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introduction: ideal turbulence and non-ideal turbulence

– ideal turbulence: constant flux steady state (Kolmogorov theory)

– generalization: time-dependent flux (local Kolmogorov theory)

– non-ideal turbulence: something else?
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Models assume that the Kolmogorov theory is a permanent feature

of all or of some scales of motion.

We will focus on the consequence that at high Reynolds

number, large scales are independent of viscosity.

* κ4
d = ε/ν3 : ν → 0 implies κd → ∞ while ε is constant.

* Viscosity does not appear in models except at low Re.

Hypothetical Re dependence of CK, skewness, ... is a different issue
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example: the two-equation model

k̇ = P − ε ε̇ =
ε

k
(Cε1P − Cε2ε)

where k is kinetic energy of turbulent fluctuations, ε is the dissi-

pation rate, and P is the (known) production.

– Any ‘property’ of turbulence can be estimated dimensionally:

L = CL
k3/2

ε
T = CT

k

ε

– A possible conceptual improvement on mixing length models.
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basic principle/belief/dogma

High Reynolds number ‘fixed point’ independent of κd, ν, Re.

– Speziale and Bernard contradicted this assumption by proposing

a Reynolds-number dependent model for high Reynolds turbulence.

– It allowed unbalanced vortex stretching (to be explained) in

* self-similar homogeneous decay

* self-similar growth of homogeneous shear flow.

5



present viewpoint:

– Although the Kolmogorov theory does not describe a permanent

feature of the small scales, it does describe an attractor. Thus:

* Unbalanced vortex stretching is possible in transients,

* but Kolmogorov phenomenology is recovered in self-similar flows.
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analytical formulation

The statistical theory of turbulence derives (unclosed) spectral

evolution equation for homogeneous isotropic turbulence

Ė(κ, t) = P (κ, t) − T (κ, t) − 2νκ2E(κ, t)

E is the energy spectrum, P is the (known) production spectrum,

and T is the nonlinear transfer.
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moments of the evolution equation

The integrated quantities
∫ ∞

0
dκ E(κ, t) = k kinetic energy

∫ ∞

0
dκ P (κ, t) = P production

∫ ∞

0
dκ T (κ, t) = 0 (energy conservation)

∫ ∞

0
dκ 2νκ2E(κ, t) = ε dissipation

satisfy the energy balance

k̇ = P − ε
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exact dissipation rate equation

Take another moment: the exact equation for ε is
∫ ∞

0
dκ 2νκ2 Ė(κ, t) =

∫ ∞

0
dκ 2νκ2

[

P (κ, t) − T (κ, t) − 2νκ2E(κ, t)
]

Note
∫ ∞

0
dκ 2νκ2E(κ, t) = ε dissipation: ν〈ωpωp〉

∫ ∞

0
dκ 2νκ2P (κ, t) ≈ 0

∫ ∞

0
dκ 2νκ2T (κ, t) = S vortex stretching: ν〈ωiωjsij〉

∫ ∞

0
dκ 4ν2κ4E(κ, t) = G ‘palinstrophy:’ ν2〈ωi,jωi,j〉

Therefore,

ε̇ = S − G
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problems posed by this equation

– In modeling, we expect to be near a Kolmogorov state so that

E(κ) ∼ ε2/3κ−5/3;κ0 = ε/k3/2 � κ � κd = (ε/ν3)1/4

– ideal turbulence heuristic: limit κd → ∞ should be finite.

* Of course

∫ κd

0
νκ2E(κ)dκ ∼ νκ

4/3
d ∼ ε1/3 ∼ κ0

d is finite.

* but G =

∫ κd

0
ν2κ4E(κ)dκ ∼ ν2κ

10/3
d ∼ κ

2/3
d diverges with κd.

* Also S = −
∫ κd

0
νκ2T (κ)dκ ∼

∫ κd

0
2νκεdκ ∼ κ

2/3
d diverges.
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Tennekes-Lumley analysis

– Elementary arguments suggest S ∼ Re1/2(∼ ν−1/2 ∼ κ
2/3
d )

– Then Re-independence of ε̇ requires also G ∼ Re1/2.

* In fact, much more is required: S − G ∼ Re0 (∗).

* Certainly true in a steady state (Batchelor’s skewness relation).

– But what can justify (∗) in an unsteady problem?

