## Programme Information

<table>
<thead>
<tr>
<th>Award</th>
<th>Length of Study</th>
<th>Mode of Study</th>
<th>Entry Point(s)</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRes H673T</td>
<td>1 Calendar Year (12 months)</td>
<td>Full time</td>
<td>Annually in October</td>
<td>90</td>
</tr>
<tr>
<td>MRes</td>
<td>2 Calendar Years (12 months)</td>
<td>Part-time</td>
<td>Annually in October</td>
<td>90</td>
</tr>
<tr>
<td>PG Diploma</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>60</td>
</tr>
<tr>
<td>PG Certificate</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>30</td>
</tr>
</tbody>
</table>

The PG Certificate and PG Diploma are exit awards and are not available for entry. All students must apply to and join the MRes. The PG Certificate and PG Diploma are not accredited by any professional body.

## Ownership

<table>
<thead>
<tr>
<th>Awarding Institution</th>
<th>Faculty</th>
<th>Main Location(s) of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial College London</td>
<td>Faculty of Engineering</td>
<td>South Kensington and White City Campuses</td>
</tr>
<tr>
<td>Teaching Institution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imperial College London</td>
<td>Department</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Associateship</td>
<td>City and Guilds London Institute</td>
<td></td>
</tr>
</tbody>
</table>

## External Reference

- Relevant [QAA Benchmark Statement(s)] and/or other external reference points: Master’s Award in Engineering
- **FHEQ Level** Level 7 - Masters
- **EHEA Level** 2nd Cycle

## External Accreditor(s) (if applicable)

<table>
<thead>
<tr>
<th>External Accreditor 1:</th>
<th>Accreditation received: 2012</th>
<th>Accreditation renewal: 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Institution of Engineering and Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External Accreditor 2:</th>
<th>Accreditation received: 2013</th>
<th>Accreditation renewal: 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Institution of Mechanical Engineers]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External Accreditor 3:</th>
<th>Accreditation received: 2013</th>
<th>Accreditation renewal: 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute of Materials, Minerals &amp; Mining</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Accreditation received: 2013  
Accreditation renewal: 2023

External Accréditum 4:  
Institution of Engineering Designers

Accreditation received: 2018  
Accreditation renewal: 2023

Collaborative Provision

<table>
<thead>
<tr>
<th>Collaborative partner</th>
<th>Collaboration type</th>
<th>Agreement effective date</th>
<th>Agreement expiry date</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Specification Details

<table>
<thead>
<tr>
<th>Programme Lead</th>
<th>Dr Rodrigo Ledesma Amaro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student cohorts covered by specification</td>
<td>2022-23 entry</td>
</tr>
<tr>
<td>Date of introduction of programme</td>
<td>October 12</td>
</tr>
<tr>
<td>Date of programme specification/revision</td>
<td>November 22</td>
</tr>
</tbody>
</table>

Programme Overview

Bioengineering is at the interface of engineering and medicine, and is a discipline that advances knowledge in engineering, biology and medicine, and improves human health through cross-disciplinary activities that integrate the engineering sciences with the biomedical sciences and clinical practice.

The standard MRes Bioengineering is a one year full-time programme leading to the MRes award. As a student on this programme you will benefit from interaction with students on other programmes in the Department to help develop your interdisciplinary knowledge. You will gain useful skills in engineering, research and statistical analyses before embarking on a comprehensive, 9-month research project. Both the taught and research elements of this degree are multi-disciplinary drawing on both engineering/technological and biological/clinical expertise.

The programme involves lectures and practical work in the first term, followed by full-time work on a research project. A variety of seminars and workshops throughout the year are provided to deepen and broaden your research skill-base. The programme will prepare you to analyse and solve problems in bioengineering using an integrated, multidisciplinary approach.

Your MRes research project will be supervised by an academic at Imperial with expertise in an area of research within Bioengineering that is of interest to you. Before applying to this programme you should identify a potential project and supervisor from the list available on the department webpages and include this choice as part of your personal statement when you apply. Additionally, you may have a second supervisor with a clinical background, from a different department across the College or a co-supervisor from industry.

You have the opportunity to take additional modules and short workshops in the 2nd and 3rd terms and will attend seminars and journal clubs throughout the year. You will also have the opportunity to participate in mini-symposia showcasing Bioengineering research from Imperial and beyond. These events typically held on campus at both our South Kensington and White City locations, include talks from academia and industry alongside MRes student presentations.

