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“Reality, this spiteful snake
Shedding its smothering veil"

-Meshuggah
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Abstract. Three approaches to quantum foundations are explored, operational
(i.e General Probabilistic Theories) and device independent (e.g.
Popescu-Rohrlich boxes), and known and novel results that advance the
understanding of the relationships between them are presented. Finally, a
tentative step towards a GPT for relativistic Quantum Field Theories is taken,
and evidence that it violates the no-restriction hypothesis is provided. This
result, combined with those from operational research, hints that abandoning
theories due to violating the no-restriction hypothesis (e.g. the ‘almost
quantum’ set), is premature and should be reevaluated.
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Chapter 1

Introduction

Despite 100 years of stunning success, a truly deep understanding of quantum
theory seemingly remains as elusive as ever. The textbook mathematical
formalism for quantum mechanics (QM) and quantum field theory (QFT) were
all but finalised in the 1930s and 60s [1, 2, 3], respectively, yet both leave
significant interpretational and foundational issues unresolved. This is
highlighted by the EPR debate[4], Sorkin’s impossible measurements[5], the
proliferation of interpretations of quantum theory[6, 7, 8], and quantum
gravity[3, 9, 10]. Together, they highlight an uncomfortable problem with trying
to take quantum theory beyond a phenomological model of tabletop or collider
experiments. Simultaneously, the difficulties of balancing rigour, utility, and
manifest Lorentz invariance have lead to at least three mainstream formalisms
for QFT1. The principles emphasised by each of these approaches have inspired
increasingly diverging solutions to the measurement problem and quantum
gravity.
For these and other reasons, quantum foundations has emerged as a small but
dedicated research effort. Some modern branches have been inspired by the
mathematical formalisms of quantum information (via the operational view of
quantum channels) and classical gravity (via causal structure), and building up
a number of impressive results with wide implications, yet often little-known by
those outside the field. These hint at an extremely rich structure underlying the
‘space’ of physical theories and the principles that define them. They have shone
much light both on quantum theory, and the feasibility of theories that could
replace it.
The aim of this report is to provide a short introduction to three approaches to
quantum foundations, and to present a number of novel and known results that
provide tentative links between them. The scope of this project is wide, and so
in many places we are not able to give existing results the attention they

1Canonical, algebraic, and path integral
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deserve, and will often not be able to state them at all. In these places, we urge
the reader to look at the suggested review articles to build up a better picture of
the field.
In Chapter 2, the device independent, operational, and histories approaches to
quantum foundations are introduced, highlighting the differences and known
connections between them. In Chapter 3 we provide a proof that a principle
known as post-processing implies a number of conditions used in the device
independent and histories approaches, and then present work towards better
understanding branching and the relationship between the NPA hierarchy,
almost quantum set, and strongly positive decoherence functionals. Finally,
Chapter 4 presents a tentative look at an operational model of QFT, and gives
evidence that the textbook definition of QFT violates a commonly held principle
in the operational framework. To do so, we introduce Sorkin’s impossible
measurements[5], which suggest that the standard QFT definition of
measurement is flawed.
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Chapter 2

Approaches to quantum foundations

While this work does not have the scope to touch on every approach, we hope
that this section, which focuses on three frameworks, gives a suitably wide cross
section. Throughout this thesis we will comment on the strengths and
weaknesses of each approach, and possible connections between them.

2.1 Device independent

Based on the assumption that the internal specifics of an (ideal) experiment and
its physical realisation are irrelevant to the outcomes, the device independent
formalism is our first quantum foundations framework. Consider a Bell-type
experiment[11], where projective measurements of spins at different relative
angles are conducted by spacially separated observers. The results of (an ideal)
experiment are independent of whether the particles are entangled
electron-position pairs or photon pairs. In fact, any maximally entangled two
party state where each party’s local state is two level, will have the same (ideal)
measurement statistics. This could correspond to qubits in a superconductor or
vibrational modes of an oscillator. The most important property is that
(assuming ideal from now) the measurement statistics are the same, and the
correlations of certain measurements violate Bell’s inequality. A device
corresponds to a particular experimental setup to generate the measurement
statistics, which is what we wish to abstract away.
A scenario is a device independent experimental setup, where a (from now,
finite) number of (n) parties each have a lab. In and out of the labs flow
classical information1, in the form of measurement settings and measurement
outcomes, and any allowed communication. In the quantum case, inside the labs
we can imagine each party having access to pre-prepared entangled states

1While typically the labs are considered to input and output classical info, called a C-C box, it is possible to
consider cases where one or more are replaced by other forms of information. See [12], and [13] for investigations
of classical to quantum (C-Q) and Q-Q behaviours respectively, as well as their relationships to C-C behaviours.
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distributed between them, and a full experimental setup where different settings,
denoted by n-dim vectors x⃗ correspond to different measurements on those
states. The results of those measurements are our measurement outcomes, given
by the n-dim vectors a⃗. By abstracting, the inside of the lab is ignored, and the
focus is solely on the statistics, given by the conditional probabilities

P (a, b|x, y) bi-partite, P (⃗a|x⃗) n-partite. (2.1)

We refer to (⃗a|x⃗) as a finegrained event, and so P is a probability distribution
on those events. A coarsegrained event is one in which some subset of the
parties are margined out, specifically their outputs.
For a given scenario, which corresponds to a choice of number of parties, their
relationship between each other (the form of allowed communication), a choice
of number of measurement settings and outcomes for each party, P describes a
device independent behaviour. If we demand causality, then spacelike seperation
of the parties, requires no-signalling be imposed, by demanding that the
behaviours themselves cannot be used to signal. By partitioning the parties in
two sets R, S (Receiver and Sender), no-signalling1 demands that the Receiver
parties cannot learn anything about the measurement settings of the Sender
party as follows:

PR(⃗aR|x⃗R, x⃗S) = PR(⃗aR|x⃗R) (2.2)

where x⃗R, x⃗S is vector of measurement outcomes for the parties in R and S, and
a⃗R are the outcomes for the parties in R. For two parties this reduces to

P (a|x, y) = P (a|x), P (b|x, y) = P (b|y). (2.3)

As we can see, when coarsegraining, non-signalling implies that coarsegraining is
over the entire state of the other parties, and not just the outputs.
A Bell scenario is a non-signalling scenario where the number of settings m is
the same for each of the n parties, and each measurement has p outcomes. We
denote it as an (n m p) scenario, and refer to any behaviours for that scenario as
(n m p) behaviours.

Definition 1. An (n m p) behaviour P (⃗a|x⃗) is quantum if ∃ |ψ⟩ in a Hilbert
space

⊗n
i=1Hi, and for each party i and measurement setting xi, there is a

complete (sum to the identity and are orthogonal) set of projection operators
1We highlight an interesting observation, credited to Fay Dowker: while causality, and thus Lorentz invari-

ance, is taken as an unbreakable axiom in quantum foundations, it is not considered sacrosanct in quantum
gravity. The assumption of non-signalling is so fundamental to foundations that there is almost no literature
exploring its absence. Yet for quantum gravity, the presentation of a model that violates Lorentz invariance is
most often only met with ‘by how much?’
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{Exi
ai
} on Hi, for each xi, such that for any partition R, S

P (⃗aR|x⃗R) = ⟨ψ|
⊗
i∈R

Exi
ai
|ψ⟩ (2.4)

In the finite dimensional case this is sufficient to define the quantum set, and the
Tsirel’son bound. However, in the infinite dimensional case, another definition
may provide a larger set of quantum behaviours which has lead to Tsirel’son’s
problem [14], recently solved by Slofstra [15].
A key observation in the history of quantum foundations, by Tsirel’son [16] and
independently by Popescu and Rohrlich [17], is that the set of non-signalling
behaviours is significantly greater than even the set of quantum behaviours. The
bound between quantum and super-quantum is known as the Tsirel’son bound1.
And in some senses, there are behaviours that are more non-local than those
allowed by quantum theory2. The canonical example for the (2 2 2) scenario is
the behaviour known as the PR (Popescu Rohrlich) box, given by

PPR(a, b|x, y) =
1

2
δx·y,a⊕b. (2.5)

where ⊕ is addition modulo 2. The CHSH game [19] requires two parties to
outcome binary numbers a, b respectively in response to receiving x, y
respectively, such that x · y = a⊕ b, without communicating.
Define

Psucc =
∑
a,b,x,y

P (a⊕ b = x · y) =
∑
a,b,x,y

P (a⊕ b = x · y|x, y)1
4

(2.6)

to be the probability of winning the game, where we have assumed that (x, y)
are evenly distributed. It is easy to see that the PR box perfectly solves the
CHSH game. Further, the marginal probabilities are 1

2 for either party, and so it
is also non-signalling. Since classical theories can only achieve a Psucc of 75%
and quantum theory is bounded by approximately 85%, we can see an implied
hierarchy of physical theories, distinguished by their non-locality. This leads to
three sets of behaviours, L,Q and NS, the local, quantum, and non-signalling
sets respectively. The local behaviours are those that have a local hidden
variable interpretation, while the non-signalling are those that obey
non-signalling only.

1The term Tsirel’son bound is sometimes used to refer specifically to the (2 2 2) bound, however we use the
more general name for the bound of behaviours to any scenario

2We say in some senses, because it has been shown that for two particles in a CHSH like scenario, there are
no possible correlation function that dominates the quantum one for all angles. This is in contrast to the fact
that the optimal quantum correlation function dominates the classical one for all angles [18]
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There is a strict inclusion
L ⊂ Q ⊂ NS (2.7)

and for a fixed scenario, each forms a convex set. Further, for a given scenario,
L,NS are polytopes, i.e. they have finitely many extremal points. However, the
points of the Tsirel’son boundary, which are the extremal points of Q, are
uncountable.
Popescu and Rohrlich raised the interesting question of what, if anything,
singles out quantum theory against other sets of correlations, and if any other
sets correspond to physical theories [17]. These questions can be considered a
main focus of device independent research, outside of quantum information.
A number of ‘device independent principles’ have been proposed, many of which
successfully single out the bound for the CHSH game (see Section 2.1). However,
none have yet been proposed that are known to single out the Tsirel’son bound
as a whole, for all games and all Bell scenarios. Even more curiously, computing
Tsirel’son’s bound is known to be undecidable [20]. This raises philosophical
questions-as well technical questions about proving if a given distribution is
quantum or not-should we expect the set of behaviours to be computable?

2.1.1 NPA hierarchy and almost quantum

Introduced by Navascues, Pironio, and Acin [21], the NPA hierarchy gives a
sequence of nested subset of the non-signalling behaviours, which is convergent
to the quantum set. Each set is strictly a subset of the one before, and it is thus
sufficient to show that any behaviour is not an element of one of the NPA sets to
show that it is not an element of the quantum set. We do not give the full
machinery to define all of the NPA sets, however we will define the first set, as
well as the almost quantum set. The following definition and notation are
inspired by [22] and the definition of the almost quantum set in [23].

Definition 2. [22] An n-partite behaviour P (⃗a|x⃗) for a Bell scenario (n m p) is
in Q1 if there exists a Hermitian positive semi-definite matrix Γ1, with matrix
elements labelled by the fine and coarse grained events (⃗a|x⃗) and the event Ω
(i.e. something happens), with

1. Γ1
Ω,Ω = 1 normalised

2. Γ1
Ω,(⃗a|x⃗) = P (⃗a|x⃗).

3. Γ1
(⃗a|x⃗),(⃗a′|x⃗′) = P ((⃗a|x⃗) ∩ (⃗a′|x⃗′)) where x⃗, x⃗′ do not contain the same parties

4. Γ1
Ω,(⃗a|x⃗) = Γ1

(⃗a|x⃗),(⃗a|x⃗)
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5. Γ1
(⃗a|x⃗),(⃗a′|x⃗) = 0 if (⃗a|x⃗) ̸= (⃗a′|x⃗).

The NPA hierarchy gives a sequence of sets Q ⊂ Qn, defined by Hermitian
positive semi-definite matrices Γn, such that Qn ⊂ Qn−1 and

limn→∞Q
n = Q. (2.8)

Note that any Hermitian positive semi-definite matrix can be interpreted as an
inner product matrix, called a Gram matrix, for vectors labelled by the
rows/columns of the matrix, so that there exists a Hilbert space and set of
vectors |i⟩ such that

Γij = ⟨i|j⟩ . (2.9)

Another device independent set of significant interest is the “almost quantum
set" Q̃ ⊃ Q [23]. This set has been shown to be closed under classical
post-processing (see Section 3.1.1) and satisfies 5 of the 6 major device
independent principles (see Section 2.1.2), with evidence that it satisfies the
remaining one (information causality). As such, within the device independent
framework, there is little reason to prefer the quantum set over the almost
quantum set, and it has been proposed that it represents a physically
meaningful theory or even a model of our own universe. The operational and
histories frameworks provide differing perspectives on these conjectures, which
we will explore.
For our next definition, the notation ⊥ must be introduced to describe the
relationship between two (possibly coarsegrained) events (⃗a|x⃗), (⃗a′|x⃗′):

(⃗a|x⃗) ⊥ (⃗a′|x⃗′) if ∃ at least one party i with xi = x′i and ai ̸= a′i. (2.10)

Definition 3. [23] An n-partite behaviour P (⃗a|x⃗) for a Bell scenario (n m p) is
in Q̃ if there exists a Hermitian positive semi-definite matrix ΓAQ, with matrix
elements labelled by the fine and coarse grained outcomes (⃗a|x⃗) and the null
event Ω, with

1. ΓQ̃
Ω,Ω = 1 normalised

2. ΓQ̃
Ω,(⃗a|x⃗) = P (⃗a|x⃗)

3. ΓQ̃
(⃗a|x⃗),(⃗a′|x⃗′) = 0 if (⃗a|x⃗) ⊥ (⃗a′|x⃗′).

4. ΓQ̃
(⃗a|x⃗)∩(⃗a′|x⃗′),(⃗a|x⃗)∩(⃗a′′|x⃗′′) = ΓQ̃

(⃗a′|x⃗′),(⃗a|x⃗)∩(⃗a′′|x⃗′′) = ΓQ̃
(⃗a|x⃗)∩(⃗a′|x⃗′),(⃗a′′|x⃗′′) if x⃗ shares no

parties with x⃗′, x⃗′′.

We can quickly see that Q̃ ⊆ Q1, as 3, 4 of Q̃ imply 3, 4, 5 of Q1. In fact, this
inclusion is strict and related to local orthogonality, as we shall see below.
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2.1.2 Device independent principles

While it is out of the scope of this work to introduce all of the device
independent principles in detail, two will come up in our discussions later, and
so it is helpful to review them briefly.

