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introduction: ideal turbulence and non-ideal turbulence
— ideal turbulence: constant flux steady state (Kolmogorov theory)
— generalization: time-dependent flux (local Kolmogorov theory)

— non-ideal turbulence: something else?



Models assume that the Kolmogorov theory is a permanent feature
of all or of some scales of motion.

We will focus on the consequence that at high Reynolds
number, large scales are independent of viscosity.

* k5 =¢/v>: v — 0 implies x,; — co while € is constant.

* Viscosity does not appear in models except at low Re.

Hypothetical Re dependence of Ck, skewness, ... is a different issue



example: the two-equation model

k=P —c¢ é=£(C€1P—C’€26)

where k is Kinetic energy of turbulent fluctuations, € is the dissi-
pation rate, and P is the (known) production.

— Any ‘property’ of turbulence can be estimated dimensionally:

E3/2 k
T = Cp=
€

L=CCg
€

— A possible conceptual improvement on mixing length models.



basic principle/belief/dogma
High Reynolds number ‘fixed point’ independent of x,;, v, Re.

— Speziale and Bernard contradicted this assumption by proposing
a Reynolds-number dependent model for high Reynolds turbulence.

— It allowed unbalanced vortex stretching (to be explained) in
* self-similar homogeneous decay

* self-similar growth of homogeneous shear flow.



present viewpoint:

— Although the Kolmogorov theory does not describe a permanent
feature of the small scales, it does describe an attractor. Thus:

* Unbalanced vortex stretching is possible in transients,

* but Kolmogorov phenomenology is recovered in self-similar flows.



analytical formulation

The statistical theory of turbulence derives (unclosed) spectral
evolution equation for homogeneous isotropic turbulence

E(k,t) = P(k,t) — T(k,t) — 2uk’E(k, t)

E is the energy spectrum, P is the (known) production spectrum,
and T is the nonlinear transfer.



moments of the evolution equation

The integrated quantities
o
/ dk E(k,t)
OOO
/O dk P(k,t)

©.@)
/o dk T(k,t) = 0 (energy conservation)

k kinetic energy

P production

o 2
/O dr 2vk2E(k,t) = e dissipation

satisfy the energy balance




exact dissipation rate equation

Take another moment: the exact equation for ¢ is

- 2 - 2 2
/O drk 2vk< E(k,t) = /O drk 2vk [P(m,t) —T(k,t) — 2k E(/ﬁl,t)}

Note
o 2
/ dk 2vk“E(k,t) = e dissipation: v{wpwp)
0 )
/O dk 2vk“P(k,t) =~ O
o
/ dkK 2um2T(m,t) = § vortex stretching: v{w;w;s;;)
o T :
/O dr 42k*E(k,t) = G ‘palinstrophy:’ v2(w; jw; ;)
T herefore,




problems posed by this equation

— In modeling, we expect to be near a Kolmogorov state so that
E(r) ~ €2/3575/3; kg = ¢/k3/2 < k € kg = (¢/v3)1/4

— ideal turbulence heuristic: limit k; — oo should be finite.

K

d
* Of course / vk E(k)dk ~ 1//12/3 ~el/3 o Iig is finite.

0

K
* but G = /O dV2144E(/<U)d/<; ~ V253l0/3 ~ H§/3 diverges with kg .

K K
* Also S = —/ dVKUQT(Ii>dI<V ~ [ 2ukeds ~ /15/3 diverges.

0 0
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Tennekes-Lumley analysis
— Elementary arguments suggest S ~ Rel/2(~ p1/2 < /4;5/3)
— Then Re-independence of ¢ requires also (& ~ Rel/?.
* In fact, much more is required: S — G ~ ReP (%),
* Certainly true in a steady state (Batchelor's skewness relation).

— But what can justify (%) in an unsteady problem?

— No theory answers this question (except ‘our theory,’ to be
explained.)
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— remark —
— Doering has shown that enstrophy production is at most O(Re3).
— The bound can be realized by a suitable initial condition.
— Steady state: enstrophy production is O (%Rel/2> = O(Re3/2).

