since this energy density contributes to curvature, it is measurable with
cosmological observations, and, given its appearance in the theory, it is also theo-
retically predictable. However, there is a big inconsistency between these two values.

Following [75], since the energy momentum tensor must respect Lorentz invariance,
it must take the form

Tµν = −gµνρvac (2.17)

Comparing this result with (2.15), we see that this requirement is equivalent to
adding a new term to the total vacuum energy density as

ρtotal = ρvac +
Λc2

8πG
(2.18)

According to cosmological measurements [76], this value has an upper bound give
by

|ρtotal| ≤ 10−48 GeV 4 (2.19)
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On the other hand, the theoretically predicted vacuum energy is the sum of different
contributions, ranging from potential energies of scalar fields to zero-point fluctua-
tions of each field theory, as well as a bare cosmological constant contributions [76].
Assuming that quantum field theory is still valid at the Planck’s scale, we obtain a
theoretical prediction on the vacuum energy as

ρtotal ∼ 1072 GeV 4 (2.20)

The ratio of (2.20) to (2.19), the theoretical value to the experimental one, is indeed
the cosmological constant problem

ρtheorytotal

ρobstotal

∼ 10120 (2.21)

This huge discrepancy of 120 orders of magnitudes between theory and observations
is the core of the cosmological constant problem as presented here.

2.1.4 The solution: Varying Speed of Light

The problems exposed above have all one aspect in common: they arise from the
standard Big Bang cosmology, where inflation has been an attempt at solving them.
While successful on many grounds, inflation requires a negative pressure fluid as
well as its fundamental mechanism is still unknown [68]. An alternative solution
to the problems exposed above could be the Varying Speed of Light theory, firstly
explored by Moffat [77] and then extended by Albrecht and Magueijo [24]. Before
diving into the detail of how VSL solves the three problems mentioned above, we
will briefly discuss how inflation is modelled and how it tackles these issues.

The theory of inflation was first proposed by Alan Guth while trying to explain the
absence of observations of magnetic monopoles. Postulating the idea of inflation, it
was quickly realised that it could solve the horizon and flatness problems [78], as
well as explain how a universe dominated by an attractive force (gravity) could be
expanding [79]. Inflation could have plenty physical origins, but the common fea-
ture of all inflationary models is the presence of an exotic form of energy for which
the pressure is negative, i.e., p = −ρ, thus having a repulsive-like force driving ex-
pansion against gravity.
A common example for inflation is a scalar field [5]. The action for a scalar field
with kinetic and potential energy is

S =

∫
d4x

√
−g

[
1

2
gµν∇µϕ∇νϕ+ V (ϕ)

]
(2.22)

From this we obtain the scalar field’s pressure and energy density as

pϕ =
1

2
ϕ̇2 − V (ϕ) (2.23)

ρϕ =
1

2
ϕ̇2 + V (ϕ) (2.24)
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which combined give
ρ+ 3p = 2(ϕ̇2 − V (ϕ)) (2.25)

where, if we assume the slow-roll approximation (the kinetic energy is small), the
potential V (ϕ) dominates, giving indeed a negative pressure as p ≈ −ρ. On the other
hand, if we consider the Einstein Fields Equations, assuming a perfect fluid as matter
content, we obtain the second Friedmann equation

ä = −4πG

3

(
ρ+

3p

c2

)
a (2.26)

In standard cosmology, we usually have a positive energy density and pressure, mak-
ing the RHS of (2.26) negative, so that the scale factor can only decrease over time.
This scenario is however not the same if, in the slow-roll approximation, we use
equation (2.25) with V (ϕ) ≈ ρϕ such that equation (2.26) becomes [79]

ä ≈ 8πGρ

3
a ≡ H2

I a (2.27)

where HI =
8πGρ

3
is the Hubble parameter at inflation’s epoch. Solving this equation

for the scale factor, we immediately get that

a ∝ e±HI t (2.28)

This solutions shows that the universe’s scale factor is experiencing a period of ex-
ponential evolution, confirming that a matter content with negative pressure does
indeed produce a repulsive force. We now review the three issues above in the con-
text of VSL, highlighting how its proposed solutions relate to inflationary models.

Solution to the Horizon Problem

The first problem we consider is the Horizon one. Inflation provides a straightfor-
ward solution, assuming the universe underwent a period of accelerated expansion.
If the early universe experienced a period in which with ä > 0, regions that are now
observed to be causally disconnected were indeed in causal contact, justifying their
extreme homogeneity in temperature we observe today.
Interestingly, either of two mutually exclusive possibilities would perfectly address
the Horizon problem: either spacetime is expanding subliminally while the speed of
light has the same value as now (i.e., inflation), or, equivalently, spacetime is not
accelerating but the speed of light had a value several orders of magnitudes greater
that it does now [24]. We can therefore imagine that light travelled much faster in
the early Universe then it does now, thus allowing causal contact for regions that
now are disconnected because c travels slower. Furthermore, the speed of light un-
derwent a sharp phase transition at time tc, where its value changed from c−, the
early universe value, to c+, the value we measure today. If we express the universe’s
horizon size in terms of conformal time ηc, we obtain

rh = c−ηc (2.29)
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Then, if c− is indeed greater then c+, their ratio compares to the one of the conformal
time now η0 and the conformal time at tc as

c−

c+
≫ η0

ηc
(2.30)

because, since we do not have inflation in the early Universe, η0 and ηc are close in
value. Expression (2.30) implies that rh ≫ r, meaning that the entire observable
Universe today has always been in causal constant, since its radius r is smaller then
the radius of the horizon. We have therefore shown how a varying speed of light
with a phase transition can explain the Horizon problem.

Solution to the Flatness Problem

Our next topic is the Flatness problem. In the inflationary model, if we define a total
density parameter as [79]

Ω =
8πGρ

3H2
(2.31)

where H = ȧ
a

is the Hubble parameter, we immediately see that as a increases, for
fixed ρ, Ω tends to unity, thus explaining why the current Universe’s curvature is
observed to be close to k = 1. A different solution can be found by allowing c to
vary in the Friedmann equations and in the conservation equation. These, inclusive
of any c factor usually set to one, are(

ȧ

a

)
=

8πGρ

3
− kc2

a2
(2.32)

ä = −4πG

3

(
ρ+

3p

c2

)
a (2.33)

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= −ρĠ

G
+ 3

kc2

4πGa2
ċ

c
(2.34)

where the first two equations are derived from the Einstein field equations in a FLRW
metric, while the third one can either be the result of a combination of the two
Friedmann equations or it can be directly derived from ∇µT

µν assuming a perfect
fluid. Now we can define ϵ = Ω − 1, where Ω = ρ

ρc
is the total energy density as

above, but expressed in terms of critical density ρc, which reads

ρc =
3

8πG

(
ȧ

a

)2

(2.35)

Therefore, considering the evolution of ϵ we obtain

ϵ̇ = (1 + ϵ)

(
ρ̇

ρc
− ρ̇c
ρc

)
(2.36)
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Finally, using the Friedmann equations for ρ and the conservation equation for ρ̇ we
can get an explicit expression for ϵ as

ϵ̇ = ϵ
ȧ

a
(1 + ϵ)(1 + 3w) + 2

ċ

c
ϵ (2.37)

where the equation of state is p = wρc2. In this formulation of the Flatness problem,
we need ϵ going to zero, such that Ω goes to one. If, as before, we assume a sharp
phase transition for the value of the speed of light from c− to c+, we see that∣∣∣∣ ċc

∣∣∣∣ ≫ ȧ

a
(2.38)

This allows us to neglect the ȧ
a

term in equation (2.37), leading to

ϵ̇

ϵ
= 2

ċ

c
⇔ log ϵ = 2 log c⇔ ϵ ∝ c2 (2.39)

This shows the dependency between the total energy density and the speed of light,
confirming that a sharp change is c would indeed drive ϵ to zero, giving Ω = 1. This
equivalently solves the Flatness problem in cosmology.

Solution to the Cosmological Constant Problem

Finally, we consider the Cosmological Constant problem. As we have seen in subsec-
tion (2.1.3), this problem is two-fold, meaning that we can discriminate the geomet-
rical one from the vacuum energy problem. While the first one can be solved using
VSL theory, the second one is more complicated [72] and will require more thoughts
and consideration. Therefore, following [24], we have a conservation equation for
matter and cosmological constant content, of the form

˙ρm + 3
ȧ

a

(
ρm +

pm
c2

)
= −ρ̇Λ − ρ

Ġ

G
+

3kc2

4πGa2
ċ

c
(2.40)

We can now define
ϵ :=

ρΛ
ρm

(2.41)

for Λ and, assuming that Λ is actually constant, by taking the time derivative of
(2.16) we obtain

ρ̇Λ
ρΛ

= 2
ċ

c
− Ġ

G
(2.42)

We now would like an equation for the evolution of ϵΛ. Taking the time derivative
of (2.41) we have

ϵ̇Λ =
ρ̇Λ
ρm

− ρΛ
ρ2m

˙ρm

= ϵΛ

[
2
ċ

c
− Ġ

G
− ˙ρm
ρm

]
(2.43)
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where in the second line we have used (2.42) expressed for ρ̇Λ. Finally, using the
conservation equation (2.40) for ˙ρm, the equation of state and ϵ = Ω − 1 we arrive
at

ϵ̇Λ = ϵΛ

[
2
ȧ

a
(1 + w) + 2

ċ

c

1 + ϵΛ
1 + ϵ

]
(2.44)

In the standard inflationary cosmology, we of course have ċ = 0. Current estimates
and observations set ϵΛ very close to one [80], but this cannot be explained by
inflation. In fact, the solution ϵΛ = 0 whether w > −1 or w = −1 would still allow ϵΛ
to grow after inflation, thus not explaining its current value. However, this is not the
case if we assume ċ ̸= 0. Once again, assuming a sharp phase change in c such that
(2.38) is also valid in this case, we can see that the second term in equation (2.44)
dominates. The condition that

ċ

c
≪ 0 (2.45)

would indeed drive ϵΛ to zero, thus implementing a mechanism to explain the small
value of ϵΛ today. Therefore, assuming condition (2.38), we find that

ϵ̇Λ
ϵΛ(1 + ϵΛ)

= 2
ċ

c

1

1 + ϵ
(2.46)

which, combined with equation (2.39) gives the evolution of ϵΛ in terms of ϵ

ϵΛ
1 + ϵΛ

∝ ϵ

1 + ϵ
(2.47)

Finally, if we assume, as initial conditions ϵ ≈ 1 and ϵΛ ≈ 1, we obtain

ϵΛ ∝ c2 (2.48)

which indeed solves the geometrical cosmological constant problem by showing that
a function c(t) with a steep phase transition between c− and c+ would lead ϵΛ to one,
the present observed value.

2.2 Minisuperspace Reduction

In this section, we provide explicit derivations of the Einstein-Cartan action in min-
isuperspace (MSS) for the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric.
The same is done for the Einstein-Hilbert action. Finally, in the third subsection,
we show how the Einstein-Cartan action is equivalent to the Einstein-Hilbert one in
minisuperspace under the assumption that the torsion is set to zero. We also show
to to derive the on-shell condition that relates the conjugate variables a2 and b in
MSS. This section is essential as it will provide the starting point to construct the
entire dynamics of varying constants. We will then extend these results using the
Einstein-Cartan action for the Brans-Dicke, reducing it to minisuperspace in Chapter
3.
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2.2.1 Einstein-Cartan action in MSS

The Einstain-Cartan theory is an extension of General Relativity that allows to in-
clude torsion in spacetime, relating it to the density of intrinsic angular momentum
of particles [81]. Furthermore, the Einstein-Cartan formalism of gravity is equivalent
to the Einstein-Hilbert one, assuming that the tetrads are non-degenerate (deteaµ ̸= 0)
and that the torsion is zero. Therefore, we will proceed deriving the Einstein-Cartan
(EC) action in minisuperspace. The EC action is [82]

SEC =
c4

32πG

∫
ϵabcd e

aebRcd (2.49)

where ϵabcd is the Levi-Civita tensor, ea is the non-coordinate tetrad basis defined as

ea = eaµdx
µ (2.50)

and Rcd is the Einstein-Cartan curvature given by

Ra
b =

1

2
Ra

bµνdx
µdxν (2.51)

To proceed, we need to introduce Cartan’s first and second equations, which will
allow us to find explicit expressions for the tertad which, given line element (2.56),
we can plug into action (2.49). Cartan’s first equation, which gives the torsion 2-
form, dropping the bases dxµ, is [82]

T a = Dea = dea + Γa
be

b (2.52)

where Γa
µbdx

µ is the connection 1-form coming from the exterior derivative, satisfy-
ing the property Γab = −Γba. Assuming the torsion-free condition, i.e., T a = 0, we
get

dea = −Γa
be

b (2.53)

On the other hand, we have the curvature 2-form given by Cartan’s second equation
as [82]

Ra
b = dΓa

b + Γa
cΓ

c
b (2.54)

Finally, given the tetrads, we have, by definition,

ds2 = ηabe
a ⊗ eb (2.55)

With these equations, the EC action can be reduced to minisuperspace for the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) metric. We start from the FLRW metric in (t, r, θ, ϕ)
coordinates [5]

ds2 = −c2N(t)2dt2 + a(t)2
[

dr2

K(r)2
+ r2(dθ2 + sin θ2dϕ2)

]
(2.56)

where N(t) is the lapse function, a(t) is the scale factor, K(r) =
√
1− kr2 and

k = −1, 0, 1 is the universe’s curvature, which could be locally modelled by a 3-
sphere (S3, k = +1), by flat euclidean space (E3, k = 0) and by hyperbolic space

35



2.2. MINISUPERSPACE REDUCTION CHAPTER 2. VARYING CONSTANTS: DEVELOPMENTS

(H3, k = −1). It is important to note the inclusion of the speed of light c2 in the time
component of the line element. This will be important in the next sections, where
we require c to vary. Hence, it is crucial to have it included in the Hamiltonian.
Therefore, using metric (2.56) and equation (2.55), we can obtain the tetrads as
[83]

e0 = cNdt (2.57)

e1 =
a

K
dr (2.58)

e2 = a rdθ (2.59)

e3 = a r sin θdϕ (2.60)

We can then compute the exterior derivatives of these tetrads, giving

de0 = 0 (2.61)

de1 =
b

ac
e0 ∧ e1 (2.62)

de2 =
b

ac
e0 ∧ e2 + K

ar
e1 ∧ e2 (2.63)

de3 =
b

ac
e0 ∧ e3 + K

ar
e1 ∧ e3 + cot θ

ar
e2 ∧ e3 (2.64)

Then, using equation (2.53), we arrive at the expression for the connections

Γ1
0 =

b

ac
e1 =

b

Kc
dr (2.65)

Γ2
0 =

b

ac
e2 =

b

c
dθ (2.66)

Γ3
0 =

b

ac
e3 =

b

c
r sin θdϕ (2.67)

Γ2
1 = Kdθ (2.68)

Γ3
1 = K sin θdϕ (2.69)

Γ3
2 = cos θdϕ (2.70)

where b = ȧ
N

is the connection variable, as we will see later when we show how the
EC action reduces to the EH action. Importantly, the de0 term does not lead to any
contribution and the expressions form (2.65) to (2.66) are given by the de1, de2 and
de3 terms which also give expressions from (2.68) to (2.70). In fact, as an example,
if we take de2 we see that

de2 = −Γ2
be

b = −Γ2
0e

0 − Γ2
1e

1 − Γ2
2e

2 − Γ2
3e

3 (2.71)