Macroscopic locality

Macroscopic locality imagines a situation where some large number N of copies
of a behaviour exist, and can detect the plurality of each measurement outcome
with sensitivity of order O(

√
N). For example, Alice and Bob share N copies of

a device described by a (2 2 2) behaviour, and Alice’s detector measures the
numbers of a = 0, a = 1, with a sensitivity of O(

√
N), and likewise for Bob. A

behaviour is macroscopically local if the new (2 2 N) effective behaviour
exhibited by the macroscopic detector satisfies Bell’s inequality, i.e. it can be
described by a local hidden variable model, in the limit of large N . It has been
shown that the set of macroscopically local behaviours is exactly Q1[24]. Hence,
as claimed above, almost quantum is macroscopically local, as it is a strict
subset of Q1.
We point out that a principle derived after almost quantum was proposed,
called macroscopic noncontextuality, picks out Q̃, and so can be seen as stronger
than macroscopic locality [25]. This is not unexpected, as contextuality is a
broader concept than nonlocality, and thus it might be expected that
noncontextuality is a tighter constraint than locality. Certainly, we expect any
post-quantum theory with any hope of being correct to contain a noncontextual
(classical) limit. As with macroscopic locality, it is of course using our current
theories to demand properties of new theories, a sort of bottom up approach.
It is, however, not clear that every (or any) correlation must have a local or
noncontextual interpretation the statistical limit discussed above for a well
defined classical limit to exist. In fact, as emphasised by decoherence, the
classical limit is far more closely related to coarsegraining over systems (parties)
and not over many independent correlations (behaviours). We can see that it is
generically true that the outcomes of one party are given exactly by local hidden
variable models for any behaviour, this is imposed directly by non-signalling. It
would seem that demanding macroscopic locality or noncontextuality would
suggest that: 1-strong correlations arise generically and are not suppressed in
realistic situations by effects analogous to monogamy of entanglement (which
has analogues in all non-local theories), 2-coarsegraining of multiple correlations
plays a role in, or is closely related to, the existence of a classical limit. The first
is hard to rule out without a more complete model. The second is the main
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claim behind both principles, and should be backed up if we are to make the
assumption that all theories with a classical limit must be subsets of Q1 or Q̃.

Local orthogonality

Consider a set of events S = {Ei} = {(⃗ai|x⃗i)} for a fixed scenario, where the
events are pairwise orthogonal,

Ei ⊥ Ej∀i ̸= j. (2.11)

Then we say S is an orthogonal set. The Local Orthogonality principle (LO) is
the requirement that ∑

E∈S

P (E) ≤ 1, (2.12)

for every orthogonal set in a scenario [26].
For two events, this simple. Consider the events E1 ⊥ E2, e.g. Alice has setting
x and measures either a or a′. Then

P (E1) + P (E2) = P (a, b, ...|x, y, ...) + P (a′, b′, ...|x, y′....) ≤ 1 (2.13)

by normalisation, as we can consider this to a branching (see Sections 2.3.5,3.2)
measurement, where Alice distributes her result to the other parties, who then
measure y, z...) or y′, z′... depending on if Alice measures a or a′. Since the only
orthogonal sets for a (2 2 2) scenario are at most 2 events, all (2 2 2) behaviours
are LO. However, for effectively any more complex scenario, this is not the case,
and the LO principle excludes extremal behaviours (those at the boundary of
the NS set) for (3 2 2) and (2 m p). Moreover, if two parties have more than
one copy of a PR-box, then LO is violated[26].

Other principles

Principles that have not yet been mentioned include information causality,
non-trivial communication complexity, consistent exclusivity and no advantage
for non-local computation [27, 28, 29]. For the latter three, proof has been given
that almost quantum does not violate those principles, and there is evidence
that it does not violate information causality [23][25]. This has lead to the
realisation that quantum correlations are not bounded by these principles, and
opened the possibility of a super-quantum theory, such as almost quantum, that
satisfies many ‘reasonable’ principles.
Again, it is not entirely clear that there are physical reasons to expect
non-trivial communication complexity or no advantage for non-local
computation, beyond discomfort at the prospect by some researchers. In a
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discussion by Wim van Dam, one of the first to point out that PR boxes allow
trivial communication complexity (TCC), he asks why we should not want TCC:
“It is not clear if there is a convincing answer to this question, as it does not
seem to conflict with any physical intuition...Such hierarchies are at the core of
theoretical computer science, and their ‘collapse’...goes against the intuition of
most researchers in the field of complexity theory.”[30]. The existence of TCC
has been compared the computer scientists’ version of a violation of causality
[27]. However, there seems to be no physical reason to exclude it, unlike
violations of causality.

2.2 Operational foundations

Unlike the previous section, we will focus now on the general probabilistic
theories (GPT) formalism that attempts to study properties of abstract theories,
based on their state and effect (read:measurement) spaces, as well as maps
between them [31].
There are a number of approaches that share a number of similarities with
GPTs, which are not discussed here. However, for the sake of completion we
mention Hardy’s and others derivations of quantum theory from axioms [32].
Like GPTs, these are motivated by Ludwig’s theorem [33] (see Chapter 4).

2.2.1 GPTs

GPTs are the prototypical operational tool for studying general physical
theories. They are motivated by Ludwig’s embedding theorem, the requirements
(Ludwig’s axioms) of which are so general to be thought to apply to any theory
with an operational formalism. Ludwig’s embedding theorem is so fundamental
to GPTs that it is often completely omitted from discussions, and its
consequences, namely the formulation of physical theories as convex sets of
vector spaces, are taken as axioms themselves. More time is devoted to a
technical discussion of Ludwig’s embedding theorem in Chapter 4.
Here, we simply state that for a set of states S, effects E, and a bi-linear form
P : S × E → R with 0 ≤ P ≤ 1, obeying some very reasonable requirements,
there exists a GPT. A GPT is a convex subset S of a real vector space V ,
almost always taken to be finite dimensional, and the effect space E ,

E ⊆ E ′ ⊂ V ∗, (2.14)

is some subset of all effects on S such that the probability is normalised,
0 ≤ p = ω(s) ≤ 1 for ω ∈ E ′, s ∈ S [31]. We shall give these statements rigorous
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definitions in Chapter 4.
This gives an extremely general framework, effectively any theory with states
and measurements is equivalent to a GPT, where many properties of the theory
are encoded in the convex structure of the GPT. One surprising result is that
many of the main features of quantum theory that are not present in classical
theory, ones which we often take as distinguishing them, are generic to any no
classical theory. This includes entanglement, non-locality, and contextually, and
so allow behaviours that violate Bell’s and similar inequalities. This goes some
way to supporting Popescu and Rohrlich’s conjecture of a set of super-quantum
theories.
While the GPT framework has demonstrated a number of interesting and
surprising results, its generality is also one of its weaknesses. In order to
constrain the space of theories, one has to make additional assumptions. These
assumptions are often motivated by what we know from quantum and classical
theory, and so are biased by our physical intuition, something we may wish to
avoid when trying to imagine a theory for which we have no physical evidence.
The question arises: if we had discovered GPTs before quantum theory, would
we have relaxed the correct assumptions to open the plausible space of theories
to include quantum mechanics before we were forced to by the discoveries of the
20th century?
As with the device independent formalism, GPTs give little information about
dynamics or physical interpretation-how to translate a physical experiment into
a state and effect and vice versa. These issues are more manageable in a
histories based approach, with sacrifices in other areas, as we shall see.

2.2.2 No-restriction, Specker’s principle and GTTs

Within GPTs, axioms often must be imposed in order to restrict the space of
theories. While behaviours are not the central objects in the GPT framework,
several axioms have been shown to constrain the sets of behaviours associated to
the theory. However, there are also reasons to doubt that these axioms are well
motivated.

No-restriction hypothesis

The no-restriction hypothesis [34] states that the inclusion in Eq 2.14 is an
equality, i.e. there are no restrictions on the physical effects. All well defined
effects are physically realisable. This has been a common assumption in many
studies of GPTs, as it is satisfied by classical and quantum mechanics. At the
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level of QM it is given by the duality between density operators and projection
operators.
It has been shown that any theory that recreates the almost quantum set cannot
satisfy the no-restriction hypothesis [35]. This no-go theorem is non
constructive, as there is no guarantee that a set of behaviours corresponds to a
GPT at all, and finding one is no trivial task.
We discuss the no-restriction hypothesis in greater detail, and in the context of
QFT where its satisfaction is far less obvious, in Chapter 4.

Specker’s principle

Specker’s principle can be stated as follows:‘If in a set of measurements every
pair is compatible, then all the measurements are compatible.’ It has been
shown that while quantum theory satisfies this, almost quantum does not [36].
Certainly, this follows by the existence of a mutual eigenbasis for any set of
compatible operators, however it appears to be a bottom up principle rather
than a well motivated axiom. It has been shown that Specker’s principle implies
consistent exclusivity, while the converse does not hold, as exemplified by almost
quantum satisfying the latter and not the former.

Gleason type theorem

Despite often being taken as an important postulate in GPTs, there is growing
evidence that meaningful physical theories can still be constructed even when
the no-restriction hypothesis is violated [37][38], as long as they have a “Gleason
type theorem”. The above works show that no-restriction is neither sufficient nor
necessary for ‘indeterminate determinism’.
Inteterminate determinism implies the existence of a set of properties for each
state that can be determined by measurements, and are sufficient to determine
the probabilities of any measurement. This is guaranteed for QM by Gleason’s
theorem, hence the name. It appears to be enough for a well behaved
operational theory, and implies that no-restriction is too strong a postulate,
which has been discussed before [39].
Some work has shown that a form of GPTs that can violate no-restriction,
known as self-dual, can reproduce the Tsirel’son bound for maximally entangled
bi-partite scenarios [40]. For more general Bell scenarios, the equivalent result is
unknown, however there is no evidence that a GPT without the no-restriction
cannot recreate the entire Tsirel’son bound.
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2.3 Histories foundations

The histories approach to quantum foundations is motivated by the histories
approach to quantum mechanics, which aims to be a coherent interpretation for
quantum theory that is in the spirit of relativity and path integrals[41, 42]. The
branch of research we shall discuss is based on Sorkin’s axiomatisation of path
integral-like theories into quantum measure theories (QMT), for which there is a
very similar branch of research instigated by Hartle called generalised quantum
mechanics (GQM) [43]. Since almost all results are the same, we stick only to
QMT.
Unlike in the previous approaches, we need to introduce a very different
perspective for quantum theory in order to appreciate this approach. The
necessary concepts are presented as an extremely short, self-contained,
introduction to the histories approach to quantum foundations. For more general
reviews and discussions of the histories approach to interpreting quantum theory
or to quantum gravity, see the following references [41, 42, 44, 45, 46, 47].

2.3.1 Histories

The histories approach is an interpretation of quantum theory, initiated by
Hartle [48] (and motivated by Griffith’s consistent histories[49]), where states
and measurements are replaced by histories and events as the central concepts.
Being path integral inspired, this places manifest Lorentz invariance front and
centre, however it of course suffers from the same issues of mathematical rigour
that plague almost all studies of path integrals. The path integral, however, is
useful despite this lack of rigour, and its ubiquity in high energy physics justifies
this further investigation.
Path integrals are often introduced simply as a way to calculate the main
objects of interest in QFT, expectation values of time ordered operators acting
on a Hilbert space (or functionals thereof). This is flipped on its head by the
successful formulation of quantum theory based entirely on the path integral,
with no reference to the Hilbert spaces or operators[46]. For QM a derivation of
the Hilbert space and Schrödinger equation from that formalism has been
demonstrated. The equivalent derivation is less rigorous for QFT for the same
reasons that the path integral evades proper definition.
We focus on single particle mechanics (quantum, classical, or otherwise), but
generalisations to field theories are the same as those from QM to QFT path
integrals. For a more in depth introduction, see [50].
A ‘history’ γ is a spacetime trajectory, and an ‘event’ corresponds to something
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happening. A particle being at (t, x⃗) is an event E, and we define it as the set

{γ|γ(t) = x⃗} (2.15)

so that γ ∈ E.
The set of all histories is denoted Ω, and the set of all events (sets of histories) is
the powerset 2Ω.

2.3.2 Quantum measure theory

The word ‘event’ is borrowed from probability theory, and one may be tempted
to appeal to the Kolmogorov axioms by assuming some measure µ : 2Ω → R on
the powerset of events satisfies

1. 0 ≤ µ ≤ 1 positive

2. µ(Ω) = 1 normalised

3. µ(A ⊔B)− µ(A)− µ(B) = 0 classical sum rule,

where ⊔ is disjoint union. However, we can quickly see that this cannot be the
case. Consider the double slit experiment, and label γL (γR) to be histories
where the particle goes left (right) slit and ends up at a particular destructive
fringe1. Then, let the events L (R) to be the events that the particle goes
through the left (right) slit, so that γL(γR) ∈ L (R). Finally, let D be the event
that the particle is at the destructive fringe, see Fig 2.1.
Clearly, µ(D) = 0, as the particle is never observed there. This is consistent
with L ∩R = ∅. Each history can only go through one slit. However,
µ(L) = µ(R) = 0.5. Hence µ(L ⊔R) = µ(D) = 0 ̸= µ(L) + µ(R) = 1. Clearly,
we must relax the Kolmogorov axioms if we wish to describe quantum theory in
this way. For classical mechanics, where there is no sum over histories, there is
no interference and so the Kolmogorov axioms hold, hence we will call normal
probability theory ‘classical’. The relaxed quantum measure theory is

1. 0 ≤ µ positive

2. µ(Ω) = 1 normalised

3. µ(A⊔B⊔C)−µ(A⊔B)−µ(A⊔C)−µ(B⊔C)+µ(A)+µ(B)+µ(C) = 0.
quantum sum rule

1One might argue that it is begging the question to consider histories that arrive at a destructive fringe, as
there is obviously zero probability of that happening. However, if we cover up the left slit, the histories going
through the right slit should not be effected, by locality, and experiment tells us that the previously dark fringe
will now be illuminated due to the lack of interference. So we must include all the histories, including those
that contribute to impossible events.
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D

L

R

γL

γR

Figure 2.1: A histories perspective on the double slit experiment. A sample of histories are
shown in grey, while a history that passes through the left (right) slit and ends at a destructive
fringe is shown in red (blue). The events L(R), D represent the set of all histories passing
through the left (right) slit and arriving at the destructive fringe respectively. From left to
right are the source, wall with slits, and screen. The intensity is shown on the right.

where the final axiom, the quantum sum rule, expresses the lack of so called 3rd
order interference [41]. In this language, axiom (3) of the Kolmogorov axioms
expresses the lack of 2nd order interference, e.g. classical particles do not
interfere in the double slit experiment. To see how the double slit might satisfy
this, we introduce one final event N , where the particle goes through no slits.
We have assumed that the setup is such that the particle always goes through
some slit, and so N contains no histories and is disjoint with L,R,D. Hence

µ(L⊔R⊔N)−µ(L⊔R)−µ(L⊔N)−µ(R⊔N)+µ(L)+µ(R)+µ(N) (2.16)

= µ(D)− µ(D)− µ(L)− µ(R) + µ(L) + µ(R) = 0 (2.17)

as required. We have come across the major difference between quantum and
classical (measure theory), where quantum events, i.e. the particle making it to
the destructive fringe, not occurring does not imply that a subevent, i.e. a
particle travelling through the left slit to the destructive fringe, from happening.
To make contact with the path integral, we note that for nonrelativistic
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quantum mechanics

µ(A) =

∫
γ∈AT

dν(γ)

∫
γ̄∈AT

dν(γ̄)eiS(γ)−iS(γ̄)δ(γ(T ), γ̄(T )) (2.18)

where AT is the set of histories truncated at some time T after the point of
measurement, and it is expected that some boundary conditions must be
specified. We note that this is a double path integral, unlike the one usually
derived from the Hilbert space formalism. The double integral form∫

γ∈AT

dν(γ)

∫
γ̄∈AT

dν(γ̄) (2.19)

is implied by the quantum sum rule. In this sense, we have already found a
constraint on the dynamics of 2nd order theories, given by integrals over 2 path
interference of histories.

