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Abstract

This dissertation aims to review the current methods of obtaining numerical Calabi-

Yau metrics. We start by introducing complex manifolds and study the geometry

and structure of a Kähler manifold. We review the celebrated theorem of Yau and

motivate the study of Calabi-Yau manifolds in physics. We then discuss the suc-

cess and limitations of the two mainstream algorithms which solve for a numerical

Calabi-Yau metric, namely Donaldson’s algorithm and the Energy functional ap-

proach. With the recent advancements in the field of machine learning, physicists

and mathematicians apply neural networks to approximate the Calabi-Yau metrics

with greater efficiency but sometimes less accuracy compared to traditional numer-

ical methods. At the end of this dissertation, we will discuss if machine learning is

necessary in the study of numerical Calabi-Yau metrics, and discuss how this rapidly

evolving technology can help string theorists in their computations.
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1 Introduction

String theory is by far one of the most promising candidates in unifying quantum

theory with general relativity. It posits that the fundamental building blocks of the

universe is an object with two degrees of freedom, called strings. The first formu-

lation of a string theory is called the Bosonic string theory which is only consistent

in a 26-dimensional space. However, it has no fermionic content as suggested by

the name of the theory and allows the existence of tachyons. Later developments in

string theory led physicists to formulate the superstring theory which solves the pre-

viously mentioned problems. Superstring theory is formulated in a 10-dimensional

space, and we have currently 5 different types of them, that is type I, type IIA, type

IIB, heterotic E8 × E8 and the SO(32) superstring theory.

One of the methods for obtaining a Standard Model like physics from a string

theory is by doing a superstring compactification. The goal of compactification is to

obtain a 4-dimensional low-energy effective field theory (EFT), which describes our

universe, from the 10-dimensional string theory. This can be done by, first, assuming

the 10-dimensional space is a product space of a 4-dimensional manifold (i.e. where

we live in, Minkowski) with a 6-dimensional compact space, M, called the internal

space. Secondly, to allow the theory to describe our universe, we must compactify

M such that it is too small to be observed. In addition, we demand the metric on

M to satisfy Einstein’s field equations, which equates the Ricci tensor of M to the

energy tensor describing the vacuum energy. A natural postulate would be setting

the vacuum energy to zero, implying the metric on M is Ricci-flat.

Ricci-flatness condition is not enough to reproduce for a Standard Model like physics

in the low-energy EFT. Properties of the internal space geometry, for instance, its

moduli spaces, restrict how the low-energy EFT behaves. To achieve the SU(3) ×
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SU(2)× U(1) Standard Model gauge group, we require M to carry a holomorphic

vector bundle of rank 3,4 or 5, with a connection that solves the Yang-Mills equations

[1]. The first attempt at obtaining Standard Model like physics from a superstring

theory, explicitly from the heterotic E8 ×E8 superstrings, was made by [2] in 1985.

They have provided us with the necessary conditions for the right internal space and

continue to serve as an example of how superstring compactification is done.

Remarkably, the simplest candidates for the internal space are called the Calabi-

Yau manifolds. The significance of Calabi-Yau manifolds is that they admit a unique

Ricci-flat metric and preserve some of the supersymmetry from the superstring under

compactification. The story of Calabi-Yau manifolds originates from the 1950s when

Calabi gave his well-known conjecture [3], that is there exists a unique Ricci-flat

metric in every Kähler class on a Kähler manifold with vanishing first Chern class.

Calabi managed to prove the uniqueness of such a metric but did not prove its

existence. Later in 1978, Yau proved Calabi’s conjecture [4] through the study of

complex Monge-Ampeŕe equation. However, Yau’s celebrated theorem did not tell

us how to get the explicit expression of such a unique Ricci-flat Kähler metric.

Despite not knowing the explicit analytic expression of the Calabi-Yau metrics,

tools from differential geometry and algebraic geometry still allow us to probe the

topology of the manifold and study how it constrains our low-energy EFT.

An obvious condition to check is whether the Calabi-Yau manifold gives rise to the

three generations of quarks and leptons. This restricts its Euler characteristic to have

χ = ±6. Early work in finding such Calabi-Yaus includes [5, 6]. So far, half a billion

Calabi-Yau threefolds have been constructed and classified in the Kreuzer-Skarke

(KS) data set, accessible via link [7]. Any of these Calabi-Yau threefold with χ = ±6

are potentially our compactification space, and each of them corresponds to a differ-

ent universe with different particle spectrums and particle interactions. In literature,

this vast amount of Calabi-Yaus forms the "Calabi-Yau Landscape" [8].
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Having matched with the desired particle content and interactions, we would need to

compute physical observables, such as coupling strength and masses of the fermions.

However, it would require the knowledge of the Calabi-Yau metrics. Unfortunately,

up till today, there is no known explicit analytic expression for the Calabi-Yau

metric on Calabi-Yau threefolds. This motivates the study of numerical Calabi-Yau

metrics, gathering efforts from both mathematicians and string theorists.

Headrick and Wiseman [9] were the first ones to compute the Calabi-Yau metric

numerically on the K3 surface, a Calabi-Yau twofold. They introduced coordi-

nate patches to discretize the Monge-Ampere equation on a lattice and developed

a Gauss-Seidel-type relaxation algorithm to solve the equation. However, such a

position-space method faces the clumsiness of coordinate patches and is limited by

storage problems. It was found to be inefficient if it were to be applied to the Calabi-

Yau threefold. Later, Donaldson [10] adopted the use of algebraic metrics, an idea

advocated by Yau, which eliminates the need for coordinate patches.

Donaldson’s algorithm starts by embedding a Calabi-Yau threefold X onto the am-

bient space CP4 as an algebraic variety. Then, it uses the sections of the holomorphic

line bundle on X, which are some polynomials, to represent the Kähler potential

on the ambient space. Metrics represented by such polynomials are called "alge-

braic". By iterating through a "T-map" k-times, the Kähler metric obtained from

the Kähler potential is guaranteed to converge to a Ricci-flat metric in the limit of

k → ∞. A metric obtained through the T-map is called a balanced metric, and it

is predicted to have an exponential convergence.

However, it was found that Donaldson’s algorithm is inefficient for large k-values

since the T-map involves integrating over X, which is a six-dimensional integral and

thus is computationally challenging. In addition, metrics did not converge exponen-

tially as predicted by the use of algebraic metrics. Nonetheless, most subsequent

studies on the numerical Calabi-Yau metrics build up on Donaldson’s algorithm
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and were applied to study the hermitian Yang-Mills connection [11, 12, 13] and the

eigenvalues and eigenfunctions of the scalar Laplace operator [14].

An alternate approach, which also implements algebraic metrics, is called the energy

functional minimisation algorithm developed by Headrick and Nassar [15]. Instead

of iterating through the T-map, they found a set of energy functionals which have a

minimum that corresponds to a unique Ricci-flat metric on a Calabi-Yau. The au-

thors referred them to the optimal metrics. The merit of this approach is that from

a computational standpoint, minimising a non-linear function is always easier than

integrating a non-linear function. Moreover, optimal metrics were shown to have sig-

nificant improvement in resolution compared to that of the balanced metrics.

However, the major drawback is the algorithm’s dependence on the symmetries of

the Calabi-Yau. This is because symmetries on the Calabi-Yau were used to reduce

the number of basis polynomials which in turn constrain the space of Kähler class

it scans over. Therefore, with no symmetries, the space it scans over would be large

and thus the algorithm would be inefficient. Unfortunately, most of the Calabi-Yaus

of interest to string theory has little to no symmetries.

Both algorithm faces runtime and computer resources problems. Fortunately, nu-

merous attempts were made to apply machine learning techniques to mitigate the

aforementioned problems. It was shown that neural networks [16] are capable of

approximating Calabi-Yau metrics with resolution on par with k = 20 balanced

metrics, which was predicted to have a runtime of 35 years [17]. Moreover, the

study of moduli dependence on the metric is made possible by the application of

neural networks.

In this dissertation, chapter 2 gives a review of complex geometry and provides the

necessary tools to understand Kähler manifolds and their topology. Chapter 3 gives

an introduction to Calabi-Yau manifolds and studies some important properties

which will be used in constructing numerical Calabi-Yau metrics. Chapter 4 gives
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a review of both Donaldson’s algorithm and the energy minimisation approach, fol-

lowed by a brief discussion of their merits and limitations. The final chapter, chapter

5, gives an introduction to neural networks and explains how they approximate a

Calabi-Yau metric. Through this dissertation, we hope to show the importance of

Calabi-Yau manifolds in both mathematics and string theory and also show the

potential of machine learning.
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2 Complex Geometry

In essence, Calabi-Yau manifolds are compact Kähler manifolds with a vanishing first

Chern class [4], which is Ricci-flat. To elaborate, complex manifolds are naturally

equipped with an almost complex structure. Such an object defines a natural two-

form on a Hermitian manifold, called the Hermitian two-form, or sometimes called

the Kähler form. A Hermitian manifold is called Kälher if this natural two-form is

closed. Surprisingly, Kähler manifolds have special geometric properties that lead

to great simplifications. For instance, Kähler metrics can be represented by only

a single function, namely the Kähler potential.1 Finally, with Yau’s theorem, we

then learn that Kähler manifolds with vanishing first Chern class admit a Ricci-flat

metric, and thus yields the definition of the Calabi-Yau manifold.

In this chapter, we will build up the necessary mathematical tools to understand

the above paragraph and provide simple examples of how Calabi-Yaus can be con-

structed. Fundamental knowledge of differential geometry (on real manifolds), ex-

plicitly the chapters 2-7 (ch 3 optional) of [18], is assumed. The following chapters

are based on [19, 20, 21, 22, 23, 24, 25, 18].

2.1 Complex Manifolds

Recall that a topological manifold is locally Hausdorff and is locally Euclidean.

This is a necessary condition for us to introduce calculus onto the manifolds. For

our purposes, we call topological manifolds as manifolds in this chapter. Loosely

speaking, a m-dimensional real manifold is a Hausdorff topological space with a local

homeomorphism. In addition, the manifold is provided with atlases and transition

functions between coordinate patches are smooth.
1The Kähler potential holds a significant role in numerical Calabi-Yau metrics. See chapters

2.2.4 and 3 for elaboration.
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Complex manifolds and real manifolds are defined similarly. The crucial difference

between them is that transition functions are required to be holomorphic (analytic)

on a complex manifold. We now define what holomorphic means.

Definition 2.1.1 A complex function f, which can be expressed by two real-valued

functions f1 and f2 (i.e. f = f1 + if2), is said to be holomorphic if it satisfies the

Cauchy-Riemann equations,

∂f1
∂x

=
∂f2
∂y

,
∂f1
∂y

= −∂f2
∂x

(2.1)

where the complex coordinate is z = x+ iy.

We can now define what a complex manifold is.

Definition 2.1.2 A m-dimensional complex manifold M:

(i) M is a Hausdorff topological space.

(ii) M is provided with ’atlases’: a family of pairs {(Ui, ϕi)}.

(iii) {Ui} is a family of open sets which covers M. ϕi is a homeomorphism from

Ui onto an open subset U ′
i of Cm.

(iv) On the non-trivial overlapping chart region, Ui∩Uj ̸= ∅, the transition function

ψij = ϕi ◦ ϕ−1
j from ϕj(Ui ∩ Uj) to ϕi(Ui ∩ Uj) is holomorphic.

Within each coordinate patch, Ui, we choose local coordinates (complex coordinates

in our case) zµi (µ = 1, ...,m) such that our choice of coordinates can be related by

the transition function on the overlapping region of two coordinate patches, i.e.

zµi = ψµ
ij(zj). (2.2)

In addition, complex coordinates can always be expressed by two real coordinates,

which allows us to treat m-dimensional complex manifolds as 2m-dimensional real

manifolds. However, the converse does not always hold.
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Example: Complex Projective Space CPN

One of the most straightforward methods of constructing Calabi-Yau manifolds is to

construct them as a hypersurface embedded in the complex projective space CPN .

The motivation for this will come clear in later chapters. Here, we will show that

the CPN is an N-dimensional complex manifold.

Definition 2.1.3 Consider the space CN+1\{0}, which contains complex coordi-

nates {zi}, i = 1, 2, ..., N + 1, such that there is at least one zi being non-zero. The

complex projective space CPN is defined as the space where we identify

(z1, z2, ..., zN+1) ∼ λ(z1, z2, ..., zN+1) (2.3)

for any non-zero complex λ.

We can view this space as a set of undirected complex lines through the origin

of CN+1. One often refers to the coordinates {zi} as the homogeneous coordinates

defined in projective geometry. Now we examine if CPN is a complex manifold.

We can construct (N+1) charts on the manifold, such that the i-th coordinate patch

U(i) contains all the points on CPN with zi ̸= 0. We now introduce the inhomoge-

neous coordinates on the i-th patch, that is

ζµ(i) =
zµ

zi
, µ = 1, ..., N and zi ̸= 0. (2.4)

The chart homeomorphism ϕi : CPN → CN gives us a map for p ∈ CPN ,

p = (z1, z2, ..., zN+1) → (ζ1(i), ζ
2
(i), ..., ζ

N
(i)). (2.5)

On the non-trivial patch overlapping region, U(i) ∩ U(j), we have,

ζµ(i) =
zµ

zi
=
zµ

zj
zj

zi
=
ζµ(j)
ζ i(j)

(2.6)

which is holomorphic (since neither zi nor zj is zero), and thus concludes that CPN

is a complex manifold. The significance of the complex projective space is that it is

compact and Kähler, and thus its submanifolds are also compact. Kähler manifolds
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will be introduced in later chapters, however, we will not show the compactness of

CPN here but we refer the readers to [26] for a proof.

An important theorem by Chow in algebraic geometry [27] states that all analytic

submanifolds of CPN can be realised as the zero locus of a finite number of poly-

nomials of the homogeneous coordinates {zi}. Such space is also referred to as an

algebraic variety. An example of this is the Fermat quintic in CP4, defined as the

zero locus of the polynomial,

P (z) =
4∑

µ=0

(zµ)5 = 0. (2.7)

The Fermat quintic is a compact Calabi-Yau threefold which is studied intensively

in the field of numerical metrics.

2.1.1 Almost Complex and Complex Structure

We have two types of coordinates on a local complex coordinate patch, that is

the complex coordinate and its complex conjugate. On a m-dimensional complex

manifold, we have a natural basis on its tangent space and the dual,

{ ∂

∂z1
,
∂

∂z2
, ...,

∂

∂zm
;
∂

∂z1̄
,
∂

∂z2̄
, ...,

∂

∂zm̄
}

{dz1, dz2, ..., dzm; dz1̄, dz2̄, ..., dzn̄}

where zµ̄ is the shorthand notation for the µ-th component of the complex conjugate

of z. We now refer holomorphic and anti-holomorphic indices to µ and µ̄ respectively.

The complex basis can be related to the real coordinate basis via

∂

∂zµ
=

1

2
(
∂

∂xµ
− i

∂

∂yµ
),

∂

∂zµ̄
=

1

2
(
∂

∂xµ
+ i

∂

∂yµ
)

dzµ = dxµ + idyµ, dzµ̄ = dxµ − idyµ

We know that any m-dimensional complex manifold M can always be treated as a

2m-dimensional real manifold N . The interesting question to ask is when does the

converse hold?
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To tackle the question, one needs the notion of complex structure. Now write the

complex indices as µ = 1, 2, ...,m and the real indices as n = 1, 2, ..., 2m.

Definition 2.1.4 On a m-dimensional complex manifold M with local coordinates

{zµi } on the coordinate patch U(i), we can define a mixed tensor, called the almost

complex structure J k
n via

J = idzµ ⊗ ∂

∂zµ
− idzµ̄ ⊗ ∂

∂zµ̄
. (2.8)

The almost complex structure is a real tensor that squares to minus the identity,

J k
n J l

k = −δln. (2.9)

From equation (2.8), we have the tensor components in a complex basis

J ν
µ = iδ ν

µ , J ν̄
µ̄ = −iδ ν̄

µ̄ , J ν
µ̄ = J ν̄

µ = 0. (2.10)

Thus, one can express J as a matrix of form

J =

iIm×m 0

0 −iIm×m

 (2.11)

where Im×m is the m-dimensional identity matrix. Going into the real basis (xµ, yµ)

where zµ = xµ + iyµ, one can verify that equation (2.8) is equivalent to

J = dxµ ⊗ ∂

∂yµ
− dyµ ⊗ ∂

∂xµ
, (2.12)

which implies J being real. This leads to the real matrix expression

J =

 0 Im×m

−Im×m 0

 . (2.13)

It is obvious that in either case the matrix squares to −I2m×2m. Taking J to act on

a complex basis, we get the following useful properties

J(
∂

∂zµ
) = i

∂

∂zµ
, J(

∂

∂zµ̄
) = −i ∂

∂zµ̄
. (2.14)

Thus, we can think of J as the multiplication of ±i as in complex analysis.
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Using the almost complex structure tensor, we define two projection tensors

P n
m =

1

2
(δ n

m − iJ n
m ), Q n

m =
1

2
(δ n

m + iJ n
m ) (2.15)

which has the following properties

P 2 = P, Q2 = Q, PQ = 0, P +Q = I2m×2m. (2.16)

In a complex basis, one substitute (2.10) into (2.15) finds the only non-zero com-

ponents of P and Q being P ν
µ = δ ν

µ and Q ν̄
µ̄ = δ ν̄

µ̄ respectively. This yields the

matrix representation

P =

Im×m 0

0 0

 and Q =

0 0

0 Im×m

 . (2.17)

It is immediately obvious that P acting on a tensor field T projects out the holo-

morphic components of T , while Q projects out its anti-holomorphic components.

