Programme Information

<table>
<thead>
<tr>
<th>Award</th>
<th>Length of Study</th>
<th>Mode of Study</th>
<th>Entry Point(s)</th>
<th>Total Credits</th>
<th>ECTS</th>
<th>CATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSci Honours degree</td>
<td>4 years</td>
<td>Full time</td>
<td>Annually in October</td>
<td>240</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>BSc degree†</td>
<td>3 years</td>
<td>Full time</td>
<td>N/A</td>
<td>180</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>Diploma of Higher Education*</td>
<td>2 years</td>
<td>Full time</td>
<td>N/A</td>
<td>120</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Certificate of Higher Education*</td>
<td>1 year</td>
<td>Full time</td>
<td>N/A</td>
<td>60</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

†A BSc exit degree may be awarded to students on an MSci Honours degree, who wish to conclude their studies at the end of their third year. An Honours classification requires the third year meets all requirements for the BSc (Hons).

*The Certificate/Diploma of Higher Education are exit awards and are not available for entry. All students must apply to and join a BSc or MSci programme.

Ownership

- **Awarding Institution**: Imperial College London
- **Teaching Institution**: Imperial College London
- **Faculty**: Faculty of Natural Sciences
- **Department**: Chemistry

External Reference

- **Relevant QAA Benchmark Statement(s) and/or other external reference points**: Masters Chemistry degree
- **FHEQ Level**: MSci – Level 7 - Honours
- **EHEA Level**: 2nd Cycle

External Accreditor(s) (if applicable)

- **External Accreditor 1**: Royal Society of Chemistry
- **Accreditation received**: 2015
- **Accreditation renewal**: 2027
Collaborative Provision

<table>
<thead>
<tr>
<th>Collaborative partner</th>
<th>Collaboration type</th>
<th>Agreement effective date</th>
<th>Agreement expiry date</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Specification Details

<table>
<thead>
<tr>
<th>Programme Lead</th>
<th>Prof. Don Craig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student cohorts covered by specification</td>
<td>2022-23 entry</td>
</tr>
<tr>
<td>Date of introduction of programme</td>
<td>October 19</td>
</tr>
<tr>
<td>Date of programme specification/revision</td>
<td>October 22</td>
</tr>
</tbody>
</table>

Programme Overview

Studying the MSci Chemistry with Molecular Physics programme you will be an active participant engaging with a rigorous modern student-centred curriculum in a dynamic and world-leading chemistry department. This degree is delivered by the Departments of Chemistry, Mathematics and Physics, and focuses on work at the boundary of these three disciplines, for example nano-engineering. Graduates of this course will gain strengthened knowledge of the physical and mathematical background for mastering physical methods of modern chemistry. Ultimately you will contribute to the department’s research and to advancing the discipline, and you will graduate confident in your ability to take on any challenge in chemistry and beyond.

You will develop a thorough and interconnected understanding of core chemistry through studying fundamental chemistry topics across the sub-disciplines of Inorganic, Organic, Physical, Analytical, Synthetic and Computational chemistry. In years 3 and 4 you will select from a range of chemistry options to follow your own interests in advanced topics and frontiers of the discipline. Through an extensive laboratory programme you will learn to synthesise chemicals and to study chemical systems through experimental measurements and computational models, including building instrumentation and programming. You will design your own experiments, and thereby learn a range of broader research and transferrable skills from finding reliable information, to designing an experimental investigation, and analysing and communicating the results. Your third year will include an introduction to emergent ‘industry 4.0’ approaches and technologies such as rapid prototyping, biohacking and machine learning, and in your final year you will join one of the department’s academic research groups at the Molecular Sciences Research Hub to complete a 6 month independent research project.

Your core chemistry studies will be complemented by Maths and Physics modules in years 1 and 2, and the i-Explore module in year 3, in which you undertake multidisciplinary study e.g. Physics, Philosophy, Language. Further, extra-curricular, opportunities include access to the Advanced Hack Space and Invention Rooms at White City, initiatives such as the faculty’s Make A Difference competition, and summer research projects through the Undergraduate Research Opportunities Programme.

