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Notation: The 3D incompressible Euler fluid

The equations for Eulerian fluid velocity u in 3D are

Du

Dt
= −∇p , with

D

Dt
=
∂

∂t
+ u · ∇ and div u = 0

Taking the curl yields the vorticity stretching equation ($ = curl u)

D$

Dt
= $ · ∇u = S$

The vortex stretching vector is S$ with S = 1
2(∇u +∇uT ), or

Sij = 1
2 (ui,j + uj,i)

and preservation of div u = 0 determines the pressure p as

−∆p = ui,juj,i =: |∇u|2 = TrS2 − 1
2 $

2 ,

aka Okubo-Weiss formula
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The 3D Rotating, Stratified, Compressible Euler fluid

The equations for Eulerian fluid velocity u and density ρ in 3D are

Du

Dt
− u× 2Ω︸ ︷︷ ︸

Coriolis

=: F = −ρ−1∇p− g∇z︸ ︷︷ ︸
Pressure & Gravity

with
Dρ−1

Dt
= ρ−1div u

Taking the curl yields the equation for total vorticity

Total Vorticity ω := ρ−1(curl u + 2Ω)

Dω

Dt
= ω · ∇u + W︸ ︷︷ ︸

Vortex stretching

with W := ρ−1curl F

The extra vortex stretching vector vanishes (W ≡ 0) for

(1) Barotropic compressible fluids (F = −∇(h(ρ) + gz)) and

(2) Incompressible Euler fluids (F = −∇p)
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Dynamics of Vorticity vs Relative Alignment

1) Even when W ≡ 0 the gradient ∇F still matters in the evolution of the

total vorticity stretching term (ω · ∇u) with ω := ρ−1(curl u + 2Ω).

2) The orientation of total vorticity arises from 1st time derivative Dω/Dt

Dω

Dt
= (ω · ∇u) when W ≡ 0

3) The alignment (ω ·∇u) is governed by the 2nd time derivative D2ω/Dt2

D2ω

Dt2
=
D(ω · ∇u)

Dt
= ω · ∇

(
F + u× 2Ω

)
when W ≡ 0

4) We focus on the dynamics of relative alignment or vortex stretching (ω·∇u), in

addressing questions such as, “How long does the vorticity stay aligned?”
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Ertel’s Theorem (1942)

Theorem: (Ertel 1942) If ω satisfies the 3D vortex stretching equation, then

an arbitrary differentiable function µ satisfies

D

Dt
(ω · ∇µ) = ω · ∇

(
Dµ

Dt

)
.

Proof: In characteristic (Lie-derivative) form, vorticity stretching is

D

Dt

(
ω · ∂

∂x

)
=

(Dω

Dt
− ω · ∇u

)
· ∂
∂x

= 0 along
dx

dt
= u(x, t)

So ω · ∂
∂x(t) = ω · ∂

∂x(0) (Cauchy 1859) and the derivatives commute[
D

Dt
, ω · ∇

]
= 0

Hence, Ertel’s theorem follows.

Corollary: Dµ/Dt = 0 implies D(ω · ∇µ)/Dt = 0 (e.g. PV in GFD).
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Some Ertel references

• Ertel; Ein Neuer Hydrodynamischer Wirbelsatz, Met. Z. 59, 271-281, (1942).

• Hoskins, McIntyre, & Robertson; On the use & significance of isentropic po-

tential vorticity maps, Quart. J. Roy. Met. Soc., 111, 877-946, (1985).

• Ohkitani; Eigenvalue problems in 3D Euler flows,

Phys. Fluids, A5, 2570, (1993).

