# Programme Information

<table>
<thead>
<tr>
<th>Programme Title</th>
<th>Programme Code</th>
<th>HECoS Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSc Biomedical Technology Ventures</td>
<td>For Registry Use Only</td>
<td>For Registry Use Only</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Award</th>
<th>Length of Study</th>
<th>Mode of Study</th>
<th>Entry Point(s)</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECTS</td>
</tr>
<tr>
<td>BSc</td>
<td>3 Academic Years</td>
<td>Full-time</td>
<td>Annually in October</td>
<td>180</td>
</tr>
<tr>
<td>DipHE*</td>
<td>2 Academic Years</td>
<td>Full-time</td>
<td>N/A</td>
<td>120</td>
</tr>
<tr>
<td>CertHE*</td>
<td>1 Academic Year</td>
<td>Full-time</td>
<td>N/A</td>
<td>60</td>
</tr>
</tbody>
</table>

The DipHE and CertHE are exit awards only and not available for entry. All students must apply to and join the BSc in the first instance.

## Ownership

<table>
<thead>
<tr>
<th>Awarding Institution</th>
<th>Faculty</th>
<th>Teaching Institution</th>
<th>Department</th>
<th>Associateship</th>
<th>Main Location(s) of Study</th>
<th>Bioengineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial College</td>
<td></td>
<td>Imperial College</td>
<td></td>
<td>City and Guilds Association (TBD)</td>
<td>South Kensington Campus &amp; White City Campus</td>
<td></td>
</tr>
<tr>
<td>London</td>
<td>Faculty of Engineering</td>
<td>London</td>
<td>Department</td>
<td>Main Location(s) of Study</td>
<td>South Kensington Campus &amp; White City Campus</td>
<td></td>
</tr>
</tbody>
</table>

## External Reference

Relevant QAA Benchmark Statement(s) and/or other external reference points:

Engineering and Business and Management UK-SPEC

FHEQ Level

BSc Level 6
DipHE Level 5
CertHE Level 4

EHEA Level

1st Cycle

## External Accreditor(s) (if applicable)

External Accreditor 1: N/A

Accreditation received: N/A

Accreditation renewal: N/A

## Collaborative Provision

Collaborative partner: N/A

Collaboration type: N/A

Agreement effective date: N/A

Agreement expiry date: N/A
Programme Overview

The Biomedical Technology Ventures BSc is set against the backdrop of an increasing demand for medical devices and growth of the healthcare industry. In this programme, we will guide you in developing an entrepreneurial-mindset. You will be equipped with the skills to identify opportunities for improving human healthcare through the application of technology, to seek and to achieve transfer of ideas and technology to meet those gaps through entrepreneurship.

This programme will take a strong engineering approach to understanding and solving biomedical problems, and taps into a growing ecosystem of start-ups in the medical device industry. It is also fuelled by a clear demand from investors, and also requirements for the regulatory side of the industry.

You will develop strengths in working collaboratively at the boundaries of different subjects, because of the interdisciplinary nature of your training, and will have the opportunity to work with students from other undergraduate programmes in the department on joint projects in year three.

In all years, you will take compulsory modules, some of which will be shared students on other undergraduate programmes in the Department. This includes modules in mathematics, physiology, computer programming, mechanics and fluids, and biological modelling. Course content has been designed to ensure you will have the necessary core knowledge to enable you to interact with our engineering students effectively in subsequent later years of your programme.

Alongside a breadth of engineering and biomedical engineering knowledge, you will gain insight into the medical device industry, particularly with regard to the entrepreneurial pathway to a career. This strength is inherited from the very successful Medical Device Entrepreneurship MRes degree programme. The unique nature of this course in targeting both a need, and a specific type of entrepreneurial candidate recognises Imperial's strengths in the areas of medical device development, the very recent, real and sustained challenge of medical device diagnostics and the global challenges of today: health and well-being agenda, personalised medicine, and the creation of new biomedical technology industries.