Moreover, it implies that the tangent space is decomposable into a space of holo-

morphic vectors and a space of anti-holomorphic vectors.

Definition 2.1.5 A real manifold equipped with an almost complex structure J is

called an almost complex manifold.

A complex manifold always admit a globally defined J k
n that squares to −I. It

prompts us to think if a real manifold that admits such a tensor is necessarily a

complex manifold.

On a 2m-dimensional real manifold N , consider the projection tensor acting on a

coordinate differential, An = P n
k dxk. If N is also a complex manifold, then there

exist local coordinates zµ that allow us to write An = A n
µ dzµ, yielding

P n
k dxk = A n

µ dzµ. (2.18)

Thus, for N to be a complex manifold, we have to ensure the existence of the

complex coordinates zµ and prove that different complex coordinates on overlapping

coordinate patches are holomorphic functions of each other.
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To examine if such complex coordinates exist, we need the Niejenhuis tensor.

Definition 2.1.6 For two vector fields v,w, the Niejenhuis tensor of the almost

complex structure J , NJ , is defined by

NJ(v, w) = [v, w] + J [v, Jw] + J [Jv, w]− [Jv, Jw], (2.19)

where [·, ·] denotes the Lie bracket of vector fields.

Locally, NJ has components N i
jk = J l

j (∂lJ
i
k − ∂kJ

i
l )− J l

k (∂lJ
i
j − ∂jJ

i
l ).

Definition 2.1.7 An almost complex structure J is a complex structure if its asso-

ciated Niejenhuis tensor NJ vanishes. Then there exists a holomorphic atlas such

that J ν
µ = iδ ν

µ , J ν̄
µ̄ = −iδ ν̄

µ̄ , J ν
µ̄ = J ν̄

µ = 0.

This is a result of the theorem of Newlander and Nirenberg, which states that an

almost complex structure J is integrable if and only if its associated Niejenhuis

tensor NJ vanishes. They proved that if J is integrable, then there exist local

complex coordinates with holomorphic transition functions. We direct the readers

to consult [21] for proof. Notice that one fixes the complex structure by specifying

the choice of the local coordinates. Often in practice, one can obtain the same

topological space or manifolds with different choices of complex coordinates and

thus different complex structures (i.e. the torus but with different radii). This leads

to the notion of moduli space, which will be discussed briefly in later chapters.

2.1.2 Holomorphic and Anti-Holomorphic vectors

Consider a m-dimensional complex manifold M with the complex structure J . Equa-

tion (2.14) hints that the tangent space at point p, TpMC, can be decomposed into

the tangent space of holomorphic and anti-holomorphic vectors. Let us define a

vector V ∈ TpMC, V = V µ ∂
∂zµ

. Similarly, we define another vector V̄ ∈ TpMC,

V̄ = V̄ µ̄ ∂
∂zµ̄

. From (2.14), we get JV = iV and JV̄ = −iV̄ . Thus, we can decom-
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pose the TpMC into two disjoint vector spaces,

TpMC = TpM+ ⊕ TpM−, (2.20)

where

TpM± = {V ∈ TpMC : JV = ±iV }. (2.21)

The space TpM+ and TpM− are spanned by the basis vectors {∂/∂zµ} and {∂/∂zµ̄}

respectively. We call the vectors on TpM+ holomorphic vectors, and the vectors on

TpM− anti-holomorphic vectors. We see that any vectors on TpMC can be uniquely

decomposed into a sum of holomorphic and anti-holomorphic vectors. Consider the

vector Z = V + V̄ . We act the projection operators from equation (2.15) on Z,

PZ =
1

2
(I2m − iJ)(V µ ∂

∂zµ
+ V̄ µ̄ ∂

∂zµ̄
) (2.22)

=
1

2
[V µ ∂

∂zµ
+ V̄ µ̄ ∂

∂zµ̄
+ V µ ∂

∂zµ
− V̄ µ̄ ∂

∂zµ̄
] (2.23)

= V ∈ TpM+. (2.24)

Similarly QZ = V̄ ∈ TpM−. Indeed, we see that P and Q projects out the holo-

morphic and anti-holomorphic vector respectively.

2.1.3 Complex Differential Forms

We can naturally split a one-form into two components with the projection operators.

Consider a one-form w = wadx
a,

w = wadx
a = (P +Q)wadx

a = w(1,0) + w(0,1) (2.25)

Here w(1,0) = Pw is called a (1,0)-form, while w(0,1) = Qw is called a (0,1)-form.

Similarly, we can split a two-form v into a (2,0), (1,1) and (0,2)-form.

v = (P +Q)(P +Q)v = PPv + PQv +QPv +QQv = v(2,0) + v(1,1) + v(0,2) (2.26)

where

v(2,0)mn = P i
m P j

n vij (2.27)

16



v(1,1)mn = 2P i
m Q i

m vij (2.28)

v(0,2)mn = Q i
m Q j

n vij. (2.29)

We can think of a (p, q)-form being a differential form with p holomorphic compo-

nents and q anti-holomorphic components. Generalising this to a k-form w,

w =
∑

p+q=k

w(p,q). (2.30)

We would like to find a set of basis that can represent a (p, q)-form. Consider a

complex one-form w = wµdz
µ, one finds w = (P + Q)w = Pw as < dzµ, ∂

∂zµ̄
>=

0. Thus the complex dual basis dzµ is a (1,0)-form. Going through the same

procedure, one finds dzµ̄ being a (0,1)-form. With the dual basis, one can write a

(p, q)-form,

w =
1

p!q!
wµ1...µpν̄1...ν̄qdz

µ1 ∧ ... ∧ dzµp ∧ dzν̄1 ∧ ... ∧ dzν̄q . (2.31)

The set {dzµ1 ∧ ... ∧ dzµp ∧ dzν̄1 ∧ ... ∧ dzν̄q} forms the basis of the (p, q)-forms. We

denote the space of (p, q)-forms on manifold M as Ω(p,q)(M).

Restricting ourselves to complex manifolds M2 and taking the exterior derivative on

a (p, q)-form, we get dw(p,q) = (dw)(p,q+1) + (dw)(p+1,q). It implies that the exterior

derivative can be decomposed into d = ∂ + ∂̄, where

∂ : Ω(p,q)(M) → Ω(p+1,q)(M), ∂̄ : Ω(p,q)(M) → Ω(p,q+1)(M). (2.32)

These operators are called Dolbeault operators. With identity d2 = 0, one finds

d2w(p,q) = (∂ + ∂̄)(∂ + ∂̄)w(p,q) = (∂2 + ∂∂̄ + ∂̄∂ + ∂̄2)w(p,q) = 0 (2.33)

∂2 = ∂̄2 = (∂∂̄ + ∂̄∂) = 0. (2.34)

One can show ∂2 = 0 implies that the Niejenhuis tensor vanishes.
2On an almost complex manifold, we can decompose the exterior derivative into four com-

ponents. Taking the exterior derivative on a (p, q)-form, we have a (p − 1, q + 2)-form and a
(p+2, q−1)-form in addition to the (p+1, q) and (p, q+1)-form. We refer the readers to Complex
Manifolds without Potential Theory by Chern for a detailed discussion.
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We can build a real operator dc, which sends a k-form to a (k + 1)-form with the

Dolbeault operators. We define dc = i(∂̄ − ∂), which has properties,

ddc + dcd = 0, (dc)2 = 0, ∂ =
1

2
(d+ idc), ∂̄ =

1

2
(d− idc), ddc = 2i∂∂̄. (2.35)

One can then show

∂∂̄ =
1

4
(d+ idc)(d− idc) (2.36)

=
i

4
(dcd− ddc) = − i

2
(ddc) (2.37)

= −1

2
d(∂ − ∂̄) (2.38)

which will be useful in showing Ricci-form being closed later.

Definition 2.1.8 On complex manifold M, a (p, 0)-form w ∈ Ω(p,0)(M) satisfying

∂̄w = 0 is called a holomorphic p-form. Likewise, a (0, q)-form v ∈ Ω(0,q)(M)

satisfying ∂v = 0 is called an anti-holomorphic q-form.

The components of the holomorphic and anti-holomorphic forms are holomorphic

and anti-holomorphic functions on a local coordinate patch, respectively.

Definition 2.1.9 A (p, q)-form w ∈ Ω(p,q)(M) is called a ∂̄-closed (p, q) form if it

satisfies ∂̄w = 0. It is called a ∂-closed (p, q) form if it satisfies ∂w = 0. It is called

a ∂̄-exact (p, q) form if it satisfies w = ∂̄η for some η ∈ Ω(p,q−1)(M). It is called a

∂-exact (p, q) form if it satisfies w = ∂η for some η ∈ Ω(p−1,q)(M).

2.1.4 Cohomology Groups

It is crucial to study the cohomology of a manifold in order to understand its topo-

logical properties. On a real manifold, one has the de Rham cohomology which

concerns differential forms that are closed but not exact. Knowing the cohomology

group of a manifold then allows us to define topological invariants like the Betti num-

bers and Euler characteristic. On a complex manifold, one can define the analogue

of de Rham cohomology, namely the Dolbeault cohomology.
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Let us consider a complex manifold M.

Definition 2.1.10 The (p, q)-cocycle of M is the set of ∂̄-closed (p, q)-forms, de-

noted by Z(p,q)

∂̄
(M). The (p, q)-coboundary of M is the set of ∂̄-exact (p, q)-forms,

denoted by B(p,q)

∂̄
(M). We define a complex vector space

H
(p,q)

∂̄
(M) ≡ Z

(p,q)

∂̄
(M)/B

(p,q)

∂̄
(M) (2.39)

called the (p, q)-th ∂̄-cohomology group.

An element [w] ∈ H
(p,q)

∂̄
(M) is an equivalence class of ∂̄-closed (p, q)-forms which

differ from w by a ∂̄-exact form. One can show the ∂̄-cohomology groups of Cm

are trivial with Poincaré lemma, that is, all closed (p, q)-forms are exact. These

properties are reminiscent of de Rham cohomology groups, however, one should

notice that the Dolbeault cohomology also depends on the complex structure of the

manifold, not only on the topological data.

We now define the analogue of Betti numbers on a complex manifold, that is the

Hodge numbers. Consider a m-dimensional complex manifold M.

Definition 2.1.11 The Hodge numbers are defined to be h(p,q)=dim H
(p,q)

∂̄
(M).

We can summarise the Hodge numbers by defining the Hodge diamond,

h(m,m)

h(m,m−1) ... h(m−1,m)

h(m,0) h(m−1,1) ... h(1,m−1) h(0,m)

h(1,0)
... h(0,1)

h(0,0)


(2.40)

We have (m+1)2 Hodge numbers in the diamond, and most of them are not indepen-

dent. The Hodge numbers share different kinds of relations among themselves, de-

pending on the type of manifold they are on. For instance on a Kähler manifold, (see

[18] for proof) the Hodge numbers satisfy h(p,q) = h(q,p) and h(p,q) = h(m−p,m−q).
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Recall the Betti numbers on real manifolds are defined as bk = dimRH
k
dR(M,R),

where we denote de Rham cohomology group of k-forms on real manifold M as

Hk
dR(M). There is a useful relation between Betti numbers and Hodge numbers,

bk =
∑

p+q=k

h(p,q), (2.41)

which allows us to rewrite the Euler characteristic,

χ =
∑
p,q

(−1)p+qhp,q. (2.42)

2.1.5 Hermitian and Kähler Manifolds

We start by defining a Hermitian manifold on a complex manifold M with a complex

structure J and a Riemannian metric g. Cohomology classes defined in this chapter

are Dolbeault cohomology classes unless otherwise specified.

Definition 2.1.12 A complex manifold is Hermitian if it is endowed with a metric

of the form ds2 = gµν̄dz
µdzν̄. We call this metric a hermitian metric, which obeys

gmn = J k
m J l

n gkl.

We can write the most general form of the metric as ds2 = gµν̄dz
µdzν̄ + gµνdz

µdzν +

gµ̄ν̄dz
µ̄dzν̄ . This leads to an alternative definition of a Hermitian metric, that is

Hermitian metric has vanishing pure holomorphic and pure anti-holomorphic com-

ponents, i.e. gµν = gµ̄ν̄ = 0. Notice that hermiticity restricts only the metric

of the manifold, not the manifold itself. One can show the complex structure is

anti-symmetric on a Hermitian manifold,

gmn = J k
m J l

n gkl (2.43)

J m
k gmn = J m

k J k
m J l

n gkl (2.44)

Jkn = −J l
n gkl = −Jnk (2.45)

where we have used the identity (2.9) on equation (2.44). Thus, the complex struc-

ture defines a natural two-form on a Hermitian manifold, called the Kähler form, or
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sometimes called the Hermitian two-form.

Definition 2.1.13 On a Hermitian manifold M with a complex structure J and

hermitian metric g, we define the Kähler form as

w(X, Y ) = g(JX, Y ) X, Y ∈ TpM (2.46)

In local coordinates, the Kähler form is written as wab = J c
a gcb. In a complex basis,

one can write the Kähler form w = igµν̄dz
µ ∧ dzν̄, which is a (1,1)-form.

On a complex manifold with Riemannian metric h, we can define an object

gmn =
1

2
(hmn + J k

m J l
n hkl). (2.47)

g is by construction positive definite as h is a Riemannian metric. Then,

J k
m J l

n gkl =
1

2
(hkl + J a

k J b
l hab)J

k
m J l

n (2.48)

=
1

2
(J k

m J l
n hkl + δamδ

b
nhab) = gmn (2.49)

concludes that gmn is a Hermitian metric. This proves that it is always possible to

find a Hermitian metric on a complex manifold.

To study the geometry of Hermitian manifolds, one needs to know its connections.

Recall that on a real manifold, one determines the Christoffel connection by re-

quiring the metric to be covariantly constant and symmetric. However to specify a

connection on Hermitian manifolds, one needs to require both the complex structure

and the metric to be covariantly constant.

Definition 2.1.14 Let (M,J ,g) be a Hermitian manifold. The hermitian connec-

tion is a metric connection such that ∇g = ∇J = 0.

In local coordinates, one finds

∂agbc − Γ d
ab gdc − Γ d

ac gbd = 0 (2.50)

∂aJ
c

b + Γ c
ad J

d
b − Γ d

ab J
c

d = 0. (2.51)
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We take (b, c) = (µ, ν̄) on equation (2.51),

Γ ν̄
ad J

d
µ − Γ d

aµ J
ν̄

d = Γ ν̄
aρ J

ρ
µ − Γ ρ̄

aµ J
ν̄

ρ̄ = 2iΓ ν̄
aµ = 0 (2.52)

and yields Γ ν̄
κµ = Γ ν̄

κ̄µ = 0. Taking the complex conjugates (i.e. (b, c) = (µ̄, ν)),

one also gets Γ ν
κ̄µ̄ = Γ ν

κµ̄ = 0.

Recall that the components of the torsion are given by Γ c
[ab] ≡ Γ c

ab −Γ c
ba . To define

a unique hermitian connection, one needs to further impose that the torsion is pure

in its lower indices (i.e. Γ ν
[κµ̄] = 0). This implies the connection is symmetric if

its lower indices are mixed. With the previously obtained vanishing components,

we get Γ ν̄
κ̄µ = Γ ν̄

µκ̄ = 0 and Γ ν
κµ̄ = Γ ν

µ̄κ = 0. Thus, all mixed components of

the connection vanish and we are left with Γ ν
κµ and Γ ν̄

κ̄µ̄ . The connection be-

ing pure in its indices implies that a holomorphic/anti-holomorphic vector remains

holomorphic/anti-holomorphic after parallel transport, and thus preserves holomor-

phicity and imposes a restriction on its holonomy.

One can check that imposing the conditions ∇µ̄w
ν = ∂µ̄w

ν and ∇µw
ν̄ = ∂µw

ν̄ also

yields the results above (Γ ν
µ̄κ = 0 and Γ ν̄

µκ̄ = 0). The connection that satisfies

these two relations is called a Chern connection.

We now turn our focus to equation (2.50). Taking (a, b, c) = (µ, ν, ρ̄), we have

∂µgνρ̄ − Γ κ
µν gκρ̄ = 0 (2.53)

Γ κ
µν = gκρ̄∂µgνρ̄. (2.54)

Similarly with (a, b, c) = (µ̄, ν̄, ρ), one finds

Γ κ̄
µ̄ν̄ = gκ̄ρ∂µ̄gν̄ρ. (2.55)

In contrast to the Christoffel connection, the Hermitian connection is not symmetric.