The Γ2
2 and Γ2

3 terms do not contribute, whereas the Γ2
0 will give

Γ2
0 =

b

ac
e2 (2.72)
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as one of the contributions, while the Γ2
1 term will give expression (2.68) as

−Γ2
1e

1 =
K

ar
e1 ∧ e2 ⇔ Γ2

1 = Kdθ (2.73)

Now we can use equation (2.54) to obtain the curvature 2-form Ra
b . To begin, we

compute the exterior derivative of expressions (2.65) to (2.68)

dΓ1
0 =

ḃ

Nac2
e0e1 (2.74)

dΓ2
0 =

ḃ

Nac2
e0e2 +

bK

ra2c
e1e2 (2.75)

dΓ3
0 =

ḃ

Nac2
e0e3 +

bK

ra2c
e1e3 +

b cot θ

ra2c
e2e3 (2.76)

dΓ3
1 = − k

a2
e1e3 +

K cot θ

r2a2
e2e3 (2.77)

dΓ3
2 = − 1

a2r2
e2e3 (2.78)

where dΓ2
1 = 0 because K is constant. Given these, we can use equation (2.54) to

obtain the curvature 2-forms

R0
i =

ḃ

Nac
e0ei (2.79)

Ri
j =

b2 + kc2

a2
eiej (2.80)

Finally, we expand the EC action as

ϵabcd e
aebRcd = 2ϵ0ijke

0eiRjk + 2ϵij0ke
iejR0k (2.81)

and using the equations for the curvature 2-forms we obtain

ϵabcd e
aebRcd = 2ϵ0ijke

0eiejek
[
ḃ

Na
+
b2 + kc2

a2

]
(2.82)

which, ultimately, plugged into action (2.49) gives the Einstein-Cartan action re-
duced to minisuperspace for the FLRW metric [84]

SEC =
3Vc
8πG

∫
dt [ḃa2 +Na(b2 + kc2)] (2.83)

where Vc =
∫
drdθdϕ r2 sin θ

K
is the Universe’s co-moving volume. We now derive

the Einstein-Hilbert action in minisuperspace and show how it is equivalent to the
Einstein-Cartan action we found above.
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2.2.2 Einstein-Hilbert action in MSS

We now reduce the Einstein-Hilbert action to minisuperspace for the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) metric. This will allow us to then use the Hamil-
tonian formalism to derive the canonical variable’s equations of motion, as well as
any other dynamics of the system. We begin from the Einstein-Hilbert action with
Λ = 0 for simplicity [5]

SEH =
c4

16πG

∫
d4x

√
−gR (2.84)

We now need to derive expressions for the Ricci scalar and for the determinant of
the metric in action (2.84) using the FLRW metric (2.56). We start form the Ricci
scalar, which can be computed via

R = gµνRµν = gttRtt + grrRrr + gθθRθθ + gϕϕRϕϕ (2.85)

where the summations only applies to the diagonal components because the metric
is zero everywhere else and where gµν are the components of the inverse metric and
Rµν is the Ricci tensor defined [48] as

Rµν = ∂ρΓ
ρ
µν − ∂νΓ

ρ
µρ + Γσ

µνΓ
ρ
σρ − Γσ

µρΓ
ρ
σν (2.86)

where the Γρ
µν are the Christoffel symbols. Following (2.86), we obtain the four

non-zero components of the Ricci tensor as

Rtt = − 3

N2c2
ä

a
(2.87)

Rrr =
1

N2

[
aä+ 2ȧ2 + kc2N2

1− kr2

]
(2.88)

Rθθ =
r2

N2
[aä+ 2ȧ2 + kc2N2] (2.89)

Rϕϕ =
r2 sin2 θ

N2
[aä+ 2ȧ2 + kc2N2] (2.90)

Adding these components following (2.85), we arrive at the expression for the Ricci
scalar

R = 6
kc2

a2
+

6

N2

[
ä

a
+
ȧ2

a2

]
(2.91)

where in all the above we have set Ṅ = 0 assuming a constant lapse function. This
result agrees with [85], including the speed of light factor. Additionally, we can cal-
culate the determinant of the metric, thus obtaining

√
−g = r2 sin2 θ√

1− kr2
cNa3 (2.92)
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At this point, it is important to remember that we may write action (2.84) as

SEH =
κ

2

∫
d4x

√
−gR (2.93)

where κ = c4

8πG
. As it is normally done, we can set κ = 1 and so, using this form of

the action, combining (2.91) and (2.92) we arrive at

SEH = 3Vc

∫
dt

1

N
ȧ2a+

1

N
äa2 +Nakc2 (2.94)

where Vc = drdθdϕ c r2 sin2 θ
K

is the spacial co-moving volume expressed in terms of
polar coordinates. It will be convenient, however, to include the factor of 1

8
from

the constant k into action (2.94). In fact, this factor will become important in the
next section, where we will show how the Einstein-Cartan action can lead to the
Einstein-Hilbert one with the addition of a boundary term. Therefore, the final form
of the EH action in MSS that we will use is

SEH =
3Vc
8πG

∫
dt

[
1

N
ȧ2a+

1

N
äa2 +Nakc2

]
(2.95)

From this, we will compare our results in this section with the ones in subsection
(2.2.1) to show how they are equivalent.

2.2.3 From Einstein-Cartan to Einstein-Hilbert in MSS

From the previous subsections, we have shown how to derive the EC and the EH
actions in MSS for the FLRW metric. We now wish to understand mainly two features
of these results: how does the connection b appears in the EC action and how can
we obtain the EH action from it. In fact, having assumed the torsion-free condition
as we did, it is expected that the two actions are equivalent [82]. We begin by
considering the EC action

SEC =
3Vc
8πG

∫
dt [ḃa2 +Na(b2 + kc2)] (2.96)

which is now integrated by parts to obtain an ȧ variable, hopefully bringing us closer
to the EH action. The results in

SEC =
3Vc
8πG

∫
dt [− ˙(a2)b+Na(b2 + kc2)] + boundary term (2.97)

where we stress the importance of including the boundary term. In fact, this will
turn out to be crucial to obtain the EH action. As it is usually done, we might simply
assume that the boundary term vanishes at infinity. This, however, especially in the
context of quantum cosmology, is not a good choice [86]. Therefore, instead of this
assumption, we add to action (2.96) a counter-term, such that it is the same as the
boundary term but with opposite sign:

SEC =
3Vc
8πG

∫
dt [ḃa2 +Na(b2 + kc2)] +

3Vc
8πG

[a2b]
tf
ti (2.98)
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This addition will automatically cancel the boundary term once action (2.96) is in-
tegrated by parts, removing the necessity to assume vanishing terms at infinity. Fur-
thermore, it is a perfectly valid term from a dynamical point of view, as it does not
affect the equations of motion in any way: they are in fact the same with or with-
out it. This additional term is known as the Gibbons-Hawking-York (GHY) boundary
term [87]. We will further explain how this procedure is key to obtain the EH ac-
tion, but we firstly focus on the first question, i.e., how b appears in the EC action
and how is it related to the other canonical variable a2. Therefore, including the
GHY boundary term and integrating by parts, action (2.98) now reads

SEC =
3Vc
8πG

∫
dt [− ˙(a2)b+Na(b2 + kc2)] (2.99)

Varying this action,
δSEC

δb
= 0 ⇔ − ˙(a2) + 2Nab = 0 (2.100)

and, expressing equation (2.100) for b, we obtain

2aȧ = 2Nab⇔ b =
ȧ

N
(2.101)

which is exactly the expression for b we used when deriving the EC action in MSS.
Firstly, this condition only holds on-shell, meaning that it is relevant at the level of
the equations of motion. Secondly, we can now provide some intuition on what the
conjugate variables a2 and b really are. The scale factor is, in the FLRW, directly
linked to the metric gµν of our spacetime manifold. On the other hand, the connec-
tion Γ contains first derivatives of the metric. Projecting this link in MSS, we see
that b is indeed given by first derivatives of the scale factor a. Therefore we conclude
that in MSS the scale factor represents the metric and its conjugate b the connection.
Hence the name connection we used in the previous subsection for b.

Finally, we can show the equivalence of the EC and EH actions. To begin, using
the fundamental theorem of calculus and the expression for b, we can write the GHY
boundary term as

3Vc
8πG

[a2b]
tf
ti =

3Vc
8πG

∂

∂t

∫ tf

ti

dt

[
a2
ȧ

N

]
=

3Vc
8πG

∫ tf

ti

dt

[
2a
ȧ2

N
+
a2ä

N

]
(2.102)

Then, plugging b = ȧ
N

inside action (2.98) and including expression (2.102), we get

SEC =
3Vc
8πG

∫
dt

[
−ȧ ˙(a2)

N
+
aȧ2

N
+Nakc2 + 2a

ȧ2

N
+
a2ä

N

]
(2.103)

which, when simplified, gives

SEC =
3Vc
8πG

∫
dt

[
1

N
ȧ2a+

1

N
äa2 +Nakc2

]
≡ SEH (2.104)

which is exactly the Einstein-Hilbert action we found in equation (2.95). Therefore,
we now can appreciate the importance of the GHY boundary term: without it, it
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would not be possible to link the EC action to the EH action. The same case would
arise if we were to just assume that the boundary term vanishes at infinity.
To conclude, we can easily see that, starting from the EH action (2.95), if we substi-
tute the on shell condition b = ȧ

N
we get

SEH =
3Vc
8πG

∫
dt ḃa2 +Na(b2 + kc2) ≡ SEC (2.105)

which is indeed the Einstein-Cartan action reduced to minisuperspace for the FLRW
metric. This result shows that the EC and EH actions are essentially equivalent
assuming the torsion-free condition and using the GHY boundary term.

2.3 Energy Conservation

In this section, we present the current developments in the field of varying constant
theories. These arise as a natural extension of VSL when additional constant ap-
pearing in the EC action are assumed to be varying. Furthermore, unlike VSL, these
theories see a full implementation of the unimodular formalism applied to minisu-
perspace, which allows a far more general treatment of the subject. Specifically, after
the EC action’s reduction to MSS done in section (2.2), it is possible to generalise
the unimodular formalism form section (1.1) to account for a vector of constants α,
giving relational physical times which provide the evolution of another set of con-
stants, called β. The aim of this extension is, however, different from VSL. In fact, by
postulating multiple varying constants, we consider the overall energy conservation
in the Universe, developing models in which we can have net energy violation or net
energy conservation, depending on the constants involved. These models allow us
to explore more the consequences of braking Local Lorentz Invariance, as much as
they provide interesting insights on possible solutions to the Cosmological Constant
problem (more will be explained in the last two chapters). Therefore, in the next
subsections, we provide the basic results we will use to extend this formalism to the
Brans-Dicke theory in Chapter 3.

2.3.1 Full action and constants

Having the EC action in minisuperspace, we can now include matter in out treatment
and show how to derive the equations of motion from the Hamiltonian direclty. From
before, we have the EC action in MSS, which we now write as

SEC = Vc

∫
dt α2

[
ḃa2 +Na(b2 + kc2g)

]
(2.106)

We now label the speed of light that was appearing in action (2.83) as c2 differently,
specifically as c2g. This is because, as we have discussed in subsection (1.2.3), we
should differentiate the speed of light originating from the gravity metric (hence
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c2g) from other speeds of light, like the one from a matter content (labelled c2m).
Secondly, we have introduced the constant α2 [22], which is defined as

α2 =
3c2p

8πGP

(2.107)

where c2P and GP are the speed of light and the gravitational constant originating
from Planck’s mass. In fact, going back to the EC action in MSS, we can re-write it
as

SEC =
3VcM

2
P

ℏcP

∫
dt [ḃa2 +Na(b2 + kc2g)] (2.108)

where M2
P = ℏcP

8πGP
is the Planck’s mass. For dimensional reasons, we defined ℏ such

that it gives a c2P factor in the numerator, hence obtaining the squared speed of light
in the expression (2.107) for α2. We remark that in action (2.83) we really have
two distinct and different speeds of light. One, c2P is the speed of light coming from
the Planck’s mass, which is itself appearing in front of the EC action together with
GP because of the required dimensions of the action. This is ultimately the reason
why we use the subscript P for the speed of light and the gravitational constant. On
the other hand, we have the speed of light c2g coming from the FLRW metric, which
is clearly a gravitational-type constant, since it is originating from a gravitational
metric.
Continuing, we include the unimodular action, which, according to the procedure
outlined in section (1.1), should be combined with the base theory S0, which is the
EC action in this case. This gives

SU = Vc

∫
dt α̇ Tα (2.109)

where we have integrated by parts action (1.23) to have an expression where there
is a dynamical constant multiplying a conjugate time. As we will see shortly, α is
a vector of constants appearing in the EC action. The inclusion of the unimodu-
lar action will allow us to create the relational physical times giving the constants’
evolution. Finally, we wish to include a generic matter action in our analysis. Con-
sidering a perfect fluid Lagrangian [88] [89] and reducing it to MSS as in [90] we
arrive at

Sm = Vc

∫
dt α3[ṁiψi −Na3ρ] (2.110)

where α3 is another constant appearing in from of the matter action, taking the form

α3 =
GM

GP

(2.111)

Interestingly, as pointed out in [89], the canonical pair ṁiψi in the matter action
above forms already a unimodular-like term, with mi acting as a constant of motion.
Once again, we differentiate the gravitational constant originating from the Planck’s
mass (and therefore related to the gravity action) from GM , which is defining the
gravitational coupling to matter, as explained in subsection (1.2.3). Here, we allow
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the matter action to accommodate for different types of fluids, hence the index i
allows to move from one species to the other. Furthermore, mi is the constant of
motion dual to the canonical variable ψi defined in [22]. Finally, the total energy
density ρ is defined as

ρ = ρΛ + ρM = ρΛ +
∑
i

ρi (2.112)

where the ρi are the different fluids’ densities given by

ρi =
mi

a3(1+wi)
(2.113)

with wi being the constant relating the pressure to the density in the equation of
state.
Having defined all the actions that will contribute to our final theory, it is important
to comment on their constants. In fact, the constants α2 and α3 we found for the EC
and matter actions are all part of the α vector appearing in the unimodular action.
This vector is then

α = (α1, α2, α3, ...) =

(
ρΛ,

3c2P
8πGP

,
GM

GP

, ...

)
(2.114)

where we have included also α1 = ρΛ in case we wish to consider a purely unimod-
ular time dependence. Furthermore, we could have additional constants appearing
in the α vector, as we will do in Chapter 3, so α is not limited to these only. These
constants will give rise to their relational times defined above as the Tα. On the
other hand, the set of β constants will the one varying with respect to these clocks
as we have outlined in section (1.2).
We can now add these three actions together, arriving at the final form of the full
action

Sfull = Vc

∫
dt α2ḃa

2 + α3ṁiψi +Naα2(b
2 + kc2g)−Na3α3ρ+ ρ̇ΛTΛ (2.115)

where, to begin with, we will consider the cosmological constant Λ as our relational
time. Before deriving the Hamiltonian and the equations of motion, it is crucial to
stress a key point. In the action above, the vacuum energy ρΛ is included in the
matter content together with the other matter species. Therefore, it appears in the
matter Lagrangian together with α3. However, this case would be different if we
were to consider a geometrical Cosmological Constant, where we would have a α2

factor appearing in front of the matter Lagrangian.