• Viudez; On the relation between Beltrami’s material vorticity and Rossby-

Ertel’s Potential, J. Atmos. Sci. (2001).
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More about rotating Euler fluids

Applying D
Dt time derivative to Dω

Dt − ω · ∇u = W := ρ−1curl F yields

D2ω

Dt2
= ω · ∇

(
F + u× 2Ω︸ ︷︷ ︸

Coriolis

)
+

(
DW
Dt

−W · ∇u︸ ︷︷ ︸
W is also stretched

)

For incompressible and barotropic rotating Euler flows W ≡ 0 and

Dω

Dt
= ω · ∇u︸ ︷︷ ︸
Alignment #1

&
D2ω

Dt2
=
D(ω · ∇u)

Dt
= ω · ∇

(
F + u× 2Ω

)︸ ︷︷ ︸
Alignment #2

Alignment Dynamics #1 & #2

Alignment #1 of ω with gradient ∇u is vortex stretching, which drives ω

Alignment #2 of ω with gradient ∇(total force) drives ω · ∇u

Alignment #2 is Ohkitani’s relation for Ω = 0 & F = −∇p (incompress)
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Rotation affects density dynamics in barotropic fluids

The Vortex Stretching and Ohkitani relations are the 1st & 2nd time-derivatives

Vortex Stretching:
Dω

Dt
= ω · ∇u︸ ︷︷ ︸

Alignment #1
ω := ρ−1(curl u + 2Ω)

Ohkitani relation:
D2ω

Dt2
=
D(ω · ∇u)

Dt
= ω · ∇

(
F + u× 2Ω

)︸ ︷︷ ︸
Alignment #2

Finally, for barotropic F = ∇(h(ρ) + gz) we need density dynamics

Dρ−1

Dt
= ρ−1div u

Coriolis force affects the 2nd-time-derivative of specific volume ρ−1,

D2ρ−1

Dt2
= ρ−1

(
(div u)2 − |∇u|2 + div (F + u× 2Ω)︸ ︷︷ ︸

Rotation in D2ρ−1/Dt2

)
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Coriolis effects in compressible rotating shear layers
B. J. Geurts, DDH and A. K. Kuczaj, ECT11 2006

DNS show that rotation can modulate turbulence at low Mach number.

In rotating shear layers, 2D and 3D tendencies compete, thereby causing

(1) Formation of columns of vorticity that oscillate and

(2) Nonmonotonic decay rate of kinetic energy
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Dynamics of alignment of total vorticity with axis of
rotation Ω = Ω0ẑ in compressible shear layers

Use Ertel’s theorem to find evolution of ωz := ẑ · ω with ω = curl u + 2Ω

Dωz
Dt

− ω · ∇uz = Wz := ρ−1ẑ · curl F
and hence

D2ωz
Dt2

= ω · ∇Fz +

(
DWz

Dt
−W · ∇uz

)
where

F := −2Ω0ẑ×u−(RoM−2)ρ−1∇p−ν∆u and Fz = −(RoM−2)ρ−1∂p

∂z
− ν∆uz

These alignment evolution equations govern the transition to columnar motion

demanded by the Taylor-Proudman theorem.

The mechanism for transition to columnarity is likely to involve vortex

merger along the axis of rotation.
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Outline for the rest of the talk
(Retreat back to Euler’s equations)

1. Use Ohkitani’s relation to derive vorticity frame dynamics and align-

ment dynamics for Euler’s equations.

2. Use Ertel’s theorem to derive Lagrangian dynamics of the Frenet-Serret

curvature and torsion of vortex lines

3. Represent total vorticity alignments as quaternionic products denoted ~

ω̂ · ∇u =: Sω̂ = α ω̂ + χ× ω̂ = [α, χ] ~ [0, ω̂]

ω̂ · ∇
(
F + u× 2Ω

)
=: P ω̂ = αp ω̂ + χp × ω̂ = [αp, χp] ~ [0, ω̂]

4. Derive dynamics of quaternions ζ = [α, χ] driven by ζp = [αp, χp]

Dζ

Dt
+ ζ ~ ζ + ζp = 0 (Ricatti equation)

5. Apply this structure to Lagrangian-averaged models of rotating fluid turbulence
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Define vorticity growth rate (α) and swing rate (χ)

Euler’s equations imply material rates of change of |ω| and ω̂ given by

Dω

Dt
= Sω with Sω̂ = α ω̂ + χ× ω̂ = (Sω̂)|| + (Sω̂)⊥

• The scalar α = ω̂ · Sω̂ is the vorticity growth rate

D|ω|
Dt

= α |ω|
α > 0 stretching

α < 0 shrinking

• The 3-vector χ = ω̂ × Sω̂ is the vorticity swing rate

Dω̂

Dt
= χ× ω̂ , ω̂ × Dω̂

Dt
= χ (frequency)

Remark: If ω aligns with an eigenvector Sω̂ = λ ω̂, then χ = 0.

