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Abstract

Symmetry lies at the heart of theoretical physics, whereas higher form
symmetry is the most recent and powerful generalization of it. Build-
ing from the definition of topological symmetry operators, insertions
and linking number etc., the formalism of p-form symmetry is intro-
duced. We specifically look at how higher form symmetries manifest
themselves in general discussions of unitary gauge theory, including
spontaneous symmetry breaking and anomaly cancellation. Higher
group is an in particular interesting structure arising from the mix-
ing of higher form symmetries of different degrees. We will introduce
the nested structure via discussions on 2-groups and 3-groups. The
underlying mathematical structure, the category theory, is also briefly
covered as a natural introduction to the concept of higher charges. The
non-invertible nature of higher form symmetries is revealed by clarify-
ing its connection to symmetry categories.
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Chapter 1

Introduction

Higher form global symmetry has been formulated, celebrated and explored
intensively in recent years[4][12][2]. It can be very naturally applied to
various quantum field theories, gauge theories in particular. Higher form
symmetry has proven to be a novel but extremely powerful perspective to
generalize the role symmetry arguments play in theoretical particle physics.
Attempts have also been made to apply concepts of higher form symmetries
to quantum gravity theories. As global symmetries, the ’t Hooft anomalies
of higher form symmetries provide new constraints on dynamics of a theory
along renormalization group flow[10].

In chapter 2, starting from Noether’s theorem as an example of 0-form
symmetry[1], we will introduce what a general p-form symmetry is. The
main generalization made is stated as identifying topological symmetry op-
erators as the fundamental component of higher form symmetries. We will
go through why such operators respect a group structure[4] and how to
determine which objects are charged under the action of them via discus-
sions of linking number[14]. Throughout the following chapters, coupling
the original theory to background gauge fields will be used as a generally
helpful method.

In chapter 3, we will explore how higher form symmetries manifest them-
selves in the context of unitary gauge field, in particular in Maxwell’s theory,
the existence of anomalies and the phenomenon of spontaneous higher form
symmetry breaking. Anomaly inflow will be introduced as a way to probe
anomalies by uplifting the dimension. Some preliminaries in gauge theories
such as Dirac monopole and theta term are presented too[7].

In chapter 4, the arising higher group structure when higher form symme-
tries of different degrees mix is introduced and explored using a few specific
examples[4]. It is noted specifically how anomaly is exactly cancelled due to
the modified transformation of background gauge fields in a higher group.
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1. Introduction

In chapter 5, attempts are made to clarify why higher form symmetries
are also known as categorical symmetries[12]. Higher group as previously
introduced will be integrated into the formalism of category theory. The def-
inition of higher charges and why they appear in higher form symmetries
are provided as well in this chapter[12]. We will look at a particular sim-
ple example of non-invertible symmetries as suggested by the categorical
structure at the end of this chapter.

In chapter 6, a brief discussion why higher form symmetry is a promising
topic is presented. A mathematical appendix on group cohomology and
how it is related with simplicial cohomology[9] is attached to the end.
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Chapter 2

Topological Operators and p-Form
Symmetries

In action formalism, each specific expression of action exhibits various sym-
metries of the physical systems described, ie. the identification of a set of
field transformations under which the action remains invariant. Local sym-
metry encodes the most fundamental internal degrees of freedom of gauge
bosons that mediate interactions between elementary particles. However,
physical phenomena often arise from asymmetry, or more accurately sym-
metries being broken. Symmetries can be explicitly broken or spontaneously
broken due to non-trivial transformations of vacua under symmetry group
generators. Some classical symmetries get preserved after quantization via
path integral and thus are described as anomaly-free. It can be seen later in
Chapter 4 that gauge anomalies and global anomalies can be associated to
non-invariance under infinitesimal loops and under parallel transport in the
configuration space, correspondingly[10]. It is evident from the success of
Standard Model that symmetry operations described by group theory lie at
the heart of theoretical physics, inspired by which physicists have dedicated
to generalizing the concept of symmetry to explore the rich mathematical
structure underneath. Higher form symmetry, also known as generalized
symmetry for apparent reasons, is a fairly new concept that has spacetime
topology organically integrated in its formalism. Topological operators UΣ
are defined on a given submanifold Σ in spacetime M and are invariant un-
der small continuous deformations of it. Higher form symmetry refers to
any symmetry generated by possible topological operators allowed by the
physics theory and spacetime topology. Sources are no longer restricted
to electric current analogues that is a vector field, ie. smooth 1-form field
on M, but welcome any physical differential forms with suitable dynamical
restrictions. We will develop the story of symmetries by connecting ordi-
nary symmetries in QFT with a general p-form symmetry in the following
sections.
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2. Topological Operators and p-Form Symmetries

2.1 0-Form Symmetry

2.1.1 Noether’s Theorem

Noether’s Theorem is central to the ordinary notion of symmetries in field
theories. It provides a systematic way of finding the respected symmetry
and the corresponding current conservation equation. Noether pointed out
that the existence of continuous symmetries is always accompanied by con-
served charges at the classical level[1]. We will walk through a brief review
of the original argument as follows.

We start by assuming that the Lagrangian is a function of fields and their first
derivatives only, L(φ(x), ∂µ φ(x)). Substituting the Euler-Lagrange equation
into the scalar-like transformation of L, we have

δL = ∂µ(
∂L

∂∂µ φ(x)
δφ(x)) (2.1)

Taking the simplest case of invariant Lagrangian, the conserved current can
be always identified to be

∂µ jµ = ∂µ
∂L

∂∂µ φ(x)
∆φ(x) = 0 (2.2)

Re-expressing this in the language of differential forms, it can be stated that

d ∗ j1 = 0 (2.3)

ie. j1 = jµdxµ is a co-closed 1-form. d is the exterior map taking rank-r
forms to rank-(r + 1) forms. The Hodge star appears to take care of upstairs
indices[9]. Integrating the time component of j1 over the spatial coordinates
and dropping surface terms as usual, the conserved charge Q can be written
as

Q =
∫

Σd−1

∗j1 =
∫

Σd−1

jµ(x)n̂µdd−1x (2.4)

, where n̂µ is a conventional normal vector and Σd−1 is the space extended by
all space-like coordinates here, but can be generalized to be any closed space-
time submanifold with codimension= 1, using Euclidean signature. Given
that current conservation is valid as an operator expression, the integrated
Ward identity of local operator O(φ) gives[5]∫

ddxε(x)
{
−⟨∂µ jµO(φ)⟩+ ⟨δO(φ)

δφ(x)
δφ(x)⟩

}
= 0 (2.5)

Say G is the symmetry group and OR(φ) transforms under representation
R(g), the Ward identity is then translated to

∂µ jµOR(x) = δ(d)(x− y)R(Ta)OR(y) (2.6)
4



2.1. 0-Form Symmetry

, where the delta function arises in the contact term and spacetime depen-
dence of O(φ) is made explicit for this reason. When the local operator at
interest is a current operator, we see that

∂µ jµ
a (x)jν

b(y) = f c
ab jν

c (x)δ(d)(x− y) (2.7)

, where f c
ab is the structure constant of group G.

2.1.2 Topological Operators and 0-Form Symmetry

An unitary operator parametrised by λ to implement the transformation of
G in a quantum theory is

Ûg = eiλQ̂ (2.8)

Such symmetry operators furnish a G−action on the Hilbert space and are
thus naturally labelled by group elements g ∈ G. In other words, from(2.7),
we can write down the action of Ûg1 on Ûg2[4],

Ûg1 · Ûg2 = Ûg1g2 (2.9)

Discrete symmetries also have well-defined unitary operators[2] although it
is unclear what the corresponding charges represent. Although Hodge dual
is involved in the definition, operators Ûg are in fact metric independent
and thus topological. To see this, we pick a neighbouring submanifold Σ′d−1
that can be obtained from the original Σ via small continuous deformations
without crossing any non-trivial operators, ie. ∂µ jµ = 0 holds throughout
the deformation.

Ûg(Σ) · Ûg−1(Σ′) = exp(iλ
∫

Σ̂
∂µ jµddx) (2.10)

Using Stoke’s Theorem and Σ̂ which is defined to be the d-dimensional
manifold bounded by the union of Σ and Σ′′ ∼= Σ′ except with n̂′′µ = −n̂′µ, the
RHS is clearly the identity operator. Based on (2.9), we have the invertibility
statement of symmetry operators inherited from the group structure,

Ûg(Σ) · Ûg−1(Σ) = 1 (2.11)

Comparing with (2.10), it is evident that an equivalence relation can be estab-
lished between symmetry operators defined with respect to homeomorphic
submanifolds, as expected[4]. Conservation of currents implies topological
invariance of symmetry operators. The charge operator acts on physical
objects via quantum commutators. For example, taking two immediately
neighbouring time slices with a non-trivial point operator in between, it is
imaginable that after small continuous deformation of these time slices, the
point operator will travel through one time slice and be enclosed to give
its charge. Now to see explicitly how Ûg acts on point operators OR(x) in

5



2. Topological Operators and p-Form Symmetries

a QFT in the regular adjoint way so that quantum probability is preserved,
we should look at the case when the mentioned deformation crosses point
x. The contact term in (2.6) will be invoked.