2.3.2 The Hamiltonian and the Dynamics

Using action (2.115) from the previous subsection, we can directly infer the Hamilto-
nian of the system. In fact, action (2.115) is, explicitly, the integral of the Lagrangian

S =

∫
dtL (2.116)
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and we can relate the Lagrangian of a system to its Hamiltonian via a Legendre
transform [91]

L(q, q̇, t) =
n∑

i=1

piq̇
i −H(p, q, t) (2.117)

where the pi are the generalised momenta and the q̇i are the generalised velocities.
The generalised momenta are defined as

pi =
∂L

∂q̇i
(2.118)

so we immediately see that action (2.115) is in the form required by (2.117) to
obtain the Hamiltonian. This therefore leads to

H = −Naα2(b
2 + kc2g) + α3ρNa

3 (2.119)

Firstly, due to α2 in front of the canonical pair in action (2.115), the conjugate of b
needs to be defined as A2 = a2α2 instead of simply a2. This distinction is very impor-
tant when evaluating the Poisson’s brackets for H, unless α2 is kept constant in the
canonical pair. Doing so completely brakes Local Lorentz Invariance and generates
two different theories, as we will see in the next subsections and in Chapter 3 for
Brans-Dicke. For now, we keep α2 fixed, while still writing the Hamiltonian (2.119)
in terms of A2 as

H = −NA
√
α2(b

2 + kc2g) + α3α
− 3

2
2 ρNA3 (2.120)

We obtain an Hamilton constraint on the dynamics of our variable by varying action
(2.115) with respect to N,

δSfull

δN
= 0 ⇔ b2 + kc2g =

α3

α2

ρa2 (2.121)

The Poisson’s brackets for two functions f(pi, qi, t) and g(pi, qi, t) are defined as [91]

{f, g} =
N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
(2.122)

Applying this definition to Hamiltonian (2.120), we arrive at the first Hamilton’s
equation, the equation of motion for a

ȧ = {a,H} =
∂a

∂b

∂H

∂A2
− ∂a

∂A2

∂H

∂b
= − ∂a

∂A2

∂H

∂b
(2.123)

where the first term vanishes because the variable a does not depends on b. Further-
more, using the trick

∂a

∂A2
=

∂a

∂(a2α2)
=

1

α2

1

2

1

a

∂a

∂a
(2.124)

since, in this case, α2 is kept fixed, we arrive at

ȧ = {a,H} = Nb (2.125)

44



CHAPTER 2. VARYING CONSTANTS: DEVELOPMENTS 2.3. ENERGY CONSERVATION

Moreover, using once again (2.122) for b we have

ḃ = {b,H} =
∂b

∂b

∂H

∂A2
− ∂b

∂A2

∂H

∂b
=

1

2aα2

∂H

∂a
(2.126)

where again the second term vanishes because b does not depend on A2. Therefore,
using the Hamilton constraint (2.121) we arrive at

ḃ = {b,H} = − α3

2α2

(ρ+ 3p)Na (2.127)

where we have also used (2.113) for ρ in the matter term of the Hamiltonian, such
that we obtain a term of the form

−(1 + 3w)ρ = −ρ− 3wρ = −(ρ+ 3p) (2.128)

where we invoke the equation of state of a perfect fluid p = wρ.

It is also possible to obtain the equations of motion following the Lagrangian ap-
proach. This implies using the Euler-Lagrange equation for the a2 and the b vari-
ables. Starting from the a equation, we first need to integrate the ḃa2α2 term in
action (2.115) by parts. This allows us to have an explicit ȧ term appearing in the
action. The integration by parts leads to

Sfull = Vc

∫
dt [−2aȧbα2 + α3ṁiψi +Naα2(b

2 + kc2g)−Na3α3ρ+ ρ̇ΛTΛ] (2.129)

Therefore, the Euler-Lagrange equation for a is

∂L

∂b
− d

dt

∂L

∂ḃ
= 0 (2.130)

resulting in
−2aȧα2 + 2bNaα2 = 0 ⇔ ȧ = Nb (2.131)

which is consistent with equation (2.125) and it also gives the relation between ȧ
and b we found when considering the EC and EH actions. Continuing, we obtain the
equation of motion for b applying the Euler-Lagrange equation to the non-integrated
by parts action this time. This is because we require an explicit ḃ dependence for the
equation of motion. Therefore, using

∂L

∂a2
− d

dt

∂L

∂ȧ2
=

1

2a

∂L

∂a
− d

dt

[
1

2ȧ

∂L

∂ȧ

]
= 0 (2.132)

leads to

ḃα2 +
Nα2

2a
(b2 + kc2g)−

3

2
ρα3Na = 0 ⇔ ḃ = − α3

2α2

(ρ+ 3p)Na (2.133)

where, once again, we have used the Hamilton’s constraint (2.121) and equation
(2.128). This alternative approach proves that the two results are equivalent, it does
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not require defining A2 when α2 is not fixed and it will be useful in the next chapter
to check that results agree.

Having derived the full dynamics of the theory, we can consider the energy con-
servation equation. Just like in General Relativity we can obtain the conservation
equation from the Bianchi Identities, in the MSS treatment we derive the same re-
sult combining the equations of motion with the Hamilton’s constraint. This gives us
the energy conservation in a Universe described by the FLRW metric, where we as-
sumed a matter content modeled by a perfect fluid, including also the cosmological
constant. To begin with, we take the time derivative of the Hamilton’s constraint.
We do so because it describes the time evolution of any field in the theory, so it is
expected that dotting it will produce the desired time dependence of the energy den-
sity. Doing so, we include the possibility for c2g to vary generically with parameter
time t, as it is part of the set of constants β which can do so. For the moment, we
do not specify which of the α are providing the relational time c2g is varying with
respect to, as these can be many different ones, as we will see later.
Proceeding, we dot Hamilton’s constraint, obtaining

2bḃ+ k
dc2g
dt

=
α3

α2

ρ̇a2 + 2
α3

α2

ρaȧ (2.134)

where α2 and α3 are, for the moment, kept constant, thus not contributing the the
conservation equation. Then, using the equations of motion (2.125) and (2.127) for
b and ḃ in the equation above and rearranging we have

ρ̇+ 3
ȧ

a
(ρ+ p) =

kα2

α3a2
dc2g
dt

(2.135)

This energy “conservation” equation seems to imply, instead, energy violation, as we
clearly have a energy source term given by a varying c2g. This is an expected result,
as by braking Local Lorentz Invariance, we are braking the symmetric properties of
our equations, hence generating source terms. However, this is not the full picture,
because, depending on the constant α chosen and the parameter β, the clock might
absorb all the source energy.
To see this, we consider a c2g dependent on the clock defined by the cosmological
constant (in the literature called the unimodular time), such that c2g = c2g(TΛ), where
we have β = c2g and α = ρΛ. Assuming this dependence provides us with two
extra Hamilton’s equations which give the dynamics of the unimodular time and its
conjugate variable ρΛ

ṪΛ = {TΛ, H} = − ∂H

∂ρΛ
= −α3Na

3 (2.136)

ρ̇Λ = {ρΛ, H} =
∂H

∂TΛ
= −kα2

dc2g
dTΛ

Na (2.137)

Using the chain rule, equation (2.137) can be re-expressed as

ρ̇Λ = −kα2

dc2g
dt

dt

dTΛ
Na (2.138)
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where we can now plug in equation (2.136) obtaining

ρ̇Λ =
kα2

α3a2
dc2g
dt

(2.139)

Equation (2.139) suggests that the source term due to a varying c2g in equation
(2.135) is entirely given by the vacuum energy of the system.

2.3.3 Varying α2 and α3 theory

In the previous subsection, we have assumed that α3 is not varying and that also α2

is fixed. This, however, is not a strict requirement, and allowing their variability will
include new terms arising in the equations of motion and, as a consequence, also in
the conservation equation. We begin by considering the full action of our theory

Sfull = Vc

∫
dt α2ḃa

2 + α3ṁiψi +Naα2(b
2 + kc2g)− α3ρNa

3 + α̇2TR + α̇3TN

(2.140)
where we have removed the pure unimodular term since we would like to consider
the variations given by α2 and α3. Instead, we have included the Ricci TR and
Newton TN times, associated with our two varying constants. This action is the
same as (2.115), but now α2 is not fixed anymore, leading to a different equation of
motion for ȧ. It is essential now that the Hamiltonian is expressed in terms of the
new canonical variable A2 = a2α2 as

H = −NA
√
α2(b

2 + kc2g) + α3α
− 3

2
2 ρNA3 (2.141)

where now the canonical pair is (b, A2) and not (b, a2) anymore as before.
Following the Poisson’s brackets, we calculate the equation of motion form A2, given
by

˙(A2) = {A2, H} =
∂A2

∂b

∂H

∂A2
− ∂A2

∂A2

∂H

∂b
= −∂H

∂b
(2.142)

which, computing the LHS and the RHS leads to

2aȧα2 + a2α̇2 = 2bNA
√
α2 = 2bNaα2 (2.143)

eventually giving

ȧ+
α̇2

2α2

= Nb (2.144)

On the other hand, the equation of motion for b is

ḃ = {b,H} =
∂b

∂b

∂H

∂A2
− ∂b

∂A2

∂H

∂b
=
∂H

∂A2
=

1

2aα2

∂H

∂a
(2.145)

47



2.3. ENERGY CONSERVATION CHAPTER 2. VARYING CONSTANTS: DEVELOPMENTS

where we have used the definition of A2 and we are now using the Hamiltonian
expressed in terms of a instead. Furthermore, using equation (2.128) to substitute
ρ, we arrive at the final form

ḃ = − α3

2α2

(ρ+ 3p)Na (2.146)

It is also possible to derive the same equations following the Lagrangian approach.
To begin with, we integrate action (2.140) by parts, assuming that α2 is not constant,
hence obtaining

Sfull = Vc

∫
dt − ba2α̇2 − 2aȧbα2 + α3ṁiψi +Naα2(b

2 + kc2g)− α3ρNa
3 + α̇2TR + α̇3TN

(2.147)
Then, writing the Euler-Lagrange equation for a

∂L

∂b
− d

dt

∂L

∂ḃ
= 0 (2.148)

we obtain
−a2α̇2 − 2aȧα2 + 2Nabα2 = 0 ⇔ ȧ+

α̇2

2α2

a = Nb (2.149)

On the other hand, using the Euler-Lagrange equation for b on the original action
(2.140),

∂L

∂a2
− d

dt

∂L

∂ȧ2
=

1

2a

∂L

∂a
− d

dt

[
1

2ȧ

∂L

∂ȧ

]
= 0 (2.150)

invoking the Hamilton’s constraint and equation (2.128) for ρ, we finally get

α2ḃ+
Nα2

2a
(b2 + kc2g)−

3α2

2
ρNa3 = 0 ⇔ ḃ = − α3

2α2

(ρ+ 3p)Na (2.151)

Once again, as before, we dot Hamilton’s constraint, assuming α2 and α3 to be vary-
ing. This leads to

2bḃ+ k
dc2g
dt

=
α̇2

α2

ρa2 − α3ρa
2

α2
2

α̇2 +
α3

α2

a2ρ̇+ 2
α3

α2

ρaȧ (2.152)

Finally, using the equations of motion above for b and ḃ, we find the conservation
equation

ρ̇+ 3
ȧ

a
(ρ+ p) = − α̇3

α3

ρ+
α̇2

α2

ρ− 3p

2
+
kα2

α3a2
dc2g
dt

(2.153)

We notice that, besides the α̇3 term which we would have expected having allowed
α3 to vary, we also get the second term on the RHS for a varying α2. As before, we
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have additional equations coming from the Hamiltonian which give the dynamics
of the clock and its constant. In this case, since we assume α2 and α3 to vary, we
have four equations in total: one pair for the Ricci time, and the second pair for the
Newton time. These are the times c2g depends upon, as

ṪR = {TR, H} = − ∂H

∂α2

=
α3

α2

ρ− 3p

2
Na3 (2.154)

α̇2 = {α2, H} =
∂H

∂TR
= −α2k

∂c2g
∂TR

Na (2.155)

where in the Ricci time equation we have used the Hamilton’s constraint. On the
other hand, the equations for TN and α3 are

˙TN = {TN , H} = − ∂H

∂α3

= −ρNa3 (2.156)

α̇3 = {α3, H} =
∂H

∂TN
= −α2k

∂c2g
∂TN

Na (2.157)

where we stress once again that, taking these derivatives, we have used Hamiltonian
(2.141) expressed in terms of A2. To show that equation (2.154) is indeed a conser-
vation equation, we consider that c2g has a double dependence on TR and TN , which
implies that

dc2g
dt

=
∂c2g
∂TR

ṪR +
∂c2g
∂TN

˙TN (2.158)

which, using the Ricci and the Newton times equations, becomes

dc2g
dt

=
α2

α3

ρ− 3p

2

∂c2g
∂TR

Na3 − ρ
∂c2g
∂TN

Na3 (2.159)

Therefore, plugging the equations for α2 and α3 into equation (2.154) and also using
equation (2.159), we can show that

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (2.160)

This result shows how a gravitational parameter, c2g, depending on a gravitational
clock does not lead to any net energy violation. It occurs because, if the clock is
gravitational, there is no matter component absorbing the constant’s variation, so
energy is fully conserved. We will investigate this pattern further once a more com-
plete picture is build, extending these results to Brans-Dicke theory.
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Chapter 3

Brans-Dicke and Evolving Laws

In our final chapter, we present the original results achieved in this research by ap-
plying varying constants to energy conservation in cosmology. To do so, we use the
Brans-Dicke action coupled with the unimodular one. The results are constructed
around two main bifurcations: a non-dynamical Brans-Dicke theory and a dynam-
ical one. In the first case, our results mimic the ones obtained in [22], with the
substitution α2 → ϕ. However, new results are obtained when considering a fixed
scalar field ϕ0 in the canonical term, such that the ϕ multiplying the Hamiltonian
is still varying. On the other hand, when including the Brans-Dicke kinetic term,
we develop several scenarios of varying constants. All of these produce new results,
with particular interest given by the ω = ω(TΛ) and c2g = c2g(Tω) scenarios. These are
specifically relevant for phenomenology, also providing an insight in the Cosmologi-
cal Constant problem, as we will study in [63]. Therefore, to summarise, in section
(3.1) we reduce the Brans-Dicke action to minisuperspace, showing how to include
the kinetic term in the full Hamiltonian. In section (3.2) we derive the equations
of motion for a non-dynamical Brans-Dicke theory, focusing on the ϕ0 cases. Finally,
section (3.3) develops the multiple scenarios arising form the dynamical Brans-Dicke
theory, highlighting the main phenomenological results.