This programme may also be studied part-time. In this case you will complete the taught modules, and the module ‘Planning for Bioengineering research’ in the first year. The remainder of the project work will be completed in the second year. This option is particularly suitable for students who may be employed in industry and their project work may be conducted with an industrial partner.

This programme equips you for on-demand research careers in academic and industry within the field or bioengineering. You will be particularly well equipped for bioengineering PhD programmes run within Imperial College involving interactions between engineers, medics and clinicians.
Learning Outcomes

The following Learning Outcomes are in line with FHEQ level 7 and the UK-SPEC outcomes required for accreditation by professional engineering bodies.

The Learning Outcomes are categorised into the following groups:
• Knowledge and Understanding [KU]
• Intellectual Abilities [IA]
• Practical and Transferable skills [PT]

Upon successful completion of the MRes Bioengineering programme you will be able to:

[KU1] Assess the underlying scientific principles and models that govern a specialised area of Bioengineering research

[KU2] Evaluate the core concepts, principles and theories relevant to Bioengineering and how these are relevant to historical, current and future developments and technologies in a specialised area of Bioengineering research

[KU3] Evaluate a wide range of scientific studies in a specialised area of Bioengineering research and critically discuss these examples in terms of their commercial, economic, social and sustainability implications.

[IA1] Critically select and apply engineering principles and tools for the analysis and solution of familiar and unfamiliar problems in the field of bioengineering research, including investigation of new and emerging technologies

[IA2] Apply diagnostic skills, technical knowledge and understanding of engineering design processes to analyse, evaluate and refine experimental processes

[IA3] Extract, analyse and critically evaluate information and data gathered from experimentation, academic and technical resources to determine their strength and validity, interpret conclusions and make recommendations for future experimental studies.

[IA4] Work with information that may be incomplete or uncertain, quantify the effect of this on the design or development of an engineering solution and, where appropriate, use theory or experimental research to mitigate deficiencies through the generation of new data

[IA5] Design and execute research experiments in a specialised area of Bioengineering research using your knowledge of core and specialised engineering concepts (e.g., machine learning, microfluidics, signal processing, imaging, blood sampling).

[PT1] Work effectively with all members of a research team including students and academics, demonstrating good interpersonal and communication skills that show an appreciation for the different roles within a team

[PT2] Exercise initiative and judgement in a range of situations, identifying areas for self-learning and development, and accepting accountability for decisions made and the quality of outcomes produced.

[PT3] Work individually to plan and conduct a lengthy programme of original research, in a safe and ethical manner in laboratory or computational settings.

[PT4] Professionally communicate the results of a programme of original research through a variety of means including the preparation and/or delivery of presentations, written reports and scientific papers.

Upon successful completion of the PG Diploma Bioengineering programme you will be able to:

[KU1] Assess the underlying scientific principles and models that govern a specialised area of Bioengineering research

[KU2] Evaluate the core concepts, principles and theories relevant to Bioengineering and how these are relevant to historical, current and future developments and technologies in a specialised area of Bioengineering research
[KU3] Evaluate a range of scientific studies in a specialised area of Bioengineering research and critically discuss these examples in terms of their commercial, economic, social and sustainability implications.

[IA1] Critically select and apply engineering principles and tools for the analysis and solution of familiar and unfamiliar problems in the field of bioengineering research, including investigation of new and emerging technologies

[IA2] Extract, analyse and critically evaluate information and data gathered from experimentation, academic and technical resources to determine their strength and validity, interpret conclusions and make recommendations for future experimental studies.

[IA3] Work with information that may be incomplete or uncertain, quantify the effect of this on the design or development of an engineering solution and, where appropriate, use theory or experimental research to mitigate deficiencies through the generation of new data

[IA4] Design and execute research experiments in a specialised area of Bioengineering research using your knowledge of core and specialised engineering concepts (e.g., machine learning, microfluidics, signal processing, imaging, blood sampling).

[PT1] Work effectively with all members of a research team including students and academics.

[PT2] Exercise initiative and judgement in a range of situations, identifying areas for self-learning and development

[PT3] Work individually to plan and conduct a lengthy programme of original research, in a safe and ethical manner in laboratory or computational settings.

[PT4] Professionally communicate the results of a programme of original research through a variety of means including the preparation and/or delivery of presentations and written reports.