Where the programme differs substantially from our other courses is in a greater emphasis on the business and management content, manifesting itself as a greater ratio of business-oriented courses to either engineering or the medical sciences. In your second year you will complete an internship in a healthcare-related industry, a hospital setting or a University laboratory. This will be an opportunity to gain hands-on experience and apply your engineering and entrepreneurial skills in a real-world setting. From January to June of the third year, you will spend a significant amount of time on your final year group project. This culmination of your studies will be an opportunity for you to establish or contribute to new biomedical ventures that are timely, address a healthcare need, and potentially translate ideas, knowledge or new science into societal impact through new ventures.

Learning Outcomes

The following Learning Outcomes are in line with FHEQ levels 4-6.

The Learning Outcomes are categorised into the following groups:

- **Knowledge and Understanding [KU]**
- **Intellectual Abilities [IA]**
- **Practical and Transferable skills [PT]**

The curriculum is designed in such a way as to build in complexity year on year. In your first year you will be introduced to foundational topics. These topics will be revisited as you progress through the programme in more
technical depth and with increased breadth of content. This will require a greater level of understanding and intellectual enquiry from you at each stage of the programme. You will also be supported in developing your practical and transferable skills as you progress through this programme. This is indicated by your ability to take a greater level of responsibility for both group and individual outputs and by showing increasing ability in a leadership role.

Upon successful completion of the BSc Biomedical Technology Ventures programme you will be able to:

[KU1] Describe and explain the underlying scientific principles, engineering, mathematics, laboratory and practical skills and computational tools that underpin Biomedical Engineering, with an emphasis on devices.

[KU2] Describe and explain the core concepts, principles and theories of medical science, business entrepreneurship and engineering.


[KU4] Recognise and explain the need for a high level of professional and ethical conduct in engineering, based on a knowledge of professional codes of conduct and how ethical dilemmas can arise.

[IA1] Apply a wide range of scientific, engineering and business principles, tools and notations proficiently

[IA2] Apply technical knowledge and understanding of scientific, engineering and business principles to the design of medical devices and biotechnology related to medicine and healthcare.

[IA2] Extract pertinent data and critically evaluate scientific, technical and business literature.

PT1 Plan and safely execute experiments in diverse types of laboratories.

PT2 Demonstrate leadership, teamwork and communication skills.

PT3 Exercise judgement in a range of situations and accept accountability for achieving personal and/or group outcomes.

Upon successful completion of the DipHE Biomedical Technology Ventures programme you will be able to:

[KU1] Describe and explain the underlying scientific principles, engineering, mathematics, laboratory and practical skills and computational tools that underpin Biomedical Engineering, with an emphasis on devices.

[KU2] Describe and explain the core concepts, principles and theories of medical science, business entrepreneurship and engineering.


[KU4] Recognise and explain the need for a high level of professional and ethical conduct in engineering.

[IA1] Apply a range of scientific, engineering and business principles, tools and notations proficiently

[IA2] Apply technical knowledge and understanding of scientific, engineering and business principles to the design of medical devices and biotechnology related to medicine and healthcare.

[IA3] Extract pertinent data and critically evaluate scientific, technical and business literature.

PT1 Plan and safely execute experiments in a defined range of laboratories.

PT2 Demonstrate leadership, teamwork and communication skills.

PT3 Accept accountability for achieving personal and/or group outcomes.
Upon successful completion of the CertHE Biomedical Technology Ventures programme you will be able to:

[KU1] Describe and explain some of the underlying scientific principles, engineering, mathematics, laboratory and practical skills and computational tools that underpin Biomedical Engineering, with an emphasis on devices.

[KU2] Describe and explain the basic concepts, principles and theories of medical science, business entrepreneurship and engineering.


[KU4] Recognise and explain the need for a high level of professional and ethical conduct in engineering.