You will learn from a range of teachers: peers, postgraduate students, teaching- and research- focussed academic staff up to professorial level, including world leaders in their fields. You will build collaborative learning relationships with a range of people, and a personal tutor will oversee your personal and intellectual development. Most teaching will be at South Kensington, but travel to the White City campus will be necessary for some activities.

An MSci degree covers more in-depth chemistry study than a BSc degree, including more advanced research-led modules, making them more suited to students who are considering a career in research or who may wish to progress to further study such as a PhD. The degree programme is professionally accredited by the Royal Society of Chemistry, meaning your degree will be recognised around the world as high quality, having academic rigour and meeting the needs of both students and employers. As well as your main Imperial degree, you will also receive the award of the Associateship of the Royal College of Science (ARCS) on completion of this course. Graduates of the chemistry department go on to a range of employments and further study, including PhD study, technical consultancy, research and development, accountancy, marketing, business activities and medical and law-based graduate training.
Learning Outcomes

Chemistry degree programmes have six broad Intended Learning Outcomes. Students will be able to:

1. Apply chemistry knowledge and understanding
2. Use experimentation to find chemical information and create new chemical knowledge and technologies
3. Use reliable sources to find chemical information
4. Analyse and interpret data and solve problems creatively in chemistry and wider contexts
5. Communicate chemistry
6. Demonstrate intellectual and personal development as a university learner and citizen to enable purposeful and responsible engagement with the world

and employ the transferrable skills and core competencies expressed in the [Imperial Graduate Attributes](#)

Graduates of the Chemistry with Molecular Physics programmes will additionally be able to:

Confidently apply tools from mathematics, physics and computing to tackle in interdisciplinary problems in molecular and chemical-physics, nanotechnology and advanced materials

Upon completion of a MSci Chemistry degree you will, in addition to the BSc Chemistry learning outcomes (below), be able to:

- **Apply chemistry knowledge and understanding:**
 - demonstrate depth of knowledge and comprehensive understanding of their chosen specialism; describe and explain personal opinions on contested issues
- **Use experimentation to find chemical information and create new chemical knowledge and technologies:**
 - plan and carry out a substantial open-ended research project including strategic optimisation
- **Use reliable sources to find chemical information:**
 - efficiently find information to explore their own interests; critically analyse journal articles and evaluate their contribution to the literature
- **Analyse and interpret data and solve problems creatively in chemistry and wider contexts:**
 - define and solve problems in the context of their chosen specialism; identify gaps in current knowledge or data sets and formulate projects to address these
- **Communicate chemistry:**
 - communicate and defend their research; explain views on directions of future research in the area
- **Demonstrate intellectual and personal development as a university learner and citizen to enable purposeful and responsible engagement with the world:**
 - employ behaviours of a research-led learner; manage their own learning, time and workload and maintain research group relationships over a substantial project; instigate professional relationships; exercise substantial initiative, perseverance and academic accountability; operate in a professional chemistry environment

Upon completion of a BSc Chemistry degree you will, in addition to the Certificate and Diploma learning outcomes (below), be able to:

- **Apply chemistry knowledge and understanding:**
 - describe advanced topics and areas of current research; choose appropriate models to provide explanations and predictions within the context of advanced topics or current research applying core chemistry concepts
- **Use experimentation to find chemical information and create new chemical knowledge and technologies:**
 - plan and carry out investigative work and an open-ended research project, demonstrating an integrated understanding of techniques for synthesis, analysis and/or computational modelling
- **Use reliable sources to find chemical information:**
 - efficiently find information to explore a specific field of research; summarise information gathered from a range of literature sources
• Analyse and interpret data and solve problems creatively in chemistry and wider contexts:
define and solve problems in real-world and abstract contexts using incomplete or ambiguous data sets,
applying critical analysis

• Communicate chemistry:
communicate their research project context, aims and outcomes; communicate synoptic understanding
with and without presentation aids

• Demonstrate intellectual and personal development as a university learner and citizen to enable
purposeful and responsible engagement with the world:
employ behaviours of a professional learner; manage their own learning, time and workload and build
research group relationships over a project; exercise initiative; operate in a professional environment