Upon successful completion of the PG Certificate Bioengineering programme you will be able to:

[KU1] Assess the underlying scientific principles and models that govern a specialised area of Bioengineering research

[KU2] Evaluate the core concepts, principles and theories relevant to Bioengineering and how these are relevant to historical, current and future developments and technologies in a specialised area of Bioengineering research

[KU3] Evaluate a range of scientific studies in a specialised area of Bioengineering research and critically discuss these examples in terms of their commercial, economic, social and sustainability implications.

[IA1] Critically select and apply engineering principles and tools for the analysis and solution of familiar and unfamiliar problems in the field of bioengineering research

[IA2] Extract, analyse and critically evaluate information and data gathered from academic and technical resources to determine their strength and validity

[IA3] Work with information that may be incomplete or uncertain, and where appropriate, use theory to mitigate deficiencies through the generation of new data

[IA4] Design research experiments in a specialised area of Bioengineering research using your knowledge of core engineering concepts

[PT1] Work effectively with all members of a research team including students and academics

[PT2] Exercise initiative and judgement in a range of situations, identifying areas for self-learning and development

[PT3] Work individually to plan a programme of original research, in a safe and ethical manner in laboratory or computational settings.
[PT4] Professionally communicate technical ideas through a variety of means including the preparation and/or delivery of presentations and written reports.

The Imperial Graduate Attributes are a set of core competencies which we expect students to achieve through completion of any Imperial College degree programme. The Graduate Attributes are available at: www.imperial.ac.uk/students/academic-support/graduate-attributes

Entry Requirements

| Academic Requirement | You are expected to have at minimum a 2.1 UK Honour's degree in an engineering discipline, physical science or mathematical subject or equivalent. Students with a minimum 2:1 UK Honour’s degrees in biotechnology, biosciences or similar will be considered if they have a demonstrated track record of training or engagement in engineering or mathematics. An ‘A’ grade in A-level maths (or equivalent) is desirable. |
| Non-academic Requirements | N/A |
| English Language Requirement | Standard requirement (PG) |
| Admissions Test/Interview | Applicants may be invited to attend an interview with one or more members of academic staff, in person or virtually. |

The programme’s competency standards documents can be found at: https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/bioengineering/public/student/Competency-Standards---Bioengineering-UG-PG---June-2016-Final.pdf

Learning & Teaching Approach

Learning and Teaching Delivery Methods

You will be taught through a combination of lectures, study groups and tutorials, computing labs, guest lectures and presentations. Study groups and tutorials will enable you to discuss and develop your understanding of topics covered in lectures whilst in smaller groups of around 30 students. These are usually based around problem sheets, questions or computational tasks set by the module lecturers. You will be expected to solve these either individually or as part of a small group. Study groups and tutorials are supported by graduate teaching assistants. Timetabled sessions may be delivered online or in person, or in a hybrid format.

The Virtual learning environment Blackboard will be used as a repository for teaching materials including recordings of all lectures, lecture notes and problem sheets. Learning technologies will be used to support teaching activities including in-class polling with Mentimeter, online self-diagnostic quizzes and online class forums.

Independent Learning

You are expected to spend significant time on independent study outside of timetabled learning and teaching sessions. From our experience students that undertake independent learning have improved academic performance, increased motivation and confidence in themselves and their abilities. By undertaking independent learning, you are also preparing yourself for professional practice where it is expected that you will manage your own continued professional development. Independent learning activities that you will be expected to undertake will typically include accessing online resources, completing problem sheets, reading journal articles and books, undertaking research in the library, reviewing lecture notes and watching lecture recordings, working on individual and group projects, working on coursework assignments and revising for exams.

Bioengineering uses flipped teaching for some modules, meaning that you need to actively engage with online resources ahead of attending timetabled sessions. This independent learning is followed by sessions led by the teacher where all students work in small groups to apply that knowledge to more practical examples. This helps you to further consolidate and enhance your understanding of the topics you study and allows us the time to focus on more challenging concepts in the taught sessions. These taught sessions are normally in the place of study groups for a flipped module.
## Research Project

A key part of our MRes programme is the Research Project. Mastery of bioengineering research is a complex and specialised field. Your Research Project is an opportunity for you to develop cutting edge research capabilities under the close supervision of academics and their research teams. This may include lecturers and clinicians from across Imperial.

You will be expected to engage with your project supervisor during your first week of term and begin the background research and planning for your project. On the standard MRes programme you would then begin full-time project work in the spring term, working on the project for 9 months.

