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Abstract

Generalised geometry is a framework that unifies the diffeomorphisms, the gauge transfor-

mations and the fluxes of supergravity. The basic formalism of O(d, d)×R+ and E7(7) ×R+

generalised geometries is reviewed. It is then applied to find consistent truncations of ten- and

eleven-dimensional supergravities. This formalism gives the structure of the truncated theory

and includes different amounts of supersymmetry. In particular, the cases of half-maximal and

quarter-maximal five-dimensional consistent truncations are considered. In the latter exam-

ple, algebraic considerations from exceptional generalised geometry enable to greatly restrict

the number of possible theories. To know whether these are realised, a further differential

constraint must be solved. A specific construction of a N = 2 consistent truncation of Type

IIB supergravity retaining one hypermultiplet and two vector multiplets is conjectured but is

shown not to work.
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“Algebra is the offer made by the devil to the mathematician. The

devil says: I will give you this powerful machine, it will answer any question you like. All you

need to do is give me your soul: give up geometry and you will have this marvelous machine.”

- Michael Atiyah [1]

1 Introduction

Throughout history, it is hard to say who from mathematicians or physicists stole more from the

other. In part, this is because for the longest time these people were the same, but not only. The

present case lies however in the second category.

Generalised geometry was initiated as generalised complex geometry in 2002 by Hitchin, who

generalised the notion of Calabi-Yau manifolds as well as symplectic manifolds [2]. This unification

was possible by taking seriously the idea that the complex and symplectic geometry can be thought

on the sum TM ⊕ T ∗M , instead of as linear operations on them separately, which was taken up

by Hitchin’s students Gualtieri and Cavalcanti [3]. This construction gave rise to an operation (a

bracket) which was already implicit in the work of Dorfman [4] although it was only presented

in the present form by Courant [5]. It was then realised that this generalised geometry, later

called O(d, d) generalised geometry, provided a natural setting for for the NSNS sector of Type II

supergravity [6], [7].

Supergravity first arose as the next logical step after the discovery of supersymmetry, itself being

the natural way to unify the symmetries of the Standard Model by evading the Coleman-Mandula

theorem [8] through the Haag- Lopuszański-Sohnius theorem [9].

The first example of supergravity was written in 1973 by Volkov and Soroka [10], but it became

all the more relevant when it was discovered that it described the low-energy of string theory. With

the advent of the second superstring revolution, the unique eleven-dimensional supergravity was

seen as the low-energy limit of a theory unifies all five ten-dimensional string theories, called M-

theory. This again prompted a better understanding of supergravity in these numbers of dimensions

and their reductions, which reached its pinnacle when its language - generalised geometry - was

discovered.

In spite of its mathematical origins, we are still doing physics and we will emphasize the phys-

ical origins rather than the more abstract story of algebroids, that start with Lie algebras and

end - for now - with the so-called Y-algebroids, passing by Lie algebroids and Courant algebroids

while still remaining within the realm of Leibniz algebroids [11]. The physical story on the other

hand starts with the symmetries of the bosonic sector of ten- and eleven-dimensional supergravi-

ties and repackages them in a single geometric object (named the “generalised tangent bundle”).

This is almost enough to see how the most basics elements of generalised geometry grow out of

supergravity. The subtlety lies in the fact that contrary to electromagnetism, the analogues of the

field strength are not necessarily two-forms. In supergravity, these analogues appear roughly as
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the bosonic content that is not the graviton and are named fluxes. This higher-form symmetry

induces more structure on the generators in the form of their patching and leads to the definition of

the generalised tangent bundle. From this, more bundles can be constructed such the generalised

adjoint bundle.

The rest consists in finally generalising the conventional Riemannian geometry. Specifically,

analogues of the Lie derivative, metric, connections and Ricci scalar among other things can be

defined. It is obvious that the act of generalising a concept requires to drop some of the original’s

properties without an a priori clear choice between what is retained and what it is not and as with

any generalisation, it is difficult to show precisely why one notion is enlarged in one way rather

than another. Two things to do remain: first one can try to convey why a specific choice is at

least reasonable, secondly we can show that it does lead to somewhere interesting. Fortuitously,

the second part is easy in our case as in some important ways the geometry has already been

generalised. The end result is that the bosonic part of Type II and eleven-dimensional supergravity

can simply be written as a generalised Einstein-Hilbert action. Although no new physics has been

found so far, it is clear for anyone familiar with the non-linearities of supergravity that the fact

such a reformulation is at all possible is in itself remarkable.

At this stage, two important remarks should be made. First, while the basic bundles can be

inferred from the original physical theory, it is not true that objects such as the generalised Lie

derivative (and therefore the rest too) could be constructed. This is partly1 why more emphasis

was put on this first part of the construction rather than on the construction of the generalised

Ricci and the comparison with the original supergravity action. The second point is that, although

we only started by looking at the symmetries of the bosons, the fermions can automatically be

incorporated by taking the double cover of the bosonic maximal compact subgroup as usual.

Supersymmetry variations as well as fermionic equations of motions come out of the formalism in

a natural manner. The reason for this can be broadly recognised as confirmation of the fact that

what a physicist calls supersymmetry, a mathematician calls interesting geometry.

As these two remarks show, there is much motivation to view generalised geometry as the natu-

ral language of supergravity. And as usual, it is hoped that a new perspective, while elegant on its

own, gives more than just that. Rightfully, expectations are raised to answer previously unsolved

problems. For instance, so far, it has been used to understand the spectra of consistent trunca-

tions. Another use is in the description of supersymmetric backgrounds: generalised geometry

enabled to calculate moduli of flux backgrounds that couldn’t be calculated before, while hologra-

phy is yet another application (like understanding the marginal deformations of supersymmetric

backgrounds). We will only focus on the first of these uses here.

Even though it was not yet clear at the time, consistent truncations go back a century ago,

when Kaluza supposed that the world was really five dimensional with only a metric as a field

content. Assuming the ”cylinder condition”, he realised that this five-dimensional metric could be

rephrased as a four-dimensional metric, along with a vector field (giving electromagnetism) and a

scalar field [12]. In 1926, Klein gave a quantum and geometrical interpretations to Kaluza’s idea by

1Along with the fact that generalised Lie derivatives and torsions are much more used in the second part. Also,
generalised geometry is such a vast subject that we had to make a lot of choices in what we could cover.
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suggesting that the cylinder condition originated from a small circular dimension [13]. Underlying

their analysis was the fact that only the zeroth mode in the Fourier expansion of the metric was

retained. This was in accord with the small radius of the fifth dimension and the fact that this

dimension is unseen, meaning that the four dimensional theory is a low energy description of the

universe. However, such type of truncation is in general not possible to do as we will explain in

more detail later.

Ultimately, it became clear that the Kaluza-Klein theory could not describe our Universe. The

main idea of dimensional reduction was nonetheless powerful enough to survive to this day through

superstring theory. If one is interested in string phenomenology, the first obvious question is what

manifolds should be used to compactify the extra dimensions. Contrarily to the seeming unicity

of string theory coming from the second superstring revolution, this question unleashed a plethora

of unfixed parameters. Today this is phrased in terms of the swampland (theories which do not

admit a UV completion with gravity) and the string theory landscape (the collection of possible

false vacua). Specifically, while waiting for some vacuum selection principle, it asks: how does the

string theory landscape compare with the set of anomaly-free effective field theories?

Since the low-energy limit is given by supergravity, it is not so surprising that generalised

geometry can help shed light on this deep question. In order to do that, one has to generalise

the Kaluza-Klein theory to more general spaces than circles. Fluxless compactifications lead to

Calabi-Yau manifolds or orbifolds. Generalised geometry can be used when fluxes are turned on

(which is a wanted feature since it was discovered that they can generate warped metrics and

break supersymmetry in a stable way). But even when this is done, not all questions have been

answered. Indeed, a truncation scheme leading to the low-energy theory is still lacking. That only

specific truncations are consistent can be seen in the fact that there is no reason to expect the

following diagram (taken from [14]) to commute:

Full action S Truncated action St

Field equations δS = 0 Truncated field equations δSt = 0.

(1.1)

Consistent truncations are thus relevant in this context as they single out the supergravities

that can be uplifted to string theory and M-theory from those that cannot.2

In [15] and later in [16], the most general known conditions for consistent truncations were

found. Importantly, this finally included truncation ansätze for compactifications on sphere man-

ifolds such as eleven dimensional supergravity on S7 and S4 which were known to be consistent,

but eluded any attempt at a systematical understanding of the problem.

After briefly introducing some necessary mathematical tools and physical context3, a summary

of generalised geometry will be given. This summary will be aimed towards what will be needed

when constructing the truncations in the second part. In particular, the emphasis will be less

2Note that the supergravities that are not retained are still perfectly consistent theories in their dimensions.
3This physical will be a brief presentation of some notions of gauged supergravity, but the examples of Type II

and eleven-dimensional supergravities will only be considered in the beginning of the next chapter to show more
closely its links with generalised geometry.
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on the invariance of the Courant bracket, the Ricci tensor or the supersymmetry variations than

on construction of the basic bundles, Dorfman derivative and general intrinsic torsion. This is

both because of the length and because the former concepts are less immediately relevant to the

construction of consistent truncations than the latter ones - although they are also relevant in the

sense that they imply that generalised geometry captures the geometry of supergravity on which

the central theorem of [16] rests.

To give a clearer and broader view of generalised geometry, each step in the construction of

the theory - that is explained here - will be given in the context of the two types of generalised

geometries, the simpler O(d, d)×R+ type and the more useful Ed(d)×R+ type. The first case can

be used to describe the NSNS sector of Type II supergravity (and is the one more closely linked

with the original general complex geometry of Hitchin) while the second case can be used for both

Type II A/B and eleven-dimensional supergravity. We will only focus on the 11d case and give the

corresponding formulas when needed later. Finally, note that these two group bear resemblance

with the T and U duality groups of string theory respectively. However, the duality groups are

defined over the integers while these groups are defined over the reals. Generalised geometry does

not describe the geometry of the full string theory but is restricted to supergravity.

The consistent truncations part will start with a short explanation of what they are in super-

gravity before stating the central theorem of [16]. Since it is more than an existence theorem, we

will apply it to two cases to show how it gives the structure of the truncated theory. In both cases

we will be interested in Type IIB on a five-dimensional manifold, first preserving half-maximal

then quarter-maximal, which was considered in [17] and [18]. These last two papers constrained

the possible truncations and it remains to see individually whether these possibility are realised or

not. For one such theory, a failed attempt at constructing the generalised adjoint tensors is finally

presented.
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2 Mathematical and Physical Preliminaries

2.1 G-structures

A principal bundle is a bundle with a fiber which is isomorphic to a group. The group action

corresponds to a transformation of a vector from one neighborhood to another around the same

point on the manifold. Furthermore the action of the group should be free and transitive on the

fiber. Intuitively, this is to ensure that there always exists a neighborhood change corresponding

to an element of the group.

Figure 1: Representation of a principal fiber bundle (taken from [19])

An example of principal bundle is the frame bundle F where the group is GL(d,R) (for an

d-dimensional manifold) and is given by the set of all ordered bases of the elements of TM . A

G-structure is a principal G-subbundle of the frame bundle.

For example, an O(d)-structure is equivalent to a metric structure [20]. First, we show how a

metric can be obtained from that structure. Let ea ∈ TxM and let êa ∈ T ∗
xM such that:

eamê
m
b = δab . (2.1)

The vielbeins define the components of the Riemannian metric as:

gmn = δabe
a
me

b
n. (2.2)

Conversely, given a Riemannian metric gmn at a point, we can always construct a set of orthonormal

frames as:

Px = {{êa} ∈ Fx : g(êa, êb) = δab}. (2.3)

The metric is preserved for transformations of the type ê′a = Ma
bêb, where MMT = I. Hence

M ∈ O(d).

The fact that a Riemannian metric at point is equivalent to an O(d)-structure means that we

can alternatively define it as:

gx ∈ GL(d,R)

O(d,R)
. (2.4)
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The correspondence between a G-structure and globally defined invariant tensors is true in

most cases. However, this usually carries some topological constraints on M , contrarily to the case

of an O(d)-structure which can always be defined.

For instance, an SL(d,R)-structure is equivalent to a globally defined top form. This form can

be thought of as the determinant of the frame. This carries a topological condition, namely the

orientation (not all manifolds are orientable).

In general, smaller groups imply stronger restrictions. For a d-dimensional manifold, an ⊮-

structure is equivalent to d linearly independent globally defined vector fields and the tangent

bundle is a trival bundle. If a manifold admits an identity structure, it is said to be parallelisable.

Lie groups are the archetypal examples of parallelisable manifolds (although parallelisable mani-

folds are not restricted to Lie groups). The only parallelisable spheres are S0 (trivially), S1 (since

U(1) is a Lie group), S3 since (SU(2) is a Lie group) and S7 (which does not have a Lie group

structure) [21].

A final example that will be useful later is the Sp(d,R)-structure, where d is even. This is also

called an almost symplectic structure. This is equivalent to a globally defined non-degenerate two

form Ω [20].

Given a subgroup A of B and C, the A-structure can usually be found by taking the globally

invariant tensors equivalent to the B- and C-structures, along with some compatibility condition.

2.2 Exact Sequences and Semidirect Products

Let H and K be two groups and ϕ be a map from K to the automorphism group of H. The

semidirect product H ⋊K is the set H ×K endowed with the action:

(h, k)(h′, k′) = (hϕk(h′), kk′). (2.5)

One can check the existence of the identity and inverse for any element as well as the associativity

of this action. Hence, H ⋊K is a group [22].

Taking A1, ..., An to be spaces such as groups, vector spaces or modules, a sequence

A1
ϕ1−→ A2

ϕ2−→ ...
ϕn−1−−−→ An (2.6)

is exact if ker ϕi = im ϕi−1 for i ∈ {2, ..., n− 1}.

Consequently, we immediately have: 0 −→ M
ϕ−→ N is exact if and only if ϕ is injective (since

ker ϕ = 0) and M
ϕ−→ N −→ 0 is exact if and only if ϕ is surjective (since im ϕ = N).

For an exact sequence 0 −→M
ϕ−→ N

ψ−→ P −→ 0, it is not in general possible to know what N is

on the basis of M and N alone (one needs to know one of the maps as well). An exact sequence

for which N ∼= M ⊕P , with ϕ and ψ being the inclusion and projection maps respectively is called

split. The splitting lemma states that a split exact sequence is equivalent to the existence of a

homomorphism α : N −→ M such that α ◦ ϕ = idM , or a homomorphism β : P −→ N such that

ψ ◦ β = idP . If M , N and P are groups, the splitting lemma states that N = M ⋊ P . If M , N
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and P are vector spaces, then the sequence is always split exact, i.e. N ∼= M ⊕ P . Finally, if M ,

N and P are groups and the sequence is again split exact, then N = M ⋊ P . [23]

Example: GNS = Ω2
cl ⋊GL(d,R)

Let h ∈ Ω2
cl and k ∈ GL(d,R) and consider the matrix multiplication:(

1 0

h 1

)(
k 0

0 k−T

)
=

(
k 0

hk k−T

)
(2.7)

We now have that:(
k 0

hk k−T

)(
k′ 0

h′k′ k′−T

)
=

(
kk′ 0

hkk′ + k−Th′k′ (kk′)−T

)
(2.8)

Writing Eq. 2.8 in the form of Eq. 2.7 as:(
kk′ 0

hkk′ + k−Th′k′ (kk′)−T

)
=

(
1 0

h+ k−Th′k−1 1

)(
kk′ 0

0 (kk′)−T

)
, (2.9)

the action of Eq. 2.5 becomes apparent with ϕk(h′) = k−Th′k−1, which means that a semidirect

product group element can be written in the form of Eq. 2.7.

Alternatively, from the above discussion, this group can equivalently be described by the split

exact sequence:

1 −→ Ω2
cl −→ GNS −→ GL(d,R) −→ 1, (2.10)

where 1 represents the identity group.

2.3 Elements of Gauged Supergravity

Supergravity is any theory of local supersymmetry. A rigid symmetry is made local by introducing

a gauge field. For instance, a U(1) symmetry parameter α is made local by defining a U(1) gauge

field Aµ such that δAµ = ∂µα. In supersymmetry, the transformation paramater ϵα is fermionic.

Hence the gauge field ψµα contains a spin-1 (the vector µ index) part and a spin-1/2 (the spinor α

index) part, which constrain ψ to be a spin-3/2 field (called the gravitino) whose supersymmetric

partner is a spin-2 field (called the graviton). Supergravity is hence equivalently defined as a

supersymmetric theory of gravity.

This equivalence between local supersymmetry and supersymmetry with gravity is one reason

to study supergravity. Another motive for its study is the fact that ten-dimensional supergravities

are low energy limits of the non-pertubatively related versions of string theory, while eleven-

dimensional supergravity is the low-energy of M-theory.

