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Abstract

We study 5d N = 1 supersymmtric field theories using brane configurations
in Type IIB string theory called brane webs. We introduce the basic features
and demonstrate how field theoretic quantities can be computed simply from
the brane webs. We then demonstrate how brane web decompositions can
be used to find combinatorial objects called magnetic quivers which encode
the Higgs branch of the theory, in particular when the coupling is infinite.
Finally we compute magnetic quivers for two families of field theories.
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Chapter 1

Introduction

This thesis concerns the application of brane configurations in Type IIB
string theory to the understanding of 5d N = 1 supersymmetric gauge the-
ories. The study of supersymmetric quantum field theories is partially mo-
tivated by the difficulty presented by ordinary quantum field theory. Quan-
tum field theories without supersymmetry, such as Quantum Chromodynam-
ics (QCD) become more or less intractable in regimes where the coupling
strength is large and the physics can no longer be treated perturbatively.
As a consequence, non-perturbative effects such as confinement cannot be
explored and understood in any straightforward fashion. Even in the best
case scenario where the coupling is small and perturbative technieques can
be used an asymptotic expansion often the best one can do for any phys-
ical quantity. In supersymmetric theories however, the situation is much
improved and many exact results can be obtained. Non-renormalisation the-
orems can be proved [1] which ensure exact potentials can be obtained which
do not run with scale. Phenomena such as confinement can also be under-
stood in an exact fashion [2]. The study of supersymmetric theories can also
lead to developments in mathematics [3]. Supersymmetric theories can then
be viewed (notwithstanding any potential phenomenological applications) as
useful toy models of quantum field theory that capture many of the key fea-
tures in a setting where we have a chance to understand them. The study of
toy models has historically been a very fruitful pursuit in theoretical physics.
Supersymmetric quantum field theories are also important in string theory.

Supersymmetry places many constraints on the kind of theories that can
exist. Particles and fields must come in groups called supermultiplets. In
the 5d N = 1 supersymmetry we will consider this means each gauge boson
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comes with a scalar and one spinor. Each matter fermion must come with four
real scalars. This greatly constrains the possible theories. In fact once the
gauge group and matter content are decided the interactions are completely
determined. Supersymmetric theories come with many interesting features.
Of particular interest in is the moduli space, which is the space of all vacua of
the quantum theory. This space is parameterised by the vacuum expectation
values (vevs) of scalars. In theories with 8 supercharges, which includes 5d
N = 1, the moduli spaces have a rich mathematical structure and take the
form of symplectic singularities [4], mathematical objects which have their
natural setting in algebraic geometry [5]. Much progress has been made in
computing these moduli spaces in recent years [6, 7, 8, 9, 10, 11, 12]

Supersymmetric theories in 5d are particularly interesting as they provide
examples of superconformal field theories (SCFTs) in dimensions greater than
4. These were not known to exist until they were found using string theory
considerations in [13]. Understanding the space of SCFTs in five dimensions
has been a recent focus [14, 15]

In this work our focus will be on using brane configurations, called brane
webs, from Type IIB string theory to understand supersymmetric field the-
ories. This approach allows us to use the tools and dualities of string theory
to understand supersymmetric field theory. This approach was pioneered in
[16, 17, 18]. The use of brane webs allows us to represent a supersymmetric
gauge theory as 2d graph subject to certain rules Phase transitions in the
field theory can be seen as geometric transitions on the graph. The use of
brane webs is particularly fruitful for understanding non-perturbative effects.
In the opposite direction, ideas from field theory can be used to help us un-
derstand features of string theory, which is a good motivation in its own
right. This is a fruitful direction of reseach which makes possible compu-
tations that would be much more difficult using field theory techniques, for
example theories without a lagrangian description are just as easy to analyse
with brane webs as lagrangian theories. All the while, the understanding of
string theory is advanced.

This work will be organised as follows. In 2 we will review the basic fea-
tures of 5d N = 1 gauge theories from the field theory perspective. In 3
we will introduce brane webs of (p,q) 5-branes and demonstrate their use in
making computations for 5d theories. In 4 we will discuss [p,q] 7-branes and
demonstrate the use of brane webs and objects called magnetic quivers in
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computing moduli spaces. In 5 we will use brane webs to compute magnetic
quivers for two families of theories.
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Chapter 2

Basic properties of
supersymmetric gauge theories
in five dimensions

In this chapter we will introduce the basic concepts of 5d N = 1 super-
symmetric field theories that we will require. We will assume throughout a
a knowledge of representations of Lie groups and Lie algebras as well as a
basic knowledge of 4d N = 1 supersymmetry. We direct the reader to [19]
for a reference on supersymmetry.

2.1 Supersymmetry algebra in five dimensions.

Here we will review the supersymmetry algebra in five dimensions The Lorentz
group in five dimensions is SO(4,1). The spinor representation of this group
is four dimensional and pseudoreal. To form the minimal N = 1 supersym-
metry algebra we need two supercharge spinors Qα, Q̃β α, β = 1, 2, 3, 4 which
combine to form the supersymmetry algebra in five dimensions:

{Qα, Q̃β} = 2γµ
αβPµ

(2.1)

Where the γµ are the five dimensional gamma matrices with µ = 0, 1, . . . 5.
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We have two spinors with 4 components leading to a total of 8 super-
charges in 5d N = 1. This is in contrast the 4 supercharges of 4d N = 1.
Other theories with 8 supercharges include 3d N = 4, 4d N = 2 and 6d
N = (1, 0) supersymmetry. There are many common features amongst the-
ories with 8 supercharges, in particular the strucure of their moduli space of
vacua. Particles and fields in a supersymmetric theory must lie in represen-
tations - called supermultiplets - of the super Poincaré algebra, which is the
combination of the supersymmetry algebra (2.1) and the Poincaré algebra.
Recall in ordinary quantum field theory particles and fields must lie in repres-
ntations of the Poincaré algebra. Physically this constrains a particle state
to be described by a momentum and a spin. In supersymmetry, the fact that
particles and fields come in representations of the super Poincaré algebra
leads to more constraints. For 5d N = 1 theories, there are two supermul-
tiplets, the vector multiplet and the hypermultiplet. The vector multiplet
consists of one vector field, one spinor field and one real scalar and the hy-
permultiplet of four real scalars and a spinor [13]. In a supersymmetric gauge
theory, the gauge fields will come in vector multiplets, and the matter fields
in hypermultiplets. For instance, a theory with a U(1) gauge group and one
matter flavour, which we could call super QED, contains one vector mutiplet
and one hypermultiplet. Supersymmetry constrains completely the types of
interactions that are possible between these fields. As a consequence, once
we specify the gauge group, the matter content which consists of hypermul-
tiplets in representations of the gauge group and the possible global flavour
symmetries under which the matter transforms we have completely specified
a theory. Given this it is useful to represent gauge theories diagrammatically
using a diagram known as a quiver. The quivers we will use consist of nodes
which are either circles or squares. Numbers adjacent to the nodes are called
ranks. A circular node represents a factor of the gauge group, a square node
a factor of the global flavour symmetry group. For our purposes, the only
gauge groups we will consider are special unitary gauge groups SU(N) so
a circular node of rank N represents a factor SU(N) in the gauge group.
A square node of rank N represents a factor of SU(N) in the global sym-
metry. A line joining two nodes represents a hypermultiplet transforming
in the bifundamental representation of the groups represented by the nodes.
For example, 2.1 shows a gauge theory with gauge group SU(Nc) and global
symmetry SU(Nf . The line between the two nodes means we have have
a hypermultiplet transforming in bifundamental representation of SU(Nc)
and SU(Nf ), which is just Nf flavours in the fundamental representation of
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SU(Nc). This is Supersymmetric Quantum Chromodynamics or SQCD with
Nc colours and Nf flavours. Ordinarily the global symmetry would only be
present if these flavours have the same mass, however if we allow the masses
to transform in the adjoint representation of SU(Nf ) then this is a valid
symmetry for arbitrary flavour masses.

Nc Nf

Figure 2.1: Quiver diagram for a theory with gauge group SU(Nc) with Nf

flavours transforming in the fundamental representation of the gauge group.

Another example is shown in 2.2, which represents a gauge theory with
gauge group SU(2) × SU(2). There are two flavours charged under each
gauge group factor, as well as a bifundamental hypermultiplet charged under
both gauge groups.

2 2

22

Figure 2.2: Quiver diagram for an SU(2) × SU(2) gauge theory with two
flavours charged under each guage group factor and hypermultiplet in the
bifundamental of the gauge group.

2.2 5d N = 1 field theories

Here we will review the basic properties of 5d N = 1 supersymmetric gauge
theories. The results we present here were first discussed in [13, 20, 21].
Of general interest in supersymmetric gauge theories is the moduli space of
vacua which is the space of all allowed vacuum states of the theory. The
moduli space is parameterised by the vacuum expectation values (vevs) of
the scalar fields in the theory. Classically it is obtained by solivng for zeros
of the potential energy, however the moduli space is generally changed by
quantum effects. Generically, the moduli space contains two main brances,
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the Coulomb branch and the Higgs branch. The Coulumb branch is defined
as the space of vacua where only the scalar fields in the vector multiplets
associated to the gauge fields have a vev. The Higgs branch contains the
vacua where only the scalar fields in the matter hypermultiplets have a vev.
There may also exist a mixed branch where both vector multiplet and hy-
permultiplet scalars have a vev. For the rest of this section we will focus on
the Coulomb branch.

Recall the scalar fields in the vector multiplets are in the adjoint represen-
tation of the gauge group G. On the Coulomb branch they are constrained
to take values in the Cartan subalgebra of G. Since the scalars are in the
adjoint representation the unbroken gauge group is generated by those gen-
erators which commute with the cartan subalgebra, which is precisely the
cartan subalgebra. Since the unbroken generators commute, we the unbro-
ken gauge group is U(1)r, where r is the rank of G. The Weyl W group of G
still has a non-trivial action on the cartan subalgebra. Since we should not
distinguish points on the moduli space differing by a gauge transformation,
the Coulomb branch is correctly described by allowing the scalars to take
vevs in a single Weyl chamber of the cartan subalgebra. In practice, this
means for SU(2) with a single scalar ϕ we take ϕ ≥ 0. For SU(N) which
has rank N − 1 and so N − 1 many scalars ϕ1 . . . ϕN−1 we restrict ourselves
to 0 ≤ ϕN−1 ≤ . . . ϕ1. This then completely describes the physical points of
the Coulomb branch.