Upon completion of a Diploma of Higher Education you will, in addition to the Certificate learning outcomes
(below), be able to:

• **Apply chemistry knowledge and understanding:**
choose appropriate representations to describe familiar and unfamiliar chemical systems and processes;
explain concepts and theories and apply synoptic understanding; explain and predict properties,
behaviours and trends with an appreciation of the limitations of familiar models and their position in the
historical development of the discipline

• **Use experimentation to find chemical information and create new chemical knowledge and
technologies:**
asess risks and hazards of self-determined lab work; use advanced techniques and basic computational
modelling; obtain reliable and accurate and precise data

• **Use reliable sources to find chemical information:**
identify appropriate reliable texts to find information and to extend syllabus learning; extract meaning from
journal articles; use reference management software

• **Analyse and interpret data and solve problems creatively in chemistry and wider contexts:**
use their own synoptic knowledge and understanding of theoretical models and the results of information
searches, experimental work and data analyses to solve well-defined problems in real-world contexts

• **Communicate chemistry:**
in a mode appropriate to the designated audience

• **Demonstrate intellectual and personal development as a university learner and citizen to enable
purposeful and responsible engagement with the world:**
apply techniques of independent learning; contribute to the education of others within communities of
learning

Upon completion of a Certificate of Higher Education you will be able to:

• **Apply chemistry knowledge and understanding:**
use various representations as directed to describe familiar chemical systems and processes; explain
concepts; use concepts, theories and models to explain and predict properties, behaviours and trends

• **Use experimentation to find chemical information and create new chemical knowledge and
technologies:**
asess risks and hazards of lab work; apply basic techniques to work safely and purposefully in the lab to
obtain meaningful data; carry out basic computational operations

• **Use reliable sources to find chemical information:**
use recommended texts to find information and to reinforce syllabus learning; extract with guidance
appropriate data from journal articles; correctly cite sources of information

• **Analyse and interpret data and solve problems creatively in chemistry and wider contexts:**
use their own knowledge and understanding of theoretical models, and results of information searches,
their own experimental work and data analyses, to solve well-defined problems in familiar contexts

• **Communicate chemistry:**
communicate scientific ideas in accurate English clearly through a variety of defined modes using correct
terminology and effective presentation of data

• **Demonstrate intellectual and personal development as a university learner and citizen to enable
purposeful and responsible engagement with the world:**
apply techniques of university learning; self-reflect on what has been learned from received teaching; build collaborative learning relationships with peers and tutors and integrate into the university community

The Imperial Graduate Attributes are a set of core competencies which we expect students to achieve through completion of any Imperial College degree programme. The Graduate Attributes are available at: www.imperial.ac.uk/students/academic-support/graduate-attributes

<table>
<thead>
<tr>
<th>Entry Requirements</th>
</tr>
</thead>
</table>
| **Academic Requirement** | The **minimum** requirements for entry to this degree programme, and **typical offers**, are listed below:
A-Level: AAA in Chemistry, Mathematics, Physics. **Typical offer**: A*A-A*A. General Studies and Critical Thinking are not accepted.
IB: 38 points overall, with HL6 in Chemistry, HL6 in Mathematics, HL6 in Physics. **Typical offer**: 39 points, with 7, 6, 6 at Higher Level.
For further information on entry requirements, please go to https://www.imperial.ac.uk/study/ug/apply/requirements/ugacademic/ |

| Non-academic Requirements | N/A |

| English Language Requirement | Higher requirement
Please check for other Accepted English Qualifications |

| Admissions Test/Interview | Academic interviews are conducted in person by two academic staff or via Skype by one experienced academic staff member. You will be informed of the interview performance criteria in advance. Detailed written interview feedback and grading from interviewers is used, in conjunction with the application, to make an offer decision. There is no admissions test in use.
Please see the following webpage for further information: http://www.imperial.ac.uk/chemistry/undergraduate/admissions/application-and-entry-requirements/ |