Ûg(Σ) ·OR(x) · Ûg−1(Σ′orΣ) = exp(iλ
∫

Σ̂
∂µ jµddy)OR(x)

=
∞

∑
n=0

(iλaR(Ta))n

n!
(
∫

Σ̂
δ(n)(x− y)ddy)nOR(x)

= R(g) ·OR(x)
(2.12)

The d-dimensional delta function integration is a well-defined unity as Σ̂ is
d-dimensional. We see that we can pass by charged point operators at the
price of transforming it under the corresponding representation. In a U(1)
theory, a phase depending on the charge of the point particle(operator) will
be picked up. Guass’s law in electromagnetism is a prominent example[7].

Figure 2.1: In d=3 spacetime, acting 2-dimensional symmetry operators on charged point oper-
ator OR(x) by enclosing it and deforming submanifold Σ to Σ′ renders the point operator now
transformed. A graphical presentation of (2.12).[4]

2.2 1-Form Global Symmetries

2.2.1 U(1)(1) Theory

Intrinsically defined point operators in a QFT are 0-dimensional and we
have seen how that leads to a co-closed 1-form current when symmetries are
present. The integration of these charged point operators on a 1-dimensional
submanifold will give 1-dimensional line operators. In fact, 1-form symme-
try is what directly acts on line operators in a theory. The simplest example
will be U(1)(1) which is both continuous and Abelian. We will explore the
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2.2. 1-Form Global Symmetries

feasibility of a non-Abelian higher form group further in the next section via
discussions of linking.

A natural candidate for currents of such a symmetry will be a conserved
2-form field, ie.

d ∗ J2 = 0 (2.13)

To construct a well-defined integral of current ∗J2, a closed submanifold
with codimension 2, Σd−2 should be used. Symmetry operators Ug(Σd−2)
can be defined similarly as in the 0-form symmetry case.

Ug(Σd−2) = exp(iλ
∫

Σd−2

∗J2) (2.14)

Here the parameter λ has to respect the periodicity of u(1) to be consistent.
This is once again a topological operator that inherits the group structure[4].
Since G(1) is taken to be U(1) here, the Ward identity as (2.7) reduces to

∂µ Jµν(x)Jαβ = 0 (2.15)

Hence,
Ûg1 · Ûg2 = Ûg1+g2 (2.16)

Due to the Abelian nature, structure constants and higher order terms in
BCH formula drop out[4]. Performing the same type of deformation to
submanifold Σd−2, we see that

Ûg(Σd−2) · Ûg−1(Σ′d−2) = exp(iλ
∫

Σ̂
∂µ jµddx) = 1 (2.17)

, where the (d− 1)−dimensional Σ̂ is constructed in the same way as previ-
ously stated. Invoking Stoke’s theorem, we prove its topological invariance.
What is the action of such symmetry operators on non-trivial line operators?
Ward identity for (Ward) Line operators Lq(γ) is

d ∗ J2(x)Lq(γ) = qδ(d−1)(x ∈ γ)Lq(γ) (2.18)

, where we note γ defines the line itself. Irregardless of the dimension
of operator Lq(γ), LHS is a differential form of rank d − 1. This leads to
a generalized Dirac delta being a (d − 1)-form for consistency. Now the
distribution should be located on a 1-dimensional submanifold rather than
a spacetime point and only a line operator provides a natural label for such
a submanifold. In case of a time-like line operator, it can be thought of
the world line generated by an infinitely massive static point particle with
charge q in the theory[2]. Line operators are often termed as defects or
insertion, the reason being time-like line operators changes the Hamiltonian
and thus the theory, however, space-like lines solely operate on the phase
space. This difference is made implicit in an Euclidean signature, but can
always be traced back using Wick rotation.
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2. Topological Operators and p-Form Symmetries

2.2.2 Coupling to Background Gauge Field

To probe the introduced higher form symmetries even more, we can couple
the original theory to a background gauge field correspondingly. It being
in the background signifies the fact that it has no dynamical degrees of
freedom, while satisfying the classical equations of motion and controlling
the coupled symmetry mechanically. Complications such as gauge fixing
and ghost fields can be avoided as long as the gauge field is kept static[7].
We can build our case from 0-form symmetry. The background gauge field
that couples to a 1-form dual current will also be a 1-form field, A1. An
extra term

i
∫

Aµ(x)jµ(x)ddx = i
∫

A1 ∧ ∗j1 (2.19)

will contribute to the total action in the regular way. Given a 0-form λ(x),
the background gauge transformations are

δλ A1 = dλ(x),

δλS = i
∫

∂µλ(x)jµ(x)dd(x)

= −i
∫

λ(x)∂µ jµ(x)ddx

= −i
∫

λ(x)d ∗ j1 = 0

(2.20)

, where we note the exterior derivative enjoys a graded Leibniz rule[9],

d(µk ∧ νj) = dµk ∧ νj + (−1)kµk ∧ dνj (2.21)

Conservation of current is directly translated into background gauge invari-
ance, and we will see this is a generally correct statement. The same proce-
dure applies to 1-form symmetry and potentially higher form symmetries.
A 2-form current and thus a 2-form background gauge field is relevant for
1-form symmetry as discussed. The coupling term in the action will be
simply

i
∫

B2 ∧ ∗J2 (2.22)

The set of background gauge transformations are

δΛB2 = dΛ1,

δΛS = i
∫

dΛ1 ∧ ∗J2 = i
∫

Λ1 ∧ d ∗ J2 = 0
(2.23)

Tuning the background gauge corresponds to actions of different symmetry
operators. Gauge parameters are transformed by λ0 on one side and kept in-
variant on the other side of Σ upon the action of symmetry operator Ug0(Σ),
assuming the submanifold is orientable[4]. Since gauge field itself is an el-
ement in the Lie algebra, taking derivative of the step function, we see the

8



2.3. p-Form Global Symmetries

gauge configuration should be a Dirac delta function parametrized by λ0[7],
which, consistent with the topological nature of symmetry operators, is also
distinguished up to homotopies.

2.3 p-Form Global Symmetries

2.3.1 Linking Number

In d=3 spacetime, a spherical surface encloses a point but not a line. Math-
ematically, this ”enclosing” relationship is characterized by non-vanishing
linking number[4][14]. This provides a systematic way to identify the di-
mension of operators that directly transform under a higher form symmetry.
It is defined as the graded sum of intersection points. Given two submani-
folds M and N of dimensions m and n of a manifold L of dimension l. M
and N intersect with each other transversally if

Tp M⊕ TpN ⊆ TpL for ∀p ∈ M ∩ N (2.24)

Tp M is the tangent space of manifold M at the intersection point p. The
(d− 1)-form Dirac delta δ(d−1)(x ∈ γ) in (2.18) returns 1 after integrating on
a manifold that intersects with γ transversally only. Now if the manifold L
is a closed and orientable manifold with l = m+ n+ 1 and we are allowed to
write submanifolds as boundaries of higher dimensional manifolds. In par-
ticular, denote O ⊂ L with dimension n + 1 with ∂O = N. The intersection
points of manifolds O and M are collected in the set {pi}. The condition of
transversal intersection is saturated here since

m + n + 1 = l,
Tp M⊕ TpN = TpL

(2.25)

The linking number of manifolds M and N is now defined to be

Link(Mm, Nl−m−1) = ∑
i

sign(pi) (2.26)

, where sign(pi) is determined by whether or not the induced orientation on
manifold L at point pi differs from its original orientation[9]. Hence, mani-
folds link with each other if there exists intersection that is not cancelled out
by opposite orientation in the space of one dimension higher. The important
message here is that dimensions of linking manifolds are restricted. Linking
is a topological invariant and symmetry operators thus only act directly on
operators that are linked with the definition spacetime submanifold. Note
linking number has very important applications in knot theory[14].