– No theory answers this question (except ‘our theory,’ to be

explained.)
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– remark –

– Doering has shown that enstrophy production is at most O(Re3).

– The bound can be realized by a suitable initial condition.

– Steady state: enstrophy production is O
(
1
νRe1/2

)

= O(Re3/2).

– Steady state turbulence organizes itself so that enstrophy pro-

duction is much less than what the Navier-Stokes equations permit.

This is the consequence of a statistical hypothesis, not of NSE alone.
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unbalanced vortex stretching?

– Why hasn’t the Tennekes-Lumley balance been justified?

– Perhaps because it does not occur.

– Imbalance ε̇ = S − G = O(Re1/2) causes explosive growth of ε.

– Speziale and Bernard explored this possibility through models

containing an unbalanced vortex stretching term

ε̇ ∝ Re1/2ε2

k
=

√
ε

ν
ε
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present approach: study time-dependent isotropic

turbulence; some possible problems

– One steady state to another: step change, gradual change ....

– However, like laminar boundary layers, steady state turbulence

is more common in theory than in practice.

– Can time-dependent but self-similar states exhibit Tennekes-

Lumley balance? Self-similarity fixes relations between all scales of motion.

– Consider a problem in which turbulence evolves from a steady

state to a state of self-similar growth.
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transient unbalanced vortex stretching

example 1: ramp flow

– Steady state isotropic turbulence is driven by forcing with linearly

increasing amplitude at a fixed length scale (Rubinstein, Clark,

Livescu, Luo; JoT).

– Turbulence evolves from a Kolmogorov steady state to a state

of self-similar asymptotic growth with ε(t) ∼ P (t) ∼ t and k(t) ∼

ε(t)2/3 ∼ t2/3. (in fact, ε(t) ∼ t − at−1/3)

– Studied problem by closure theory, single-point models, DNS.
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spectral closure model

(Rubinstein and Clark, TCFD 2004)

Ė(κ, t) = P (κ, t) −
∂

∂κ
F[E(κ, t)] − 2νκ2E(κ, t)

where

F = C

{∫ κ

0
dµ µ2E(µ)

∫ ∞

κ
dp E(p)θ(p) −

∫ κ

0
dµ µ4

∫ ∞

κ
dp E2(p)θ(p)p−2

}

with evolution equation

θ̇(κ) = 1 − η(κ)θ(κ) η(κ) = θ(κ)

∫ κ

0
dµ µ2E(µ)

A simplified test-field model, enhanced Heisenberg model; sign of

F is indefinite; consistent with equipartition. Compare Canuto-

Dubovikov model.
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two-equation model

k̇ = P − ε ε̇ =
3

2

ε

k
(P − ε)

– Consistent with steady state and self-similar growth.

– Interesting because it assumes the Tennekes-Lumley balance.

– Preliminary studies by multiple equation models (Schiestel).

17



transient unbalanced vortex stretching

example 1: ramp flow results

– Closure calculations (Tim Clark) show imbalance between S and

G during adjustment phase, with recovery of the T-L balance dur-

ing asymptotic growth.

– We also observe explosive growth of ε immediately before re-

establishment of the balance.

– DNS (Daniel Livescu) confirmed explosive growth phase, but the

calculations could not be continued to self-similar growth.
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main conclusions

– Initial transient exhibits

* unbalanced vortex stretching with S/G > 1.

* rapid growth of ε on rapid time scales of small scales of motion

– Recovery of balance S/G ≈ 1 during self-similar growth.
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example 2 (tentative): growing length scale

– Constant amplitude force at linearly growing scale.

– Difficult even with closure. Self-similarity was not achieved.

* Instantaneous decrease of S/G, followed by recovery.
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transient unbalanced vortex stretching

example 3: periodically forced turbulence

– Steady state turbulence is perturbed by a force with periodically

varying amplitude (Lohse, van de Water, von der Heydt).

– The problem is characterized by the phase averages k̃ and ε̃ and

the phase lags with respect to production, φk and φε.