3.1 Brans-Dicke in MSS

In this short section, we derive the form of the Kinetic Brans-Dicke action in minisu-
perspace. As we will see, we will have two cases, one where we set ω, the Brans-
Dicke parameter, to zero and the other one where we use the full Brans-Dicke action.
It is therefore necessary, for the ladder case, to have the full Brans-Dicke action in
MSS. This will allow us to infer the Brans-Dicke kinetic Hamiltonian, which will be
at the heart of our original results. Finally, we will highlight how including or ex-
cluding the c factor appearing in the Brans-Dicke Hamiltonian can lead to different
results, providing an additional parameter that could be varying, as we will explore
in our future work [63].
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3.1.1 Reducing the Brans-Dicke action to MSS

Our starting point is the Brans-Dicke action, which should be reduced to minisuper-
space to implement the formalism outlined in the previous chapter. Firstly, in the
Brans-Dicke action, the Ricci scalar term is essentially equivalent to the Einstein-
Hilbert action, except for the constant multiplying R. In fact, if we compare the EH
action with the Brans-Dicke one for ω = 0 (non-dynamical Brans-Dicke)

SEH = α2

∫
d4x

√
−gR (3.1)

Sω=0 =

∫
d4x

√
−g ϕR (3.2)

we immediately notice that the scalar field ϕ plays the role of α2 once we do not
assume a dynamical scalar field. Of course, the scalar field is nothing but a variable
gravitational constant, while α2 includes also the speed of light, but up to a constant
(including the numerical factor and π) the two theories are equivalent. Therefore,
it is straightforward to reduce the Brans-Dicke action to MSS assuming ω = 0. We
simply take action (2.106), replace α2 → ϕ and adjust the constants to get

Sω=0 =
3Vc
8π

∫
dt ϕ

[
ḃa2 +Na(b2 + kc2g)

]
(3.3)

or, more simply, by including the pre-factor 3
8π

in the definition of ϕ, we get the final
form of the Brans-Dicke action

Sω=0 = Vc

∫
dt ϕ

[
ḃa2 +Na(b2 + kc2g)

]
(3.4)

Action (3.4) will be the starting point of the original results we will introduce in this
chapter. Importantly, like in the varying α2 case, when deriving the Hamilton’s equa-
tions, it is A2 = a2ϕ to be used as a canonical variable. This is even more relevant
here because ϕ, unlike α2, is inherently a variable in the Brans-Dicke theory, mod-
elling the change of the gravitational constant from spacetime position to spacetime
position.
Since the only difference between action (3.4) and the full Brans-Dicke is the ki-
netic term, we might just consider it and understand how to obtain the Brans-Dicke
Hamiltonian in MSS from it. We begin by considering the kinetic term as

−ω
ϕ
∂µϕ ∂

µϕ = −ω
ϕ
[gtt∂tϕ ∂tϕ+ gij∂iϕ ∂jϕ] = −ω

ϕ
gttϕ̇2 (3.5)

because the scalar field ϕ is exclusively time-dependent, so that all its spacial deriva-
tives vanish. Including the usual

√
−g gives the full kinetic term as

SK.T. =

∫
d4x

√
−g

[
−ω
ϕ
gttϕ̇2

]
(3.6)
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Furthermore, from the FLRW metric, we have that gtt = − 1
c2N2 , and that

√
−g = r2 sin2 θ√

1− kr2
cNa3 (3.7)

These two expressions combined lead to the standard form [92]

SK.T. = Vc

∫
dt Na3

ω

ϕ

ϕ̇2

N2
= Vc

∫
dt ϕ̇2ω

ϕ

a3

Nc2
(3.8)

where the remaining factors coming from
√
−g have been absorbed into Vc. Follow-

ing the procedure outlined in [93], we obtain the canonical momentum conjugate
to ϕ as

πϕ =
δSK.T.

δϕ̇
= 2ω

ϕ̇

ϕNc
a3 (3.9)

At this point it is important to notice the extra factor of c multiplying N in the
conjugate momentum expression and in the kinetic action in MSS. If we leave it in
the kinetic term, it adds another constant that can be varying. However, in this work,
for simplicity, we absorb the c factor into the parameter ω, while its full inclusion in
the theory will be the object of next research [63]. Using the Fourier transform on
the Lagrangian as described in (2.117), we can write

SK.T. = Vc

∫
dt ω

ϕ̇2

ϕ

a3

N
!
= Vc

∫
dt ϕ̇πϕ −HBD (3.10)

such that, re-expressing in terms of HBD we obtain

HBD(ϕ, πϕ) = ϕ̇πϕ − ω
ϕ̇2

ϕ

a3

N
(3.11)

Now, following again the prescriptions given by [93], we find an expression for ϕ̇ by
inverting the conjugate momentum equation, such that

πϕ =
2ω

ϕ

ϕ̇

N
a3 ⇔ ϕ̇ =

ϕπϕN

2ωa3
(3.12)

We can use the expression above for ϕ̇ into the Hamiltonian (3.11), leading to

HBD(ϕ, πϕ) =
ϕπ2

ϕN

2ωa3
− ω

ϕ

ϕ2π2
ϕN

2

4ω2a6
a3

N
=

1

4

ϕπ2
ϕ

ωa3
N (3.13)

This is finally the Hamiltonian coming from the Brans-Dicke kinetic term which,
which, together with the canonical pair ϕ̇πϕ, creates the kinetic Brans-Dicke La-
grangian. Therefore, combining it with action (3.4), we arrive at the full Brans-Dicke
action in minisuperspace

SBD = Vc

∫
dt

[
ϕḃa2 + ϕ̇πϕ + ϕNa(b2 + kc2g)−

1

4

ϕπ2
ϕ

ωa3
N

]
(3.14)
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Concluding, we can extend the purely gravitational action to include a coupling to
matter and the generalised unimodular term, as we did in Chapter 2. The unimod-
ular term will allow us to have relational times for the constants evolution, while
the matter action will provide the additional α3 parameter. Doing so, we arrive at
the complete unimodular Brans-Dicke action coupled to matter (assuming a perfect
fluid as before):

S = Vc

∫
dt

[
ϕḃa2 + ϕ̇πϕ + α3ṁiψi + ϕNa(b2 + kc2g)− α3ρNa

3 − 1

4

ϕπ2
ϕ

ωa3
N + α̇Tα

]
(3.15)

This theory will be the starting point of all the following results. It is also the most
general action we will use for Brans-Dicke, so each specific scenario will differ mostly
because of the unimodular term, depending on which constant we are varying and
with respect to which time. These could be very simple or also very intricate com-
binations as we will see in the following. Also, we will explore a bifurcation in the
theory given by only fixing ϕ in the conjugate pair term. This will be the object of
study in the next sections and subsections.

3.2 Non-Dynamical Brans-Dicke

In this section, we present the simplified case of a non-dynamical scalar field in the
Brans-Dicke theory. Accordingly, ω = 0, so we cannot invoke any dependence on this
parameter. Importantly, this scenario is essentially equivalent to the one covered in
section (2.3), with the substitution α2 → ϕ, such that we include a dynamical G,
as required by the Brans-Dicke theory. However, we investigate a new theory where
Local Lorentz Invariance is fully broken by a constant scalar field ϕ0 multiplying the
canonical term while the scalar field appearing in the Hamiltonian is left varying.
This theory is different from the fixed α2 one analysed in subsection (2.3.2), as
it leads to different equations of motion. Therefore, we derive the equations of
motion and the most general conservation equations for the ϕ0 and full ϕ cases. We
then present some varying constants scenarios for the ϕ0 case, excluding any full ϕ
scenarios, since they are equivalent to previous sections.

3.2.1 The Equations of Motion for the ϕ0 scenario

This subsection derives the equations of motion and the general conservation equa-
tion for a non-dynamical Brans-Dicke theory, with a decoupled scalar field ϕ0. Im-
portantly, given the fixed scalar field in the canonical pair, this theory shows a totally
broken Local Lorentz Invariance, as pointed out in [22]. The general action in MSS
is

S = Vc

∫
dt ϕ0 ḃa

2 + α3ṁiψi + ϕNa(b2 + kc2g)− α3ρNa
3 + SU (3.16)
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where SU is the unimodular action that will provide the evolution times and ṁiψi is
the canonical term from the generic matter action. The Hamiltonian, obtained via
Legendre transform of the Lagrangian in the action above, is

H = −ϕNa(b2 + kc2g) + α3ρNa
3 (3.17)

Following the standard requirement [93] for the Hamilton’s constraint, we obtain

H
!
= 0 ⇔ b2 + kc2g =

α3ρa
2

ϕ
(3.18)

which we use to derive the conservation equation. However, before proceeding, we
need to obtain the equations of motion for the canonical pair (b, a2). In this case,
since the scalar field ϕ is multiplying the canonical pair, it is better to express the
Hamiltonian in terms of a new canonical variable A2 = ϕ0a

2. Furthermore, when
evaluating the Poisson’s brackets, we will use A2 instead of a2. This naturally leads

˙(A2) = {A2, H} =
∂A2

∂b

∂H

∂A2
− ∂A2

∂A2

∂H

∂b
= −∂H

∂b
(3.19)

giving

2aȧϕ0 = 2bNaϕ⇔ ȧ =
ϕ

ϕ0

Nb (3.20)

which is the equation of motion for a. On the other hand, the same procedure can
be applied to derive the equation of motion for the other conjugate variable b

ḃ = {b,H} =
∂b

∂b

∂H

∂A2
− ∂b

∂A2

∂H

∂A2
=
∂H

∂A2
=

1

2aϕ0

∂H

∂a
(3.21)

giving

ḃ =
1

2aϕ0

∂H

∂a
(3.22)

=
1

2aϕ0

[
−Nϕ(b2 + kc2g)− 3w

α3m

a3w+1
N

]
(3.23)

=
1

2aϕ0

[
−α3ρNa

2 − 3w
α3m

a3w+1
N

]
(3.24)

= −1

2

α3ρ

ϕ0

Na− 3

2
w
α3ρ

ϕ0

Na (3.25)

=
α3

ϕ0

(−ρ− 3wρ)

2
Na (3.26)
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= − α3

2ϕ0

(ρ+ 3p)Na (3.27)

where we have used the Hamilton’s constraint for (b2 + kc2g) and the definition of ρ
from (2.113). As a side note, we remark that it is possible to obtain the same results
using the Lagrangian approach, as we showed in subsection (2.3.3). Now we can
derive the conservation equation from the condition that the Hamiltonian must be
conserved with time since, if H = 0, then it is also true that Ḣ = 0. Therefore, taking
the time derivative of the Hamilton’s constraint, we obtain

2bḃ+ k
dc2g
dt

=
α̇3ρa

2

ϕ
+
α3ρ̇a

2

ϕ
+ 2

α3ρaȧ

ϕ
− α3ρa

2

ϕ2
ϕ̇ (3.28)

which, rearranged for the standard form of the conservation equation and using the
equations of motion for the canonical pair, gives

ρ̇+ 3
ȧ

a
(ρ+ p) = − α̇3

α3

ρ+
ϕ̇

ϕ
ρ+

kϕ

α3a2
dc2g
dt

(3.29)

Interestingly, we have a ϕ̇ term behaving like the α̇3 one. This term is new compared
to previous theories [22] and it arises from totally braking Local Lorentz Invariance,
because of the constant scalar field in the canonical term.

3.2.2 The Equations of Motion for the full ϕ scenario

While the results in the previous subsection are different from the scenario in subsec-
tion (2.3.2) (covered in [22]) because of a varying ϕ in the Hamiltonian but a fixed
one in the canonical pair, the following scenario is fully equivalent to subsection
(2.3.3). The only difference between the two is that, instead of α2 which is postu-
lated to vary, we have the scalar field ϕ, which is naturally varying by construction
of the non-kinetic Brans-Dicke action. However, the equations of motion and the
conservation equation are the same in both scenarios. We therefore include a brief
summary of the results obtained to show how the scalar field treatment is equivalent
and to provide a few examples of energy conservation or violation. Beginning from
the Brans-Dicke action with ω = 0 in MSS

S = Vc

∫
dt ϕ ḃa2 + α3ṁiψi + ϕNa(b2 + kc2g)− α3ρNa

3) + SU (3.30)

we immediately have the Hamiltonian

H = −ϕNa(b2 + kc2g) + α3ρNa
3 (3.31)

which gives also the Hamilton’s constraint

b2 + kc2g =
α3ρa

2

ϕ
(3.32)
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Simply following the procedure in subsection (2.3.3), with the substitution α2 → ϕ
and the necessary adjustment for A2 = ϕa2, we obtain the equations of motion for a
and b, which read

ȧ+
ϕ̇

2ϕ
= Nb (3.33)

ḃ = −α3

2ϕ
(ρ+ 3p)Na (3.34)

Dotting the Hamilton’s constraint, rearranging and using the equations of motion we
arrive at the general conservation equation

ρ̇+ 3
ȧ

a
(ρ+ p) = − α̇3

α3

ρ+
ϕ̇

ϕ

ρ− 3p

2
+

kϕ

α3a2
dc2g
dt

(3.35)

From this point onward, it would be just a matter of choice or interest to consider
which constants take part to the α and which ones to the β. As extensively illus-
trated in [22], we might have scenarios where c2g depends on the Ricci time Tϕ, such
that c2g = c2g(Tϕ). This does not lead to any net energy violation because we are
considering a gravitational parameter depending on a gravitational clock, following
a pattern we will analyse later.
We could, as well, consider the speed of light depending on the unimodular time,
such that c2g = c2g(TΛ). In this case, we do obtain a net energy violation, as the varia-
tion in c2g is entirely absorbed by the unimodular clock TΛ, leading all the energy in
the vacuum energy density ρΛ.
Other more exotic scenarios include a matter speed of light c2m depending on both
the Ricci and the Newton times. This setup leads, as well, to net energy violation,
because we are considering a matter parameter depending on a gravitational clock.
This situation is the exactly parallel of the previous one, where we had a gravita-
tional parameter depending on a matter clock.

3.2.3 Fixed ϕ0 with c2g = c2g(Tϕ)

The first interesting theory to consider is when the speed of light depends on the
Ricci-like time Tϕ. In this case, we have that α = ϕ and β = c2g, such that our action
reads

S = Vc

∫
dt ϕ0 ḃa

2 + α3ṁiψi + ϕNa(b2 + kc2g)− α3ρNa
3 + ϕ̇Tϕ (3.36)

This leads to the following Hamiltonian:

H = −ϕNa(b2 + kc2g) + α3ρNa
3 (3.37)

The additional equations of motions for ϕ and Tϕ are obtained by computing the
Poisson’s brackets:

ϕ̇ = {ϕ,H} =
∂H

∂Tϕ
= −ϕNak

dc2g
dTϕ

(3.38)
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Ṫϕ = {Tϕ, H} = −∂H
∂ϕ

= Na(b2 + kc2g) =
α3ρNa

3

ϕ
(3.39)

where, in the Tϕ equation, we have used Hamilton’s constraint. From the previous
derivation, the most general conservation equation for which ϕ and c2g are varying is

ρ̇+ 3
ȧ

a
(ρ+ p) =

ϕ̇

ϕ
ρ+

kϕ

a2α3

dc2g
dt

(3.40)

Using the equation of motion for ϕ in the first term and the Ṫϕ equation in the second
one after applying the chain rule, we arrive at the standard conservation equation

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (3.41)

thus not having, as expected, any energy violation. Crucially, in the case of a scalar
field coupled to the canonical pair ḃa2 as in the Brans-Dicke theory, the conjugate
variable to ḃ is A2 = ϕa2. However, this change only applies to theories where the
ϕ is dynamical in both the canonical pair and in the Hamiltonian. Unlike these
theories, in our case we have a non-dynamical ϕ0 coupled to the canonical pair. It
is therefore redundant to express the Hamiltonian in terms of A2, so we can simply
use the standard Hamiltonian in terms of a2 when taking ϕ derivatives.