However, the Hermitian connection gives us a simple Riemman tensor structure.

Recall the expression for the Riemann tensor,

R k
mn l = ∂mΓ

k
nl − ∂nΓ

k
ml + Γ k

mr Γ r
nl − Γ k

nr Γ r
ml . (2.56)
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The Riemann tensor vanishes for (k, l) = (κ̄, λ) since the connection with mixed

indices is trivial. Thus, Rmnκλ = gκρ̄R
ρ̄

mn λ = 0. This also holds for its complex

conjugate. Similarly, the Riemann tensor vanishes for (m,n, k, l) = (µ, ν, κ̄, λ̄).

Finally, consider (m,n, k, l) = (µ, ν, κ, λ),

R κ
µν λ = ∂µΓ

κ
νλ + Γ κ

µρ Γ ρ
νλ − (µ↔ ν) (2.57)

= ∂µ(g
κρ̄∂νgλρ̄) + (gκᾱ∂µgρᾱ)(g

ρσ̄∂νgλσ̄)− (µ↔ ν) (2.58)

= ∂µg
κρ̄∂νgλρ̄ + (−gρᾱ∂µgκᾱ)(gρσ̄∂νgλσ̄) + gκρ̄∂µ∂νgλρ̄ − (µ↔ ν) (2.59)

= gκρ̄∂µ∂νgλρ̄ − gκρ̄∂ν∂µgλρ̄ = 0 (2.60)

where we have used the identity gκᾱ∂µgρᾱ = −gρᾱ∂µgκᾱ on equation (2.58), derived

from ∂µ(δ
κ
ρ ) = ∂µ(gρᾱg

ᾱκ) = 0.

We are left with the Riemann tensor of formR κ
µ̄ν λ andR κ̄

µν̄ λ̄
. Thus, the independent

non-zero components of the Riemann tensor are

R κ
µ̄ν λ = ∂µ̄Γ

κ
νλ = ∂µ̄(g

κρ̄∂νgλρ̄) (2.61)

R κ̄
µν̄ λ̄ = ∂µΓ

κ̄
ν̄λ̄ = ∂µ(g

κ̄ρ∂ν̄gλ̄ρ) (2.62)

One can verify the symmetriesRµ̄νκ̄λ = gκ̄σR
σ

µ̄ν λ = −Rνµ̄κ̄λ andRµ̄νκ̄λ = −Rµ̄νλκ̄.

Contracting the Riemann tensor gives us the Ricci tensor. Differs from real geometry,

one can use the complex structure to contract the Riemann tensor and yield the

Ricci-form R, defined by

R ≡ 1

4
RmnklJ

kldxm ∧ dxn ≡ iRµν̄dz
µ ∧ dzν̄ (2.63)

=
1

4
(Rµν̄klJ

kldzµ ∧ dzν̄ +Rν̄µklJ
kldzν̄ ∧ dzµ) = 1

2
Rµν̄klJ

kldzµ ∧ dzν̄ (2.64)

=
1

2
(Rµν̄κλ̄g

κᾱJ λ̄
ᾱ +Rµν̄κ̄λg

κ̄αJ λ
α )dzµ ∧ dzν̄ (2.65)

=
i

2
(R ρ

µν̄ ρ −R ρ̄
µν̄ ρ̄)dz

µ ∧ dzν̄ . (2.66)

The Ricci-form is a (1,1)-form. Now the metric is of form gmn =
( 0 gµν̄
gρσ̄ 0

)
, we define
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G ≡ det(gµν̄) =
√
g, and use the identity δG = Ggµν̄δgµν̄ to obtain,

R ρ
µν̄ ρ = −∂ν̄Γ ρ

µρ = −∂ν̄(gρσ̄∂µgρσ̄) = −∂ν̄∂µ logG (2.67)

R ρ̄
µν̄ ρ̄ = ∂ν̄∂µ logG. (2.68)

Thus, we can write the Ricci-form

R = −i∂∂̄ logG, Rµν̄ ≡ R ρ
µν̄ ρ = −∂µ∂ν̄ logG. (2.69)

Recall from equation (2.38), ∂∂̄ = −1
2
d(∂ − ∂̄). We immediately see that the Ricci-

form is closed dR = 0. One might naively think that the Ricci-form is also exact.

However, in general, G and thus (∂ − ∂̄) logG is not a coordinate scalar. Therefore,

Rµν̄ of (2.69) only holds locally on a coordinate patch. Despite logG not being de-

fined globally, one can still show R is. Consider the variation of the Ricci-form,

δR = δ(i∂∂̄ logG) = i∂∂̄(gµν̄δgµν̄) = − i

2
d[(∂ − ∂̄)gµν̄δgµν̄ ]. (2.70)

This shows that δR is exact as gµν̄δgµν̄ is a coordinate scalar. It implies that R

defines a cohomology class,

c1 =

[
1

2π
R
]

(2.71)

called the first Chern class. In addition, the variation is an exact form implies that

c1 is an analytic invariant (i.e. [R] = [R + δR]). Thus, the first Chern class is

invariant under smooth variation of the complex structure of the manifold.

The above concludes the geometry of Hermitian manifolds. Let us now turn to

Kähler manifolds.

Definition 2.1.15 A Hermitian manifold (M,J ,g) is a Kähler manifold if its Käh-

ler form w is closed, dw = 0. Then the metric on the manifold is called Kähler.

Recall the Kähler form can be written as w = igµν̄dz
µ ∧ dzν̄ , then

dw = (∂ + ∂̄)w = i∂κgµν̄dz
κ ∧ dzµ ∧ dzν̄ − i∂ρ̄gµν̄dz

µ ∧ dzρ̄ ∧ dzν̄ (2.72)

24



0 =
i

2
(∂κgµν̄ − ∂µgκν̄)dz

κ ∧ dzµ ∧ dzν̄ − i

2
(∂ρ̄gµν̄ − ∂ν̄gµρ̄)dz

µ ∧ dzρ̄ ∧ dzν̄ . (2.73)

Thus on a Kähler manifold, one finds the useful identity

∂κgµν̄ = ∂µgκν̄ and ∂ρ̄gµν̄ = ∂ν̄gµρ̄. (2.74)

called the Kähler condition. Together with equations (2.54) and (2.55), one finds

that the Hermitian connection is symmetric on its bottom two indices, and thus

the torsion completely vanishes. It also implies ∇w = dw for any p-forms w. Fur-

thermore, the Riemann tensor has an additional symmetry, R κ
µ̄ν λ = R κ

µ̄λ ν and

R κ̄
µν̄ λ̄

= R κ̄
µλ̄ ν̄

.

With the new symmetry on the Riemann tensor, one finds the Ricci tensor coincides

with the components of the Ricci-form (2.69), i.e. Rµν̄ = R ρ
µν̄ ρ = R ρ

ρν̄ µ = Rµν̄ .

Therefore, a Kähler manifold is Ricci-flat if it has a vanishing Ricci-form, which

further implies a vanishing first Chern-class.

One important consequence of Kählerity is that it allows us to define the metric

in terms of Kähler potentials. Recall the Poincaŕe’s lemma, which states that on a

contractible coordinate patch, any closed r-form is also exact. Extending to complex

manifolds on contractible coordinate patches, any closed (p, q)-form can be written

as α = ∂∂̄η where η is some (p− 1, q− 1)-form. This implies that our Kähler (1,1)-

form w can be locally expressed as wµν̄ = ∂µ∂̄νK, w = i∂∂̄K, where K is a scalar

function of (z, z̄) called the Kähler potential. We now have two expressions for the

Kähler form in local coordinates. By comparing the two,

wµν̄ = gµν̄ = ∂µ∂ν̄K. (2.75)

Clearly, the Kähler potential is not uniquely determined. One can obtain the same

metric with two different Kähler potentials, K and K+f+ f̄ on the same coordinate

patch, where f and f̄ is any holomorphic and anti-holomorphic function respectively.

It follows from the fact that ∂∂̄(f + f̄) = 0.
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Consider a non-trivial overlapping coordinate chart region U ∩U ′ on a Kähler man-

ifold. The Kähler metric, defined via ∂µ∂ν̄K and ∂µ∂ν̄K
′ on the chart U and U

′ re-

spectively, should agree with each other. This implies that on Kähler manifolds, the

Kähler potentials on different coordinate patches satisfy the relation, K′
= K+f+f̄ ,

called the Kähler transformation. Manifold is not Kähler if we cannot find a globally

defined Kähler potential up to a Kähler transformation.

Similar to the Ricci-form, one might naively think that the Kähler form w = i∂∂̄Kj =

− i
2
d[(∂− ∂̄)Kj] is both closed and exact. However, we will show that this is not the

case, and thus it defines a cohomology class. Consider taking the wedge product3 of

w = igµν̄dz
µ ∧ dzν̄ m-times on a m−dimensional Kähler manifold,

w ∧ · · · ∧ w = imgµ1ν̄1 . . . gµmν̄mdz
µ1dzν̄1 . . . dzµmdzν̄m (2.76)

= imϵµ1...µmϵν̄1...ν̄mgµ1ν̄1 . . . gµmν̄mdz
1dz1̄ . . . dzmdzm̄ (2.77)

= imm! det(gµν̄)dz
1dz1̄ . . . dzmdzm̄. (2.78)

We see that the m-fold product of the Kähler form, which is a top-form of the

manifold, is nowhere vanishing. Therefore, it defines a volume element and thus

proves that complex manifolds are orientable.

Since w∧· · ·∧w is proportional to the volume form, the volume of the manifold, up

to a proportionality constant, can be found by evaluating the integral
∫
w∧ · · · ∧w.

However, if the Kähler form is exact, that is w = dA, the integral vanishes by

substituting one of the w to be dA and invoking Stoke’s theorem. Hence, the Kähler

form cannot be exact, and the set of Kähler forms w defines a cohomology class [w],

called the Kähler class. Similar to the complex structure moduli mentioned earlier,

the Kähler class and Kähler potentials define a Kähler moduli space (or called the

Kähler cone) which will be discussed briefly in later chapters.
3Here we adopt the shorthand notation i.e. dz1 ∧ dz2 ∧ dz3 = dz1dz2dz3.
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2.1.6 Holonomy on Kähler Manifolds

As mentioned earlier, the connection on a Kähler manifold has no components with

mixed indices. Therefore, parallel transport on Kähler manifolds preserves the holo-

morphicity and length of a vector. This tells us that the holonomy groups on m-

dimensional Kähler manifolds are subgroups of U(m) ⊂ SO(2m).

If the Kähler manifold admits a Ricci-flat metric, then its holonomy group is con-

tained in SU(m) instead. Consider a vector V k parallel transported around an in-

finitesimal parallelogram of area δamn with edges parallel to the vectors ∂
∂xm and ∂

∂xn ,

V
′k = V k + δamnR k

mn lV
l = (δkl + δamnR k

mn l)V
l = hklV

l. (2.79)

In the vicinity of the identity, one can decompose U(m) = SU(m)×U(1). We know

the matrix hkl is in U(m), and thus the matrix δamnR k
mn l is in the Lie algebra of

U(m). Consider decomposing the Lie algebra u(m) = su(m)⊕ u(1), where su(m) is

traceless and u(1) is a trace. The u(1) element is generated by

δkl + δamnR k
mn k = −4δaµν̄Rµν̄ . (2.80)

If the Kähler manifold is Ricci-flat, the Ricci tensor vanishes and u(1) is trivial.

Thus, the holonomy of a Ricci-flat Kähler manifold is a subgroup of SU(m). Remark-

ably, SU(m) holonomy implies the existence of covariant constant spinors, which is

crucial for superstring compactification.

Example: Kähler Potentials and Revisiting CPN

Let us try to find the Kähler potentials on Cm to illustrate the idea of Kähler

potentials concretely. The metric components on Cm are gµν = gµ̄ν̄ = 0 and gµν̄ =

gµ̄ν = 1
2
δµν̄ . Therefore, the Kähler form is w = igµν̄dz

µ ∧ dzν̄ = i
2

∑m
µ=1 dz

µ ∧ dzµ̄,

which clearly satisfies dw = 0. Let K be the Kähler potential, such that w = i∂∂̄K.

Thus, we find the Kähler potential, K = 1
2

∑
zµzµ̄.
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The complex projective space CPN defined in ch 2.1 is Kähler. Recall that on

coordinate patch U(i), the inhomogeneous coordinates are defined to be

ζµ(i) =
zµ

zi
. (2.81)

To prove CPN is Kähler, one has to show that it admits a closed Kähler form and

that the Kähler metric is Hermitian and satisfies the Kähler conditions. Let us

choose an ansatz for the metric that satisfies the Kähler conditions, gµν̄ = ∂µ∂ν̄Ki,

where K is some scalar function. Let us also make an ansatz for the scalar function

K on the i-th patch,

Ki = log

(
n+1∑
µ=1

|ζµi |2
)
. (2.82)

We see the scalar function is by construction positive-definite. On U(i) ∩ U(j), we

have ζµi = ζµj /ζ
i
j, then it follows that

Ki = log

(
n+1∑
µ=1

|
ζµj
ζ ij
|2
)

= log

(
n+1∑
µ=1

|ζµj |2
)

− log
(
|ζ ij|2

)
(2.83)

= Kj − log
(
ζ ij ζ̄

i
j

)
(2.84)

⇒ Ki = Kj − log
(
ζ ij
)
− log

(
ζ̄ ij
)
. (2.85)

This is a Kähler transformation as ∂∂̄Ki = ∂∂̄Kj, and ensures the metric gµν̄ =

∂µ∂ν̄Ki being globally defined. It induces the Kähler form,

w = i∂∂̄Ki (2.86)

which is clearly a closed (1,1)-form. The final step is to show that g is positive-

definite, which implies that K is the Kähler potential, and g is the Kähler metric.

We first substitute (2.83) into the metric ansatz and find,

gµν̄ =
1

σ
(δµν̄ −

ζµζν̄
σ

), σ = 1 + |ζ|2 (2.87)

where |ζ|2 =
∑n

µ=1 |ζµ|2 and we have dropped the patch indices on ζµi . Consider a
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real vector v = vµ ∂
∂ζµ

+ vµ̄ ∂
∂ζµ̄

, the inner product with respect to the metric is

gµν̄v
µvν̄ = 2

∑
µν̄

δµν̄σ − ζµζ ν̄

σ2
vµvν̄ . (2.88)

We can show the metric g is positive-definite by applying the Schwarz inequality

(i.e.
∑

µ |vµ|2 · |ζ|2 ≥
∑

µ |vµζµ|2). Hence, the metric and thus CPN is Kähler. The

metric defined here is called the Fubini-Study metric, which is applied intensively

in the study of numerical Calabi-Yau metrics.

2.1.7 Vector Bundles

Let us turn our attention to fibre bundles as they appear to be important for under-

standing characteristic classes and for our discussion on Calabi-Yau metrics. In this

chapter, we will state without proof the necessary definitions that lead to the notion

of holomorphic vector bundles. We suggest readers consult [18, 20] for detailed proof

and discussions. We first define the tangent bundle.

Definition 2.1.16 For a m-dimensional real manifold M, we define the tangent

bundle over M, denoted as TM, as the union of all the tangent spaces of M,

TM ≡
⋃
p∈M

TpM. (2.89)

We call M, where the tangent bundle TM is defined over, as the base space.

The cotangent bundle is defined similarly, T ∗M ≡
⋃

p∈M T ∗
pM. Let us construct

charts on M as {Ui, φi}, and pick local coordinates xµ = φi(p) on the coordinate

patch Ui. The open set Ui is a manifold, and its tangent bundle is defined as

TUi ≡
⋃
p∈Ui

TpM ⇒ identified with TUi = Ui × Rm. (2.90)

An element Vp ∈ TUi is specified by a point p ∈ M and the tangent vector on

the point V = V µ(p) ∂
∂xµ |p ∈ TpM. Thus, it is straightforward to show the tangent

bundle locally is a product manifold homeomorphic to Rm ×Rm = R2m, and hence,

TUi and TM is a 2m-dimensional differentiable manifold.
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As TUi is decomposable into a direct product Ui × Rm, it is natural to define a

projection map π : TUi → Ui. For point u ∈ TUi, the action π(u) gives us the point

p ∈ Ui at which the tangent vector is defined. Clearly, π(u) = p is independent of

the local coordinate choice. Therefore, the projection map can be defined globally

π : TM → M. Conversely, π−1(p) = TpM. We call TpM the fibre at point p.

Consider a non-trivial overlapping chart region Ui ∩ Uj. Let us pick xµ and yµ as

the local coordinates on patch Ui and Uj respectively. For a vector V ∈ TpM,

V = V µ ∂

∂xµ

∣∣∣
p
= Ṽ ν ∂

∂yν

∣∣∣
p

⇒ Ṽ ν =
∂yν

∂xµ
∣∣
p
V µ. (2.91)

Assuming the choice of coordinates on the two patches is compatible with each other,

the matrix Mν
µ ≡ (∂yν/∂xµ) must be invertible, that is, Mν

µ ∈ GL(m,R). We call

this group the structure group of TM. This implies that transition functions on

Ui ∩ Uj take values in the structure group.