The programme’s competency standards documents can be found at:
http://www.imperial.ac.uk/chemistry/undergraduate/course-structure-and-content/

<table>
<thead>
<tr>
<th>Learning & Teaching Approach</th>
</tr>
</thead>
</table>

| Learning and Teaching Delivery Methods | The teaching and learning approach you will experience aims broadly that you gain an integrated understanding of chemistry and are able to apply this to solve real-world problems, and develop into a self-motivated, independent life-long learner. Teaching will include: lectures and other whole-cohort teaching sessions incorporating active learning (opportunities for you to apply your learning); discussions in tutorials in groups of about 8; application and problem-solving in workshops in groups of about 30; laboratory practicals and projects in small groups, pairs or individually; placement in an academic research group for an independent research project. Throughout the degree you will undertake independent study and you may choose to work individually or with peers. |

| Overall Workload | Your overall workload consists of face-to-face sessions and independent learning. While your actual contact hours may vary according to the optional modules you choose to study, the following gives an indication of how much time you will need to allocate to different activities at each level of the programme. At Imperial, each ECTS credit taken equates to an expected total study time of 25 hours. Therefore, the expected total study time is 1500 hours per year. |
Typically, in years 1 and 2 you will spend in the order of 15% of your time on classroom teaching (around 230 hours), 15% in the laboratory, and 70% on independent study. Week-to-week your workload will fluctuate within reasonable limits, i.e. you will be more busy in some weeks than others. In later years the proportion of independent study increases to 80% in year 3, and 90% in year 4 (excluding the research project).

Assessment Strategy

Assessment Methods

Your achievement of the intended learning outcomes of the programme will be supported by formative assessment and measured by a range of summative assessments.

Formative assessment opportunities will include digital resources for self-assessment, discussions in tutorials, in workshops and in the laboratory, formative assignment submissions, and, during your final year project, formative literature / interim reports and discussions with your supervisor. Discussions with your personal tutor will address your intellectual and personal development and engagement.

Open- and closed-book examinations and tests will summatively assess your ability to apply chemistry knowledge and understanding, and to analyse and interpret data and solve problems (ILOs 1 and 4). Your performance in the lab will be an assessment also of your ability to use experimentation (ILOs 1,2,4). Oral exams (known as ‘vivas’) will additionally assess your ability to communicate chemistry (ILOs 1,4,5), and written reports, poster and oral presentations also your ability to find reliable chemical information (ILOs 1,3,4,5). Formal and informal groupwork, reflection on your learning from labs through the research skills passport, and structured self-reflective statements will assess your intellectual and personal development and engagement with the world (ILO 6).

<table>
<thead>
<tr>
<th>Assessment mode</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>75%</td>
<td>65%</td>
<td>40%*</td>
<td>25%*</td>
</tr>
<tr>
<td>Coursework / Practical</td>
<td>25%</td>
<td>35%</td>
<td>60%*</td>
<td>75%*</td>
</tr>
</tbody>
</table>

* Variable with choice of options

Academic Feedback Policy

You will receive verbal feedback on your understanding and performance through informal discussions with peers, GTAs and staff in labs, workshops and tutorials. You will generally receive immediate verbal feedback on your performance in oral exams and presentations. The department manages submission of written work electronically, and you will receive feedback comments on your work similarly, within 10 working days of submission. Following exams, general feedback on the performance of the cohort is made available, and in early years you will receive individual feedback on your understanding through a scheduled discussion with a tutor, while in later years you can request feedback via your personal tutor.

The College’s Policy on Academic Feedback and guidance on issuing provisional marks to students is available at: www.imperial.ac.uk/about/governance/academic-governance/academic-policy/exams-and-assessment/

Re-sit Policy

Mitigating Circumstances Policy

Additional Programme Costs

This section should outline any additional costs relevant to this programme which are not included in students’ tuition fees.