For such alignment, the vorticity direction is frozen into the flow.
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Lagrangian frame dynamics: tracking the orientation of
vorticity following a fluid particle

t1

•
6

ω̂

����χ̂
-̂
ω × χ̂

t2

•��
���

ω̂

XXXz

ω̂ × χ̂
���:

χ̂
-

��:

The figure shows a vortex line at two times t1 & t2, the Lagrangian trajectory

of one of its vortex line elements, and the orientations of the orthonormal frame

{ω̂, χ̂, (ω̂ × χ̂)} attached to it at the two times.
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The Trouble with pressure in Alignment Dynamics

•Vorticity is driven by S−Alignment (Vorticity stretching)
Dω

Dt
= Sω = αω + χ× ω

• S−Alignment is driven by P−Alignment (Ohkitani)
DSω

Dt
= −Pω = −αpω − χp × ω

The same form holds for incompressible Euler fluids and

u = curl−1ω, trP = ∆p = − |∇u|2.

• Incompressibility summons the pressure Hessian P .

•The pressure solve is spatially nonlocal, not evolutionary.

•Dropping pressure would mean D2ω
Dt2

= DSω
Dt = 0.

This would freeze alignment Sω = λω with Dλ
Dt = −λα
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[ ||, ⊥] Alignment variables [α, χ] & [αp, χp]

6

ω̂

�
�

�
���

Sω̂

��
����χ̂

- ω̂ × χ̂
6

ω̂








�

P ω̂

Q
Q

Qs χ̂p

���: ω̂ × χ̂p

Sω̂ lies in the (ω̂, ω̂ × χ̂) plane and P ω̂ in the (ω̂, ω̂ × χ̂p) plane

Sω̂ = α ω̂ + χ× ω̂ , P ω̂ = αp ω̂ + χp × ω̂

where (α, χ) & (αp, χp) define Sω̂ & P ω̂ as stretched & rotated ω̂

α = ω̂ · Sω̂ , χ = ω̂ × Sω̂ ,

αp = ω̂ · P ω̂ , χp = ω̂ × P ω̂ =: −c1χ̂× ω̂ − c2χ̂
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Evolution of vorticity alignment

For the Euler fluid, we have

Dω

Dt
= Sω &

D2ω

Dt2
= −Pω

where Sω̂ = α ω̂ + χ× ω̂ and P ω̂ = αp ω̂ + χp × ω̂

As we know, P -alignment drives S-alignment. That is,

DSω

Dt
= −Pω or

D

Dt
(αω + χ× ω) = − (αpω + χp × ω)

A direct calculation shows that P -parameters [αp, χp] drive S-parameters [α, χ]

in the following alignment-parameter dynamics

Dα

Dt
+ α2 − χ2 = −αp and

Dχ

Dt
+ 2αχ = −χp

Later we’ll interpret alignment-parameter dynamics as one quaternionic equation.
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[ ||, ⊥] decomposition ⇔ quaternionic multiplication

Seek alignment-parameter dynamics of growth rate (α) and swing rate (χ) in

Sω̂ = α ω̂ + χ× ω̂ = (Sω̂)|| + (Sω̂)⊥

for a combined scalar and vector quantity denoted

ζ = [α, χ] = [ω̂ · Sω̂, ω̂ × Sω̂]

Rewrite [ ||, ⊥] decomposition of Sω̂ as quaternionic multiplication ~

[0, Sω̂] = [α, χ] ~ [0, ω̂]

where the product ~ : Q×Q → Q is defined in components by

p ~ q =
[
pq − p · q , pq + pq + p× q

]
for p = [p, p] , q = [q, q]