We now relate the notion of sections with vector fields.

Definition 2.1.17 A section (or a cross-section) of a tangent bundle TM is a

smooth map s : M → TM, such that π ◦ s = idM. A vector field on M is a smooth

section of the tangent bundle TM.

If a section is only defined within a coordinate chart, then the section is called a

local section. In general, a tensor field of type (p, q) is a smooth section S of the

tensor product bundle ⊗pTM⊗q T ∗M with components Sµ1...µp
ν1...νq .

We now define what a fibre bundle is.

Definition 2.1.18 A fibre bundle (E, π,M, F,G) has the following elements:

(i) It has a differentiable manifold E called the total space.

(ii) It has a differentiable manifold M called the base space.

(iii) It has a differentiable manifold F called the fibre.
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(iv) It has a surjection map π : E → M called the projection. The inverse image

of projection at point p is called the fibre at p.

(v) It has a Lie group G, acting on the left of F , called the structure group.

A fibre bundle is often denoted by E π−→ M or simply just E.

Definition 2.1.19 A coordinate bundle defined on Ui has two more elements:

(i) On Ui, it has a map φi : Ui × F → π−1(Ui) called the local trivialisation.

(ii) On Ui ∩ Uj ̸= ∅, it has transition functions tij, (i.e. φj(p, f) = φi(p, tij(p)f)),

and is invertible.

One may construct many coordinate bundles on the base space M with different

choices of transition functions. A fibre bundle is an equivalence class of these coor-

dinate bundles. If all transition functions tij on a fibre bundle equal to the identity

map, then we call it the trivial bundle, which is a direct product, M× F .

Definition 2.1.20 A fibre bundle E π−→ M is called a vector bundle if its fibre is a

vector space. A line bundle is a vector bundle whose fibre is one-dimensional.

We are now ready to extend all these concepts to complex manifolds.

Definition 2.1.21 Consider complex manifolds M and E, and a holomorphic map

π. A vector bundle E π−→ M with fibre Ck is called a holomorphic vector bundle of

rank-k if its local trivialisation φi : Ui × Ck → π−1(Ui) is a biholomorphic map.

The simplest example of a holomorphic vector bundle is M × Ck, which is the

trivial vector bundle over M. Another example of a holomorphic vector bundle is

the holomorphic tangent bundles formed by (2.21). If the fibre is C (i.e. holomorphic

vector bundle of rank-1), we call it the holomorphic line bundle or sometimes the

canonical bundle. Note that a canonical bundle is a complex vector bundle of rank

(m, 0) with sections being holomorphic m-forms. On CPN , it is useful to remember

the sections of the holomorphic line bundle are its homogeneous coordinates.
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Let us use these definitions to study Chern classes. The goal is to introduce Chern

classes and their properties to aid us in constructing CY manifolds. Detailed deriva-

tions of these properties might not be given as it is not our primary concern.

2.1.8 Chern Classes

The Chern class is a characteristic class that concerns the classification of the fibre

bundles and measures its non-triviality. It is also a topological invariant.

Definition 2.1.22 Let E be a complex vector bundle over a manifold M, F be the

curvature two-form of a connection A on E. The total Chern class of E, c(E) is

c(E) = det(1 +
i

2π
F). (2.92)

The total Chern class can be written as the sum of forms of even degrees since F is

a two-form. We can expand the total Chern class,

c(E) = 1 + c1(E) + c2(E) + . . . (2.93)

where ck(E) ∈ H2k(M,R) are called the k-th Chern classes, and H denotes the

cohomology group. To be pedantic, ck(E) in (2.93) are closed 2k-forms called the

Chern forms. The Chern classes are the cohomology classes of the Chern forms, and

the Chern forms here are representatives of the Chern classes.

Chern classes do not depend on the choice of the connection despite the curvature

two-form does. However, choosing a different connection changes the representative

of the Chern classes. On a m-dimensional manifold, Chern classes cj(E) contain

2j-forms and thus vanishes if 2j > m. Regardless of the dimension of the manifold,

Chern classes cj(E) vanishes for j > k where k is the rank of the bundle E.

An explicit derivation for the Chern classes is given in [18]. By expanding the

determinant, one finds

c0(E) = [1] (2.94)
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c1(E) =

[
i

2π
TrF

]
(2.95)

c2(E) =

[
1

2
(
i

2π
)2(TrF ∧ TrF − Tr(F ∧ F))

]
(2.96)

... (2.97)

ck(E) =

[
(
i

2π
)k detF

]
(2.98)

For a holomorphic tangent bundle, let us denote the k-th Chern class as ck. Our

primary focus is the Chern classes on Kähler manifolds, especially the first Chern

class. On a holomorphic tangent bundle, F = −iR, and thus c1 = [TrR/2π], which

is compatible with what we have previously defined in ch 2.1.5. Thus, the first Chern

class vanishes if the Kähler metric is Ricci flat.

This is where the famous Calabi conjecture enters. He believes there exists a unique

Ricci-flat metric on a Kähler manifold if it has a vanishing first Chern class. Calabi

proved the uniqueness of such metric if it exists, and later Yau proved its existence.

Kähler manifolds with vanishing c1 are called Calabi-Yau manifolds, which have a

great impact on string theory. A much more detailed discussion on the Calabi-Yau

manifolds will be given in later chapters.

Let us define some useful properties of Chern classes for later calculations. We first

introduce the notion of an exact sequence.

Definition 2.1.23 An exact sequence is a sequence of spaces and maps,

A1
a1−→ A2

a2−→ . . .
ak−→ Ak+1 (2.99)

such that Im(ak) = ker(ak+1) for all k.

A short exact sequence is an exact sequence that takes the following form,

0
a−→ A

b−→ B
c−→ C

d−→ 0 (2.100)

where 0 is the trivial vector space.

The short exact sequence implies c(B) = c(A)c(C). We can interpret (2.100) as
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A ⊆ B and C = B/A. Consider a direct sum bundle V = E ⊕ F . Following the

properties of the determinant, we have c(V ) = c(E) ∧ c(F ). This also implies the

short exact sequence 0 → E → V → F → 0 holds.

Figure 2.1: Illustration of the condition Im(ak) = ker(ak+1).

Another useful quantity related to Chern classes is the Chern character.

Definition 2.1.24 The total Chern character is defined

ch(E) = Tr exp (
i

2π
F) =

∑
j=1

1

j!
Tr(

i

2π
F)j. (2.101)

The j-th Chern character is defined

chj(E) =
1

j!
Tr(

i

2π
F)j. (2.102)

On m-dimensional base space with rank-k bundle E, chj(E) with 2j > m vanishes.

Thus, ch(E) is a finite order polynomial. If we diagonalise F , such that

i

2π
F → g−1(

i

2π
F)g = A ≡ diag(x1, . . . , xk) (2.103)

where g ∈ GL(k,C), we find the total Chern character,

ch(E) = Tr expA =
k∑

j=1

expxj (2.104)

= k + c1(E) +
1

2!
(c1(E)

2 − 2c2(E)) + . . . . (2.105)

Alternatively, one can write the total Chern class as c(E) =
∏k

j=1(1 + xj) which

gives the same total Chern character as in (2.104). Notice that xj defines the
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Chern classes intrinsically. Some useful identities, ch(E ⊕ F ) = ch(E) + ch(F ) and

ch(E ⊗ F ) = ch(E) ch(F ).

A final useful equation to be mentioned is the relation between Chern classes and

the Euler characteristic. Consider a holomorphic tangent bundle on m-dimensional

manifold M, T (1,0)M. The Euler characteristic of M,

χ =

∫
M
cm(M) (2.106)

is the integral of the top Chern class over the manifold M. See [20, 25] for a detailed

discussion.

Example: Chern classes of CPN

Recall the homogeneous coordinates zm on CN+1 are sections of the holomorphic line

bundle, L. Denote si as sections of L, si ∈ OCPN (1), we have si(z) ∂
∂zi

spanning both

the holomorphic tangent bundle T (1,0)CN+1 and the holomorphic tangent bundle

T (1,0)CPN . However one has to take into account for trivial overall rescaling in

CPN . This implies a map from the direct sum, OCPN (1)⊕(N+1), to T (1,0)CPN with

kernel being the trivial line bundle C. Thus, we have a short exact sequence,

0 → C → OCPN (1)⊕(N+1) → T (1,0)CPN → 0. (2.107)

From the sequence, we have c(OCPN (1)⊕(N+1)) = c(C)c(T (1,0)CPN). Obviously,

c(C) = 1. By the properties of Chern classes, we have

c(CPN) = c(T (1,0)CPN), c(OCPN (1)⊕(N+1)) = [c(OCP(1))]
N+1 . (2.108)

Since OCP(1) is a line bundle, its Chern classes cj terminates for j ≥ 2. Expanding

the total Chern class, we find c(OCP(1)) = 1 + c1(OCP(1)).

Let x = c1(OCP(1)), we conclude the total Chern class for CPN ,

c(CPN) = (1 + x)N+1. (2.109)
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3 Calabi-Yau Manifolds

In the 1950s, Calabi gave his famous conjecture [3].

Conjecture 3.0.1 (Calabi) Let M be a compact Kähler manifold with Kähler

metric g and Kähler form w. Let R be the Ricci-form associated with the met-

ric g, and represents the first Chern class c1(M). Then there exists a unique Kähler

metric g̃ with Kähler form w̃, such that it is cohomologous to the original metric g,

[w] = [w̃], and whose Ricci form is R.

The conjecture gives a link between geometry and topology and has a far-reaching

impact on both string theory and mathematics. Calabi proved the uniqueness of

(g̃, w̃) and Yau proved its existence [4]. Therefore, if c1 = 0 on a Kähler manifold, the

Calabi conjecture with Yau’s theorem guarantees the existence of a unique Ricci-flat

Kähler metric in each Kähler class on a Calabi-Yau manifold.

Definition 3.0.1 A m-dimensional Calabi-Yau manifold is a m-dimensional com-

pact Kähler manifold with the following properties:

(i) has zero Ricci-form.

(ii) has vanishing first Chern class, c1 = 0.

(iii) has honolomy Hol(g) ⊆ SU(m).

(iv) admits a globally defined and nowhere vanishing holomorphic m-form.

The emergence of Calabi-Yau manifolds initiated a series of intensive studies in string

theories and led to the discovery of mirror symmetry which has great implications

in both string theory and mathematics. Our primary focus is on studying ways

of constructing Calabi-Yau manifolds for superstring compactification. Then, we

will briefly mention what Calabi-Yau moduli space mean to string theory and to
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the study of numerical Calabi-Yau metrics. Let us first motivate the study of the

Calabi-Yau manifold through string theory in the next chapter, then we explain the

origin of property (iv) from definition 3.0.1.

3.1 Significance in Physics

Superstring theory is directly formulated in ten spacetime dimensions. For it to

make contact with our physical world, it is obvious that the low energy limit of the

solution of the theory should be a 4-dimensional effective field theory (EFT), which

contains our Standard Model and is coupled to Einstein’s general relativity.

To find our desired solution, one can use the standard technique called compacti-

fication. We start by postulating the underlying 10-dimensional manifold M10 as

a product manifold of a 4-dimensional Minkowski space M4 with a 6-dimensional

compact and small Riemannian manifold M6. We call M6 the internal space. A 4-

dimensional EFT arises from averaging the low energy physics over M6, and thus the

physics of the EFT depends on the choice of the internal space. Since we wanted our

space to admit solutions to Einstein’s field equation, we require the Ricci tensor of

M6 to satisfy the vacuum equation. Hence, M6 must admit a Ricci-flat metric.

Let us illustrate the above concretely. Consider M10 =M6 ×M4, such that M4 has

a Minkowski metric ηµν and M6 has a metric gij. We restrict the theory on M10

to satisfy Einstein’s equations and preserve 4-dimensional Poincaŕe invariance. We

can write the most general metric as [28],

GIJ =

fηµν 0

0 gij

 (3.1)

where f is a real valued function on M6 and the indices ranges 0 ≤ I < 10, 0 ≤ µ < 4

and 1 ≤ i ≤ 6. Then one finds the Einstein field equations reduce to Ricci flatness

of GIJ , which implies f to be constant, and gij to be Ricci-flat.
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Ricci-flatness is not enough to resolve an EFT with appealing physical phenom-

ena. In fact, we would like to seek a theory that has a low-energy supersymmetry

since it addresses troubling issues, for instance, it provides an explanation for the

gauge hierarchy problem. Furthermore, the EFT has to resolve the SM gauge group

SU(3) × SU(2) × U(1) in low energy limit. It was found that if the theory re-

produces our observed three-generational families of leptons and quarks, then the

internal space must have χ = ±6, where χ is the Euler characteristic. A detailed

discussion on these conditions is present in [29], which is beyond the scope of this

dissertation. Eventually, all these conditions lead to the conclusion that the inter-

nal space should be a Calabi-Yau threefold. The first application of Calabi-Yau

manifolds in string theory was carried out by Candelas, Horowitz, Strominger, and

Witten in 1985 [2], where they showed how a compactification of heterotic E8 ×E8

strings leads to the SM.

After compactification, one can fix the particle content via the topological data

of the internal space and the choice of gauge bundle V . However, there is a vast

amount, around 106 Calabi-Yaus [8] that satisfies the condition of χ = ±6, forming

the so-called "Calabi-Yau landscape". In general, the geometry of these Calabi-

Yaus are different and give rise to different EFTs, despite generating the desired

particle spectrum. To test if the resulting EFT describes our universe, we need

to compute the observables, such as the masses and couplings of particles, for di-

rect comparison with experimental observations. Unfortunately, calculating these

observables requires the knowledge of the Ricci-flat metric on the internal space

Calabi-Yau threefold, which by date has no known analytic expressions. This calls

for numerical methods which will be discussed in the next chapter.

Before moving on, let us review the D = 5 Kaluza-Klein theory to illustrate the idea

of compactification. Such an idea is carried over to string compactification.
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3.2 Kaluza-Klein Compactification

The Kaluza-Klein compactification was first introduced to unify gravity and elec-

tromagnetism via the idea of higher dimensional theory. Let us assume the back-

ground spacetime takes the form M4 × S1 with local coordinates (xµ, y). Consider

the Einstein-Hilbert action,

S =
1

2κ2

∫
d4xdy

√
−ĝR(5), (3.2)

where R(5) is the D = 5 Ricci scalar. The metric is given by [30],

ĝMN = ϕ− 1
3

gµν + κ2ϕAµAν κϕAµ

κϕAν ϕ

 . (3.3)

The physical radius of S1 can be fixed via a choice of the coordinate radius R,

Area of S1 =

∫ 2πR

0

dyϕ
1
3 (3.4)

If we assume ϕ → 1 at spatial infinity, we find the Area of S1 = 2πR, and thus we

get R as the physical radius. Notice that if we have ϕ → 2 instead (i.e. changing

the vev), then our physical radius becomes 2R. We see the physical radius depends

on ϕ which in turn depends on ĝMN , and nothing explicitly fixes it. Thus, we have

a one-parameter moduli space, where R serves as the parameter.

On the circle with R being the physical radius, any fields on this D = 5 space-time

has periodic boundary conditions, i.e. ϕ(xµ, y) = ϕ(xµ, y + 2πR). This allows a

Fourier expansion in terms of the eigenfunctions of the circle,

ϕ(xµ, y) =
∑
n

ϕn(x)e
iny/R

Aµ(x
µ, y) =

∑
n

Aµn(x)e
iny/R, gµν(x

µ, y) =
∑
n

gµνn(x)e
iny/R.

Examining the Klein-Gordan equation,

□̂ϕ(xµ, y) = 0 ⇒
[
□+ ∂2y

]
ϕn(x) ≡

[
□+ (

n

R
)2
]
ϕn(x) = 0 (3.5)
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we have an infinite number of ϕn called the massive Kaluza-Klein (KK) modes with

mass M = | n
R
|. Compactification is done by taking the limit R → 0, which results

in infinitely massive KK modes. In a low-energy EFT, we can ignore all these

infinitely massive modes but keep only the n = 0 massless mode. This eliminates

all y-dependencies and yields a 4d EFT,

S =

∫
d4x

√
−g(R

(4)

κ2
− 1

4
ϕFµνF

µν − 1

6κ2ϕ2
∂µϕ∂µϕ), (3.6)

where R(4) is the D = 4 Ricci scalar, and ϕ is a massless scalar which is referred to

as the moduli. Since there are no massless scalar fields observed in our universe, we

have to "fix" the moduli for the theory to be a working theory. This can be done by

introducing mechanisms to make ϕ massive. Generally, every parameter on the mod-

uli space gives rise to a light field in the low-energy EFT in the context of superstring

compactification. Therefore, the knowledge of the moduli space is crucial.