3.2.4 Fixed ϕ0 with c2m = c2m(Tϕ, TN)

In this scenario, we consider the energy violation arising from a matter parameter
depending on both a gravitational and matter clock. This is the case when c2m, the
matter speed of light, is part of the β and its clocks are given by ϕ and α3. This
is possible because, from [22], we can specify that ρi = ρi(ni, cm), thus giving the
derivatives of c2m when it is varying. For completeness, we postulate the same time
dependency for c2g, as this is a source term in the conservation equation and doing
so we can substitute in it expressions from the equations of motion of the relational
times Tϕ and TN . Our starting action is

S = Vc

∫
dt ϕ0ḃa

2 + α3ṁiψi + ϕNa(b2 + kc2g)− α3ρNa
3 + ϕ̇Tϕ + α̇3TN (3.42)

directly giving the Hamiltonian

H = −ϕNa(b2 + kc2g) + α3ρNa
3 (3.43)

From subsection (3.2.1) we have the most general conservation equation, which, in
this case, contains all three source terms:

ρ̇+ 3
ȧ

a
(ρ+ p) = − α̇3

α3

ρ+
ϕ̇

ϕ
ρ+

ϕk

α3a2
dc2g
dt

(3.44)

We can now obtain the additional Hamilton’s equations. In each pair, the first equa-
tion provides the variation of the constant of motion of the clock (it is the equation
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of motion of the constant, if we allow this oxymoron), while the second one is the
equation of motion of the clock itself:

ϕ̇ = {ϕ,H} =
∂H

∂Tϕ
= −ϕkNa

∂c2g
∂Tϕ

+ α3Na
3 ∂ρ

∂c2m

∂c2m
∂Tϕ

(3.45)

Ṫϕ = {Tϕ, H} = −∂H
∂ϕ

=
α3ρ

ϕ
Na3 (3.46)

α̇3 = {α3, H} =
∂H

∂TN
= −ϕkNa

∂c2g
∂TN

+ α3Na
3 ∂ρ

∂c2m

∂c2m
∂TN

(3.47)

˙TN = {TN , H} = − ∂H

∂α3

= −ρNa3 (3.48)

Finally, to substitute the equations of motion for the ċg term, we use the chain rule,
giving

dc2g
dt

=
∂c2g
∂Tϕ

Ṫϕ +
∂c2g
∂TN

˙TN (3.49)

Therefore, using this expression for ċg2 and the equations of motion above we obtain

ρ̇+ 3
ȧ

a
(ρ+ p) = ρNa3

∂ρ

∂c2m

[
α3

ϕ

∂c2m
∂Tϕ

− ∂c2m
∂TN

]
(3.50)

This result is particularly important in sight of what we will develop in the next
section. In fact, including the scalar field’s kinetic term will enable us to obtain a
similar energy violation equation. However, unlike the one given here, we will have
extra new terms arising from the time ticked by the Brans-Dicke clock Tω.

3.3 Dynamical Brans-Dicke

We now consider the complete case of a dynamical scalar field in the Brans-Dicke
theory. Multiple scenarios will be developed, particularly focusing on the ones where
the Brans-Dicke parameter ω is either part of the α or of the β. As in the non-
dynamical section, we follow the bifurcation arising from the fully broken Local
Lorentz Invariance due to ϕ0. Therefore, we derive the equations of motion and the
most general conservation equation for both cases. Interestingly, the equations of
motion are different in the two cases, but lead to the same conservation equation.
This is not a surprise, as the conservation equation derives from the field equations,
which are the same in both cases. As a result, the differentiation between these two
cases is redundant whenever we are not considering a dependency on the Ricci time
Tϕ given by the scalar field ϕ. So, without further ado, let’s dive into the wild ocean
of Pandora’s Box theories!
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3.3.1 The Equations of Motion for the ϕ0 scenario

This subsection will consider the simplified case where the ϕ multiplying the canon-
ical pair ḃa2 is kept fixed, but the other terms are left variable. Importantly, this
scenario is not to be confused with the one explained in subsection (2.3.2). In fact,
there the equivalent of ϕ (i.e., α2) is kept fixed for all the terms appearing in the
Lagrangian. Conversely, in this case, only the ϕ multiplying the first canonical pair
is fixed, while the others can vary. This leads to a full action of the form

S = Vc

∫
dt

[
ϕ0ḃa

2 + ϕ̇πϕ + α3ṁiψi + ϕNa(b2 + kc2g)− α3ρNa
3 − 1

4

ϕπ2
ϕ

ωa3
N

]
(3.51)

which is the usual Brans-Dicke action inclusive of kinetic term, coupled to matter
(for a generic perfect fluid) and reduced to MSS. The Hamiltonian, obtained in the
usual way, is therefore

H = −ϕNa(b2 + kc2g) + α3ρNa
3 +

1

4

ϕπ2
ϕ

ωa3
N (3.52)

leading to the Hamilton’s constraint

H
!
= 0 ⇔ b2 + kc2g =

α3ρa
2

ϕ
+

1

4

π2
ϕ

ωa4
(3.53)

Following the standard procedure, we derive the ȧ equation of motion

˙(A2) = {A2, H} =
∂A2

∂b

∂H

∂A2
− ∂A2

∂A2

∂H

∂b
= −∂H

∂b
(3.54)

giving

2aȧϕ0 = 2bNaϕ⇔ ȧ =
ϕ

ϕ0

Nb (3.55)

On the other hand, the equation of motion for b is obtained via

ḃ = {b,H} =
∂b

∂b

∂H

∂A2
− ∂b

∂A2

∂H

∂A2
=
∂H

∂A2
=

1

2aϕ0

∂H

∂a
(3.56)

leading to

ḃ =
1

2aϕ0

∂H

∂a
(3.57)

=
1

2aϕ0

[
−Nϕ(b2 + kc2g)− 3w

α3m

a3w+1
N − 3

4

ϕπ2
ϕ

ωa4
N

]
(3.58)

=
1

2aϕ0

[
−α3ρNa

2 − 1

4

ϕπ2
ϕ

ωa4
N − 3w

α3m

a3w+1
N − 3

4

ϕπ2
ϕ

ωa4
N

]
(3.59)
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= −1

2

α3ρ

ϕ0

Na− 3

2
w
α3ρ

ϕ0

Na− 1

8

ϕπ2
ϕ

ϕ0ωa5
N − 3

8

ϕπ2
ϕ

ϕ0ωa5
N (3.60)

=
α3

ϕ0

(−ρ− 3wρ)

2
Na− 1

2

ϕπ2
ϕ

ϕ0ωa5
N (3.61)

= − α3

2ϕ0

(ρ+ 3p)Na− 1

2

ϕπ2
ϕ

ϕ0ωa5
N (3.62)

where we have used the Hamilton’s constraint in equation (3.59) and the definition
of ρ from (2.113) in equation (3.62). Remarkably, due to the ϕ0 factor in the canon-
ical pair, this equation of motion is different from the one we will obtain in the next
section. Specifically, we lack the cancellation of ϕ in the momentum term.

Finally, we need to obtain an equation of motion for the conjugate momentum πϕ.
We apply the same procedure, evaluating its related Poisson’s brackets, giving

π̇ϕ = {πϕ, H} =
∂πϕ
∂ϕ

∂H

∂πϕ
− ∂πϕ
∂πϕ

∂H

∂ϕ
= −∂H

∂ϕ
(3.63)

and, computing the derivatives, we get

π̇ϕ = −∂H
∂ϕ

(3.64)

= Na(b2 + kc2g)−
1

4

π2
ϕ

ωa3
N (3.65)

= Na
α3ρa

2

ϕ
+

1

4

π2
ϕ

ωa3
N − 1

4

π2
ϕ

ωa3
N (3.66)

=
α3ρ

ϕ
Na3 (3.67)

where we have used the Hamilton’s constraint in the (b2 + kcg) term.

The equations of motion above can be equivalently derived using the Lagrangian
approach. We include the derivation to prove that the equations are indeed correct.
Begin by considering action (3.51): integrating by parts the canonical pair ḃa2 and
eliminating the boundary term gives

S = Vc

∫
dt

[
−2aȧbϕ0 + ϕ̇πϕ + α3ṁiψi + ϕNa(b2 + kc2g)− α3ρNa

3 − 1

4

ϕπ2
ϕ

ωa3
N

]
(3.68)
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Then, using the Euler-Lagrange equation

∂L

∂b
− d

dt

∂L

∂ḃ
= 0 (3.69)

we obtain
ȧ =

ϕ

ϕ0

Nb (3.70)

which is consistent with (3.55). On the other hand, using the Euler-Lagrange equa-
tion for b on action (3.51)

∂L

∂a2
− d

dt

∂L

∂ȧ2
=

1

2a

∂L

∂a
− d

dt

[
1

2ȧ

∂L

∂ȧ

]
= 0 (3.71)

we arrive at

ḃ = − α3

2ϕ0

(ρ+ 3p)Na− 1

2

ϕπ2
ϕ

ϕ0ωa5
N (3.72)

which is as well consistent with the equation of motion previously derived using the
Hamiltonian approach.

We now take the time derivative of Hamilton’s constraint and use the equations
of motion to derive a conservation equation for our system. Doing so, we follow
the most general approach were all the constants appearing are assumed to be vary-
ing. This procedure will give the most general energy conservation equation, which
we will simplify in different scenarios where only one constant is varying. Dotting
Hamilton’s constraint we obtain

2bḃ+ k
dc2g
dt

=
α̇3ρa

2

ϕ
+

2aȧα3ρ

ϕ
+
ρ̇α3a

2

ϕ
− α3ρa

2

ϕ2
ϕ̇+

1

2

πϕπ̇ϕ
ωa4

− 1

4

π2
ϕ

ω2a4
ω̇−

π2
ϕ

ωa5
ȧ (3.73)

Then, using the equation for b coming from (3.55), the equation for ḃ in the LHS,
and multiplying both sides by ϕ

α3a2
, we obtain

− (ρ+ 3p)
ȧ

a
−

ϕπ2
ϕ

α3ωa7
ȧ+

kϕ

α3a2
dc2g
dt

=
α̇3

α3

ρ+ 2
ȧ

a
ρ+ ρ̇− ϕ̇

ϕ
ρ

+
1

2

ϕπϕπ̇ϕ
α3ωa6

− 1

4

ϕπ2
ϕ

α3ω2a6
ω̇ −

ϕπ2
ϕ

α3ωa7
ȧ (3.74)

Rearranging this expression, we obtain the energy conservation equation as

ρ̇+ 3
ȧ

a
(ρ+ p) = − α̇3

α3

ρ+
ϕ̇

ϕ
ρ− 1

2

ϕπϕπ̇ϕ
α3ωa6

+
1

4

ϕπ2
ϕ

α3ω2a6
ω̇ +

kϕ

α3a2
dc2g
dt

(3.75)
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We can now use the π̇ϕ equation to further simplify this expression, as well as the
definition of ϕ̇ given by the conjugate momentum, leading to

ρ̇+ 3
ȧ

a
(ρ+ p) = − α̇3

α3

ρ+
1

4

ϕπ2
ϕ

α3ω2a6
ω̇ +

kϕ

α3a2
dc2g
dt

(3.76)

3.3.2 The Equations of Motion for the full ϕ scenario

In this section, we derive the equations of motion for the canonical pair (a2, b) as well
as for πϕ, the conjugate momentum to ϕ. We begin by considering the Brans-Dicke
action reduced to MSS as done in subsection (3.1.1). This action, inclusive of the
matter part, but exclusive of any unimodular term, is

S = Vc

∫
dt

[
ϕḃa2 + ϕ̇πϕ + α3ṁiψi + ϕNa(b2 + kc2g)− α3ρNa

3 − 1

4

ϕπ2
ϕ

ωa3
N

]
(3.77)

It is straightforward to extract the usual gravitational Hamiltonian, as well as the
matter and pure kinetic Brans-Dicke Hamiltonian, which read

H = −ϕNa(b2 + kc2g) + α3ρNa
3 +

1

4

ϕπ2
ϕ

ωa3
N (3.78)

We can obtain the Hamilton’s constraint by setting the Hamiltonian equal to zero,
such that

H
!
= 0 ⇔ b2 + kc2g =

α3ρa
2

ϕ
+

1

4

π2
ϕ

ωa4
(3.79)

Alternatively, we could obtain the Hamilton’s constraint directly from the action
above by considering its variation with respect to the lapse function, so that

δS

δN
!
= 0 ⇔ b2 + kc2g =

α3ρa
2

ϕ
+

1

4

π2
ϕ

ωa4
(3.80)

Recalling that the canonical pair is changed by the presence of ϕ in the first term
of action (3.77), care must be taken when evaluating the derivatives leading to the
equations of motion. To begin with, we define A2 = a2ϕ as the canonical variable to
b, such that the canonical pair is now (A2, b). Then, we re-express the Hamiltonian
in terms of this new canonical variable, obtaining

H = −NA
√
ϕ(b2 + kc2g) +

α3ρA
3N

ϕ
3
2

+
1

4

ϕ
5
2π2

ϕ

ωA3
N (3.81)

We continue evaluating the ȧ equation in the usual fashion, using Hamiltonian
(3.81)

˙(A2) = {A2, H} =
∂A2

∂b

∂H

∂A2
− ∂A2

∂A2

∂H

∂b
= −∂H

∂b
(3.82)
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leading to

ȧ+
ϕ̇

2ϕ
a = Nb (3.83)

which we immediately recognise to be equivalent to equation (2.144) in the case of
a non Brans-Dicke theory. This is not a coincidence: Brans-Dicke theory is indeed a
theory with a variable α2, with the main difference given by the addition of a kinetic
term for the dynamics of the scalar field ϕ (or α2 in the analogy).
Secondly, we compute the ḃ equation, re-writing the Hamiltonian in terms of a and
expressing ρ as

ρi =
mi

a3(1+wi)
(3.84)

as we did before using (2.113) for a generic fluid with different matter contents.
The Hamiltonian is therefore

H = −Naϕ(b2 + kc2g) +
α3m

a3w
N +

1

4

ϕπ2
ϕ

ωa3
N (3.85)

and the equation for ḃ reads

ḃ = {b,H} =
∂b

∂b

∂H

∂A2
− ∂b

∂A2

∂H

∂b
=
∂H

∂A2
=

1

2aϕ

∂H

∂a
(3.86)

leading to

ḃ =
1

2ϕa

∂H

∂a
(3.87)

=
1

2ϕa

[
−Nϕ(b2 + kc2g)− 3w

α3m

a3w+1
N − 3

4

ϕπ2
ϕ

ωa4
N

]
(3.88)

=
1

2ϕa

[
−α3ρNa

2 − 1

4

ϕπ2
ϕ

ωa4
N − 3w

α3m

a3w+1
N − 3

4

ϕπ2
ϕ

ωa4
N

]
(3.89)

= −1

2

α3ρ

ϕ
Na− 3

2
w
α3ρ

ϕ
Na− 1

8

π2
ϕ

ωa5
N − 3

8

π2
ϕ

ωa5
N (3.90)

=
α3

ϕ

(−ρ− 3wρ)

2
Na− 1

2

π2
ϕ

ωa5
N (3.91)

= −α3

2ϕ
(ρ+ 3p)Na− 1

2

π2
ϕ

ωa5
N (3.92)
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where we have used the Hamilton’s constraint in equation (3.89) and re-inserted the
expression for ρ in equation (3.92).

