Energy flux to subgrid scales as obtained from particle tracking

Beat Lüthi & Søren Ott Jacob Berg Jakob Mann

Risø National Laboratory Denmark/DTU

Motivation

\tilde{A}_{ii} properties

- Borue V. and Orszag S.A. (1998) Local energy flux and subgrid-scale statistics in three-dimensional turbulence, J. Fluid Mech., 366, 1–31.
- Chertkov M., Pumir A. and Shraiman B. I. (1999) Lagrangian tetrad dynamics and the phenomenology of turbulence, Phys. Fluids, 11(8), 2394-2410.
- Tao B., Katz J. and Meneveau C. (2002) Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements, J. Fluid Mech. 457, 35–78.
- van der Bos F., Tao B., Meneveau C. and, Katz J. (2002) Effects of small-scale turbulent motions on the filtered velocity gradient tensor as deduced from holographic particle image velocimetry measurements, Phys. Fluids, 14(7), 2456–2474.

LES context

- Pope S. B. (2004) Ten questions concerning the large-eddy simulation of turbulent flows, New J. Phys., 6, 35.
- Wang B. C and Bergstrom D. J. (2005) A dynamic nonlinear subgrid-scale stress model, Phys. Fluids, 17,035109.

What can 3D-PTV contribute? so far: HPIV, 2D PIV, DNS

Content of this presentation

- •3D particle tracking
- •filtered derivatives
- energy flux how to decompose/represent it
 energy flux from PTV & nonlinear model
 correction for nonlinear model
 conclusions

Main idea of 3D-PTV

to follow a 3D (!) particle position as opposed to 2D PIV!

T. Chang and G. Taterson. Application of image processing to the analysis of three-dimensional flow fields. *Opt. Engng*, 23:283–287, 1983.

R. Racca and J. Dewey. A method for automatic particle tracking in a three-dimensional flow field *Experiments in Fluids*, 625–32, 1988.

Marko Virant and Themistocles Dracos. 3D PTV and its application on Lagrangian motion. Meas. Sci. Technol., 8:1529–1552, 1997.

Søren Ott and Jakob Mann. An experimental investigation of the relative diffusion of particle pairs in three dimensional turbulent flow. J. Fluid Mech., 422:207–223, 2000.

A. La Porta, Greg A. Voth, Alice M. Crawford, Jim Alexander, and Eberhard Bodenschatz. Fluid particle accelerations in fully developed turbulence. *Nature*, 409:1016–1017, Feb. 2001. Beat Lüthi, Arkady Tsinober, and Wolfgang Kinzelbach. Lagrangian measurement of vorticity dynamics in turbulent flow. *I. Fluid Mech.*, 528:87–118, 2005.

Mickaël Bourgoin, Nicholas T. Ouellette, Haitao Xu, Jacob Berg, and Eberhard Bodenschatz. Pair Dispersion in Turbulence. *Science*, 311:835–838, 2006.

Jacob Berg, Beat Lüthi, Jakob Mann, and Søren Ott. An experimental investigation: backwards and forwards relative dispersion in turbulent flow. *Phys. Rev. E*, 74(1):016304, 2006.

started 1983

List of technical aspects

- •flow tracers
- •illumination
- •cameras
- •observation volume
- •camera callibration
- •particle detection
- •from 2D to 3D positions
- •particle tracking

Flow tracers

high tech, accurate, expensive:

low tech, accurate, cheap:

Idea: Søren Ott & Jakob Mann, Risø, Denmark fly ash→sieving→Ø50-60µm

Illumination

Lorenzo del Castello, Herman Clercx

trend towards smarter solutions

Fast digital cameras

pixel: 500x500 frame rate: 50Hz

pixel: 1000x1000 frame rate: 5000Hz or pixel: 250x250 frame rate: 80'000Hz

data storage is main bottelneck

Camera callibration

teach the cameras with know grid pointsproblem: how to have space filling target?solution in part: callibration on flow tracers

From 2D to 3D position

callibration and 2D position accuracy, seeding density, etc.

Tracking through consequtive images

tracking criteria: particle must not travel further than their typical spacing

Many dependencies, many choices...

Final output is the start for analysis

if all goes well, one can finally start 'learning' about the flow

Velocity derivatives

differentiate convoluted velocity field to get velocity derivatives

challenge to get HIGH SEEDING DENSITY

((. (-)0

$$\tilde{\boldsymbol{u}}(\boldsymbol{x}) \approx \frac{4\pi (\Delta/2)^3}{3n} \sum_{\boldsymbol{x}' \in B_{\Delta}(\boldsymbol{x})} \rho_{\Delta}(\boldsymbol{x} - \boldsymbol{x}') \, \boldsymbol{u}(\boldsymbol{x}') \qquad \rho_{\Delta}(r) = \begin{cases} \frac{15((\Delta/2)^2 - r^2)}{8\pi (\Delta/2)^5} \text{ for } r \leq \Delta/2\\ 0 & \text{ for } r > \Delta/2 \end{cases}$$

$$\tilde{A}_{ij}(\boldsymbol{x}) \approx \frac{20}{(n-1)\Delta^2} \sum_{\boldsymbol{x'} \in B_{\Delta}(\boldsymbol{x})} (x'_j - x_j) u_i(\boldsymbol{x'}).$$

B. Lüthi ETH, Søren Ott Risø, Jacob Berg, Jakob Mann

Particle seeding, scales?