Now returning to the promised discussion of whether or not non-Abelian
higher form symmetry exists, we first note that in order to have a non-
Abelian group, the exchange of order of symmetry operators should have

9



2. Topological Operators and p-Form Symmetries

Figure 2.2: A graphic example of two circles C and C′ linking with each other without intersect-
ing. Manifold Σ fills circle C. Link(C, C′) = 1 in (a) and Link(C, C′) = 2 in (b). The number
of intersection points is subject to different choices of Σ filling, however, the linking number
remains invariant as mentioned.[11]

a non-trivial result, ie. at least one dimension can be utilized to have a
well-defined order like time[4]. Given a G(1), we know that in d-dimension
spacetime, a line operator links to a (d− 2)-dimensional submanifold from
previous analysis and the linking constraint. There is a total of 2 dimen-
sions remaining available along which smooth deformations can be done to
exchange the order of symmetry operators.

2.3.2 Generalizing to p-Form

For a p-form symmetry, p-dimensional charged operators link to (d− q− 1)-
dimensional symmetry operators, more available dimensions come along
with higher form symmetries. So we see that it is obvious that all higher
form symmetries(excluding 0-form symmetries) have to be of an Abelian
nature[4]. This of course greatly simplifies our discussions. As expected, a
p-form symmetry will generate a (p + 1)-form current. The corresponding
symmetry operators will be defined on spacetime submanifolds of codimen-
sion= p + 1. 0-form and 1-form symmetries can very naturally be integrated
into the formalism of p-form symmetry. The current conservation reads

d ∗ J(p+1) = 0 (2.27)

The background gauge field transforms by

δB(p + 1) = dΛp (2.28)

, under which the coupling term

Sb f = i
∫

Bp+1 ∧ ∗Jp+1 (2.29)
10



2.3. p-Form Global Symmetries

remains invariant. Λp is the usual p-form gauge parameter. The topological
symmetry operator that inherited the group structure can be again written
explicitly as

Ug(Σd−p−1) = exp(iλ
∫

Σ
∗Jp+1) (2.30)

Here λ also generates an Abelian group. The Ward identity at this degree is

d ∗ Jp+1(x)Wq(Γp) = qδ(d−p)(x ∈ Γp)Wq(Γp) (2.31)

This follows from the Abelian statement

d ∗ Jp+1(x) ∗ Jp+1(y) = 0 (2.32)

, which is a variation of (2.7) with vanishing RHS. We see in quantum theory
p-dimensional Wq(Γp) is the directly charged operator. In fact, the transfor-
mation done to Wq(Γp) is dependent on Link(Σd−p−1, Γp) as well[4].

2.3.3 Periodic Scalar Field

Periodicity often occurs in field theories when a particular group is gauged
out and the remaining components of the theory have to respect the quotient
group[7]. It turns out a simple model of a periodic scalar field exhibits
higher form symmetries of mixed degrees. Make the identification of

φ ∼= φ + 2π f (2.33)

on top of the action

S =
1
2

∫
dφ ∧ ∗dφ (2.34)

to implement the periodicity. Current conservation relations are encoded
here in equation of motion of dφ and Bianchi identity, as follows,

d ∗ dφ = 0 d(dφ) = 0
j3 = ∗dφ J1 = dφ

(2.35)

The EOM implies the respected 0-form shift symmetry, ie. φ describes a
massless boson. The Bianchi identity clearly reveals a conserved 3-form
current Jµνα = εµναβ∂β φ after dualization and thus a 2-form symmetry[4]. In-
tegrating this on a non-contractible loop, we will obtain a non-trivial charge
operator as the generator, according to Poincaré’s Lemma[9].

Activating background gauge fields as before, the coupling contributions are

i(
∫

A1 ∧ j3 +
∫

C3 ∧
J1

2π
) (2.36)

11



2. Topological Operators and p-Form Symmetries

Naturally, A1 and C3 are background gauge fields implementing 0- and 2-
form symmetries. Charged objects are

Point : O(x) = expiaφ(x)

2− Cycle : W(Γ2)
(2.37)

They link to the following symmetry operators in d=4 spacetime.

U(Σ3) = exp(iλ
∫

Σ3

∗dφ)

Z(Σ̃1) = exp(iλ
∫

Σ̃1

dφ

2π
)

(2.38)

The interpretation of the 0-form symmetry charge is straightforward. It is
the integer point charge of field φ which has a shift symmetry of 2π. The 2-
form charge on the other hand can be thought of the integer winding degree
of freedom of φ around Γ2[4]. The extra factor of 2π in (2.36) is to justify
the integer valued 2-form charges. Physically, a periodic scalar field can
be used to describe massless Goldstone boson arising from spontaneously
broken symmetry, or the dynamical coefficient of the topological theta term
in unitary gauge theory promoted to a field. Mixing of higher form sym-
metries is not necessarily trivial and can lead to a structure called higher
group[6], which will be addressed in later sections.

Previous discussions about higher form symmetries stem from Noether’s
Theorem, which excluded important discrete symmetries like parity and
charge conjugation etc. In fact, discrete gauge groups can manifest as higher
form symmetries as well[2], without resorting to current operators, but we
will focus on continuous higher form symmetries here.

12



Chapter 3

Symmetries and Anomalies in Unitary
Gauge Theory

In this section, we will explore how higher form symmetries manifest them-
selves in the context of U(1) and non-Abelian SU(N) gauge symmetries in
various ways. Coupling to suitable background fields will once again prove
to be powerful for discussions of spontaneous symmetry breaking of higher
form symmetries and anomalies. We will build up from Maxwell’s Theory,
p-form electromagnetism to Axion Yang-Mills Theory.

3.1 Gauge Theory Background

Firstly, let us cover some background details about gauge theories. Electric
charges are quantized and magnetic monopoles are allowed by an Abelian
gauge theory like U(1)[7]. This is the gist of Dirac quantization condition. A
topological term that corresponds to a total derivative in the classical action
can be added to Maxwell’s action. Turning theta term on or not leads to
different physical phenomena.

3.1.1 Dirac Monopole

Originally gauge potentials were thought of as purely mathematical con-
structs for more elegant expressions of equations of motion. However, Aharovnov-
Bohm effect stated that even without the presence of electromagnetic fields
themselves, an electrically charged particle will pick up a phase determined
by the gauge potential field A(x) in the background, after being slowly
transported along a closed loop path C[7]. Such a phase difference is an
observable in quantum theories. The wave function will become

ψ′ = eieαψ α =
∮

C
A · dx (3.1)

13



3. Symmetries and Anomalies in Unitary Gauge Theory

If the same electric charge is placed in the field configuration emanating
from a magnetic monopole of magnetic charge g, the phase difference can
be written as

α =
∫

S
dS · B (3.2)

using Maxwell’s equations and δS = C. See Figure 3.1. The monopole
condition is ∫

S2
dS · B = g (3.3)

Phase α is then in fact α = Ωg
4π , where Ω is the solid angle extended by S. It

Figure 3.1: Diverging magnetic field lines piercing through area S enclosed by C. There are two
different ways of choosing suitable areas in 4-dimensional spacetime, S and S′[13].

is easy to see that the solid angle extended by the second choice in the figure
above will be Ω′ = 4π−Ω[13]. S′ here will also have a different orientation
from the original one. The following equality called the Dirac quantization
condition has to be satisfied

eg = 2πn with n ∈ Z (3.4)

so that after exponentiation the two phase differences are equivalent. It
is obvious from this that quantized electric charges is consistent with the
existence of magentic monopoles as mentioned. Particles that carry both
electric and magnetic charges are called dyons and are characterized by the
pair (e, g)[13].

Now what kind of gauge field configuration will lead to a magnetic monopole?
Just like the Coulomb field of a static electric charge is not well defined at
the origin, here we will be looking at the manifold R3/ {0}[13]. In spherical
polar coordinates, the following gauge field patches are related by a gauge
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3.1. Gauge Theory Background

transformation and will produce the monopole magentic field as expected.

AN =
g

4πr
1− cosθ

sinθ

AS = − g
4πr

1 + cosθ

sinθ

AN − AS =
1

rsinθ
∂φ(

gφ

2π
)

(3.5)

AN and AS are not well-defined either at the north pole or the south pole,
reminiscent of stereographic projection[9]. The difference between AN and
AS is manifestly a total derivative. However, in order for the term inside
brackets to be a valid gauge transformation on the wavefunction, it has to
be effectively single-valued on this chart after exponentiation. This condition
beautifully coincides with Dirac quantization condition.