Check the p ~ q multiplication with p = [α, χ] and q = [0, ω̂]

[α, χ]~ [0, ω̂] = [α0−χ · ω̂, αω̂ +χ0+χ× ω̂] = [0, α ω̂ +χ× ω̂] = [0, Sω̂]
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Quaternionic form of Euler’s equations (Gibbon, 2002)

Define velocity & pressure quats U & Π and the 4-derivative ∇ as

U = [0,u] Π = [p, 0] ∇ = [0,∇]

Then Euler’s fluid equation is written in quaternionic form as

DU
Dt

= −∇ ~ Π

The vorticity quat Ω is formed from

∇ ~ U = [−div u , curl u] = [0,ω] =: Ω

Operating with ∇~ on Euler’s equation above produces

[∆p, 0] =
[
− |∇u|2 , Dω

Dt
− Sω︸ ︷︷ ︸

Vortex stretching

]

Identifying terms yields ∆p = − |∇u|2 and Euler’s vorticity equation.
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Theorem: The vorticity quat Ω(x , t) = [0, ω] satisfies

DΩ

Dt
= ζ ~ Ω (Frozen-in quat field)

D2Ω

Dt2
+ ζp ~ Ω = 0 (Ohkitani’s relation)

where ζ = [α, χ] and ζp = [αp, χp ].

Consequently, the growth & swing rate quat ζ(x , t) = [α, χ] satisfies

Dζ

Dt
+ ζ ~ ζ + ζp = 0

Remark: The ζ-equation is a Ricatti equation driven by ζp which, in turn,

depends on the other variables through the pressure Hessian P .

The growth/swing rate quat ζ(x , t) = [α, χ] evolves by quadratic nonlinearity

and is driven by the P−alignment quat ζp = [αp, χp ].
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Proof:
DΩ

Dt
= [0, αω + χ× ω︸ ︷︷ ︸

Sω

] = [α ,χ] ~ [0, ω] = ζ ~ Ω .

Pω = αpω + χp × ω ⇒ [0, Pω] = ζp ~ Ω

Use Ertel’s Theorem to express Ohkitani’s relation as

D2Ω

Dt2
=
D

Dt
[0, Sω] = −[0, Pω] = − ζp ~ Ω

Compare this relation with D2Ω/Dt2 = D/Dt(ζ ~ Ω) to find

0 =
Dζ

Dt
~ Ω + ζ ~ (ζ ~ Ω) + ζp ~ Ω

The Ricatti equation for ζ follows, because ~ is associative. �
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Quaternion alignment dynamics in components

The alignment equation for quats ζ = [α, χ] with ζp = [αp, χp ] is

Dζ

Dt
+ ζ ~ ζ + ζp = 0

Recall the components of the quat multiplication rule

p ~ q = [pq − p · q , pq + qp + p× q]

So ζ ~ ζ = [α2−χ2, 2αχ] in components & the alignment variables α, χ are

driven by αp, χp according to alignment-parameter dynamics

Dα

Dt
+ α2 − χ2 + αp = 0 and

Dχ

Dt
+ 2αχ + χp = 0

where Sω̂ = α ω̂ + χ× ω̂ and P ω̂ = αp ω̂ + χp × ω̂

Dω

Dt
= Sω & ω = curlu ,

DSω

Dt
= −Pω & trP = − |∇u|2

Ricatti equations also arise in velocity-gradient dynamics.
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Alignment dynamics in polar coordinates

In polar coordinates given by the stretching rate along ω̂ as the radius r =

(α2+χ2)1/2 = |Sω̂| and the angle θ = tan−1 χ/α of rotation about the comoving

χ̂ axis from ω̂ to Sω̂, the alignment dynamics derived from

DSω

Dt
= −Pω

becomes, upon using

Sω̂ = α ω̂ + χ χ̂× ω̂ = r(cos θ ω̂ + sin θ χ̂× ω̂) ,

the 2× 2 system in polar coordinates,

D

Dt

sin θ

r
+ cos 2θ =

αp
r2

D

Dt

cos θ

r
− sin 2θ =

χ̂ · χp

r2

where one recalls that χ̂ · χp = −c2 and θ = 0 is perfect alignment.