The simplest manifold on which type II or eleven-dimensional supergravity can be compactified

is a torus Tn. The resulting theory possesses maximal supersymmetry as well as a global and an

abelian local symmetry. However, the matter content is not charged under this abelian local
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symmetry. These theories are therefore called ungauged supergravities. In ungauged supergravity,

the scalar fields transform in a non-linear representation of some global group G. Explicitely, this

means that the Lagrangian is invariant under the transformation of the matrix V of scalar [24]:

δV = ΛV − Vk(x), (2.11)

where Λ = Λαtα ∈ Lie G and k(x) ∈ Lie H, where H is the maximal compact subgroup of G.4 This

means that the scalars parametrise the coset G
H . For instance, for eleven-dimensional compactified

on T 7, G = E7(7) and H = SU(8). One sometimes fixes the local symmetry to a specific gauge

such as the unitary gauge or the triangular gauge, although we will not do that here.

The Lagragian will also be invariant under the nV vector fields with global and local transfor-

mations:

δAMµ = −Λα(tα)N
MANµ , δA

M
µ = ∂µΛM (2.12)

where the tα are in the fundamental representation of Lie G, 1 ≤M,N ≤ nV and where we see that

the abelian local symmetry mentioned above is U(1)nV . In general p-forms transform similarly in

some specific representation of Lie(G) and accompanied by some tensor local symmetry.

As usual one can gauge the theory by making the replacement:

∂µ −→ Dµ = ∂µ − gAMµ ΘM
αtα, (2.13)

using the nV vector fields AMµ and where ΘM
αtα ∈ Lie G. Θ is a constant tensor called the

embedding tensor. The indices α and M denote respectively the adjoint and fundamental repre-

sentations of G. In general the rank of the embedding will not be maximal and correspond the

dimension of the gauge group G0 ⊂ G. Therefore, the embedding tensor can be viewed as a map:

Θ : V −→ Lie G, (2.14)

where V is some vector space and where im V = Lie Ggauge.

The embedding tensor satisfies two consistency requirements. The first is a linear constraint

coming from supersymmetry which reads:

PΘ = 0, (2.15)

where P is some projector that restricts that the representations appearing in the tensor product

of the fundamental and adjoint representations in ΘM
α. The second consistency requirement is

the quadratic constraint:

[XM , XN ] = −XMN
PXP , XMN

P = ΘM
α(tα)N

P . (2.16)

It can be understood as the requirement that the gauge algebra closes. It can equivalently be

4Note that there is no propagating gauge fields associated with this local symmetry.
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Figure 2: Ways to obtain gauged supergravity. Image taken from [24].

rewritten as:

P′(Θ ⊗ Θ) = 0, (2.17)

for again some projector P′ that picks out representations among the possible ones in the tensor

product.

No higher order constraint is necessary as it turns out that imposing these two conditions is

sufficient [25].

Intead of compactifying on a torus and taking a subgroup of the global symmetry group, gauged

supergravity can also be obtained by directly compactifying on more complicated manifolds, with

or without fluxes, as shown in Fig. 2.
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3 Generalised Geometry

3.1 Generalised Tangent Bundle

The first aim of generalised geometry is to unify the different fields (including fluxes) of some

supergravity. Before that, generalised geometry unifies the bosonic symmetries in a generalised

tangent bundle. Here we illustrate what this means by constructing the generalised tangent bundles

relevant for two cases: the NSNS sector of Type II supergravity (based on the O(d, d)×R structure

group) and 11 dimensional supergravity in the specific case of a 7 dimensional reduction (based on

the E7(7)×R+ structure group). However it should be noted that generalised geometry is powerful

enough to also describe 11 dimensional supergravity compactifications (d ≤ 7), and the full type

IIA and type IIB supergravities. The main sources for this section is [26] for the O(d, d)×R+ case

and [27] and [28] for the E7(7) ×R+ case.

3.1.1 O(d, d) × R+ Generalised Geometry

The bosonic5 part of Type II supergravity is defined by the pseudo-action6 [26]:

SB =
1

2κ2

∫
M9,1

√
−g[e−2ϕ(R + 4(∂ϕ)2 − 1

12
H2) − 1

4

∑
n

1

n!
(F

(B)
(n) )2]. (3.1)

The first term describes the NSNS (after Neveu and Schwartz) sector while the second one is the

RR (after Ramond) part. The RR field obeys the self-duality relation:

F
(B)
(n) = (−1)⌊n/2⌋ ∗ F (B)

(10−n), (3.2)

where g is a ten dimensional metric, R is the Ricci scalar formed from the metric, ϕ is a scalar

called the dilaton. Setting the fermions to 0, the action gives that:

Rµν =
1

4
HµλρHν

λρ + 2∇µ∇νϕ− 1

4
e2ϕ
∑
n

1

(n− 1)!
F

(B)
µλ1..λn−1

F (B)λ1...λn−1
ν = 0,

∇µ(e−2ϕHµνλ) − 1

2

∑
n

1

(n− 2)!
F

(B)
µνλ1..λn−2

F (B)λ1...λn−2 = 0,

∇2ϕ− (∇ϕ)2 +
1

4
R− 1

48
H2 = 0,

dF (B) −H ∧ F (B) = 0,

dH = 0,

(3.3)

5Because it is not immediately relevant for our purposes, the fermionic part (given by a pair of chiral gravitini
ψ±
µ and a pair of chiral dilatini λ±) is ignored here.
6It is only a ”pseudo-action” because Eq. 3.2 is a separate condition that does not follow from Eq. 3.1.

14



which is consistent with the ”A-basis” where A(n) are n7-form potentials such that:

F (B) ≡
∑
n

F
(B)
(n) =

∑
n

eB ∧ dA(n−1), (3.4)

H = dBi on a patch Ui, (3.5)

with B a local two-form, eB = 1 +B + 1
2B ∧B + 1

3!B ∧B ∧B + ....

The bosonic content of the theory having been specified, we turn to their symmetries. First,

because of the metric, this theory possesses the usual diffeomorphism invariance through a vector

v. Secondly, H enjoys a type of gauge invariance. However, it is unusual as H is a three-form in

contrast to the prototypical example of electromagnetism where the invariant object is the two-form

field strength. The present case is more akin to a gauge transformation of a gauge transformation

as the ”gauge” field B itself enjoys gauge transformations. [29; 30; 31; 32] First, because H is

globally defined, we have from Eq. 3.5:

d(B(i) −B(j)) = 0 ⇒ B(i) −B(j) = dΛij . (3.6)

on Ui ∩ Uj . Similarly, plugging Eq. 3.4 in the penultimate line of Eq. 3.3, we obtain:

A(i) = edΛ(ij) ∧A(j) − dΛ̂(ij). (3.7)

where Λ̂(ij) is a polyform (that go up to rank 8) and Λ(ij) is a one-form.

Since:

B(i) −B(j) +B(j) −B(k) +B(k) −B(i) = 0 ⇒ d(Λ(ij) + Λ(jk) + Λ(ki)) = 0. (3.8)

On Ui ∩ Uj ∩ Uk, Λ(ij) must therefore obey the consistency relation:

Λ(ij) + Λ(jk) + Λ(ki) = dΛ(ijk).
8 (3.9)

Mathematically, this relation means that B is called a connective structure on a gerbe. [33; 34; 35]

Eq. 3.6-3.7, summarise all the bosonic symmetries of Type II supergravity, however we are only

interested in the NSNS symmetries, which means we can ignore Eq. 3.7. The reason we could not

ignore F (B) from the start was because it depends on B which means that the NSNS symmetries

act on it and we needed to make sure that the RR sector did not impact the NSNS symmetries,

i.e. Λ̂(ij) does not appear in Eq. 3.6 (in fact, the opposite happens since Λ(ij) appears in Eq. 3.7,

which is fine).

Re-expressing Eq. 3.6 equivalently on the same patch9 - the more common approach to gauge

7n is even for type IIB and odd for type IIA.
8If H is quantised, further conditions which we skip are necessary.
9This is done by replacing the form on U(j) by a primed form on U(j) and replacing dΛ(ij) by dλ(i).
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symmetry taught in physics - we have10:

B′
(i) = B(i) − dλ(i). (3.10)

This implies:

δv+λB(i) = LvB(i) − dλ(i). (3.11)

Since the gauge symmetry does not interact with the metric and the dilaton, they enjoy the

usual diffeomorphism invariance (generated by Lv), infinitesimally given by:

δv+λg = Lvg,

δv+λϕ = Lvϕ.
(3.12)

While we have by now reformulated the NSNS symmetries in different ways, our aim is to

express all the symmetries on the same footing, which means in terms of vi and λi directly (not

dλ(i)). Note that dΛ(ij) defines the patching for any form in the sense that:

Bi = Bj + dΛ(ij),

B′
i = B′

j + dΛ(ij),
(3.13)

where B′
i = Bi + δBi and B′

j = Bj + δBj . This implies that δBi = δBj = δB.

The patching of λi can then be found as follows:

δB = LvB(i) − dλ(i) = LvB(j) − dλ(j)

⇒ dλ(i) = dλ(j) + Lv(B(i) −B(j))

= dλ(j) + LvdΛ(ij)

= dλ(j) + d(ivdΛ(ij))

⇒ λ(i) − (λ(j) + ivdΛ(ij)) = df,

(3.14)

where df is an integration constant that we now choose to be 0.

In summary, with this choice, we have:

v(i) + λ(i) = v(j) + (λ(j) + ivdΛ(ij)). (3.15)

Since the symmetries of the NSNS sector of type II supergravity are captured by a vector and

a one-form, one might guess that the object of this generalised symmetry is simply an element of:

E = TM ⊕ T ∗M. (3.16)

This is almost true, but it needs to be generalised to account for Eq. 3.15. This can be done by

seeing that the transformation of Eq. 3.15 is obtained by acting a matrix of the form of Eq. 2.8

10For completeness, the NSNS symmetry on A would become A′
(i)

= edλ(i)A(i)
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on a vector of the form

(
v(i)

λ(i)

)
.11 This means that the structure group of the NSNS sector is none

other than GNS = Ω2
cl ⋊GL(d,R), which, as we saw, can be written as the split exact sequence of

Eq. 2.10. The closed 2-form acts on T ∗M , which means that the vector space E corresponding to

GNS is given by the split exact sequence:

0 −→ T ∗M −→ E −→ TM −→ 0. (3.17)

As a check, we can see that E is in fact isomorphic to the naive guess of Eq. 3.16 (using the

discussion on split exact sequences on vector spaces), but now is general enough to include the

twist present on the one-form.

Writing formally V = v+ λ ∈ E the generalised tangent bundle E can now be endowed with a

natural metric given by:

⟨V, V ⟩ = ivλ = vµλµ = V AηABV
B , ηAB =

1

2

(
0 Id
Id 0

)
(3.18)

using capitalised letters for the generalised geometry notation (i.e. V A = vµ for 1 ≤ A,µ ≤ d

and V A = λµ for d + 1 ≤ A ≤ 2d). This means that an O(d, d)-principal bundle is naturally

constructed, which is seen in the so-called conformal basis {ÊA} = { ∂
∂xµ } ∪ {dxµ}, where :

⟨ÊA, ÊB⟩ = ηAB , (3.19)

where:

O(d, d) = {M ∈ GL(2d,R)|(M−1)C A(M−1)D BηCD = ηAB}. (3.20)

This natural metric is preserved under a twist of the form of Eq. 3.15. In a way, this can be

seen as justifying the choice of Eq. 3.15 or rather the patching was chosen so as to be to compatible

with an O(d, d)-structure. The terminology of generalised vector for V = V AÊA and generalised

tangent bundle for E can finally be justified by the noticing the following usual transformations

of a vector’s bases and components, only with respect to O(d, d) here:

ÊA 7→ Ê′
A = ÊB(M−1)B A, V A 7→ V ′A = MA

BV
B , M ∈ O(d, d). (3.21)

Now that the symmetries have been unified in a generalised tangent bundle, the next step is to

unify the actual degrees of freedom such as the metric g. This will be done in Section 3.3. There

is however an exception as one of the degrees of freedom, ϕ, must be included at this stage already

in order to correctly describe the NSNS sector of Type II supergravity, even though it does not

generate any symmetry the way v or λ do.

This is done by weighting E by a real number (1 degree of freedom is needed) chosen to be det

11The action of a form on a vector is naturally given by the interior product.
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T ∗M such that:

Ẽ = det T ∗M ⊗ E, (3.22)

which implies that the principal bundle in fact has fibre O(d, d) × R+ 12 as seen again with the

conformal basis which now satisfies:

⟨ÊA, ÊB⟩ = Φ2ηAB , Φ ∈ Γ(det (T ∗M)), (3.23)

such that Eq. 3.21 is still true, except M ∈ O(d, d) ×R+.

The next useful bundle to consider is the adjoint bundle. Given the definition of O(d, d) from

Eq. 3.20, its Lie algebra is:

o(d, d) = {x ∈ gl(V ) | η(xV,W ) + η(V, xW ) = 0 ∀V,W}. (3.24)

This is solved by [19]:

x =

(
A β

B −AT

)
, (3.25)

such that A ∈ End(TM), β ∈ Λ2TM,B ∈ Λ2T ∗M . Taking into account the R+ factor, this means

that the adjoint bundle has the GL(d,R) decomposition:

adF̃ ∼= R⊕ (TM ⊗ T ∗M) ⊕ Λ2TM ⊕ Λ2T ∗M, (3.26)

which is indeed 2d(2d−1)
2 + 1 dimensional.

Because of this GL(d,R) decomposition, the natural gl(d,R) action (given for example on a

vector v and a three-form λ):

(r · v)a = ra bv
b, (r · λ)abc = −rd aλdbc − rd aλadc − rd aλabd (3.27)

can be used to define the adjoint action R · V , where R ∈ Γ(adF̃ ). Indeed, applying this action in

our context gives:

(β · λ)a = −βabλb =⇒ β · (β · λ) = 0

(β · v) = 0

}
=⇒ β · (β · V ) = 0. (3.28)

Consequently, β is nilpotent of degree two13, which renders the group action very easy:

eβ · V = (1 + β) · V = (v − β⌟λ) + λ. (3.29)

Using the same reasoning, the action of B is also found to be nilpotent and Eq. 3.21 can be

rewritten as M · V = eceβeBm · V , where ec gives the R+ scaling and m is the standard GL(d,R)

action.

12O(d, d)× R+ = {M ∈ GL(2d,R)|(M−1)C A(M−1)D BηCD = σ2ηAB}.
13β is trivially nilpotent when acting on v.
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3.1.2 Ed(d) ×R+ Generalised Geometry

The bosonic part14 of the 11 dimensional supergravity action is [28]:

S11,B =
1

2κ2

∫
M10,1

volgR− 1

2
F ∧ ∗F − 1

6
A ∧ F ∧ F , (3.30)

where the only bosonic fields are the metric gµν and a three-form Aµνρ, such that F = dA and R
is the Ricci scalar. The equations of motion and the Bianchi identity are then [36]:

Rµν −
1

12
(Fµρ1ρ2ρ3Fν ρ1ρ2ρ3 −

1

12
gµνF2) = 0,

d ∗ F +
1

2
F ∧ F = 0,

dF = 0

We now arrive at a point where a first subtlety compared to previous case must be pointed

out. Here, the dimensional reduction must be made before finding the bosonic symmetries and

constructing the generalised tangent bundle. This is in contrast with the O(d, d) case where there

was no mention of any splitting of the ten-dimensional spacetime.

So, as already mentioned, we will focus on compactifying eleven-dimensional supergravity on a

seven-dimensional compact manifold M7 such that15:

M10,1 = M3,1 ×M7. (3.31)

This implies that g and F decompose under Spin(3, 1) × Spin(7) as:

ds2 = (detg(7))−1/2g(4)µν dxµdxν + g(7)mndxmdxn,

F = F + ∗7F̃ ∧ (detg(7))−1volg(4) ,
(3.32)

where F and F̃ are four- and seven- forms respectively on the seven dimensional manifold (as we

keep only the Spin(3, 1) scalars). Plugging in Eq. 3.32 into Eq. 3.1.2, one obtains:

dF = 0, (3.33)

dF̃ +
1

2
F ∧ F = 0, (3.34)

d((detg(7))−1 ∗7 F̃ ) = 0, (3.35)

d((detg(7))−1 ∗7 F ) + (detg(7))−1 ∗7 F̃ ∧ F = 0, (3.36)

Similarly to the previous case, we wish to unify the symmetries by finding the “gauge fields of

the gauge fields” and choosing a twist compatible both with the patching obtained from the

14We again ignore the fermionic part (given by the gravitino ψµ only).
15In fact, only the tangent space to M10,1 needs to be decomposable into a four-dimensional and a seven-

dimensional parts, which is weaker than what we consider here.
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supergravity and the structure group of the bundle we will obtain (which will be E7(7) here).