2.3.3 Decoherence functionals

From the above discussion it is possible to re-derive the usual rules of quantum
mechanics. However, it still requires us to have specified from Eq 2.19 to Eq
2.18, or a relativistic, or non scalar equivalent. Questions still stand about what
theories allowed by the quantum sum rule/double path integral, and how they
relate to regular quantum theory. To investigate this, it is useful to introduce
the ‘decoherence functional’.
Let D : 2Ω × 2Ω → C obey the following axioms

1. D(Ω,Ω) = 1 normalised

2. D(A,B) = D(B,A), i.e. Hermitian

3. D(A,B ⊔ C) = D(A,B) +D(A,C) bi-additive

4. D(A,A) ≥ 0 weakly positive

then D is equivalent to a quantum measure via D(A,A) = µ(A), so that any
decoherence functional defines a unique quantum measure, and a family of
decoherence functionals exist that are picked out by any quantum measure [22].
It is clear that

D(A,A′) =

∫
γ∈AT

dν(γ)

∫
γ̄∈A′T

dν(γ̄)eiS(γ)−iS(γ̄)δ(γ(T ), γ̄(T )) (2.20)

is a decoherence functional associated with µ from Eq 2.18.

21



We can also impose that when restricted to a finite subset of the event space,
D ≥ 0, i.e. D is positive semidefinite as a (restricted) matrix. This is referred to
as strongly positive or SP. As we shall see, this is necessary and sufficient for the
existence of a Hilbert space, and is satisfied by QM and QFT. It also allows us
to interpret a finite dimensional decoherence functional as a Gram matrix,
allowing cross-talk between histories and the NPA hierarchy. The physical
motivation for this step is not entirely clear [51], yet the resulting decoherence
functional is significantly more physically reasonable, as we shall see.
‘Decoherence functional’ implies a relation to the concept of decoherence
introduced by Zeh and others [52]. In the usual decoherence, a system coupled
to an environment evolves such that they are entangled, and so that ‘pointer’
states diagonalise the local density operator of the system. These pointer states
are robust against the interaction with the environment, and are seen as the set
of allowed classical sates, those that are ‘selected’ for during measurement, or
rather interaction. This process of ‘einselection’ is the key observation of
decoherence, which proposes a solution to the question of the preferred basis:
why do we only observe quantum states in an example of a particular basis? It
does not provide an answer to why we see only one example and not some
mixture. Decoherence provides a mechanism by which quantum states evolve
towards states that appear, with coarsegraining, as mixtures of semi-classically
meaningful states.
On the other hand, in the histories approach, non-classicality is related to the
quantum sum rule. Decoherence here referrers to situations involving
coarsegraining such that 2nd order interference becomes negligible and µ can be
interpreted as a classical probability distribution due to an approximate
satisfaction of the Kolmogorov sum rule. We can see that this is similar to the
usual definition of decoherence, as a theory that satisfies Kolmogorov’s axioms is
a theory of classical mixtures. Further, since histories attempts to be a complete
interpretation, it claims to solve the entire measurement problem, unlike
decoherence.

2.3.4 n-hopper model and strong positivity

To build intuition for the history and event spaces, and the decoherence
functional, we can consider the n-hopper model[53], where a single particle is
confined to points of the finite set Zn and evolving in discrete time steps, so that
for every time τ , its position is given by γ(τ) ∈ Zn. The full trajectory γ gives a
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history, and so the history space Ω is given as

Ω := Zn × Zn × · · · × Zn︸ ︷︷ ︸
T−times

(2.21)

where T is the number of time steps considered.

Figure 2.2: A diagram showing a 4 timestep history for a 3-hopper.

Dt(A,B) =
∑
γ1∈A

∑
γ2∈B

at [γ1] at [γ2]
∗ δγ1(t)γ2(t) (2.22)

where the amplitudes a are given by

at[γ] = ψγ(0)

t−1∏
τ=0

Uγ(τ)γ(τ+1)

Uab =
1√
n
exp

(
iπ(a− b)2

αn

)
(2.23)

and α = 1 for odd n and 2 for even. Note {ψγ(0)} acts as the initial conditions
discussed earlier and the form analogous to the non-relativistic propagator. The
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time t corresponds the truncation time, some late time chosen to be after the
events in consideration. Clearly, D is Hermitian and weakly positive
Consider n = T = 3, so that there are only 3 position considered at 3 time steps,
and that we are looking only at events at τ = 0, 1, i.e. that the truncation time
is set as t = 2, the final timestep. In order to calculate D explicitly, consider
initial conditions fixing γ(0) = 0, so that ψγ(0) = δγ(0),0. We now calculate
D2(γ, γ̄) as D2(E,E

′) can then be found by bi-additivity. Each γ = (z0, z1, z2)
and the initial conditions imply that only γ = (0, z1, z2) do not decohere.
D2(γ, γ̄) decoheres if z2 ̸= z̄2, by the delta function. Hence, D2 takes the form

D2(γ, γ̄) = at [γ1] at [γ2]
∗ δγ1(t)γ2(t) (2.24)

There are 27 histories, however D2 vanishes on any with z0 = 1, 2, so only D2

need only be evaluated on 9, giving a 9× 9 block. We can consider the matrix
rows and columns each labelled by (z1, z2) (i.e. ((0, 0), (1, 0), (2, 0), (0, 1), ...) ,
and find that the 9× 9 block has the form

D2((z1, z2), (z̄1, z̄2)) =
1

9



1 a b

a∗ 1 c
b∗ c∗ 1

0 0

0
1 α β
α∗ 1 δ

β∗ δ∗ 1
0

0 0
1 x y

x∗ 1 z
y∗ z∗ 1


(2.25)

where we have used that D2 is Hermitian, the decoherence of histories with
differing z2 and that D2(γ, γ̄) =

1
n2 =

1
9 for any γ = γ̄ by unitarity of the

propogator, to reduce the elements to explicitly calculate from 81 to 9.
Due to only having 3 sites, at each timestep the particle can take either a step
either of length 0 or 1 (in either clockwise or anticlockwise directions). They
contribute each a phase of

0 and ± i
π

3
, (2.26)

respectively. We can now fill in the remaining off diagonals.
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D2((z1, z2), (z̄1, z̄2)) =
1

9



1 ω2 ω2

ω 1 1
ω 1 1

0 0

0
1 1 ω
1 1 ω
ω2 ω2 1

0

0 0
1 ω 1
ω2 1 ω2

1 ω 1


(2.27)

where
ω = ei

π
3 . (2.28)

Calculating the eigenvalues, we find them to be 0, 1, 2, 3, and so Dt is positive
semi-definite as a matrix, and thus strongly positive as a decoherence functional.
While it is not immediately obvious in this form of the matrix, the remaining
symmetry left over from the global Z3 broken by our choice of initial condition,
swapping site 1 and 2, is a symmetry of D2 (both the form in Eq 2.27 and the
27× 27 full form). For example D2((1, 1), (2, 1))) = ω = D2((2, 2), (1, 2)).
Since there was nothing special about the choice z0 = 0, we can see that the full
D2, defined on entire histories (z0, z1, z2) will be the same form, upto
re-ordering, regardless of which point the particle starts on. The general form of
D2 can then be found by complex linear combinations of D2 for z0 = 0, 1, 2, and
is thus also strongly positive.
Finally, note that D2 is normalised, as the total sum of all its entries is 1 (the
off-diagonals in each block form the roots of unity and so cancel).

2.3.5 Histories perspective on non-signalling scenarios

As with the double slit experiment, we can investigate non-signalling scenarios
by constructing the histories and from them, the history and event spaces, as
well as important subspaces. To do this we use a modified version of the
non-contextuality (NC) space used by Dowker et al [22], with some notational
and structural modifications.
For an n party non-signalling scenario, consider a history γ to be an array of
numbers γij, which denote the outcome of the ith experiment conducted by the
jth party. For a Bell (n m p) scenario, these take the form of an n×m matrix
over {0, 1, 2, ..., p}, however in the most general case we cannot make this
association as the number of measurements and outcomes can vary between
parties. For example, the (2 2 2) scenario has histories that are represented by
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2× 2 binary matrices e.g. (
0 1
1 1

)
(2.29)

represents an outcome of 0 for x = 0, 1 for x = 1, and 1 for both y = 0, 1. We
again denote Ω to be the set of all histories, and 2Ω is its powerset.
Of course, a behaviour is not defined on histories, but on events corresponding
to single outcomes of a single experiments per party. As before, consider such an
event to be the set of all histories in Ω that correspond to a certain outcome to a
certain experiment for each party. Borrowing notation from the device
independent formalism, we say the event1 (⃗a|x⃗) is the set

(⃗a|x⃗) = {γ|γxii = ai,∀i ∈ {0, 1, ..., n}} . (2.30)

In the (2 2 2) case again, we can see the example for (0, 0|1, 0) is

(0, 0|1, 0) =
{(

0 0
0 0

)
,

(
0 0
0 1

)
,

(
1 0
0 0

)
,

(
1 0
0 1

)}
, (2.31)

where the highlighted elements correspond to the fixed outcomes. Clearly, this is
a subset of 2Ω. A coarsegraining (by partitioning into R, S) of such an event is
the union of all

(⃗aR|x⃗R) = {γ|γxii = ai,∀i ∈ R} =
⋃

(x⃗′
R |⃗a′R)=(⃗aR|x⃗R)

(⃗a′|x⃗′). (2.32)

For (2 2 2), an example is given where we take the union of (0, 0|1, 0) and
(0, 1|1, 0),

(a = 0|x = 1) = {
(
0 0
0 0

)
,

(
0 0
0 1

)
,

(
1 0
0 0

)
,

(
1 0
0 1

)
, (2.33)(

0 1
0 0

)
,

(
0 1
0 1

)
,

(
1 1
0 0

)
,

(
1 1
0 1

)
}, (2.34)

and note that by taking the subsets of the 1, 3, 5, 7th elements and 2, 4, 6, 8th
elements we get the events (0, 0|1, 1), (0, 1|1, 1) respectively, as expected by
non-signalling. For a fixed x⃗, the set of all fine and coarsegrained (⃗a|x⃗) is a
subset of 2Ω. Denote this as ux⃗, and the union as

Õ =
⋃
x⃗

ux⃗ (2.35)

over all x⃗ is the set of all fine and coarsegrained outcome events of the form
(⃗a|x⃗). Finally, we discuss one more subset of 2Ω. The set x⃗ is defined as the set

1Now our use of the word event earlier has paid off.
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of all (⃗a|x⃗) for all a⃗. We have overloaded x⃗, using it both as a set and as a
vector. However, since there is a natural bijection between them, there is no
ambiguity, and x⃗ will be treated as both depending on the context. The union
of all x⃗’s, fine and coarsegrained, is S̃ (contains all sets (⃗a|x⃗) of histories), and
represents the set of all measurement setting events, while S̃ denotes the set of
all events of measurement outcomes conditional on measurement settings.
We note the following important set relationships

(⃗a|x⃗) ∈ x⃗, (⃗a|x⃗) ∈ ux⃗ ⊂ Õ. (2.36)

(⃗a|x⃗) ⊆ (⃗a′|x⃗′), x⃗ ⊆ x⃗′ (2.37)

where x⃗′, (⃗a′|x⃗′) are coarsegrainings of x⃗, (⃗a|x⃗).

Some histories sets

We state the definitions of Q̃, JQM and SPJQM in the histories formalism.
While we deliberately made sure the notation lined up with the device
independent one, we will at times use E = (⃗a|x⃗) etc. for convenience,
compactness, or to refer to elements of the event algebra that do not have a
joint measurement interpretation, i.e. are not of the form (⃗a|x⃗). In the following
definitions, the translation to the usual notation should be immediate.

Definition 4. Given a behaviour (Ω, S̃, P ), it is in the set JQM (joint quantum
measure) if there is a quantum measure µ on 2Ω such that

µ(E) = P (E) (2.38)

for all ∈ Õ,(recall that Õ is the set of all fine and coarsegrained outcomes,
which is a subset of 2Ω, and S̃ is the set of all fine and coarsegrained settings).

Equivalently,

Definition 5. Given a behaviour (Ω, S̃, P ), it is in the set JQM (joint quantum
measure) if there is a decoherence functional on 2Ω × 2Ω such that

1. D(E,E) = P (E), ∀E ∈ Õ

2. D(E,E ′) = 0, ∀E,E ′ ∈ ux⃗, E ∩ E ′ = ∅,∀x⃗ ∈ S̃

Note that the PR box, and the entire (2 2 2) NS polytope, is included in JQM
[54], and so we have reason to believe, as laid out by the device independent
principles, that we need to consider a subset of JPM.
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Definition 6. Given a behaviour (Ω, S̃, P ), it is in the set SPJQM (strongly
positive joint quantum measure) if there is a decoherence functional on 2Ω × 2Ω

such that

1. D(E,E) = P (E), ∀E ∈ Õ

2. D(E,E ′) = P (E ∩ E ′), ∀E,E ′ ∈ ux⃗

3. D is strongly positive

It has been shown that for the CHSH game, SPJQM coincides with the
Tsirel’son bound. However, even for general (2 2 2) scenarios, SPQJM contains
behaviours that are not in Q [54].
As previously mentioned, a strongly positive decoherence functional is also a
Gram matrix. This allows the following lemma:

Lemma 7. [22] A behaviour (Ω, S̃, P ) is in SPJQM if and only if there is a
Hilbert space H with a set of vectors |γ⟩ labelled by the atoms (singleton sets of
histories) of 2Ω, with

1. E ∈ 2Ω

|E⟩ =
∑
γ∈E

|{γ}⟩ , ∀ (2.39)

2. ∀x⃗ ∈ S̃
⟨E|E ′⟩ = P (E ∩ E ′), ∀E,E ′ ∈ ux⃗ (2.40)

We note that for a fixed x⃗, different outcomes a⃗, a⃗′ decohere for behaviours in
JQM and SPJQM, i.e. D((⃗a|x⃗), (⃗a′|x⃗)) = 0. However, decoherence for locally
orthogonal events has not been imposed. Consider x⃗, x⃗′ such that they agree for
at least one party, i.e. there is at least one party where in both cases they
perform the same measurement. We denote one of these parties as i, so that
xi = x′i. If they get different outcomes, ai ̸= a′i, then we say these are locally
orthogonal events, (⃗a|x⃗) ⊥ (⃗a′|x⃗′). Since Q̃ is consistent with local
orthogonality, we know that these events do decohere in these sets of behaviours,
as shown by, however it has not been imposed that on JQM or SPQJM.
We are now able to define Q1, Q̃, Q̃′ in the Hilbert space formalism, where Q̃′ is
the set investigated in [22] and denoted Q1+AB. The reason we provide new
notation is that generally Q1+AB has been defined only for bi-partite cases, and
this has lead to some confusion in the literature.