3.3 Holomorphic volume form

Let us now show a m-dimensional Calabi-Yau manifold has a nowhere-vanishing

holomorphic (m, 0)-form. Such a (m, 0)-form is sometimes called the holomorphic

volume form. For our purposes, let us consider a Calabi-Yau threefold M and

assume the existence of a holomorphic volume form,

Ω =
1

3!
Ωµνρdx

µ ∧ dxν ∧ dxρ. (3.7)

We can use Ω to define a coordinate scalar,

∥Ω∥2 = 1

3!
ΩµνρΩ̄

µνρ. (3.8)

Within a coordinate patch, we may write

Ωµνρ(x) = f(x)ϵµνρ (3.9)
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where f(x) is a nowhere vanishing holomorphic function. Using the Kähler metric

g on the Calabi-Yau manifold, one finds the complex conjugate,

Ω̄σλτ = f̄ ϵµ̄ν̄ρ̄g
σµ̄gλν̄gτ ρ̄ = g−

1
2 f̄ ϵσλτ (3.10)

where g = det(gmn). Rearrange for g, we get

g
1
2 =

|f |2

∥Ω∥2
⇒ R = −i∂∂̄ log g

1
2 = −i∂∂̄ log(|f |2) + i∂∂̄ log(∥Ω∥2). (3.11)

We see R is exact since log(∥Ω∥2) is a coordinate scalar. Thus, the cohomology class

[R] vanishes, implying a trivial first Chern class c1(R) = 0.

Let us conclude the proof by showing the converse holds. There are two different

approaches in showing so presented in [6]. The first approach will be shown through

an example of the quintic in later chapters. We shall focus on the second approach

as it is relatively intuitive. However, it applies knowledge from Čech cohomology,

which we have not discussed before. For our purposes, a sketch of the proof will

suffice. By Yau’s theorem, we are guaranteed a metric that satisfies ∂µ∂ν̄ log g
1
2 = 0.

It implies that there exists a function f on the j-th coordinate patch Uj such that

g
1
2
i = |fi|2. The idea of this approach is to show that we can pick a phase to construct

a 3-form that is in fact equivalent to the holomorphic volume form,

e−iθifi(x)dx
1
i ∧ dx2i ∧ dx3i (3.12)

where θi is the phase, and (3.12) is independent of coordinate choice. First, consider

the coordinate transformation of fi on Ui ∩ Uj,

g
1
2
i

∣∣∣∣∂xi∂xj

∣∣∣∣2 = g
1
2
j ⇒ |fi|2

∣∣∣∣∂xi∂xj

∣∣∣∣2 = |fj|2 (3.13)

Writing all the modulus squared as |fi|2 = fif̄i and rearranging the variables,

fi
∂xi

∂xj

fj
= (

fj

fi
∂xi

∂xj

). (3.14)

The object to the left of the first equality is a function of xµ, while the object to the

right is a function of xµ̄. The two objects are equal only if they are constant. Let us
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write this constant as eiθij , where θij is real. Consider also the inverse transformation

of fi, we find θij = −θji. On Ui ∩ Uj ∩ Uk, we find θij + θjk + θki = 0. The magic

of Čech cohomology is that it tells us these two equations imply that θij is a one-

cochain which is also a boundary. The analogy in de Rham cohomology1 is θij being

a one-form that is closed and exact. Consequently, we can write θij = θi − θj where

θi is some constant on Ui. Thus,

fi
∂xi

∂xj

fj
= eiθij ⇒ e−iθifi

∂xi
∂xj

= e−iθjfj. (3.15)

Hence, equation (3.12) is independent of the choice of coordinates and is a globally

defined and nowhere vanishing holomorphic (3,0)-form. Thus, c1 vanishes if and

only if M admits a nowhere vanishing holomorphic (3,0)-form, and vice versa.

3.4 The Monge-Ampére Equation

We can reformulate the Calabi conjecture into a Monge-Ampére equation of the

Kähler potential. It provides a direct way to check if the Kähler potentials satisfy

the Kähler condition. Recall the Ricci-tensor of a Kähler metric has expression,

Rµν̄ = −∂µ∂ν̄ log det gµν̄ . The Einstein equation implies ∂µ∂ν̄ log det gµν̄ = 0, which

is a fourth-order PDE in terms of the Kähler potential. However, this equation can

be reduced into a second-order PDE, called the Monge-Ampére equation.

Consider Calabi-Yau threefold with the Kähler form w. Let Ω be the holomorphic

volume form, which defines a volume form µ = (−i)3Ω ∧ Ω̄. Let us define,

vw =
w ∧ w ∧ w

3!µ
=

(i)3gµ1ν̄1gµ2ν̄2gµ3ν̄3dz
µ1 ∧ dzν̄1 ∧ ... ∧ dzµ3 ∧ dzν̄3

3!(−i)3|Ωµ1µ2µ3|2dzµ1 ∧ ... ∧ dzµ3 ∧ dzµ̄1 ∧ ... ∧ dzµ̄3
(3.16)

=
det gµν̄
|Ω123|2

. (3.17)

One can check, with the use of the Einstein equations,

− ∂µ∂ν̄ log vw = −∂µ∂ν̄ log det gµν̄ + ∂µ∂ν̄ log |Ω123|2 = 0 (3.18)

1Čech cohomology is equivalent to de Rham cohomology if the betti number b1 = 2b10 = 0.
This is satisfied on a Calabi-Yau manifold with a non-zero Euler number.
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where the last term vanishes as ∂µΩ̄123 = ∂µ̄Ω123 = 0. Hence, on Calabi-Yau mani-

folds, vw = constant is equivalent to satisfying the Monge-Ampere equation.

To illustrate the idea concretely, let us try to recast the Calabi conjecture into a

Monge-Ampere equation. We have a Ricci-flat metric in every Kähler class on the

Calabi-Yau manifold, X. Let RCY be the Ricci form corresponding to the Ricci-flat

metric gCY . Let R̃ be another Ricci form whose metric g̃ is in the same Kähler class

with gCY , i.e. gCY = g̃ + ∂∂̄ϕ for some scalar function ϕ. Since c1 vanishes, we can

write RCY = R̃ + ∂∂̄F , where ∂∂̄F is some exact form. Rearranging,

∂i∂j̄ log det gCY = ∂i∂j̄ log det g̃ + ∂i∂j̄F (3.19)

∂i∂j̄[log det(g̃ + ∂∂̄ϕ)− log(det g̃ · eF )] = 0 (3.20)

∂i∂j̄[log(det(g̃ + ∂∂̄ϕ) · (det g̃ · eF )−1)] = 0 (3.21)

log(det(g̃ + ∂∂̄ϕ) · (det g̃)−1e−F )) = C (3.22)

where C is a constant, and we have used the maximum principle on a compact

manifold at (3.21). Assuming
∫
X
eF = Vol(X), we have the condition C = 0. Thus,

we have the Monge-Ampére equation, det(g̃ + ∂∂̄ϕ) = (det g̃)eF . If there exists a ϕ

that satisfies this equation, then gCY is proven to be the Calabi-Yau metric. This is

the setup of how Yau proved Calabi’s conjecture.

3.5 Construction of Calabi-Yau Manifolds

There are numerous ways of constructing a Calabi-Yau manifold. Perhaps, the

simplest method is to construct it as a hypersurface in projective spaces. The merit

of constructing a Calabi-Yau as a submanifold of projective space is that projective

space guarantees its submanifold being compact and Kähler, see the example given

in chapter 2. Let us start by stating a useful theorem by Chow,

Theorem 3.5.1 (chow) Analytic submanifolds of projective spaces may be realised

as the zero locus of a finite number of polynomials of homogeneous coordinates. We
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call such submanifolds as algebraic variety.

This allows us to construct a Calabi-Yau manifold as a complete intersection sub-

manifold. Let us clarify what we mean. We aim to construct Calabi-Yaus as sub-

manifold M in a product of projective spaces of total dimension N + 3, such that

M are complete intersections of N polynomials pα, α = 1, ..., N . The condition for

the submanifold being a complete intersection is that the N -form on M,

Ψ = dp1 ∧ dp2 ∧ · · · ∧ dpN (3.23)

is nowhere vanishing, which implies M being smooth. If Ψ vanishes at a point

p ∈ M, we then have at least one of the dpi vanishes and thus does not have well

defined normal directions at p, which implies M cannot be smooth. Notice that,

choosing N polynomials in the N+3 dimensional space gives locally a 3-dimensional

manifold, which is desired for our compactification space.

By Chow’s theorem, the submanifold M is compact and Kähler. If M is a Calabi-

Yau manifold, then its first Chern class has to vanish. We should examine what

restrictions can be imposed on the polynomials to obtain c1 = 0 on M. As shown in

the previous chapter, the first Chern class vanishes if M admits a nowhere vanishing

holomorphic volume form. We can use this to impose the necessary conditions on

the polynomials, as shown in [6]. However, let us use another approach that employs

the use of the Chern character and Chern classes.

The goal is to compute the first Chern class and see under what conditions it van-

ishes. For starters, let us consider constructing a Calabi-Yau on one projective space

instead of complete intersections. Let X be an analytic submanifold, explicitly a

smooth hypersurface, in CPN . By Chow’s theorem, X is realised as the zero-locus

of a degree d polynomial, p (p is a section of the holomorphic line bundle OCPN (d)).

We can define the normal bundle NX of X as the quotient

NX =
T (1,0)CPN |X
T (1,0)X

(3.24)
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where T (1,0)X is the holomorphic tangent bundle of X. From (2.100), we have a

short exact sequence, 0 → T (1,0)X → T (1,0)CPN |X → NX → 0. In fact, p serves

as a coordinate near X, and thus the normal bundle is simply the holomorphic line

bundle OCPN (d)|X . Our short exact sequence becomes,

0 → T (1,0)X → T (1,0)CPN |X → OCPN (d)|X → 0 (3.25)

which is called the adjunction formula (see more in [31]). The short exact se-

quence implies c(X) = c(CPN)/c(OCPN (d)). Since OCPN (d) is a line bundle, we

have cj(OCPN (d)) = 0 for j ≥ 2. The Chern character,

ch(OCPN (d)) = edx = 1 + dx+ · · · = 1 + c1(OCPN (d)) + · · · ⇒ c1 = dx. (3.26)

Hence, the total Chern class c(OCPN (d)) = 1 + c1 = 1 + dx. Recall from the end of

the previous chapter, we have c(CPN) = (1 + x)N+1. Together,

c(X) =
(1 + x)N+1

1 + dx
. (3.27)

By definition, x is a closed two-form. We can expand the total Chern class as wedge

products of x and extract the first Chern class,

c(X) = (1 + (N + 1)x+ . . . )(1− dx+ . . . ) = 1 + [(N + 1)− d]x+ . . . . (3.28)

We find the first Chern class being

c1(X) = [(N + 1)− d]x. (3.29)

If X is a Calabi-Yau threefold (i.e. N = 4), we require X to be the zero-locus of a

degree 5 polynomial of homogeneous coordinates z. This is the well-known Fermat

quintic in CP4. We can generalise the above results to the complete intersection

manifolds Y , constructed from N degree di, i = 1, ..., N , polynomials,

c(Y ) =
(1 + x)N+1∏l
i=1(1 + dix)

. (3.30)

If c1(Y ) = 0, we have the condition N + 1 =
∑l

i=1 di.
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Example: The Fermat Quintic

The quintic threefold is perhaps the most studied Calabi-Yau manifold in the context

of numerical Calabi-Yau metrics. It is a 3-dimensional hypersurface defined by a

degree-5 homogeneous polynomial in the 4-dimensional complex projective space

CP4. We can find
(
5+5−1
5−1

)
= 126 independent polynomials that satisfy the quintic

polynomial condition. However, the symmetries on CP4, see Chapter 4.2, finds 25

of them redundant. Thus, there are 101 independent polynomials that define the

quintic. The simplest example of the quintic is the Fermat quintic, defined by,

Q(z) =
5∑

i=1

(zi)
5 = (z1)

5 + (z2)
5 + (z3)

5 + (z4)
5 + (z5)

5 = 0, (3.31)

where zi ∈ C5 are the homogeneous coordinates of CP4.

Let us try to find the holomorphic volume form Ω on Q. On C5, we define

τ = ϵa1...a5z
a1dza2 ∧ dza3 ∧ ... ∧ dza5 =

5∑
µ=1

dz1 ∧ ... ∧ zµ ∧ ... ∧ dz5 (3.32)

which is clearly a holomorphic (4,0)-form. However, τ is not well defined on CP4

since it transforms as τ → λ5τ under the transformation za → λza. Instead, we find

τ/Q, which has poles at Q = 0, being invariant under the transformation za → λza.

Let γQ be a small circle of radius δ around Q = 0 in CP4. Let us define the

holomorphic, nowhere vanishing (3, 0)-form Ω via,

lim
δ→0

∫
γQ

τ

Q
= (2πi)Ω. (3.33)

By rewriting dz1 as dz1 = (∂z1
∂Q

)dQ, and evaluate the integral, we find

Ω =

(∑5
µ=2 dz2 ∧ ... ∧ zµ ∧ ... ∧ dz5

(∂Q/∂z1)

)∣∣∣∣∣
Q=0

. (3.34)

where (2πi) from (3.33) cancels due to the residue theorem. The existence of such

a nowhere-vanishing holomorphic volume form concludes that the quintic is indeed

a Calabi-Yau manifold, verifying our condition achieved previously via the compu-

tation of the first Chern class.
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It is worth mentioning another family of quintic threefold, the Dwork family: Q(z) =∑5
i=1(zi)

5 − 5ψ
∏5

i=1 zi = 0 has an interesting relation to mirror symmetry.

3.6 Moduli spaces

There are two important moduli spaces for a Calabi-Yau manifold, that is the com-

plex structure moduli and the Kähler moduli. These moduli determine the geometry

of the Calabi-Yau manifold and thus determine string phenomenology. For instance,

the shape and size of a Calabi-Yau depend on its complex structure and Kähler mod-

uli respectively, which in turn determines some physical quantity of the theory, such

as the gauge group and the particle content.

Let us start with the complex structure moduli. The space of complex structure

of a Calabi-Yau manifold is called the Calabi-Yau moduli space. To illustrate the

idea, consider the torus2. A complex torus, C/L(λ1, λ2) can be formed under the

identification z ∼ z+mλ1+nλ2 for fixed non-zero λ1, λ2, such that, Im(λ1/λ2) > 0,

λ1/λ2 /∈ R with m,n ∈ Z. Complex coordinates on T 2 is fixed by choosing a pair of

(λ1, λ2), hence, we say the complex structure of T 2 is defined by the pair (λ1, λ2).

The lattice L(λ1, λ2) ≡ {λ1m+ λ2n|m,n ∈ Z} on T 2 is not uniquely determined by

(λ1, λ2). Two lattices L(λ1, λ2) and L′(λ′1, λ
′
2) coincides ifλ′1

λ′2

 =

a b

c d


λ1
λ2

 ≡ A

λ1
λ2

 (3.35)

such that A ∈ PSL(2,Z) ≡ SL(2,Z)/Z2 (One can check A and −A defines the same

lattice). It implies (λ1, λ2) and (λ′1, λ
′
2) defines the same complex structure.

Let us define the two projection maps p : C → C/L(λ1, λ2), p̃ : C → C/L(λ′1, λ′2)

and assume the exsistence of a one-to-one holomorphic map, h : C/L(λ1, λ2) →

C/L(λ′1, λ′2). It induces a holomorphic map h∗ between the two C. In fact, we have
2Torus is the only compact Calabi-Yau manifold in one-dimension.
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the commutative diagram

C C

C/L(λ1, λ2) C/L(λ′1, λ′2)

h∗

p p̃

h

(3.36)

such that p̃ ◦ h∗(z) = h ◦ p(z),∀z ∈ C. The induced map must take the form

z → h∗(z) = az + b, where a, b ∈ C and a ̸= 0. Clearly, h∗(λ1) − h∗(0) = aλ1 and

h∗(λ2)−h∗(0) = aλ2. For h to be a well defined map, we require aλ1, aλ2 ∈ L(λ′1, λ
′
2)

and a′λ′1, a
′λ′2 ∈ L(λ1, λ2), where a′ ̸= 0 ∈ C. Thus, if C/L(λ1, λ2) and C/L(λ′1, λ′2)

has the same complex structure, we must have a matrix M ∈ SL(2,Z) and a complex

number w = a′−1 such thata′λ′1
a′λ′2

 =M

λ1
λ2

⇒

λ′1
λ′2

 = ωM

λ1
λ2

 . (3.37)

This is equivalent to saying the complex structure of (λ′1, λ′2) is defined by the pair

(λ1, λ2) modulo a constant factor ω and PSL(2,Z).

Let us try to remove the constant factor dependence. If we define a complex-analytic

isomorphism z → v = z/λ2, then every torus is isomorphic to one with λ2 = 1. Let

τ = λ1/λ2 ∈ H ≡ {z ∈ C|Im(z) > 0} be the modular parameter, and take (τ, 1) to

generate a lattice. If τ and τ ′ defines the same complex structure, we haveλ′1
λ′2

 =

a b

c d


τ
1

⇒ τ ′ =
λ′1
λ′2

=
aτ + b

cτ + d
(3.38)

where ( a b
c d ) ∈ SL(2,Z). The map τ ′ → τ is called a modular transformation, which

can be generated by τ → τ +1 and τ → −1/τ . The moduli space of the torus is the

quotient space H/PSL(2,Z), while parameter τ defines a coordinate for the complex

structure moduli. By varying τ , we vary the shape of the torus. We can interpret

the moduli space as the space of parameters that describe the same object.