Before anything else, we find the first “level” of gauge fields (equivalent of the local A16 and B

and their patching (equivalent of Eq. 3.10). By Poincaré’s lemma, Eq.3.33 implies that on a patch

U(i):

F = dA(i), (3.37)

where A(i) ∈
∧3

T ∗M7. Now, up to an locally exact part which we will call dÃ(i) (with Ã(i) ∈∧6
T ∗M7) we can find F̃ by integrating Eq. 3.34:∫

dF̃ = −1

2

∫
F ∧ F̃ = −1

2

∫
dA(i) ∧ F = −1

2

∫
d(A(i) ∧ F ), (3.38)

using Eq. 3.37 in the last step. Hence, on U(i):

F̃ = dÃ(i) −
1

2
A(i) ∧ F. (3.39)

Plugging this back into Eq. 3.35, 3.36, we find that this solution is consistent. The next step is to

deduce the patching, which is immediate. Since F is a globally defined form and is equal to itself

while A is only defined locally, Eq. 3.37 implies on U(i) ∩ U(j):

dA(i) = dA(j). (3.40)

Using the same reasoning on Eq. 3.39, we have:

dÃ(i) −
1

2
A(i) ∧ F = dÃ(j) −

1

2
A(j) ∧ F, (3.41)

which, using Eq. 3.37, is equivalent to:

dÃ(i) − dÃ(j) =
1

2
(A(i) −A(j)) ∧ dA(i). (3.42)

Eq. 3.40 and 3.42 specify the patching of A(i) and Ã(i), however they are currently written in

terms of them as well as their exterior derivatives, which can be simplified. Using again Poincaré’s

lemma, Eq. 3.40 can be written as:

d(A(i) −A(j)) = 0 ⇒ A(i) −A(j) = dΛ(ij), (3.43)

16Following convention, we use A for the gauge field of both the NSNS sector of type II and of eleven-dimensional
supergravities so this A should not to be confused with that of Eq. 3.37 for instance.
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for some Λ(ij) ∈
∧2

T ∗M7. Similarly, Eq. 3.42 can be simplified to:

d(Ã(i) − Ã(j)) =
1

2
dΛ(ij) ∧ dA(i) = −1

2
d(dΛ(ij) ∧A(i))

⇒ d(Ã(i) − Ã(j) +
1

2
dΛ(ij) ∧A(i)) = 0

⇒ Ã(i) − Ã(j) = dΛ̃(ij) −
1

2
dΛ(ij) ∧A(i),

(3.44)

for some Λ̃(ij) ∈
∧5

T ∗M7. Following the O(d, d) case, this would mean that the generalised

tangent bundle E is composed of a global vector (generating the diffeomorphism) and the ”gauge

of the gauge” field, i.e. a two-form and a five-form. Knowing by now the bosonic symmetries, we

would like to find their patching as before. We apply the same reasoning. Eq. 3.43 has the same

form as Eq. 3.6 so we have17:

δA = LvA(i) − dω(i) = LvA(j) − dω(j) (3.45)

Choosing the same integration constant leads to again:

ω(i) = ω(j) + ivdΛ(ij). (3.46)

In addition, the vector generating the diffeomorphism is again global so that:

v(i) = v(j). (3.47)

To find the patching of σ(i), we first note that repeating the procedure of Eq. 3.13 leads to

δÃ(i) = δÃ(j) − 1
2dΛ(ij) ∧ δA(i).

17λ(i) is changed to ω(i).
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Repeating the procedure for Eq. 3.44 gives:

Ã′
(i) = Ã(i) − dσ(i) +

1

2
dω(i) ∧A(i)

⇒ δÃ(i) = LvÃ(i) − dσ(i) +
1

2
dω(i) ∧A(i) = LvÃ(j) − dσ(j) +

1

2
dω(j) ∧A(j) −

1

2
dΛ(ij) ∧ δA(i)

⇒ dσ(i) = dσ(j) + Lv(Ã(i) − Ã(j)) +
1

2
(dω(i) ∧A(i) − dω(j) ∧A(j)) +

1

2
dΛ(ij) ∧ δA(i)

= dσ(j) + Lv(dΛ̃(ij) −
1

2
dΛ(ij) ∧A(i)) +

1

2
(dωi ∧A(i) − dω(j) ∧A(j)) +

1

2
dΛ(ij) ∧ δA(i)

= dσ(j) + LvdΛ̃(ij) −
1

2
(LvdΛ(ij) ∧A(i) + dΛ(ij) ∧ LvA(i)) +

1

2
(Lv(A(i) −A(j)) + dω(j)) ∧A(i)

−1

2
dω(j) ∧A(j) +

1

2
dΛ(ij) ∧ δA(i)

= dσ(j) + LvdΛ̃(ij) +
1

2
Lv(dΛ(ij) +Aj) ∧ dΛ(ij) −

1

2
dΛ(ij) ∧ dω(j) +

1

2
dΛ(ij) ∧ δA(i)

= dσ(j) + LvdΛ̃(ij) +
1

2
(LvdΛ(ij) ∧ dΛ(ij) − dΛ(ij) ∧ dω(j) + LvA(j) ∧ dΛ(ij)

−dΛ(ij) ∧ LvA(j)) +
1

2
dΛ(ij) ∧ δA(i)

= dσ(j) + LvdΛ̃(ij) +
1

2
LvdΛ(ij) ∧ dΛ(ij) − dΛ(ij) ∧ dω(j) −

1

2
dΛ(ij) ∧ δA(i) +

1

2
dΛ(ij) ∧ δA(i)

(3.48)

Integrating (with a choice of integration constant of 0) gives:

σ(i) = σ(j) + dΛ(ij) ∧ ω(j) +
1

2
dΛ(ij) ∧ ivdΛ(ij) + ivdΛ̃(ij). (3.49)

It would seem that the generalised tangent bundle is composed of v, ω(i) and σ(i), with the

patching specified by Eq. 3.47, 3.46 and 3.49. However, a second subtlety occurs again here. We

know from Section 2.3 that we are looking to fit these degrees of freedom in the fundamental 56

representation of E7(7), meaning that we are missing 56 − 7 − 21 − 21 = 7 degrees of freedom.

These missing degrees of freedom are found by taking GL(7,R) ⊂ SL(8,R) ⊂ E7(7):

E0
∼= TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ7T ∗M), (3.50)

which - up to the last term - agrees with what was obtained from the supergravity discussion. In

fact, the origin of such an extra term can be understood as stemming from the first subtlety we

mentioned - the need to compactify before constructing E. Indeed, Eq. 3.32 is the reason we not

only considered a four-form field strength F as present in the original eleven-dimensional action

but also considered a seven-form field strength F̃ (dual to F ). Had we focused only on the original

theory, these two fields would not have been independent of each other (the Hodge star relates

them). One can wonder if one can do the same thing with the metric and indeed the dualised

metric - which is understood in the case of linearised gravity [37] - is the reason for the extra term.

Taking a perturbation around a flat space, gµν = ηµν +hµν , we have δhµν = ∂(µξν), where ξν is the

Killing vector field. However, the symmetry transformation of the dualised version of this vector is
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automatically 0. Consequently, this is the reason why it did not appear in our previous discussion.

Accordingly, we expect this part of the bundle not to generate symmetry transformations on the

rest, which we will see is what happens later. 18

In summary, an untwisted generalised vector on U(i) is given by:

V(i) = v + ω(i) + σ(i) + τ(i), (3.51)

where v ∈ TM (again the vector is the only globally defined tensor), ω(i) ∈ Λ2T ∗U(i) σ(i) ∈
Λ5T ∗U(i), τ(i) ∈ T ∗U(i) ⊗ Λ7T ∗U(i). We can then see that the individual patchings found in Eq.

3.46, 3.47 and 3.49 all follow from the E7(7) action between patches:

V(i) = edΛ(ij)+dΛ̃(ij) · V(j). (3.52)

This gives a GL(7,R)⋉ (Ω3
cl⋉Ω6

cl) structure group and constrains the missing τ(i) patching as:

τ(i) = τ(j) + jdΛ(ij) ∧ σ(j) − jdΛ̃(ij) ∧ ω(j) + jdΛ(ij) ∧ ivdΛ̃(ij)

+
1

2
jdΛ(ij) ∧ dΛ(ij) ∧ ω(j) +

1

6
jdΛ(ij) ∧ dΛ(ij) ∧ ivdΛ(ij),

(3.53)

where the “j” notation defined in the appendix was used.

As the structure group is a semidirect product group, it (and the generalised tangent bundle by

extension) can be written as a sequence as seen before. However, to account for the choice made

in Eq. 3.52 - 3.53, the sequence is done slightly less straightforwardly than before as:

0 −→ Λ2T ∗M −→ E′′ −→ TM −→ 0,

0 −→ Λ5T ∗M −→ E′ −→ E′′ −→ 0,

0 −→ T ∗M ⊗ Λ7T ∗M −→ E −→ E′ −→ 0,

(3.54)

and again we see that an element of the generalised tangent bundle is isomorphic to the expression

given in Eq. 3.51 because we considered an exact sequence of vector spaces. Once more, Λ(ij)

must satisfy some consistency requirements on U(i) ∩U(j) ∩U(k) and U(i) ∩U(j) ∩U(k) ∩U(l) given

respectively by19:

Λ(ij) + Λ(jk) + Λ(ki) = dΛ(ijk),

Λ(jkl) − Λ(ikl) + Λ(ijl) − Λ(ijk) = dΛ(ijkl),
(3.55)

which means again that mathematically, Λ(ij) define a connection on a gerbe. Similarly, Λ̃(ij) also

satisfy some consistency requirements which we do not give as their specific form is not particularly

relevant for the other chapters (and because they go up to eight patches’ intersections).

Finally, in order to allow for the warp factor when doing the dimensional reduction, E7(7) must

18Note that this discussion is irrelevant for Ed(d) with d ≤ 6 as no seven-form exists in this context. Conversely,
the fact that the“usual” construction starts to break down for d = 7 hints as to why generalised geometry does not
work for d ≥ 8.

19Along again some further requirements if the flux is quantised, which we will not give.
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be extended to E7(7) × R+, the last factor being known as the “trombone symmetry” (which in

addition enables to find an isomorphism between a generalised vector and a sum of conventional

vectors and forms as we already did) [38]. Then, a generalised vector obeys the same relations as

Eq. 3.21, except M ∈ E7(7) ×R+, hence justifying the appellation of a generalised vector, and the

generalised structure bundle can be defined as a sub-bundle of the frame bundle for E:

F̃ = {(x, {ÊA}) | x ∈M7}, (3.56)

where {ÊA} is a basis defined similarly to the previous case.

The adjoint bundle of E7(7) ×R+ can be decomposed under GL(7,R) to give:

adF̃ = R⊕ (TM ⊗ T ∗M) ⊕ Λ3T ∗M ⊕ Λ3TM ⊕ Λ6T ∗M ⊕ Λ6TM, (3.57)

corresponding to the generalised adjoint tensor:

R = c+ r + a+ ã+ α+ α̃ (3.58)

which is indeed 134-dimensional20. Listing each possible pairing between elements of R and el-

ements of V using the same gl(d,R) action as before and seeing whether the result lies in TM ,

Λ2T ∗M , Λ5T ∗M or (T ∗M ⊗ Λ7T ∗M), the components of V ′ = R · V are found to be:

v′ = cv + r · +α⌟ω − α̃⌟σ,

ω′ = cω + r.ω + v⌟a+ α⌟σ + α̃⌟τ,

σ′ = cσ + r · σ + v⌟ã+ a ∧ ω + α⌟τ,

τ ′ = cτ + r · τ − jã ∧ ω + ja ∧ σ.

(3.59)

Acting by a+ ã, we obtain:

ea+ã · V = (1 + (a+ ã) +
1

2
(a+ ã)2 + ...)V

= V + (v⌟a+ (v⌟ã+ a ∧ ω) + (−jã ∧ ω + ja ∧ σ))

+
1

2
(a ∧ v⌟a+ (−jã ∧ (v⌟a) + ja ∧ (v⌟ã+ a ∧ ω)) + 0.

(3.60)

So we see that again the action is nilpotent (except now square terms still matter).

The action of eα+α̃ can be found by the same reasoning (cubic terms also cancel), so that a

general element of E7(7) ×R+ is given by:

M · V = eλeα+α̃ea+ãm · V, (3.61)

where m gives the standard GL(7,R) action on tensors while eλ gives the R+ scaling.21 We will

20The dimension of E7(7) is 133.
21Sometimes, one is not interested in this scaling. If that is the case, c is set to 1

9−d
ra a, which removes one
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later need to evaluate the commutator between two sections of the adjoint bundle. The reasoning

is roughly similar, the components of [R,R′] being given in Eq. C7 of [39].

There is another way to construct generalised vectors, which will be used later. The E7(7)

group is a subgroup of Sp(56,R), meaning that the symplectic product Ω on the fundamental 56

representation is left invariant:

Ω(V,W ) = ΩABV
AWB = vabw′

ab − v′abw
ab, (3.62)

where 56 was decomposed by the SL(8,R) subgroup of E7(7) such that:

56 = 28 + 28′,

W = Λ2V ⊕ Λ2V ∗,

V A =

(
vaa

′

v′aa′

)
.

(3.63)

Here W refers to a 56-dimensional vector space (i.e. 1 ≤ A ≤ 56) and V to the module of the

SL(8,R) representation (i.e. 1 ≤ a, a′, b, b′ ≤ 8).

So far, we just insisted that E7(7) is some subgroup of the symplectic group. To fully specify

it, it is sufficient to know that its action on W leaves invariant a particular quartic map q defined

as:
q(V, V, V, V ) = qABCDV

AV BV CV D = vabv′bcv
cdv′da

−1

4
vabv′abv

cdv′cd +
1

96
(ϵabcdefghv

abvcdvefvgh + ϵabcdefghv′abv
′
cdv

′
efv

′
gh).

(3.64)

This means that alternatively to specifying generalised vectors by the corresponding E7(7)×R+

version of Eq. 3.21, one can require the invariance of q and Ω to define them. Note that as usual,

the specifics of these invariants depend on whether Type II or eleven-dimensional supergravity is

compactified and the dimension of the compact space. [36]

Finally note that an operation that maps a generalised vector and a generalised covector to a

generalised adjoint tensor can be defined as:

×ad : E∗ ⊗ E −→ adF̃ , (3.65)

which we will need later on (and whose explicit expression is given in Appendix C of [28]). Phys-

ically, in the same way that the adjoint bundle is where B and its conjugate were living in the

previous case, we see that A(i), Ã(i) and their conjugate can now also be thought of as sections of

the adjoint bundle (with again the (TM ⊗ T ∗M) term coming from gl(d,R)).

degree of freedom in the correct manner.
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3.2 Dorfman Derivative and Courant bracket

3.2.1 O(d, d) ×R+ Generalised Geometry

Taking V = v+λ, V ′ = v′+λ′, V ′′ = v′′+λ′′ ∈ Γ(E), the NSNS symmetry is equivalently captured

by the following algebra:

v′′ = [v, v′],

dλ′′ = Lvdλ′ − Lv′dλ
(3.66)

which, can be integrated following the choice of Eq. 3.15. Explicitely:

dλ′′ = d(ivdλ
′) + iv(ddλ′) − (d(iv′dλ) + iv′(ddλ))

= d(ivdλ
′ − iv′dλ)

⇒ λ′′ − (ivdλ
′ − iv′dλ) = df.

(3.67)

where Cartan’s magic formula was used in the first line and the nilpotency and linearity of the

exterior derivative in the second. Taking df = 0 amounts to the patching choice made earlier and

leads to the following definition of the Dorfman (or ”generalised Lie”) derivative:

v′′ + λ′′ = [v, v′] + Lvλ′ − iv′dλ := LV V
′. (3.68)

This result/definition justifies the terminology of “generalised Lie derivative”: in conventional ge-

ometry, the Lie derivative measures how much a tensor changes due to diffeomorphism, which is

exactly how it is defined here (replacing diffeomorphism by its generalised definition that encom-

passes gauge transformations as we saw).

The key property of the Dorfman derivative is that it preserves the canonical O(d, d) metric

introduced in Eq. 3.18 in the sense that:

η(LV U,W ) + η(U,LVW ) = Lvη(U,W ). (3.69)

for V,U,W ∈ Γ(E).

This means that the generalised Lie derivative can be extended, similarly22 to the conventional

Lie derivative, to a generalised tensor of weight p, W :

LVW
M1...Mn = V N∂NW

M1...Mn + (∂M1V N − ∂NVM1)WN
M2...Mn + ...

+(∂MnV N − ∂NVMn)WM1...Mn−1
N + p(∂NV

N )WM ,
(3.70)

where indices were contracted using ηMN and we used:

∂M =

{
∂µ if M = µ

0 if M = d + µ.
(3.71)

22This is the same component form as in conventional geometry with the exception that gl(d) is replaced by the
adjoint in o(d,d) ⊕R, so L ∈ E ⊗ ad This should dispel any unease to call L the generalised Lie derivative.
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Note also that the Dorfman derivative satisfies Leibniz’s rule in the form:

LV (LV ′U) − LV ′(LV U) = LLV ′V U, (3.72)

for V, V ′, U ∈ Γ(E).

The generalised Lie derivative possesses nonetheless one major difference compared to its con-

ventional geometry counterpart: it is not antisymmetric (when acting on a generalised vector).