Lemma 8. [22] A behaviour (Ω, S̃, P ) is in Q1 if there is a Hilbert space H
with a set of vectors |A⟩ labelled by the fine grained outcomes {|E⟩}E∈Õ, with
for every x⃗, x⃗′ ∈ S̃
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1. |E ∪ E ′⟩ = |E⟩+ |E ′⟩ if E,E ′ ∈ ux⃗ are disjoint

2. ⟨E|E ′⟩ = P (E ∩ E ′) for all E,E ′ ∈ ux⃗

The alternate definition of the almost quantum set is given in [23].

Lemma 9. A behaviour (Ω, S̃, P ) is in Q̃ if there is a Hilbert space H with a
set of vectors |A⟩ labelled by the fine grained outcomes {|E⟩}E∈Õ, with for every
x⃗, x⃗′ ∈ S̃

1. ⟨Ω|E⟩ = P (E) for all E ∈ ux⃗

2. ⟨E|E ′⟩ = 0 for all E ∈ ux⃗, E
′ ∈ ux⃗′ with E ⊥ E ′ (local orthogonality)

3. ⟨E ∩ E ′|E ∩ E ′′⟩ = ⟨E ′|E ∩ E ′′⟩ = ⟨E ∩ E ′|E ′′⟩ where any parties in E are
not in E ′ or E ′′.

Finally, we state the definition of almost quantum given by Dowker el al. in [22],
in order to prove that the two sets are indeed equivalent.

Definition 10. A behaviour (Ω, S̃, P ) is in Q̃′ if there is a Hilbert space H with
a set of vectors |A⟩ labelled by the fine grained outcomes {|E⟩}E∈Õ, with for
every x⃗, x⃗′ ∈ S̃

1. |E ∪ E ′⟩ = |E⟩+ |E ′⟩ if E,E ′ ∈ ux⃗ are disjoint

2. ⟨E|E ′⟩ = P (E ∩ E ′) for all E,E ′ ∈ ux⃗

3. ⟨E|E ′⟩ = 0 for all E ∈ ux⃗, E
′ ∈ ux⃗′ with E ⊥ E ′ (local orthogonality)

It is then clear that Q̃ is a strengthening of Q1 to have local orthogonality. This
implies that macroscopic locality, which is satisfied if and only if if a behaviour
is in Q1, does not imply local orthogonality. However, we cannot use this result
to infer that local orthogonality is a strictly stronger constraint than
macroscopic locality as it is known that there are correlations outside of Q1 that
are locally orthogonal [55].
In order to fix the confusion referenced earlier, we prove the following result.

Lemma 11. For a behaviour in SPJQM, conditions (1) =⇒ (2)

1. ⟨X|Y ⟩ = 0 if X ⊥ Y ,

2. ⟨X ∩ Y |X ∩ Z⟩ = ⟨Y |X ∩ Z⟩ =
⟨X ∩ Y |Z⟩ where any parties in X are not in Y or Z.

Proof. For SPJQM we have the following conditions
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1. (a)⟨X|Y ⟩ = 0 if X ∩ Y = ∅

2. (b) if X ∩ Y = ∅, then |X⟩+ |Y ⟩ = |X ∪ Y ⟩.

To see this, first assume that the behaviour is in SPJQM.

⟨⃗a′, x⃗′|⃗a, x⃗, a⃗′′, x⃗′′⟩ =
∑
a′′′

⟨⃗a′′′, x⃗, a⃗′, x⃗′|⃗a, x⃗, a⃗′′, x⃗′′⟩ (2.41)

=
∑
a′′′ ̸=a

⟨⃗a′′′, x⃗, a⃗′, x⃗′|⃗a, x⃗, a⃗′′, x⃗′′⟩+ ⟨⃗a, x⃗, a⃗′, x⃗′, |⃗a, x⃗, a⃗′′, x⃗′′⟩ (2.42)

= ⟨⃗a, x⃗, a⃗′, x⃗′|⃗a, x⃗, a⃗′′, x⃗′′⟩ (2.43)

where we have used (b) to break up the first line into a sum over all possible
measurement outcomes a⃗′′′ given the measurements x⃗, and then assumed that
(⃗a|x⃗) shares no parties with (⃗a′|x⃗′) or (⃗a′′|x⃗′′) and used (1) between Eq. 2.42
and Eq. 2.43 to see that each term in the restricted summation vanishes. This
demonstrates that (1) =⇒ (2).

Theorem 12. [22] SPJQM ⊇ Q̃′

Proof. Let (Ω, S̃, P ) be in Q̃. It is easy to see that 2 of SPQJM and Q̃ are
equivalent.
What we are left with is showing that we can find a set of vectors labelled by the
atoms of 2Ω such that 1 of SPQJM is satisfied. This is left to Appendix 6.2.

Lemma 13. Q̃′ = Q̃.

Proof. Consider a behaviour in Q̃′. Then use the fact that for any x⃗, the
complete set of finegrained events, {x⃗} associated with that measurement
setting are disjoint, and union to make Ω. Hence,

⟨Ω|E⟩ =
∑
E∈{x⃗}

⟨E ′|E⟩ =
∑
E∈{x⃗}

P (E ′ ∩ E) = P (E) (2.44)

where we have used that E ′, E are disjoint to get P (E ′ ∩ E) = 0 if E ̸= E ′, and
that 1 of Q̃′ to get the first equality. Hence, we have demonstrated 1 of Q̃, and 2
is obviously equivalent to 3 of Q̃′. Since SPJQM ⊇ Q̃′ by Theorem 12, we can
use Lemma 11, to see that 3 of Q̃′ implies 3 of Q̃. Hence, Q̃′ ⊆ Q̃.
Consider a behaviour in Q̃. 2 of Q̃ implies 3 of Q̃′. Using the fact that Q̃ ⊂ Q1

[23], and lemma 23 of [22] (which we have stated as definition), if a behaviour is
in Q̃, then there exists

1. |E ∪ E ′⟩ = |E⟩+ |E ′⟩ if E,E ′ ∈ ux⃗ are disjoint
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2. ⟨E|E ′⟩ = P (E ∩ E ′) for all E,E ′ ∈ ux⃗

and that they coincide with the vectors given in the definition of Q̃. Hence 1, 2
of Q̃′ is implied. Thus, Q̃ ⊆ Q̃′, and Q̃ = Q̃′.

We will thus refer only to Q̃ from now on, and can see that Theorem 12 implies
that Q̃ ⊆ SPJQM. We note that historically there appears to have been some
confusion in the literature between Q1+AB and Q̃. We want to stress that the
results of [22] refer to Q̃ in general, and the use of Q1+AB, which before was only
defined for bi-partite scenarios [21], and extended by Dowker el al, is historical
only, as the original almost quantum paper, and thus the notation Q̃, had not
yet been published. Unfortunately, this seems to have been misinterpreted, and
Theorem 16 has been quoted as showing that the two sets in question coincide
only for the two party case [23], which is not true. We also stress that while the
proof of 13 and the supporting lemmas are original, the result was stated by
Dowker el al. [22] as a simple extension of a similar result for Q1, and that we
have explicitly proven it only to clarify issues in the literature.

Introducing branching

While we have defined the NC space by considering parties that are spacelike, it
is possible to use this formalism to consider more general spacetime setups. This
allows us to investigate branching, where the outcomes of one party are used to
pick the measurement settings for another. This of course requires that the labs
are no longer spacelike in general. However, a nonsignalling behaviour will
remain nonsignalling.
The main issue with branching is that we end up with experimental setups
(choices of measurement settings) where there should be decoherence, that has
not previously been imposed. To see this, imagine f(a, y) = a. Then, for
x⃗ = (0, 0) and x⃗′ = (0, 1), a⃗ = (a, b) = (0, 0), a⃗ = (1, 0), where we stress that
x⃗, x⃗′ denote the chosen measurement settings and not the value that is given
from the far causal past (these coincided in the non-branching case). While in
the non-branching case we have no reason to expect decoherence as the
measurement settings are not the same, we must have it in the branching cases,
as (x⃗|⃗a), (⃗a′|x⃗′) are both events that are possible given the same initial event
(the measurement setting x being given from the far causal past).
We can now consider an expanded set of measurements, which correspond to all
allowed branching setups. The new set S̃b, called a branching extension, consists
of the usual measurements, as well as those where the measurement settings
depend on those before them. Denote the measurement setting of the ith party
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depending on the jth as ai ≺ xj. In the branching scenario we discussed above,
we can write

x ≺ (a|x) ≺ (a, b|x, y) = (a, b|x, a), and x ≺ (a′|x) ≺ (a′, b′|x, y′) = (a′, b′|x, a′)
(2.45)

Note that the use of the causal order symbol is more than just suggestive, the
selection of a measurement strictly causally precedes the outcome, and in the
branching scenario, the outcome of one party’s measurement strictly causally
precedes the choice of measurement for another party. In the non-branching
setup, all we can say is that

x or y or (x, y) ≺ (a|y), (a, b|x, y) etc. (2.46)

For two parties, the set S̃ consists of all (x, y), and each (x, y) consists of all
(a, b, |x′, y′) that strictly precede it which is trivially the set where
x = x′, y = y′. For the branching extension, this triviality is lost, and we must
consider (x, y), x, y and the events that they precede. The main new condition is
that we now have additional probabilities that must be given by the decoherence
functional. We will consider only single branches, see [22] for a discussion of why
this sufficient.
We note that because branching introduces no new finegrained probabilities, Õb

differs only from its old non-branching version by coarsegrained events. Hence,
all branching probabilities follow by the usual coarsegraining/marginalling via
the classical sum rule [22].
JQM is already compatible with branching. This is because the decoherence
functional D(E,E ′) can be extended unambiguously to cover the new
coarsegrained events in Õb via the bi-additive property, and decoherence is only
required for events E,E ′ that have the same measurement setting.
Similarly, Q1 and Q̃ are compatible with branching [22]. The argument for Q1 is
very similar to JQM, while for Q̃, it rest on the fact we have local orthogonality,
so all the additional decoherence conditions are automatically met. As discussed
by Dowker el al. these arguments are not so obviously applied to SPJQM. This
is because we do not have LO in general.

Definition 14. [22] Given a behaviour (Ω, S̃, P ) with branching extension
(Ω, S̃b, P ), it is in SPJQMb if there is a decoherence functional on 2Ω × 2Ω such
that

1. D(E,E) = P (E)∀E ∈ Õ

2. D(E,E ′) = P (E ∩ E ′)∀E,E ′ ∈ ux⃗, E ∩ E ′ = ∅,∀x⃗ ∈ S̃b

3. D is strongly positive
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Lemma 15. Given a behaviour (Ω, S̃, P ) with branching extension (Ω, S̃b, P ), it
is in SPJQMb if and only if there is a Hilbert space H with a set of vectors |γ⟩
labelled by the atoms of 2Ω, with

1. ∀E ∈ 2Ω

|E⟩ =
∑
γ∈E

|{γ}⟩ , , (2.47)

2. ∀x⃗ ∈ S̃B

⟨E|E ′⟩ = P (E ∩ E ′), ∀E,E ′ ∈ ux⃗ (2.48)

The following was first shown in [22], however we provide a slightly different
version.

Theorem 16. SPJQMb = Q̃.

Proof. Let (Ω, S̃, P ) be a behaviour in SPJQMb. We note that with the new
measurements in the branching extension, that SPJQMb is locally orthogonal,
and so 3 of Q̃ is satisfied, 2 of Q̃ follows immediately from non-branching
measurements in 2 of SPQJMb. Finally, note that for two disjoint E,E ′ ∈ ux⃗,
that 1 of SPQJMb implies
|E ∪ E ′⟩ =

∑
A∈E∪E′ =

∑
γ∈E |{γ}⟩+

∑
γ′∈E′ |{γ′}⟩ = |E⟩+ |E ′⟩ and so we

have 1 of Q̃. Hence SPJQMb ⊆ Q̃.
To see the other direction, we follow Theorem 12 and note that 2, 3 of Q̃ implies
2 of SPQJMb, as we consider only single branching measurements. In order to
get 1 of SPQJMb we again use Appendix 6.2 to show the existence of atomic
vectors.

While it has been shown that Q̃ and SPJQMb coincide, and that SPJQMb ⊆
SPJQM, if this inclusion is strict or not has been left an open question. While
consistency with branching is a natural requirement, showing that it follows
directly from SP would be a much stronger result.
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Chapter 3

Connecting the formalisms

3.1 SPJQM and the device independent sets

The following section explores a number of “closure” conditions, some explored
in a sequence of operational papers [56, 57, 24, 55, 23], some in histories [58, 22],
and the rest being novel definitions. The aim is connect several concepts
together; as shown in the spiderweb diagram Fig 3.1, to give sharp definitions of
each; something often lacking in the literature, and to show that one of the more
recent concepts, post-processing, is indeed the most general.

3.1.1 Closure conditions

Each closure condition corresponds to demanding that ‘classical’ actions groups
of parties can perform to the data to and from the labs should not create new
behaviours that are outside of a set S of behaviours if S is associated with a real
theory. Deciding which behaviour from a physical set to generate based on the
outcome of a coin toss, distributed to each party, should not generate a
behaviour that is not in the physical set. This is the requirement that the
behaviours form a convex set, or closure under convex combinations.
We note that while we have previously been imprecise about sets of
behaviours—either referring to a set S as the set of behaviours obeying some
conditions, regardless of the scenario; and other times implicitly considering
subsets of S that correspond to the same fixed scenario—we no longer have that
privilege. As we shall see, wiring and other post-processing allows us to take
behaviours and produce new behaviours for different scenarios, and so from now
on we are considering the set of behaviours S to contain behaviours for all
scenarios, unless stated otherwise. In general these will not be Bell scenarios,
and in fact there may be cases that even for a fixed measurement setting the
number of measurement outcomes of the output vector could vary, depending on
wirings. Our formalism is sufficiently flexible to account for this, as we can
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consider the outcome of each measurement to be defined over the largest
possible range, e.g. if some wiring allows output of a1 = {0, 1, 2} or {0, 1, 2, 3, 4}
depending on some internal random process, we can simply consider outcomes
to be defined over the larger of the two sets.
Finally, we stress that the new behaviours generated by classical processing are
effective. While we have taken great care to ensure that the outcomes are
conditional on the actual measurement settings, this is no longer something we
can have, and often the measurement settings of the individual behaviours will
be non-deterministic. Instead, the behaviours will be defined on effective
settings and outcomes, which in general will only have an interpretation as real
settings and outcomes if we imagine that all the classical processing is
abstracted away, and view the processed behaviours as device independent
behaviours themselves, with complete ignorance of the internals and processing.