Velocity gradients

Velocity gradients

Self amplification

Structure

RQ invariant maps

LES context

Figure 3. Streamfunction contours of the average velocity field and mean streamwise velocity profiles at ten downstream positions ($(\operatorname{Re}_{S_hb})_t \approx 2800$). Positive streamfunction values appear in red, negative values in blue. Edges of mean flow recirculation zones. — Present LES, — DNS by Peller & Manhart.¹

Jörg Ziefle, Kleiser LES group ETH

Definition of SGS TKE production rate¹ or 'energy flux'

$$\bar{u}_{i,i} = 0,$$

$$\dot{\bar{u}}_i + (\bar{u}_i \bar{u}_j)_{,j} = -\bar{p}_{,i}/\rho - \tau_{ij,j} + \nu \bar{u}_{i,j}$$

$$\tau_{ij} = \overline{u_i u_j} - \overline{u}_i \overline{u}_j$$
$$\tau_{ij}^* = \tau_{ij} - \frac{\delta_{ij}}{3} \tau_{kk}$$

 $\mathcal{P}_r \!=\! - \, au_{ij}^* \overline{S}_{ij}$

also referred to as:

energy fluxSGS dissipation

¹S. B. Pope, *Turbulent Flows* (Cambridge University Press, Cambridge, 2000).

Role of PTV for LES?

- holographic PIV, Tao et al. 2002, van der Bos et al. 2002
 sonic anemometer array, Higgins et al. 2003
 3D-PTV
- check SGS modeling assumptionscheck is possible in real flows

Energy flux from 3D-PTV

mean flux $\sim 0.7~\epsilon$

Tao et al. 2002: mean flux > 2 ε

how to trust flux? analysis and sources of error?

Chumakov 2006 JFM also introduces q*

Contributions to flux

most important τ_1 least important τ_2

Alignment of τ_{ij} to s_{ij}

- τ_1 , τ_3 most relevant
- τ_1 aligned with λ_3
- τ_2, τ_3 perpendicular to λ_3

Flux in terms of RQ

van der Bos et al. 2002, Physics of Fluids 14(7) holographic PIV

Flux in terms of RQ

 $\langle \tau_{ij} S_{ij} \rangle / (2\nu \langle s^2 \rangle) \cdot p(R,Q)$

Flux in terms of RQ

public data from Biferale, Boffetta, Toschi etc.

Smagorinsky, nonlinear, mixed, ...

scalar eddy viscosity:related to strainno backscatter possiblestable

tensor eddy viscosity:related to strain and vorticity productionallows for 'backscatter'is unstable

 $\tau_{ij}^{\text{smag},d} = -2c_s^2 \Delta^2 |\tilde{S}| \tilde{S}_{ij},$ $\tau_{ij}^{nl} = c_{nl} \Delta^2 \tilde{A}_{ki} \tilde{A}_{kj},$ $\tau_{ij}^{\text{mix}} = c_{nl-m} \Delta^2 \tilde{A}_{ki} \tilde{A}_{kj} - 2c_{s-m}^2 \Delta^2 |\tilde{S}| \tilde{S}_{ij}$

Validation : Eigenvalues of τ_{ii}

nonlinear model:
overestimates large τ₁
underestimates τ₂ and τ₃

Validation : Alignment of τ_{ij} to s_{ij}

Validation: Alignment of τ_{ij} to s_{ij}

nonlinear model:too deterministic

- •too little $\tau_1 \lambda_3$ alignment
- •too much $\tau_2 \lambda_1$ alignment

Flux error in terms of RQ

Flux error in terms of RQ

Possible correction for nonlin. model

Possible correction

Fig. 3. Normalized prediction error density $\Delta \Pi / \langle 2\nu s^2 \rangle \cdot p(R,Q)$ for a) the nonlinear model and b) for the corrected nonlinear model. Yellow to red colours denote over prediction of back-scattering or to weak energy flux from large to small scales, and light to dark blue colors show where energy flux from large to small scales is too strong.

Conclusion

- •particle tracking can access (LES) energy flux
- •can be used to study SGS models
- •e.g. the 'nonlinear model'
- •we find systematic misalignment
- •'corrected model' has less flux error

•need&possibility for more specific experiments