Formally, this means that LV V
′ does not define a Lie algebroid, but a Courant algebroid. The

failure of antisymmetry is captured by the Courant bracket, which takes the form:

[[V, V ′]] :=
1

2
(LV V

′ − LV ′V )

= [v, v′] + Lvλ′ − Lv′λ− 1

2
d(ivλ

′ − iv′λ) = LV V
′ − 1

2
dV, V ′

= (V N∂NV
′M − V ′N∂NV

M − 1

2
(VN∂

NV ′M − V ′
N∂

NVM ))∂M

(3.73)

Note however that for V = ÊA and V ′ = ÊB , the derivative terms of the second line vanish,

resulting in:

LÊA
ÊB = [[ÊA, ÊB ]]. (3.74)

Finally, the Courant bracket is invariant under GNS , the structure group of the NSNS sector

of Type II supergravity with our choice of integration constant.

3.2.2 Ed(d) ×R+ Generalised Geometry

Again the bosonic symmetries are captured by the following algebra:

v′′ = [v, v′],

dω′′ = Lvdω′ − Lv′dω,

dσ′′ = Lvdσ′ − Lv′dσ − dσ′ ∧ dσ,

dτ ′′ = Lvdτ ′ − jdσ ∧ dω − jdω′ ∧ dσ.

(3.75)

Integrating with the appropriate choice, we can define the Ed(d)×R+ version of the generalised

Lie derivative in the same way as before:

LV V
′ := v′′ + ω′′ + σ′′ + τ ′′

= Lvv′ + (Lvω′ − iv′dω) + (Lvσ′ − iv′dσ − ω′ ∧ dω) + (Lvτ ′ − jσ′ ∧ dω − jω′ ∧ dσ),

LV f := Lvf,

(3.76)

for a function f . The last equation is the usual requirement that all derivatives acting on a function

must agree. Similarly to Eq. 3.70, the adjoint action (defined in Eq. 3.65) is used, which we can
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take to obtain the Lie derivative in the succinct manner:

LV V
′M = V N∂NV

′M − (∂ ×ad V )M NV
′N . (3.77)

The failure of antisymmetry is captured by the exceptional Courant bracket:

[[V, V ′]] :=
1

2
(LV V

′ − LV ′V )

= [v, v′] + Lvω′ − Lv′ω − 1

2
d(ivω

′ − iv′ω) + Lvσ′ − Lv′σ − 1

2
d(ivσ

′ − iv′σ)

+
1

2
(ω ∧ dω′ − ω′ ∧ dω) +

1

2
(Lvτ ′ − Lv′τ) +

1

2
(jω ∧ dσ′ − jω′ ∧ dσ) − 1

2
(jσ′ ∧ dω − jσ ∧ dω′).

(3.78)

This bracket is also invariant under the structure group of the bosonic symmetries (of 11

dimensional supergravity) GL(d,R)⋉ (Ω3
cl⋉Ω6

cl) and when evaluated on the frame basis, Eq. 3.74

remains valid for the same reason.

Finally, it should be emphasised that the fact that a generalisation of the Lie derivative in the

form of Eq. 3.77 can be defined is non-trivial as Eq. 3.77 is not in general a generalisation of a

tensor. For instance, it would not be possible to do the same for Sp(2n,R) since the adjoint action

is symmetric and is hence not a tensor. This is formalised in the notion of g-algebroids and their

full classification is still an open question. This is why the fact that it can be done for O(d, d)×R+

and Ed(d) × R+ is deemed to be an important and non-trivial step.

3.3 Generalised Metric

3.3.1 O(d, d) ×R+ Generalised Geometry

It was shown in Section 2.1 why a Riemannian metric at a point belongs to the quotient GL(d,R)
O(d) ,

where O(d) is the23 maximal compact subgroup of GL(d,R). The metric G then transforms a new

metric G′ as:

G′ = gG, g ∈ Gl(d,R) such that G = hG, h ∈ O(d). (3.79)

Similarly, a Riemannian O(d, d)×R+ generalised metric at a point can be defined as an element

of O(d,d)×R+

O(d)×O(d) , where O(d) × O(d) is a maximal compact subgroup of O(d, d) × R+. For a pseudo-

Riemannian equivalent of (p, d−p) signature, O(d)×O(d) can be replaced by O(p, d−p)×O(d−p, p).
Counting the number of dimensions suggests that all the fields of the NSNS sector of Type II

supergravity can potentially be unified in such a generalised metric:

dim(
O(d, d) × R+

O(d) ×O(d)
) =

2d(2d− 1)

2
+ 1 − 2(

d(d− 1)

2
) = d2 + 1

=
d(d+ 1)

2
+
d(d− 1)

2
+ 1 = dim(g) + dim(B) + dim(ϕ).

(3.80)

Formally, it can be shown to be equivalent to choosing a positive definite subbundle such that

23For any Lie group, the Cartan-Iwasawa-Malcev theorem states that maximal compact subgroups are essentially
unique - meaning here unique up to conjugation. [40]
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its orthogonal complement is negative definite and E = C+ ⊕ C− [3]. Given this choice, the

generalised metric G is required to be compatible with the canonical metric in the sense that [41]:

G(V, V ′) = ⟨V, V ′⟩ |C+
− ⟨V, V ′⟩ |C− , G

2 = 1. (3.81)

In practice [42], up to a factor given by the canonical metric, taking G =

(
a b

c d

)
, the compatibility

can be rephrased as:

ηABGBCη
CD = GAD. (3.82)

This implies that a = aT , d = dT , b = cT . Taking g = 1
2d

−1 and B = d−1c (which are indeed

respectively symmetric and antisymmetric), we have:

GMN =
1

2

(
g −Bg−1B −Bg−1

g−1B g−1

)
MN

, Φ = e−2ϕ√−g. (3.83)

Hence, the generalised metric indeed unifies the NSNS sector fields. Note that this can be rewritten

as:

G = (eB)TG0e
B (3.84)

where G0 =

(
g 0

0 g−1

)
and eB =

(
1 0

B 1

)
.

Equivalently, a generalised metric can be defined directly on a Courant algebroid as a subbundle

whose rank is half the rank of E such that the inner product restricted on that subbundle is

positive-definite. Since the inner product is already non-degenerate and symmetric, we see that

generalised metrics closely resemble the usual Riemannian metrics (without even having to see

them as G-structures) [43].

3.3.2 Ed(d) ×R+ Generalised Geometry

The double cover24 of the maximal compact subgroup of E7(7)×R+ is H̃ = SU(8). The E7(7)×R+

generalised metric can therefore be defined as an element of
E7(7)×R+

SU(8) at each point and again, the

following counting argument suggests that it can unify the bosonic fields:

dim(
E7(7) × R+

SU(8)
) = 133 + 1 − (82 − 1)

=
7(7 + 1)

2
+ 2

7.6.5

3.2
+ 1 = dim(g) + dim(A) + dim(Ã) + dim(∆).

(3.85)

Similarly25 to Eq. 3.83- 3.84, we can start with the diagonal metric

G0(V, V ) = v2 +
1

2
ωabω

ab +
1

5!
σa1...a5σ

a1...a5 +
1

7!
σa,a1...a7σ

a,a1...a7 . (3.86)

24Assuming M is a spin manifold, this is to account for fermions.
25We are being very schematic here because the precise details go beyond the scope of this thesis and the main

point is that the generalised metric unifies the bosonic fields.
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The full metric can then be found by acting on the left and the right by a subroup of E7(7) ×R+

as in Eq. 3.84 [27], [44].

Hence from the point of view of the non-compact manifold, the scalars are given by the metric

GMN , which matches the comment made in Section 2.3 where it was said that the scalars of the

theory arranged themselves in a coset G
H , where G is the global symmetry group of the theory and

H is the maximal compact subgroup of G.26 In general we will also have one-forms and two-forms

which are given in summary by [16]:

GMN (x, y) ∈ Γ(S2E∗),

Aµ
M (x, y) ∈ Γ(T ∗X ⊗ E),

Bµν MN (x, y) ∈ Γ(Λ2T ∗X ⊗N),

(3.87)

where X denotes the non-compact manifold and N is a specific subgroup of S2E given by the

1332 representation for d = 7 [28].

3.4 Generalised Connection and Torsion

A generalised connection D is a first-order linear differential operator, given on V = V aÊA ∈ Γ(E)

by:

DMV
A = ∂MV

A + ΩM
A
BV

B . (3.88)

The M index indicates that Ω is a generalised covector while the A and B indices mean the domain

is adF̃ .

As in conventional geometry, this is too general to be used in later calculations. One can however

constrain the connection by imposing some compatibility condition. A (generalised) connection is

said to be compatible with a (generalised) G-structure P (where P is a subbundle of F̃ with fibre

G) if

DK(a) = 0, K(a)|x ∈ G′

G
, (3.89)

where G′ is the group of the (generalised) frame bundle considered (so here G′ = O(d, d) × R+

or G′ = E7(7) × R+). Then, a connection compatible with a G-structure cannot rotate a vector

outside of that G-structure, which renders the terminology of “compatibility” transparent.27

The first obvious requirement is the compatibility with G′, meaning that Dη = 0. For instance,

for the O(d, d) canonical metric, this imposes the condition that ΩM
AB = −ΩM

BA. Similarly to

general relativity, an obvious second compatibility requirement is that of the maximal compact28

subgroup of G′. This is the metric connection which is obtained by requiring DG = 0 and DΦ = 0.

26A gauging should be done then by taking a subgroup of Ed(d) ×R+.
27Connections can also be directly defined on a principal bundle, which will agree with the connections as defined

here given these are compatible with the G-structure, which also justifies the name.
28Or its double cover.
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The generalised torsion T of a generalised G-compatible connection D can be defined as29:

T (V ) = LDV − LV , (3.90)

where LDV indicates that the ∂ have been replaced by some connection (not necessarily metric com-

patible unless specified). Since for a compatible connection, the first term is zero when evaluated

on an element of a generalised frame bundle, the torsion of a compatible connection is also given

by:

TA
B
CÊB = −LÊA

ÊC , (3.91)

where ÊA, ÊB , ÊC are vectors of a generalised frame.

Since at a point, L,LD ∈ E ⊗ adF̃ , the torsion at a point will in general live in a subspace W ,

which means that it will be in an irreducible representation of E⊗adF̃ . For the O(d, d)×R+ case,

W = Λ3E⊕E while E7(7)×R+, the representation is 912−1 + 56−1. Physically, this matches the

embedding tensor (with the trombone symmetry). This correspondence continues to be exact for

4 ≤ d ≤ 6. A connection whose torsion vanishes is called torsion-free.30

A generalised O(d, d)×R+ (Ed(d)×R+) Levi-Civita connection hence can finally be defined: it

is an O(d, d)×R+ (Ed(d) ×R+) and metric compatible connection that is generalised torsion-free.

Contrarily to a conventional Levi-Civita connection, a generalised torsion-free metric compatible

connection still always exists but is not unique (except for E3(3)), which was proved in [28].

As we just saw, the torsion is defined from a choice of two things: a structure P̃G and a

connection D. However one can ask if some subspace of the torsion space is independent on the

latter choice. This subspace in fact exists. This is the idea of the intrinsic torsion, which can be

found as follows [45].

For some (generalised) compatible connections D,D′ and their (generalised) torsions TD, TD
′
,

we have:

D′ −D ∈ Γ(KG), TD ∈ Γ(W ), (3.92)

where KG = E∗ ⊗ adP̃G
31 - representing the ambiguous part of the connection - and W 32 is the

space of torsions. A map τ : KG −→W can be defined such that:

τ(D′ −D) = TD
′
− TD. (3.93)

Then, UG := ker τ ⊂ KG is the space of compatible connections that lead to a set given torsion and

WG := im τ ⊂W and Wint := W
WG

is the space of intrinsic torsions that we were looking for. This

also means that Wint gives a way of classifying the structure PG. Alternatively, a non-zero Wint

also indicates that there is no torsion-free connection and if Wint = 0, P̃G is called torsion-free (or

integrable) G-structure. For instance, an Hd-structure is torsion-free. Finally, if G ⊂ Hd, there

29This is analogous to a property of torsion in conventional geometry which is taken here as the starting point.
30Note that any conventional connection can be uplifted to a generalised connection, but a torsion-free connection

will in general uplift to a torsionful connection in the generalised sense of Eq. 3.88, as illustrated in [26].
31KG = T ∗M ⊗ adP̃G for Riemannian geometry.
32W = TM ⊗ Λ2T ∗M for the usual case and was already given for the two generalised geometries studied here.
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exists a unique decomposition provided by the generalised metric:

W = WG ⊕Wint, KG = WG ⊕ UG. (3.94)

As an example, we can take a certain embedding of G = Sp(6) × SU(2) ⊂ O(6, 6). Since
12!
3!9! = 220, we can decompose W = 220 + 12 under the particular embedding of G given by

LieArt to obtain: 2(6,4) + (6,4) + (64,2) + (14′,4). Since the adjoint representation of Sp(6) is

21, we can decompose KG = (21,1) + (1,3) under G to obtain 2(6,4) + (6,4) + (64,2) + (56,2).

Assuming no kernel33, one can read off using Eq. 3.94 that this structure has intrinsic torsion,

specifically that:

WSp(6)×SU(2) = 2(6,4) + (6,4) + (64,2),

USp(6)×SU(2) = (56,2),

Wint = (14′,4).

(3.95)

In conventional geometry, the components of the intrinsic can be calculated by acting on the

invariant tensors with the Levi-Civita connection. Indeed, since it is unique, a generic metric and

G ⊂ O(d)-structure compatible connection ∇ can be written as ∇LC − K, where the torsion is

given by antisymmetrising the covector indices of K. So, as all of the torsion lies in K, it can

be identified with the intrinsic torsion and we have - taking the G-structure to be defined by the

invariant tensors Ξi - :

∇Ξi = 0 ⇒ ∇LCΞi = KΞi, (3.96)

(Tint)mn
p = Kn

p
m −Km

p
n. Hence trivially, a (G ⊂ Od)-structure is torsion-free if and only if

∇LCΞi = 0.

In generalised geometry, a singlet intrinsic torsion can also be found as follows if one of the

invariant generalised tensors Ξi can be given by some generalised vector KA:

TDint(KA) · Ξi = −LKA
Ξi, (3.97)

which follows from Eq. 3.90 as well as the fact that it acts on singlets and LDKA
Qi = 0 for a singlet

intrinsic torsion since DΞi = 0. Eq. 3.97 tells us that the singlet Tint is a singlet of adF̃ whose

domain is a generalised vector, which will become important when gauging the truncated theory.

Requiring a structure to be torsion-free leads to natural conditions. For instance, an almost

symplectic structure is equivalent to a globally defined two-form. It is torsion-free if this form is also

closed. The structure is then called symplectic. An identity structure is equivalent to the existence

of a globally defined frame. From Eq. 3.91, it is torsion-free if these commute which implies the

existence of coordinates locally. Physically, torsion-free structures give fluxless supersymmetric

backgrounds.

The next step would be to define a generalised notion of curvature. It can be proved however

that its naive definition would not lead to a generalised tensor [28]. This is not so important as, for

33We will assume this in the following for simplicity. An explicit calculation showing how to check this can be
found in Appendix F of [39].
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a Hd-compatible torsion-free connection, the generalised Ricci tensor RAB and generalised Ricci

scalar R - which we do not give here as they will not be so relevant later - are well-defined. In

addition, in the language of generalised geometry, the bosonic part of supergravity is none other

than generalised gravity:

SB =

∫
volG

R. (3.98)

Finally, we have avoided any mention of fermions but in fact these also fit naturally inside

representations of H̃d, the double cover of the maximal compact subgroup of G: one is called the

spinor bundle S and gives the number of supersymmetry parameters and another is the gravitino

bundle which gives gravitino fields. Therefore, generalised geometry also provides with simple

reformulations of the fermionic equations of motion and of the supersymmetry variations.

3.5 Type II Supergravity

The full Type II A/B supergravities are also given in terms of exceptional generalised geometry.

We do not explained the results of this section but merely point at the most basic difference - that

is, at the level of the generalised tangent bundle - between the exceptional general geometries of

Type IIA, IIB and eleven-dimensional supergravities. When needed, the other necessary formulas

will then be indicated. Type IIA is given by a dimensional reduced M-theory. This dimensional

reduction is done by taking the subgroup Gl(d − 1,R) ⊂ Gl(d,R) when defining Ed(d)
34. This

implies that the generalised tangent bundle takes the form [28]:

EType IIA
∼= TM ⊕ T ∗M ⊕ ΛevenT ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M), (3.99)

where now this concerns a compactification on a (d−1)-dimensional manifold, contrarily to before.

To recover Type IIB, we need to take GL(2,R)×SL(2,R), before recombining into GL(d−1,R)×
SL(2,R) such that:

EType IIB
∼= TM ⊕ T ∗M ⊕ ΛoddT ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M). (3.100)

All the steps described previously in this section can subsequently be applied to these two cases.

34This comes from what was explained in the second way to construct generalised vectors in Section 3.1.2
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4 Consistent Truncations

4.1 Motivation

Some of the motivations to find consistent truncations of string theory and M-theory relating to

the swampland were alluded to in the introduction. The advent of the ADS/CFT correspondence

has given even more pretext for its study.