PS Conv GW,Comp

PP W PW

PW,GP GW B,GP, IO

Figure 3.1: A spiderweb diagram showing the implications of the closure conditions and some
of their combinations. The =⇒ and ⇐⇒ arrows represent the usual “implies” and “if and
only if” respectively. This is not a commutative diagram. The acroynms are defined below
from Def to

To begin with, we define a number of closure conditions for sets S ⊇ L. This is
because we are focusing on classical operations. The first is post-selection, where
we condition the behaviour on the input and output of some subset of the
parties. Requiring closure under this is natural, we would not expect a GHZ
experiment to generate super-quantum 2 party behaviours if we conditioned the
3 party behaviour on c = 0, z = 0 etc.

Definition 17. A set of behaviours S is closed under post-selection (PS) if for
all P (⃗a|x⃗) ∈ S, P (˜⃗a|x⃗, ai) ∈ S, where ˜⃗a is a⃗ with the ith party removed.

Composition is also quite natural, for example, two independent entanglement
experiments should not (and do not) give an effective behaviour that is not
explainable by quantum theory.

Definition 18. A set of behaviours S is closed under composition (Comp) if for
all P (⃗a|x⃗), P ′(⃗a′|x⃗′), PP ′(A⃗|X⃗) ∈ S, where P, P ′ are n, n′-partite and PP ′ is
n+ n′-partite, A⃗, X⃗ are concatenations of a⃗, a⃗′ etc, and juxtaposition is normal
multiplication.
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This allows us to consider independent composition of multiple behaviours, with
no grouping or sharing of the behaviours between parties. For instance, two
(2 2 2) behaviours shared by Alice and Bob, and Charlie and Danny can be
composed to give a (4 2 2) behaviour shared by Alice, Bob, Charlie and Danny,
where there is no 4 party correlation due to the independence of the two original
behaviours. Clearly, this is a very weak condition, as no novel correlations can
be generated by composition alone. It is, however, a useful stepping stone for
defining and proving closure under more complex conditions.

(C) Composition (B) Grouped Parties

⊕

(A) Parallel Wiring

Figure 3.2: A representation of three classical processing scenarios. A box represents a party
(or effective party if multiple boxes are contained within it), arrows in (out) represent, pos-
sibly effective, measurement settings (outcomes), and dashed lines show how each party in a
behaviour is related(A) Parallel wiring of three bi-partite behaviours to create one effective bi-
partite behaviour. Note that the outcomes of each of the original behaviours is not outputted,
and so there is some identification of outputs. (B) grouping of a tri-partite behaviour to create
an effective bi-partite behaviour. (C) Composition of two bi-partite behaviours to create an
effective quad-partite behaviour. The solid line emphasises that composition does not introduce
any additional correlations, the behaviours are composed in an independent way.

Definition 19. A set of behaviours S is closed under identification of outcomes
(IO), if a new effective behaviour defined by coarsegraining over the
measurement outcomes is also in S. I.e. one or more parties can decide to
reduce the number of effective outcomes by associating multiple together, e.g.
Alice could decide that her outputs, defined over {0, 1, 2, ..., p− 1} are too
numerous, and that a1 = p− 2 and a1 = p− 1 should be associated together, and
output an effective output ã1 defined only over {0, 1, 2, ...p− 2}
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Mathematically, if P (⃗a|x⃗) ∈ S,

P (˜⃗a|x⃗) =
∑
{a⃗′}

P (⃗a′|x⃗) (3.1)

must be in S, where we are summing over all the outcomes that are associated
together.

The following definition is split into 3 parts in order to address some
complications and overloading of terminology in the literature.

Definition 20. A set of behaviours S is closed under

1. parallel wiring (PW), if N parties each have access to their part of n
N -partite boxes corresponding to behaviours P (⃗ai|x⃗i)i ∈ S such that they
can locally wire their part of the boxes together in any way, and the new
effective behaviour P (˜⃗a|˜⃗x) is in S.

2. grouped wiring (GW), if M < N parties partition themselves into C
subsets and group together into those C groups, and wire their parts of the
box together, creating N −M + C effective parties, so that we have
coarsegrained over the parties within the groups.

3. wiring (W), if it closed under 1 and 2.

Wiring involves any (possibly non deterministic) local strategy of taking the
inputs and outputs of boxes and using them (perhaps after feeding them into
some function) to determine others. To see an example, imagine Alice and Bob
both share three behaviours. Alice takes the inputs to all 3, adds them modulo 3,
and then uses that to determine which of the three behaviours to output.
Meanwhile, Bob uses the outputs of the first behaviour modulo 2 to determine if
he should output the results of behaviour 2 or 3, which have had their proper
unaltered inputs.

Definition 20.1 is the original definition of wiring, as introduced in [57] and
explored further in [59], 20.2 is used in [24],[23] while the broader 20.3 is implied
in [23]. As we shall see, under some safe assumptions, 2 ⇐⇒ 1 and thus 1 or
2 =⇒ 3.
Clearly, there are a huge number of ways to wire even a modest number of
(2 2 2) behaviours. To make this manageable, we can consider only complete
(with no identification of outputs) deterministic wirings, and use closure under
convex combinations and identification of outputs to cover the remaining cases.
The example given above is deterministic but non-complete, as Alice and Bob
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both identify outputs together, both margining out two of the behaviours. To
make it complete, Alice and Bob must provide some inputs to all 3 behaviours
and output the results for all 3.

Definition 21. [23] A set S of behaviours is closed under post-processing (PP)
if it closed under post-selection, composition, and wiring.

Finally, we introduce an almost trivial closure concept and corollary, which will
allow us to connect our discussion to branching.

Definition 22. A set of behaviours is closed under grouped parties (GP) if
M < N parties partition themselves into C subsets and group together into
those C groups, creating N −M + C effective parties, so that we have
coarsegrained over the parties within the groups.

Note there is no wiring involved here, the parties in a group simply group their
outcomes and measurement settings to give an effective setting and outcome for
the group, thus acting as one party.

Corollary 23. Grouped wiring implies grouped parties.

We now present the non-trivial results expressed in Fig 3.1, with the aim of fully
justifying some common claims in the literature.

Lemma 24. Grouped wiring and composition implies parallel wiring.

Proof. Suppose we have some parallel wiring scenario created by wiring n lots of
N party boxes together. We can recreate this by composing the n boxes
together, and then grouped wiring them in the obvious way. Since we then have
closure under grouped and parallel wiring, we have closure under wiring.

Lemma 25. Parallel wiring and grouped parties implies grouped wiring.

Proof. By grouping parties together, we can use parallel wiring to recreate any
grouped wiring.

Since grouped parties and composition are both relatively weak conditions, and
wiring is satisfied if both parallel and grouped are satisfied, we can now
understand the somewhat confusing terminology and definitions used in the
literature. Navascués el al were able to prove wiring for the almost quantum set
by proving grouped wiring after composition in [23]. While their proof is
technically of a different closure condition to the original wiring proposal [57],
we have shown that they are equivalent under the right conditions.

Lemma 26. Convex follows from composition and grouped wiring.
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Proof. Suppose we want to show that
n∑

i=1

piPi(⃗a|x⃗) (3.2)

is in S for any set of probabilities pi and set of N party behaviours with equal
sized inputs/outputs Pi ∈ S.
A set S that is closed under grouped wiring is closed under wiring 24, and so
satisfies L ⊆ S 27. Let PR(⃗a|x⃗) ∈ L be an N -party source of shared
randomness, so that

PR(⃗a|x⃗) = pa⃗ (3.3)

such that the probability is non zero only if a⃗i = i for all parties i and pa⃗ = pi.
Such a box is clearly local and so is in S. Take the following composition

PRΠ
n
i=1Pi (3.4)

and group wire the boxes so that each party gets the result i of the shared
randomness, uses it to pick Pi and then inputs x⃗i and returns a⃗i. Clearly, this is
equivalent to Eq.3.2.

These results underpin much of the discussion of post-processing, yet, to the
author’s knowledge, have never been stated. They also lead us to the following
interesting result.

Lemma 27. The smallest set closed under grouped wiring and composition (or
post-processing) is L.

Proof. The trivial behaviour is P (⃗a|x⃗) = δa⃗x⃗. By Lemmas2624 and 26, grouped
wiring and composition implies wiring and convexity. By [57], parallel wiring of
the trivial behaviour is sufficient to generate all extremal points of L, and L is
convex, so we can produce the full set L from it. Since L is closed under all
post-processing, it is the smallest set closed under grouped wiring and
composition (or post-processing).

This reassures us that post-processing can exactly pick out the local behaviours.
This leads us to conclude that post-processing is indeed the most general of the
above closure conditions. While we are still left with branching, which we can
view as a classical process on behaviours, it takes a somewhat different flavour,
and was not strictly introduced as a closure condition.
We can define the branching completion of a set S to be Sb. This is the set of
behaviours that are generated by all branching extensions of all behaviours in S.
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It is clear that Sb ⊇ S, as the branching extension includes the non-branching
scenario. We also know that for Q,Q1, Q̃, and JQM, S = Sb.
The remaining question is if SPJQM=SPJQMb, or equivalently if
SPJQMb=SPQJM. We know that (SPJQMb)

b=SPJQMb by definition. Hence,
we have the following relation

SPJQMb ⊆ SPJQM ⊆ SPQJMb. (3.5)

Corollary 28. For a subset S ⊆ SPJQM, branching and grouped parties
implies wiring.

The following results are applications of the closure conditions to some of the
device independent sets we have been discussing. The proofs are not dissimilar
to our own proofs for SPJQM in Subsection 3.1.2, and so we do not include
them.

Theorem 29. [55] Q1 is closed under wiring and convex combinations.

Theorem 30. [23] Q̃ is closed under post-processing.

It was proven by Lang el al [55] that there is a countably infinite nested
hierarchy of sets closed under wiring and convex, the NPA hierarchy sets. The
work also raised two questions regarding the structure of correlations 1) Are the
wiring and convex closed sets a continuum and 2) are all wiring and convex
closed sets are in the nested hierarchy 1? The latter was shown to be false by
Lang el al, while the former was, indirectly, swiftly answered in the positive by
Beigi el al [60]. It is not known if these results extend to the more general
post-processing.
One thing we should note about post-processing, is that we are considering only
classical processes. Unlike in a full theory, we are not able to use the device
independent formalism to consider the most general transforms under which a
set of behaviours should be closed. For instance, in QM, we expect that for 1
Exi

ai
7→ UxiExi

ai
Uxi† changes the behaviour P (⃗a|x⃗), yet is still in Q. Since every

operation can be considered a unitary (up-to conditioning), this is sufficient to
show full physical closure of the theory with respect to sets of behaviours. To
show a similar result for other sets, we need a definition of them in terms of
states, measurements and maps between states (kets, POVMs, unitaries). This
is the realm of GPTs, yet unfortunately, it is not simple, or guaranteed to be
possible, to construct GPTs from a set of behaviours.

1These appear as questions 3 and [negation of] 5 in [55]
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3.1.2 Applying device independent closure to histories sets

Since we expect device independent closure conditions to hold for a physical
theory, we should investigate sets that have appeared in the histories framework.
Firstly, we can compared JQM and SPJQM, and see that JQM fails one of the
most basic closure conditions.

Theorem 31. [54] JQM is not closed under composition

Theorem 32. [58][22] SPJQM is closed under composition.

Proof. Suppose P1, P2 are behaviours in SPJQM, then they are equivalent to
strongly positive decoherence functionals D1, D2, which are naturally isomorphic
with positive semi-definite matrices D̂1, D̂2 on their respective spaces of atoms.
The composition is given by D̂1 ⊗ D̂2 which is itself a positive semi-definite on
the tensor product of the two atomic spaces. Thus there is a behaviour PJ that
is equivalent to a strongly positive decoherence functional DJ , and so PJ is in
SPJQM.

At the level of the Hilbert space construction, this follows from the fact that
H1 ⊗H2 inherits an inner product ⟨·, ·⟩J that is the product of the inner
products ⟨·, ·⟩i on each Hi, giving the probabilities as P1(·)P2(·) as required for
independent scenarios.
Having seen that weak positivity is far too weak of a constraint, we can focus on
SPJQM.

Theorem 33. SPJQM is closed under post selection.

Proof. Suppose (Ω, S̃, P ) is in SPJQM. Then there exists a Hilbert space H
with vectors obeying the following conditions,

1. ∀X ∈ 2Ω, ∑
γ∈E

|{γ}⟩ (3.6)

2. ∀x⃗ ∈ S̃,∀E,E ′ ∈ ux⃗
⟨X|Y ⟩ = P (X ∩ Y ). (3.7)

Consider a partition of the parties into R, S, where we post-selecting for
(⃗aR|x⃗R). Then the new set of histories, Ω′, is the set of all histories with
γx⃗R1 = a⃗R. The event space

2Ω
′

(3.8)
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is a subset of the non-post-selected event space, so that every event E ′ ∈ 2Ω
′ is

in 2Ω. All the usual subsets of the event space, e.g. Õ′, S̃ ′, are defined similarly,
and distinguished from the non-post-selected versions by a inverted comma (we
note that all post-selected subsets are subsets of the non-post-selected subsets).
Consider that the probability distribution P ′ is defined on Õ′ as

P ′(E ′) =
P (E ′)

P (⃗aR|x⃗R)
, ∀E ′ ∈ Õ′. (3.9)

Hence, there is a behaviour (Ω′, S̃ ′, P ′). For every E ′ ∈ 2Ω
′, we define

|E ′⟩ps =
1

P (⃗aR|x⃗R)
1
2

|E ′⟩ (3.10)

and so for every history γ′ ∈ Ω′

|{γ}⟩ps =
1

P (⃗aR|x⃗R)
1
2

|{γ}⟩ . (3.11)

The span of all |E ′⟩ps, Hps, is a subspace of H. Hence condition (1) is satisfied.
Consider any two physical events E ′, F ′ ∈ ux⃗′ for any x⃗′ ∈ S̃ ′ (since these are the
post-selected subsets, these are automatically post-selected events). Then to
satisfy (2), we need

P ′(E ′ ∩ F ′) =
ps
⟨E ′|F ′⟩ps . (3.12)

which follows directly from Eqs 3.9 and 3.10. Hence, SPJQM is closed under
post-selection.

This result does not appear surprising, however there are nontrivial sets that are
not closed under post-selection [57].
The following result is rather trivial, yet notationally cumbersome.

Lemma 34. SPJQM is closed under identification of outputs.