The final piece of information we need to determine the entire dynamics of the
theory is the equation of motion for πϕ, the canonical variable of ϕ. We begin by con-
sidering action (3.77) and the resulting Hamiltonian (3.78). Expressing the Hamil-
tonian in terms of the redefined canonical variable A2 and using (2.113) for ρ, we
obtain

H = −NA
√
ϕ(b2 + kc2g) +

α3m

A3w
ϕ

3
2
wN +

1

4

ϕ
5
2π2

ϕ

ωA3
N (3.93)

The Poisson’s brackets for π̇ϕ, given the canonical pair (ϕ, πϕ) are

π̇ϕ = {πϕ, H} =
∂πϕ
∂ϕ

∂H

∂πϕ
− ∂πϕ
∂πϕ

∂H

∂ϕ
= −∂H

∂ϕ
(3.94)

which, when evaluated, give

π̇ϕ = −∂H
∂ϕ

(3.95)

=
1

2
NAϕ− 1

2 (b2 + kc2g)−
3

2
w
α3m

A3w
ϕ

3w−2
2 N − 5

8

π2
ϕ

ωA3
ϕ

3
2N (3.96)

=
1

2
Na

[
α3ρa

2

ϕ
+

1

4

π2
ϕ

ωa4

]
−3

2
w

α3m

a3wϕ
3
2
w
ϕ

3−2w
2 N − 5

8

π2
ϕ

ωa3
N (3.97)

=
α3ρ

2ϕ
Na3 − 3

2
w
α3ma

3

a3(1+w)ϕ
N − 1

2

π2
ϕ

ωa3
N (3.98)

=
α3ρ

2ϕ
Na3 − 3

2

wρα3a
3

ϕ
N − 1

2

π2
ϕ

ωa3
N (3.99)

= −Naϕ
[(

−1 + 3w

2

)
ρα3a

2

ϕ2
+

1

2

π2
ϕ

ωa4
1

ϕ

]
(3.100)

= −Naϕ
[(

−ρ+ 3p

2

)
α3a

2

ϕ2
+

1

2

π2
ϕ

ωa4
1

ϕ

]
(3.101)

As before, it is possible to obtain the same equations of motion following the La-
grangian approach, but, for simplicity, we will only include the Hamiltonian deriva-
tion. With this equation of motion, we proceed to derive the conservation equation
from the Hamilton’s constraint. In fact, given the Hamiltonian formalism we are
using, it is possible to derive it directly from the constraint and from the equations
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of motion for the different variables. In a normal theory without varying constants
we would recover the usual Friedmann equations, since we are working in a FLRW
MSS reduction. However, assuming varying constants, we will get additional terms
arising from all the β we wish to use. In this case, trying to get the most general
form of energy conservation, we assume all constants to be varying, but this will be
different in the next sections. In fact, ultimately, we can have different combina-
tions of constants for different scenarios as we will see. Therefore, taking the time
derivative of (3.166) we obtain

2bḃ+k
dc2g
dt

=
α̇3ρa

2

ϕ
+
2aȧα3ρ

ϕ
+
ρ̇α3a

2

ϕ
− α3ρa

2

ϕ2
ϕ̇+

1

2

πϕπ̇ϕ
ωa4

− 1

4

π2
ϕ

ω2a4
ω̇−

π2
ϕ

ωa5
ȧ (3.102)

Now, considering the LHS of equation (3.102), we can plug in the equation of motion
for ḃ and the expression for b coming from the ȧ equation, giving, in theN = 1 gauge,

2bḃ+ k
dc2g
dt

= 2

[
ȧ+

ϕ̇

2ϕ
a

][
−α3

2ϕ
(ρ+ 3p)a− 1

2

π2
ϕ

ωa5

]
(3.103)

= −α3

ϕ
(ρ+ 3p)aȧ−

π2
ϕ

ωa5
ȧ− α3ϕ̇

2ϕ2
(ρ+ 3p)a2 −

π2
ϕϕ̇

2ωϕa4
(3.104)

= −(ρ+ 3p)
ȧ

a
−

ϕπ2
ϕ

α3ωa7
ȧ− ϕ̇

2ϕ
(ρ+ 3p)−

π2
ϕϕ̇

2α3ωa6
(3.105)

where in the last line we have multiplied every term by ϕ
α3a2

. Doing the same on the
RHS of equation (3.102) above gives

α̇3

α3

ρ+ 2
ȧ

a
ρ+ ρ̇− ϕ̇

ϕ
ρ+

1

2

πϕπ̇ϕϕ

α3ωa6
− 1

4

ϕπ2
ϕ

α3ω2a6
ω̇ −

ϕπ2
ϕ

α3ωa7
ȧ (3.106)

Now, equating the LHS and the RHS and rearranging leads to

ρ̇+ 3
ȧ

a
(ρ+ p) = − α̇3

α3

ρ+
ϕ̇

ϕ
ρ− ϕ̇

ϕ

ρ+ 3p

2
−

ϕ̇π2
ϕ

2α3ωa6
− 1

2

πϕπ̇ϕϕ

α3ωa6
+

1

4

ϕπ2
ϕ

α3ω2a6
ω̇ +

kϕ

α3a2
dc2g
dt

(3.107)

= − α̇3

α3

ρ+
πϕ

2ωa3
ρ− πϕ

2ωa3
ρ+ 3p

2
− 1

4

ϕπ3
ϕ

α3ω2a9
+

1

4

ϕπ2
ϕ

α3ω2a6
ω̇ +

kϕ

α3a2
dc2g
dt

− 1

2

πϕπ̇ϕϕ

α3ωa6

(3.108)

= − α̇3

α3

ρ+
πϕ

2ωa3

[
ρ− ρ

2
− 3

2
p

]
+
1

4

ϕπ2
ϕ

α3ω2a6
ω̇ − 1

4

πϕ
ωa3

(ρ− 3p) +
kϕ

α3a2
dc2g
dt

(3.109)
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= − α̇3

α3

ρ+
1

4

ϕπ2
ϕ

α3ω2a6
ω̇ +

kϕ

α3a2
dc2g
dt

(3.110)

where we have used the definition of ϕ̇,

πϕ = 2ω
ϕ̇

ϕ
a3 ⇔ ϕ̇ =

ϕπϕ
2ωa3

(3.111)

for (3.108) and we have also used (3.101), the equation of motion for πϕ, in line
(3.109), always setting the gauge such that N = 1.

This is the most general form of the energy conservation equation, assuming that
all the constants are varying and using the equations of motion for a, b and ϕ to
eliminate the extra factors, as well as the definition of the conjugate momentum πϕ.
From this general equation, it will be possible to consider specific scenarios where
only one of the β is varying with respect to one or multiple times. On the other hand,
we could also have multiple β varying with respect to one single time or multiple
times (the same one or different ones): imagination is really the limit.

3.3.3 Full ϕ with ω = ω(TΛ)

In this scenario, we assume a Brans-Dicke coupling ω varying with respect to the
unimodular time TΛ. This means that, in the choice of our constants, we have β = ω
and α = ρΛ giving the unimodular time as its canonical variable. In this case, all the
other constants are kept fixed. An important observation to make is that the case
where ϕ = ϕ0 in the canonical pair does not lead to any different result. This is not,
however, the case in the next subsection, as we will see. Therefore, to consider the
dependence ω = ω(TΛ) we start from the full Brans-Dicke action, coupled to matter
and inclusive of the unimodular term

S = Vc

∫
dt ϕḃa2 + ϕ̇πϕ + α3ṁiψi + ϕNa(b2 + kc2g)− α3ρNa

3 − 1

4

ϕπ2
ϕ

a3ω
N + ρ̇ΛTΛ

(3.112)
In this scenario, we simply assume that α3 does not have any time dependence. This
implies that our general equation for energy conservation (3.110) becomes

ρ̇+ 3
ȧ

a
(ρ+ p) =

1

4

ϕπ2
ϕ

α3ω2a6
ω̇ +

kϕ

α3a2
dc2g
dt

(3.113)

Furthermore, since we assume that only ω has a time dependence, the second term
including the varying cg disappears, simplifying equation (3.113) to

ρ̇+ 3
ȧ

a
(ρ+ p) =

1

4

ϕπ2
ϕ

α3ω2a6
ω̇ (3.114)

Finally, since we are considering the presence of the cosmological constant as a
matter content, the full conservation equation needs to be inclusive of a cosmological
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constant density term, therefore giving

ρ̇+ 3
ȧ

a
(ρ+ p) + ρ̇Λ =

1

4

ϕπ2
ϕ

α3ω2a6
ω̇ (3.115)

where ρ and p give the usual matter content density and pressure. Now, we wish
to obtain an equation for ρ̇Λ as this will give us the full conservation equation. We
can obtain this from the additional Hamilton’s equations for the canonical pair ρΛTΛ.
Starting from the Hamiltonian

H = −ϕNa(b2 + kc2g) + α3ρNa
3 +

1

4

ϕπ2
ϕ

ωa3
N (3.116)

we have the two Hamilton’s equations

ρ̇Λ = {ρΛ, H} =
∂H

∂TΛ
= −N 1

4

ϕπ2
ϕ

ω2a3
∂ω

∂TΛ
(3.117)

ṪΛ = {TΛ, H} = − ∂H

∂ρΛ
= −α3Na

3 (3.118)

Thus, using the equation for TΛ into the one for ρΛ, we obtain

ρ̇Λ = −N 1

4

ϕπ2
ϕ

ω2a3
dω

dt
ṪΛ

−1
=

1

4

ϕπ2
ϕ

α3ω2a6
ω̇ (3.119)

We immediately see that ρ̇Λ has the same form as the source term in equation
(3.115), therefore we can substitute it in it and confirm that indeed

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (3.120)

This result shows that there is no net energy violation solely given by a unimodular
time-dependent ω, confirming that energy is conserved for all the other matter con-
tents.
Furthermore, can combine the equation of motion for ρΛ with the definition of πϕ
from equation (3.12) (where we choose the gauge N = 1) to obtain an explicit equa-
tion for the evolution of the vacuum energy density with ω. This substitution leads
to

ρ̇Λ =
ϕ̇2

ϕ2

ω̇

ω
(3.121)

where, for simplicity, we have set α3 = 1. This solution is valid for any ω depending
on TΛ and suggests that the vacuum energy density increases with increasing ω. Fur-
ther interpretations are certainly needed, and will be provided in our future research
[63].
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3.3.4 Full ϕ with ω = ω(TN) and α3 = α3(Tω)

We can now consider the scenario where α = α3 and β = ω, such that the Brans-
Dicke parameter is dependent on the Newton time TN . As it is evident from the title,
this scenario can also be recast as the α3 parameter depending on Tω: both these
scenarios are equivalent, leading to the same results. The action we start from is

S = Vc

∫
dt ϕḃa2 + ϕ̇πϕ + α3ṁiψi + ϕNa(b2 + kc2g)− α3ρNa

3 − 1

4

ϕπ2
ϕ

a3ω
N + ω̇TN

(3.122)
If we wish to consider a varying ω only, the general conservation equation reduces
to

ρ̇+ 3
ȧ

a
(ρ+ p) =

1

4

ϕπ2
ϕ

α3ω2a6
ω̇ (3.123)

where, since ω = ω(TN) only, we can use the chain rule on ω̇ thus obtaining

dω

dt
=

∂ω

∂TN
˙TN = −ρNa3 ∂ω

∂TN
(3.124)

where, in the last step, we have use the TN equation of motion as given by

˙TN = {TN , H} = − ∂H

∂α3

= −ρNa3 (3.125)

Equipped with these, we can then plug everything inside the conservation equation
thus arriving at

ρ̇+ 3
ȧ

a
(ρ+ p) = −ρ

4

ϕπ2
ϕN

α3ω2a3
∂ω

∂TN
(3.126)

which shows that a gravitational parameter depending on a matter clock does lead
to an overall energy violation, given by the source term of the constant varying with
respect to the matter clock. The same situation would be true if we were to revert the
dependency, postulating that α3 = α3(Tω). In this parallel scenario, the conservation
equation would be

ρ̇+ 3
ȧ

a
(ρ+ p) = − α̇3

α3

ρ (3.127)

since, this time around, ω is constant. The relevant equation of motion would be the
Ṫω equation, reading

Ṫω = {Tω, H} = −∂H
∂ω

=
1

4

ϕπ2
ϕN

ω2a3
(3.128)

Using this equation of motion in α̇3 leads to

ρ̇+ 3
ȧ

a
(ρ+ p) = −ρ

4

ϕπ2
ϕN

α3ω2a3
∂α3

∂Tω
(3.129)

which is exactly what we expected: this conservation equation has the same pre-
factor as equation (3.127), with the only difference being the varying constant. In
the first case, ω varies and α3 provides the clock, while in the second one α3 varies
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and ω provides the clock. They both leads to the same net energy violation, but due
to different varying source terms.
To appreciate better this equivalence, we derive a relationship between ω and α3.
We take the equation of motion for ω (we could have also picked the one for α3),

ω̇ = {ω,H} =
∂H

∂Tω
= ρNa3

∂α3

∂Tω
(3.130)

where α3 is assumed to depend on Tω. Then, using the chain rule on the dependency
of α3 on Tω and invoking the definition of πϕ we obtain

ω̇ =
ϕρ

ϕ̇2
α̇3 (3.131)

where we have set N = 1. This equation could have been equivalently obtained
starting from the α3 equation of motion and following the same procedure. Finally,
we note that, when considering both α3 and ω varying in the same scenario, their
source terms contributions to the energy violation cancel out, giving the usual overall
energy conservation equation

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (3.132)

3.3.5 Fixed ϕ0 with ω = ω(Tϕ)

In this subsection, we explore the main idea of Brans-Dicke theory in the context
of varying constants. In fact, having the additional constant ω, we can make it de-
pendent on ϕ, creating a model of Brans-Dicke parameter dependent on Ricci time.
To begin with, we consider the simplified case where the scalar field factor multi-
plying the fist canonical pair is fixed constant, i.e., ϕ = ϕ0. This case is apparently
different from the next one where the equations of motion are different, but, as we
will see, they are actually the same. It happens so because ultimately the conser-
vation equation is the same one, as it derives directly from the conservation of the
energy-momentum tensor. Furthermore, it is important to notice that, as in the next
subsection, the ϕ equation of motion needs to be modified to account for the ex-
tra dependency of ω on πϕ. Finally, given the equivalence of Tϕ and πϕ, we do not
need to include the unimodular term in the action, as the canonical pair from the
Brans-Dicke Hamiltonian suffice. Therefore, the action we will use is

S = Vc

∫
dt ϕ0ḃa

2 + ϕ̇πϕ + α3ṁiψi + ϕNa(b2 + kc2g)− α3Na
3ρ− 1

4

ϕπ2
ϕ

ωa3
N (3.133)

From subsection (3.3.1) we have the general conservation equation which we take
in the form given by (3.75)

ρ̇+ 3
ȧ

a
(ρ+ p) =

ϕ̇

ϕ
ρ− 1

2

ϕπϕπ̇ϕ
α3ωa6

+
1

4

ϕπ2
ϕ

α3ω2a6
ω̇ (3.134)
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where we have also set α̇3 = ċ2g = 0 because, in this particular scenario, we are
interested only in a varying ω. We can now compute the ϕ equation of motion,
which reads

ϕ̇ = {ϕ,H} =
∂H

∂πϕ
=

1

2

ϕπϕ
ωa3

N − 1

4

ϕπ2
ϕ

ω2a3
dω

dπϕ
N (3.135)

where, importantly, we notice the extra term for the ω dependency. On the other
hand, the πϕ equation of motion is the same one as (3.67), reading

π̇ϕ = {πϕ, H} = −∂H
∂ϕ

=
α3ρ

ϕ
Na3 (3.136)

Finally, expressing ω̇ in terms of Tϕ as

dω

dt
=

∂ω

∂Tϕ
Ṫϕ =

∂ω

∂Tϕ
π̇ϕ =

α3ρ

ϕ
Na3

∂ω

∂Tϕ
(3.137)

we obtain the final form of the conservation equation

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (3.138)

which shows that energy is indeed conserved. This is an expected result because, as
we will see, gravitational parameters depending on gravitational clocks do not lead
to any net energy violation. As we now see, the full ϕ case leads to the same results.