Maldacena’s orginal formulation of the conjecture considers two theories: on the one hand Type

IIB string theory with coupling gs and string length
√
α′ compactified to AdS5 on a five-sphere

whose radius is L with N units of Ramond-Ramond fluxes, on the other hand N = 4 Super

Yang-Mills theory - with coupling gYM and gauge group SU(N). These theories describe the same

physics if we have:

g2YM = 2πgs =
L4

2Nα′2 . (4.1)

This can be seen by considering the dynamics from both an open string and a closed string

perspectives [46]. This case can be generalised, but remains a conjecture. Nevertheless, it is very

useful as it relates a strongly-coupled theory to a weakly-coupled one (which can be calculated).

On the AdS side, considering the full string theory is hard so it is desirable to keep only a finite

subset of states. It might be tempting to construct examples in a bottom-up approach - that

is, starting with solutions of a gravitational theory with some extra degrees of freedom and hope

that it uplift to string or M theory. In general, this hope is not realised. Consistently truncating

therefore seems like the only other option - that is, going in a top-down approach [47].

In the original Kaluza-Klein theory, the reduction is made on a circle whose isometry group is

U(1). This implies that fields can be expanded as a simple Fourier series and the mass of the non-

zero modes is inversely proportional to the radius of the circle. Truncating to only the zero-mode

came therefore from an effective field theory perspective: for a small radius, a separation of the

mass scales is induced. It is then realised that the truncation is more than just that: it is in fact

truly consistent with the higher-dimensional theory with no modification in the parameters.

This is hard to generalise specifically for an AdS background because of the AdS Distance

Conjecture. It states that for any quantum gravity on AdS with cosmological constant Λ, “there

exists an infinite tower of states with mass scale m which, as Λ −→ 0, behaves (in Planck units) as

m ∼ |Λ|α, where α is a positive order-one number”35 [48]. This conjecture implies that there is

no separation of scales between the radii of the compact internal manifold and of AdS. This poses

a problem in our case as it prevents us from following the same effective field theory approach as

above.

A method that would enable to find directly consistent truncations from string or M-theory can

hence be used to understand better strongly coupled quantum field theories through the AdS/CFT

correspondence.

35The Strong AdS Distance Conjecture take α = 1
2
, which is consistent with all the known cases.
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4.2 Situation before Generalised Geometry

In dimensional reductions, we consider:

MD = M ′
d ×Kn, (4.2)

where MD is a D dimensional spacetime (usually D = 10, 11), M ′
d is d < D spacetime (usually

d = 4 if one is directly interested in the world we see, d = 5 if one is using the ADS/CFT

correspondence), Kn is an n-dimensional compact space and D = d+ n.

The KK background metric gΛΣ on MD will then be:

gΛΣ(x, y) =

(
g
(0)
µν (x) 0

0 g
(0)
mn(y)

)
, (4.3)

where g
(0)
µν (x) is the background metric on M ′

d and g
(0)
mn(y) is the background metric on Kn.36

A scalar field ϕ(x, y) on MD is then expanded as [49]:

ϕ(x, y) =
∑
q,Iq

ϕIqq (x)Y Iqq (y) (4.4)

where q labels the eigenvalue of the Laplacian and Y
Iq
q (y) are the eigenfunctions of the Laplacian

on the compact space corresponding to the eigenvalue. In general, the eigenvectors a Laplacian on

Kn are representations of the isometry group of Kn, which are labeled here by Iq [50],[51].

A KK ansatz for the dimensional reduction means keeping only the zero eigenvalue in the

expansion. Then, a gauge field AΛ(x, y) will split as Aµ(x), a d-dimensional vector from M ′
d and

Am(y), scalars as seen from M ′
d.

More generally for p+ 1 ≤ d, AΛ1...Λp+1
splits into Aµ1...µp+1

, Aµ1...µkmk+1...mp+1
, ...,

Aµ1...µp−n+1mp−n+2...mp+1
and a MD spinor ηA will split as:

ηA(x, y) = ηIM (x)ϵIi (y), (4.5)

where the ϵIi (y) are the Killing spinors, which can be thought of as “square roots” of the Killing

vectors V ABν (satisfying DµV
AB
ν = 0), in the sense that on a sphere for instance they satisfy [49]:

V ABν = ϵIγνϵ
I(γAB)IJ

Dνϵ
I
i ∝ (γνϵ

I)i.

In general, the Killing spinor is defined as obeying: δsusyϵA = 0. Hence, by the supersymmetric

algebra, Killing spinors are massless. In doing a KK type of ansatz - i.e. keeping all the massless (or

n = 0) modes -, one keeps all the Killing spinors and the amount of supersymmetry is unchanged

after the dimensional reduction.

This procedure assumes that the KK reduction ansatz is valid, a fact which is wrong as one

36We emphasise by ”background” that this does not concern the full fluctuating spin 2 field of the theory.
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then needs to check if the truncation operated is consistent, i.e. if the modes set to 0 can still be

0 when looking at the equations of motion on MD. If this is not true, we say that the modes we

kept “source” the other modes and the truncation is not consistent. For example we could have,

for a ϕ3 coupling, the following equation of motion:

(□−m2
q)ϕ

Iq
q (x) = ϕI00 (x)ϕI00 (x)(...) (4.6)

where we see that truncated modes are sourced, meaning it is inconsistent. An important exception

is when Kn is a torus Tn. In such a case, it is possible to arrange the same spin fields into multiplets

of some global symmetry group G. A KK ansatz will then be consistent and the Killing spinors

trivial as Vm = 1 [49]. One way to render an inconsistent truncation a consistent one is by making

a field redefinition of the type (for instance):

ϕ′q = ϕq + aϕ20 + ...,

ϕ′0 = ϕ0 +
∑
p

qbpqϕpϕq.

An example of a nonlinear KK ansatz is given by:

gµν(x, y) = gµν(x)(
detgmn(x, y)

detg
(0)
mn

)−
1

d−2 , (4.7)

which enables to recover the d-dimensional Einstein action from the D-dimensional one. However,

it is easy to see that such field redefinitions can quickly become cumbersome.

If Kn is non-trivial (such as a sphere Sn), the abelian Killing spinors of the torus compactifi-

cation become non-abelian, giving a gauge group H ⊂ G. Such compactifications result in gauged

supergravities, deformations of the ungauged supergravity by a gauge coupling, which was pre-

sented earlier. This adds a negative cosmological constant term, which means that the natural

background of gauged supergravity is AdS.

Before the advent of generalised geometry, the most general sufficient condition to the existence

of a consistent truncation was the “Scherk-Schwartz construction”. It states that if there exists

a global basis for TM satisfying an unimodular considition, then a consistent truncation exists.

Such a global basis - meaning nowhere vanishing - is called a parallelisation and is equivalent to

whether M admits a trivial structure group. In practice, this can also be done by finding dim(TM)

left-invariant vector fields êa ∈ Γ(TM) which, by definition of a Lie algebra, satisfy one:

[êa, êb] = fab
cêc, (4.8)

where fab
c are constants and fab

b = 0 [15].

Manifolds that admit such a ”parallelisation” must possess a lot of structure and truncations

can be found on group manifolds G as well as cosets G
Γ , where Γ is a descrete subroup chosen so

that the coset is compact [52].

While this is useful, it is only a sufficient condition, not a necessary one. In particular, reduc-
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tions on S4 for instance lie outside of this construction.

4.3 General Formalism using Generalised Geometry

Generalised geometry enables to systematically construct consistent truncations of a much broader

kind than Scherk-Schwartz. However, since in form it follows closely a construction that can be

done on the usual Gl(d,R) frame bundle, we will start with it, following closely [16].

Any equation of motion is constructed from the field content as well as the n-derivatives of

some combination of them, taken without loss of generality as the Levi-Civita connection.37 A

first natural condition is to demand that only singlets form the truncated field content. This

follows from the fact that every term in a Lagrangian has to be invariant or alternatively from

the equivalent requirement that both sides of the corresponding equation of motion (for instance

of the form of Eq. 4.6) transform similarly. In the latter view, allowing some non singlets to be 0

while retaining others would imply (in general) that one side of the equation of motion does not

transform (0 −→ 0, corresponding to the truncated modes) while the other does, violating symmetry.

This is however not enough since nothing so far forbids the derivative terms of singlets to source

non-singlets. Eq. 3.96 gives immediately the required condition: demand that only singlets appear

when decomposing the intrinsic torsion under G. In this way, the derivative of a singlet never

sources a singlet and because of the Leibniz rule (obeyed by the Levi-Civita connection), this is

also true for the derivative of a product of singlets. This means also that any power of ∇LC always

return singlets. In summary, there are two sufficient conditions for the existence of a consistent

truncation on a manifold M with a GS-structure:

1) Only retain fields that transform under GS as singlet,

2) Only consider GS-structures with a singlet intrinsic torsion (or torsion-free).

The Scherk-Schwartz immediately appears as a special case. Indeed, requiring the existence of

a global basis on M is equivalent to requiring GS = 1, i.e. the strongest constraint to put from

the point of view of the G-structure of the manifold.

One can go further than the existence claim and construct in part the truncation. First, by

splitting the degrees of freedom as explained in the previous section, the number of vector degrees

of freedom (the metric gauge fields) will be given by the number of invariant one-forms ηa in Ξi.

Explicitely, one construct them from their dual vectors η̂a as Aaη̂a. The same procedure applies to

higher tensors as well. Constructing the truncated metric scalar fields is slightly more involved as

they do not belong to GL(d,R) but to the quotient GL(d,R)
O(d) , as we saw when defining the metric.

However, the singlets of a quotient A
B under GS ⊂ B ⊂ A are given by:

CA(GS)

CB(GS)
, (4.9)

where CA(B) denotes the commutant of B ⊂ A inside A, i.e. all the elements whose commutator

with an element of B lies in B. This can be understood by considering the algebra (i.e. locally).

A vector X is a singlet if it is invariant under the adjoint action, i.e. gXg−1 = X, which illustrates

37Because any compatible connection can be rewritten as ∇LC −K as discussed earlier.
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- but not proves - why one is interested in the commutant of A in B to find the singlets under GS .

Immediately, we that the Lie algebra of the commutant group CA(B) will be given by singlets of

adF̃ , where F̃ is the frame bundle of A.

Here, A = GL(d,R) and B = O(d), so the truncated metric scalar belong to
CGl(d,R)(GS)

CO(d)(GS) . Note

that if O(d) ⊂ GS , one can try to rescale the dimension d until GS ⊂ O(nd). For instance in the

Scherk-Schwartz construction, the metric scalars belong then to Gl(d,R)
O(d) since all group elements

commute with the identity.

Finally, for invariant one-forms η̂a, the conventional geometry equivalent of Eq. 3.96 implies

that:

[η̂a, η̂b] = fab
cη̂c, (4.10)

where fab
c are completely determined by the intrinsic torsion. This means that the gauging of

the truncated theory is completely determined by the intrinsic torsion.

In the previous chapter, we showed that all the bosonic fields of eleven dimensional super-

gravity compactified on a seven-dimensional compact manifold can be seen as generalised tensors

of E7(7) × Gl(4,R). This can be extended to a d ≤ 7 dimensional compact manifold and to

Type II supergravity. This means that the previous statement can be enlarged to the case of

generalised GS-structures where GS ⊂ Hd, where Hd is the maximal compact subgroup of Ed(d).

Explicitly, it was showed in [16] that there always exists a consistent truncation of Type II or

eleven-dimensional supergravity if the compact manifold with a generalised GS-structure has only

constant singlet generalised intrinsic torsion and if the bosonic fields are expanded in terms of Qi,

the generalised invariant tensors defined by GS . The truncation of the fermionic fields is done by

lifting GS ⊂ Hd to G̃S ⊂ H̃d, where H̃d is the double cover of Hd, and by expanding again the

fermionic field in therm of G̃S singlets.

This can work because the generalised intrinsic torsion plays the same role as the conventional

intrinsic torsion as was shown earlier. There is however one subtlety, which is that the generalised

Levi-Civita connection is not unique, although supergravity depend only certain unique projections.

This means that again a generalised singlet intrinsic torsion will forbid any derivative appearing

in the supergravity equations of motion to source non-singlets.

This procedure gives again the structure of the truncated theory, starting from the degrees of

freedom summarised in Eq. 3.87. The reasoning is the same: the generalised invariant vectors and

two-forms - called respectively KA and JΣ - span respectively V of Γ(E) and B of Γ(N), so that

we have:

hI(x) ∈ Mscal =
CEd(d)

(GS)

CHd
(GS)

,

Aµ
A(x)KA ∈ Γ(T ∗M) ⊗ V,

Bµν Σ(x)JΣ ∈ Γ(Λ2T ∗X) ⊗ B.

(4.11)

The scalars of the truncated theory arrange therefore themselves into a coset similarly to the

original theory, which means that the gauge group can again be taken as a subgroup of CEd(d)
(GS).

As we saw, the Lie algebra of this commutant group is given by the singlets of adF̃ , and because

of Eq. 3.97 (and its subsequent comment), we know that Tint is such a singlet. This means that
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the singlet intrinsic torsion is a linear map:

Tint : V −→ Lie CEd(d)
(GS), (4.12)

whose image is the gauge group. This matches the map of the embedding tensor given in Eq. 2.14.

Consequently, the (opposite of the38) intrinsic torsion gives the embedding tensor and contains

all the information for the possible gaugings of the truncated theory. In this case the quadratic

constraint of Eq. 2.16 comes from taking Ξi in Eq. 3.97 to be another generalised vector:

LKA
KB = −Tint(KA)B

CKC := XAB
CKC = ΘA

α(tα)B
CKC , (4.13)

using the equivalent definition in Eq. 2.16.

Alternatively, one can restrict the intrinsic torsion to its constant singlet part, which fixes in

part the algebra (i.e. the XAB
C) of Eq. 4.13. Whether generalised vectors can be constructed

such that Eq. 4.13 is a different matter, which will in general restrict the algebra further.

Finally, this construction also gives the number of supercharges preserved in the truncated

theory. As noted before, the number of supercharges is given by the generalised H̃d spinor bundle

S. For instance, for H̃d = SU(8), the spinor bundle is 8 + 8̄. The amount of supersymmetry

preserved is consequently the number of G̃S-singlets in S.

4.4 Maximal Case

Consistent truncations retaining maximal supersymmetry39 are possible if and only if there exists

a global frame Êa ∈ Γ(E), i.e. a trivial generalised structure bundle such that:

[Êa, Êb] = Xab
cÊc, (4.14)

where Xab
c are constants. If this is satisfied, the manifold is said to be “Leibniz parallelisable”.

This is completely analogous to the Scherk-Schwartz reduction and this construction is therefore

referred as generalised Scherk-Schwartz. The reason this construction is more general than Scherk-

Schwartz is that it allows most of the conventional geometry tensors in the decomposition of the

generalised tangent bundle to vanish at any point as long one of them does not. For instance,

consider an S2n reduction of the NSNS sector of Type II supergravity described by E ∼= TM⊕T ∗M .

The hairy-ball theorem states that a global vector field would have to vanish at least at one

point, meaning that the Scherk-Schwartz reduction cannot be applied. However, if at that point

the covector part of E does not vanish, then a global generalised frame exists and a maximally

supersymmetric consistent truncation is possible.

In fact, all spheres are Leibniz parallelisable (in the sense of generalised geometry). The condi-

38In order to match the convention of the embedding tensor as defined earlier, although this is not important.
39The emphasis will be on half and quarter maximal truncations in five dimensions rather than this case, which

should be taken more as an introduction to the next sections.
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tion of singlet and constant intrinsic torsion, or the generalised unimodular condition now reads:

XBA
B = 0, (4.15)

and the gauge fields (given in general by Eq. 4.11) take the simple form of:

Aµ = AAµ ÊA. (4.16)

Defining the spheres by δijy
iyj = 1, the global generalised frame for sphere was constructed in [15]

as:

Êij = vij + σij + ivijA, (4.17)

where F = dA is a d-form field strength, vij are the Killing vectors on Sd and σij are given by:

σij = ∗(R2dyi ∧ dyj). (4.18)

Note that in this case a GL+(d+ 1,R) generalised geometry was used with:

0 −→ Λd−2T ∗M −→ E −→ TM −→ 0, (4.19)

similarly to the O(d, d) case.

Finally the gauging will be determined by Eq. 4.14. Evaluating the Dorfman derivative on the

frames of Eq. 4.17, one obtains [15]:

LÊij
Êkl =

1

R
(δikÊlj − δilÊkj − δjkÊli + δjlÊki). (4.20)

So, for instance, on S4: Xij = 1
Rδij and Xijk

l = 0, which agrees with maximal seven-dimensional

SO(5) gauged supergravity.