Proof. Suppose (Ω, S̃, P ) is in SPJQM. Then we have the usual Hilbert space
construction. Suppose, without loss of generality, that the first party decides to
identify two of its outputs for measurement 1, labelled a⃗1 = 1 and 2, together to
give a new effective set outputs. The ‘vector’ of outputs a⃗ has

a⃗1 ∼ a⃗′1 if a⃗1, a⃗′1 = 1, 2, and x⃗1 = 1, (3.13)

where ∼ denotes the identification choice. Then we have a new behaviour
described by P̄ (α⃗|x⃗) = P̄ (Ē) where α⃗ is the new effective output vector due to
identification such that α⃗1 = 1 denotes the new effective output due to the
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identification of the 1 and 2 outputs to measurement 1, and α⃗1 = 2, ...,m1 − 1
denotes a⃗1 = 3, ...,m1. Hence, if α⃗1 = 1 = x⃗1

P̄ (α⃗|x⃗) = P (⃗a|x⃗) + P (⃗a′|x⃗) (3.14)

and if α⃗1 ̸= 1 or x⃗1 ̸= 1 then we identify P̄ (α⃗|x⃗) = P (⃗a|x⃗). or more generally

P̄ (Ē) =
∑

E′∈T (Ē)

P (E ′) (3.15)

where T (Ē) is the set of all events E that are identified together to give Ē. We
define the new atomic vectors as

|{γ̄}⟩ =
∑

γ′∈S(γ̄)

|{γ′}⟩ (3.16)

where S(γ̄) is the set of all atoms of the original behaviour that are identified
with γ̄. Then for Ē ∈ x⃗ ∈ ¯̃S

|Ē⟩ =
∑
γ̄∈Ē

∑
γ′∈S(γ̄)

|{γ′}⟩ =
∑

E′∈T (Ē)

∑
γ′∈E′

|{γ′}⟩ =
∑

E′∈T (Ē)

|E ′⟩ (3.17)

where the second equality follows by Appendix 6.1 and the final equality follows
from the original Hilbert space. Finally, given Ē, F̄ ∈ Õ

P̄ (Ē ∩ F̄ ) =
∑

E′∈T (Ē)

∑
F ′∈T (F̄ )

⟨E ′|F ′⟩ =
∑

E′∈T (Ē)

∑
F ′∈T (F̄ )

P (E ′ ∩ F ′)

=
∑

G′∈T (E∩F )

P (G′) =
∑

G′∈T (Ē∩F̄ )

P (G′) (3.18)

where it is easy to see that the sum in the final expression is over all events in
the original behaviour that have been identified together. Hence SPJQM is
closed under one party identifying two outputs. By induction we have our final
result.

We require the following trivial corollary, immediate from the definition of
SPJQM.

Corollary 35. SPJQM is closed under grouping of parties.

Lemma 36. Any parallel wiring of SPQJM behaviours with effective settings
and outcomes (˜⃗a|˜⃗x) has a representation |˜⃗a, ˜⃗x⟩ that obeys condition 2 of
SPJQM, i.e. that for any measurement outcomes (fine or coarsegrained), E,E ′

Pw(E ∩ E ′) = ⟨E|E ′⟩ (3.19)
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Proof. We will consider only deterministic complete wirings, where n devices are
shared between N parties. We can create the pre-wiring behaviour by sharing n
sets of N -party behaviours. This can be represented by composing all n
behaviours to produce an nN -party behaviour. Then group the parties as
follows. The kth effective party consists of the k,K +N, k + 2N...th parties,
giving N parties each made of n grouped parties. By Theorem 32 and Lemma
35 this new behaviour is an element of SPJQM. Finally, we must show that any
deterministic wiring gives another SPJQM behaviour. Non deterministic wirings
and non complete wirings follow from using a random source as one of the
shared devices, and Lemma 34 respectively.
We clearly have the correct atomic Hilbert space structure, following the tensor
product used in composition, and so 1 of SPJQM is satisfied. Hence, we need
only show that P (E ∩ E ′) = ⟨E|E ′⟩ for any E,E ′ corresponding to the same
inputs (since we are allowing arbitrary functions to be applied to the inputs, and
using outputs to pick other inputs, we distinguish inputs from measurement
settings). Hence, consider a fixed input, denoted I⃗. This contains the potential
settings for all nN parties, however in general they will be modified before
becoming actual measurement settings. We can consider the wirings as a chain
of deterministic functions, inputs and outputs etc.
Consider an effective event with effective settings ˜⃗x and effective outcomes ˜⃗a.
For each party, the settings of each behaviour are either decided directly from
the effective settings, or by a deterministic function of the effective settings and
the outcomes of other behaviours. Since it is a complete wiring, the effective
outcomes are simply a concatenation of the individual outcomes of the
behaviours, so the values of any functions of the effective settings and outcomes
of previous behaviours are fully determined, and hence the actual settings for all
behaviours are full determined by (˜⃗a|˜⃗x). Hence, we define the finegrained vector
associated to (˜⃗a|˜⃗x) to be

|˜⃗a, ˜⃗x⟩ =
n⊗

i=1

|⃗ai, x⃗i⟩ (3.20)

where i represents each behaviour in the wiring, xij in general depends on a ai′j
and x̃i′j for some i′ representing preceding behaviours in the wiring chain, and
the concatenation of a⃗i gives ˜⃗a. Clearly, the inner product between any two fine
grained outcomes will either vanish if the ˜⃗a do not match, or give Pw(˜⃗a|˜⃗x). As
before, to coarsegrain out any other parties, we sum all finegrained vectors that
agree on the parties we are not coarsegraining. The correct probabilities follow.

44



In order to satisfy condition 1 of Def 7, invert

|˜⃗a, ˜⃗x⟩ =
∑

γ∈(˜⃗a|˜⃗x)

|{γ}⟩ , (3.21)

to get the atomic vectors. From there, define

|E⟩ =
∑
γ∈E

|{γ}⟩ , (3.22)

and we are done.

Corollary 37. SPJQM is closed under post-processing.

3.2 Branching

We can now return our focus to branching, now using the lens of closure
conditions.

Lemma 38. A behaviour in SPJQM is in SPJQMb if and only if a vector space
construction can be found that satisfy the non-branching probabilities and the
additional decoherence (i.e. local orthogonality) conditions.

Proof. The backwards direction is immediate via contradiction. To see the
forward direction, take a behaviour in SPJQM and construct its unique
branching extension. All additional probabilities are coarse grained [22], and
given by the classical sum rule, and derivable from the non-branching vectors by
the vector sum rule, or they vanish due to LO, giving decoherence conditions.
After fixing the decoherence conditions, the atomic vectors can be found via
inverting the relations

|E⟩ =
∑
γ∈E

|{γ}⟩ . (3.23)

This is possible as the number of atoms and physical events is equal.

Hence, a proof that all behaviours in SPJQM are in SPQJMb could involve
finding a set of unitary matrices that rotate a normal SPJQM set of event
vectors, so that the new LO conditions are met, e.g.

|⃗a, x⃗⟩ 7→ Ux⃗ |⃗a, x⃗⟩ (3.24)

We then see that
⟨⃗a′, x⃗′|U †

x⃗′Ux⃗ |⃗a, x⃗⟩ (3.25)

recovers the original probabilities when x = x′ by unitarity, and we aim to pick
the operators such that the inner products vanish if x⃗, x⃗′ agree on at least one
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party, and a⃗, a⃗′ disagree on the same party, i.e. local orthogonality. Finding such
a set of operators is rather trivial,

Ux⃗ =
∑
a⃗′′

|⃗a′′⟩ ⟨⃗a′′, x⃗|N (3.26)

can be seen to satisfy exactly that, where |⃗a, x⃗⟩N is a normalised and complete
basis constructed from the associated event vectors (which are orthogonal, but
not normal or complete), and |⃗a⟩ is any orthonormal basis.

⟨⃗a′, x⃗′|U †
x⃗′Ux⃗ |⃗a, x⃗⟩ =

∑
a⃗′′

⟨⃗a′, x⃗′|⃗a′′, x⃗′⟩N N ⟨⃗a
′′, x⃗|⃗a, x⃗⟩ =

∑
a⃗′′

δa⃗,⃗a′′δa⃗′ ,⃗a′′ = δa⃗,⃗a′

(3.27)
as required. However, in order to meet the conditions we must also have the
correct coarsegrained vectors and inner products. Consider the (2 2 2) scenario
with finegrained vectors |a, b, x, y⟩. To get all coarsegrained probabilities it is
sufficient to ensure that

Uxy |a, x⟩ = |a, x⟩ (3.28)

etc, where we have absorbed the obvious global freedom Uxy 7→ V Uxy. This
imposes 4 additional conditions on each unitary, in the form of
eigenvector/values, and cannot be met in general, or even for all classical
behaviours, by Eq 3.26:

Ux⃗ =
∑
a⃗′′

|⃗a′′⟩ ⟨⃗a′′, x⃗|N |a, x⟩ (3.29)

= P (a, b|x, y) |a, b, x, y⟩N + P (a, b̄|x, y) |a, b̄, x, y⟩N (3.30)

= P (a, b|x, y)
1
2 |a, b, x, y⟩+ P (a, b̄|x, y)

1
2 |a, b̄, x, y⟩ (3.31)

̸= |a, b, x, y⟩+ |a, b̄, x, y⟩ (3.32)

unless either P (a, b|x, y) or P (a, b̄|x, y) vanish. Note that for fixed x, |a, x⟩ form
an orthogonal set, and so must span an eigenspace, and likewise for |b, y⟩.
However, the two eigenspaces are, in general, not equal or orthogonal, and so
typically the joint space they span is dimension 3. Let the space Hx,y ⊂ H be
the eigenspace

Hx,y = spana,b{|a, x⟩ , |b, y⟩}, (3.33)

and |i, x, y⟩ be an orthonormal basis spanning it. We can expand this basis to
the whole of H, and define the new unitaries

Uxy =
∑
i

|i⟩ ⟨i, x, y| (3.34)
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where |i⟩ is any fixed orthonormal basis. We then have∑
i

⟨a, b, x, y|i, x, y⟩ ⟨i, x′, y′|a′, b′, x′, y′⟩ = ⟨a, b, x, y|Vxyx′y′|a′, b′, x′, y′⟩ . (3.35)

Clearly, when x = x′, y = y′, V reduces to the identity and all the probabilities
are as expected.
Assume that x = x′, and a ̸= a′ = ā. Then∑

i

⟨a, b, x, y|i, x, y⟩ ⟨i, x, y′|ā, b′, x, y′⟩ = ⟨a, b, x, y|Vxyxy′|ā, b′, x, y′⟩ . (3.36)

must vanish.
It is important to note that non-signalling implies that for the (2 2 2) scenario,

| ⟨a, b, x, y|ā, b′, x, ȳ⟩ | = | ⟨a, b, x, y|a′, b̄, x̄, y⟩ | (3.37)

where ȳ is the opposite of y, is constant with respect to a, b, b′, x, y, e.g.

⟨a, b, x, y|ā, b′, x, ȳ⟩+ ⟨a, b̄, x, y|ā, b′, x, ȳ⟩ = ⟨a, x|ā, b′, x, ȳ⟩ = 0. (3.38)

This implies that if one LO inner product is zero, and all condition 2 of Def 7 is
satisfied, the all LO inner products are zero. Since any unitary Uxy leaves
condition 2 alone, we simply need a family of Uxy that send any of the inner
products of the form Eq 3.37 to zero.
This gives us the following conditions on the family Uxy where we take a, b, b′

fixed

1. ⟨a, b, x, y|U †
xyUxȳ|ā, b′, x, ȳ⟩ = 0 = ⟨a, b, x, y|U †

xyUx̄y|a′, b̄, x̄, y⟩ = 0

2. Uxy |a, x⟩ = |a, x⟩ and Uxy |b, y⟩ = |b, y⟩
or

1. ⟨a, b, x, y|U †
xyUxȳ|ā, b′, x, ȳ⟩ = 0

2. U †
xyUxȳ |a, x⟩ = |a, x⟩ and U †

xyUx̄y |b, y⟩ = |b, y⟩
While we do not complete a proof of existence for these unitaries, these results
seem to imply that at least for the (2 2 2) scenarios, SPJQM is compatible with
branching. This does not go against our intuition, as we have already seen that
(2 2 2) is a special scenario with respect to local orthogonality (see Section
2.1.2) and as pointed out earlier there is a relationship between local
orthogonality and branching that has not yet been fully investigated. While
scenarios with more parties, measurements, or settings do not have the same
automatic local orthogonality as (2 2 2), this may not be an issue, as branching
seems more closely related to orthogonal sets of size 2, which always satisfy the
normalisation property. This suggests that branching may always be possible for
SPJQM, however we have not shown this.
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Chapter 4

Operational QFT

4.1 GPTs and Ludwig’s theorem

4.1.1 The no-restriction hypothesis

As well as the reasons provided in section 2.2.2, another reason to believe that
the no-restriction hypothesis is not a good choice is that its analogue is far less
obvious in the case of QFT. As shown by Sorkin, a naive extension of the
projective measurement postulate allows for signalling measurements[5]. Further
research has shown that this result holds even when considering (smeared) local
operators [61]. This is in stark contrast to QM, where no-signalling is an almost
trivial theorem. GPTs do appear not to have been extended in the literature in
such a way to cover QFTs, often assuming state spaces that are isomorphic to Rd

or at the very least separable. The space of states in typical, or rather; realistic,
QFTs are neither. Since QFTs have been known to be a better model of reality
than QM for over 70 years, it is imperative that QFT is folded into the mix.
It is often implied that quantum foundations research is consistent with special
relativity, mainly due to the ironclad loyalty to non-signalling, however
non-signalling is only one of many consequences of relativity12, and many papers
explicitly accept that including QFT is a significant complication due to the
many difficulties posed by the theory[63]. It is not clear how many authors are
thinking of measurements, and how many are thinking of the complications of
uncountable dimensional Hilbert spaces, such as divergent physical observables,
unitarily inequivalent representations aka the choice problem, or any other host
of issues. Of course, the latter are significant technical issues, however a general
consensus has been reached by field theorists, due to the success of Wilson’s and
others’ work on effective field theory, that such issues stemming from the Hilbert

1For instance, non-relativistic QM obeys non-signalling in the device independent framework, yet allows
arbitrarily high velocities and thus violates causality.

2See [62] for a discussion on the relationship between non-signalling and causality
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space can almost always be absorbed into counter-terms, and are not
pathological [3]. Since these counter terms are fixed by a choice of finite cut-off,
with a finite number of measurements the theory is fixed, becomes fully
predictive, and can be studied in an operational sense. With measurement
however, it does not seem clear how many of the operational approaches carry
over in any sense to a theory that has yet to have an operational definition of
measurement formulated. Non-signalling is imposed immediately by QM, yet
must be put in by hand in QFT. This ‘embarrassment’ has been avoided both
by field theorists and foundations researchers, who have considered only single
measurements on compact or boundary spacelike surfaces (e.g. detector
geometries) and finite dimensional QM respectively.