It is known [13] that the low energy dynamics on the Coulomb branch are
captured in a single holomorphic function of the vevs of the vector multiplet
scalars F(ϕ), known as the prepotential. The prepotential is constrained to
be a cubic function of the scalars, it receives perturbative corrections that
are exact after a one-loop calculation. The full perturbative prepotential
given an arbitrary gauge group with multiple factors G =

∏
i Gi and matter

hypermultiplets in representations ρ is [21]:

F =
∑
Gk

1

g2k
hijϕ

iϕj +
c

3
dijkϕ

iϕjϕk +
1

6

∑
R

|R · ϕ|3 −
∑
ρ

∑
w∈Wρ

|w · ϕ+m|3


(2.2)
In the above 1

g2i
is the classical gauge coupling of each factor Gi hij =

Tr(TiTj), dijk = 1
2
Tr(Ti{Tj, Tk}), where Ti are the generators of the Cartan

subalgebra of the fundamental representation, R refer to the roots of G
and w,Wρ the weights and weight spaces respectively of the hypermultiplet
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representations ρ. c is the classical chern simons level, it will be zero all
our computations. The first terms represent the classical contributions and
the terms in brackets represent one loop corrections. We note the right
hand side of this formula is a factor of two larger than its usual form in
the literature in order to provide agreement with our brane web calculations
later. This is equivalent to multiplying the lagrangian by a constant. Let us
calculate F(ϕ) for a pure SU(2) gauge theory with no matter flavours. The
Cartan subalgebra in this case is one dimensional so our Coulomb branch
is parameterised by one scalar ϕ, and the gauge group is broken to U(1).
In this case, quotienting by Weyl symmetry is equivalent to taking ϕ > 0.
Taking our generator T to be 1

2
diag(1,−1) we find h = 1

2
, dijk = 0. For the

one loop correction we note SU(2) has roots ±1 in our normalisation. Thus
we find the prepotential

F =
1

2

ϕ2

g2
+

1

3
ϕ3 (2.3)

From the prepotential we can calculate the metric on the moduli space

τ(ϕ)ijdϕ
idϕj from τ(ϕ)ij =

∂2F(ϕ)
∂ϕi∂ϕj . This determines the kinetic terms for the

vector multiplet scalars and the gauge couplings for the gauge fields. For
the pure SU(2) theory this is given by τ(ϕ) = 1

g2
+ 2ϕ. This gives us the

effective gauge coupling for the photon of the unbroken gauge U(1) at a point
on the Coulomb branch. At the origin of the coulomb branch this reduces to
the classical coupling. We note the prepotential does not account for non-
perturbative effects such as instantons.

A key feature of 5d theories is that there is an additional conserved current
given by j = Tr(∗F ∧ F ), often called a topological symmetry. Note this
expression gives us a vector uniquely in five dimensions. We get associated to
this current a global U(1)I symmetry whose charge is the instanton number
I. For a gauge group with multiple factors, we will get an instanton number
Ii for each factor.

2.2.1 BPS spectrum

The 5d theories have a BPS spectrum consisting of particles as well as mag-
netic monopole strings [13]. The masses of these states are determined by the
their charges under abelian U(1) symmetries, both global and gauged. The
relevant quantum numbers are the electric charges nei , i = 1 . . . r under the
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U(1)r residual gauge group on the coulomb branch, the instanton number I
giving the charge under the topological symmetry, as well as flavour charges
Qfi under the U(1) factors of any flavour symmetry groups. The mass of
BPS states is then given by [17]:

M = |neiϕ
i +

Ii
g2i

+Qfimi| (2.4)

where we sum over repeated indices. mi is the bare mass of the flavour fi. In
five dimensions we have magnetic monopole strings [13] whose tensions can
be calculated from the prepotential via the quantities ϕDi

= ∂F
∂ϕi . A monopole

string is characterised by r integer quantum numbers nmi
which we call the

magnetic fluxes and has tension

TM = nmi
ϕDi

(2.5)

For example, the SU(2) theory described above has one type of monopole
with tension TM = ϕ

g2
+ ϕ2

We have described the basic field theory results we will use. We will not
pursue the field theory approach any further and will instead make use of
the simpler and more elegant calculations using branes.
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Chapter 3

Introduction to Brane Webs

We now begin the application of particular brane configurations in Type IIB
string theory, called brane webs to the analysis of 5d theories. The applica-
tion of the brane constructions we will use here to 5d theories was pioneered
in [16, 17, 22]. We will find that that a 5d theory can be represented by
a 2d planar graph, called a brane web which represents a configuration of
branes in type IIB string theory. Supersymmetry is enforced by a condi-
tion on the slopes of the branes, which provides geometric constraints on
the construction of the brane webs. The gauge group matter content, gauge
couplings, hypermultiplet bare masses can all be read directly from the brane
web. Various transitions in the theory can also be understood from transi-
tions due to deformations on the brane web, characterised for instance by a
brane undergoing a 90 degree rotation suddenly as a parameter is varied. In
addition, ideas from string theory such as SL(2, Z) duality can be expoited
to discover relations between different field theories. We begin by introduc-
ing the basic notions from string theory that we will require. We will then
show how to construct a brane web for a given theory, and how to calculate
the prepotential and identify the BPS spectrum purely from features of the
web. We will attempt to give a somewhat self containted description of all
the string theory results we use however we will present without proof results
from string theory. For a thorough description of these results we direct the
reader to the many string theory texts available. A detailed understanding
will not be necessary however to grasp the basic ideas presented here
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3.1 Branes in Type IIB String Theory

The fundamental object we will need to construct our brane configurations
is the (p,q) 5-brane.

We recall in string theory a Dp-brane is a p+1 dimensional object which
fills out 1 time and p spatial dimensions in which the ends of open strings
are constrained to move. One can consider the worldvolume theory of a
Dp brane or collection of Dp branes, which is a p + 1 dimensional quantum
field theory describing the low energy dynamics of the string theory in the
presence of the branes. The D5 brane has a dual object, the Neveu-Schwarz
or NS5-brane. This is a solitonic object which is dual to the D5-brane under
the strong-weak duality of Type IIB. It is known that a collection of p NS5-
branes and q D5-branes can form a bound state and form a single object
known as (p,q) 5-brane. (p,q) 5-branes will serve as the building blocks of
the brane configurations we will use. We now describe the general setup.

In the 10 dimensional Minkowski spcae of Type IIB, we take the time
direction to be x0 and x1, . . . x9 to be the spatial directions. We let the (p,q)
5-branes be extended in dimensions x0, x1, x2, x3, x4, and let it occupy a 1-
dimensional subspace of the (x5, x6) plane. The degree of freedom in the
(x5, x6) plane is what allows us to construct the brane configuration . It
was shown in [17] that we may position (p,q) 5-branes in the (x5, x6) plane
subject to the following two rules:

• A (p,q) 5-brane forms a straight line in the (x5, x6) plane with slope q
p
.

• Multiple (p,q) 5-branes may end at a common vertex if the charge is
conserved:

∑
i pi =

∑
i qi = 0.

We will refer to the 2d cross section of a brane configuration in the (x5, x6) as
a brane web. Recall Type IIB string theory has 32 supersymmetries. The first
condition above ensures the brane configuration breaks exactly one quarter
of these supersymmmetries leaving 8 remaining supercharges, precisely the
right amount for a 5d N = 1 theory. We note according to this, a D5-brane
or (1,0) 5-brane forms a horizontal line in the (x5, x6), and an NS5-brane or
(0,1) 5-brane forms a vertical line. A 5d N = 1 theory can take the form
of the worldvolume theory of a collection of D5-branes with finite extent in
the (x5, x6) plane, ie a brane web with a collection of finite horizontal lines.
In this case, the fifth spatial direction is compact and can be considered
non-dynamical, analagously for instance to Kaluza-Klien models, giving a
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5d theory. In general, a brane web with n finite coincident D5-branes will
represent a theory with gauge group SU(n). If the D5-branes are separated
this corresponds to spontaneous breaking the gauge symmetry.

3.2 Example: SU(2)

We present the simplest non-trivial example of a brane web in 3.1, which
represents the Coulomb branch of a pure SU(2) theory with no matter. To
draw this brane web, we first place two finite D5-branes to give as an SU(2)
gauge group. To be finite, these D5-branes must end at a vertex which
conserves charge, which leads us to the configuration of 3.1. For instance
the top right vertex has an (0,1) and a (1,0) 5-brane going into the vertex,
and a (1,1) brane going out, or equivalently a (-1,-1) brane going into the
vertex, leading to charge conservation. This brane web represents the theory
in the Coulomb branch phase, where the gauge group is broken to U(1) ⊆
SU(2). The fact that the gauge group is broken can be understood from the
fact that the two D5-branes are separated. In string theory, one generally
expects the gauge symmetry is enhanced when multiple D-branes are made
to coincide. We suppose then that the symmetry breaking parameter, in this
case the vev ϕ which parameterises the one dimensional cartan subalgebra of
SU(2)(see previous section) should be proportional to the separation between
the two D5-branes. In fact, if one considers the lowest level excitation of
a fundamental string stretched between the two D5-branes, it represents a
massive vector boson with mass proportional to the string length which is
the D5-brane separation. The only such state that should exist in an SU(2)
theory broken to U(1) is the W-boson associated to the symmetry breaking.
We know from field theory the W-boson mass is proportional to the vev of
the symmetry breaking higgs field, which is precisely ϕ. We may rescale our
units/redefine the string tension so that both the mass and length are equal
to ϕ Thus we conclude: The distance between the finite D5-branes is equal to
ϕ. We have seen the first example of a quantity of the field theory that can
be read directly from the corresponding brane web.

Another state that can be realised on the brane web is the magnetic
monopole string. This is realised as D3-brane spanning the finite rectangular
face the brane web [17]. The tension of this state is proportional to the area of
the face. We know from our calculations of the previous section this monopole
tension should be ϕ

g2
+ϕ2. We deduced the vertical length of the NS5-branes
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ϕ

1
g2

+ ϕ

Figure 3.1: Brane web of pure SU(2). The vertical and horizontal squiggly
lines represent fundamental and D string exciations respectively, which cor-
respond to W boson and instanton states respectively.

is ϕ, thus by comparison with the field theory result we conclude the length of
the horizontal D5-branes is 1

g2
+ϕ. Thus we have determined how to construct

a brane web corresponding to any value of the gauge coupling and any value
of ϕ. A third state we may realise is due to a D1-brane or D string stretched
between the two NS5-branes. According to our normalisation its mass is
equal to its length which is 1

g2
+ ϕ. Recalling the BPS mass formula (2.4),

we see this is charged under the U(1)I and has instanton number I = 1. We
emphasise how the analysis of the non-perturbative instanton was no more
difficult in the brane web picture than the the analysis of the perturbative
W-boson. Using only the tools of field theory the non-perturbative features
would generally be much more difficult to analyse.

3.3 Deformations and symmetries of brane

webs

We now discuss the different kind of deformations we can perform on the
brane web and their relation to the field theory parameters. We define a de-
formation as any change to the brane web which does not alter the number
of external semi-infinite brane webs which we will refer to as the external
legs. We can identify two types of deformation. First, a local deformation
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is one which does not move any of the external legs, a global deformation is
one which moves the external legs. Examples of local and global deforma-
tions are seen in 3.2 and 3.3. Since the global deformations involve moving
the infinite external legs they require cost an infinite amount of energy and
are associated to an infinite mass. Consequently we associate them with
the changing of non-dynamical parameters such as gauge couplings and hy-
permultiplet masses. The local deformations only move finite branes, and
so are associated with a finite mass. It is natural then to associate these
deformations with the channging the vevs of the hypermultiplet scalars.

Figure 3.2: Local deformation corresponding to a change in ϕ1, the dashed
lines show the brane web after the deformation.