4.5 Gauging of an N = 4 consistent truncation of Type IIB supergravity

on SE5

In order to show the power of this formalism, we will consider the truncation of Type IIB su-

pergravity on a 5 dimensional Sasaki-Einstein manifold (SE5). The first step is to calculate the

intrinsic torsion in order to check if a consistent truncation exists. Since we wish to compactify

Type IIB on a 5 dimensional compact manifold the generalised SU(2) structure must be embedded

inside E5+1(5+1) in some way, which we take to be:

E6(6) ⊃ SO(5, 5) × SO(1, 1) ⊃ SU(2)S × SO(5, 2) × SO(1, 1). (4.21)
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The space of torsions [45] decomposes then as:

W = 351′ + 27 −−−−−−−−−−−→
SO(5,5)×SO(1,1)

2.102 + 1̄65 + 18 + 54−4 + 1262 + 144−1 + 1−4 + 16−1

−−−−−−−−−−−−−−−−−→
SU(2)S×SO(5,2)×SO(1,1)

2(3,1)2 + 2(1,7)2 + (2̄, 8̄)5 + (1,1)8 + (1,1)−4

+(5,1)−4 + (3,7)−4 + (1,27)−4 + (1,21)2 + (3,35)2

+(2,8)−1 + (4,8)−1 + (2,48)−1 + (1,1)−4 + (2,8)−1,

(4.22)

whereas KG decomposes as:

KSU(2) = 27× (3,1)0 −−−−−−−−−−−→
SO(5,5)×SO(1,1)

(1−4 + 102 + 16−1) × (3,1)0

−−−−−−−−−−−−−−−−−→
SU(2)S×SO(5,2)×SO(1,1)

((1,1)−4 + (3,1)2 + (1,7)2 + (2,8)−1) × (3,1)0

= (3,1)−4 + (1,1)2 + (3,1)2 + (5,1)2 + (3,7)2 + (2,8)−1 + (4,8)−1

(4.23)

The singlets of the intrinsic torsion are the singlets elements of W not are contained in KSU(2),

so:

Wint ⊇ 2(1,7)2 + (1,27)−4 + (1,21)2 + (1,1)8 + 2(1,1)−4 (4.24)

which means there is indeed a generalised singlet intrinsic torsion.40

The second thing that can easily be calculated is the amount of preserved supersymmetry in

the truncation. As mentioned earlier, it is given by the number of GS singlets in the decomposition

of the spinor bundle, which is given by the 8 representation of USp(8). The only subtlety is that

the SU(2) structure must be lifted as follows:

USp(8) ⊃ USp(4)R × USp(4) ⊃ USp(4)R × SU(2)S × U(1). (4.25)

Therefore, the truncation preserves 4 singlets (i.e. half-maximal supersymmetry) as can be seen

in the decomposition:

8 −→ (4,1) ⊕ (1,4) −→ (4,1) ⊕ (1,21) ⊕ (1,2−1). (4.26)

The third element central element of the truncation procedure is to find the generalised vectors of

the consistent truncation. Their number is given by the number of GS singlets in the decomposition

of the generalised vectors (by definition in the fundamental representation of E6(6) is 27) under

Eq. 4.21:

27 −→ 102 ⊕ 16−1 ⊕ 1−4 −→ (7,1)2 ⊕ (1,1)−4 ⊕ (1,3)2 ⊕ (8,2)−1, (4.27)

which amounts to 8 singlets in the first two terms of the second decomposition such that:

V = 1−4 ⊕ 72

{KA} = {K0,KA},
(4.28)

40Eq. 4.24 is an equality if the map τ : KSU(2) −→W has no kernel, which we do not check here.
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for 1 ≤ A ≤ 7. In order to know the specific gauging of the truncated theory, the construction of

the generalised vectors is necessary. This is done by using the equivalent of Eq. 3.64. For Type

IIB E6(6) generalised geometry, which is given by the cubic invariant on E and E∗:

c(V, V, V ) = −3(ιvρ ∧ ρ+ ϵαβρ ∧ λα ∧ λβ) − 2ϵαβιvλ
ασβ ,

c∗(Z,Z,Z) = −3(v̂⌟ρ̂ ∧ ρ̂+ ϵαβ ρ̂ ∧ λ̂α ∧ λ̂β) − 2ϵαβ v̂⌟λ̂ασ̂β ,
(4.29)

where for Type IIB compactified on five-dimensional compact manifold, the generalised tangent

bundle and its dual are given by (we take the Gl(5,R) subgroup):

E ∼= TM ⊕ (T ∗M ⊕ T ∗M) ⊕ Λ3T ∗M ⊕ (Λ5T ∗M ⊕ Λ5T ∗M),

E∗ ∼= T ∗M ⊕ (TM ⊕ TM) ⊕ Λ3TM ⊕ (Λ5TM ⊕ Λ5TM),
(4.30)

such that the generalised vectors and their dual are given by41:

V = v + λα + ρ+ σα,

Z = v̂ + λ̂α + ρ̂+ σ̂α.
(4.31)

When constructing the generalised vectors, we require the part living in the 72 representation to

satisfy:

c(KA,KB ,KC) = 0, (4.32)

along with:

c(K0,K0,KA) = 0,

c(K0,KA,KB) = ηAB = diag(−1,−1,−1,−1,−1, 1, 1)

Invariance under K0 −→ λ2K0,KA −→ λ−1KA.

(4.33)

This accounts for the way SU(2)S was chosen to be embedded in Eq. 4.21, with the SO(5, 2) flat

metric and the U(1) charges specified by Eq. 4.28. Then, one wishes to construct the components

of the generalised vector given by Eq. 4.31 with the conventional vectors of the Sasaki-Einstein

SU(2) structure, such that the algebra of Eq.4.13 closes. We will not attempt such a construction,

41The two indices refer to the two doublets in E and E∗ following the same order in the terms in Eq. 4.30 and
Eq. 4.31.
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but merely show the gauging obtained given the following set of KA:

K0 = ξ,

Ki =
1√
2
η ∧ ji, 1 ≤ i ≤ 3,

K4 =
1√
2

(nη − rvol − nη ∧ C),

K5 =
1√
2

(−rη − nvol + rη ∧ C),

K6 =
1√
2

(nη + rvol − nη ∧ C),

K7 =
1√
2

(−rη + nvol + rη ∧ C),

(4.34)

where nα and rα are contracted with the doublets of two-forms and five-forms present in Eq. 4.30,

represented here respectively by two copies of η and vol respectively.

To find the gauging, the form of the generalised Lie derivative is needed and is given by (using

the same notation as Eq. 4.31):

LV V
′ = Lvv′+(Lvλ′α−ιv′dλα)+(Lvρ′−ιv′dρ+ϵαβdλα∧λ′β)+Lvσ′α−dλα∧ρ′+λ′α∧dρ. (4.35)

First, by acting with K0:

LK0
K0 = Lξξ = 0 ⇒ X00

A = 0,

LK0
Ki = Lξ(

1√
2
η ∧ ji)

=
1√
2

(ιξ(dη) ∧ ji + d(ιξη) + η ∧ ιξdji + η ∧ d(ιξji))

=
1√
2

(ιξ2j3 ∧ ji + η ∧ ιξdji)

=


−3√
2
η ∧ j2 if j = 1,⇒ X01

2 = −3
3√
2
η ∧ j1 if j = 2 ⇒ X02

1 = 3

0 if j = 3 ⇒ X03
A = 0

LK0
K4/6 =

1√
2

(Lξηα + Lξ(∓volα − (η ∧ C)α))

=
1√
2

(2ιξdj3 ∓ dιξvolα − d(C − (η ∧ξ C)))

=
−1√

2
dC =

−1√
2
κvol =

1√
2
κK5 −

1√
2
κK7

⇒ X04
5 = −X04

7 =
1√
2
κ = −X05

4 = −X07
4 by antisymmetry,

(4.36)

and in the same way, X06
5 = −X06

7 = 1√
2
κ = −X05

6 = X07
6.

Since d(η ∧ j1/2) = 0, X1/2A
B = 0.
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Acting with K3, we have:

LK3
K0 = −2ιξ(j3 ∧ j3) = 0 ⇒ X30

A = 0,

LK3
Ki = 0 trivially ⇒ X3i

A = 0, 1 ≤ i ≤ 3,

LK3η = η ∧ 2√
2

(j3 ∧ j3) =
4√
2

vol

⇒ X34
5 = X36

5 = −X34
7 = −X36

7 = −
√

2 = X35
4 = −X35

6 = X37
4 = −X37

6.

(4.37)

Finally, acting with K4/5/6/7, we find:

LηK0 = −ιξdη = 0 ⇒ X4/5/6/7 0
A = 0,

LηKi = −dη ∧ 1√
2
η ∧ ji = − 4√

2
δ3i vol ⇒ X4/5/6/7 1/2

A = 0,

X43
5 = −X47

5 = −
√

2 = X53
4 = −X53

6 = −X63
5 = X63

7 = X73
4 = −X73

6,

Lηη = 4j3 ∧ η, Lηvol = ... = Lηη ∧ C = 0

⇒ X45
3 = X47

3 =
√

2 = −X54
3 = −X74

3 = X65
3 = X67

3 = −X56
3 = −X76

3.

(4.38)

Note that part of the gauging could be inferred from Eq. 4.2442 as it constrains X to be

built out of (following the order the terms) the fundamental, symmetric traceless, antisymmetric

and trivial representations of SO(5, 2), although not all necessarily contribute. As we see a more

specific gauge algebra appeared, which is in fact the algebra of Heis3 × U(1), the gauge group of

the truncated N=4 Type II theory on a five-dimensional Sasaki-Einstein manifold, as was already

found in [53].

Similarly, the two-forms and scalars can be found, but will not be given as the only aim of this

section was to show how the gauging of the truncated theory can be obtained from the formalism

of [16].

4.6 Formalism of N = 4 d = 5 Consistent Truncations of 10/11d Gauged

Supergravity

As we saw, a consistent truncation of Type IIB on SE5 preserves N = 4 supersymmetry. This is

however only a particular case of such half-maximal consistent truncation. One can use generalised

geometry to find all possible ways to preserve half-maximal supersymmetry, which is what will be

shown here. We need to find an embedding of the double cover of the structure group GS in

USp(8) such that under the decomposition induced by that embedding of the 8 representation,

four GS-singlets remain. Following the branching rules, the possible decompositions are:

8 −−−−−−−−→
SU(4)×U(1)

41 + 4̄−1, (4.39)

8 −−−−−−−−−−→
SU(2)×USp(6)

(2,1) + (1,6), (4.40)

42Assuming it is an equality.
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8 −−−−−−−−−−−−→
USp(4)R×USp(4)S

(4,1) + (1,4), (4.41)

8 −−−−→
SU(2)

8, (4.42)

8 −−−−−−−−−−−−−−→
SU(2)×SU(2)×SU(2)

(2,2,2). (4.43)

Furthermore, the global symmetry acting on the supercharges is the R-symmetry. For four

supercharges, the R-symmetry is USp(4), which means that we will be interested in Eq. 4.41.43

Requiring exactly half-maximal supersymmetry means we have to take the double cover of GS

to be a subgroup of either group which we take to be USp(4)S such that no singlet is produced as

they are already present in the other term. Turning to the bosonic sector we can investigate the

possible subgroups of GS (instead of its double cover) which is SO(5). Excluding finite structure

groups, the structure groups will have to be SO(2), SO(3), SO(4) or SO(5) which will be embedded

in E6(6) as follows:

O(1, 1) × SO(5, n) × SO(5 − n) ⊂ SO(5, 5) ×O(1, 1) ⊂ E6(6) ×R+, (4.44)

where n = 0, 1, 2, 3. Note however that subgroups of these groups can again be taken. This only

concerns SO(4) = SU(2)×SU(2)
Z2

, which produce the same singlets as SO(4). However, the consistent

truncation will be identical to the SO(4) case as the elements of E6(6) and USp(8) that commute

with the elements of any these three subgroups are the same. Hence the scalar manifold of the

truncated theory will be the same and by supersymmetry the other degrees will also be the same

leading to the identical theory.

We now investigate the structure of the theory, starting with the manifold of truncated theory

will be evaluated using Eq. 4.11 to:

Mscal = O(1, 1) × SO(5, n)

SO(5) × SO(n)
, (4.45)

where n = 0, 1, 2, 3. Next, the generalised vectors of the truncated theory are given by the GS-

singlets of the fundamental representation of E6(6). The decomposition is given by:

27 −−−−−−−−−−→
SO(5,5)×O(1,1)

1−4 ⊕ 102 ⊕ 16−1

−−−−−−−−−−−−−−→
SO(5)×SO(5)×O(1,1)

(1,1)−4 ⊕ (5,1)2 ⊕ (1,5)2 ⊕ (4,4)1.
(4.46)

As stated above, this can only give a half-maximal truncation if 4 does not decompose into

singlets. Therefore, one singlet comes from the first term while five come from the second one.

Taking the SO(5, n) × SO(5 − n) subgroup instead of SO(5) × SO(5), the singlets of 102 takes

the form of (5 + n,1)2. This matches the vector space found earlier for n = 2 and in general we

43This condition is necessary as it is possible to obtain exactly four singlets by decomposing Eq. 4.39, but the
supercharges would transform under a wrong R symmetry. This will still define a consistent truncation but not of
supergravity.
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then have:
V = 1−4 ⊕ (5 + n)2,

{KA} = {K0,KA : A = 1, ..., 5 + n}.
(4.47)

Eq. 4.32 and 4.33 remain unchanged except that metric η is now replaced by the SO(5, n) flat

metric.

Generalised two-forms live in the N ∼= detT ∗M ⊗E∗ generalised bundle, whose representation

has the same number of dimensions as E. The SO(5, 5) representations are then the same as before

except 16 is replaced by 16′, which does not contribute to any singlets. The space B of generalised

two-forms has therefore the same form as the space of generalised vectors:

B = 14 ⊕ (5 + n)−2,

{JA} = {J0, JA : A = 1, ..., 5 + n},

⟨JA,KB⟩ = δAB = vol.

(4.48)

The last equation only specifies a normalisation of the two-forms, which is possible because of the

isomorphism N ∼= detT ∗M ⊗E∗, the volume form itself being isomorphic to the determinant part.

The generalised two-forms are therefore completely determined by the generalised vectors, which

can be seen even more explicitly using the cubic invariant. The first decomposition of Eq. 4.46 is

equivalent to:

E ∼= E0 ⊕ E10 ⊕ E16, (4.49)

which means that the truncated metric can simply be seen as the sum of three separate metrics in

the sense that:

G = G0 +G10 +G16. (4.50)

The ten-dimensional metric follows exactly the construction we gave earlier for the O(d, d) case.

First we split into negative-definite and positive-definite eigenspaces (i.e E10 = C− ⊕C+ meaning

G10 = G+ + G−) under the maximal compact subgroup SO(5) × SO(5) such that the difference

of the metrics of each eigenspace gives the SO(5, 5) invariant metric (i.e. η(V, V ) = G+ − G−).

Secondly we find the metric on one of these eigenspaces. This can be done because we already

have a basis for C− given by the SO(5) part of Eq. 4.33, leading to:

G−(V, V ) = −ηAB|SO(5) ⟨K∗
A|SO(5), V ⟩ ⟨K∗

B|SO(5), V ⟩ = δab ⟨K∗
a , V ⟩ ⟨K∗

b , V ⟩ , (4.51)

where we renamed the indices to label only the SO(5) part (i.e. the first five generalised vectors

in the 5 + n representation). We then have:

G10(V, V ) = 2G−(V, V ) + η(V, V ),

= 2δab ⟨K∗
a , V ⟩ ⟨K∗

b , V ⟩ + η(V, V ).
(4.52)
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G0 denotes the singlet part and is given straightforwardly by:

G0(V, V ) = ⟨K∗
0 , V ⟩ ⟨K∗

0 , V ⟩ . (4.53)

G16 is found using the Mukai pairing which we did not present earlier. We therefore only give

the result:

G16 = −4
√

2 ⟨K1...K5.V, V ⟩ . (4.54)

The point is that, like G0 and G10, G16 can also be given explicitly only in terms of the generalised

vectors. Similarly, as we saw, the gauging also only depends on the generalised vectors. This

means that a half-maximal consistent truncation is entirely specified once the generalised vectors

are found. In fact, the generalised vectors specify completely the embedding of the structure group

inside E6(6), which therefore specifies the whole truncation.
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5 N = 2 d = 5 consistent Truncations of 10/11-dimensional

Gauged Supergravity

5.1 Determination of the Possible Structure Groups GS

We know wish to apply the same formalism to the case of quarter maximal (N = 2) supersym-

metry truncations (following closely [17]). One reason to consider this theory is that two complex

supercharges is the smallest non-zero number of supercharges that can be considered. This can be

understood as follows. As shown in [28], when compactifying eleven-dimensional supergravity on

a six-dimensional manifold, Cliff(10,1; R) decomposes as:

(10,1) −→ (4,1) + (6,0). (5.1)

Since Cliff(4,1; R) is isomorphic to the matrix group M(2,H), where H denotes the quaternions,

which excludes N = 1 in five dimensions.