3.1.2 Axion Field

The well-known Maxwell action is

SMaxwell =
∫

d4x(−1
4

FµνFµν) (3.6)

, to which another perfectly gauge invariant term quadratic term we can
add is

Sθ =
θe2

4π2

∫
d4x

1
4
∗ FµνFµν (3.7)

∗Fµν is the dual field strength, corresponding to taking the Hodge dual
in the language of differential forms. θ is a dimensionless parameter at
this point. Writing out the epsilon symbol explicitly, the theta term can be
translated to[13]

Sθ =
θe2

8π2

∫
d4x∂µ(ε

µναβ Aµ∂α Aβ) (3.8)

This integral is independent from the metric just as that in the symmetry
operators. We know the introduction of an innocuous total derivative does
not affect the classical equation of motion. However, as advertised once θ(x)
admits spacetime variance, the following deformed Maxwell equations for
axion eletrodynamics[13]

∇ · E = − α

π
∇θ · B

− ∂E
∂t

+∇× B =
α

π
(θ̇B +∇θ × E)

(3.9)

are obtained. The Bianchi identity remains the same as

dF2 = 0 (3.10)

Specific values of θ can lead to topological magneto-electric effect of topo-
logical insulator[13].
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3. Symmetries and Anomalies in Unitary Gauge Theory

3.2 4d U(1) Maxwell

3.2.1 U(1)(1)× U(1)(1)

In this subsection, rewriting the Maxwell action in the language of differen-
tial forms,

S =
1

2g2

∫
F ∧ ∗F (3.11)

We can write down the equation of motion and Bianchi identity as for the
action of periodic scalar field.

d ∗ F = 0 dF = 0 (3.12)

The conservation of two 2-form currents are stated.

dJe
2 = d ∗ ( 1

g2 F) = 0 dJm
2 = d ∗ ( 1

2π
∗ F) = 0 (3.13)

Hence, Maxwell’s theory has a U(1)(1)e × U(1)(1)m structure, corresponding to
the electric and magnetic 1-form symmetries. The symmetry operator for
U(1)(1)e can be written as

U(e)
g (Σd−2) = exp(iα

∫
Σd−2

∗F) g = eiα ∈ U(1) (3.14)

Following the established formalism, the objects charged under the 1-form
electric symmetry are the Wilson line operators[4]

Wq(L) = exp(i2πq
∫

L
A) (3.15)

L is a line in the d=4 spacetime that this operator is defined on. Current acts
on the Wilson line operator as[4]

(d ∗ F)Wq(L) = qδd−1(L)Wq(L) (3.16)

Wq(L) is labelled by the U(1) representation it transforms under. The 1-form
charge of a line operator coincides with its electric charge. This is in other
words Gauss’s law under disguise. Using the generalized definition of Dirac
delta distribution that only returns 1 when integrated on a manifold that
intersects transversally with L as previously introduced, inserting a Wilson’s
line into the path integral will look like[4]∫

[dA]exp(iq
∫

M4

δ3(L) ∧ A +
1

2g2 F ∧ ∗F) (3.17)

The integrated equation of motion becomes∫
Σ2

∗F = qg2Link(Σ2, L) (3.18)
16



3.2. 4d U(1) Maxwell

Recall the relation between linking number and transversal intersection. For
U(1)(1)m , the symmetry operator reads

U(m)
g (Σd−2) = exp(iα

∫
Σd−2

F
2π

) (3.19)

Objects carrying 1-form magnetic charge are called ’t Hooft line operators.
To write its expression directly is slightly more complicated, but using the
dual field strength Ã with ∗F = dÃ, it can be written in the exact way as in
(3.16),

Tm(γ) = exp(im
∫

γ
Ã) (3.20)

We can also impose the field configuration of Dirac monopole solution as
boundary conditions locally along the line γ and thus avoid Ã[4]. It is not
difficult to see that in d=3 spacetime, Maxwell’s theory exhibits a 0-form
magnetic symmetry which demands the existence of a monopole operator.
Hence, ’t Hooft line operator is sometimes referred to as monopole opera-
tors.

3.2.2 Coupling to Background Gauge Fields and Anomaly

Turning on background gauge fields, the action becomes

S =
1

2g2

∫
(F− Be

2) ∧ ∗(F− Be
2) +

i
2π

∫
Bm

2 ∧ F (3.21)

The 2-form background gauge fields are labelled by the symmetries they are
in charge of. Apart from the second term and standard coupling in the first
term, a local counter term of the form[4]

S =
1

2g2 Be
2 ∧ Be

2 (3.22)

, which involves no dynamics, is added to the action to preserve the back-
ground gauge invariance. Performing the magnetic gauge transformation
Bm

2
′ = Bm

2 + dΛm, the dynamical gauge field and the electric background
gauge field remain intact so the change of the action amounts to[4]

δS = i2π
∫ dΛm

2π
∧ F

2π
(3.23)

This is of no concern as we note

dΛm

2π
,

F
2π
∈ H2(M4, Z) (3.24)

Elements from the homology class are called cochain elements[9], and they
return integers after integrated. The wedge product is in fact the discretized

17



3. Symmetries and Anomalies in Unitary Gauge Theory

version, a cup product ⌣[2]. This will be presented with more details in the
mathematical appendices. It is sufficient to note that in this case

δS ∈ i2πZ (3.25)

The partition function is effectively unchanged and thus the magnetic back-
ground gauge invariance is protected. Moving on to electric gauge transfor-
mation

Be
2
′ = Be

2 + dΛe

A′ = A + Λe

F‘ = F + dΛe

(3.26)

Here evidently Λe is no longer flat. Current ∗Je
2 acts on the Wilson line

via 1-form electric symmetry and shifts the electric dynamical gauge field
by Λe as its conjugate momentum in Lagrangian formalism[4]. The action
transforms under (3.26) by

δS =
i

2π

∫
Bm

2 ∧ dΛe (3.27)

1-form electric symmetry seems to be no longer respected. However, given
a different local counter term[4],

S = − i
2π

∫
Bm

2 ∧ Be
2 (3.28)

, it is not difficult to see that the action

S =
1

2g2

∫
(F− Be

2) ∧ ∗(F− Be
2) +

i
2π

∫
Bm

2 ∧ (F− Be
2) (3.29)

remains invariant under the electric background gauge transformation. How-
ever, under the magnetic gauge transformation, the following non-trivial
transformation occurs

δS =
i

2π

∫
−dΛm ∧ Be

2 (3.30)

This implies that this U(1)(1)
e×U(1)(1)

m
theory has a mixed ’t Hooft anomaly[4],

a global anomaly that gets preserved through RG flow and thus very useful
for UV behaviour determination.

We can always introduce a static background connection Bp for a theory
equipped with a global symmetry G, ordinary or higher form. The anoma-
lous phase A[λd−1, Bp] is defined to be[4]

Z[Bp + dλp−1] = exp(i
∫
A[λp−1, Bp])Z[Bp] (3.31)
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3.2. 4d U(1) Maxwell

ie. the non-trivial transformation of partition function under background
gauge transformation. IfA[0, Bp] = 0, such an anomaly is a ’t Hooft anomaly.
Given M as the manifold of all B, the theory has a non-anomalous global
symmetry G if the partition function is a well-defined 0-form field on the
quotient manifold M/G. Invariance under infinitesimal loop of M/G, ie.
vanishing curvature, implies absence of local anomalies, whereas invari-
ance under parallel transport along regular loops corresponds to absence
of global anomalies[10]. In the example above, we see that although in-
dependently suitable local counter terms can be chosen to cancel out the
anomaly, it is impossible to keep both 1-form symmetries non-anomalous.
A dimensional lift often proves powerful in anomaly discussion[10]. The
original anomalous d-dimensional theory can be coupled to a theory in
(d + 1)-dimension with an opposite anomaly built in. If we can identify

Â[Bp + dΛp−1] = dA[Bp, Λp−1] (3.32)

, then the new partition function

Ẑ[Bp] = Z[Bp]exp(−i
∫

Md+1

Â[Bp]) (3.33)

, using again Stoke’s theorem, will be non-anomalous as designed. The
higher dimensional phase above is called a symmetry protected phase corre-
sponding to a topological quantum field theory[4]. The anomaly inflow in
our case can be written in d=5 spacetime as

Sd=5 =
i

2π

∫
M5

Be ∧ dBm (3.34)

In the case where δM5 = ∅, (3.34) is clearly invariant under B2
′
e,m = B2e,m +

dΛe,m. Interestingly, when δM5 = M4 with M4 being our physical spacetime
manifold, we see that this cancels out the calculated anomaly

δSd=5 =
i

2π

∫
M5

dΛe ∧ dBm =
i

2π

∫
M4

Λe ∧ dBm (3.35)

, noting that the exterior derivative is nilpotent[9].

3.2.3 Spontaneous Symmetry Breaking

Spontaneous symmetry breaking in general occurs when a charged operator
shows non-vanshing vev, ie.