Imperial College London, March 26, 2007 23



Darryl D. Holm, Imperial College London & LANL

A simple solution: the Burgers vortex

The most elementary Burgers vortex solution is (with γ0 = const)

u = (−1
2γ0x + ψy, −1

2γ0y − ψx, zγ0) ⇒ ω = (0, 0, ω3)

ω 3(r, t) = eγ0tω0

(
r e

1
2γ0t

)
(note exponential growth)

Thus, for the Burgers vortex one computes

α = γ0 , χ = 0 , αp = − γ2
0

ζ = [γ0, 0] ζp = −[γ2
0, 0]

Conclusions: Burgers tubes/sheets are scalar objects: they don’t swing.

(In fact, they are steady solutions of the ζ-equation.)

When tubes & sheets bend then χ 6= 0 and ζ becomes a full quat driven by ζp
which is coupled back through the pressure Hessian P .
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When do [α, χ] quat equations arise in fluids?

• The Euler equation Du
Dt = F with vorticity $ := curl u implies

D$

Dt
= $ · ∇u + W with W :=

1

ρ
curl F

• These produce an Ertel Theorem and Ohkitani relation[D
Dt

, $ · ∇
]

= W , so
D2$

Dt2
= $ · ∇F +

(
DW
Dt

−W · ∇u

)
• If W = 0, then $ · ∇ is a Frozen-in Vector Field

• In turn the frozen-in property produces orthonormal Frame Dynamics for

$̂, whose alignment parameters will satisfy Quaternion equations.

•Other examples:
(1) Rotating fluid flow (both incompressible and barotropic)
(2) Lagrangian Averaged Euler-alpha (LAE−α) equations
(3) A surprise lurks in barotropic fluid dynamics – oscillations!
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Lagrangian Averaged Euler-alpha (LAE−α) model

Lagrangian averaging preserves Kelvin’s circulation theorem, which leads to a

frozen-in vector field and thereby produces Ertel’s theorem.

The LAE−α motion equation is

Dv

Dt
+∇uT · v = −∇p for v = u− α2∆u and ∇ · u = 0

or, in Kelvin circulation form,

D

Dt
(v · dx) = −dp along

Dx

Dt
= u

Stokes-ing (or taking d) and ∇ · u = 0 yield a Frozen-in Vector Field
D$

Dt
= $ · ∇u for $ = ∇× v
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Ertel Theorem & Ohkitani relation for LAE−α

The LAE−α motion equation may also be written using u = G ∗ v as

Du

Dt
= F = −G ∗ (∇p + 4α2∇ · ΩS)

where 2Ω = ∇u − ∇uT and G∗ = (1 − α2∆)−1 denotes convolution with the

Greens function for the Helmholtz operator.

The Ertel Theorem and Ohkitani relation for LAE−α are then[D
Dt

, $ · ∇
]

= 0 , and
D

Dt
($ · ∇u) =

D2$

Dt2
= $ · ∇F

where $ = ∇× v and v = (1− α2∆)u

The rest (Dynamics of Vorticity Frames and Quaternionic Alignment
Parameters) follows the pattern of Euler fluids.
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Velocity gradients obey tensor Ricatti equations

Hessian P drives a tensor Ricatti equation for velocity gradients M

For velocity gradient (M = ∇u) and pressure Hessian (P = ∇∇p) Euler implies

DM

Dt
+ M2 = −P , and div u = 0 = tr M ⇒ tr P = − tr (M2)

We also found a Ricatti equation for the alignment-parameter dynamics

Dα

Dt
+ α2 − χ2 = −αp and

Dχ

Dt
+ 2αχ = −χp

where Sω̂ = α ω̂ + χ× ω̂ and P ω̂ = αp ω̂ + χp × ω̂

The alignment equation for quats ζ = [α, χ] with ζp = [αp, χp ] is

Dζ

Dt
+ ζ ~ ζ = −ζp

for which determining the Hessian P was a limiting factor.
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Algebraic pressure closures may enhance quat equations

DM

Dt
+ M2 = −P , and div u = 0 = tr M ⇒ tr P = − tr (M2)

Coarse-grained Lagrangian averaging requires closure for P.