We can see in 3.2, the correct way to represent moving along the Coulomb
branch of the SU(2) theory is to expand or contract diagonally along the ex-
ternal legs, avoiding moving them. This agrees with the conclusions of the
previous section. By deforming according to 3.2 the W-boson and instanton
masses scale as they should with a change in ϕ. If one simply increased the
vertical length of the NS5-branes, the W-boson mass would increase and the
instanton mass would stay constant. Clearly from the mass formulae this
cannot be associated with a changing ϕ only. The theory has one indepen-
dent global deformation associated to the gauge coupling. This is shown in
3.3. This must correspond to changing the gauge coupling as it is the only
parameter in the field theory. This also agrees with our previous deduction
that the D5-brane length is 1

g2
+ ϕ. We see here concretely the gauge cou-

pling corresponds to a geometric parameter of the brane web, the difference
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Figure 3.3: Global deformation corresponding to a change in 1
g2
.

in length between the horizontal and vertical sides of the rectangular face.
We can see 1

g2
corresponds to the length of the D5-branes when ϕ = 0. Asso-

ciated with the gauge coupling is the special transition point where the gauge
coupling goes to infinity: 1

g2
= 0. This is associated with a transition on the

brane web where the rectangular face becomes square. This is an example of
a special transition in the parameter space of the field theory having a corre-
sponding transition in the brane web, the transition from rectangle to square.
It was found in [13] that at infinite 1

g2
= 0 there is an enhancement of the

global symmetry from the classical U(1)I to SU(2). We can see this reflected
in the brane web. Since the internal face is a square at infinte coupling, the
length of the fundamental and D string states - corresponding respectively
to the masses W boson and instanton - states become equal. Then the W
boson and instanton can form a doublet under the enhanced SU(2) global
symmetry.

For a general brane web we can count the number of local and global de-
formations without calculating all the details. It is straightforward to see a
local deformation can only arise from expanding or contracting a finite face.
Hence we conclude the number of local deformations is equal to the number
of faces in the brane web. Since these deformations are associated to scalar
vevs on the Coulomb branch, this in turn means the number of faces counts
the rank of the gauge group. The global deformations are associated with
moving external legs. Each external leg gives us one deformation however
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these will not all provide new brane webs. Firstly two deformations are as-
sociated with translating the entire brane web in the (x5, x6) plane. Further,
one we have positioned all but one of the external legs, the final postion is
determined by the rules for constructing brane webs, this means three of our
global deformations are always redundant. We note that associated to each
parameter in our field theory there is an abelian U(1) factor of the global
symmetry. For gauge couplings we have the topological U(1)I symmetry. For
the hypermultiplet masses we have flavour symmetries. Hence the number
of global deformations of the brane web is equal to the rank of the global
symmetry group of the corresponding field theory. We summarise all this as
follows:

• Rank(GaugeSymmetry) = #(Faces)

• Rank(GlobalSymmetry) = #(External Legs)− 3

Let us compare this to the SU(2) theory. We have four external legs
leading to one global deformation. This is associated to the guage coupling
paramater 1

g2
and the global symmetry U(1)I . There is one face correspond-

ing to the scalar vev ϕ and the U(1) gauge symmetry, in agreement with
our precious discussions. We note there is an additonal global symmtry of
the brane web: the SO(3) group associated with rotations of the remaining
string theory dimensions x7, x8, x9. This can naturally be identified with an-
other global symmetry from the field theory which we have so far omitted
to mention, namely the SU(2)R symmetry. One final symmetry of the brane
web we will discuss is the action of of S-duality, an element of the SL(2, Z)
symmetry of Type IIB string theory. This symmetry exchanges D5-branes
with NS5-branes and more generally exchanges a (p,q) 5-brane with a (q,-p)
5-brane [16]. Simply put, S-duality rotates the brane web by 90 degrees.
Since this is a fundamental symmetry of string theory, this tells us rotating
our brane web by 90 degrees must give us identical physics. This provides us
with a powerful duality between different field theories which we may exploit.

3.4 Product gauge groups and matter

We now discuss how to construct brane webs for theories with matter. To
understand this, we will first analyse a brane web for a product gauge group.
To do this we glue brane webs together along semi-infinite NS5-branes. In
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the following we analyse the simplest example of an SU(2)× SU(2) theory.
We will determine the full relation between the brane web and field theory
parameters and compute the prepotential, and then analyse the BPS spec-
trum. Then we will see how taking the limit of zero coupling corresponds to
adding matter to our theory.

3.4.1 An SU(2)× SU(2) theory

3.4 represents a brane web for an SU(2)× SU(2). This is simply two copies
of the SU(2) brane web glued along an infinite NS5-brane. 3.4 shows a point
on the Coulomb branch which now is two dimensional, parameterised by the
vevs of two scalar fields ϕ1, ϕ2 associated to the Cartan generators of each
SU(2) factor. The gauge group is broken to U(1) × U(1). In addition the
field theory has a massless hypermultiplet transforming in the bifundamental
representation of SU(2) × SU(2). Let us check this by examining how the
parameters on the brane web compare to the field theory. To start we can
find the ranks of the global and gauge symmetries using the discussions of
the previous section. There are two internal faces corresponding to a rank 2
gauge symmetry in agreement with our gauge group. There are six external
legs meaning we should have a rank 3 global symmetry with corresponding
parameters.

Comparing to the field theory we have two topological symmetries asso-
ciated with conserved currents from each SU(2) factor, the corresponding
parameters are the two gauge couplings. We then have the flavour symmetry
of the bifundmantal hypermultiplet with the corresponding parameter being
the bare mass. We could give the hypermultiplet a mass by moving apart the
central NS5-branes in the x5 direction however we will keep this mass zero
for our purposes. Thus the number of global and local deformations are in
one to one correspondence to the ranks of the global and gauge symmetries
of the field theory. Let us identify which deformations correspond to which
field theory parameters. As before we get W-boson states from fundamental
strings stretched between the two D5-branes on each face, allowing us to
identify these distances as corresponding the vevs ϕ1, ϕ2 as before. The local
deformations have a different form however for each vev. For the smaller vev
ϕ2, the local deformation is the same as before, given by expanding the face
along the diagonal lines. For the larger vev ϕ1, the deformation is different.
We cannot move the central external NS5-branes in a local deformation so
now the face expands along the diagonal external legs on the right hand side
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ϕ1

1
g21

+ ϕ1

2

ϕ2

1
g22

+ ϕ2 − ϕ1

2

Figure 3.4: Brane web for a SU(2) × SU(2) theory with a bifundamental
hypermultiplet.

Figure 3.5: The local deformation corresponding to a change in ϕ2
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Figure 3.6: Local deformation corrsesponding to a change in ϕ1.

and vertically along the central NS5-branes, and pushes the left face further
to the left. As a consequence of the different form of this deformation, the
length of the horizontoal D5-branes bounding the right hand face scales dif-
ferently with ϕ1 as the left hand side. With a little trigonometry we can see
a local deformation causing a change δ in ϕ1 cause the the horizontal length
of the right face to change by δ

2
and on the right by − δ

2
. The local defor-

mation causing a change δ in ϕ2 causes the horizontal length of the left face
to change by δ If as before we associate the D5-brane length at the origin of
the Coulomb branch (ϕ = 0) with the gauge coupling, D5-brane length is on
the right equal to 1

g21
+ ϕ1

2
, and on the left equal to 1

g22
+ ϕ2 − 1

2
ϕ1. We can

now identify the global deformations corresponding to the gauge couplings
as moving the left/right hand external legs away in the negative/positive
x5 direction. Having found the dimensions of the brane web in term of the
field theory quantities we can now calculate the monopole tensions and hence
reconstruct the prepotential. Recalling our school knowledge of calculating
the areas of 2d shapes, we can split the right hand face into a rectangle with
area ϕ1

g21
+ 1

2
ϕ2
1 and a trapezium with area 1

4
(ϕ2

1 − ϕ2
2) , the left hand side is

rectangle, thus we find the monopole tensions:
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Tm1 =
ϕ

g21
+

3

4
ϕ2
1 −

1

4
ϕ2
2

Tm2 =
ϕ2

g22
+ ϕ2 −

1

2
ϕ1ϕ2

(3.1)

Knowing from the field theory results these tensions are given by TMi
=

∂F
∂ϕi

we can integrate and add these expressions - taking care not to double
count the ϕ1ϕ2 term - to obtain the prepotential:

F =
ϕ2
1

2g21
+

ϕ2
2

2g22
+

1

4
ϕ3
1 +

1

3
ϕ3
2 −

1

4
ϕ1ϕ

2
2 (3.2)

Indeed we can compare this to the result given by the field theory expres-
sion for the prepotential (2.2). The terms given by the pure gauge part of
the expression are two copies of the pure SU(2) case (2.3) subbing in ϕ1, ϕ2

as we would expect. There is now a matter contribution due to the bifun-
damental hypermultiplet. The weights of this representation are (±1

2
,±1

2
),

(recall the weights of the funamental representation of SU(2) are ±1
2
), this

gives a contribution to the prepotential 1
3

(
|ϕ1

2
+ ϕ2

2
|3 + |ϕ1

2
− ϕ2

2
|3
)
. Doing

out the algebra for ϕ1 ≥ ϕ2 we find agreement with (3.2). The above calcu-
lations verify our field theory interpretation of the brane web in 3.4, and also
demonstrate a method of calculating the prepotential by simply computing
the areas of the internal faces of the brane web.

3.4.2 BPS spectrum: String webs and strings.

Let us now analyse the spectrum of BPS states. As for the pure SU(2) case
we can do this by considering fundamental strings and D strings stretched
across the faces, calculate their masses by finding their length, and discern
their charges under the abeleian gauge and global symmetries by comparing
the mass with the BPS formula (2.4). The relevant charges for our theory
are the electric charges (ne1 , ne2) and the instanton charges (I1, I2). The first
states are simple analogs of the pure SU(2) theory. We have two W-bosons
from stretching fundamental strings between the D5-branes bounding the
internal faces, these have lengths and masses ϕ1, ϕ2 corresponding to states
with charges (1, 0) and (0, 1) respectively. In addition we have two instanton
states from stretching D strings between the NS5-branes bounding the faces.
The lengths of these are 1

g21
+ϕ1− 1

2
ϕ2 and

1
g22
+ϕ2− 1

2
ϕ1 for the right and left
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faces respectively. This strings correspond to instanton states charged un-
der both SU(2) factors with respective electric charges (1,−1

2
) and (−1

2
, 1)

and respective instanton charges (1, 0) and (0, 1). There are also magnet-
ically charged states with charges (nm1 , nm2), where the nmi

are integers
and corresponding mass nm1Tm1 + nm2Tm2 where the monopole tensions are
given by (3.1). We can understand some basic features of the dynamics from
these computatoins. The W-bosons being charged separately under the gauge
groups should not interact with each other, however the instanton particles
carry both types of charges and so should be interacting. There are some
missing states however. This theory includes a hypermultiplet with electric
charges (±1

2
,±1

2
). Consequently, using the BPS formula (2.4) we should have

two states of mass 1
2
ϕ1± 1

2
ϕ2. To realise these states in the brane web we must

make use of new objects from string theory, ”string webs” and ”strips”. We
will simply state the properties of these tools here, for a thorough introduc-
tion see [16]. We have been using (p,q) 5-branes, bound states of D5-branes
and NS5-branes so far in our brane webs, however in string theory we also
have (p,q) strings, bound states of p fundmental strings and q D-strings. In
a brane web, a (p,q) string may end on a (p,q) 5-brane, and is constrained to
have a slope in the (x5, x6) plane of − q

p
. Simply put, a (p,q) string has slope

rotated 90 degrees from the slope of the corresponding (p,q) 5-brane. (p,q)
strings may also end at vertices of many (p,q) strings as long as they satisfy
charge conservation at the vertex, just like the 5-branes. These conditions
mean we may draw webs of strings within a brane web diagram according
to the same rules as 5-branes, with the extra feature that the strings must
end perpendicularly on branes. Importantly, the tension of a (p,q) string is
given by

√
p2 + q2Ts, where Ts is the string tension. In our normalisation

where we take the length of a string to equal the mass of the corresponding
quantum state, this means a (p,q) string of length l will have mass

√
p2 + q2l.