[IA1] Apply a range of scientific, engineering and business principles, tools and notations.

[IA2] Apply technical knowledge and understanding of scientific, engineering and business principles to solve defined problems related to medical devices and biotechnology.

[PT1] Safely execute experiments in a defined range of laboratories.

[PT2] Demonstrate teamwork and communication skills.

[PT3] Accept responsibility for outputs.

The Imperial Graduate Attributes are a set of core competencies which we expect students to achieve through completion of any Imperial College degree programme. The Graduate Attributes are available at: www.imperial.ac.uk/students/academic-support/graduate-attributes

### Entry Requirements

<table>
<thead>
<tr>
<th>Academic Requirement</th>
<th>A-levels Minimum entry standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Our minimum entry standard for 2023 entry is <strong>A*AA overall</strong>, to include:</td>
</tr>
<tr>
<td></td>
<td>• A* in Mathematics</td>
</tr>
<tr>
<td></td>
<td>• A in Physics, Chemistry, Biology or Further Mathematics</td>
</tr>
<tr>
<td></td>
<td>• A in another science subject, or in Business Studies, Economics, Computer Science or Further Mathematics</td>
</tr>
<tr>
<td></td>
<td>General Studies and Critical Thinking are not accepted.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>International Baccalaureate Minimum entry standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our minimum entry standard for 2023 entry is <strong>39 points overall</strong>, to include:</td>
</tr>
<tr>
<td>• 6 in Mathematics* at higher level</td>
</tr>
<tr>
<td>• 6 in Physics/Chemistry/Biology at higher level</td>
</tr>
<tr>
<td>• 6 in a further science subject at higher level, or one other subject at higher level selected from: Business Management, Computer Science, Economics.</td>
</tr>
<tr>
<td>* For 2023 entry, the Mathematics Analysis and Approaches (preferred) or the Applications and Interpretation syllabi are accepted at higher level.</td>
</tr>
</tbody>
</table>

### Non-academic Requirements

N/A

### English Language Requirement

**Standard requirement (UG)**

IELTS score of 6.5 overall (minimum 6.0 in all elements)

### Admissions Test/Interview

Selected applicants are invited to an interview day, either in person or online. This usually involves an introduction talk about the department and degree options, followed by group activities and individual interviews. The day finishes with a tour of the department.
Learning & Teaching Approach

Scheduled Learning & Teaching

You will be taught through a combination of lectures, study groups and tutorials, laboratories and computing labs, guest lectures and presentations. Study groups and tutorials will enable you to discuss and develop your understanding of topics covered in lectures whilst in smaller groups of around 30 students. Dry laboratories in electrical, mechanical and bioengineering will allow you to develop practical skills and gain experience in the application of the theory discussed in lectures and study groups. Wet laboratories will allow you to develop an understanding of how to handle biological and chemical materials. Computing labs will support the maths and computational content of the course. In laboratories you will work in pairs or trios.

The Virtual Learning Environment Blackboard will be used as a repository for teaching materials including recordings of all lectures, lecture notes and problem sheets. Learning technologies will be used to support teaching activities including in-class polling with Mentimeter, online self-diagnostic quizzes and online class forums.

At the end of the second year of the programme, following the exam period you will undertake a summer internship. This will comprise of a period of a minimum of 6 weeks but can be longer and may extend beyond the end of the summer term. The internship will be in a healthcare-related industry, a hospital setting or a University laboratory. During this internship you will have the opportunity to gain hands-on experience of development and/or commercial environments. Throughout the internship you will be supported by an academic supervisor who will monitor your progress through regular meetings.

Independent Learning

You are expected to spend significant time on independent study outside of face to face contact time. From our experience students that undertake independent learning have improved academic performance, increased motivation and confidence in themselves and their abilities. By undertaking independent learning you are also preparing yourself for professional practice where it is expected that you will manage your own continued professional development. Independent learning activities that you will be expected to undertake will typically include accessing online resources, completing problem sheets, reading journal articles and books, undertaking research in the library, reviewing lecture notes and watching lecture recordings, working on individual and group projects, working on coursework assignments and revising for exams.