The Restricted Euler & Tetrad model imposes algebraic pressure

[[
P = − G

tr G
tr (M2)

]]
, then they model the evolution of G = GT .

The most general closure for the dynamics of G of this type is

P = −
[ N∑
β=1

cβ
Gβ

tr Gβ

]
tr (M2) , with

N∑
β=1

cβ = 1 , Gβ = GTβ
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Some references for Restricted Euler dynamics

• Vieillefosse,

Internal motion of a small element of fluid in an inviscid flow. Physica A, 125,

150-162, (1984). (cf. Léorat, Thèse de Doctorat, Université Paris-VII, 1975.)

• Cantwell,

Exact solution of a restricted Euler equation for the velocity gradient tensor.

Phys. Fluids, 4, 782-793, (1992).

• Chertkov, Pumir & Shraiman,

Lagrangian quat dynamics and phenomenology of turbulence.

Phys. Fluids, 11, 2394, (1999).

• Zeff, Lanterman, McAllister, Roy, Kostelich & Lathrop,

Measuring intense rotation and dissipation in turbulent flows.

Nature, 421, 146-149, (2003).

• Chevillard & Meneveau, Lagrangian dynamics and statistical geometric

structure of turbulence. Phys. Rev. Lett., 97, 174501, (2006).
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Restricted Euler closure as a Riemannian metric

Under the Lagrangian flow map φt : X → x(t), P transforms as a metric

ds2 = P(t) dx(t)⊗ dx(t) = φt ◦
(
P(0) dX ⊗ dX

)
.

A Riemannian metric in the Lagrangian reference configuration transforms as1

G(t) = D−1(t)G(0)D−1(t) ,

where D(X, t) = ∂x/∂X with det(D) = 1 & [ D−1(t)dx(t) ]˙ = [ dx(0) ]˙ = 0.

Set P proportional to the frozen-in metric G(t) as

P = − G(t)

tr G(t)
tr (M2) ,

(1) G(t) = Id recovers the restricted Euler equations of Vieillefosse, Cantwell, etc.

(2) G(0) = Id recovers the mean flow part of the Chertkov et al. tetrad model.

1The metric G(t) is called the Finger tensor in nonlinear elasticity.
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Alignment issues in rotating turbulence

•Dynamics of Euler velocity gradients (sym and antisym parts)

• Pressure Hessian

• Lagrangian orthonormal frames

• Ricatti equations

• Extra vortex stretching / forcing

•Dynamics of transition to Taylor-Proudman alignment?

• Approaches

– Lagrangian coarse-graining / averaging

– Algebraic pressure closures

• Next steps?
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Thank you!
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Figure 1: The PDF of cos(θ) for DNS of NSeqns. The solid, dotted and the dash-

dotted lines refer to maximum, middle and minimum eigenvalue, respectively.
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Figure 2: The PDF of cos(θ) for DNS with α = 0 (a) and 1/32 (b). The solid, dotted and the

dash-dotted lines refer to maximum, middle and minimum eigenvalue, respectively.
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Figure 3: Snapshot of the vertical component of vorticity ωz = ω · ẑ in

the developed regime at t = 90 for a nonrotating flow (Ro = ∞).

Red (ωz > 0), Blue (ωz > 0). This is turbulent mixing.
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Figure 4: Snapshot of the vertical component of vorticity ωz = ω · ẑ in

the developed regime at t = 90 for a rotating flow at Ro = 1/10.

Red (ωz > 0), Blue (ωz > 0). The flow is nearly columnar.
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Figure 5: Decay of kinetic energy at low (a) and high (b) rotation rates.

In (a) Ro = ∞ (solid), Ro = 10 (dashed), Ro = 5 (dash-dotted);

in (b) Ro = 1 (solid), Ro = 0.5 (dashed) and Ro = 0.2 (dash-

dotted).
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