The starting point is identical: enumerating the possible decompositions of the spinor bundle

that retain two singlets under GS . Since we are in the same number of dimensions, we can find

the necessary information from Eq. 4.39 - 4.43. Combined with the fact that the R symmetry

for two supercharges is SU(2), it is clear that the only way to produce only two singlets is to use

the SU(2) × USp(6) ⊂ USp(8) embedding, taking USp(6) as the double cover of the structure

group. One can decompose 6 further as long as no new singlet is produced. These further possible

decompositions are:

(2,1) + (1,6) −−−−−−−−−−−−−→
SU(2)×SU(3)×U(1)

(2,1)0 + (1,3)1 + (1, 3̄)−1

−−−−−−−−−→
SU(2)2×U(1)2

(2,1)0,0 + (1,1)−2,1 + (1,2)1,1 + (1,1)2,−1 + (1,2)−1,−1.
(5.2)

From the first embedding, the structure group could be: SU(3), U(1) or SU(3) × U(1); from the

second, it could be: SU(2) × U(1), U(1) (not the same as the first embedding U(1)), U(1)2 or

SU(2) × U(1)2.

(2,1) + (1,6) −−−−−−−−−−→
SU(2)2×USp(4)

(2,1,1) + (1,2,1) + (1,1,4)

−−−−→
SU(2)4

(2,1,1,1) + (1,2,1,1) + (1,1,2,1) + (1,1,1,2)

−−−−−−−−−→
SU(2)2×SU(2)

(2,1,1) + 2 · (1,2,1) + (1,1,2)

−−−−−−−−−→
SU(2)2×U(1)

(2,1)0 + 2 · (1,1)1 + 2 · (1,1)−1 + (1,2)0

−−−−−−−−−→
SU(2)3×U(1)

(2,1,1)0 + (1,2,1)0 + (1,1,2)1 + (1,1,2)−1

−−−−→
SU(2)3

(2,1,1) + (1,2,1) + (1,1,4)

(5.3)

From the first embedding, GS (or its double cover) could be: SU(2) × USp(4); from the second
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embedding: three of the SU(2)3 ⊂ SU(2)4, one of SU(2)2 ⊂ SU(2)3 × U(1) or SU(2)2 × U(1) ⊂
SU(2)3 × U(1) or one of SU(2)2 ⊂ SU(2); from the last two embeddings: two of SU(2)2 ⊂
SU(2)2 × SU(2) and both SU(2) × U(1) ⊂ SU(2)2 × U(1).

(2,1) + (1,6) −−−−→
SU(2)2

(2,1) + (1,6)

−−−−−−−−→
SU(2)×U(1)

20 + 15 + 13 + 11 + 1−1 + 1−3 + 1−5

(5.4)

Hence, GS = SU(2) from the first embedding or GS = U(1) from the second one.

(2,1) + (1,6) −−−−→
SU(2)3

(2,1,1) + (1,3,2)
−−−−−−−−−→
SU(2)2×U(1)

(2,1)0 + (1,3)1 + (1,3)−1

−−−−−−−−−→
SU(2)2×U(1)

(2,1)0 + (1,2)2 + (1,2)0 + (1,2)−2

(5.5)

So, from the first embedding one of two GS = SU(2) or GS = SU(2)2 is possible and from the

last two: GS = U(1) only in the penultimate line or GS = SU(2) × U(1) can be realised.

These are all the possible continuous structure groups giving a consistent N = 2 truncation.

However, apart from the fact that the differential condition imposed by the intrinsic torsion was

not looked at yet, these embeddings could give rise to the same truncation if the content of the

theory is the same. This is the reason why the decompositon of Eq. 5.4 can be ignored.

5.2 Determination of the Hypermultiplet Moduli Space

Having found the possible structure groups, we now turn to the structure of the truncated theory.

Given one of the structure groups specified above, Eq. 4.11 can be used to find the moduli of

scalars. This can be further restricted by the fact that for N = 2, d = 5 supergravity, the scalar

manifold takes the form:

Mscal = MVT ×MH, (5.6)

where V stands for vectors, T for tensors and H for hypermultiplets. This can be understood as

follows. We start by taking the largest GS possible, which from the last section is USp(6). The

bosonic embedding strucure has to be modified from Eq. 4.40 to the central product:

E6(6) ⊃ USp(6) · SU(2) =
USp(6) × SU(2)

Z2
. (5.7)

In this way, we have that the generalised E6(6) vectors and adjoint tensors decompose as:

27 = (1,1) ⊕ (14,1) ⊕ (6,2)

78 = (1,3) ⊕ (6,2) ⊕ (21,1) ⊕ (14,1) ⊕ (14′,2),
(5.8)

which can be obtained by first decomposing into SU(6)×SU(2) and then taking USp(6)×SU(2).

We see then that a generalised USp(6)-structure will be equivalently defined by one generalised
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vector and three generalised adjoint tensors (the four USp(6) singlets). The 3 representation of

SU(2) means that the triplet of Jα satisfy (with a choice of normalisation):

[Jα, Jβ ] = 2ϵαβγJγ , tr(JαJβ) = −δαβ . (5.9)

This is called an “H structure”. There is only one invariant generalised vector K whose norm is

positive:

c(K,K,K) := 6κ2, (5.10)

where κ is defined in this way to be a section of (detT ∗M)1/2. This is called a “V structure”. In

total, the four generalised singlets further must satisfy a compatibility condition:

Jα ·K = 0, (5.11)

using the adjoint action described for eleven-dimensional supergravity in the Appendix E of [39],

which defines what is called an “HV structure”. The compatibility condition forces the deforma-

tions of K that leave the invariant Jα and inversely, which means that the scalar manifold takes

the product structure of Eq. 5.6.

More generally, GS will be a smaller group that does not produce more singlets in the spinor

bundle decomposition. The generalised tangent bundle will decompose then as:

E6(6) ⊃ GS · CE6(6)
(GS), (5.12)

and GS could produce more singlets in 27∗ and 78. Depending on the representations appearing

in the decompositions of either, the generalised invariant vectors KI and adjoint tensors JA will

obey different algebras than that presented above. For instance the JA will form a group O:

[JA, JB ] = fAB
CJC , (5.13)

where fAB
C are the structure constant of o. In fact, one can go further using the fact that JA are

singlets in the adjoint of E6(6) under GS , which means that O ⊂ CE6(6)(GS)44.

However, the compatibility condition will remain true for all invariant JA and KI :

JA ·KI = 0. (5.14)

In fact, Eq. 5.14 can be used to find the stabiliser of the V structure, which enables us to find

the commutant in Eq. 5.12. This can be done because the structure group will be forced to be a

subgroup of the stabiliser group, thereby specifying the needed embedding.

The names of the V and H structures come from the type of multiplet of supergravity. Five-

44This is a similar reasoning to the one used in Eq. 4.9.
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dimensional N = 2 gauged supergravity has four types of multiplets:

1 Gravity multiplet: {gµν , ψiµ, Aµ},

nV Vector multiplets: {Aµ, λi, ϕ},

nT Tensor multiplets: {Bµν , λi, ϕ},

nH Hypermultiplets: {ζi, qu},

(5.15)

where i = 1, 2 (since N = 2) and u = 1, ..., 4. There are then nV+1 vector fields Aµ, 4 nH scalars

from the hypermultiplets that parameterise MH , a quaternionic Kähler manifold and nV+T scalars

from the tensor and vector multiplets that parameterise MV T , which is called a very special real

manifold. Finally, using Eq. 4.11 and Eq. 5.6, the scalar manifold of the truncated theory will

separate as:

Mscal =
CGU

(GS)

CHU
(GS)

× CGV
(GS)

CHV
(GS)

=:
GVT

HVT
× GH

HH
, (5.16)

where GU and GV are subgroups of E6(6) while HU and HV are subgroups of USp(8)
Z2

. Note that

the groups defined on the right-hand side of Eq. 5.16 correspond to the groups remaining once

the possible common factors have been cancelled (except in the case of no hypermultiplet, where

we take GH = HH = SU(2)). As mentioned, O ⊂ CE6(6)(GS) and because the compatibility

condition of Eq. 5.14, CE6(6)(GS) splits as in Eq. 5.16. This means that we can identify O and

GH and the hypermultiplet manifold will be given by:

MH =
GH

SU(2) · CUSp(6)(GS)
. (5.17)

The number of vector multiplets will then be given by the dimension of V−1, while the singlets

in the adjoint bundle contribute to the truncated scalar manifold too.

To summarise, requiring exactly two supersymmetries in the five dimensional truncated su-

pergravity enables to list all possible structure groups as done in Eq. 4.39-4.43. From this, the

truncated scalar manifold, as the number of generalised vectors and sections of the generalised

adjoint bundle can be found. Using the structure of N = 2 supergravity in five dimensions, we see

that the algebra of the JA’s is contained in part of the scalar manifold. As before, the represen-

tation of the generalised GS-singlet intrinsic torsion gives the most general possible gauging45. In

total, going through all possible GS listed above, only 9 theories without hypermultiplet (includ-

ing up to 14 vector and tensor multiplets maximum), 5 theories with 1 hypermultiplet (including

up to 4 vector and tensor multiplets maximum) and 1 theory with 2 hypermultiplets (no vector

or tensor multiplet allowed) are possible consistent truncations of ten- or eleven- dimensional su-

pergravity.46 This is more restrictive than what was thought to be possible. For instance, when

there is no hypermultiplet, it was known that the the very special manifold could take the form

45To be more specific, the bracket defined by the generalised Lie derivative definse a Leibniz algebra (as it is not
antisymmetric but respects the Leibniz product rule). From this, a double-sided ideal can be constructed. The
quotient of V by this ideal can be used to find the gauge algebra (i.e. not the local symmmetry, just the group
under which the matter content is charged as defined in Section 2.3.)

46The table of possible truncations is given in [17].
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of MV T = R+ × SO(nV T−1,1)
SO(nV T−1) , for arbitrary nV T or also MV T =

E(6,−26)

F4
for nV T = 26. However,

because we know from Eq. 5.8 that nV T ≤ 14, these manifolds are excluded for arbitrary vector

and tensor multiplets.

Note that the approach has been entirely algebraic so far, no differential constraint has been

solved yet (i.e. checking if the KI ’s and JA’s can be constructed on a manifold admitting a singlet

intrinsic torsion and satisfying the right algebras). We then expect that this will further restrict

the possible truncations to a smaller number than the 20 cases presented above. This second part

must be done individually for each possible theory, and in the next section, we shall show an

attempt at explicitely constructing the sections of the generalised adjoint bundle for one of the

possibilities in Type IIB.

5.3 Non existence of a Specific Geometric Consistent Truncation

We now investigate the case of nH ≥ 1, nV T ≥ 1. In order to find the structure group (and its

embedding) corresponding to a chosen number of multiplets with at least one hypermultiplet, it is

easier to start with the symmetric hypermultiplet manifold, given in Eq. 5.17. The compatibility

condition implies that the stabiliser of the generalised vector is F4(4), so that GS ⊂ F4(4) ⊂ E6(6),

which constrains Eq. 5.17 to four possible families [54] [17], two of which preserve only two singlets

in the decomposition of 8:

MH =
G2(2)

SO(4)
, nH = 2,

MH =
SU(2, 1)

S(U(2) × U(1))
, nH = 1.

(5.18)

G2 is fourteen-dimensional, which means there are 14 JA’s in the first manifold whereas there are

8 JA’s in the second one, corresponding respectively to GS = SU(2) and GS = SU(3). Explicitely,

the decompositions are in the first case (corresponding to the spinor decomposition of Eq. 5.5) :

27 −−−→
F4(4)

1 + 26 −−−−−−−−→
SU(2)×G2(2)

(1,1) + (5,1) + (3,7)

78 −−−→
F4(4)

26 + 52 −−−−−−−−→
SU(2)×G2(2)

(3,1) + (5,1) + (3,7) + (5,7) + (1,14)
(5.19)

and in the second case (corresponding to the spinor decomposition of Eq. 5.2):

27 −−−→
F4(4)

1 + 26 −−−−−−−−−−→
SU(3)×SU(2,1)

(1,1) + (3,3) + (3̄, 3̄) + (8,1)

78 −−−→
F4(4)

26 + 52 −−−−−−−−−−→
SU(3)×SU(2,1)

(3,3) + (3̄, 3̄) + 2(8,1) + (1,8) + (6̄,3) + (6, 3̄).
(5.20)

In order to have a non-zero number of vector and tensor multiplets, we need to find the sub-

groups of SU(2) and SU(3) that produce more singlets in the decomposition of 27. In the first

case breaking SU(2) further to some U(1) implies the presence of additional singlets in the spinor

bundle (as seen by the earlier decomposition of the spinor bundle). This means that if nH = 2,

then a consistent truncation can only have nV T = 0.
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Turning to the second case, we find by decomposing Eq. 5.20 to SU(3) ⊃ SU(2) × U(1) that:

(1,1) + (3,3) + (3̄, 3̄) + (8,1) −−−−−−−−−−−−−−→
SU(2)×SU(2,1)×U(1)

2(1,1)0 + (2,1)3 + (2,1)−3 + (1,3)−2 + (1, 3̄)2 + (3,1)0 + (2,3)1 + (2, 3̄)−1,

(5.21)

which has five U(1)-singlets and hence nV T = 4. Note that this creates more adjoint singlets too:

(3,3) + (3̄, 3̄) + 2(8,1) + (1,8) + (6̄,3) + (6, 3̄) −−−−−−−−−−−−−−→
SU(2)×SU(2,1)×U(1)

2(1,1)0 + 2(2,1)3 + 2(2,1)−3 + (1,3)4 + (1,3)−2+

(1, 3̄)2 + (1, 3̄)−4 + 2(3,1)0 + 2(2,3)1 + 2(2, 3̄)−1 + (3,3)−2 + (3, 3̄)2 + (1,8)0,

(5.22)

eight of which will contribute to the scalar manifold.

We proceed to the construction of the generalised adjoint tensors that parametrise the second

option of Eq. 5.18, i.e. we start by looking for the structure constants of su(3). First, we need the

generalised adjoint bundle which for E6(6), d = 5, is given by:

adF̃ ∼= R⊕ (S ⊗ S∗)0 ⊕ (TM ⊗ T ∗M)⊕ (S ⊗Λ2TM)⊕ (S ⊗Λ2T ∗M)⊕Λ4TM ⊕Λ4T ∗M, (5.23)

where l =
raa
3 (we restrict ourselves to Ed(d) ⊂ Ed(d) ×R+) such that:

R = l + ai + r + βi +Bi + γ + C, (5.24)

where l ∈ R, ai ∈ (S ⊗ S∗)0 with i ∈ {1, 2, 3}, r ∈ TM ⊗ T ∗M ,...

In he half-maximal case, T 1,1 admitted a consistent truncation with eight generalised vectors

and adjoint tensors. In that case, the JA’s can then be found from the generalised vectors, but not

here. One way to construct the consistent truncation is then by starting with invariant tensors,

which is what we do here.

It is possible although not necessary for the quarter maximal consistent truncation with three

generalised vectors and eight generalised adjoint tensors to intersect the previous case. It is conjec-

tured here that T 1,1 admits this quarter maximal consistent truncation, sharing the same minimum

of the potential as the previous truncation on AdS × T 1,1, possessing one generalised vector and

three generalised adjoint tensors. The generalised vector should belong to V1/2 as well as V1/4 and

is given by:

K = ξ − η ∧ j3. (5.25)

Since only this vector is related to the previous half-maximal consistent truncation, we make the

stronger conjecture that the generalised adjoint bundle parametrising su(3) can be built from only

one of the three two-forms that enter the T 1,1 structure, in addition to the Reeb vector and η -

that is, the content that enters Eq. 5.25.47

47This conjecture was made by Prof. Waldram, who also suggested to look at this stronger version in order to
tackle the problem more easily.
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This particular consistent truncation is an interesting example as it would potentially leads

to a further intrinsically generalised geometric consistent truncation (apart from the maximally

supersymmetric spheres truncations).

We aim to construct 8 independent sections of 5.23 from the Reeb vector ξ, the 1-form η, and

the 2-form j3. These obey the following relations (the full relations obeyed by the tensors in our

choice of basis of a Sasaki-Einstein manifold can be found in Section 4.2.1 of [16]):

ξ⌟j3 = 0

ξ⌟η = 1

1

2
j3 ∧ j3 ∧ η = vol5

dη = 2j3

dj3 = 0

(5.26)

We take the following specific realisation from Eq.4.60 of [16]:

ξ = −3∂ψ

η = −e1

j3 = e25 − e34

(5.27)

We can then construct R with Bi = ji3, βi = j∗3
i, C = vol4 = −j3 ∧ j3 = 2e2 ∧ e3 ∧ e4 ∧ e548,

γ = vol∗4 = −j∗3 ∧ j∗3 = 2ê2 ∧ ê3 ∧ ê4 ∧ ê5, a1 =

(
0 −2

0 0

)
, a2 =

(
0 0

2 0

)
, a3 =

(
1 0

0 −1

)
,

r = −2ê1 ⊗ e1 + 2ê2 ⊗ e2 + 2ê3 ⊗ e3 + 2ê4 ⊗ e4 + 2ê5 ⊗ e5, and l =
raa
3 = 2.