A string web represents a quantum state whose mass is found by adding up
the tensions of each segment, which in gemoetric terms is just the sum of all
the lengths weighted by the slope in the above way. This agrees with our
previous results. A fundamental string stretched between two D5-branes,
such as in 3.1, is a string web with one (1,0) string, which has vertical slope
and ends on (1,0) 5-branes, having horizontal slope. Similarly the horizontal
D-string leading to the instanton state is a string web with one (0,1) string.
A non-trivial example is shown in 3.7.

This consists of a (1,1) string that ends in the middle of the (1,1) 5-brane
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A

B

Figure 3.7: String web state indicated by dashed line consisting of a (1,1),
(1,0) and (0,1) string. A and B are the lengths of the (0,1) and (1,0) strings
respectively

connecting the two faces, splitting into a (1,0) string and a (0,1) string at
the vertex. Note (p,q) strings have the same sign ambiguity in their charges
as (p,q) 5-branes reflecting two choices of orientation. There is one free
parameter for this web which is the length l of the the (1,1) string, which
one may naively suppose to give a continuum of states. We can calculate the
lengths of the other segments of this string web (A,B in 3.7) in terms of l
using some basic trigonometry. They are:

A =
3

4
ϕ1 +

1

4
ϕ2 −

1√
2
l

B =
1

g21
+

3

4
ϕ1 −

1

4
ϕ2 −

1√
2
l

(3.3)

Now the masses of these segments are just equal to the lengths, but the (1,1)
string contributes

√
2l to the sum. Adding all these together we find a state

with mass 1
g21

+ 3
2
ϕ1, the l. The properties of (p,q) strings and Pythagoras’

theorem conspire to remove the l dependence of the mass, giving us a single
well-defined state. This is a new instanton state with electric charge

(
3
2
, 0
)
.

There is no corresponding state with instanton charge (0, 1). Note this state
will disappear from the spectrum when ϕ1 = ϕ2, as the diagonal (1,1) 5-
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brane disappears in this instance. There is clearly some form a transition
in the brane web when ϕ1 = ϕ2, we have identified this transition has a
concrete impact in the quantum theory leading to the destruction of a state.
Let us now introduce another object we can use to identify different states,
called a ”strip” [22]. A (p,q) strip is a string like instanton living inside a
(p,q) 5-brane. (p,q) strips can end at the vertices where the (p,q) 5-branes
they live inside end. Notably the tension of a (p,q) strip scales as Ts√

p2+q2

meaning a (p,q) strip of length l will give rise to a state of mass l√
p2+q2

in the

normalisation we use. (p,q) strips form a kind of vertex with (p,q) strings
known as a ”bend”. The general rule for a bend is given b (p,q) strips inside
a (p,q) 5-brane, and a pair of integers (s,t) satisfying pt−qs = 1, the b strips
can join with a b(s, t) − a(p, q) string. Consider for example a (1,1) strip.
taking (s, t) = (0, 1) we see it satisfies the condition and a single (1,1) strip
may form a bend with a (-1,0) string, which is just a fundamental string,
for a = b = 1 in the above formula. Let us use these facts to find the
hypermultiplet states in our brane web. Firstly, consider a (1,1) strip inside
the (1,1) 5-brane connecting the two faces, ending at each vertex where the
5-brane ends. This state has mass 1

2
ϕ1 − 1

2
ϕ2, with the

√
2 factor from the

length cancelling with the tension factor as before. This gives us our first
hypermultiplet state. The next state can be realised by considering this strip
again, however instead of ending at the vertex on the left hand face, it froms
a bend with a fundamental string which ends on the opposite D5-brane,
which is allowed as we found above. Adding up the tensions of the different
segments, noting the fundamental sting has length ϕ2, we find a state with
mass 1

2
ϕ1 +

1
2
ϕ2. Using strips and string webs, we have identified how the

hypermultiplet states arise naturally in the brane web, and also found a new
instanton type state. We see the full features of the field theory are encoded
in the various geometric features of the brane web.

3.4.3 The limit of zero coupling

Let us now consider a situation where we take one of the gauge couplings
to zero. Let us consider specifically the limit g1 → 0. What does this do to
the brane web? Recall the length of the horizontal D5-branes bounding the
right hand face is given by 1

g21
+ 1

2
ϕ1. As we tune g1 to zero, 1

g21
will go to

infinity. This pushes the edge of the right hand face off to infinity, and the
effective picture is a brane web with one face and two extra infinite external
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D5-branes on the right hand side of the web. This theory looks like an SU(2)
theory with two extra external legs, shown in 3.8. From the field theory point
of view, as we take the coupling to zero the mass of the monopole associated
to the right face will become infinitely massive and hence won’t be excited
in any physical process and can be ignored. The W-boson mass remains
finite at ϕ1 however at zero gauge coupling will no longer interact with the
rest of the spectrum. Since changing ϕ1 now moves external legs, it now
corresponds to a global deformation and should correspond to a field theory
parameter. It is a natural guess that ϕ1 now represents a bare mass. Indeed
the hypermultiplet states 1

2
ϕ1 ± 1

2
ϕ2 remain in the spectrum as we take the

coupling to zero. This looks just like the mass we would expect for matter
quarks with mass m = 1

2
ϕ1. Indeed the contribution to the prepotential

from the bifundamental hypermultiplet subbing in m for 1
2
ϕ1 and ϕ2 for ϕ

1
3

(
|m+ ϕ

2
|3 + |m− ϕ

2
|3
)
which one can check is precisely the contribution we

would get for two flavours in the fundamental representation of SU(2) with
bare mass m. The right gauge factor SU(2) has become a global flavour
symmetry group, with the vev of its scalar becoming the hypermultiplet bare
mass. We can visualise this easily using quivers. The theory with non-zero
gauge coupling has quiver:

2 2 (3.4)

Taking the limit of zero coupling we obtain the quiver:

2 2 (3.5)

Looking at the brane web, we have learned adding external D5-branes to a
brane web adds matter flavours to the field theory. The additional exter-
nal legs add more degrees of freedom the brane web which encdoe the bare
masses. In our case the bare mass is equal to half the distance between the
external D5-branes. The electric charge ne1 is now a flavour charge. Interest-
ingly the instanton state associated to a D string in the left hand face which
had ne1 = 1

2
at finite coupling is now charged under the flavour group with

mass 1
g22
+ ϕ2 − 1

2
m. The fact that instanton masses depend on the masses of

quarks in the theory is a non-trivial result from the field theory perspective
but completely obvious in the brane web picture. It is possible to take the
gauge coupling to zero in two different ways, corresponding to two different
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Figure 3.8: Caption

phases of the new SU(2) theory. The first which we have discussed involves
taking the coupling of the gauge factor with the larger vev to zero, corre-
sponding in the new theory to the phase 1

2
ϕ < m, depicted in 3.8. The other

option, depicted in 3.9 is to take the coupling to zero for the gauge factor
with the smaller vev, corresponding to the phase 1

2
ϕ > m. In this second

phase, the state corresponding to the string web in 3.7 survives and so these
two phases have different BPS spectra.

The existance of a phase transition at 1
2
ϕ = m is clear from a glance at the

brane web. The internal and external D5-branes coinciding as ϕ is tuned to
2m. We see this phase transition in the spectrum, the quark state with mass
1
2
ϕ−m becomes massless at this point. Massless states often indicate some

form of transition. In addition, due to the term |m−ϕ
2
|3 in the prepotential we

see the metric on the Coulomb branch τij becomes singular at this point(recall
τij is proportional to second derivatives of the prepotential). This kind of
transition is known as flop transition [17]. The key point of this section is
that an external D5-brane on a brane web represents a hypermultiplet. The
bare masses of the flavours are associated to the positions of the extenrnal
D5-branes. The precise expression for the masses needs to be worked out
from each brane web. We can determine this in various ways, for instance
by comparing are expressions for the internal phase areas with the monopole
tensions calculated from the prepotential, or by identifying the quark states
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Figure 3.9: Caption

from the flavours within the brane web. For instance, starting with we can
detrmine a string instanton inside the (1,1) 5-brane gives a state of mass
1
2
ϕ − 1

2
D, where D is the distance between the external D5-branes. We

could then guess that 1
2
D = m. It is interesting to explore the theory at

strong coupling. In [13] enhanced global symmetries at strong coupling were
found for SU(2) for up to 7 flavours. We have previously examined this
enhancement for no flavours for which U(1) is enhanced to SU(2). We saw
this could be understood as the W boson and instanton have the same mass
at infinite coupling and so can form a doublet under the enhanced SU(2). For
the theory with two flavours shown in 3.9 it was shown the global symmetry is
enhanced from SO(4)×U(1) to SU(3)×SU(2) at infinite coupling (for SU(2)
gauge theories the flavour symmetry is SO(2Nf ) for Nf flavours). Looking at
3.9 we can see we have three BPS states associated corresponding to the W
boson, the instanton arising from a D string stretched across the face and an
instanton due to a string web as in 3.7. There are also the two quark states.
Taking the coupling to infinity, the hypermultiplet bare masses to zero and
taking ϕ to zero we obtain 5 massless states, the correct amount to form a
fundamental representation of SU(3)×SU(2). It is a good guess that the two
hypermultiplet states should form a doublet under SU(2) and the W boson
and two instanton states a triplet under SU(3). We can see the additional
global symmetry emerges due to the requirement of additional diagonal (1,1)
and (1-1) branes in order to add the flavours which then allow an additional
string web state to be drawn, which in turn provides the enhancement of
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symmetry. Again a highly non-trivial filed theory phenomenon has a simple
geometric explanation.