< Ô(x) > ̸= 0 (3.36)

When a continuous ordinary symmetry G spontaneously breaks down to
H, a 0-rank Goldstone boson field arises to describe the variation of po-
tential along massless directions. Coupling this broken symmetry with a
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3. Symmetries and Anomalies in Unitary Gauge Theory

background gauge field, the Goldstone field gets shifted by the background
gauge parameter. When a p-form symmetry gets broken, each broken gener-
ator corresponds to a massless ”Goldstone” boson field of rank p− 1[4]. Fol-
lowing the same logic, whichever operator charged under the higher form
symmetry at interest Wq(Γp) should have a non-zero vev when spontaneous
breaking happens.

< W(Γp) >∼ e−F(Γp) (3.37)

, where F(Γp) is the scale function of the spontaneous symmetry breaking.
p is the dimension of the spacetime submanifold this operator is defined
on. A simple divergence test can be used to determine whether or not a
symmetry spontaneously breaks. Only when the following limit exists do
spontaneous symmetry breaking takes place[4].

limVol(Γp)→∞Re[
F(Γp)

Vol(Γp)
] = f inite const. (3.38)

For example, the volume of a Wilson loop will be its perimeter rather than
area. This is closely related with the area law in confinement. Given the
existence of such a limit, a local counter term can always be identified to
define a physical renormalized operator that has a finite vev[4].

Ŵ(Γp) = exp(−
∫

Γp

dV)×W(Γp) (3.39)

In light of (3.37), it can be easily seen that if the above limit does not exist,
no such local counter term dependent on Γp itself only can be found and
there will be no spontaneous symmetry breaking.

The masslessness of photon can be most perfectly explained through its effec-
tively Goldstone nature with broken 1-form electric/magnetic symmetry[8].
Inspired by ordinary Goldstone theorem, the following quadratic term will
appear in the broken phase effective Lagrangian[4]

Le f f = −
1

2g2 (dA1 + B2)
2 (3.40)

Here, A1 is the generalized Goldstone mode and B2 is the 2-form back-
ground gauge field as introduced before in Maxwell’s Theory. Turning off
the background to zero, we recover the Maxwell term for photon gauge field
A1, which will naturally be massless.

3.3 Anomaly Inflow in p-Form Electromagnetism

In this subsection, we will apply the method of anomaly inflow to p-form
electrodynamics. Firstly, the action can be written down as

S =
1

2g2

∫
Fp+1 ∧ ∗Fp+1 Fp+1 = dAp (3.41)
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3.3. Anomaly Inflow in p-Form Electromagnetism

Ap is the p-form U(1) gauge field. The U(1) gauge transformation is

A′p = Ap + dΛp−1 (3.42)

The equation of motion and Bianchi identity are

d ∗ dAp = 0 dFp+1 = 0 (3.43)

The two conserved currents for electric and magnetic symmetries are, as
before,

∗ Je =
i

g2 ∗ Fp+1 ∗ Jm =
Fp+1

2π
(3.44)

The electric one also shifts the dynamical gauge field by[4]

A′p = Ap + αΛp (3.45)

, where the gauge parameter respects the periodicity of U(1). Naturally, the
dynamical field strength is not invariant but transforms by Λ(e)

p+1 = αdΛp,
note the label did not include the magnetic one. The action becomes

S =
∫ 1

g2 (Fp+1 − B(e)
p+1) ∧ ∗(Fp+1 − B(e)

p+1) +
i

2π
Fp+1 ∧ B(m)

d−p−1 (3.46)

after including background coupling. The electric background gauge field
transforms by an element of Hp+1(Md, Z) and thus the shift in the action is

δeS = i
∫

Λ(e)
p+1 ∧

B(m)
d−p−1

2π
(3.47)

We can clearly see this expression of a mixed higher form anomaly is con-
sistent with previous discussion when p = 1[4]. The d=5 anomaly inflow to
cancel this our will be then

I =
i

2π

∫
B(e)

p+1 ∧ dB(m)
d−p−1 (3.48)

The impossibility of quantizing both electric higher form symmetry and
magnetic higher form symmetry holds generally.

21



Chapter 4

Higher Group and Anomaly
Cancellation

The higher group structure develops when higher form symmetries of dif-
ferent degrees of a system intertwine with each other[4]. Symmetries op-
erating on forms of different ranks are not completely independent from
each other. After all they are connected by the geometry of the spacetime
they share. When p-form gauge transformation shifts not only the corre-
sponding (p + 1)-form background gauge field, but also Bq+1 that gauges
q-form symmetry. The higher group is labelled by its component of the
highest degree. An h-group contains an (h− 1)-form symmetry to the high-
est. This most perfectly fits into the structure of h-category[12], from which
higher form symmetry inherits its name as categorical symmetry. This, and
the non-invertibility it implies, will be explored in more details in the next
section.

4.1 Nested Structure and Hierarchy Constraint

When different symmetries are present, following the symmetry breaking
pattern and thus determining energy scales that each symmetry manifests
itself can be very useful for understanding how these symmetries connect
with each other and the dynamics. There is nothing stopping a field theory
from being equipped with all the following global symmetries coordinated
by increasing degree[4],

G(p1+1) < G(p2+1) < ... < G(pn+1) (4.1)

Each one of them can be coupled with a background gauge field as before.
However, the mixing happens when the following canonical transformation

δi Api+1 = dΛpi (4.2)
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4.1. Nested Structure and Hierarchy Constraint

simply does not suffice to keep background gauge invariance. Extra trans-
formations need to be done. They are in general of the form[4]

δi Api+1 = dΛpi + ∑
j≤i

Λpj ∧ α
(i)
pi+1−pj

(
{

Apj+1

}
) + ... (4.3)

Note that α
(i)
pi+1−pj

can only depend on background gauge fields that couple
to higher form symmetries of lower degree than pi[4]. Structure that is
defined on a higher rank will not affect the transformation of background
gauge fields of a lower rank. It is possible that non-linear terms that does
not depend on dynamical gauge fields might also appear on the RHS.

The spontaneous breaking pattern of the higher group has a nested structure[4],
as, for example, in the broken phase of the top form symmetry , ie. failure
to preserve the top form symmetry will affect every higher form symmetry
down below and hence breaks the consistency of the entire pn + 1-group.
Now moving on to the case when pi-form symmetry is in the broken phase,
it is not difficult to arrive at the conclusion that all pj-form symmetries with
j < i will break as a consequence based on (5.3). This can be summarized in
the nested/ladder structure of a higher group[4],

G(pn+1)
pn ⊂ ... ⊂ G(pn+1)

p2 ⊂ G(pn+1) (4.4)

The notation G(pn+1)
pi is the (pn + 1)-higher group with degrees lower than pi

truncated. In other words, along with the energy flow, symmetries consecu-
tively break as

G(pn+1) −→ G(pn+1)
pi −→ G(pn+1)

pj>i −→ G(pn+1)
pk>j −→ ... (4.5)

The mixing of higher form symmetries is closely related with non-trivial
group extension characterized by exact sequences. In the case of ordinary
symmetries, the following exact sequence encodes the fact that group G is
an extension of group H by the normal Abelian subgroup A[2].

1 −→ A −→ G −→ H −→ 1 (4.6)

The arrows represent a series of group homomorphisms that map previous
images to the consecutive kernels. The essence of such an extension is cap-
tured by the existence of a group homomorphism

ψ : H −→ Aut(A) (4.7)

, here the automorphism implies that there exists a unique pair of elements
in groups A and H that under the group product of G produces a given
element g ∈ G. At the level of sets, elements in G can always be written
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4. Higher Group and Anomaly Cancellation

as the Cartesian product of sets A and H, G = A× H. All possible group
extensions G are classified by a 2-group-cohomology element

ω ∈ H2(H, A) (4.8)

H2(H, A) are the equivalence classes of co-cycles that are not co-boundaries
in the set of cochain elements

C2(H, A) =
{

f unctions : H2 −→ A
}

(4.9)

ω is referred to as twisting since the group product can be expressed as

(h1, a1) · (h2, a2) = (h1h2, a1 + a2 + ω(h1, h2)) (4.10)

It quantifies how twisted the group extension is compared to a direct group
product. We see from above that group H is not closed under the given
group product and thus not simply a subgroup of the group extension G.
Group H itself thus cannot be a symmetry of the theory if the normal sub-
group A is not. This gives us sufficient information to write down the
hierarchy constraint of energy scales of effective emergent symmetries as
follows[4],

EA ≥ EH (4.11)

Note this relation only holds true in the sense that

EA ≪ EH (4.12)

is not permitted. Similarly, the hierarchy constraint for energy scales of
different degrees of emergent symmetries in a higher group G(pn+1) is

... ≥ Epi+1 ≥ Epi ≥ Epi−1 ≥ ... (4.13)

This is evidently consistent with the nested structure of the higher group
as discussed. Important information about UV completion or IR structure
can be inferred based on the nested structure of higher groups and such
hierarchy constraints.