For students that choose to study the degree part time, project work will begin in first year and extend into year 2.

## Overall Workload

Your overall workload consists of face-to-face sessions and independent learning. While your actual contact hours may vary according to the optional modules you choose to study, the following gives an indication of how much time you will need to allocate to different activities at each level of the programme. At Imperial, each ECTS credit taken equates to an expected total study time of 25 hours. Therefore, the expected total study time is 2,250 hours per year (1,125 per year for the part-time).

For the full-time MRes programme taught modules, will be held mainly during the Autumn term. If you choose to study the programme part time the taught modules will be covered in the autumn and spring terms of year 1. You will typically spend 60 hours in lectures and tutorials, with around 315 hours of individual study. Your research project accounts for 1875 hours of additional individual study.

## Assessment Strategy

### Assessment Methods

A variety of assessment methods will be used to test your understanding. Assessments are grouped as formative and summative.

Formative assessments do not contribute to the module mark but provide information on your progress as an individual and in the context of the class. This allows you to learn by using your new skills to solve problems and receive feedback on your performance to guide your future learning. This supports you to achieve a better performance in the summative assessments which do count towards your module marks. Formative assessments also provide feedback to the teaching staff which allow us to adapt our teaching.

Summative assessments are used to assess your learning against the intended module learning outcomes and contribute towards your achievement of the programme learning outcomes, detailed above. There is summative assessment during and/or at the end of each module and these assessments will contribute towards your mark for the year.

The design of our programme will allow you to test your understanding of the subject using formative assessments such as problem sheets, on-line diagnostic tests, practice presentations and mock/past examinations before you complete the summative assessments that count towards your final mark.

### The taught modules will be assessed using a combination of:

- Oral presentations
- Written reports, including a dissertation
- Coursework including progression tests, problem sheets
- Practical training elements

### The research modules will be assessed at regular intervals throughout the degree using a combination of:

- Written Reports & Final Thesis
- Oral presentations
- Poster Presentations

The typical breakdown of assessments for this programme is:
| Practical | 50 % |
| Coursework | 50 % |
| Exams | 0 % |

**Academic Feedback Policy**

Feedback may be provided in one of a number of formats, including (but not limited to):

- Oral (during or after lectures, personally or as a group feedback session)
- Personal (discussion with academics during office hours, meetings with cohort and academic tutors)
- Interactive (problem solving tutorials with GTAs & study groups, peer feedback)
- Written (solutions/model answers to coursework, electronic feedback online)

Deadlines for submission of assessments and to receive feedback are indicated in the coursework calendars normally provided at the start of the teaching year. You will usually be provided with feedback within 10 working days although on occasions they may be informed of a different time scale (e.g. if the submitted work is particularly complex and will take a long time to mark).

The College’s Policy on Academic Feedback and guidance on issuing provisional marks to students is available at:

[www.imperial.ac.uk/about/governance/academic-governance/academic-policy/exams-and-assessment/](http://www.imperial.ac.uk/about/governance/academic-governance/academic-policy/exams-and-assessment/)

**Re-sit Policy**


**Mitigating Circumstances Policy**


**Additional Programme Costs**

This section should outline any additional costs relevant to this programme which are not included in students' tuition fees.

<table>
<thead>
<tr>
<th>Description</th>
<th>Mandatory/Optional</th>
<th>Approximate cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textbooks</td>
<td>Mandatory</td>
<td>£150</td>
</tr>
<tr>
<td>Personal Protective Equipment</td>
<td>Mandatory</td>
<td>Provided</td>
</tr>
</tbody>
</table>

**Important notice:** The Programme Specifications are the result of a large curriculum and pedagogy reform implemented by the Department and supported by the Learning and Teaching Strategy of Imperial College London. The modules, structure and assessments presented in this Programme Specification are correct at time of publication but might change as a result of student and staff feedback and the introduction of new or innovative approaches to teaching and learning. You will be consulted and notified in a timely manner of any changes to this document.
### Programme Structure