3.3.6 Full ϕ with ω = ω(Tϕ)

In this subsection, we will explore an interesting and unusual scenario, where the
Brans-Dikce parameter ω depends on the conjugate momentum of the scalar field,
such that ω = ω(πϕ). The first observation we make is that the ω dependence on a
Ricci-like time as Tϕ is perfectly equivalent to its dependence on πϕ. In fact, given
that πϕ is the conjugate momentum to ϕ in the Hamiltonian formalism and that Tϕ
is also the conjugate of ϕ, we see that they are equivalent, meaning that πϕ is indeed
the relational Ricci time given by ϕ. Secondly, precisely because of this equivalence,
the unimodular term in the action represent an interesting but redundant addition.
In fact, we are not required to add it to include the Ricci time as it is already pro-
vided by the canonical pair ϕ̇πϕ coming from the Hamiltonian. This is, however, an
interesting occurrence, which we will potentially explore in our future works [REF
OUR PAPER]. Therefore, the action we will in our derivations is

S = Vc

∫
dt ϕḃa2 + ϕ̇πϕ + α3ṁiψi + ϕNa(b2 + kc2g)− α3Na

3ρ− 1

4

ϕπ2
ϕ

a3ω
N (3.139)

Before proceeding, a crucial caveat must be addressed. We might be tempted to
just use the general conservation equation (3.110) with only the ω̇ term as only ω
is varying, but this would be a mistake. In fact, when deriving this equation, we
have used the equation for ϕ̇ obtained by inverting the definition of the conjugate
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momentum πϕ. However, when doing so, we were assuming that only ϕ depends on
πϕ and that no other terms in the Hamiltonian contribute. This case is different: we
have an additional dependency coming from ω, which implies an extra term in the
ϕ̇ equation of motion. As a result, we need to re-derive the conservation equation,
accounting for this extra term. We start from its general form (3.107), where, after
setting α̇3 = ċ2g = 0 in this particular case and without using the standard ϕ̇ equation,
we have

ρ̇+ 3
ȧ

a
(ρ+ p) =

ϕ̇

ϕ
ρ− ϕ̇

ϕ

ρ+ 3p

2
−

ϕ̇π2
ϕ

2α3ωa6
− 1

2

πϕπ̇ϕϕ

α3ωa6
+

1

4

ϕπ2
ϕ

α3ω2a6
ω̇ (3.140)

It is precisely at this point that we go back to Hamiltonian (3.78) to derive the ϕ̇
equation, this time accounting for the fact that, in this particular case, ω = ω(πϕ)

ϕ̇ = {ϕ,H} =
∂H

∂πϕ
=

1

2

ϕπϕ
ωa3

N − 1

4

ϕπ2
ϕ

ω2a3
dω

dπϕ
N (3.141)

while the π̇ϕ equation of motion takes the usual form as

Ṫϕ = {Tϕ, H} = −∂H
∂ϕ

= −Naϕ
[(

−ρ+ 3p

2

)
α3a

2

ϕ2
+

1

2

π2
ϕ

ωa4
1

ϕ

]
= π̇ϕ (3.142)

We may now use equations (3.141) and (3.142) in the conservation equation above,
where we also express ω̇ in terms of π̇ϕ using the chain rule. This leads to

ρ̇+ 3
ȧ

a
(ρ+ p) = −(−ρ+ 3p)

8

π2
ϕN

ω2a3
dω

dπϕ
− 1

8

ϕπ3
ϕN

α3ω3a9
dω

dπϕ
+
ρ

2

πϕN

ωa3
(3.143)

−ρ
4

π2
ϕN

ω2a3
dω

dπϕ
− (ρ+ 3p)

4

πϕN

ωa3
+

(ρ+ 3p)

8

π2
ϕN

ω2a3
dω

dπϕ
− 1

4

ϕπ3
ϕN

α3ω2a9
(3.144)

+
1

8

ϕπ3
ϕN

α3ω3a9
dω

dπϕ
+

(−ρ+ 3p)

4

πϕN

ωa3
+

1

4

ϕπ3
ϕN

α3ω2a9
= 0 (3.145)

which simplifies to the standard conservation equation. This scenario shows two
important results. Firstly, once again, we confirm that a gravitational parameter de-
pending on a gravitational clock does not lead to any net energy violation. Secondly,
we are reminded that any scenario including a dependency on the Ricci clock should
be treated with additional care, as extra terms, which are normally not included,
will arise in the general conservation equation.

3.3.7 Full ϕ for cg = cg(Tω)

We could, of course, change the pattern by considering ω as part of the α constants
giving times, while a different constant is part of the β. In this case, we will consider
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the scenario where α = ω, Tα = Tω and β = cg, while the other constants appearing
in the conservation equation are fixed, i.e., α̇3 = ω̇ = 0. Therefore, our starting point
is the general Brans-Dicke action with the ω unimodular term, reading

S = Vc

∫
dt ϕḃa2 + ϕ̇πϕ + α3ṁiψi + ϕNa(b2 + kc2g)− α3Na

3ρ− 1

4

ϕπ2
ϕ

a3ω
N + ωṪω

(3.146)
while the conservation equation for a varying cg only is

ρ̇+ 3
ȧ

a
(ρ+ p) =

kϕ

α3a2
dc2g
dt

(3.147)

The Hamiltonian is the same one as (3.116) and we can use it to derive the Hamil-
ton’s equation for Tω. Also, since we are not computing any derivative with respect
to ϕ that would require the use of A2, the ϕ0 and ϕ cases lead to equivalent results.
Using the Hamilton’s equation, we obtain

Ṫω = {Tω, H} = −∂H
∂ω

=
1

4

ϕπ2
ϕ

ω2a3
N (3.148)

The conservation equation, given the dependence of cg on Tω becomes

ρ̇+ 3
ȧ

a
(ρ+ p) =

kϕ

α3a2
∂c2g
∂Tω

Ṫω (3.149)

which finally gives, using the Tω equation of motion and the definition of πϕ,

ρ̇+ 3
ȧ

a
(ρ+ p) =

kaϕ̇2

α3N

∂c2g
∂Tω

(3.150)

Furthermore, since Tω is canonical to ω and we also have its equation of motion, we
consider the inclusion of the ω̇ term in the conservation equation, thus obtaining a
direct relation between the evolution of ω and cg. To do so, we consider the more
general conservation equation where also ω is varying:

ρ̇+ 3
ȧ

a
(ρ+ p) =

1

4

ϕπ2
ϕ

α3ω2a6
ω̇ +

kϕ

α3a2
dc2g
dt

(3.151)

The equation of motion for Tω is the same one as above, but we additionally have
the ω Hamilton’s equation, reading

ω̇ = {ω,H} =
∂H

∂Tω
= −kϕNa

∂c2g
∂Tω

(3.152)

Substituting this inside the conservation equation and expanding the time depen-
dence of cg in terms of Tω, we arrive at

ρ̇+ 3
ȧ

a
(ρ+ p) = −1

4

ϕ2kπ2
ϕ

α3ω2a5
∂c2g
∂Tω

N +
kaϕ̇2

α3N

∂c2g
∂Tω

(3.153)
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which ultimately simplifies to

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (3.154)

using the definition of πϕ. Furthermore, we can derive a relationship between the
Brans-Dicke parameter and the speed of light, such that

ω̇ = −kN
2ϕ2

a2ϕ̇2
ċg

2 (3.155)

3.3.8 Full ϕ with ω = ω(Tcg)

We might, of course, think about reverting the logic used in the scenario above. In
fact, we could consider a fixed speed of light as part of the α giving a relational
time for the evolution of ω which becomes part of the β. This example just shows
how the definitions of constants and times can be easily interchangeable, crating
interesting mixes of concepts: in some cases a constant could be a time for evolution,
in other cases it varies with respect to a different time. Therefore, it is clear how the
idea of “evolution with respect to what” creates a circular argument where different
quantities can take roles that are dual to each others. Having established this, we
proceed by considering our starting point, the action:

S = Vc

∫
dt ϕḃa2 + ϕ̇πϕ + α3ṁiψi + ϕNa(b2 + kc2g)− α3Na

3ρ− 1

4

ϕπ2
ϕ

a3ω
N + c2g

˙Tc2g

(3.156)
where we notice that we keep c2g as in the unimodular term as it appears in the
Hamiltonian for dimensional reasons. Given the dependency of ω on the gravita-
tional speed of light, the conservation equation contains the source term given by ω̇
and the one given by ċg2, i.e.,

ρ̇+ 3
ȧ

a
(ρ+ p) =

1

4

ϕπ2
ϕ

α3ω2a6
ω̇ +

kϕ

α3a2
dc2g
dt

(3.157)

where we have included the ċg2 term because of the equation of motion for cg coming
from the Hamiltonian. The equations of motion for the canonical pair (c2g, Tc2g) are

ċ2g = {c2g, H} =
∂H

∂Tc2g
= −1

4

ϕπ2
ϕN

ω2a3
∂ω

∂Tc2g
(3.158)

˙Tc2g = {Tc2g , H} = −∂H
∂c2g

= ϕNak (3.159)

The time equation can be substituted inside ω̇, giving, while using also the definition
of πϕ,

ρ̇+ 3
ȧ

a
(ρ+ p) =

ka

α3N
ϕ̇2 ∂ω

∂Tc2g
+

kϕ

α3a2
ċ2g (3.160)
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which, when using the ċg2 equation in the second term, finally simplifies to

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (3.161)

as expected. This result is not a coincidence: it is, in fact, the same obtained in
(3.154) in the previous section. We might have expected this, since these two sce-
narios differ only in whether the ω and the c2g are playing the role of a constant or of
a time. In both cases, since they are both gravitational parameters, the change in one
is compensated by the change in the other, thus producing no net energy violation.
We can see how these two parameters are not just related, but they are really dual
to each others, in the sense that they absorb/emit exactly each other’s variations. To
confirm that this is indeed the case, we can express ċ2g in terms of ω̇, arriving at

ċ2g = − a2ϕ̇2

kN2ϕ2
ω̇ (3.162)

which is exactly the same as equation (3.155) above. The interpretation of this law
is that as the speed of light undergoes the sharp phase transition from the early
Universe until now, ω increases until the large value observed today. Of course, the
change in order of magnitudes in cg has to have been very large according to [24],
larger then the change in ω. However, to account for that, we could consider more
closely the pre-factor and ϕ̇, as we will investigate in [63].

3.3.9 Full ϕ with c2m = c2m(Tω)

In this subsection we enrich the marvellous landscape of varying constants consider-
ing a further dependence on our new parameter, ω. We analyse the scenario where
α = ω and β = c2m. Furthermore, since the addition of a varying c2g does not affect
the overall conservation equation, we postulate that also c2g = c2g(Tω) for complete-
ness. The action we begin with is

S = Vc

∫
dt ϕḃa2 + ϕ̇πϕ + α3ṁiψi + ϕNa(b2 + kc2g)− α3Na

3ρ− 1

4

ϕπ2
ϕ

a3ω
N + ω̇Tω

(3.163)
which gives us the usual Hamiltonian

H = −ϕNa(b2 + kc2g) + α3ρNa
3 +

1

4

ϕπ2
ϕ

ωa3
N (3.164)

The conservation equation for a varying c2g and c2m dependent on Tω includes two
source terms,

ρ̇+ 3
ȧ

a
(ρ+ p) =

1

4

ϕπ2
ϕ

α3ω2a6
ω̇ +

kϕ

α3a2
dc2g
dt

(3.165)

To find explicit equations for ω̇ and ċ2g above, we derive the Hamilton’s equations as

ω̇ = {ω,H} =
∂H

∂Tω
= −ϕNak

∂c2g
∂Tω

+ α3Na
3 ∂ρ

∂c2m

∂c2m
∂Tω

(3.166)
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Ṫω = {Tω, H} = −∂H
∂ω

=
1

4

ϕπ2
ϕ

ω2a3
N (3.167)

We can now substitute the ω̇ equation in (3.165) and the Ṫω one in the ċ2g source
term to obtain

ρ̇+ 3
ȧ

a
(ρ+ p) =

ϕ̇2

ϕ
a3

∂ρ

∂c2m

∂c2m
∂Tω

(3.168)

where the ċ2g term has cancelled the first contribution to ω̇ and we have used the
definition of πϕ and we have set N = 1.

We can go beyond this result, exploring the relationship between the Brans-Dicke
parameter and the matter speed of light. Starting form (3.166), we assume ċ2g = 0
because we wish to find a relationship only between ω and c2m, since we already have
the one for c2g in subsection (3.3.8). Therefore, using the ω̇ equation jointly with the
Ṫω one and the definition of πϕ we finally obtain

ω̇ =
α3

ϕ̇2

∂ρ

∂c2m
˙c2m (3.169)

Unlike the previous case where c2g = c2g(Tω), the matter speed of light increases
proportionally with the Brans-Dicke parameter. This will be further investigated in
[63].

3.3.10 Full ϕ with c2m = c2m(Tϕ, Tω)

In the spirit of considering all the possible extensions of Tω, we illustrate the scenario
where α = (ϕ, ω) and β = c2m. For completeness, we also include a varying c2g
depending, just like c2m, on both Tϕ and Tω as we will see. As in previous sections,
the unimodular term for the Ricci time is redundant as already provided by the
canonical pair, so the only unimodular term is for Tω. The action reads

S = Vc

∫
dt ϕ ḃa2 + ϕ̇πϕ + α3ṁiψi + ϕNa(b2 + kc2g)− α3Na

3ρ− 1

4

ϕ

ω

π2
ϕ

a3
N + ω̇Tω

(3.170)

As always in the scenarios were we have some dependency on Tϕ, we need to be
more careful about which conservation equation to use. In fact, the general form
(3.110) should not be used, as the extra dependency of c2m on Tϕ has not been taken
into consideration. Therefore, we start with a more general form, where the ϕ̇ terms
have not been substituted for

ρ̇+ 3
ȧ

a
(ρ+ p) =

ϕ̇

ϕ
ρ− ϕ̇

ϕ

ρ+ 3p

2
−

ϕ̇π2
ϕ

2α3ωa6
− 1

2

πϕπ̇ϕϕ

α3ωa6
+

1

4

ϕπ2
ϕ

α3ω2a6
ω̇ +

kϕ

α3a3
ċ2g (3.171)

We may now proceed substituting the equations for ϕ̇ and π̇ϕ obtained from the
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Hamiltonian as

ϕ̇ = {ϕ,H} =
∂H

∂πϕ
=

1

2

ϕπϕN

ωa3
+ α3Na

3 ∂ρ

∂c2m

∂c2m
∂Tϕ

− ϕNak
∂c2g
∂Tϕ

(3.172)

π̇ϕ = {πϕ, H} = −∂H
∂ϕ

= −N
(
−ρ+ 3p

2

)
α3a

3

ϕ
− 1

2

π2
ϕN

ωa3
(3.173)

where we notice that the π̇ϕ equation is the same one we derived in subsection
(3.3.2). Furthermore, since c2g and c2m are also deepening on Tω, we have the addi-
tional two Hamilton’s equations

ω̇ = {ω,H} =
∂H

∂Tω
= −ϕNak

∂c2g
∂Tω

+ α3Na
3 ∂ρ

∂c2m

∂c2m
∂Tω

(3.174)