4.2 2-Groups

Two ordinary symmetries can mix to form a 1-group. For example, when
2 discrete 0-form symmetries Z0

2 mix, two types of group extensions are
allowed

Klein group : Z2 ×Z2

Cyclic group : Z4
(4.14)

This is consistent with the statement that these are the only two inequivalent
group multiplication tables for Abelian groups with 4 elements, from finite
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4.2. 2-Groups

group theory. In fact, this is based on the group cohomology class being a
discrete group Z2, ie.

H2(Z2,Z2) = Z2 (4.15)

A 2-group structure arises when 0-form global symmetries mix with 1-form
global symmetries or when different 1-form global symmetries mix with
each other[6]. Here is an example of a continuous 2-group made of a U(1)
ordinary symmetry and a U(1) 1-form symmetry in d=4 spacetime. Denote
background fields that gauge the 0-form and 1-form global symmetries as
A1 and B2, the curvature of these connections are F2 and H3 correspondingly.
From the general expression of background gauge field transformations in
higher groups, we can write down[4]

δA1 = dλ0 δB2 = dΛ1 −
κ

2π
λ0F2 (4.16)

This particular set of transformation typically arises from the mixing of an
anomalous ordinary symmetry and a 1-form global symmetry[6]. The (d +
2)-form anomaly polynomial coupling the 1-form symmetry current with
the anomalous 0-form symmetry field strengths as usual is

I6 = iκ
∫ F2 ∧ F2 ∧ ∗j2

4π
(4.17)

The anomalous phase of the partition function is then[4]

δλ0 Z = exp(
iκ
2π

∫
λ0F ∧ ∗J2)Z (4.18)

It is obvious that the extra term in the transformation of B2

δextraB2 = − κ

2π
λ0F2 (4.19)

exactly cancels the anomaly of the 0-form symmetry via the coupling contri-
bution to the action

Scoupling = i
∫

B2 ∧ ∗J2 (4.20)

Hence, the 2-group symmetry itself is not anomalous.

4.2.1 2-group Structure in QED

Taking the U(1) connection in QED to be ag with dynamical field strength
fg, when 4 Weyl fermions, specifically 2 set of chiral fermions of distinctive
flavours ψ±i with i = 1, 2, are coupled to the photon gauge field, there exists
one anomalous 0-form global symmetry, the flavour symmetry U(1) f and
of course a 1-form magnetic dual symmetry as pointed out previously[4].
In addition to gauge charges, fermions ψ±i carry distinctive flavour charges
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4. Higher Group and Anomaly Cancellation

±1 and ±q correspondingly. The expression of a general 6-form anomaly
polynomial[10][4]

I6 =
1

(2π)2

∫
[
κg3

3!
fg∧ fg∧ fg +

κg2 f

2!
fg∧ fg∧ f2 +

κg f 2

2!
fg∧ F2∧ F2 +

κ f 3

3!
F2∧ F2∧ F2]

(4.21)
, as these are the only 4 inequivalent combinations of currents. The factorials
in the prefactors are to take care of repetitive permutations of each potential
anomaly. By summing over the charge contribution of each chiral fermion
as usual and noting that[10]

jgauge = jright − jle f t jglobal = jright + jle f t (4.22)

, the only existing anomaly has a coefficient of

κg f 2 = (+1) · (+1)2 + (+1) · (−1)2 + (−1) · (+q)2 + (−1) · (−q)2 = 2(1− q2)
(4.23)

All other coefficients in (4.21) can be calculated in the same way and shown
to vanish. This is again a ’t Hooft anomaly. Substituting the expression of
the coefficient κg f 2 and the dual magnetic global 2-form current

∗ J2 =
1

2π
fg (4.24)

into (4.21), we can write the anomalous phase as[4]

δλ0 Z = exp(
2(1− q2)i

2π

∫
λ0F2 ∧ ∗J2)Z (4.25)

Given that the 2-form magnetic background gauge field B2 transforms as

δB2 = dΛ1 −
2(1− q2)

2π
λ0F2 (4.26)

, the anomaly can be removed due to the coupling contribution in the action
as before,

Scoupling = i
∫

B2 ∧ ∗J2 (4.27)

Hence, again as expected, the 2-group global symmetry is preserved at the
quantum level.

4.3 3-Groups

Naturally, a 3-group is in general made of the mix of 0-form, 1-form and
2-form symmetries according to the definition of higher groups[4]. The
simplest case will be to consider U(1)(0), U(1)(1) and U(1)(2) with corre-
sponding background gauge fields A1, B2 and C3. This is well justified since
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we have shown that all higher form symmetries are Abelian. The general
background gauge transformation permitted by a 3-group structure is[4]

δA1 = dλ0

δB2 = dΛ1 + kλ0F1

δC3 = dΛ2 + αdλ0 ∧ F1 + β1Λ1 ∧ B2 + β2Λ1 ∧ dΛ1 + γ1Λ1 ∧ F2 + ...
(4.28)

, where suitable combinations of all terms dependent purely on background
gauge fields of lower ranks than C3 should appear in the RHS of the trans-
formation of C3.

4.3.1 4d Axion SU(N)

Yang-Mills field theories can also be coupled to an axion field as in the U(1)
case. A physical example that exhibits such a 3-group structure is Axion-
Yang-Mills in d=4 spacetime. The action is

S =
1
2

∫
da ∧ ∗da +

1
g2

∫
Tr[F ∧ ∗F]− i

8π2 fa

∫
aTr[F ∧ F] (4.29)

, where the dynamical axion field is a periodic scalar field as introduced
previously. We can make the identification

a ∼ a + 2π fa (4.30)

, where fa is of 0-rank. There is a 2-form global symmetry U(1)(2) arising
from the axion dependent terms in the action, and it corresponds to the
winding degree of freedom of the axion field. Writing out the background
gauge field coupling explicitly,[4]

S =
1
2

∫
da ∧ ∗da +

i
2π fa

∫
a dC3 +

1
g2

∫
Tr[(F− B2) ∧ ∗(F− B2)]

− i
8π2 fa

∫
aTr[(F− B2) ∧ (F− B2)] +

∫
ψTr[F− B2]

(4.31)

Note the second term here is obtained by integration by parts and thus has
the opposite sign. The coefficient ψ in the last term will be promoted to
be a dynamical complex scalar field in potential discussions of spontaneous
symmetry breaking, which will be omitted here. It can be shown that the in-
stanton number related with the topological term is no longer an integer[4],
which spoils the periodicity of axion field a as a consequence. This non-
trivial transformation of the action can be cancelled given the following 3-
group transformations of background gauge fields[4]

B′2 = B2 + dΛ1

C′3 = C3 + dΛ2 −
N(N − 1)

2π
Λ1 ∧ B2 −

N(N − 1)
4π

Λ1 ∧ dΛ1
(4.32)
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4. Higher Group and Anomaly Cancellation

The instanton number is denoted as N here. Hence, this is in fact a 3-group
symmetry with a trivial 0-form symmetry, or say without the participation
of any ordinary symmetry. The constraint on emergent symmetry energy
scale is

E2 ≥ E1 (4.33)

, where the subscript denotes the degree of the emergent symmetries. Track-
ing along the RG group flow, this hierarchy constraint can be used for deter-
mination of the UV completion theory of axion Yang-Mills.

28



Chapter 5

Categorical Structure and Higher
Charges

As mentioned in the last section, higher group can be most naturally in-
tegrated into the structure of an n-category, apart from being viewed as a
non-trivial group extension[12]. We will present a brief introduction of a
mathematical category and how that is related with higher charges and non-
invertible symmetries in general.