Let us turn to the Kähler moduli space. In essence, the space of Kähler classes is
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called the Kähler moduli. Recall the set of Kähler forms w defines the Kähler class

[w] ∈ H(1,1)(M). A Kähler class is fixed if different Kähler forms differ by an exact

form i∂∂̄ϕ, where ϕ is a globally defined scalar, i.e. w′ = w + i∂∂̄ϕ. Rewriting the

Kähler forms in terms of Kähler potentials, we find

i∂∂̄K′ = i∂∂̄K + i∂∂̄ϕ ⇒ K′ = K + ϕ (3.39)

which implies that Kähler class and thus Kähler moduli can be fixed by fixing Kähler

transformations. In literature, the Kähler moduli is often defined as the Kähler cone,

which is the set of possible Kähler classes in H(1,1) that have at least one positive

form. Note that the boundary of the cone represents submanifolds with zero volume.

Moreover, there is a theorem, which states the Kähler cone is isomorphic to the space

of Ricci-flat Kähler metrics of dimension h(1,1). See Chapter 5 of [32] for proof. This

tells us the moduli spaces are closely related to the Hodge numbers.

Take the Dwork family as an example. The parameter ψ defines a Kähler modu-

lus which measures the volume of the manifold. Notice that ψ = 0 yields the Fermat

quintic. Consider the Hodge diamond of quintic threefold (see [20] for derivation),

1

0 0

0 1 0

1 101 101 1

0 1 0

0 0

1

Since h(1,1) = 1, we know there is only one Ricci-flat Kähler form on the quintic

and the Kähler cone is one-dimensional. Indeed, our Kähler moduli has only ψ as

the parameter, making it one-dimensional. Furthermore, h(2,1) = 101 tells us the

number of complex structures we have on the quintic. This is compatible with our

previous calculation on the number of independent quintic polynomials. Thus, our

complex structure moduli is 101-dimensional.
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Formally, h(1,1) and h(2,1) classifies the infinitesimal deformation of the Kähler moduli

and the complex moduli respectively, see ch6 of [25]. A profound feature of Calabi-

Yau manifolds is that they have a mirror manifold, and the pair of Calabi-Yau

leads to the same worldsheet theory. This leads to the notion of mirror symmetry.

Remarkably, the Hodge numbers of the pair of Calabi-Yau can be mapped to each

other (i.e. h(p,q) and h(d−p,q), where d is the complex dimension of the Calabi-Yau).

Taking the quintic as an example, there is a "mirror" quintic Q̃ with h(1,1)(Q̃) =

h(2,1)(Q) = 101 and h(2,1)(Q̃) = h(1,1)(Q) = 1. In fact, lots of the properties of mirror

symmetry are studied with the knowledge of the moduli spaces, which further shows

the importance of moduli spaces.
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4 Numerically Solving Calabi-Yau Metrics

As mentioned, there are no known analytic expressions for Calabi-Yau metrics on

Calabi-Yau threefold for the time being. However, there have been plenty of efforts

made in the past decade in the pursuit of a numerical Calabi-Yau metric, leading

to the two best numerical algorithms in solving for Calabi-Yau metrics, that is

the Donaldson algorithm and the Energy functional approach. Useful reviews of

the Donaldson algorithm can be found in [17, 33], while the author of the Energy

functional approach has written a user handbook [34].

4.1 Donaldson’s Algorithm

Donaldson [10] pioneers the use of projective embeddings to represent a numerical

metric. This idea originates from Yau and its applicability was shown by Tian [35].

This chapter introduces the algorithm and takes the quintic as an example.

Starting from a holomorphic line bundle L on Kähler manifold X with N global

sections, we have N basis polynomials {sα}Nα=1 as the sections of the line bundle

which forms the basis of the vector space H0(X,L) = CN . Then on the bundle Lk,

we have degree-k polynomials {sα}Nk
α=1 as sections of the bundle. We will explain the

k-dependence on Nk later in an example regarding the quintic. Let us construct a

map, i : X → CPN−1, such that i(z0, ..., zN) = (s1(z), ..., sN(z)), and require it to be

an embedding1. The map being an embedding allows us to write the Kähler potential

on X in terms of the polynomials {sα} on CPN−1 since the coordinates on the

projective space are now parametrised by the sections sα. Here, X is embedded into

CPN−1 as an algebraic variety. We now refer to the metrics and Kähler potentials

on X as "algebraic metrics" and "algebraic potentials" respectively.
1For i to be an embedding, L has to be an ample line bundle

51



The next step is to make an ansatz for the Kähler potentials on CPN−1,

Kh =
1

kπ
ln

Nk∑
α,β̄=1

hαβ̄sα(x)s̄β̄(x̄), (4.1)

where hαβ̄ is some invertible hermitian matrix. Notice that it has N2
k parameters

and a form of the Fubini-Study Kähler potential which gives rise to a family of

Kähler metrics on X. Note that different hαβ̄ results in different metrics but are

within the same Kähler class. We compute the metric via, gαβ̄ = ∂α∂β̄Kh.

The final step is to seek which Kähler potential gives the "best" approximation to

the Ricci-flat metric. Observe that (4.1) implies hαβ̄ defines a hermitian metric on

L. It allows a definition of the inner product between sα,

< sβ|sα >=
∫
X

dVolCY
sαs̄β̄

hγδ̄sγ s̄δ̄
, (4.2)

where dVolCY is the volume form on X by choice. A typical choice for the volume

form on a Calabi-Yau is dVolCY = Ω ∧ Ω̄, where Ω is the holomorphic volume form

and is independent of hαβ̄. Let us define the "T-map",

T : hαβ̄ 7→ T (h)αβ̄ =
Nk

VolCY

∫
X

dVolCY
sαs̄β̄

hγδ̄sγ s̄δ̄
. (4.3)

If h satisfies h = T (h), the pair (h, sα) is called a balanced embedding. Then the

metric g(k)
αβ̄

= ∂α∂β̄Kh is called the balanced metric which is unique.

Theorem 4.1.1 If there exists a balanced embedding (h, sα), then the sequence

T k(h(0)) converges to a fixed point in the limit of k → ∞ for any initial hermi-

tian matrix h(0).

The theorem guarantees the contraction of the T-map, and hence, iterating through

the map gives us a sequence of balanced metrics. Consider the Kähler forms asso-

ciated with the sequence of balanced metrics on the bundle Lk,

wk =
1

k
i∗k(w

FS
k ) (4.4)

where i∗ denotes the pullback, and wFS
k is the Kähler form with (4.1) as Kähler
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potential on the projective space. It was found the Kähler class is [wk] = c1(L).

Theorem 4.1.2 If wk converges to some limit w∞ as k → ∞, then w∞ is a Kähler

metric in the class c1(L) with constant scalar curvature.

On a Calabi-Yau manifold, c1 = 0 implies vanishing scalar curvature for wk. Hence,

the k → ∞ limit gives us a Ricci-flat metric. Owing to Tian’s theorem, the conver-

gence of metrics on the line bundle L goes by the order of O(k−2). Then on Lk, the

use of algebraic metrics is expected to have an exponential convergence2 (i.e. order

of O(kν) for any ν) [10] which we will not attempt to explain.

To summarise, we can iterate any initial hαβ̄(0) through the T-map infinite times to

obtain a Ricci-flat metric. However, in practice, it was shown by [17] that there is

no need to iterate more than 10 times for a good approximation owing to its fast

convergence. Starting from hαβ̄(0), we have the sequence,

h(n+1) = [T (h(n))]
−1 (4.5)

that takes hαβ̄ to give us our desired metric in the limit of n→ ∞.

4.1.1 Error measures

To define what a good approximation is, let us introduce some error measures.

Consider ourselves on a Calabi-Yau threefold. We define the "σ-measure" as a

measure of how well the numerical metric satisfies the Monge-Ampére equation.

Recall and adopt the notation from Chapter 3.4, the condition to satisfy the Monge-

Ampére equation is vw = constant. Let us define,

VolK =

∫
X

w ∧ w ∧ w, VolCY =

∫
X

Ω ∧ Ω̄. (4.6)

By comparing the two top-forms, we can eliminate the need to compute v,

w ∧ w ∧ w
VolK

=
Ω ∧ Ω̄

VolCY
. (4.7)

2It was shown the algorithm did not achieve exponential convergence. See Ch 4.3.
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Denote wk to be the Kähler form with respect to g(k)
αβ̄

= ∂α∂β̄Kh. If the metric is

Ricci-flat, then the fractions w3
k/VolK and Ω∧Ω̄/VolCY equals to 1. We define,

σk ≡
1

VolCY

∫
X

dVolCY

∣∣∣∣1− w3
k/VolK

Ω ∧ Ω̄/VolCY

∣∣∣∣ (4.8)

as the σ-measure. Clearly, σk ∼ 0 indicates a good approximation to the Calabi-Yau

metric. It was shown by [36, 14] that σk tends to 0 by the order of k−2.

The σ-measure measures how well the metric solves the Monge-Ampére equation

and has no direct relation to the Ricci scalar. We can define another measure, the

"R-measure", that measures the Ricci flatness via the Ricci scalar,

R =
Vol1/3K

VolCY

∫
X

dVolK|Rk|, (4.9)

where Rk is the Ricci scalar of the balanced metric. The factors in front of the

integral are included to eliminate scaling dependence on k. This quantity only

vanishes if the balanced metric equals to the exact Calabi-Yau metric.

4.1.2 Implementation and Point sampling

Both the T-map and the σ-measure are involved in integrating over X. Due to the

highly non-linear nature of (4.3), it is impossible to evaluate the integrals through

analytic methods. This is why we turn to numerical methods. However, we face a

computational challenge as integrating over the threefold (i.e. 6 real dimensions) is

computationally expensive and inefficient with traditional numerical methods. This

is often the biggest hurdle in applying the algorithm to more complicated geometries

and in achieving better resolutions for the metrics. The common strategy to counter

the problem is to use Monte Carlo methods in evaluating integrals, as Monte Carlo

methods generally perform well in handling problems with high dimensionality.

Let us construct a measure on X, dµΩ, such that,∫
X

fdµΩ =

∫
X

fΩ ∧ Ω̄. (4.10)

54



A Monte Carlo integration is carried out by first sampling Np points, pi, uniformly

according to the measure dµΩ, then summing over them,∫
X

fdµΩ =

∫
X

f
dµΩ

dA
dA ≈ 1

Np

Np∑
i=1

f(pi)w(pi) (4.11)

where dA is some density measure for the point sampling of xi, and w = dµΩ/dA

serves as a weight. It will become clear later that dA is related to the induced

Fubini-Study metric on X. Such a scheme allows us to avoid all the complications

that come with the construction of coordinate patches.

There are numerous ways to sample points on a X, and we shall describe two of

them here. The first step in both methods involves sampling points randomly on

the projective space. Recall the isomorphism S2N+1/U(1) = CPN . We can sample

points on the projective space by sampling points randomly on the sphere, then we

mod out the U(1) phase. A detailed description of this procedure is provided in

[37]. The next step for the first method is to define "precision", that is to define a

quantity to determine how well the generated point satisfies the defining polynomial

of Q. We reject the point if it does not satisfy our required precision. This is called

a rejection-type algorithm. It does not work efficiently for our case due to the high

dimensionality nature of the Calabi-Yau.

The second method is an algorithm developed by [33] that shows how we can generate

points on Q by intersecting lines with it. Consider a Calabi-Yau n-fold constructed

as the zero locus of degree d homogeneous polynomial Q. We start by constructing

a random line in CPn+1 through sampling a pair of points (a, b) randomly, where

a, b ∈ CPn+1. A theorem by Bezout tells us there are d intersecting points between

X and a line in CPn+1. Thus, by generating M lines on the projective space, we

obtain Np = d×M points on X. Explicitly, let us consider a line on CPn+1 written

as λa + ρb where λ and ρ are some complex variable. We then solve for λ and ρ

that satisfies Q(λa+ ρb) = 0 to obtain d-points λa+ ρb on Q. The major advantage

of this setup is that the points generated by this method are uniformly distributed
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with respect to the Fubini-Study metric on CPn+1. This is a result of the theorem of

Shiffman and Zelditch, which allows us to write the density measure as the pullback

of the volume form of the FS metric dA ∼ i∗p(w
3
FS). See more in §3.2 of [33].

Having an algorithm to generate points on the manifold, it is crucial to ask how many

points should we generate for a good approximation. There are three numbers that

we should consider. The first is Np, which is the number of random points needed

to approximate the T-map integral with Monte Carlo integration. The second is

Ng, which is the number of points used in obtaining the metric gαβ̄ = ∂α∂β̄Kh. The

third is Nt, which is the number of points used in computing the error measure. An

experiment carried out by [36] finds that Np has to be larger than N2
k , the number of

parameters of the metric hαβ̄, for the balanced metric to converge properly. Later,

the same authors [14] find that an ideal choice of points would satisfy,

Np = 10N2
k + 50000. (4.12)

For Nt, it was suggested by [17] that Nt = 10000 would be sufficient for checking

approximations that have an error up to 1%.

The Fermat Quintic

Let us take the quintic as an example to illustrate how the polynomial basis can be

constructed. Recall the defining polynomial of the quintic,

Q(z) =
5∑

i=1

(zi)
5 = (z1)

5 + (z2)
5 + (z3)

5 + (z4)
5 + (z5)

5 = 0 ⊂ CP4, (4.13)

and it admits a nowhere vanishing holomorphic (3,0)-form,

Ω =

(∑5
µ=2 dz2 ∧ ... ∧ zµ ∧ ... ∧ dz5

(∂Q/∂z1)

)∣∣∣∣∣
Q=0

. (4.14)

We can construct the basis {sα} as independent monomials of degree-k. There are

Nk numbers of them, that is Nk = ( 5+k−1
k ). To see this, consider
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k = 1, Nk = 5 {sα} = {z1, ..., z5}

k = 2, Nk = 15 {sα} = {z1z1, z1z2, . . . , z2z2, z2z3, . . . , z3z3, z3z4, . . . , z4z5, z5z5}

k = 3, Nk = 35 {sα} = {zizjzk}, 1 ≤ i ≤ j ≤ k ≤ 5

From the defining polynomial (4.13), we can write (z1)
5 = −

∑5
i=2(zi)

5. Therefore

on Q, the monomials are no longer independent and we have a reduced number

of independent monomials for k ≥ 5. Taking k = 5 as an example, we could have

{sα} = {(z1)5, (z2)5, (z3)5, (z4)5, (z5)5, ...}. However, (z1)5 is actually the minus of the

sum of the other 4 monomials, and thus {sα} = {(z2)5, (z3)5, (z4)5, (z5)5, ...}.

Therefore, we have a refinement to Nk,

Nk =


( 5+k−1

k ), 0 < k ≤ 4

( 5+k−1
k )− ( k−1

k−5 ), k ≥ 5.

(4.15)

We can generalise the above to a Calabi-Yau embedded into CPN ,

Nk =


(N+k

k ), 0 < k ≤ N

(N+k
k )− ( k−1

k−N+1 ), k ≥ N.

 ∼ kN for large k. (4.16)

For large k, we have N2
k ∼ k2N parameters for hαβ̄. This number also represents the

dimension of the subspace of the Kähler class of Q defined by Kh. We can interpret

this k2N degrees of freedom as having k "Fourier modes" in every direction.

During points sampling, one can choose zi = 1 on the i-th patch of CP4, where

i = 1, ..., 5. There are two merits in doing so, the first is that it labels the patch we

are on, while the second is it allows us to further eliminate another variable zj within

the patch via Q = 0. Consider z1 = 1, we can write z52 = −(1 + z53 + z54 + z55) and

thus we have only (z3, z4, z5) as the independent coordinates on the patch. Then,

we find Ω = (dz3 ∧ dz4 ∧ dz5)/5z42 , which can be used to obtain the Ω ∧ Ω̄.
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4.2 Energy Functional Approach

The problem with Donaldson’s algorithm is that integrating over the Calabi-Yau

manifold is a computationally challenging task. An alternative to Donaldson’s al-

gorithm is the energy functional approach advocated by Headrick and Nassar [15],

where they have identified a set of "energy" functionals that has a minimum corre-

sponding to the Ricci-flat metric. By minimising the Energy functional, we obtain

the Ricci-flat metric, which is referred to as the "optimal" metric in the literature.

The merit of this approach is that minimising a function is easier than solving the

T-map integral in Donaldson’s algorithm. This approach has three steps. The first

two steps are to find the energy functionals and to find a way to represent the metric

numerically. The final step is to minimise the functionals.

Let X be a n-dimensional Calabi-Yau manifold with a holomorphic volume form Ω

and a Kähler form w. Recall the notation from Chapter 3.4, we have the volume

form µ = (−i)nΩ∧ Ω̄, and the ratio vw = det gij̄/|Ω1...n|2. Define the volumes,

VM =

∫
X

µvw, Vµ =

∫
X

µ (4.17)

where VM and Vµ is the volume with respect to the Kähler form and the volume

form respectively. These are compatible with the one previously defined in (4.6).