3.5 SL(2, Z) duality

Type IIB string theory posseses a fundamental SL(2, Z) duality. This duality
must also be valid on our brane webs. Recall for an element A ∈ SL(2, Z), a

(p,q) brane transforms as

(
p
q

)
→ A

(
p
q

)
We see SL(2, Z) acts directly on

the brane web. Of particular interest to us will be the element S

(
0 −1
1 0

)
which rotates the brane web by 90 degrees. This duality is also known

as S duality. Crucially this symmetry swaps D5-branes and NS5-branes.
Recalling that the gauge symmetry of a theory is determined by the parallel
D5-branes which become coincident under some local deformation, we can
see that this symmetry transformation can change the gauge group of the
theory, giving us a duality between different theories. We note that since a
90 degree rotation does not change the number of internal faces, the rank
of the gauge group is preserved under this transformation. Let us see how
this acts on the theories we have considered. On the pure SU(2) theory 3.1,
rotating the brane web by 90 degrees does not change theory. We still have
two parallel D5-branes. S-duality here exchanges the dimensions 1

g2
+ ϕ and

ϕ. Interpreting the length of the internal face again as ϕ. S-duality here
corresponds to the transformation ϕ → 1

g2
+ϕ, 1

g2
→ − 1

g2
. In five dimensions

masses are real and may take on negative values. Since 1
g2

is essentially
the bare mass of the instanton particle, it being negative does not pose any
difficulty. Let us see what happens for the SU(2) × SU(2) theory 3.4. The
rotated theory is depicted in FIG. We can see now there are three parallel
D5-branes. This means we are now dealing with a theory with gauge group
SU(3). The dimensions of the brane web here have not changed, we are
simply looking at it from a different angle. However the mapping from the
brane web parameters to the field theory parameters will now be different

shown in 3.10. This theory again has two internal faces corresponding
to a rank 2 theory, however this now represents an SU(3) theory. The two
external D5-branes represent matter flavours. We conclude we have an SU(3)
theory with two flavours.
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Figure 3.10: S-dual of the SU(2)× SU(2) which is SU(3) with two flavours.
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Figure 3.11: Brane web for an SU(2)× SU(2) theory with two fundamental
hypermultiplets charged under each gauge group, as well as a a bifundamental
hypermultiplet charged under both. The mass of the bifundmental is set to
zero and the masses of each pair fundamentals kept equal.

3.6 Example: SU(2)×SU(2) with four flavours

As a final example let us consider the theory described by the quiver FIG.
This is like the SU(2) × SU(2) theory we considered previously now with
two flavour hypermultiplets charged under each gauge group. The brane
web for this theory is shown in 3.11, in the phase ϕ1 > ϕ2 and mi <

1
2
ϕi,

where ϕi m1,m2 are the vevs of the hypermultiplets charged under ϕ1 and ϕ2

respectively. This is two copies of the pure SU(2) theory with two flavours
glued together along a central NS5-brane. For simplicity in3.11 we have kept
the masses of the fundamental hypermultiplets charged under the same gauge
SU(2) equal and the mass of the bifundamental zero. This means the brane
web is symmetric under reflection through the horizontal axis. The masses
of these flavours is then given by half the distance between the external
D5-branes.

The local deformations associated to changing ϕ1 and ϕ2 are shown in
3.13 and 3.12. Now the local deformation associated to ϕ1 does not the
change the length of the D5-branes bounding the right hand face and this is
just given by 1

g21
. For the left hand face we can see from 3.12 its length is
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1
g22

+ 1
2
ϕ2 − 1

2
ϕ1.

1
g22

is simply given by the distance between the leftmost and

central external NS5-branes. We calculate the areas of the two faces giving
us the monopole tensions:

TM1 =
ϕ1

g21
+

1

2
ϕ2
1 −

1

4
ϕ2
2 −m2

1 (3.6)

TM2 =
ϕ2

g22
+

3

4
ϕ2
2 −

1

2
ϕ1ϕ2 −m2

2 (3.7)

We can then deduce the prepotential as before:

ϕ2
1

2g21
+

ϕ2
2

2g22
+

1

6
ϕ3
1 +

1

4
ϕ3
2 −

1

4
ϕ1ϕ

2
2 − ϕ1m

2
1 − ϕ2m

2
2 (3.8)

One can check we get the same answer using (2.2). As before the theory has
a number of different phases. The transitions can be see on the brane web
when D5-branes become parallel on the brane web, or equivalently in the
prepotential when terms like |1

2
ϕ1−m1| become zero. Each of these different

phases lead to a different prepotential and brane web. Naively there are 25

many phases associated as there are 5 of these transitions associated with
four bare masses and which of ϕ1, ϕ2 is greater. Some of these however will
of course be qualitatively the same up to relabelling indices. We will see the
importance of these phaes later. The BPS spectrum is like two copies of the
BPS spectrum for SU(2) with two flavours, however there is an additional
string web state available in the right hand face so long as ϕ1 ̸= ϕ2.

Upon rotating the brane web by 90 degrees, we see the S-dual theory is
an SU(3) gauge theory with 6 flavours.
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Figure 3.12: Caption

Figure 3.13: Caption
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Figure 3.14: S-dual of SU(2)× SU(2) with 4 flavours which is SU(3) with 6
flavours.
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Chapter 4

[p,q] 7-branes, Magnetic
Quivers, Tropical Geometry
and Higgs branches

We shall now introduce a new tool from string theory in order to aid our
study of supersymmetric field theories. We can enhance our brane webs with
the use of ”[p,q] 7-branes”. The application of these objects to brane webs
was introduced in [18], from which we will reproduce the basic facts. Again
we will not derive the results and simply provide the necessary tools to do
computations. In particular we will omit dicussion of monodromy and the
Hanany-Witten effect, a more thorough discussion is contained in [18]. Sim-
ilarly to (p,q) 5-branes and (p,q) strings, the ordinary D7-brane corresponds
to a [1,0] 7-brane. (p,q) 7-branes transfrom under SL(2, Z) identically to
(p,q) 5-branes and strings and may be introduced into brane webs without
breaking any additional supersymmetry, leaving us 8 supercharges. The key
fact is that a (p,q) 5-brane can end on a [p,q] 7-brane. The advantage of
this is we can now dispense with infinite external legs, letting external (p,q)
5-branes end on [p,q] 7-branes instead of extending to infinity. To see how
this works let us consider again the pure SU(2) theory now with 7-branes
depicted in 4.1. We will take the 7-branes to occupy dimensions x0 . . . x4 and
x7, . . . x9. They then occupy a point in the x5, x6 plane. In our brane webs
we will represent the position of a 7-brane by a circle, if necessary writing its
[p,q] charge adjacent, as in 4.1. In 4.1 we have two [1,1] and two [1,-1] branes
on which the external (1,1) and (1,-1) 5-branes end. The basic argument for
replacing external legs with 7-branes as laid out in [18], is that moving the
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[1,1]

[1,-1]

Figure 4.1: Caption

[p,q] 7-branes along the direction of the (p,q) 5-branes should not produce
any change in the field theory. Accepting this, we could imagine moving the
7-branes very far away from the brane web, so that the theory is indistin-
guishable from the theory with infinite external legs. Since the theories differ
by moving 7-branes, we conclude they are the same. This allows us to end
any external leg on a 7-brane. This is useful for a number of reasons, firstly
it removes difficulties that were conjectured to arise due to parallel external
legs [23]. Secondly, there is a rich theory of 7-brane symmetry algebras -
see for example [24, 25] - which can be used to directly calculate the global
symmetry of the theory, for example this is done in [18]. This is particularly
useful for strong coupling fixed points, where the global symmetry may be
enhanced [13]. This is not something that is readily computable without
7-branes. Finally, 7-branes enable us to understand how we may separate a
brane web into subwebs. As we will see, this allows to understand the form
of the Higgs branch of the theory. It is this last application we will focus on
in this chapter.

4.1 The Higgs Branch

We review here the basic features and results regarding the Higgs branch.
Recall the Higgs branch is the component to the moduli space where the vevs
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of the vector multiplet scalars are zero and the the vevs of matter hypermul-
tiplet scalars are non zero. Recall for the Coulomb branch of a theory with a
lagrangian description the vacuum equations restricted the vevs to lie in the
cartan subalgebra of the gauge group, and gauge invariance restricted the
vevs to lie in a single Weyl chamber. The geometric form of the Coulomb
branch is then just Rr/W , where W is the Weyl group of the gauge group
and r the rank. So far our analysis of brane webs has been for theories on
their Coulomb branch. For the Higgs branch, the story is different. Firstly
let us recall that each hypermultiplet has four real scalars, so the space of
allowed vevs for the flavour hypermultiplets is R4Nf , where Nf is the number
of flavour hypermultiplets. We must then reduce this space down by first
restricting to solutions of the vacauum equations - this ensures a configura-
tion of vevs describes a proper supersymmetric vacuum state. Secondly we
must factor out the gauge symmetry, ensuring we are not artificially distin-
guishing between vacua related by a gauge transformation. The first step
involves solving algebraic equations, the second stape involves a mathemat-
ical construction known as a Hyper-Kähler quotient [26], where one divides
out the gauge redundancy of the description. After this computation the
Higgs branch is generally found to be a Hyper-Kähler cone, or the union of
a number of cones, sometimes with interesting intersections [12]. An impor-
tant point is that the Higgs branch does not receive quantum corrections due
to a supersymmetric non-renormalisation theorem [27]. As a consequence it
is determined by an algebraic computation which does not depend on the
spacetime dimension, so long as we are dealing with 8 supercharges. There-
fore the Higgs branches for given gauge group and matter content is the same
for 3d N = 4, 4d N = 2 and 5d N = 1, all theories with 8 supercharges [11].
Although the Higgs branch does not generally receive quantum corrections
at finite coupling, in 5d theories at infinite coupling there is a phenomenon
where the Higgs branch can be altered, often generating an extra cone. This
can be attributed to the appearance of massless instantons [8] as the cou-
pling goes to infinity. Recall we saw briefly in chapter 1 the appearance of
enhanced global symmetry at infinite coupling, for SU(2) with zero and two
falvours, which could also be understood as being due to the instanton mass
going to zero. It was understood in [9] that the Higgs branch at infinite
coupling could be computed by calcuating the Coulomb branch of a different
theory in three dimensions, a problem that had previously been tackled [6].
In [10] a method was developed for finding the Higgs branch using (p,q) 5
and 7-brane webs. In this method which we will describe, the Higgs branch
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can be found by seeing how a brane web decomposes into subwebs and con-
sidering the intersection of these subwebs. In particular it is just as easy to
find the Higgs branch at infinite coupling as it is at finite coupling(indeed in
many cases it is easiest at infinite coupling). In what follows, we will provide
a pedagogical introduction to this method, and then apply this method to
SU(2)× SU(2) theory with four flavours.