Using Eq. E.35 of [39], calculating the commutator [R,R′], where R,R′ ∈ adF̃ amounts to the

following 14 components commutators:

[γ,C ′] = [vol∗4, vol4] = l′′1 + r′′1

l′′1 =
1

2
vol∗4⌟vol4 =

1

2
2.2 = 2 = l

r′′1 = (jvol∗4⌟jvol4) − 1

2
I(vol∗4⌟vol4)

= −2ê1 ⊗ e1 + 2ê2 ⊗ e2 + 2ê3 ⊗ e3 + 2ê4 ⊗ e4 + 2ê5 ⊗ e5 = r

(5.28)

using that:

(jvol∗4⌟jvol4)ab =
1

3!
(vol∗4)ac1c2c3(vol4)bc1c2c3 =

1

3!
.3!.2.2δa ̸=1

b = 4δa̸=1
b

(5.29)

48By j∗3 , we mean that j3ij ’s indices were raised with the metric. Then, j∗3 = ê25 − ê34, where ei(êj) = δij , and
we have j∗3⌟j3 = 2.
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[βk, B′l] = [j∗k3 , jl3] = l′′2 + r′′2 + a′′2

l′′2 =
1

4
ϵklj

∗k
3 ⌟jl3 =


1
2 = l

4 if k = 1, l = 2

− 1
2 = − l

4 if k = 2, l = 1

0 else.

r′′2 = ϵkl(jj
∗k
3 ⌟jjl3) − 1

4
Iϵklj∗k3 ⌟jl3

=


− 1

2 ê1 ⊗ e1 + 1
2 ê2 ⊗ e2 + 1

2 ê3 ⊗ e3 + 1
2 ê4 ⊗ e4 + 1

2 ê5 ⊗ e5 = r
4 if k = 1, l = 2

+ 1
2 ê1 ⊗ e1 − 1

2 ê2 ⊗ e2 − 1
2 ê3 ⊗ e3 + 1

2 ê4 ⊗ e4 − 1
2 ê5 ⊗ e5 = − r

4 if k = 2, l = 1

0 else,

(5.30)

using that:

(jj∗3⌟jj3)ab =
1

(2 − 1)!
j∗ac3 j3bc =

{
1 if a = b and a ̸= 1

0 else.
(5.31)

Since r′′2 ∝ r′′1 , we can take r = r′′2

(a′′2)ij = ϵjkj
∗i
3 ⌟jk3 − 1

2
δijϵklj

∗k
3 ⌟jl3

=



(
0 −2

0 0

)
= a1 if k = 1, l = 1(

0 0

2 0

)
= a2 if k = 2, l = 2(

2 0

0 0

)
+

(
−1 0

0 −1

)
=

(
1 0

0 −1

)
= a3 if k = 1, l = 2(

0 0

0 −2

)
+

(
1 0

0 1

)
=

(
1 0

0 −1

)
= a3 if k = 2, l = 1

(5.32)

[r, r′] = r′′3

r′′3
a
b = (r.r′)ab = racαr

c
b − rcbαr

a
c = 0,

(5.33)

taking r′ = αr.

[ai, a
′
j ] = a′′4 = a.a

a′′4
a
b = (ai.a

′
j)
a
b = aai ca

c
j b − aci ba

a
j c =


−4a3 if i = 1, j = 2

−2a1 if i = 1, j = 3

2a3 if i = 2, j = 3

0 if i = j,

(5.34)

where a′′4 is antisymmetric in i, j.
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[r, β′i] = βi5 = 4j∗3

βi5
ab = (r.j∗i3 )ab = racj

∗i
3
cb + rbcj

∗i
3
ac

(5.35)

[ax, β
′i] = [ax, j

∗i
3 ] = βi6

β6 = ax.j
∗
3 =



−2j∗13 if x = 1, i = 2

2j∗23 if x = 2, i = 1

j∗13 if x = 3, i = 1

−j∗23 if x = 3, i = 2

0 else.

(5.36)

[γ,B′i] = [vol∗4, j
i
3] = βi7

βi7 = −vol∗4⌟j′i3 = 2(ê3 ∧ ê4 − ê2 ∧ ê5) = −2j∗3
(5.37)

[r,B′i] = Bi8 = −4ji3

Bi8 = r.j′i3
(5.38)

[ax, B
′i] = Bi9

Bi9 = ax.j3 =



2j13 if x = 1, i = 2

−2j23 if x = 2, i = 1

−j13 if x = 3, i = 1

j23 if x = 3, i = 2

0 else.

(5.39)

[βi, C ′] = [j∗i3 , vol4] = Bi10

Bi10 = j∗i3 ⌟vol′4 = −2j3
(5.40)

[r, γ′] = γ11

γ11 = r.vol∗4 = 8vol∗4
(5.41)

[βi, β′j ] = [j∗i3 , j
∗j
3 ] = γ12

γ12 = ϵijj
∗i
3 ∧ j∗j3 =


−vol∗4 if i = 1, j = 2

vol∗4 if i = 2, j = 1

0 else.

(5.42)

[r, C ′] = [r, vol4] = C13

C13 = r.vol4 = −8vol4
(5.43)

[Bi, B′j ] = [ji3, j
j
3] = C14

C14 = −ϵijji3 ∧ j
j
3 =


−vol4 if i = 1, j = 2

vol4 if i = 2, j = 1

0 else.

(5.44)
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Recapitulating, taking J1 = a1, J2 = a2, J3 = a3, J
′
4 = r, J5 = j∗13 , J6 = j∗23 , J7 = j13 , J8 =

j23 , J9 = vol∗4, J10 = vol4, J11 = 2, as well as eliminating J11 by the rescaling J4 = J ′
4 + J11, we

obtain the following non-zero commutators (the rest being deduced from their antisymmetry):

[J1, J3] = −2J1, [J2, J3] = 2J3,

[J1, J2] = −4J3,

[J4, J5] = 4J5, [J4, J6] = 4J6,

[J4, J7] = −4J7, [J4, J8] = −4J8,

[J4, J9] = 8J9, [J4, J10] = −8J10,

[J5, J6] = −J9, [J7, J8] = −J10,

[J9, J7] = −2J5, [J9, J8] = −2J6,

[J10, J5] = 2J7, [J10, J6] = 2J8,

[J9, J10] = J4,

[J1, J6] = −2J5, [J1, J8] = 2J7,

[J2, J5] = 2J6, [J2, J7] = −2J8,

[J3, J5] = J5, [J3, J6] = −J6,

[J3, J7] = −J7, [J3, J8] = J8,

[J5, J7] = J1, [J5, J8] =
J4
4

+ J3,

[J6, J7] = −J4
4

+ J3, [J6, J8] = J2.

(5.45)

Taking:

J ′
A = i

J1 + J2
2

, J ′
B = i

J1 − J2
2

, J ′
C = J3,

JD =
J9 + J10

2
, JE =

J9 − J10
2

, JF =
J4
4
,

(5.46)
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we have two su(2) algebras as shown below:

[J ′
A, J

′
B ] = −2J ′

C , [J ′
A, J

′
C ] = −2J ′

B , [J ′
B , J

′
C ] = −2J ′

A,

[JD, JE ] = −2JF , [JD, JF ] = −2JE , [JE , JF ] = −2JD,

[J ′
A/B/C , JD/E/F ] = 0,

[J ′
A, J5] = iJ6, [J ′

B , J5] = −iJ6, [J ′
C , J5] = J5,

[J ′
A, J6] = −iJ5, [J ′

B , J6] = −iJ5, [J ′
C , J6] = −J6,

[J ′
A, J7] = −iJ8, [J ′

B , J7] = iJ8, [J ′
C , J7] = −J7,

[J ′
A, J8] = iJ7, [J ′

B , J8] = iJ7, [J ′
C , J8] = J8,

[JD, J5] = J7, [JE , J5] = −J7, [JF , J5] = J5,

[JD, J6] = J8, [JE , J6] = −J8, [JF , J6] = J6,

[JD, J7] = −J5, [JE , J7] = −J5, [JF , J7] = −J7,

[JD, J8] = −J6, [JE , J8] = −J6, [JF , J8] = −J8,

[J5, J6] = −JD − JE , [J5, J7] = −i(J ′
A + J ′

B), [J5, J8] = J ′
C + JF ,

[J7, J8] = JD − JE , [J6, J8] = −i(J ′
A − J ′

B), [J6, J7] = J ′
C − JF .

(5.47)

Since the two su(2) algebras commute with each other and there is no su(2) × su(2) in su(3),

the only possibility of finding an su(3) subalgebra in this 10-dimensional algebra is by setting to

0 two generators of either su(2) algebra. However, because of the last two lines, this cannot be

done. Hence, there is no su(3) subalgebra here.49

In fact, one could go further and try to identify this algebra. One ansatz can be constructed by

noting that so(4) ∼= su(2) × su(2), we can embed so(4) in so(5), implying the following structure:(
uij vi

−vj 0

)
, [u, u′] ∈ so(4), [v, v′] ∈ so(4), [u, v] ∼ v′ (5.48)

which resembles the algebra we have, where uij ∈ so(4) and 1 ≤ i, j ≤ 4.

49As an unrelated aside, we see also that G
SU(2)×SU(2)

, where G is the 10-dimensional group in question, is a

symmetric space, as we have the structure [h, h] ⊂ h, [h, f ] ⊂ f, [f, f ] ⊂ h, where h = su(2). [55]
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6 Conclusion

This dissertation was devoted to understanding how to construct consistent truncations of super-

gravity using generalised geometry, beyond the case of Leibniz parallelisable spaces. The two most

central elements that needed to be understood for it to work were generalised G-structures and

generalised intrinsic torsion.

We started by quickly reviewing the concept of G-structures and saw how familiar geomet-

rical concepts could be recast in this language. We followed by defining some terms relevant in

the context of gauged supergravity, which gave at the same time a context to study generalised

geometry.

This introduction being over, generalised geometry was constructed starting from the actions

of Type II and eleven-dimensional supergravities, with the main of arriving at the definition of the

generalised intrinsic torsion. The main steps of the construction were as follows.

First, the symmetries of these actions, including the fluxes, were discussed. This is similar

to Maxwell’s theory except there is more than one flux and they are not necessarily two-forms.

The generators of these symmetries are consequently patched in a non-trivial way. The space

in which these generators live as well as their patching are the two data necessary to define the

generalised tangent bundle, which unifies all the symmetries (diffeomorphism and gauge). This

is done through the concept of exact sequences which was introduced beforehand. Because these

were exact sequences of vector spaces, we could use a theorem that implies that the generalised

tangent bundle is in fact isomorphic to the naive definition that would have been used without

knowing about the patching.

However, understanding it was required to define the generalised Lie derivative as well as

the bracket, which formed the second step of the overall construction of the theory. The fact

that the Lie derivative can be generalised is non-trivial and points already to a new language

for supergravity. This was dependent on two things: first (and most importantly) the patching

induced by the action, secondly the right choice of integration. The properties of these brackets

can be used to define generalised geometry in terms of more abstract structures called algebroids

(specific algebraic construction with in some sense enough structure to capture the geometry of

supergravity) which was not covered here.

The third step was to unify all the bosonic fields in the generalised metric. This was an

important early instance of G-structure in the context of generalised geometry, where the analogy

with the corresponding notion in conventional geometry is the most clearly seen. This agreed with

the remark made when introducing gauged supergravity that scalars arrange themselves in cosets.

These first steps were done side by side for both the NSNS sector of Type II supergravity

and the low-energy limit of M theory to emphasize the unity of the idea that animates complex

generalised geometry and exceptional generalised geometry as well as singling out some of the

subtleties that arise in practice in the latter case. For example, the exceptional case must be done

once the theory is already compactified. This in turn is why the patching rule for the dualised

metric was not a direct consequence of supergravity, but was only found retroactively by the action

of E7(7) ×R+.
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Being equipped with a metric, generalised connections compatible both with the O(d, d) ×R+

or the Ed(d)×R+ structure and the generalised metric could be defined, which are important types

of connections, similarly to the conventional case. This lead to the definition of the generalised

torsion, based on the Dorfman derivative and a metric-compatible generalised connection. The

same relation holds in conventional geometry, although only as a property in this case (not as the

definition).

An important aspect by which generalised geometry departs from the common intuition is

that the fundamental theorem of Riemannian geometry does not hold: generalised torsion-free,

generalised metric-compatible connections are not unique, although only unique projections appear

in supergravity. Defining a map τ from the space of differences of compatible connections to the

space of torsions, the intrinsic torsion is the torsion modulo the image of that map. Under some

conditions, the intrinsic torsion can be found by simply decomposing the space of torsion and

comparing it to the decomposition of domain of τ .

The intrinsic torsion is important for two main reasons. First, it is an intrinsic measure of

the geometry considered (through the G-structure) since it is by definition the part of the torsion

that is independant of the choice of connection. The second reason is that it controls whether the

derivative of singlets remain singlets.

Finally, we mentioned how the bosonic part of the supergravity actions could be rewritten

as a generalised Einstein-Hilbert action, which is the natural culmination of the successful uni-

fication of the symmetries of ten- and eleven-dimensional supergravities in a single generalised

diffeomorphism.

The second part was devoted to the construction of consistent truncations, following the the-

orem of [16]. Some more motivation to study consistent truncations of supergravity was given,

focusing on its place in the context of the AdS/CFT correspondence, where the lack of separation

of scales represents an obstacle. Following Scherk and Schwartz, the primary condition to the

existence of a truncation not giving a merely effective description of the theory by turning off

the heavy modes was to keep only and all the singlet modes in the decomposition of the fields.

When formulated in conventional geometry, the Scherk-Schwartz truncation scheme could account

for parallelisable spaces, which was already an important step beyond the Kaluza-Klein original

circular example.

Since the geometry of supergravity was shown to be generalised geometry, their idea could be

enlarged to Leibniz parallelisable spaces. In this context, a global generalised frame for spheres was

given, thereby showing that all spheres are Leibniz parallelisable spaces. This gave a deeper reason

for the existence of truncations (known to be consistent) on non-parallelisable (in the conventional

sense) spheres. This again was abstracted to generalised G-structures. Using this and the intrinsic

torsion, the structure of the theory can be inferred. Given a singlet intrinsic torsion, the manifold

of scalars is given by the embedding of the G-structure inside Ed(d)×R+ through the commutant,

while the representations that appear in the singlet intrinsic torsion determine the most general

gauging.

In order to show how this truncation scheme works, two cases were investigated. First, an
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N = 4 consistent truncation of Type IIB supergravity on SE5 was checked to be consistent. This

was done by explicitly evaluating the Dorfman derivative on given generalised vectors, which gave

a gauging by Heis3×U(1). The more general case was then reviewed by showing how to obtain the

possible structure groups, and hence the spaces of generalised vectors. These in turn determined

the generalised adjoint tensors as well the three parts of the generalised metric.

Since there is less supersymmetry, the case of N = 2 is more difficult. We started by again

giving the possible (non-discrete) structure groups by decomposing the spinor bundle, which was

again reduced as two distinct G-structures can sometimes lead to the same truncated theory. Next

we turned our attention to the scalar manifold. Using the same formula as before, it was seen that

it splits into a tensor part and a hypermultiplet part, which is consistent with quarter-maximal

five-dimensional supergravity.

From this algebraic analysis, it seems possible to retain a hypermultiplet along with some

tensor multiplets. In the low-energy of M-theory, this already was shown to be realised. It was

then conjectured that it happened in Type IIB as well. A strong form of this conjecture was

shown to not be possible. This in not so surprising as a number of assumptions were made when

we tried to construct all the generalised tensors by keeping only three invariant Saski-Einstein

tensors. Nevertheless, this illustrated how a possible ansatz could be constructed using generalised

geometry. At this point then, further work is required to know whether such a consistent truncation

exists.
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7 Appendix

7.1 Notation

The wedge symbol is used in the same way for both forms and antisymmetric tensors w ∈ ΛpTM .

The j-notation is defined in components by [28; 36]:

(jw ∧ w′)m,m1...m7 :=
7!

(p− 1)!(8 − p)!
wm[m1...mp−1w′mp...m7],

(jλ ∧ λ′)m,m1...m7 :=
7!

(q − 1)!(8 − q)!
λm[m1...mq−1

λ′mq...m7]
,

(jw⌟jλ)m n :=
1

(p− 1)!
wmn1...np−1λnn1...np−1 ,

(jt⌟jτ)m n :=
1

7!
tm,n1...n7τn,n1...n7

.

(7.1)

Antisymmetric vector-like tensors are used throughout, following the same component conventions

as forms, so that for a p-polyvector w and a q−form λ, the contractions and wedge products are

given by:

(w ∧ w′)m1...mp+p′ =
(p+ p′)!

p!p′!
w[m1...mpump+1...mp+p′ ],

(λ ∧ λ′)m1...mq+q′ =
(q + q′)!

q!q′!
w[m1...mq

umq+1...mq+q′ ]
,

(w⌟λ)a1...aq−p
:=

1

p!
wn1...npλn1...npa1...aq−p

, if q ≥ p,

(w⌟λ)a1...ap−q :=
1

q!
wa1...ap−qn1...nqλn1...nq

, if p ≥ q.

(7.2)
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