We have two functionals,

H1[w] ≡
∫
X

µ(vw − VM
Vµ

)2 =

∫
X

µv2w − V 2
M

Vµ
, (4.18)

H2[w] ≡
∫
X

µgj̄i∂i ln vw∂j̄ ln vw = −1

2

∫
X

µRw (4.19)

where Rw is the Ricci scalar. Both of these functionals are non-negative and have

only one critical point, which is a minimum that corresponds to the Ricci-flat metric.

We can interpret the first functional as the standard deviation of vw. In practice,

one should only use H1 during the minimisation process as the gradient in the Ricci

scalar Rw = −∇2
w ln vw from H2 is difficult to obtain.
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The second step is to represent the metric numerically. Similar to Donaldson’s algo-

rithm, the use of algebraic metrics is adopted, that is writing the Kähler potential in

terms of a polynomial basis. By doing so, we restrict ourselves to Calabi-Yaus which

are constructed as an algebraic variety. However, the energy functional approach

takes another step, that is it uses the symmetry of the Calabi-Yau to reduce the

dimensionality of the Kähler class constructed by the algebraic metrics.

Let us take the Fermat quintic as an example. It is well known that the quintic

admits a Z5 × Z5 symmetry group (see [38] for details), with generators

S : zi → ζ ixi and T : zi → zi−1 (4.20)

where zi, i = 1, ..., 5, are the homogeneous coordinates of CP4, and ζ is a (4 + 1)-

root of unity e2πini/(4+1). We can interpret S as multiplying by a root of unity, and

T as permutations of zi. In addition, it admits a zi → z̄i complex conjugate Z2

symmetry. Denoting Γ as the product of the three symmetry groups, we find the

order of Γ = 2(4+1)4(4+1)! = 150000, where 2 comes from the complex conjugation,

(4 + 1)! comes from the permutation, and (4 + 1)4 comes from multiplying the root

of unity to each zi. The importance of these symmetry groups is that they require

the Kähler potentials and its metrics to be invariant under them.

Instead of imposing the symmetry conditions on sα, Headrick and Nassar go on to

construct a new basis that is invariant under Γ and is independent of each other,

P l = cl
IJ̄
s̄J̄sI , where cl

IJ̄
is some coefficient that can be fixed numerically. Then they

replaced hαβ̄ by hl and rewrote the Kähler potential, Kh = 1
k
ln (hlP l). The metric

information is now encoded in hl that has only one index. During the minimisation,

the space of Kähler metrics is being scanned, which is varying the parameter hl,

and it picks out the algebraic metric that is closest to Ricci-flat. By exploiting

the symmetry on the quintic, we reduce the dimensionality of the Kähler class and

thus gain computational efficiency. The algebraic metric that minimises the energy

functional is called "optimal".
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We will not show how the minimisation is done explicitly. However, it is worth noting

the Monte-Carlo method mentioned previously is adopted in evaluating the energy

functionals. Furthermore, error measures defined in Chapter 4.1.1 also apply here.

4.3 Merits and Limitations

A worrying point for both methods is that each computation for the metric is fixed

at a particular point on the moduli space. To elaborate, the basis holomorphic

sections sα implicitly fixes our complex structure, while the choice of line bundle L

and thus the Kähler class c1(L) fixes our Kähler moduli. While it is still possible

to study the moduli space, it is inefficient as one would need to rebuild the setup in

every calculation. Another problem is that the Kähler forms on our Calabi-Yau X

are constructed as the pullbacks of the Kähler forms on the projective spaces. This

is obviously another limitation as we can only obtain a subspace of the Kähler class

on X. Perhaps these are the drawbacks of adopting algebraic metrics.

On the contrary, the merit of using algebraic metrics is that it is easy to manipulate

and keep the algorithm simple. Firstly, the polynomial basis is generally simple to

construct and compute. Polynomials are also friendly to work with from a theo-

retical standpoint. Secondly, it bypasses the need to construct coordinate patches.

Finally, we have, effectively, only one parameter to vary, that is the degree-k of the

polynomial basis and thus is user friendly.

Consider the Donaldson algorithm. Despite its fast convergence, the computational

cost rises exponentially with increasing k, resulting in a drastic drop in its efficiency.

Taking k = 8 and k = 12 as an example, we have N8 ∼ 4000 and N12 ∼ 20000 on

the quintic, which implies the metric h having ∼ 16× 106 and ∼ 4× 108 numbers of

parameters. From our previous discussion on the points required to generate a good

approximation, we will need around 108 number of points for k = 8 case, which is

a significantly large number to handle for a typical home-use PC. It was shown by
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[17] that it takes 50 hours to complete the k = 12 case on the quintic, and predicted

that it would take 35 years for k = 20. Bear in mind that any computation is fixed

in a single point on the moduli, and thus 50 hours of computation is considered slow

if we were to move through the moduli space.

The Donaldson algorithm approximates a balanced metric that converges to a Ricci-

flat metric, instead of an actual Ricci-flat metric. Thus, there are two-fold error

sources to our approximation, that is the statistical error from Monte Carlo integra-

tion and the error from the convergence to a Ricci-flat balanced metric. In contrast

to the Donaldson algorithm, the energy functional minimisation directly approxi-

mates a Ricci-flat metric instead of an intermediate, such as the balanced metric.

Therefore, we expect the energy functional approach to outperform the Donaldson

algorithm in the same degree-k of the polynomial basis.

Let us include some reported values of the σ and R measures of the numerical

Calabi-Yau metrics. From the energy functional approach [15], no R-measures were

computed. However, they have found σ ≃ 0.17 × 2.2−k from the data of k = 1 to

10. Taking k = 4, 6, 8, it translates to σ ≃ 0.00725, 0.00149, 0.00030. For Donaldson

Algorithm from [17], we have

k = 8, 10, 12 σ ≃ 0.04, 0.027, 0.02 R ≃ 3.06, 2.13, 1.69.

Above σ-values agrees with the findings of [33], where σ ≃ 3.1k−2 − 4.2k−3. Taking

k = 20, we find σ ≃ 0.00725, which is the result for k = 4 for optimal metrics.

Notice that the balanced metric did not achieve an exponential convergence as ex-

pected from the use of algebraic metrics. It is clear that the optimal metrics are bet-

ter than the balanced metrics by order of magnitudes. However, the major limitation

of the algorithm is that it relies on the symmetries of the Calabi-Yau manifold. Un-

fortunately, most of the Calabi-Yaus of interest to string theory has little to no sym-

metries. This is a great limitation to the energy functional approach, as no symme-

tries imply the Kähler class which it scans over is big, resulting in low efficiency.
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It appears that both aforementioned numerical methods face the problem of high

computational time. Fortunately, techniques from machine learning can be used

to mitigate this problem. For instance, neural networks can be applied to predict

the output of the Donaldson algorithm for large values of k. It was found that

machine learning techniques greatly increase the efficiency of the algorithm at the

cost of little loss in the accuracy of the metric. [17] Moreover, the study of moduli

dependence is made possible through the use of machine learning [16, 39].
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5 Machine Learning

Machine learning is a rapidly evolving technology which is known for its excel-

lence at approximating functions, classifying images and predicting sequential data.

In the past few years, theoretical physicists began to borrow techniques from ma-

chine learning to study the string landscape [40, 41], AdS/CFT correspondence [42],

bundle cohomology [43] and more. There are numerous attempts made to study

Calabi-Yau metrics with machine learning [44, 39, 45, 16, 46, 47, 37, 48] and had led

to fruitful results. The common feature seen among these works is the use of neural

networks as a tool to approximate the Calabi-Yau metrics. In this chapter, we will

review how neural networks approximate functions and discuss if the application of

machine learning is necessary. We refer readers to [8, 49] for a physicists-oriented

text on the application of machine learning to fundamental physics.

Before introducing neural networks, let us take a look at the general idea of what

machine learning does and what we wish to achieve through it. Let us now refer

to a neural network as a "machine". There are three common types of machine

learning: unsupervised machine learning, supervised machine learning and rein-

forcement learning. For our purposes, we shall only focus on supervised machine

learning. Considering its application, one typically starts by supplying the machine

with some sample data, and "teaches" the machine what data it should produce.

Through the learning process, the machine optimises its internal parameters to gen-

erate a "correct" output from a set of unseen data.

The whole process can be classified into four steps. The first step is data acquisition,

where we acquire sample data with known "input" and "output". Let us call such

sample data the training data. The second step is learning, where we feed our

machine with the training data. The third step is validating, where we use a set
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of validation data which was hidden from the machine to verify if the machine

actually outputs the correct results. We call machine learning successful if the

machine generates results that agree with the validation data. If machine learning

is successful, we proceed to the final step called predicting, where we use our machine

to predict results for data that has no known "output".

Let us take the Machine learning Donaldson algorithm to illustrate the above con-

cretely. We first acquire a set of data D from the Donaldson algorithm for small

value k. We split D into a training data set T and validation set V , such that

D = T ∩V . We take T to train our "machine" to predict the output of the Donald-

son algorithm. To examine if learning is successful, we cross-check its output with

V by measuring how much percentage agreement they have with each other. We

can also vary the size of T , such as taking T to be 10%, 20%, etc. of D to see if the

"machine" performs better. In general, the performance of the "machine" increases

with the size of T , but its improvement in performance diminishes as T continues to

grow. After validation, we can apply our "machine" to predict the output of higher

k-values of the Donaldson algorithm. The above procedure was adopted by [17],

where they found the machine learning approach with curve fitting1 is faster than

the Donaldson algorithm by a factor of 50 times for the same level of accuracy on the

quintic (i.e. accuracy achieved by the Donaldson algorithm for k = 12). With this

significant improvement in efficiency, repeated computations with different complex

structures and Kähler moduli are made possible within hours in contrast to the

original 50 hours for a single computation.

A similar application of machine learning is carried out by [48], where they used

"machine" to replace the minimisation procedure of the energy functional approach

and thus gain efficiency. However, the obvious drawback of both methods is the

need for a training dataset, which must be computed by the original algorithm. For
1A curve fitting technique is used to extrapolate for g(k=15) which serves as training data for

the neural network to increase accuracy.
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instance, if we were to consider a Calabi-Yau X with no symmetry, the method

proposed by [48] would first require us to compute the metric of X via the en-

ergy functional minimisation algorithm to obtain a training dataset, which will be

time-consuming. Furthermore, metrics obtained via the aforementioned methods

are merely an approximation of what Donaldson or the energy functional algorithm

would produce. Therefore, their accuracy will not be any better than the origi-

nal algorithm. These are the limitations of direct supervised learning due to our

ignorance of explicit Calabi-Yau metrics.

Can we use machine learning, not as a tool to improve the numerical methods, but as

a tool to obtain the metric directly? The answer is yes, and there are currently a cou-

ple of open-sourced libraries, such as CYJAX [37], cymetric [16] and MLGeometry [45],

made available for all physicists. Note that both CYJAX and MLGeometry adopt an

algebraic Kähler potential ansatz. Furthermore, CYJAX was applied to study moduli-

dependent metrics and SU(3) structure Calabi-Yau metrics [39], while cymetric

was applied to study the moduli spaces of quintic and bicubic Calabi-Yau [16]

and the complete intersection and Kreuzer-Skarke Calabi-Yau Manifolds [47].

Do they perform better than the Donaldson or the energy functional minimisation

algorithm? It was reported by [37] that CYJAX achieves a σ-measure 4.4 times

smaller than that of the Donaldson algorithm for k = 6 on the Dwork family quintic

threefold. Authors of MLGeometry [45] have found their package performs better

than the energy functional approach in manifolds with fewer symmetries. Finally,

[16] reported that cymetric is capable of producing metrics of accuracy on par with

k = 20 of the Donaldson algorithm with only a few hours on a laptop.

It was clear that machine learning techniques improve both the efficiency and accu-

racy of the metrics compared to that of traditional numerical methods. The magic

of machine learning lies within the "machine", which is a neural network (NN) that

learns to compute for a metric. Let us investigate how NN actually works.
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5.1 Introduction to Neural Networks

Neural network, given by its name, tells us it mimics how a human brain behaves. A

neural network generally consists of multiple layers of nodes which are interconnected

by edges modelled by linear transformations. On each node, there is an activation

function which is activated upon receiving an input or a signal. After processing the

signal, the activation function outputs another signal which is relayed to its subse-

quent layer. In general, edges carry different weights, while nodes carry biases.

A neural network can be thought of as a general function approximator2, which

approximates functions f : Rn → Rm. Suppose we wish to use a neural network to

approximate the Calabi-Yau metric on the Dwork family quintic. How many input

and output parameters do we need for the NN? For the input, we would need 5

complex coordinates and thus 10 real coordinate that specifies where we are on the

quintic. We can also include a 5-dimensional array with only one non-trivial entry

to specify which coordinate patch we are on (i.e. [1,0,0,0,0] specifies the 1-st patch).

Finally, we would need 1 complex coordinate (2 real coordinates) to specify the pa-

rameter ψ of the quintic. Together, we have 17 inputs for the NN. For the output, the

Calai-Yau metric is a hermitian matrix which has 3 real degrees of freedom from the

diagonal and 3 complex degrees of freedom from the off-diagonal. Therefore, we have

9 output parameters for the NN. Thus, the neural network would be approximating

a function f : R17 → R9, where we would need 17 input nodes and 9 output nodes.

This is the NN setup of [16] to study the size and shape of the quintic.

Formally, a node is called a neuron which is a function σ(
∑
wixi+ b), where σ is its

activation function, xi is its argument, wi is weight of edge and b is a bias. Typically,

the range of the function is in [0, 1] ⊂ R. Let us consider a simple section of a neural

network shown in Figure 5.1 to show how a neuron works.
2It is often thought of as a highly nonlinear regressor. However, to avoid going into the concept

of regression, we shall take the idea as NN can approximate any function we like.
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x1Input #1

x2Input #2

x3Input #3

(σ, b)
σ(w1x1 + w2x2 + w3x3 + b)

w1

w2

w3

Input layer

Figure 5.1: Three neurons with different edge weights connected to another neuron.

The figure shows a section of a NN with 3 input neurons connected to an interme-

diate neuron. We call the first layer of the network as input layer. Each "arrow"

connecting the neurons is called an edge with a weight wi. The intermediate neuron

has an activation function σ and a bias b. Notice that both the weight and bias are

assigned with a random value at the beginning and serve as the internal parameters

of the NN. The NN relays the weighted input (i.e. wixi) to the intermediate neuron

and produces an output, σ(w1x1 +w2x2 +w3x3 + b), which will be the "new" input

for its subsequent connected neurons.

In Figure 5.2, we show a typical NN architecture which approximates a function

f : R3 → R2. We see every NN has an input and output layer. In between the two

layers, there can be numerous layers of neurons which are called the hidden layers.

Hidden layers are called hidden as the information relayed between them is never

shown to us. There are no restrictions on the number of neurons in the hidden layers

or the number of hidden layers. In fact, it is not even clear what configurations of

the hidden layer would give the best-performing NN. We call the number of neurons

in a layer the width, while the number of layers in a neural network the depth. Such

a NN is commonly referred to as the "forward feeding NN", as we have only forward-

propagating layers indicated by the arrows. If a NN has many hidden layers, then

we call the NN deep, and it falls into the context of deep learning. If a NN has many

nodes per layer, we call the NN wide.
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Figure 5.2: A typical NN architecture where the opacity of edge represents weight.

To formalise the above discussion, let us introduce some technical jargon in the con-

text of machine learning. Suppose we have an input vector ∈ Rn0 where its elements

are the input entries of a neural network. We call the elements of the vector features,

and the corresponding (vector) space Rn0 the feature space. If we want the NN to pro-

duce values in Rns , then we call the desired output values the target values.

Let us define ni and l(i)µ be the width and the output of the µ-th neuron of the i-th

layer respectively. Let us define w(i)
µν be the weight matrix of the i-th layer, where

ν runs from 1 to ni−1 and µ runs from 1 to ni. Notice that the ρ-th column of w(i)
µν

encodes all the weights of the edges connected to the ρ-th neuron in the (i − 1)-th

layer. We then have,

z(i)µ =

ni−1∑
ν=1

w(i)
µνl

(i−1)
ν + b(i)µ , µ = 1, 2, ..., ni, (5.1)

where b(i)µ is the bias on the µ-th neuron in the i-th layer, and z(i)µ is value that the

activation function takes in the i-th layer.

The complexity of a neural network comes from its activation function, which is

non-linear. We can pick different activation functions for different layers. However,
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every neuron in the same layer has to have the same activation function. Applying

the activation function on z(i)µ , we get

l(i)µ = σ(i)(z(i)µ ). (5.2)

Consider a NN with (s + 1) layers, where i = 0 denotes the input layer, and i = s

denotes the output layer. Now, we can write an expression that equates the output

of the NN by substituting (5.2) into (5.1) recurrently,

f : Rn0 → Rns , (5.3)

l(s)µs
= f(x) (5.4)

= σ(s)(
ns−1∑

µs−1=1

w(s)
µsµs−1

σ(s−1)(. . . σ(1)(

n0∑
µ0=1

w(1)
µ1µ0

l(0)µ0
+ b(1)µ1

) . . . ) + b(s)µs
), (5.5)

where x ∈ Rn0 , l(s) ∈ Rns and l(s)µs is the µs-th entry of l(s).