4.1.2 QFT as a GPT

To the author’s knowledge, there are no published explorations of QFT in the
GPT framework, as the vast majority of works assume a finite dimensional state
space. There are, however, studies based on infinite dimensional spaces, and
Ludwig’s theorem applies equally to infinite dimensional vector spaces as it does
to finite dimensional. Here, we look at the minimal requirements a QFT1 must
meet as a GPT. Finally, we provide evidence towards a conjecture, based on
[61], that no QFT can satisfy the no-restriction hypothesis.
To begin with, we give an argument that any QFT satisfies Ludwig’s theorem,
which gives sufficient conditions for a theory to be a GPT. The GPTs considered
are based on Banach spaces [64, 65], rather than the more typical finite
dimensional real spaces [31].
We will work in the algebraic QFT framework (AQFT), and consider only free
real scalar fields. Observables and states in AQFT are given by self adjoint
operators and linear functionals of them. More concretely, consider the usual
unital ∗-algebra of all observables A, generated by (smeared) field operators
ϕ(f) and the identity, and the set of positive linear functionals (we do not take
these to be normalised) of A, denoted S(A).
To begin, we need the following three axioms, which are taken, in inexact form,
from. More precise formulations can be found in the source.

1. States that are not distinguishable by any effect are, to all intents, the
same.

2. There are effects that ‘always accept’ and ‘never accept’, and for any effect,
its negation is also an effect.

1From here onwards, ‘QFT’ refers only to relativistic QFTs.
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3. One can perform probabilistic mixtures of states (effects) and obtain a
valid state (effect), and purposes the same state, and vice versa.

We will assume that a representation exists, so that every state can be
associated to a vector on the Hilbert space. Firstly, two states |ψ⟩ , |ψ′⟩ cannot
be distinguished by an effect are in the same ray, and so we can consider the
state space to be the set of rays.
Secondly, there is always an identity operator I, and a null operator O. The
actions 1

tr(ρ) tr(Iρ) = 1 and 1
tr(ρ) tr(Oρ) = 0 give us our always yes and no

operators. Suppose ρ, ρ′ are non trivial states, satisfying

tr(Pρ′)
tr(ρ)

= 0,
tr(Pρ′)
tr(ρ′)

= 1 (4.1)

then, by linearity

tr((1− P)ρ′)
tr(ρ′)

= 1,
tr((1− P)ρ′)

tr(ρ′)
= 0 (4.2)

and so there exists a negation.
Finally, the state space automatically includes density operators, and so we are
only left with showing that mixtures of effects are effects. However, effects are
clearly also closed under convex operations as they are an algebra.
To investigate GPTs in more detail we must introduce several concepts from
convex analysis.

Definition 39. An ordered vector space is a real vector space V with an
ordering ≤ such that obeys translation

x ≤ y =⇒ x+ z ≤ y + z, (4.3)

and positivity
x ≤ y =⇒ λx ≤ λy (4.4)

for all λ > 0.

An important subset of the real vector space can be generated by a convex set.

Definition 40. A subset C of a real vector space V is a cone if it is closed
under addition, multiplication by positive scalars, and contains no non-trivial
vector subspaces, i.e. C ∩ −C = {0}

We have the following trivial result.
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B

u

C

Figure 4.1: A convex cone C, with base B, generated by u.

Lemma 41. The subset C of an ordered vector space V

C = {x ≥ 0 : x ∈ V } (4.5)

is a cone.

Proof. Let x, y ∈ C, λ > 0. Then x+ y ≥ x ≥ 0 and λx ≥ 0, so it is closed
under addition and multiplication by positive scalars. Finally,
C ∩ −C = {0 ≥ x ≥ 0} = {0}. Hence C is a cone.

We call such a cone a positive cone, and denote it as V+, as it is uniquely picked
out by the choice of ordering of V .
The following definition and lemma support our assertion that we can generate
cones from convex sets.

Definition 42. For an ordered vector space V the set K is a base of the
positive cone if for all x ∈ V+, there is a unique t ≥ 0

xt ∈ K. (4.6)

Lemma 43. For a real vector space V with dual V ∗, bilinear form ⟨·, ·⟩, and
positive cone V+, every base K, where defined, is

K = {x ≥ 0 : ⟨u, x⟩}. (4.7)

See Fig 4.1.
Given a cone in a vector space, we want to be able to discuss its dual, the set of
positive functionals on the cone, as this will allow us to define our effect set.
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Definition 44. For a real vector space V with dual V ∗, bilinear form ⟨·, ·⟩, and
positive cone V+, the dual cone V ∗

+ is a subset of V ∗ such that

∀s ∈ V, e ∈ V ∗
+, ⟨e, s⟩ ≥ 0. (4.8)

Finally, we define the form of normed vector space that Ludwig’s theorem
embeds the state and effect spaces into.

Definition 45. A Banach space is a real vector space with a norm such that it
is complete, i.e. every Cauchy sequence converges to a limit point in the space.

Example 4.1.1. To tie these concepts together, we can take the example of a
single qubit. Pure states live the Hilbert space H ∼= C2, while the mixed states ρ
act on it. Any pure qubit can be described by 2 numbers, giving us the Bloch
sphere, while mixed states live in its interior. Hence, any normalised mixed
state is described by an element of R3 with norm |x⃗| ≤ 1,

ρ =
1

2
v⃗ · σ⃗. (4.9)

This Bloch ball is an example of the convex set of states.
To account for non normalised states, we include a 4th coefficient, so that the
state space is the set of all w⃗ ∈ R4 with w⃗0 ∈ [0, 1] and w⃗i ∈ the Bloch ball, so
that

ρ =
1

2
w⃗ · σ⃗+ (4.10)

where σ⃗+ = (I, σ⃗). The variation of w⃗0 corresponds to constructing a cone from
the convex set, where we note that the measurement I is (trivially) isomorphic
to I, and acts as the effect u.
See Fig 4.2.

Theorem 46. Given a set of states and effects satisfying Ludwig’s axioms,
there exists a GPT, where

1. The (reliable) states form a convex set Ω, with the boundary given by the
pure states and the interior by the mixed.

2. The effects are elements of V ∗
+ ∩ (u− V ∗

+) where u is the unit effect.

3. Closure(Ω) and u form a base for the cone V+, and the unreliable states are
in the cone.

4. The canonical form between the two vector spaces, evaluated on the states
and effects, coincides with the probability P .
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unreliable states

mixed states

pure states

V ∗
+

u− V ∗
+

u

Figure 4.2: The state (left) and effect (right) spaces of a GPT.

By Ludwig’s theorem, a QFT can thus be expressed as a GPT where
S ⊆ V,E ⊆ V∗ are the images of S(A) and A under the embeddings,
respectively, and there is a closed positive cone V ⊆ S of which Closure(S) is
the base. The canonical bilinear form ⟨·, ·⟩ : V∗ × V −→ R, restricted to E× S,
is the ‘pushforward’ of µ by the embeddings. The element u is mapped into E
such that it defines the base.

Definition 47. A GPT satisfies the no-restriction hypothesis if every e ∈ [0, u]
is a physically valid effect.

We state the following theorem, proven in the case of finite dimensional real
vector spaces. We do not attempt to prove it in the case of general Banach
spaces, however it stands to reason that it should follow.

Theorem 48. [39] For a GPT with state cone V which satisfies the NRH, the
effect space E

V ∗
+ ∩ (u− V ∗

+). (4.11)

See Fig 4.2.

4.2 Ideal measurements in QFT

Unlike in the case of QM, ideal measurements in QFT are a somewhat thorny
subject. Few QFT textbooks cover them, perhaps accidentally implying that the
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Figure 4.3: Patch of spacetime showing a causal curve (A), acausal curve (B), spacetime region
C, and its causal past and future (D), (E)

measurement formalism from QM is sufficient. As we have discussed, this is not
the case. Even without Sorkin’s impossible measurements, the standard model is
a local QFT, and so we need a concept of local measurement. In QM, this is
often handed by having separated labs be in a tensor product. However, the
Hilbert space associated with a QFT is (always) non-separable, and so we must
be construct a measurement paradigm with a different, Lorentzian, notion of
locality in mind.
To begin with, we recall some concepts from the study of Lorentzian manifolds.

Definition 49. A curve Γ : [a, b] −→M in a Lorentzian manifold (M, g) is
causal if its tangent vector is time or lightlike along its entire length, i.e.

g

(
d

dt
Γ(t),

d

dt
Γ(t)

)
≤ 0 ∀t ∈ [a, b], (4.12)

where we are using a mostly positive signature. A curve is future (past) directed
if its tangent is oriented into the future (past)1.

See Fig4.3 curves A and B.

Definition 50. The causal future (past) of a subset S of a Lorentzian manifold
(M, g) is the set of all points M that can be reached by a future (past) directed

1This requires the manifold be time-orientable. We assume this property
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causal curve. Two subsets are spacelike, or causally disconnected, if they are not
in each others causal past or future, i.e. all points in one subset are spacelike
with all points in the other.

See Fig4.3 regions C and D.
Having defined some concepts of causal structure, we now wish to find a concept
of local operators on the manifold.

Definition 51. A subset S of a Lorentzian manifold (M, g) is causally convex if
every causal curve Γ : [a, b] −→M with endpoints in S is entirely in S, i.e.

Γ(a), Γ(b) ∈ S =⇒ Γ[a, b] ⊆ S. (4.13)

A region is an open set that is a causally convex.

Example 4.2.1. Consider a 1 + 1 spacetime and a diamond set D with vertices
at (0, 0), (1,−1), (1, 1), (2, 0), see Fig 4.4. Pick any point P in D, and draw its
future lightcone C. Then any causal curve with start point P must be entirely
contained in that lightcone, including the end point Q. By picking endpoint Q in
D and drawing its past lightcone, we see that any causal curve connecting them
must be contained in the past lightcone C ′. The intersection C ∩ C ′ is a subset
of D, and so D is causally convex.

It is with respect to regions of spacetime that the locality of a QFT algebra is
defined. Given the algebra A(M) defined on the manifold M , the algebra A(R)
defined on the region R is a subset of it, and is generated by the smeared local
field operators ϕ(f), where f is a test function with compact support
supp f ⊆ R. The relationship between algebras defined on disconnected regions
is how locality is imposed. Hence, we need the following definitions.

Definition 52. The causal compliment of a subset S ⊂M is the set of all
points that are spacelike to all points in S.

Definition 53. Einstein causality states that for any two operators that are
elements of algebras defined on spacelike regions, they commute, i.e.

X ∈ A(R), Y ∈ A(R′) =⇒ [X, Y ] = 0, (4.14)

if R,R′ are spacelike. This is sometimes written as

[A(R),A(R′)] = 0. (4.15)

This is the textbook ‘locality’ condition in AQFT, and can be seen as a natural
generalisation of the commutivity of local operators on a tensor product space.
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Figure 4.4: A spacetime diamond (blue) is causally convex, as the lightcone at any point of a
curve in the diamond forbids the curve from leaving the diamond and returning.

It should be clear that such a property is necessary, as without it any two
measurement operators acting on spacelike regions of the manifold could be
applied in either order, and this ambiguity matters if and only if they do not
commute.
Finally, we apply these concepts to measurement. To do so, we must define an
ideal measurement of a (possibly unbounded) operator. Following [66] Borsten
et al,

Definition 54. A resolution R is a countable set (indexed by I) of mutually
disjoint Borel sets of R or intervals of R, which are sets that can be formed by
countable union, countable intersection, and relative complement of open sets,
and are complete, i.e.

Bn ∩Bm = ∅, Bn, Bm ∈ R, n ̸= m (4.16)

56



and ⋃
n∈I

Bn = R. (4.17)

For an operator A with spectral decomposition

A =

∫
σ

λdPA(λ), (4.18)

P (Bn) = En is a projection operator, and

EnEm = Enδn,m,
∑
n∈I

En = I. (4.19)

As in regular QM, we consider ideal measurements, obeying the projection
postulate, with the additional condition of locality. Consider a compact subset
K of a spacetime M . Locality demands that we can only measure local
operators defined on regions of K. We do not condition over each outcome,
instead taking a mixture of each updated state, i.e.

ρ
measure A7−−−−−→

∑
n

EnρEn, (4.20)

where En are the projections associated with a resolution R and A ∈ A(R) for
some region R ⊂ K. This is the same as the usual projection postulate, without
conditioning on a particular outcome n, so called non-selective ideal
measurement. By the usual machinery of trace preserving completely positive
maps (CPTP) we know that this is a map on the set of density operators, and
we can represent it as an operator on the space of states,

E(ρ) =
∑
n∈I

EnρEn, (4.21)

or equivalently on as an update map on the set of (bounded) operators

E(X) =
∑
n

EnXEn, (4.22)

where the equivalence of these pictures follows from the cyclic property of the
trace. The update map is defined by the choice of operator to measure and the
choice of resolution, so we can label it as EA,E .

Definition 55. Given a compact subset K, an update map E is local to K if it
is trivial when spacelike to K, i.e.

E(X) = X, ∀X ∈ B(K⊥). (4.23)
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Lemma 56. An ideal measurement of a smeared local field operator ϕ(f) is
local to any compact subset K that contains supp f .

Proof. Let f be a test function with support supp f , and K be a compact subset
with supp f ⊆ K. Suppose we act on some bounded operator X local to some
region of K⊥, then
From Einstein causality, [ϕ(f), X] = 0 as the operators are local to regions
spacelike to each other. The spectral theorem then implies [En, X] = 0. Hence,

E(X) =
∑
n∈I

EnXEn =
∑
n∈I

E2
nX =

∑
n∈I

EnX = X. (4.24)

4.2.1 Sorkin scenarios

A Sorkin scenario consists of three compact, disjoint subsets of M , A,B,C, such
that C is partly in the causal future of A (the overlap of the causal future of A
with C is non-empty) and B is partly in the causal future of C, but B is not in
the causal future of A, see Fig 4.5. Alice, Bob, and Charlie are free to perform
local updates on A,B,C respectively. Sorkin pointed out that local projective
update maps can allow signalling between Alice and Bob. These are referred to
as Sorkin’s impossible measurements, and demonstrate that locality does not
ensure causality. Suppose Alice and Charlie update the state locally using
OA, OC respectively. The expectation value that Bob measures is

tr(ρEOC
(EOA

(X))) (4.25)

while we should expect by causality that

tr(ρEOC
(X)). (4.26)

Since A,C are not causally disconnected, we cannot rely on locality arguments
to ignore the action of EOA

. As shown by Sorkin, there are choices A,C,B and
OA, OC such that Eq 4.25 and 4.26 are not equal, and so Bob can learn if Alice
interacted locally or not, despite A,B being causally disconnected.
Despite being pointed out 30 years ago, there are still unanwsered questions
regarding Sorkin’s impossible measurements, namely: what measurements are
allowed? A common line research is to construct a von-Neumann type setup,
with the field coupled to another field or to some finite dimensional ancilla
[67, 68]. As with the normal measurement problem, this leads to a recursive
‘solution’. What measurements are allowed on the ancilla, and does it need its
own ancilla etc? Another path involves constructing models of physical
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Figure 4.5: Spacetime diagram of a Sorkin scenario, showing the three regions A,B,C, where
C is partly in the causal future of A, and B is partly in the casusal future of C, yet A and B
are spacelike.

measurement apparatus, à la Unruh-Dewitt [69]. However, an operational
definition of allowed measurements or maps is still missing [66], unlike in non
relativistic QM, where any CPTP map is an allowed map, and can be imagined
as a unitary acting on the system coupled to an ancilla via the Stinespring
dilation theorem. An equivalent formulation for QFT is an open problem, and
counter-intuitive results are still being found. It has been proposed numerous
times that smeared local field operators are causal [5, 66, 68], yet recent research
suggests otherwise [61, 70]. This provides some of the first evidence that local
operators can be acausal, and leads us to the following:

Conjecture 57. QFTs violate the no-restriction hypothesis.