4.2 Decomposing brane webs

We will describe how brane webs can be decomposed into subwebs. The
methods and results we will describe here were introduced in [10] and further
developed in [11]. Let us recall in our brane webs, a (p,q) 5-brane spans
dimensions x0, . . . x4, occupies a line in the (x5, x6) plane, and a point in
the remaining dimensions x7, x8, x9. The (p,q) 7-branes occupy a point in
the (x5, x6) plane and span the remaining 8 dimensions. Our brane webs so
far have just shown the (x5, x6) plane taking the branes to be at the same
point in (x7, x8, x9). If we have a brane web which can be decomposed into a
number of subwebs - where a subweb is a subset of the brane web which itself
forms a legitimate brane web, satisfying charge conservation at vertices and
having the correct slope - then we have the option to move these subwebs
apart from each other in (x7, x8, x9) space. In the same way as the brane
webs we have seen so far, which all descrived the Coulomb branch, moving
branes apart gives masses to open strings, which in field theory terms means
giving mass to gauge bosons by turning on scalar vevs. When we move apart
branes in the (x7, x8, x9) dimensions however, we describe the theory on the
Higgs branch rather than the Coulomb branch. The simplest example of
this decompoisition can be seen for the pure SU(2) theory 4.1. This theory
has no matter and so classically does not have a Higgs branch. At infinite
coupling however massless instantons generate a moduli space which acts
as a Higgs branch. We can see all this from the brane web. 4.2 shows the
origin of the Coulomb branch for the pure SU(2) theory at both finite and
infinte coupling. At finite coupling there is no way to decompose the brane
web. The presence of the two central D5-branes require the (1,1) and (1,-1)
branes emerging at either side in order to satisfy charge conservation. We
have drawn these D5-branes with a small separation to make the brane web
more readable, they should be thought of as coincident at the origin of the
Coulomb branch. At infinite coupling however there are no central D5-branes
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Figure 4.2: The origin of the Coulomb branch for pure SU(2). The left hand
brane web shows the origin at finite coupling, the right hand shows infinite
coupling. We have drawn the finite coupling web with a small separation
between the finite D5-branes to make the diagram clearer, at the origin these
branes become coincident.

at the origin of the Coulomb branch, and the brane web is composed of a (1,1)
and (1,-1) 5-brane which intersect. Each of these 5-branes taken individually
form valid brane webs, and so the brane web can be decomposed into two
subwebs each consisting of a single 5-brane. One can then move these two
5-branes apart in (x7, x8, x9).

Let us now examine the Higgs branch a more standard example of a the-
ory with matter which have seen before, namely SU(2) in two flavours. This
theory has two phases shown in 3.9 and 3.9 which correspond respectively to
the phases m < 1

2
ϕ and m > 1

2
ϕ where m is the bare mass of the hypermulti-

plets which we take to be equal. The origin of the Coulomb branch is shown
in 4.3 for both phases. Since at the origin ϕ is zero, if the hypermultiplet mass
is non-zero it will necessarily be the theory the large mass phase shown in 3.8
at the origin. For both hypermultiplet masses finite, shown on the left hand
side of 4.3, we can see the structure is essentially the same as the pure SU(2)
theory, with some extra 7-branes attached at the end which don’t affect the
decomposition of the web. This is what we would expect from field theory,
supersymmetric vacuum states must have zero energy [19] and so massive
scalars cannot have a non-zero vev. Thus the hypermultiplets may as well
not be there as far as the Higgs branch is concerned if they are massive,
which is reflected clearly in the brane web. On the right hand side where
the hypermultiplet masses are zero, the situation is different. We clearly
have an NS5-brane ending on two (0,1) 7-branes which can form a subweb.
One might ask if the brane web can be decomposed any further. Naively
one could imagine the rightmost D5-brane which is suspended between two
(1,0) 7-branes can also form its own brane web. However this decompistion
violates something known as the s-rule. This was first discussed in [16] for
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Figure 4.3: The origin of the Coulomb branch for SU(2) with two flavours.
The left hand brane web shows the theory for finite hypermultiplet masses,
the right hand brane web shows the theory for zero hypermultiplet masses.

Figure 4.4: Demonstration of the s-rule. Different colours signify a different
subweb which can be at different positions for (x7, x8, x9). The left hand
brane web violates the s-rule as the red subweb has two D5-branes ending
on the same NS5-brane and the same [1,0] 7-brane

brane configurations for 3d theories. In our case the s-rule states that we
cannot while preserving supersymmetry have two D5-branes which end on
the same NS5-brane and the same 7-brane in a single subweb [11]. We can
see an example of this in 4.4. In these figures we use a different colour for
each subweb. In the leftmost web, the red subweb has two D5-branes which
end on the same NS5-brane and the same 7-brane. Moving apart this web in
the (x7, x8, x9) directions would break supersymmetry. The right hand brane
web shows a valid decomposition. In this decomposition the two D5-branes
end on the same NS5-brane however they end on different 7-branes. One
of them ends on the first [1,0] brane and the other continues to end on the
rightmost [1,0] brane. Note we are depicting the 7-branes as circles however
they are in reality pointlike in the (x5, x6) plane.

Applying the s-rule, we find the brane web for SU(2) with two flavours
with zero bare mass, the brane web decpomposes into two subwebs at the
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Figure 4.5: The two maximal decompistions for SU(2) with two flavours. In
the right hand web we have separated the webs slightly so they are visible,
they should however be considered coincident as in the left hand side.

origin of the Coulomb branch. We can immediately calculate the dimension
of the Higgs branch from this. Firstly note since hypermultiplets contain
four real scalars, the degrees of freedom on the Higgs branch only come in
groups of four. Clearly each subweb adds a new degree of freedom however
there is one degree of freedom assoicated with translating the entire web in
(x7, x8, x9) space. So then if n is the number of subwebs, the dimension is
given by 4(n − 1) [11]. We also call n − 1 the quaternionic dimension of
the Higgs branch. We see the quaternionic dimension of the Higgs branch
of SU(2) with two massless hypermultiplets is 1. The right hand side of 4.4
shows the maximal decomposition at finite coupling. Let us see if any thing
happens at infinte coupling. In 4.4 this correspond to moving the vertical
blue NS5-brane to the point where the the (1,1) and (1,-1) 5-branes on the
left hand side intersect, shown on the left hand side of 4.5. One can see this
by taking the rectangular part of the face in 3.9 to the left of the external
NS5-brane to be a square, and then shrinking the face and the hypermultiplet
mass to zero.

At infinite coupling, the finite coupling decompisition is still perfectly
valid, however we gain another option, showon on the right hand side of
4.5. We can split the vertical NS5-brane into two separate branes, the top
half forms a vertex with the (1,1) 5-brane coming form the bottom left, the
bottom half forms a vertex with the (1,-1) 5-brane coming from the top
left. These two vertices satsify charge conservation and may both end on the
[1,0] 7-brane. Since the two D5-branes are now part of different subwebs,
the s-rule does not apply. The right most D5-brane shown in green can
now also separate into its own subweb. We have found at infinite coupling
two distinct decompositions are possible. One with quaternionic dimension
1 and the other with quaternionic dimension 2. Since brane web admits
two inequivalent decompositions we interpret this as corresponding to two
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different components of the Higgs branch.

4.3 Tropical Geometry, Magnetic Quivers and

the Higgs Branch

With the techniques detailed so far we have been able find the number of
components of the Higgs branch and the dimension of these components.
There is more to the structure of the Higgs branch than this. The differ-
ent components are geometric objects called symplectic singularities which
have their natural mathematical setting in algebraic geometry [5]. It turns
out the form of these spaces can be found by considering how the different
subwebs in the decomposition intersect. The process for computing these
spaces involves looking at how the different subwebs in a given decomposi-
tion intersect. From these intersections we can compute a quiver diagram
known as a magnetic quiver. This is a quiver diagram like those discussed
previously. The component of the Higgs branch associated to that decompo-
sition is then completely specified by the magnetic quiver, except possibly for
certain nilpotent elements [11] which we will not discuss here. A magnetic
quiver is just a quiver diagram and defines a gauge theory in any dimension.
The fundamental result first introudced in [10] is that if we considerr the
3d N = 4 gauge theory specified by the magnetic quiver, and find the cor-
responding Coulomb branch, this gives us the Higgs branch of the original
5d theory. Finding the Coulomb branch of a 3d N = 4 is a straightfor-
ward algorithmic procedure which was introduced in [6]. In this work the
Coulomb branch is found by enumerating the different monopole operators
in the theory. Using a formula known as the monopole formula, one can
compute a generating function known as the Hilbert series [28]. The Hilbert
series counts gauge invariant operators on the moduli space graded by their
charges under abelian global symmetries. If we know the Hilbert series we
know all the gauge invariant operators, since only gauge invariant objects
have physical meaning this constitutes a full description of the moduli space.

Let us now describe how to obtain the magnetic quiver from the brane webs.
The idea is that each subweb froms a circular gauge node, the number of
links between each pair of nodes is determined by an integer called an inter-
section number, also known as the stable intersection. Let us consider two
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subwebs A and B. The contributions to the intersection number IAB due to
intersection are as follows. For each intersection Iibetween a (p,q) 5-brane
from subweb A and a (s,t) 5-brane from subweb B, we get a contribution
Ii = |pt − qs|. The contribution due to intersetions is then

∑
i Ii, where

the sum is over the mutual intersections of 5-branes belonging to the two
subwebs. Let X denote the number of times a (p,q) 5-brane from subweb
A and a (p,q) 5-brane from subweb B end on the same [p,q] 7-brane from
the opposite side, and Y denote the number of times a (p,q) 5-brane from
subweb A and a (p,q) 5-brane from subweb B end on the same [p,q] 7-brane
from the same side. Then the full intersection number between A and B is

IAB =
∑
i

Ii +X − Y (4.1)

In the magnetic quiver, the number of links between node A and node B is
given by IAB. Let us compute this for the brane webs we have seen so far. For
the SU(2) theory at infinite coupling 4.5 we have two subwebs comprising a
(1,1) and (1,-1) 5-brane respectively. They intersect once with intersection
number 2. The corresponding magnetic quiver is:

1 1 (4.2)

Now consider SU(2) with two flavours at finite coupling shown in the right
hand side of 4.4. There are two subwebs and two intersections between
them, both between (1,0) and (0,1) 5-branes. These interesections both have
intersection number 1 and so the total intersection is 2, giving the same
quiver as SU(2) at infinite coupling. At infite coupling we have the previous
quiver associated to one decomposition and a second one shown on the right
hand side of 4.5. This has three subwebs. The blue and red subwebs on
the left have two intersections with intersection number 1 as drawn, however
they also end on the same 7-brane once, leading to an overall intersection
number of 1. The both end on the same 7-brane on the opposite side as the
green subweb on the right which giving them both an intersection number of
1 with the green subweb. This leads to a magnetic quiver:

1 1

1

(4.3)
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If we have n indentical subwebs which are coincident on the brane web, we
treat them as one node of rank n. To find the intersection number between
nodes on the magnetic quiver, we only consider the intersection of one of the
identical subewebs. For example consider the brane web on the left hand
side of 4.6.

Figure 4.6: Examples of brane webs with identical coincident subwebs.