5.1 n-Category

Symmetry operators have been proved to obey group multiplication law and
thus are invertible by exploiting their topological nature. However, most gen-
erally, higher form symmetries are known as categorical symmetries and are
not necessarily manifestly invertible. As the name suggests, as how 0-form
symmetries fit into group theory and mixing of degrees higher group[2],
categories are what underlies the complete story of higher form symmetries.
A category is a set of objects that is equipped with maps between these ob-
jects, ie. morphisms. When it is a map between objects that have the same
structure then we can denote the collection of all possible homomorphisms
between object a and b[12][3] for example as

hom(a, b) = {All homomorphisms between elements a and b} (5.1)

These morphisms respect a composition rule · defined as

· : hom(a, b)× hom(b, c) −→ hom(a, c) (5.2)

This product is associative as group products and also has the identity ele-
ments, the identity morphism idx[3]

idx : x 7→ x idb · f = f · ida = f ∀ f ∈ hom(a, b) (5.3)
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5. Categorical Structure and Higher Charges

Are objects equipped with any group product like binary structure? A func-
tor, a structure preserving map between different categories, will potentially
induce a fusion product between objects in a category. It is a map F between
categories C and D satisfying the following properties[3]

F : C −→ D
∀x ∈ object(C), F(x) ∈ object(D)

∀ f ∈ homC(x, y), F( f ) ∈ homD(F(x), F(y))
(5.4)

A covariant functor also respects the the morphism composition and exis-
tence of identity map that comes builtin with the category. In other words,

∀x ∈ object(C) : F(idx) = idF(x)

∀ f ∈ homC(x, y), g ∈ homC(y, z) :
F(g ◦ f ) = F(g) ◦ F( f )

(5.5)

A tensor category is a category C as introduced with a ”monoidal” or tenso-
rial structure. It can be equipped with a bifunctor called fusion as follows[3]

⊗ : C× C −→ C (5.6)

Here C× C is the product category. It is not difficult to see that this induces
a binary product on objects in the category called ”fusion”. A bifunctor also
has to respect the intrinsic structure of a category such as associativity of
morphism composition and the existence of identity maps like the functor.
What the above describes is a 1-category. Generalizing to an n-category, we
see that it has n + 1 levels with a ladder structure

· 0−morphism : objects
· 1−morphism : between objects
· 2−morphism : between 1-morphisms
...
· n−morphism : between (n-1)-morphisms

(5.7)

Each level of morphism has composition rules that satisfy properties listed
in (5.3), however, there may exist multiple equivalently justifiable compo-
sition rules at higher level. For a theory in d=m spacetime that admits
topological symmetry operators, a (d-1)-category called the symmetry cate-
gory CT with symmetry operators as its objects can be constructed as the
following[3]. The zeroth level is

· objects : Dm−1(Σm−1)

bifunctor/fusion : D(1)
m−1 ⊗ D(2)

m−1 = D(12)
m−1

(5.8)
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5.1. n-Category

The superscript labels different symmetry operators at the same degree. The
group multiplication law of symmetry operators are in general a statement
of fusion algebra in category theory. The first level is

1-morphisms : D(1)
d−1, D(2)

d−1 −→ D(1,2)
d−2 (5.9)

Symmetry operators with codimension = 2 that are defined at the intersec-
tive spacetime submanifold of symmetry operators with codimension = 1
constitute the first level of the (m− 1)- category. This corresponds to higher
form symmetries of a higher degree. 1-morphisms can be composed in
two different ways. Following the same convention, denote D(1,2)

m−2, D(2,3)
m−2 as

the 1-morphisms arising from intersections of objects D(1)
m−1 and D(2)

m−1, with

D(2)
m−1 and D(3)

m−1 correspondingly[12]. Using morphism composition rule,

D(2,3)
m−2 · D

(1,2)
m−2 is the 1-morphism from object D(1)

m−1 to object D(3)
m−1. Another

valid fusion rule for 1-morphisms makes use of fusion algebra of objects
induced by the bifunctor. Denoting D(13)

m−1 and D(24)
m−1 as (D(1)

m−1, D(3)
m−1) and

(D(2)
m−1, D(4)

m−1) fused together pairwise[12],

D(1,2)
m−2 ⊗ D(3,4)

m−2 = D(13,24
m−2 (5.10)

The second level will be 2-morphisms which are defined at the intersection
of 1-morphisms, ie. symmetry operators with codimension = 3 that are de-
fined at the intersective spacetime submanifold of symmetry operators with
codimension = 2. Similarly for 2-morphisms, there exists one fusion rule

Figure 5.1: This figure shows the ladder structure of a category, going from objects, 1-morphisms
to 2-morphisms. Symmetry operators are essentially morphisms of morphisms, whereas ordinary
symmetry operators are objects in the theory. They are labelled by the dimension of spacetime
submanifold they are defined on here[12].

based directly on morphism composition without resorting to the bifunctor
structure. There are other two effective fusion rules that differ depending on
how objects and morphisms are stacked together and fused. The inference
that there exists n+1 fusion rules for n-morphisms does hold in general.
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5. Categorical Structure and Higher Charges

5.2 Higher Charges

5.2.1 p-Charge

When identifying the dimension of charged operator under a certain higher
form symmetry, linking number is used determine which object is directly
charged under a symmetry operator of a fixed codimension. However, it is
possible that objects that are not linked to the symmetry operators are indi-
rectly charged by inheriting non-trivial charges of a lower-form symmetry.
This is essentially what higher charges are.

q-charges are the generalized/higher form charges carried by q-dimensional
operators[3]. The word direct used implicitly previously refers to the fact
that the degree of the charge and that of the higher form symmetry coincide,
ie. operators linked to symmetry topological operators carry p-charges of
a p-form symmetry. We will see that in fact all operators with dimensions
higher than the degree of the higher form symmetry at interest are charged.
For example, an ordinary, 0-form, symmetry can act on extended operators
that are not point operators by definition[3]. A prominent example of 0-
form symmetry in QED will be charge conjugation, despite being discrete.
Maxwell’s theory in d=4 spacetime evidently has a charge conjugation ordi-
nary symmetry Z

(0)
2 .

A1 −→ −A1 (5.11)

, and of course as discussed the product 1-form symmetry. Wilson lines
carry 1-electric-charge while the dual ’t Hooft lines carry 1-magnetic-charge
directly. The point operator that carries 0-charge of Z

(0)
2 is the gauge invari-

ant field strength operator

F(x)2 −→ −F(x)2 (5.12)

, ie. F(x)2 has an 0-charge −1. Since we pointed out that the 1-charge
carried by Wilson lines is equal to its electric gauge charge, it is obvious that
Wilson lines have a non-trivial 1-charge under this 0-form symmetry of −1
as well. Analogously, the 1-magnetic-monopole-charge carried by’t Hooft
lines picks up the same 1-charge under actions of charge conjugation. More
interestingly, the symmetry operators themselves also inherit 2-charges of
the conjugation symmetry[3], the expressions of which make this apparent.

5.2.2 Higher Representation

From this simple example, we see that q-charges of a G(0) are (q + 1)-
representations of group G(0). We will omit the full regular definition of an
ordinary group representation, but introduce what a higher representation
is using the language of categories. The finite dimensional representation ρ
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5.2. Higher Charges

of a group G(0) is a map[3]

ρ : G(0) −→ End(V) (5.13)

, where End(V) is the set of all endomorphisms of finite dimensional vector
space V. The regular homomorphism condition on representations applies.
Now regarding V as a linear category Vec[3], the objects and morphisms
of which are vector spaces and linear maps between them, we note that a
group can also be absorbed into the formalism of category theory as CG(′) ,
which only contains one object, ie. the group itself. The group elements
are distinguished within the group from each other by manifesting as mor-
phisms of the category, since each group element can be considered to be an
endomorphism of the group via its natural group action[3] . Group product
in this case provides a way to compose different morphisms of this category.
A regular representation as in (5.13) can be seen as a functor

ρ : CG(′) −→ Vec (5.14)

Consistency between definitions in different contexts is conveniently verifiable[3]
. Now generalizing this newly found definition, we have a (q+ 1)-representation
of the group G(0) as again the functor between (q + 1)-categories[3]

ρ(q+1) : C(q+1)
G(0) −→ (q + 1)−Vec (5.15)

Recall (q+ 1)-categories have q+ 2 levels of morphisms of morphisms. Specif-
ically, C(q+1)

G(0) contains only one object, the origin of its classifying space
at choice. 1-morphisms of this (q + 1)-category are all possible endomor-
phisms of this point, which are more inspiringly loops reutrning to the
origin in the classifying space, ie. first homotopy group of the classify-
ing space[3] . 2-morphisms are 2-dimensional homotopies between these
loops in the classifying space, and the list goes on. (q + 1)− Vec is poten-
tially more straightforward in the sense that the maps are all required to
be linear. A (q + 1) − Vec is a (q + 1)-category with (q − 1)-category as
objects and equipped with fusion algebra as discussed. Finally, the higher
representation of higher groups is reincarnated as a functor as well[3] . A
(q + 1)-representation of a p-group G(p) is the functor

ρ(q+1) : C(q+1)
G(p) −→ (q + 1)−Vec (5.16)

The image category remains to be the (q + 1)− Vec, as expected by its na-
ture of being a higher representation. However, the source category is con-
structed now from the classifying space of the p-group G(p)[3] . If we de-
fine Ω(C) to be the r-category containing all endomorphisms of the identity
object of C, a category of one degree higher, then roughly speaking, each
degree r of the higher group G(p) consists of identity objects of Ωr+1(C(q+1)

G(p) )
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5. Categorical Structure and Higher Charges

at level r + 1[3] . Moving back to the concept of higher charges, we can most
accurately arrive at the conclusion that q-charges of a p-form symmetry are
(q + 1)-representations of the accompanying (p + 1)-group. After further
generalization, the following statement holds true in general, q-charges of
symmetry operations in a p-group are (q + 1)-representations of this higher
group. Thus we see that higher charges are deemed to be in effect due to the
existence of underlying higher representations from the categorical structure
of higher form symmetries, consistent with our intuition.