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Core/ Compulsory/ Elective</th>
<th>Group</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOE70037</td>
<td>Computational and Statistical Methods for Research</td>
<td>Compulsory</td>
<td>N/A</td>
<td>Autumn</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>BIOE70045</td>
<td>Frontiers in Bioengineering Research</td>
<td>Compulsory</td>
<td>N/A</td>
<td>Autumn</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>BIOE70046</td>
<td>Topics in Biomedical Engineering*</td>
<td>Compulsory</td>
<td>N/A</td>
<td>Autumn &amp; Spring</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>BIOE70047</td>
<td>Planning for Bioengineering Research</td>
<td>Core</td>
<td>N/A</td>
<td>Autumn &amp; Spring</td>
<td>15 ECTS</td>
</tr>
<tr>
<td>BIOE70048</td>
<td>Bioengineering Research Project</td>
<td>Core</td>
<td>N/A</td>
<td>All</td>
<td>60 ECTS</td>
</tr>
</tbody>
</table>

**Credit Total**: 90 ECTS

---

*Core modules are those which serve a fundamental role within the curriculum, and for which achievement of the credits for that module is essential for the achievement of the target award. Core modules must therefore be taken and passed in order to achieve that named award. **Compulsory modules** are those which are designated as necessary to be taken as part of the programme syllabus. Compulsory modules can be compensated. **Elective modules** are those which are in the same subject area as the field of study and are offered to students in order to offer an element of choice in the curriculum and from which students are able to select. Elective modules can be compensated.*
### Progression and Classification

**Award of a Postgraduate Certificate (PG Cert)**
To qualify for the award of a postgraduate certificate a student must have a minimum of 30 credits at Level 7.

**Award of a Postgraduate Diploma (PG Dip)**
To qualify for the award of a postgraduate diploma a student must have a minimum of 60 credits at Level 7 with no more than 10 credits as a compensated pass.

**Award of a Postgraduate Degree (including MRes)**
To qualify for the award of a postgraduate degree a student must have:
1. accumulated credit to the value of no fewer than 90 credits at level 7
2. and no more than 10 credits as a Compensated Pass;
   met any specific requirements for an award as outlined in the approved programme specification for that award.

### Classification of Postgraduate Taught Awards

1. **Distinction**: The student has achieved an overall weighted average of 70.00% or above across the programme.
2. **Merit**: The student has achieved an overall weighted average of above 60.00% but less than 70.00%.
3. **Pass**: The student has achieved an overall weighted average of 50.00% but less than 60.00%.
   a. For a Masters, students must normally achieve a distinction (70.00%) mark in the Bioengineering Research project in order to be awarded a distinction
   b. For a Masters, students must normally achieve a minimum of a merit (60.00%) mark in the Bioengineering Research project in order to be awarded a merit

### Programme Specific Regulations

As an accredited degree, students on this MRes programme are subject to the standards set by the Engineering Council in relation to compensation. A maximum of 10 ECTS credits can be compensated across the programme.
Supporting Information

The Programme Handbook is available at: www.imperial.ac.uk/bioengineering/admin/research/mres/

The Module Handbook is available at: www.imperial.ac.uk/bioengineering/admin/current-ug/options/

The College’s entry requirements for postgraduate programmes can be found at: www.imperial.ac.uk/study/pg/apply/requirements

The College’s Quality & Enhancement Framework is available at: www.imperial.ac.uk/registry/proceduresandregulations/qualityassurance

The College’s Academic and Examination Regulations can be found at: www.imperial.ac.uk/about/governance/academic-governance/regulations

Imperial College is an independent corporation whose legal status derives from a Royal Charter granted under Letters Patent in 1907. In 2007 a Supplemental Charter and Statutes was granted by HM Queen Elizabeth II. This Supplemental Charter, which came into force on the date of the College’s Centenary, 8th July 2007, established the College as a University with the name and style of “The Imperial College of Science, Technology and Medicine”.
www.imperial.ac.uk/admin-services/secretariat/college-governance/charters/

Imperial College London is regulated by the Office for Students (OfS)
www.officeforstudents.org.uk/advice-and-guidance/the-register/

This document provides a definitive record of the main features of the programme and the learning outcomes that a typical student may reasonably be expected to achieve and demonstrate if s/he takes full advantage of the learning opportunities provided. This programme specification is primarily intended as a reference point for prospective and current students, academic and support staff involved in delivering the programme and enabling student development and achievement, for its assessment by internal and external examiners, and in subsequent monitoring and review.

Modifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Approved</th>
<th>Date</th>
<th>Paper Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curriculum Review</td>
<td>Programmes Committee</td>
<td>29/3/22</td>
<td>PC.2021.83</td>
</tr>
<tr>
<td>PG Diploma Exit Award</td>
<td>Programmes Committee</td>
<td>29/11/22</td>
<td>PC.2022.15</td>
</tr>
</tbody>
</table>