Bioengineering uses flipped teaching for some modules, meaning that you need to actively engage with on-line eModules ahead of attending timetabled sessions. This independent learning is followed by sessions led by the lecturer where all students work in small groups to apply that knowledge to more practical examples. This helps you to further consolidate and enhance your understanding of the topics you study and allows us the time to focus on more challenging concepts in the taught sessions.

Independent learning does not mean isolated learning and we encourage you to make use of the academic support available to you at all stages of the programme. Your personal tutor, the module leaders, graduate teaching assistants and project supervisors are all available to provide guidance on academic topics. Regular drop-in hours for modules are held by all academics and are open to students who would like to discuss topics in smaller groups and 1-to-1 settings. For specialist support on topics such as literature searches and referencing you can also seek support from the library service.

Design Projects

A key part of this programme is your third year group project. In this project you will work in a small group to design, make and test a solution to a bioengineering problem. These projects will allow you to develop professional engineering skills and appreciate the subtleties of working in a team. You will also be given support in managing a team and giving effective feedback to others, which includes training and practice with the process of peer review which will form part of the assessment for these projects. For the process of peer review each member of a team is asked to provide relative effort marks for their team members via an anonymous on-line form. We guide you through this process, including an early practice run to ensure that this is fair and informative.
**Overall Workload**
Your overall workload consists of face-to-face sessions and independent learning. While your actual contact hours may vary according to the optional modules you choose to study, the following gives an indication of how much time you will need to allocate to different activities at each level of the programme. At Imperial, each **ECTS credit** taken equates to an expected total study time of 25 hours. Therefore, the expected total study time is 1500 hours per year.

Typically, in the first two years you will spend around 25% of your time on lectures, seminars and other scheduled activity (around 400 hours) and around 75% of your time on independent study (around 1100 hours).

In the third year, you will spend less time in scheduled activity (around 250 hours) with the reminder in independent study, a significant proportion of which will be the 3rd year group project.

**Assessment Strategy**

**Assessment Methods**

A variety of assessment methods will be used to test your understanding. Assessments are grouped as formative and summative.

**Formative assessments** do not contribute to the module mark but provide information on your progress as an individual and in the context of the class. This allows you to learn by using your new skills to solve problems and receive feedback on your performance to guide your future learning. This supports you to achieve a better performance in the summative assessments which do count towards your module marks. Formative assessments also provide feedback to the teaching staff which allow us to adapt our teaching.

**Summative assessments** are used to assess your learning against the intended module learning outcomes and contribute towards your achievement of the programme learning outcomes, detailed above. There is summative assessment during and/or at the end of each module and these assessments will contribute towards your mark for each year.

The choice of assessment method is largely determined by the learning objectives being assessed and includes:

**Assessed Coursework**
- Problem sheets
- Laboratory reports – individually or as part of a portfolio.
- Practical demonstrations
- Project reports
- Oral presentations
- Poster presentations
- Academic tutorials

**Examinations**
- In class progress tests
- Mastery examinations (online/written)
- Written examinations

Mastery examinations are used in some modules to establish that you have understood the key concepts and met the learning outcomes at the minimum level. These exams are typically straightforward, cover the whole module content, and have a required pass mark of 80%. For mastery examinations you may retake the examination up to 3 times, with no penalty if you fail the first attempt. In this way the mastery contributes as a formative assessment to support your educational development.

The design of our programme will allow you to test your understanding of the subject using formative assessments such as problem sheets, on-line diagnostic tests and mock/past examinations before you complete the summative assessments that count towards your final mark.
The table below is indicative of the balance of assessment in the different years of the course.