— Steady state turbulence organizes itself so that enstrophy pro-
duction is much less than what the Navier-Stokes equations permit.

This is the consequence of a statistical hypothesis, not of NSE alone.
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unbalanced vortex stretching?
— Why hasn’'t the Tennekes-Lumley balance been justified?
— Perhaps because it does not occur.
— Imbalance ¢ = S — G = O(Rel/?) causes explosive growth of e.

— Speziale and Bernard explored this possibility through models
containing an unbalanced vortex stretching term

2
. € €
€ X Rel/z— = ,/—€
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present approach: study time-dependent isotropic
turbulence; some possible problems

— One steady state to another: step change, gradual change ....

— However, like laminar boundary layers, steady state turbulence
IS more common in theory than in practice.

— Can time-dependent but self-similar states exhibit Tennekes-
Lumley balance? Self-similarity fixes relations between all scales of motion.

— Consider a problem in which turbulence evolves from a steady
state to a state of self-similar growth.
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transient unbalanced vortex stretching
example 1: ramp flow

— Steady state isotropic turbulence is driven by forcing with linearly

increasing amplitude at a fixed length scale (Rubinstein, Clark,
Livescu, Luo; JoT).

— Turbulence evolves from a Kolmogorov steady state to a state
of self-similar asymptotic growth with e(¢) ~ P(t) ~ ¢t and k(t) ~
e(t)2/3 ~ ¢2/3. (in fact, e(t) ~ t — at—1/3)

— Studied problem by closure theory, single-point models, DNS.

15



spectral closure model

(Rubinstein and Clark, TCFD 2004)

E(k,t) = P(k,t) — (%]—“[E(m, )] — 2uk?E(k,t)

where

F=c{ [ du w?EGW [~ dp E@Ow) ~ [ dun® [T dp E20)0()r 2]

with evolution equation

(k) =1 — n(R)0(k)  1(k) = 0(x) /O du p2 E(u)

A simplified test-field model, enhanced Heisenberg model; sign of
JF is indefinite; consistent with equipartition. Compare Canuto-
Dubovikov model.
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two-equation model

: 3
2k

— Consistent with steady state and self-similar growth.
— Interesting because it assumes the Tennekes-Lumley balance.

— Preliminary studies by multiple equation models (Schiestel).
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transient unbalanced vortex stretching
example 1: ramp flow results

— Closure calculations (Tim Clark) show imbalance between S and
G during adjustment phase, with recovery of the T-L balance dur-
ing asymptotic growth.

— We also observe explosive growth of ¢ immediately before re-
establishment of the balance.

— DNS (Daniel Livescu) confirmed explosive growth phase, but the
calculations could not be continued to self-similar growth.
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sanity check - energy evolution
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Figure 1: Kinetic energy computed by CMSB-Smagorinsky model (solid)
compared to resolved energy (dotted).
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Figure 1. The ratio of production to dissipation in DNS (open symbols) and in the
two-equation model (closed symbols) at different ramp rates.



main conclusions
— Initial transient exhibits
* unbalanced vortex stretching with S/G > 1.
* rapid growth of € on rapid time scales of small scales of motion

— Recovery of balance S/G ~ 1 during self-similar growth.

10



example 2 (tentative): growing length scale
— Constant amplitude force at linearly growing scale.
— Difficult even with closure. Self-similarity was not achieved.

* Instantaneous decrease of S/G, followed by recovery.
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Figure 1: ratio S/G in forcing with linearly increasing forcing scale



transient unbalanced vortex stretching
example 3: periodically forced turbulence

— Steady state turbulence is perturbed by a force with periodically
varying amplitude (Lohse, van de Water, von der Heydt).

— The problem is characterized by the phase averages k and € and
the phase lags with respect to production, ¢, and ¢e.