This decomposes into three subwebs, two of which are identical and co-
incident(recall we leave a small separation between branes in our diagrams
so they can be distinguished, at the origin of the Coulomb branch there is
no separation). The two red D5-branes contribute one node in the magnetic
quiver of rank 2. To find the intersection with the blue NS5-brane we con-
sider how one of the red D5-branes intersects with the blue subweb, which
has intersection number 1. The corresponding magnetic quiver is:

2 1 (4.4)

For the brane web on the right hand side of 4.6 we have four subwebs
which split into two groups of identical subwebs contributing two nodes of
rank two. To find the intersection we consider only one subweb from each
group of identical subwebs. So the intersection number is given by the in-
tersection of one D5-brane and one NS5-brane as previously yielding the
magnetic quiver:

2 2 (4.5)

4.4 Higgs branch of SU(2)×SU(2) with 4 flavours

In this section we will compute the magnetic quivers for the Higgs branch of
the theory given by the quiver 2.2, the brane web for this theory is shown
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in 3.11. This an SU(2) × SU(2) theory with 4 flavours. We will study how
the Higgs branch of this theory changes in different parts of the parame-
ter space. We saw previously 4.3 the origin of the Coulomb branch looks
different depepnding on the the values of the gauge coupling and the hyper-
multiplet masses. We will keep the bifundamental hypermultiplet at zero
mass throughout. The first parameters to consider are the four hypermul-
tiplet bare masses. As we saw previously for the SU(2) theory with two
flavours, there are only two cases for the bare mass relevant to the form of
the Higgs branch, zero or non-zero. There is no distinction on the Higgs
branch as seen from the brane web between a hypermultiplet having non-
zero or infinite mass or indeed being removed from the theory. We saw this
in 4.3. To find the structure of the Higgs branch for zero mass we can draw
the brane web for the case 1

2
ϕ = m and then go to the origin of the Coulomb

branch by contracting the internal faces to zero area. This usually corre-
sponds to moving the external D5-branes so they coincide horizontally with
the internal finite D5-branes, such as in 4.7.

To find the Higgs branch for a finite bare mass we consider the brane
web in the phase 1

2
ϕ < m and go to the origin of the Coulomb branch

in that phase. In this case, one external NS5-brane and one external D5-
brane effectively gets replaced by an external (1,1) or (1,-1) 5-brane, see for
example 4.3. Once we are at the origin of the Higgs branch for a given
set of mass parameters, we can then tune the coupling. We will consider
two cases of the gauge coupling, finite and infinite. Having deterimined
the strucutre of the origin of the Coulomb branch, a gauge coupling can
be tuned to infinity by moving NS5-branes together. We saw this in 4.5.
The left hand side shows the brane web at finite coupling, in the right hand
side we have moved the external NS5-brane so that it coincides with the the
internal NS5-brane which correspond to infinite coupling. At this point the
Higgs branch changes, an additional decomposition is possible representing
the generation of an additional component in the Higgs branch at infinite
coupling. We will see many examples of this in the following calculations.
Naively there are 4 mass parameters and two gauge couplings which have
two meaningful values: zero or non-zero for the masses, finite or infinite
for the gauge couplings. This gives 26 possible different Coulomb branch
origins and corresponding Higgs branches. However unsurprisingly many of
these phases are equivalent up to relabelling of indices (in other words up
to 90 degree or 180 degree rotations of the brane web) and so in reality the
number of phases is less. In what follows we will organise the phases by first
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stating which masses are zero or non-zero, and then computing the Higgs
branch for each possible combination of finite/infinite couplings. In some
cases there will three different Higgs branch phases for a given set of mass
parameters, corresponding to all couplings finite, one infinite one finite, and
all couplings infinite. In other cases there will be four different phases when
it matters which gauge coupling is finite. For example, in the case where one
hypermultiplet is massive and one coupling is infinite, we get a different Higgs
branch depending on which coupling is infinite corresponding to whether or
not the massive hypermultiplet is charged under the gauge group factor with
infinite coupling. This is all made manifestly clear in the brane web picture.
For simplicity in what follows, we will only indicate the rank of a gauge node
if it is greater than 1, a gauge node with no indicated rank should be read
as a rank 1 node.

4.4.1 Case 1: All masses zero

The brane web for the theory in the phase 1
2
ϕ = m at a point on the Coulomb

branch is shown in 4.7. Moving to the origin of the Coulomb branch we ob-
tain the brane web and associated magnetic quiver depicted in 4.8. As we
can see there are 7 subwebs giving a Higgs branch of quaternionic dimension
6. The red subwebs are identical giving a rode of rank 2, and the rest inter-
sect once with the red subweb giving the quiver on the right hand side of 4.8.
In this and what follows, we have coloured the nodes in the magnetic quiver
the same colour as the subweb they correspond to. For simplicity we use the
same colour for distinct subwebs when it is clear they are separte subwebs,
for instance the blue subwebs in 4.8 are all separate.

The next case is to take one of the gauge couplings to infinity depicted in 4.9.
It is clear it does not matter which coupling is taken to infinity in this case.
Here we have 9 subwebs giving a quaternionic dimension of 8. The third case
corresponding to taking both couplings to infinity is obtained by moving the
final NS5-brane to coincide with the others as depicted in 4.10. The corre-
sponding Higgs branch has quaternionic dimension 12. We can clearly see in
the previous examples the enhancement of the Higgs branch as each coupling
is tuned to infinity, with the dimension increasing from 6 to 9 and then to
12 as the couplings are tuned to infinity.
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Figure 4.7: The phase 1
2
ϕi = mi on the Coulomb branch.

2

Figure 4.8: The left hand side shows the brane web at the origin of the
Coulomb branch for all masse zero and all couplings finite, the different
subwebs are coloured differently. We have used the same colours for subwebs
which are clearly distinct. The right hand side shows the corresponding
magnetic quiver. The nodes are coloured according to their correpsonding
subwebs. Nodes without an indicated rank are of rank 1.

2 2

Figure 4.9: All masses zero, one coupling infinite.
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2 3 2

2

Figure 4.10: All masses zero, all couplings infinite.

4.4.2 Case 2: One mass finite

Now we examine the case where one hypermultiplet is given a finite mass.
The relevant phase is depicted on the Coulomb branch on in 4.11, where
1
2
ϕ1 < m1. The origin of the Coulomb branch and the magnetic quiver with

both couplings finite is shown 4.12. In this case there are four phases and four
corresponding magnetic quivers. The first phase is shown in 4.12 and has
quaternionic dimension 4. There are two cases corresponding to one infinite
coupling due to the single hypermultiplet breaking the symmetry of the brane
web. The first case depicted in 4.13 corresponds to taking the coupling to
infinity for the gauge group factor with no massive hypermultiplets, which
has dimension 5. The second case is depicted in 4.14 which corresponds to
taking the other coupling to inifnity, which also has dimension 5 but has a
different quiver. The final case for both couplings infinite is shown in 4.15
which has dimension 8.

4.4.3 Case 3: Two massive hypermultiplets charged
under the same gauge group

The case is when there are two massive hypermultiplets charged under the
same gauge group. This is characterised by having two external diagnonal
branes on the same side of the brane web. Like Case 2 this gives an asym-
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Figure 4.11: Coulomb branch for one mass finite.

Figure 4.12: One mass finite, all couplings finite

2

Figure 4.13: One mass finite, 1 coupling finite.

metric brane web yielding four phases in total. The finite coupling phase
is depicted in 4.16. In this case the s-rule is essential for determining the
decomposition since we have two D5-branes ending on the same NS5-brane.
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Figure 4.14: 1 mass finite, 1 coupling finite.

2 2

Figure 4.15: One mass finite, all couplings infinite.

We also see our first example of nodes with an intersection number greater
than 1. This phase has dimension 2. The first with one infinite coupling is
shown in 4.17 which has dimension 3. For the other with one infinite coupling
we see our first example of a Higgs branch with mutiple components. We
obtain this phase by moving the central NS5-brane to the short NS5-brane
on the right where the the two diagonal branes intersect. At this point the
decomposition in 4.16 is still perfectly valid however we can now perform a
new decomposition shown in 4.18. For this decomposition we split the NS5-
brane in two and use it to form new vertices which allows us to separate the
original red subweb in two. The leftmost brane (coloured green) may now
form its own subweb as the s-rule no longer applies. This new component has
dimension 3. The resulting Higgs branch for these parameters then consists
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of two components specified by the magnetic quivers seen in 4.16 and 4.18.
These two components have a trivial intersection as there is no non-maximal
decompositon from which they can both be obtained. The final phase with
two infinite couplings is depicted in 4.19 which has dimension 5.

Figure 4.16: 2 masses finite on the same side, all couplings finite.

2

Figure 4.17: 2 masses finite on the same side, one coupling finite.

4.4.4 Case 4: Two masses finite for different gauge
groups

In this case we have two massive hypermultiplets but charged under opposite
sides. The corresponding brane web is symmetric under reflection and so we
only have one phase with one coupling infinite. The finite coupling phase is
depicted in 4.20, and with one coupling infinite in 4.21 having dimensions
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Figure 4.18: 2 masses finite on the same side, one coupling finite.

Figure 4.19: 2 masses finite on the same side, all couplings infinite.

2 and 3 respectively. The phase with both couplings infinite again has two
components. The first is shown in 4.22 and the second in 4.23 which have
dimensions 4 and 5 respectively. Again these have no intersection.

Figure 4.20: 2 masses finite on opposite sides, all couplings finite.
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Figure 4.21: 2 masses finite on opposite sides, one coupling finite.

Figure 4.22: 2 masses finite on opposite sides, all couplings infinite, first
component.

4.4.5 Case 5: 3 masses finite

In this case there are 3 finite masses. This brane web is asymmetric leading to
two phases with one coupling infinite. The finite coupling phase is depicted in
4.24 which has dimension 1. The first case of one coupling finite corresponds
to moving the central NS5-brane so that it coincides with the finite NS5-brane
on the left hand side. There are two decompositions, the finite coupling one
shown in 4.24 and a new one showin in 4.25. This is the same decomposition
we saw in Case 3. This phase then has two components of dimension 1. The
other phase with one infinite coupling is depicted in 4.26 which has dimension
2. The final case is for both couplings infinite. There are two components,
the decomposition from 4.25 and a new decomposition 4.27 with dimension
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2

Figure 4.23: 2 masses finite on opposite sides, all couplings infinite, second
component.

2. Note the s-rule prevents any further decomposition in 4.25 as the second
coupling is brought to infinity. The decomposition in 4.26 is still possible in
this case however it is not maximal. the red subweb in 4.26 splits into two
subwebs in 4.27.

Figure 4.24: 3 masses finite, all couplings finite.
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Figure 4.25: 3 masses finite, one coupling finite.

Figure 4.26: 3 masses finite, one coupling finite.

Figure 4.27: 3 masses finite, all couplings infinite.
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4.4.6 Case 6: All masses finite

In this case all the hypermultiplets are massive. This will give the Higgs
branch of the SU(2) × SU(2) theory with a bifundamental charged under
both gauge group factors we have seen previosly. There are 3 phases. The
finite coupling phase is shown in 4.28. With one coupling infinite we may
decompose the brane web as in 4.19 however this produces a single web
corresponding to dimension zero and so does not give us a new Higgs branch.
The phase for both couplings infinite is depicted in 4.29 which has dimension
2.

Figure 4.28: All masses finite, all couplings finite.

Figure 4.29: All masses finite, all couplings infinite.
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4.4.7 Summary

We have seen a single theory has a rich variety of phases in its Higgs branch
for different parameter values. The enhancement of the Higgs branch at in-
finite coupling is clear from the brane web. The dimension always increases
due to additional massless instanton states and sometimes additional com-
ponents are generated.