<table>
<thead>
<tr>
<th></th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework</td>
<td>30 %</td>
<td>30 %</td>
<td>50 %</td>
</tr>
<tr>
<td>Examinations</td>
<td>70 %</td>
<td>70 %</td>
<td>50 %</td>
</tr>
</tbody>
</table>

Academic Feedback Policy

Feedback will be provided in one of many formats, including:
- Oral (during or after lectures, personally or as a group feedback session)
- Personal (discussion with academics during office hours, meetings with Personal Tutors)
- Interactive (problem solving with GTAs & study groups, peer feedback)
- Written (solutions/model answers to coursework, notes on submitted reports)
- Online (results of online tests with correct answers provided)
- Self-reflective (personal journals, reflective essays and class discussion)

It is department policy to provide feedback to students within 10 working days of assessment submission. This timeframe may be extended for significantly large assessments or for final examinations. In this case the date when feedback will be available by will be communicated to students.

Individual feedback will not be provided on written examinations. However, feedback on the general performance of the cohort on the exam questions will be given. Numerical results will be published after the meeting of the final Board of Examiners.

The College’s Policy on Academic Feedback and guidance on issuing provisional marks to students is available at: www.imperial.ac.uk/about/governance/academic-governance/academic-policy/exams-and-assessment/

Re-sit Policy

The College’s Policy on Re-sits is available at: www.imperial.ac.uk/student-records-and-data/for-current-students/undergraduate-and-taught-postgraduate/exams-assessments-and-regulations/

Mitigating Circumstances Policy

The College’s Policy on Mitigating Circumstances is available at: www.imperial.ac.uk/student-records-and-data/for-current-students/undergraduate-and-taught-postgraduate/exams-assessments-and-regulations/

Additional Programme Costs

This section should outline any additional costs relevant to this programme which are not included in students’ tuition fees.

<table>
<thead>
<tr>
<th>Description</th>
<th>Mandatory/Optional</th>
<th>Approximate cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Important notice: The Programme Specifications are the result of a large curriculum and pedagogy reform implemented by the Department and supported by the Learning and Teaching Strategy of Imperial College London. The modules, structure and assessments presented in this Programme Specification are correct at time of publication but might change as a result of student and staff feedback and the introduction of new or innovative approaches to teaching and learning. You will be consulted and notified in a timely manner of any changes to this document.
<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Core/ Elective/ Compulsory</th>
<th>Group</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medical &amp; Biological Science 1</td>
<td>Compulsory</td>
<td>1,2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foundations of Biomedical Engineering*</td>
<td>Compulsory</td>
<td>1,2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 1</td>
<td>Compulsory</td>
<td>1,2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design &amp; Professional Practice 1</td>
<td>Compulsory</td>
<td>1,2,3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer fundamentals and programming 1</td>
<td>Compulsory</td>
<td>2,3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Business Economics*</td>
<td>Compulsory</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Entrepreneurship online*</td>
<td>Compulsory</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensors and Actuation</td>
<td>Compulsory</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Credit Total 60</td>
</tr>
</tbody>
</table>

**Year 2 - FHEQ Level 5 (except * which are FHEQ Level 6)**

Students study all compulsory modules.

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Core/ Elective/ Compulsory</th>
<th>Group</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medical Science 2</td>
<td>Compulsory</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics 2</td>
<td>Compulsory</td>
<td>1,2</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>An introduction to Biomaterials</td>
<td>Compulsory</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluid and Solid Mechanics 2</td>
<td>Compulsory</td>
<td>1,2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Programming and Interfacing</td>
<td>Compulsory</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medical Device Entrepreneurship 1</td>
<td>Compulsory</td>
<td>1</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finance &amp; Financial Management*</td>
<td>Compulsory</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Managing Innovation</td>
<td>Compulsory</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BSc Biomedical Technology Ventures Year 2 Summer Internship</td>
<td>Compulsory</td>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Credit Total 60</td>
</tr>
</tbody>
</table>