– EDQNM calculations (Wouter Bos, Ecole Centrale Lyon) show

that ε̃ and φε depend strongly on Reynolds number.
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transient unbalanced vortex stretching

example 3: periodically forced turbulence results

– At fixed Re, in the limit ω → ∞, ε̃ ∼ ω−1 :

* frozen turbulence limit; oscillations do not reach small scales

– But at fixed ω, in the limit Re → ∞, ε̃ ∼ ω−3 :

– No convergence of φε as Re → ∞.
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summary: unbalanced vortex stretching and

Speziale-Bernard revisited

– The Speziale-Bernard model replaces the usual hypothesis

ε̇ = f(k, ε,∇U) by ε̇ = f(k, ε,∇U, Re) in order to model unbalanced

vortex stretching.

* Not a low Re model, where Re effect disappears when Re → ∞.

– They suggested Re dependence in self-similar decay and homoge-

neous shear. ‘It has been illustrated above that the occurrence of equilibrium

states with residual vortex stretching can have profound consequences for the

prediction of turbulent flows.’

– We beg to differ: in closure calculations Re dependence disap-

pears when(ever?) the turbulence becomes self-similar.
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– Speziale later modified this view:

‘...there is some validity to the belief that, in time, vortex stretching will

come into balance with the leading order part of the viscous destruction term.’

(ICASE/LaRC workshop 1991)

– Accordingly, Speziale proposed a linear relaxation model

Ṡ − Ġ ∝ −(S − G).

* It cannot explain the observation in ramp flow: initially S = G,

imbalance develops under transient forcing, then S ≈ G is restored

during self-similar evolution.
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unbalanced vortex stretching: present view

– Unbalanced vortex stretching is possible in any transient problem.

– Small scales are not in ‘equilibrium.’ subgrid modeling?

– Transient unbalanced vortex stretching makes finite dimensional

modeling impossible: the detailed dynamics of S and G become

relevant and involves moments of the spectrum of all orders.

cf. rarefied gas dynamics

– But the Tennekes-Lumley balance exists in all slowly varying and

self-similar (‘equilibrium’) flows.
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Tennekes-Lumley balance in slow evolution

(Woodruff and Rubinstein, JFM 2006)

– In a spectral closure model,

Ė(κ, t) = P (κ, t) −
∂

∂κ
F(κ, t) − 2νκ2E(κ, t)

where F = F[E(κ, t)] is some functional of E.

– Consider small, slow perturbations of a Kolmogorov steady state

0 = P0(κ) −
∂

∂κ
F0 − 2νκ2E0(κ)
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– Small slow perturbations δE satisfy

Ė0(κ, t) = δP (κ, t) −
∂

∂κ
L[δE(κ, t)] − 2νκ2δE(κ, t) (∗)

where L is the energy transfer linearized about the steady state.

– Parametrize E0(κ, t) = E0(κ; ε(t), L(t)) by slowly varying dissipa-

tion rate ε and length scale L. local ‘Kolmogorovian’

– Substitute in (*).

– (*) can be solved if compatibility equations are satisfied (two for

the Heisenberg model - a two-equation model for ε(t) and L(t)).
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– Formally, δE ∼ κ−7/3 by dimensional analysis or power counting

using time scale ε̇/ε (Yoshizawa):

ε̇ε−1/3κ−5/3 ∼ ε1/3κ−4/3κ2δE; δE ∼

[
ε̇

ε

1

ε1/3κ2/3

]

︸ ︷︷ ︸

‘Knudsen number’

ε2/3κ−5/3

– S = S0 + δS and G = G0 + δG.

– S0 = G0 : cancellation of leading order Re1/2 divergence.

– The scaling δE ∼ κ−7/3 implies δS, δG ∼ Re0 : QED
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summary

1. Introduce slow spectral evolution ansatz

E(κ, t) = E0(κ; ε(t), L(t)) + E1(κ, t).

2. Compatibility conditions to find E1 imply

– existence of a two-equation model

– Yoshizawa’s correction E1 ∼ (ε̇/ε)κ−7/3.

– Tennekes-Lumley balance

3. Unbalanced vortex stretching when E(κ, t) 6= E0(κ; ε(t), L(t)).

29



CONCLUSIONS

Unbalanced vortex stretching (Re-dependence in at high Reynolds

number) is possible; connected to transient failure of Kolmogorov

relation ε = C(u′)3/L.

It is a feature of transient evolution, but not of self-similar, or

slowly varying evolution because the Kolmogorov theory is an at-

tractor for the small scales of motion.

It would seem to limit the applicability of transport and subgrid

models that assume ‘ideal turbulence’ at small scales.

Modeling poses interesting theoretical questions.
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