5.3 A Toy Model of Non-Invertible Symmetry

The arising category structure evidently allows for the loss of invertibility.
We can see how this appears physically in the simplest example that has
already been explored, Maxwell’s theory in d=4 spacetime. 1-form symme-
try operators with codimension= 2 in this theory carrying gauge parameters
that respect the periodicity of U(1) can be fused together by simple addition

Uα ⊗Uβ = Uα+β (5.17)

At this stage, being fused is in reality being multiplied using the group prod-
uct. The additive law is simply an indication of this 1-form symmetry being
Abelian, as all higher form symmetries are proven to be. However, they
are also endowed with 2-charges under the charge conjugation symmetry.
Gauging this discrete 0-form symmetry results in a new gauge group O(2)
and calls for operators that are gauge invariant under it. After simple calcu-
lations, we can see the surviving symmetry operators are Uα=0, Uα=π and
Uα,+ = Uα ⊕U−α, with α ∈ (0, π) due to its periodicity. The fusion algebra
is then

Dα,+ ⊗ Dα=0 = Dα,+

Dα,+ ⊗ Dα=pi = Dα+π,+

Dα,+ ⊗ Dβ,+ = Dα+β,+ ⊕ Dα+β,−
(5.18)

We see in the last line, given that the gauge parameters are not equal, the
two symmetry operators correspond to irreducible representations in the
new gauge theory, and thus we arrived at non-invertible composition of sym-
metry operations, ie. fusion. This is often how non-invertible symmetries
relevant to us arise, gauging automorphisms of the original gauge group.
In fact, we require the automorphisms to be a special class within all pos-
sible automorphisms called outer automorphisms of the group, which are
with the automorphisms induced by natural group actions of each group
element, ie. inner automorphism, quotient out. Additionally for example,
axion electrodynamics also exhibits non-invertible symmetries[4].
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Chapter 6

Summary

Higher form symmetry has rich structure to be explored. It is intimately
connected with the geometry of spacetime and specifically its differential
structure. Symmetry operators acting on different ranks of differential form
fields on the spacetime make up higher form symmetries of different de-
grees. The mixing pattern of different degrees is best summarized in higher
group, which is a natural consequence of the symmetry category that ac-
commodates higher form symmetries of different degrees that a theory is
equipped with. Applying formalism of higher form symmetries to quan-
tum field theory or even quantum gravity should have extremely promising
results.
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Appendix A

Appendix

A.1 Group Cohomology and Simplicial Cohomology

We will give an informal introduction of group cohomology and simplicial
cohomology here in this appendix. As mentioned earlier, twisting classifies
all possible group extensions, and it is said to be an element of the 2-group-
cohomology. Let us first define what n-cochains Cn(H, A) are[9]. Using the
same notation earlier, group G is the extension of group H by the Abelian
normal subgroup A. Let A be a H-module, ie.

∃ ψ : H × A −→ A (A.1)

, or equivalently
∃ ψ : H −→ Aut(A) (A.2)

n-cochains are then

Cn(H, A) = {functions : Hn −→ A} = ψ(h, a1) + ψ(h, a2) + ... + ψ(h, an)
(A.3)

We can define a coboundary operator δn+1[9]

δn+1 : Cn(G, A) −→ Cn+1(G, A)

(δn+1ω)(g1, ..., gn+1) = g1 ·ω(g2, ..., gn+1) +
n

∑
r=1

(−1)rω(g1, ..., gr−1, grg− r + 1, ...)

+ (−1)n+1ω(g1, ..., gn)

(A.4)

Here, ω is a generalization of the previous twisting element. It can be shown
that[9]

δn+1 ◦ δn = 0 (A.5)
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Hence, we named it the coboundary operator. Using this, we can write
down a short exact sequence,

... δ3

←− C2 δ2

←− C1 δ1

←− C0 (A.6)

Now the group cohomology is

Hn(H, A) =
Zn(H, A)

Bn(H, A)
(A.7)

, where, consistent with usual notations in de Rahm cohomology[9],

Zn(H, A) = Ker(δn+1) n-cocycle

Bn(H, A) = Im(δn+1) n-coboundary
(A.8)

Note the special case B0(H, A) = 0. We will see a very similar structure for
simplicial cohomology. Firstly, an n-simplex is defined to be the smallest
convex set in Rn+1 containing (n + 1) independent points.

σn = [P0, ..., Pn] (A.9)

Triangulation which is essential to the construct of simplicial cohomology is
defined to be the pair (∆, f ) with f being the hemeomorphism f : |∆| for
any topological space X, where |∆| is the collection of simplices[9]. We can
again define boundary operators

∂r : Cr(∆) −→ Cr−1(∆) (A.10)

Again the nilpotency condition is satisifed[9] to justify the name

∂r ◦ ∂r+1 = 0 (A.11)

With Cr(∆) = Z {σr}, we can write down the short exact sequence

0 id−→ Cn(∆)
∂n−→ Cn−1(∆)

∂n−1−−→ Cn−2(∆)... (A.12)

In conclusion, extensions of groups have a cohomology, and by approximat-
ing group manifolds using simplices increasingly accurately, we complete
the group short exact sequence. In other words, geometry and group theory
go hand in hand.
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[6] Clay Córdova, Thomas T. Dumitrescu, and Kenneth Intriligator. Explor-
ing 2-group global symmetries. Journal of High Energy Physics, 2019(2),
feb 2019.

[7] Andriy Haydys. Introduction to gauge theory, 2019.

[8] John McGreevy. Generalized symmetries in condensed matter. Annual
Review of Condensed Matter Physics, 14(1):57–82, mar 2023.

[9] M. Nakahara. Geometry, Topology, and Physics. Geometry, Topology, and
Physics. Institute of Physics Pub., 2003.

[10] K. Ohmori, H. Shimizu, Y. Tachikawa, and K. Yonekura. Anomaly
polynomial of general 6d SCFTs. Progress of Theoretical and Experimental
Physics, 2014(10):103B07–103B07, oct 2014.

38



Bibliography

[11] Renzo Ricca and Bernardo Nipoti. Gauss’ linking number revisited.
Journal of Knot Theory and its Ramifications, 10, 10 2011.

[12] Sakura Schafer-Nameki. Ictp lectures on (non-)invertible generalized
symmetries, 2023.

[13] David Tong. Lecture Notes on Gauge Theory.

[14] Edward Witten. Quantum field theory and the Jones polynomial. Com-
munications in Mathematical Physics, 121(3):351 – 399, 1989.

39


	Contents
	Introduction
	Topological Operators and p-Form Symmetries
	0-Form Symmetry
	Noether's Theorem
	Topological Operators and 0-Form Symmetry

	1-Form Global Symmetries
	U(1)(1) Theory
	Coupling to Background Gauge Field

	p-Form Global Symmetries
	Linking Number
	Generalizing to p-Form
	Periodic Scalar Field


	Symmetries and Anomalies in Unitary Gauge Theory
	Gauge Theory Background
	Dirac Monopole
	Axion Field

	4d U(1) Maxwell
	U(1)(1)  U(1)(1)
	Coupling to Background Gauge Fields and Anomaly
	Spontaneous Symmetry Breaking

	Anomaly Inflow in p-Form Electromagnetism

	Higher Group and Anomaly Cancellation
	Nested Structure and Hierarchy Constraint
	2-Groups
	2-group Structure in QED

	3-Groups
	4d Axion SU(N)


	Categorical Structure and Higher Charges
	n-Category
	Higher Charges
	p-Charge
	Higher Representation

	A Toy Model of Non-Invertible Symmetry

	Summary
	Acknowledgments
	Appendix
	Group Cohomology and Simplicial Cohomology

	Bibliography