Below are some common choices for the activation function,

Identity: f : R → R, f(x) = x

Logistic sigmoid: f : R → (0, 1), f(x) = (1 + e−x)−1

Tanh: f : R → (−1, 1), f(x) = tanh(x)

Leaky ReLU: f : R → R, f(x) =


x x ≥ 0

−cx x < 0,

ReLU: f : R → R, f(x) =


x x ≥ 0

0 x < 0.

There is currently no good explanation as to why some activation functions are

better than others in some particular tasks (i.e. in regression or classification). Each

activation function has its merits and drawbacks, and the best activation function

for one’s task is often found through trial and error.

One might wonder what is the role of the weights and the biases in the above setup.

As we see the weights rescale the signal while the biases give an offset to the weighted
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sum. Therefore, we can interpret that the weights are controlling the influences of

input, while biases serve as the threshold for activation. Taking the ReLU as an

example, if wixi is smaller than b (take b negative), then the resulting signal would

be 0. Alternatively, adding a positive bias b can also help in activating the neuron.

During the training process, these internal parameters (i.e. weights and biases) will

be varied until they are "optimised", that is until the NN gives us the desired value.

If we were to remove all the biases from the NN, then the resulting NN would not

have as much freedom to tune for the best approximation. Note that removing all

the biases from a small NN would greatly impact its performance in general.

5.2 Training the Neural Network

As mentioned previously, training the neural network amounts to tuning its internal

parameters (i.e. weights and biases). In the context of supervised machine learning,

the NN is trained to seek internal parameters that output values close to the given

target values. A common technique used to carry out this task is called gradient

descent. For us, we can train the NN by using this technique to minimise the σ-

measure derived from the Monge-Ampére equation. Here, the σ-measure is the loss

function of the NN. Let us adopt the notation in Chapter 5.1 on the discussion of a

NN with (s+ 1) layers.

The idea of gradient descent is to search for a minimum on the loss function by

following the direction of steepest descent. Let us denote L as the loss function, and

collectively denote the parameters of the µ-th neuron in the i-th layer by θ(i)µ . The

gradient descent algorithm obtains a minimum by iterating through,

θ(i)µ → θ(i)µ − η
∂L

∂θ
(i)
µ

, (5.6)

where η is called the learning rate. We can interpret this map as sending θ(i)µ down

the steepest slope of L by a distance proportional to η.
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To update the values of θ(i)µ , one needs the technique called backpropagation, which

is essential in calculating all the gradients of L. Let us first rewrite the gradient on

the i-th layer with the chain rule,

∂L

∂θ
(i)
µ

=
∂L

∂z(i)
∂z(i)

∂θ
(i)
µ

(5.7)

where z is defined in (5.1). To illustrate the idea concretely, let us take L to be the

mean square error function,

L =
1

ns

ns∑
µ=1

(yµ − l(s)µ )2 (5.8)

where yµ is the target value. To simplify the notation, we introduce

δ(s)ν :=
∂L

∂z
(s)
ν

. (5.9)

We can interpret δ(s) as a measure of how much the output l(s) deviates from the

target value. Let us compute this derivative on the output layer,

∂L

∂z
(s)
ν

= − 2

ns

(yν − σ(s)(z(s)ν ))
∂σ(s)(z

(s)
ν )

∂z
(s)
ν

= − 2

ns

(yν − σ(s)(z(s)ν ))σ′(s)(z(s)ν ) (5.10)

where we have used equation (5.2). We can proceed to δ(s−1)
ν ,

δ(s−1)
ν =

∂L

∂z
(s−1)
ν

=
∂L

∂z
(s)
µ

∂z
(s)
µ

∂z
(s−1)
ν

= δ(s)µ

∂z
(s)
µ

∂z
(s−1)
ν

. (5.11)

From equation (5.1) and (5.2), we find,

∂z
(i+1)
µ

∂w
(i+1)
µν

= l(i)ν ,
∂z

(i+1)
µ

∂b
(i+1)
µ

= 1, (5.12)

∂z
(s)
µ

∂z
(s−1)
ν

=
∂

∂z
(s−1)
ν

(w(s)
µν l

(s−1)
ν + b(s)µ ) = w(s)

µν σ
′(s−1)(z(s−1)

ν ). (5.13)

Notice that the summation sign is suppressed. Now substitute (5.13) into (5.11),

δ(s−1)
ν =

ns∑
µ=1

(w(s)
µν δ

(s)
µ )σ′(s−1)(z(s−1)

ν ). (5.14)

We do this recurrently until we have exhausted the whole network. Essentially, we

are propagating the information of δ(i) backwards to obtain δ(i−1) and thus yield the

name backpropagation. We can generalise (5.14) to the i-th layer by replacing s
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with i. Now, putting everything back into (5.7), we find

∂L

∂w
(i)
µν

=
∂L

∂z
(i)
µ

∂z
(i)
µ

∂w
(i)
µν

= δ(i)µ l
(i−1)
ν ,

∂L

∂b
(i)
µ

= δ(i)µ . (5.15)

Thus, the weights and biases are updated by,

w(i)
µν → w(i)

µν − ηδ(i)µ l
(i−1)
ν , b(i)µ → b(i)µ − ηδ(i)µ . (5.16)

One iteration of gradient descent concludes after updating all the internal parameters

in all layers. This is repeated until we have reached a point where ∂L/∂θ(i)µ = 0.

If the learning rate is too large, the algorithm might miss the minima or even climb

up the slope of L. On the other extreme, a small learning rate might result in a

long training time. Therefore, picking the right learning rate is crucial. Notice that

the search will stop if it arrives at a critical point, that is point with a vanishing

gradient. An immediate concern is if there exist many saddle points, what happens

if the search gets stuck on them? Moreover, how can we tell apart a saddle point

and a minima? Fortunately, there are numerous learning schemes and variants of

gradient descent provided in Chapter 3 of [49] that help in choosing a good learning

rate and overcoming problems associated with saddle points.

Another concern of the training is how one splits the sample data. Notice that apart

from the weights and biases, we have variables such as the number of hidden layers,

the number of neurons per hidden layer and learning size, which are fixed during the

design of the neural network. All of these parameters are called hyperparameters.

We cannot modify them like the weights and biases during the training process.

Therefore, it would be beneficial to split the data into a training set, a validation

set and a testing set. The training set, undergoing gradient descent, would give

us the optimised weights and biases. We then use the validation set to see how

the NN performs if we vary the hyperparameters. Finally, the testing set would be

used to evaluate the performance of the NN after we have found the best hyper-

parameters. One of the widely used hyperparameter tuning methods is called grid
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search, where one trains the NN for a set of possible combinations of the preselected

hyperparameters to search for the best-performing configuration.

5.3 Application to Calabi Yau metrics

Having the basic idea of how neural networks "learn", let us take a look at how it was

applied to solve a Calabi-Yau metric. Let us restrict ourselves to the open-sourced

libraries CYJAX, MLGeometry and cymetric. As mentioned earlier, both CYJAX and

MLGeometry adopt an algebraic Kähler potential ansatz. Despite it automatically

ensuring a Kähler metric, it restricts us to a subspace of the Kähler class of the

Calabi-Yau. On the other hand, cymetric solves this problem by introducing two

loss functions, which we shall explain later. Furthermore, cymetric is the only

library, out of the three mentioned here, that has the capability to study complete

intersection and Kreuzer-Skarke Calabi-Yau manifolds. Restricted by the length of

this dissertation, let us only study how cymetric gives a CY metric.

The size and shape of a Calabi-Yau is studied in [16, 47] with cymetric. In particu-

lar, let us see how the volume of the Calabi-Yau X is computed. Let us denote wCY

as the Ricci-flat Kähler form, and wFS as the Kähler form induced by the Fubini-

Study metric from the ambient space (i.e. CP4 for the Fermat quintic). Similar to

equation (4.6), we define two volume forms,

dVolCY =
1

3!
w3

CY, dVolFS =
1

3!
w3

FS. (5.17)

We find the volumes by integrating the volume form,

VolCY =

∫
X

dVolCY =

∫
X

d6x
√
gCY, VolFS =

∫
X

dVolFS =

∫
X

d6x
√
gFS (5.18)

where g denotes the determinant of metric. To obtain the volumes numerically, one

needs the Monte-Carlo integration. Notice that if both wCY and wFS are in the same

Kähler class, we find their volume coincides.

In cymetric, points on the Calabi-Yau are sampled by the intersecting lines method
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described in Chapter 4.1.2. Thus, the sampled points are distributed according to

the measure dA, which can be used to perform Monte-Carlo (MC) integration,∫
X

dVolCYf =

∫
X

dVolCY

dA
f =

1

N

∑
i

wif |pi , wi =
dVolCY

dA

∣∣∣∣
pi

. (5.19)

Finally, we can compute the volume by performing MC integration on (5.18).

As discussed at the beginning of Chapter 5.1, the neural network of cymetric takes

10 (5 complex coordinates) + 5 (array specifying the patch) + 2 (complex coordinate

for ψ) = 17 inputs. Remarkably, the package offers five options in how the Ricci-flat

metric, gCY is predicted:

Name of mode Output

Free gCY = gNN

Additive gCY = gFS + gNN

Multiplicative, element-wise gCY = gFS + gFS ⊙ gNN

Multiplicative gCY = gFS + gFS · gNN

ϕ-model gCY = gFS + ∂∂̄ϕ

Here, we denote the output of the NN for the first four options as gNN and denote

the output for the last option as ϕ. Clearly, gNN has 9 real-components and ϕ is just

a scalar. In theory, different choices have their own merits, but it was shown some

perform better in the quintic experiment.

The NN architecture of cymetric is relatively simple. It has an input layer with 17

neurons, an output layer with 9 neurons, three hidden layers each with 64 neurons

and GELU (Gaussian Error Linear Unit) activation functions. An Adam (Adaptive

Moment Estimation) optimizer is used in training.

There are five loss functions to ensure the output satisfies the Monge-Ampére equa-

tion. We write the total loss function,

L = α1LMA + α2Ldw + α3Ltransition + α4LRicci + α5LVol-K (5.20)

where αi are hyperparameters, LMA is called Monge-Ampére loss, LRicci is called
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Ricci loss, Ldw is called Kähler loss, Ltransition is called transition loss and LVol-K is

called the Kähler class loss. The individual loss functions are defined as follows,

LMA =

∥∥∥∥1− 1

v

det gCY

Ω ∧ Ω̄

∥∥∥∥
n

, w ∧ w ∧ w = vΩ ∧ Ω̄ (5.21)

LRicci =
∥∥∂∂̄ ln det gCY

∥∥
n

(5.22)

Ldw =
∑
ijk

∥Re cijk∥n + ∥Im cijk∥n , cijk = ∂kgij̄ − ∂igkj̄ (5.23)

Ltransition =
1

d

∑
U ,V

∥∥gVCY − TUV · gUCY · (TUV)
†∥∥

n
(5.24)

LVol-K =

∥∥∥∥∫ det gFS −
∫

det gCY

∥∥∥∥
n

. (5.25)

Here, ∥x∥n denotes the Ln norms of x. By default, n = 1 for all loss functions,

except for Ldw which has n = 2. In equation (5.24), U and V denotes the patches

on X, and (TUV)
ν
µ = ∂xν/∂yµ are the transition functions on the chart overlapping

region, where x and y are the local coordinates on chart U and V respectively.

We see LMA is similar to the σ-measure, LRicci is actually the Ricci-scalar, Ldw is

the Kähler condition, Ltransition is the agreement of gCY on the overlapping region,

and LVol-K measures if wCY and wFS are in the same Kähler class. Using these five

loss functions, we can ensure the output gCY to be Ricci-flat, Kähler and consistent

on the overlapping chart region. This resolves the need for an algebraic Kähler

potential ansatz at the cost of two loss functions, Ltransition and Ldw.

5.4 Merits and Limitations

The experiment [47] is carried out on the quintic and bi-cubic Calabi-Yau. Let us

focus on the result reported on the quintic. All five of the output modes of the

package were used to solve for a Ricci-flat metric on the quintic threefold. It was

shown that machine learning is successful (i.e. loss function continues to decrease)

for all of the output options. Particularly, the multiplicative, gCY = gFS(I + gNN),

and ϕ-model, gCY = gFS + ∂∂̄ϕ, were found to outperform the other options.
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For the multiplicative model, the NN is learning how to correct the induced Fubini-

Study metric to be a Ricci-flat metric. The merit of this approach is that the FS

metric is already complex (i.e. has smooth transitions between patches) and Kähler,

(i.e. Ltransition and Ldw are already minimised to start with) and thus alleviates the

need to optimise all five loss functions. An immediate drawback is that it might not

work well if the Calabi-Yau metric is not connected to the Fubini-Study metric. In

other words, gNN is large. For the ϕ-model, the NN is seeking a Ricci-flat Kähler

potential. The metric gCY is by construction Kähler, which allows us to ignore

both Ltransition and Ldw. However, it would require us to compute two additional

derivatives which raises the computational cost.

It was reported by [47] that the ϕ-model, trained with 100 epochs3 within an hour of

runtime on a laptop, achieves a σ = 0.0086 and R = 0.076. The result is on par with

k = 20 balanced metrics and k = 4 optimal metrics. Note that it was extrapolated by

[17] that k = 20 would take 35 years to finish the balanced metric approximation.

This shows the application of machine learning indeed has reached its original goal,

which is to shorten the runtime of the calculation. In addition, the machine learning

approach produces metrics via minimising the Ricci scalar and the deviation from

the Monge-Ampére equation. It does not require us to specify for a Kähler class,

and we can study the moduli dependence by specifying the point on the moduli

during the training process. This is something both the Donaldson algorithm and

the Energy functional minimisation algorithm lack. Another merit of the machine

learning technique is that it allows us to study Ricci-flat but non-Kähler metrics

on manifolds of special structure. This can be done simply by adjusting our loss

functions. It was studied by [39], where they showed the NN is capable of producing

non-Kähler SU(3) structure metrics.

3Having the NN trained on the training data once is called one epoch.
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Despite the machine learning approach failed to produce metrics with precision on

par with large value k optimal metrics, it is evident that it allows us to study a

wider range of Calabi-Yau manifolds and their moduli spaces at ease compared to

that of conventional numerical algorithms. Another drawback of the approach is

that it is difficult to predict the neural network’s performance and to obtain a sta-

tistical error on the approximation. This is due to its highly non-linear nature. Lots

of current work is still in the exploratory stage, and it involves lots of trial and

error. However, there are many fantastic machine learning libraries, for instance,

TensorFlow and PyTorch, available for us to implement and optimise our neural net-

works. As machine learning continues to evolve, one can expect future technologies

to increase the accuracy of metrics, shorten the runtime, and eventually compute

physical observables like the Yukawa couplings.

Before concluding this chapter, it is useful to give some examples of how numerical

metrics were applied in physics. In [47], numerical metrics solved by cymetric were

used to obtain a Hermitian Yang-Mills connection with an error ∼ 3% on the bi-

cubic manifold. In [50], the moduli-dependence of the massive KK modes and the

swampland distance conjecture is studied with the application of optimal metrics.

In [12], the Hermitian Yang-Mills connection on quartic K3 and quintic threefold is

obtained by the use of balanced metrics.
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6 Conclusion

In this dissertation, we gave an introduction to complex geometry and motivated

the study of Calabi-Yau manifolds in the context of superstring theory. We reviewed

the idea of dimensional compactification and briefly studied the notion of moduli

spaces and its relation to string theory.

If one wishes to study the low energy effective field theory of a superstring theory on

the Calabi-Yau manifold, especially the physical observables, the knowledge of the

Calabi-Yau metric is indispensable. However, there are no known analytic expres-

sions for the Ricci-flat metric, which motivates the study of numerical Calabi-Yau

metrics. We reviewed two of the most common numerical algorithm that uses alge-

braic metrics to approximate the Ricci-flat metric. They are called the Donaldson

algorithm and the energy functional minimisation algorithm. The former approxi-

mates the Calabi-Yau metric by a balanced metric, which converges to a Ricci-flat

metric under iterations through a T-map; while the latter approximates the Calabi-

Yau metric by an optimal metric, which corresponds to a minimum of some Energy

functionals. It was found that the optimal metrics can achieve very high accuracy

in a short runtime, while balanced metrics need a relatively longer time to reach the

same accuracy as the optimal metrics. However, the energy functional approach is

limited by the symmetry of the Calabi-Yau, making it less efficient in Calabi-Yaus

which is of interest to string theory.

In the final section, we reviewed the basics of machine learning, and how it was ap-

plied to approximate for Calabi-Yau metrics. As discussed, machine learning tech-

niques allow us to study a wider range of Calabi-Yaus and the moduli-dependence of

the metrics. It is evident that machine learning brings benefits to physicists, and we

hope it sheds light to uncharted regions in the study of Calabi-Yau manifolds.
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