Ṫω = {Tω, H} = −∂H
∂ω

=
1

4

ϕπ2
ϕN

ω2a3
(3.175)

Substituting these in equation (3.172) we obtain

ρ̇+ 3
ȧ

a
(ρ+ p) =

ρ

2

πϕN

ωa3
+
α3ρNa

3

ϕ

∂ρ

∂c2m

∂c2m
∂Tϕ

− ρNak
∂c2g
∂Tϕ

(3.176)

−(ρ+ 3p)

4

πϕN

ωa3
− (ρ+ 3p)α3Na

3

2ϕ

∂ρ

∂c2m

∂c2m
∂Tϕ

+
(ρ+ 3p)

2
Nak

∂c2g
∂Tϕ

(3.177)

−1

4

ϕπ3
ϕN

α3ω2a9
− 1

2

π2
ϕN

ωa3
∂ρ

∂c2m

∂c2m
∂Tϕ

+
1

2

ϕπ2
ϕNk

α3ωa5
∂c2g
∂Tϕ

+
(−ρ+ 3p)

4

πϕN

ωa3
(3.178)

+
1

4

ϕπ3
ϕN

α3ω2a9
− 1

4

ϕ2π2
ϕNk

α3ω2a5
∂c2g
∂Tω

+
1

4

ϕπ2
ϕN

ω2a3
∂ρ

∂c2m

∂c2m
∂Tω

(3.179)

+
1

4

ϕ2π2
ϕkN

α3ω2a5
∂c2g
∂Tω

−
(
−ρ+ 3p

2

)
kNa

∂c2g
∂Tϕ

− 1

2

ϕπ2
ϕkN

α3ωa5
∂c2g
∂Tϕ

(3.180)

which heavily simplifies to

ρ̇+ 3
ȧ

a
(ρ+ p) =

∂ρ

∂c2m

[
α3Na

3

ϕ

(ρ− 3p)

2

∂c2m
∂Tϕ

− 1

2

π2
ϕN

ωa3
∂c2m
∂Tϕ

+
1

4

ϕπ2
ϕN

ω2a3
∂c2m
∂Tω

]
(3.181)

This shows, once again, energy violation in a scenario where a matter parameter
depends on one or more gravitational clocks. Interestingly, the first source term is
equivalent to the one we will find for c2m = c2m(Tϕ, TN), as well as the second one,
arising from the canonical momentum πϕ. However, the third term is new and it
provides a source in c2m given by the Brans-Dicke time Tω.
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3.3.11 Fixed ϕ0 with c2m = c2m(Tϕ, TN)

We would like to derive a scenario for the α3-like case. This arises when we fix ϕ0

only in the canonical pair. As we have seen in subsection (3.3.1), doing so leads to
different equations of motion, but gives an overall conservation equation equal to
the full ϕ (which we analyse in the next subsection). Therefore, we would like to
consider the case where α = (ϕ, α3) and β = c2m. Once again, for completeness, also
c2g is assumed to vary, such that β = c2g as well. The action we begin with is

S = Vc

∫
dt ϕ0 ḃa

2 + ϕ̇πϕ + α3ṁiψi + ϕNa(b2 + k)− α3Na
3ρ− 1

4

ϕ

ω

π2
ϕ

a3
N (3.182)

where the second canonical pair act as a unimodular term for the Ricci clock. In
this case, since the ϕ in the canonical pair is fixed, it is not necessary to express the
Hamiltonian in terms of A2, so we can directly consider the general conservation
equation (3.75)

ρ̇+ 3
ȧ

a
(ρ+ p) = − α̇3

α3

ρ+
ϕ̇

ϕ
ρ− 1

2

ϕπϕπ̇ϕ
α3ωa6

+
1

4

ϕπ2
ϕ

α3ω2a6
ω̇ +

kϕ

α3a2
dc2g
dt

(3.183)

To find equations for the terms with α̇3, ϕ̇ and π̇ϕ we use, once again, the Hamilto-
nian, giving

ϕ̇ = {ϕ,H} =
∂H

∂πϕ
=

1

2

ϕπϕN

ωa3
+ α3Na

3 ∂ρ

∂c2m

∂c2m
∂Tϕ

− ϕNak
∂c2g
∂Tϕ

(3.184)

π̇ϕ = {πϕ, H} = −∂H
∂ϕ

=
α3ρ

ϕ
Na3 ≡ Ṫϕ (3.185)

where the clock equation was already obtained in subsection (3.75) as the equa-
tion of motion of the conjugate momentum of ϕ. On the other hand, given the α3

dependence, we have

α̇3 = {α3, H} =
∂H

∂TN
= −Naϕk

∂c2g
∂TN

+Na3α3
∂ρ

∂c2m

∂c2m
∂TN

(3.186)

ṪN = {TN , H} = − ∂H

∂α3

= −ρNa3 (3.187)

Therefore, substituting these expressions in the conservation equation and using that

dc2g
dt

=
∂c2g
∂Tϕ

Ṫϕ +
∂c2g
∂TN

˙TN (3.188)

we arrive at

ρ̇+ 3
ȧ

a
(ρ+ p) = ρNa3

∂ρ

∂c2m

[
α3

ϕ

∂c2m
∂Tϕ

− ∂c2m
∂TN

]
(3.189)

were we see that both the Ricci and the Newton times create a source term for the
conservation equation. Interestingly, this result closely relates to the one found in
[22], the main difference being the Ricci time source term. In fact, due to the fixed
scalar field in the canonical term, the equation of motion for TR is different, resulting
in a theory with only energy density.
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3.3.12 Full ϕ with c2m = c2m(Tϕ, TN)

We now consider the scenario where c2m depends on the Ricci and the Newton times,
following the same spirit of [22]. As before, we include also a varying c2g for com-
pleteness. The action is

S = Vc

∫
dt ϕ ḃa2 + ϕ̇πϕ + α3ṁiψi + ϕNa(b2 + k)− α3Na

3ρ− 1

4

ϕ

ω

π2
ϕ

a3
N (3.190)

giving the usual Hamiltonian as

H = −ϕNa(b2 + kc2g) + α3Na
3ρ+

1

4

ϕ

ω

π2
ϕ

a3
N (3.191)

which may be expressed in terms of A2 = ϕa2 as

H = −ϕN A

ϕ
1
2

(b2 + kc2g) +
A3

ϕ
3
2

α3Nρ+
1

4

ϕ

ω
π2
ϕN

ϕ
3
2

A3
(3.192)

This form of the Hamiltonian will prove crucial in deriving the π̇ϕ equation, as the
correct canonical variable is given by ϕa2 when we include a Ricci time dependence.
The general conservation equation, without using the equation of motion for ϕ̇ de-
rived by the definition of πϕ is therefore

ρ̇+ 3
ȧ

a
(ρ+ p) = − α̇3

α3

ρ+
ϕ̇

ϕ
ρ− ϕ̇

ϕ

ρ+ 3p

2
−

ϕ̇π2
ϕ

2α3ωa6
− 1

2

πϕπ̇ϕϕ

α3ωa6
+

kϕ

α3a3
ċ2g (3.193)

where we are including the α̇3 term because c2m and c2g depend on the Newton time,
while the ω̇ term has been removed as, in this scenario, ω is constant. We can now
derive the equations of motion for ϕ and πϕ, obtaining

ϕ̇ = {ϕ,H} =
∂H

∂πϕ
=

1

2

ϕπϕN

ωa3
+ α3Na

3 ∂ρ

∂c2m

∂c2m
∂Tϕ

− ϕNak
∂c2g
∂Tϕ

(3.194)

π̇ϕ = {πϕ, H} = −∂H
∂ϕ

= −N
(
−ρ+ 3p

2

)
α3a

3

ϕ
− 1

2

π2
ϕN

ωa3
≡ Ṫϕ (3.195)

On the other hand, we have the equations of motion for the canonical pair (α3, TN)

α̇3 = {α3, H} =
∂H

∂TN
= −Naϕk

∂c2g
∂TN

+Na3α3
∂ρ

∂c2m

∂c2m
∂TN

(3.196)

ṪN = {TN , H} = − ∂H

∂α3

= −ρNa3 (3.197)

Therefore, combining them inside equation (3.193) and carrying out the necessary
simplifications we arrive at
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ρ̇+ 3
ȧ

a
(ρ+ p) = Na3

∂ρ

∂c2m

[
α3

ϕ

∂c2m
∂Tϕ

ρ− 3p

2
− ∂c2m
∂TN

ρ

]
−1

2

Nπ2
ϕ

ωa3
∂ρ

∂c2m

∂c2m
∂Tϕ

(3.198)

This result, as the one obtained in the previous section, also closely relates to [22].
In fact, the first term on the RHS of equation (3.198) is exactly the same with the
scalar field giving the Ricci time. However, the second term is new and it is the result
of the scalar field momentum giving an extra source term for c2m.

Having reached the end of our research, we provide a short overview on the gen-
eral pattern followed by varying constants. To get net energy violation two possible
cases can be considered: a gravitational parameter depending on a matter clock or
a matter clock depending on a gravitational parameter. In the first case, we might
have β = (c2g, ω, ϕ), all depending on a matter clock given by the time canonical to
an α such as α3 or ρΛ. These cases lead to net energy violation as the variation of
the parameter can be exchanged with the constant of motion of the clock, since it
is given by a matter parameter. The other scenario occurs when a matter parameter
depends on a gravitational clock. This is the case, for example, when β = c2m and
α = ω. Once again, the varying matter parameter can exchange energy with the
gravitational clock, thus giving a net energy violation. All the other combinations,
as we have shown above, do not lead to any energy violation, with all the constant’s
variation being absorbed in the clock. As expected, with the exception of extra terms
given by the canonical momentum of ϕ, our results reproduce the pattern identified
in [22].

80



Chapter 4

Conclusion and Discussion

We have reached the conclusion of our initial work on varying constants in cosmo-
logical Brans-Dicke theories. Our starting point has been a conceptual analysis of
the ideas surrounding physical constants and the possibility they might be varying
with time. We have reviewed the main theoretical intuitions regarding this topic,
ranging from Dirac’s Large Number Hypothesis to Mach’s Principle, presenting their
consequences. Furthermore, we have explored the experimental evidences support-
ing these ideas, opening the way to more extensive applications of varying constants
in different fields of physics, from the Standard Model to Cosmology. These all have
been necessary precursors towards the main objective of this research: the Brans-
Dicke theory of gravity. In fact, motivated by the natural implementation of Mach’s
principle and of a varying G in the Brans-Dicke action, we have used it as the plat-
form to extend varying constants theories. Doing so, we have produced several
results regarding energy conservation and the Cosmological Constant problem.

In Chapter 2, we have presented the main open problems is the Standard Big Bang
Cosmology, providing the current solution of inflation. These cosmological puzzles
then lead us to consider an alternative solution, based on the idea of a time varying
speed of light. We have reviewed the main results of the VSL model in cosmology,
as the conceptual basis for our next steps. Generalising this idea to more constants
of Nature, it became necessary an appropriate mathematical formalism. This was
promptly supplied by unimodular gravity and minisuperspace. The first one allowed
to obtain equations of motion for the constants directly from the action principle,
having demoted them to constants of motion on-shell. Furthermore, unimodular
gravity offered solid definitions of relational physical times, excellent as evolution
parameters for the constants we are studying. On the other hand, reducing the
Einstein-Cartan action to minisuperpace enabled us to fully exploit the Hamiltonian
formalism of General Relativity. Therefore, we developed the minisuperspace reduc-
tion of the Einstein-Cartan and Einstein-Hilbert actions for a FLRW metric, showing
how it naturally produces an Hamiltonian structure we can use to derive the equa-
tions of motion for the constants and their times.
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Continuing, we have applied these formalisms to obtain energy conservation results
in cosmology. Doing so, we were able to characterise different scenarios where some
constants provide clocks while other vary with respect to these clocks. Interestingly,
when considering overall energy violation, a pattern arose, linking gravitational pa-
rameters to matter clocks and vice-versa. All the other combinations of constants
have been found to be sterile, accordingly to [22], resulting in the standard con-
servation equation. The landscape of varying constant resulted to be a vast and
manifold one, leading us to consider multiple combinations in our extensions.

Moreover, in Chapter 3, we developed the core of our original work: energy con-
servation due to varying constants in Brans-Dicke cosmologies. Following the pro-
cedure outlined in Chapter 2, we presented the energy conservations and violations
resulting from time dependencies like TΛ, Tϕ and TN with a dynamical scalar field
ϕ. We also considered the dependence of several constants on the Brans-Dicke time
Tω, enlarging the set of constants that can be varying. Particularly, this addition will
turn useful in future work on Black Holes applications by Magueijo [94]. Applying
the idea of varying constant to Brans-Dicke theory, we have obtained several energy
conservation and violation scenarios where the ω parameter plays the important
role of energy source. Specifically, considering its dependency on the cosmological
constant time TΛ, we have obtained a relationship between ρΛ and ω which might
lead to future developments in the context of the vacuum energy sequester [63].
Furthermore, similar relationships have been obtained for c2g and α3, also leading
to future extensions connected to VSL and the early Universe [63]. Finally, the in-
clusion of the Brans-Dicke parameter ω has potentially enabled us to connect our
theoretical results in the field of energy conservation with cosmological observations
of the Brans-Dicke theory.

To conclude, we would like to briefly mention the future developments and ap-
plications of these results, some of which will be included in a paper to come [63].
Firstly, as Chapter 3 has taught us, the possible combinations of constants and times
are plenty, to the point that only imagination is really the limit when coupling mul-
tiple different actions to gravity. Therefore, in our future work, we will be selecting
the most interesting, relevant and insightful scenarios and focus on them. As men-
tioned earlier, these might be the ones were ω is linked to c2g and ρΛ. Specifically
this ladder case brings us to our next extension of this theory: the vacuum energy
sequester. In fact, a scenario where ω = ω(TΛ) might provide an explanation to the
Cosmological Constant problem, where the vacuum energy is absorbed by the vari-
ation of ω. This is particularly interesting given the observational constraints put on
ω [66]. Secondly, when considering the Brans-Dicke kinetic term, we set the c factor
appearing with it to zero. However, this could not be the case and therefore we
will investigate its inclusion, especially in the ω = ω(TΛ) scenario. Thirdly, the sce-
narios where ϕ provides the Ricci time will be further extended, including the case
when both the unimodular action and the canonical pair provide equivalent times
definitions. Other applications of our theory could be linked to the Standard Model,
where we might have coupling and particle’s parameters depending on ω, leading to

82



CHAPTER 4. CONCLUSION AND DISCUSSION

unknown connections between cosmology and particle physics.

Lastly, among the many extensions of this work, the most fascinating one is a the-
ory explaining the origin of varying constants beyond the String Theory formalism.
Throughout this dissertation, we have postulated that the constants of Nature are
varying with respect to relational times. To do so, we have used the unimodular for-
malism, which provided a solid and rigorous mathematical platform to implement
this idea. However, this formalism does not explain why the constants of Nature
could be varying, omitting the mechanism behind their dynamics. One simple an-
swer to this would be, as we have done in this work, to assume that constants do
vary, without asking the deeper question of why. After all, often Physics explains how
events happen and not why. But what if it could be possible to formulate a theory
predicting and describing the evolution of some constants? It would certainly be ex-
citing to discover if these theory’s predictions agree with the experimental evidences,
leading to a radically different view of the Reality we live in. This speculation, like
many other ideas, is left to the future, when maybe our posterity will finally consider
trivial what we, for so long, chased into darkness.
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