In aid of this conjecture we investigate smeared local field operators in the GPT
framework.

Lemma 58. Take a QFT described by a GPT (S, E), where S is the closure of
the embedding of S ⊆ S(A) with S obeying the Luwdig axioms, and E is the full
effect space in 48, as a subset of (embedded) A.
Then smeared local field operators are in E .

Proof. Every state ω ∈ S is associated in a representation (GNS) with |Ω⟩.
Hence, under the embedding given by Ludwig’s theorem, ω ∈ S for any valid
QFT. Clearly, 0 ≤ tr(|Ω⟩ ⟨Ω|ϕ(f)) ≤ 1. Hence, ϕ(f) ∈ E .
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Lemma 58 is robust, as it holds even if we consider a restricted subset of states.
As proposed in [70] and demonstrated for real scalar fields in [61], measurements
of smeared local field operators are not causal. Hence, QFTs, which take
Poincaré invariance as an axiom, can be expected not to satisfy the NRH. The
acausality of local field operators has only been demonstrated for real scalars,
and requires a number of, albeit reasonable, assumptions that have only been
derived from first principles for 1 + 1 theories. While 58 is robust with respect
to choice of state subsets, we have not demonstrated its robustness with respect
to effect subsets. One way that the conjecture could be sidestepped is that if,
when it has been found, the set of causal measurements is embedded into the
dual Banach space in such a way that the no-restriction hypothesis is satisfied.
However, this requires further investigation, and there is no guarantee that the
causal subset would be embed in such a way as to satisfy no-restriction.

4.2.2 Sharpening the conjecture

One possible criticism of the above argument is that unbounded operators do
not correspond to physical measurements, as any real measurement device has
bounded readout, e.g. CCDs have finite sensitivity and become saturated at high
luminance, and physical dials have finite travel. Often, the algebra of interest in
AQFT is the bounded algebra B, of which ϕ(f) is not an element. Hence, to
strengthen the conjecture we can introduce the limited local field operator,

ϕba(f) =

∫
σ∩[−a,b]

λdP ϕ(f)(λ), (4.27)

where we have used the spectral theorem to expand the self-adjoint ϕ(f) into its
spectrum σ and introduced a cut-off for the operator so that it has no spectrum
outside of [−a, b]. This operator is bounded,

||ϕba(f)|| = supλ∈σ(ϕb
a(f))

(|λ|) = supλ∈σ(ϕ(f))∩[−a,b](|λ|) ≤ max(a, b), (4.28)

where we have used that the spectral radius

ρ(A) = supλ∈σ(A)(|λ|) (4.29)

of a self adjoint operator is equal to its operator norm [71]. Thus, it is an element
of the algebra B(R) ⊂ A(R) where supp f ⊆ R. It also converges to ϕ(f) as
a, b→ ∞ under the strong operator topology. To see this, let D be the dense
subset of H for which ϕ(f) is defined. Then, strong convergence is equivalent to

||ϕba(f)x− ϕ(f)x|| → 0, ∀x ∈ D. (4.30)
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For any x ∈ D, we have ϕ(f)x ∈ H, and so ||ϕ(f)x||2 is finite. We can view
H = L2(Rd). Let ε > 0. There are two cases. If ε > ||ϕ(f)x|| then for any
a, b ≥ 0, ||ϕba(f)x− ϕ(f)x|| < ε. Otherwise, if ||ϕ(f)x|| ≥ ε, then there exists a
n ∈ R such that ∫ n

−n dλ|ϕ(f)x|
2

||ϕ(f)x||2
> 1− ε2

||ϕ(f)x||2
. (4.31)

This follows from the fact that I(n) =
∫ n

−n dλ|ϕ(f)x|
2 is a monotonically

increasing function and that ||ϕ(f)x||2 is finite. Picking a, b > n, we have that∫ b

−a dλ |ϕ(f)x|
2

∥ϕ(f)x∥2
> 1− ε2

∥ϕ(f)x∥2
=⇒

∫
R\[−a,b]

dλ |ϕ(f)x|2 < ε2. (4.32)

Hence,

∥∥ϕ(f)x− ϕba(f)x
∥∥ =

∥∥∥∥∫
R\[−a,b]

dλϕ(f)x

∥∥∥∥ ≤
(∫

R\[−a,b]

dλ|ϕ(f)x|2
) 1

2

< ε,

(4.33)
where we have used Cauchy–Schwarz for the penultimate inequality.
By an identical argument to 58, it is also a member of E (under the embedding).
Unlike with the unbounded operator, we are considering resolutions of [−a, b],
and so the Appendix 10.7 of [61], where it is shown all resolutions of R lead to
acausal update maps, does not apply directly. We do not prove an equivalent,
instead showing that a natural coursegraining of [−a, b] into N bins
Bn = [cn, cn+1), n < N,BN = [cN , b], with c1 = −a, which satisfy the definition
of a resolution of [−a, b], leads to an acausal update map. This does not prove
that all ϕba(f) measurements are acausal, however it shows the existence of at
least one, which is sufficient. The proof of this fact is left to Appendix 6.3.
Hence, there are bounded linear operators in AQFT that are acausal, and so we
have strengthened our conjecture: QFT violates the no-restriction hypothesis.
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Chapter 5

Final remarks

5.1 Discussion

In our investigation, we have seen how each approach to foundations emphasises
and de-emphasises fundamental questions. It is clear that, at least at this stage,
none of the frameworks explored are able to answer every question. The device
independent framework allows us to quickly make strong statements about the
strength of non-classical behaviours such as non-locality and contexuality.
However, it provides little in the way of answers regarding the dynamical or
operational structure of the theory, and it seems unlikely that an experimental
proposal could be born out of device independent research alone.
The GPT framework allows us to focus on the operational structure as the
fundamental structure of a theory, and provides a complete, albeit often not
natural, definition of a state and measurement. It has shown that many
non-classical behaviours are generic, strengthen the results of the device
independent framework, While it is possible to impose dynamics as maps
between states, this gives little evidence of their form.
With the histories framework, we have no operational definition, states, or
measurement, yet experiments feel far more tangible. Following the usual
histories idea, that all measurements are measurements of position, and given
that any quantum measure is defined over spacetime trajectories, it feels far
more plausible that an experiment could be proposed1. Equally, the main object
of study is the decoherence functional, which encodes the dynamics, placing
them front and centre, in contrast to the other two approaches. However, there
are still many open questions around the proper form of the decoherence
functional, and the tie-ins to the device independent formalism imply a rich
connection between constraints on correlations and constraints on the
decoherence functional.

1In fact, this has been done. Tests of higher order interference have been conducted, with only negative
results so far [72]
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Throughout this work we have commented on the possible validity of some of
the results. For instance, while the device independent principles provide a clear
operational definition for many sets of behaviours that have been elsewhere
defined, it is the author’s opinion that many are well motivated. We have
discussed the issues of many of the information based principles like information
causality and no trivial communication/computation, as well as macroscopic
locality/non-contextuality. Far more work must be done if we are to accept these
not just as convenient definitions of behaviour sets, but axioms used to exclude
‘unreasonable’ behaviours. Similarly, we have commented on strong positivity
and the no-restriction hypothesis. SP, like the device independent principles,
appears to exclude a large number of behaviours that we do not expect to exist,
however work is still on-going to give it motivation [51]. While there is evidence
that almost quantum and SPJQM ccould coincide, the branching issue is still
unresolved, and the original results of Chapter 3, which show that SPJQM is
itself closed under post-processing and may imply that SPJQM and SPJQMb

coincide for (2 2 2), have not clarified the issue of a motivation for SP.
In sharp contrast, the no-restriction hypothesis seems to exclude many physical
theories preemptively, and we have tried to argue that it would exclude what is
often considered to be the most successful physical theory ever written down,
quantum electrodynamics [73], and relativistic QFT more generally. While more
work needs to be done to confirm this conjecture, our aim is also to push back
somewhat on the often stated, yet rarely justified, statement that quantum
theory (as a whole) satisfies the no-restriction hypothesis. It is perhaps
unsurprising that statements like these exist, quantum foundations is a
extremely broad field, covering effectively every physical theory we can imagine,
and based on a number of frameworks and approaches that are not compatible in
general, and many researchers stay away from fully relativistic quantum theory,
“However, since relativistic quantum-field theory has well-known technical
difficulties, we will in subsequent sections formulate a standard nonrelativistic
quantum model...”-Aharonov el al [63].
It is to this end that we have aimed to state and prove new connections between
three frameworks, and with relativistic quantum theory, as well as clear up what
we believe to be misunderstandings in the literature caused by the disconnect
between approaches.

5.2 Conclusion

We have presented a number of known and novel results from across three
quantum foundations frameworks, emphasising the connections and tensions
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between the approaches. We have strengthened the connection between the
histories set SPJQM and device independent closure conditions by showing
closure under post-processing. Further, we have hinted at a connection between
the device independent principle ‘local orthogonality’ and the histories principle
‘branching’. If further investigation of this connection bears out, then it would
imply that any SPJQM is compatible with branching and that SPJQM=Q̃,
again strengthening the connection between the device independent and
histories frameworks. Finally, we have investigated and critiqued a number of
principles in the device independent and GPT frameworks, suggesting that some
principles should not be used to rule out sets of behaviours without further
investigation. Namely, we have given evidence that QFT violates the
no-restriction hypothesis, contradicting the implication that almost quantum
should be abandoned for violating it.
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Chapter 6

Appendix

6.1 ΣT = ΣS

We must show that ∑
Ā∈X̄

∑
A′∈S(Ā)

|A′⟩ =
∑

X ′∈T (X̄)

∑
A′∈X ′

|A′⟩ (6.1)

i.e. T [X̄] = S[X̄] where the square bracket sets denote (super)set of atoms that
appear in the usual event subsets. In set notation

S[X̄] =

{
A atom of 2Ω|Aij = Āij for i, j > 1, Ā ∈ X̄, A11 = 1 or 2 if ¯⃗x1 = 1,

otherwise A11 = Ā11 + 1

}
, (6.2)

and

T [X̄] =

{
A atom of 2Ω|A ∈ X ∈ Õ, X̄ = (¯⃗a|¯⃗x), X = (⃗a|x⃗), x⃗ = ¯⃗x,

a⃗ = ¯⃗a if x⃗1 ̸= 1, otherwise a⃗i = ¯⃗ai for i > 1 and

a⃗1 = ¯⃗a1 + 1 if a⃗1 > 1 otherwise a⃗1 = 1 or 2
}

(6.3)

where it should be understood that X̄ may denote a fine or coarse-grained
event. In the case of a coarse-grained event X̄ such that the first party is
ignored, both sets are trivially equal, as they contain only the atoms of X = X̄.
In the remaining cases, fine-grained or coarse-raining but not ignoring the first
party, the following derivation holds.
Let A ∈ S[X̄]. Then there are two cases.
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Case 1: A11 = 1, 2 and ∃Ā ∈ X̄, with Aij = Āijj, i ̸= 1 . Let X ∈ Õ with
x⃗ = ¯⃗x, a⃗i = ¯⃗ai for i > 1 and a⃗1 = Ax⃗11. Then A ∈ X and so A ∈ T [X̄].
Case 2: A11 > 2 and ∃Ā ∈ X̄ with Aij = Āijj, i ̸= 1 and Ā11 + 1 = A11. Let
X ∈ Õ with x⃗ = ¯⃗x, a⃗i = ¯⃗ai for i > 1 and a⃗1 = ¯⃗a1 + 1. Then A ∈ X and so
A ∈ T [X̄]. Hence S ⊆ T
The converse follows similarly, and so T = S.

6.2 Atomic vectors

For every basic measurement xi, we selected one outcome (a′i|xi), and define for
all the other outcomes (ai|xi) etc

H(ai|xi) = {|⃗a′′, x⃗′′⟩ (⃗a′′|x⃗′′) ∈ Õ, (ai|xi) ⊂ (⃗a′′|x⃗′′)} and E(ai|xi) = Proj(H(ai|xi))
(6.4)

where we note that local orthogonality implies that E(ai|xi)E(a′′i |xi) = δaia′′i E
(ai|xi)

and then define E(a′i|xi) such that∑
(ai|xi)∈xi

E(ai|xi) = I (6.5)

i.e. such that the projectors form a complete set and orthogonality of the
projectors follows. Let a⃗ ∈ ux⃗ be an outcome with
a⃗ = (a1, a2, ...an) = a1 ∩ a2... ∩ an and define

E(⃗a|x⃗) = E(a1|x1)E(a2|x2)...E(an|xn). (6.6)

Define the new vectors
|γ⟩ =

∏
(ai|xi)∈I(γ)

E(ai|xi) |Ω⟩ (6.7)

where I(γ) is the set of all outcomes (ai|xi) such that
γ = (a1|x1) ∩ (a2|x2) ∩ ...(an|xn). Finally, we need to show 1 of SPJQM.∑

γ∈(⃗a|x⃗)

|γ⟩ = E(⃗a|x⃗)
∑

(⃗a′|x⃗)∈x⃗

|⃗a′, x⃗⟩ = |⃗a, x⃗⟩ (6.8)

satisfying (⃗a|x⃗) ∈ x⃗. By the sum rule 1 of Q̃, we can immediately extend this to
all fine and coarsegrained physical measurement outcomes in Õ. Finally, we let
Eq 6.7 define vectors for all non physical events and we are done.
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6.3 Acausal bounded field operator measurements

By Section 6.4 of [61], for an ideal measurement with resolution R,

Rt =
⋃
n∈I

Bn ∩ (Bn + t) (6.9)

must equal ∅ or [−a, b] for every t ∈ R if the update map is to be causal. Let
m = textmin(cn+1 − cn) where cN+1 = b.

Bn ∩ (Bn + t) =


{
[cn, cn+1) ∩ [cn + t, cn+1 + t) if n<N
[cN , b] ∩ [cN + t, n+ t] otherwise

if 0 ≤ t < m

0 otherwise
(6.10)

=


{
[cn + t, cn+1) if n<N
[cN + t, b] otherwise

if 0 ≤ t < m

0 otherwise
(6.11)

Then, for 0 < t < m, we have

Rt =

(⋃
n∈I

[cn + t, cn+1)

)
∪ [cN + t, b] ̸= ∅ (6.12)

we can see, assuming N > 1, by picking τ = c2 + t/2 that τ ∈ [−a, b] and
τ /∈ Rt. Hence, Rt ̸= [−a, b] or ∅ for 0 < t < m. By Claim 6.1 in [61], Eϕb

a(f),R is
acausal.
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