---

1 Core modules are those which serve a fundamental role within the curriculum, and for which achievement of the credits for that module is essential for the achievement of the target award. Core modules must therefore be taken and passed in order to achieve that named award. Compulsory modules are those which are designated as necessary to be taken as part of the programme syllabus. Compulsory modules can be compensated. Elective modules are those which are in the same subject area as the field of study and are offered to students in order to offer an element of choice in the curriculum and from which students are able to select. Elective modules can be compensated.
<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Core/ Elective/ Compulsory</th>
<th>Group</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medical Device Entrepreneurship 2</td>
<td>Compulsory</td>
<td>2</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Principles of Biomedical Imaging</td>
<td>Compulsory</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BSc Biomedical Technology Ventures Group Project</td>
<td>Compulsory</td>
<td>1,2,3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medical Device Certification</td>
<td>Compulsory</td>
<td>1,2</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digital Healthcare</td>
<td>Compulsory</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industrial Applications of Cellular Engineering*</td>
<td>Compulsory</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Business Strategy</td>
<td>Compulsory</td>
<td>1 or 2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-Explore module</td>
<td>Compulsory</td>
<td>1 and/or 2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Credit Total</strong></td>
<td>****</td>
<td><strong>60</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Progression and Classification

Progression

In order to progress to the next level of study, you must have passed all modules (equivalent to 60 ECTS) in the current level of study at first attempt, at resit or by a compensated pass.

The overall weighted average for each year must be 40.00%, including where a module(s) has been compensated, in order for you to progress to the next year of the programme.

Classification

The marks from modules in each year contribute towards the final degree classification.

In order to be considered for an award, you must have achieved the minimum number of credits at the required levels prescribed for that award and met any programme specific requirements as set out in the Programme Specification.

Your classification will be determined through:

i) Aggregate Module marks for all modules
ii) Year Weightings

For this award, Year One is weighted at 7.50%, Year Two at 35.00% and Year Three at 57.50%.

The College sets the class of undergraduate degree that may be awarded as follows:

i) First 70.00% or above for the average weighted module results
ii) Upper Second 60.00% or above for the average weighted module results
iii) Lower Second 50.00% or above for the average weighted module results
iv) Third 40.00% or above for the average weighted module results

Programme Specific Regulations

N/A
Supporting Information

The Programme Handbook is available at: TBC

The Module Handbook is available at: TBC

The College’s entry requirements for postgraduate programmes can be found at: www.imperial.ac.uk/study/pg/apply/requirements

The College’s Quality & Enhancement Framework is available at: www.imperial.ac.uk/registry/proceduresandregulations/qualityassurance

The College’s Academic and Examination Regulations can be found at: www.imperial.ac.uk/about/governance/academic-governance/regulations

Imperial College is an independent corporation whose legal status derives from a Royal Charter granted under Letters Patent in 1907. In 2007 a Supplemental Charter and Statutes was granted by HM Queen Elizabeth II. This Supplemental Charter, which came into force on the date of the College's Centenary, 8th July 2007, established the College as a University with the name and style of "The Imperial College of Science, Technology and Medicine". www.imperial.ac.uk/admin-services/secretariat/college-governance/charters/

Imperial College London is regulated by the Office for Students (OfS) www.officeforstudents.org.uk/advice-and-guidance/the-register/

This document provides a definitive record of the main features of the programme and the learning outcomes that a typical student may reasonably be expected to achieve and demonstrate if s/he takes full advantage of the learning opportunities provided. This programme specification is primarily intended as a reference point for prospective and current students, academic and support staff involved in delivering the programme and enabling student development and achievement, for its assessment by internal and external examiners, and in subsequent monitoring and review.

Modifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Approved</th>
<th>Date</th>
<th>Paper Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Programme</td>
<td>Programmes Committee/QAEC</td>
<td>18/05/21</td>
<td>PC.2020.70</td>
</tr>
</tbody>
</table>