— EDQNM calculations (Wouter Bos, Ecole Centrale Lyon) show
that € and ¢ depend strongly on Reynolds number.
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transient unbalanced vortex stretching
example 3: periodically forced turbulence results

At fixed Re, in the limit w — 0o, € ~ w1 :
frozen turbulence limit; oscillations do not reach small scales

But at fixed w, in the limit Re — 0o, ¢ ~ w >

No convergence of ¢ as Re — oc.
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summary: unbalanced vortex stretching and
Speziale-Bernard revisited

— The Speziale-Bernard model replaces the usual hypothesis

¢ = f(k,e,VU) by ¢ = f(k,e, VU, Re) in order to model unbalanced
vortex stretching.

* Not a low Re model, where Re effect disappears when Re — oo.
— T hey suggested Re dependence in self-similar decay and homoge-

neous shear. ‘It has been illustrated above that the occurrence of equilibrium

states with residual vortex stretching can have profound consequences for the
prediction of turbulent flows.’

— We beg to differ: in closure calculations Re dependence disap-
pears when(ever?) the turbulence becomes self-similar.
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— Speziale later modified this view:

‘...there is some validity to the belief that, in time, vortex stretching will
come into balance with the leading order part of the viscous destruction term.’
(ICASE/LaRC workshop 1991)

— Accordingly, Speziale proposed a linear relaxation model
S—Gx—(S—-G).

* It cannot explain the observation in ramp flow: initially S = G,
imbalance develops under transient forcing, then S = GG is restored
during self-similar evolution.
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unbalanced vortex stretching: present view
— Unbalanced vortex stretching is possible in any transient problem.
— Small scales are not in ‘equilibrium.’ subgrid modeling?

— Transient unbalanced vortex stretching makes finite dimensional
modeling impossible: the detailed dynamics of S and G become

relevant and involves moments of the spectrum of all orders.
cf. rarefied gas dynamics

— But the Tennekes-Lumley balance exists in all slowly varying and
self-similar (‘equilibrium’) flows.
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Tennekes-Lumley balance in slow evolution
(Woodruff and Rubinstein, JFM 2006)

— In a spectral closure model,

E(k,t) = P(k,t) — %f(m, t) — 2uk?E(k, t)

where F = F|[FE(k,t)] is some functional of E.

— Consider small, slow perturbations of a Kolmogorov steady state

9
0= Py(k) — o F0 - vk’ Eq(k)
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— Small slow perturbations éF satisfy

Eo(k,t) = §P(k,t) — %ﬁ[CSE(KJ,t)] — 2uk?SE(k,t) (%)

where L is the energy transfer linearized about the steady state.

— Parametrize Fq(k,t) = Eg(k; e(t), L(t)) by slowly varying dissipa-
tion rate ¢ and length scale L. local ‘Kolmogorovian’

— Substitute in (*).

— (*) can be solved if compatibility equations are satisfied (two for
the Heisenberg model - a two-equation model for e(t) and L(t)).
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— Formally, 0 F ~ K= 7/3 by dimensional analysis or power counting
using time scale é¢/e (Yoshizawa):

. —1/3,-5/3 _ 1/3,-4/3 251 N e 1 2/3 -5/3
€€ K e /'°K K<OFE: OF \[661/3%2/3/ e/ K

‘Knudsen number’

— 5 =S50+ 65and G = G+ 6.
— Sy = Gy : cancellation of leading order Rel/2 divergence.

— The scaling §E ~ « /3 implies 6S,6G ~ Re © QED
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summary

1. Introduce slow spectral evolution ansatz
E(k,t) = Eg(k; e(t), L(t)) + E1(k, ).

2. Compatibility conditions to find E1 imply
— existence of a two-equation model

— Yoshizawa's correction Eq ~ (é/e)r /3.

— Tennekes-Lumley balance

3. Unbalanced vortex stretching when E(k,t) = Eq(k;e(t), L(t)).
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CONCLUSIONS

Unbalanced vortex stretching (Re-dependence in at high Reynolds
number) is possible; connected to transient failure of Kolmogorov

relation ¢ = C'(v/)3/L.
It is a feature of transient evolution, but not of self-similar, or
slowly varying evolution because the Kolmogorov theory is an at-

tractor for the small scales of motion.

It would seem to |limit the applicability of transport and subgrid
models that assume ‘ideal turbulence’ at small scales.

Modeling poses interesting theoretical questions.
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