4.5 Global Symmetry

It is straightforward to use the monopole formula [6] to calculate the Hilbert
series and thus determine the structure of the Higgs branch from the magnetic
quiver. This is calculationally intensive however and we can use a simpler
method [29, 30] This method, referred to as the Balance Global Symmetry
in [30] allows us to find the global symmetry of the moduli space associated
to a magnetic quiver. For this we need to introduce the concept of balance.
In a magnetic quiver, we define the excess ei of a node to be

ei = fi − 2ri (4.6)

Where fi is the number of flavours this node sees and ri is the rank of the
node. The number of flavours a node sees is given by

∑
adjacent rili where

the sum is over all adjacent nodes, ri is the rank of an adjacent node and li
the number of links. For instance an adjacent node of rank 2 linked by one
line contributes 2 to the excess, an adjacent node of rank 2 linked by 2 lines
contributes 4. A quiver is said to be balanced if its excess is zero. There is also
a distinction between framed quivers and unframed quivers. An unframed
quiver is one which contains no flavour nodes(no square nodes). A framed
quiver is one that contains flavour nodes, for example 2.2. All the magnetic
quivers we obtain will be unframed so will state the rules in this case.

• Step 1: Find the excess of each node and identify all unbalanced nodes.

• Step 2: Ungauge one unbalanced node of rank 1, this means replace
a circular node with a square node. If there are no nodes of rank 1
ungauge a higher rank node.

• Step 3: Considering the remaining balanced gauge nodes, identify the
set of connected balanced quivers gi and the number k of unbalanced
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gauge nodes. If we ungauged a node of rank greater than 1, then we
subtract 1 from k.

• Step 4: The global symmetry is then given by
∏

i Gi×U(1)k, where Gi

is the group obtained from the quiver gi, interpreting it as the Dynkin
diagram of a lie algebra.

For example let us compute the global symmetry of Higgs branch at
infinite coupling with all flavours massless, shown in 4.10. The quiver is:

2 3 2

2

(4.7)

All nodes are balanced in this quiver except the node of rank 2, indicated
with a red line in (4.7). Following the method, we ungauge this node. The
remaining connected quivers are the bottom line link of 5 quivers, which is
the same is the A5 Dynkin diagram, and the two isolated green nodes at the
top, which is the A1 Dynkin diagram. We recall that An gives the lie algebra
of the group SU(n + 1). In conclusion we have a global symmetry group
SU(6) × SU(2) × SU(2). The method we have used above does not always
work [30], for certainty it is necessary to compute the Hilbert series. We can
however check this result against what we know from the brane web. The
brane web has 10 external legs meaning the global symmetry has rank 7. In-
deed the rank of SU(6)×SU(2)2 is 7. Let us compute the global symmtetry
for the other phases of the Higgs branch with massless flavours. With one
coupling infinite 4.9 we get SU(4) × SU(2)3 which has rank 6, and for no
couplings infinite 4.8 we get SU(2)5 which has rank 5. What is happening
here? The number of external legs is not changing and so the rank of the
global symmetry should be 7 regardless of coupling. This is precisely the phe-
nomenon we discussed previously of massless instantons enhancing the Higgs
branch. Recall the topological U(1)Ii symmetry associated to the instanton
charges Ii and instanton masses 1

g2i
. Each SU(2) factor in our gauge group
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contributes an instanon charge to the global symmetry. When we take a cou-
pling to infinity, the instantons become massless and form part of the Higgs
branch, and the rank from the U(1)I associated to its topological symmetry
becomes manifest in the symmetry of the Higgs branch. The topological
symmetry is still present on the Higgs branch, however the method used
above does not detect it. The correct global symmetry should include the
U(1)I factors that do not contribute to symmetry enhancement. For instance
the full global symmetries for one and no couplings infinite contain respec-
tively an additional 1 and 2 U(1) factors in their global symmetry. In 4.1 we
display a summary of the calculations of the SU(2) × SU(2) theory above,
including the global symmetry calculated using the above method. Exam-
ining 4.1 we see the same phenomenon as above when we give the flavours
a finite bare mass. The flavours are no longer massless and so do not form
part of the Higgs branch. The calculated global symmetries obey the for-
mula rank = #infinitecouplings+#masslessflavours. Since we kept the
bifundamental hypermultiplet massless throughout the Higgs branch is never
trivial. Again the real global symmetry must have rank 7. We can conjec-
ture the groups calculated using the balance global symmetry method can
be completed to the correct groups by adding U(1) factors to raise the rank
to 7.
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# Massive # Infinite # Comp- Quaternionic Global
Flavours Couplings onents Dimension Symmetry

0 0 1 6 SU(2)5

0 1 1 8 SU(4)× SU(2)3

0 2 1 12 SU(6)× SU(2)2

1 0 1 4 SU(2)3 × U(1)
1 1 1 6 SU(4)× SU(2)× U(1)
1 1 1 5 SU(3)× SU(2)2 × U(1)
1 2 1 8 SU(5)× SU(2)× U(1)

2 (opposite sides) 0 1 2 SU(2)2

2 ”” 1 1 4 SU(4)
2 ”” 1 2 3,2 SU(2)2 × U(1), SU(2)2

2 ”” 2 2 4,5 SU(4), SU(4)× SU(2)× U(1)
2 ”” (same side) 0 1 2 SU(2)× U(1)

2 ”” 1 1 3 SU(3)× U(1)2

2 ”” 2 2 4,5 SU(3)× U(1)2, SU(4)× U(1)
3 0 1 1 SU(2)
3 1 2 1,1 SU(2) SU(2)
3 1 1 2 SU(3)
3 2 2 1,2 SU(2), SU(3)× U(1)
4 0 1 1 SU(2)
4 1 2 0, 1 SU(2)
4 2 1 2 SU(2)× U(1)

Table 4.1: The structure of the Higgs branch for different parameters for
the SU(2) × SU(2) quiver theory depicted in 2.2. Multiple entries in the
dimension and global symmetry columns refer respectively to the different
components. The global symmetry listed is the global symmetry calculated
from the balance global symmetry method and in most cases does not reflect
the full global symmetry.
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Chapter 5

Magnetic quivers for some
families of quivers

We present here some calculations of the Higgs branch at infinite coupling
for some families of quivers, using the methods we have developed. We see it
generally requires little extra effort to compute magnetic quivers for an entire
series of quivers once we have computed the first one or two cases. There is a
nice correspondence between the series of quivers defining 5d supersymmetric
theories and the series of magnetic quivers giving the Higgs branch at infinite
coupling.

5.1 A series

Let us consider the series of quivers corresponding to the A-series of Dynking
diagrams:

. . . . . .

2 2 2 2

n

Figure 5.1: The A series of quivers with rank 2 nodes.

Included in this are the pure SU(2) theory A1 and the SU(2) × SU(2)
theory with one bifundamental hypermultiplet A2. The theory given by
the quiver An has gauge group SU(2)n with n − 1 hypermultiplets in the
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bifundmental representation of each pair of SU(2) factors. If we consider the
brane web corresponding to this theory it has 4 external diagnonal (1,1)/(1,-
1) branes and 2(n−1) external vertical NS5-branes. Under S-duality, rotating
the brane web 90 degrees the NS5-branes become D5-branes and we get an
SU(n+1) gauge theory with 2(n−1) flavours. Hence by S-duality, this series
of quivers equivalently describes the theories:

n+ 1

2(n− 1)

(5.1)

In other words the A series describes SQCD theories where Nf = 2(Nc − 2).
The brane webs at infinite coupling for the first 3 quivers in the seires

are:

Figure 5.2

These have corresponding magnetic quivers:
Using the balance global symmetry method we can compute these have

global symmetries: SU(2), SU(2)× U(1) and SU(4)× U(1) respectively.

2

Figure 5.3: Caption
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It is easy to infer the general magnetic quiver for An:

. . . . . .

1 n− 2n− 1n− 2 1 (5.2)

We can try to calculate the global symmetry using the balance global
symmetry method. This gives SU(2(n− 1))× U(1). This has rank 2n− 2).
Comparing with the brane web we have 2(n+1) 7-branes for An which gives
a rank of 2n− 1. We are missing one rank from our computation indicating
it has not worked. It is common for the method to not work for quivers with
more than one link between two nodes, which are called non-simply laced
quivers. A guess for the correct symmetry would be SU(2(n − 1)) × U(1)2.
We would need to calculate the Hilbert series using the monopole formula to
verify this.

5.2 Framed A series

Next let us consider what we will call the Framed A series which is the A
series but with flavour nodes attached to either end:

. . . . . .

2 2 2 2

n

2 2

Figure 5.4: The Framed A series of quivers with rank 2 nodes.

AF
n describes a theory with gauge group SU(2)n with n−1 bifundamental

hypermultiplets as well as two fundamental hypermultiplets charged under
the first and last gauge group. The AF

n brane web contains 4 external D5-
branes and 2(n + 1) external NS5-branes. Rotating by 90 degrees we then
get a theory with gauge group SU(n + 1) with 2(n + 1) flavours. Hence we
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find the framed A series is S-dual to the series:

n+ 1

2(n+ 1)

(5.3)

In other words the framed A series describes SQCD theories with Nf = 2Nc.
We have examined the first quiver AF

2 extensively in the previous chapter.
Its infinite coupling Higgs branch is shown in 4.10. The higher members of
the series generalise in a simple way. Let us examine AF

3 to get an intuition.
Its quiver is given by:

(5.4)

Where all nodes have rank 2. The corresponding brane web is:

(5.5)
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This gives a magnetic quiver:

1 2 3 4 3 2 1

2

1 1

(5.6)

It is straightforward to infer the magnetic quiver for AF
n . Like the A series

the vertical branes will continue to stack, while the horizontal branes remain
unchanged. The general quiver for AF

n is:

. . . . . .

1 n n+ 1 n 1

2

1 1

(5.7)

Applying the balance global symmetry method to calculate the global
symmetry gives SU(2(n+ 1))× SU(2)2. This has rank 2n+ 3 which agrees
with the rank of the global symmetry as calculated from the brane web.
There are 2(n+ 3) 7-branes for AF

n (corresponding to 2(n+ 3) external legs.
This indicates we could trust this computation. Again one would need to
compute the Hilbert series using the monopole formula to verify this.
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Chapter 6

Conclusion and Outlook

In this work, we have seen the power of brane webs in understanding 5d
N = 1 field theories. We have seen how rather complicated field theory calcu-
lations can be replaced by drawing simple pictures, and calculating distances
and areas. Phase transitions in the field theory have elegant and simple real-
isations on the brane web. S-duality has a remarkably simple form for brane
webs, if we tilt our head to the side we can immediately discern the S-dual
theory. We also saw how computations for infinite coupling phases, which
do not have Lagrangian, descriptions present no extra difficulty using brane
webs, and indeed are the easiest case to tackle in the case of the Higgs branch.
Interesting areas of further study would be to use the monopole formula to
calculate exactly the global symmetry of the families of theories discussed in
5. Furthermore we have only discussed in this work unitary quivers, guage
theories with orthongonal and symplectic gauge groups can also be studied
using brane webs with the addition of orientifold planes [31, 12]. An inter-
esting area of further study would to examine if there is a useful intersection
between the brane web tools we have discussed here and the other methods
currently being used to study 5d SCFTs. 5D SCFTs can also be approached
from the point of view of M-theory and Calabi-Yau geometry [14, 15], and
from the point of view of superconformal indices and partition functions [32,
33]. Given these approaches are studying the same field theories, there is
a good possibility of finding fruitful connections between different areas in
modern theoretical physics by pursuing this direction.
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