<table>
<thead>
<tr>
<th>Description</th>
<th>Mandatory/Optional</th>
<th>Approximate cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Personal Protective Equipment (PPE)</td>
<td>Mandatory</td>
<td>PPE is provided at no cost by the department, and replaced as appropriate</td>
</tr>
</tbody>
</table>

Important notice: The Programme Specifications are the result of a large curriculum and pedagogy reform implemented by the Department and supported by the Learning and Teaching Strategy of Imperial College London. The modules, structure and assessments presented in this Programme Specification are correct at the time of publication but might change as a result of student and staff feedback and the introduction of new or innovative approaches to teaching and learning. You will be consulted and notified in a timely manner of any changes to this document.
Programme Structure

Year 1 – FHEQ Level 4
Students study all core modules.

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Core/Elective</th>
<th>Group</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM40001</td>
<td>i-Engage</td>
<td>Core</td>
<td></td>
<td>1-3</td>
<td>0</td>
</tr>
<tr>
<td>CHEM40002</td>
<td>Language of Chemistry</td>
<td>Core</td>
<td></td>
<td>1</td>
<td>7.5</td>
</tr>
<tr>
<td>CHEM40004</td>
<td>Structure and Bonding: Atomic Structure to Molecular Orbitals</td>
<td>Core</td>
<td></td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>CHEM40003</td>
<td>Introduction to Spectroscopy</td>
<td>Core</td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CHEM40006</td>
<td>Reactivity at Carbon Centres</td>
<td>Core</td>
<td></td>
<td>2</td>
<td>7.5</td>
</tr>
<tr>
<td>CHEM40007</td>
<td>The Reactions Toolkit: Thermodynamics and Kinetics</td>
<td>Core</td>
<td></td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>CHEM40005</td>
<td>Chemistry of the Elements: Hydrogen to Uranium</td>
<td>Core</td>
<td></td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>CHEM40008</td>
<td>Practical Chemistry 1</td>
<td>Core</td>
<td></td>
<td>1-3</td>
<td>15</td>
</tr>
<tr>
<td>CHEM40010</td>
<td>Mathematics and Physics 1</td>
<td>Core</td>
<td></td>
<td>1-2</td>
<td>5</td>
</tr>
</tbody>
</table>

Credit Total: 60

Year 2 - FHEQ Level 5
Students study all core modules.

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Core/Elective</th>
<th>Group</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM50002</td>
<td>i-Engage 2</td>
<td>Core</td>
<td></td>
<td>1-3</td>
<td>0</td>
</tr>
<tr>
<td>CHEM50003</td>
<td>Electronic States and Bonding</td>
<td>Core</td>
<td></td>
<td>1</td>
<td>7.5</td>
</tr>
<tr>
<td>CHEM50001</td>
<td>Analysis of Molecules, Materials and Mixtures</td>
<td>Core</td>
<td></td>
<td>1-2</td>
<td>7.5</td>
</tr>
<tr>
<td>CHEM50006</td>
<td>Solids, Liquids and Interfaces</td>
<td>Core</td>
<td></td>
<td>2-3</td>
<td>5</td>
</tr>
<tr>
<td>CHEM50005</td>
<td>Chemistry of Molecular Systems</td>
<td>Core</td>
<td></td>
<td>2-3</td>
<td>5</td>
</tr>
<tr>
<td>CHEM50011</td>
<td>Macromolecules and Materials</td>
<td>Core</td>
<td></td>
<td>2-3</td>
<td>5</td>
</tr>
<tr>
<td>CHEM50007</td>
<td>Control and Selectivity in Molecular Synthesis</td>
<td>Core</td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CHEM50004</td>
<td>Practical Chemistry 2</td>
<td>Core</td>
<td></td>
<td>1-3</td>
<td>20</td>
</tr>
<tr>
<td>CHEM50008</td>
<td>Maths and Physics 2</td>
<td>Core</td>
<td></td>
<td>1-2</td>
<td>5</td>
</tr>
</tbody>
</table>

1 Core modules are those which serve a fundamental role within the curriculum, and for which achievement of the credits for that module is essential for the achievement of the target award. Core modules must therefore be taken and passed in order to achieve that named award. Compulsory modules are those which are designated as necessary to be taken as part of the programme syllabus. Compulsory modules can be compensated. Elective modules are those which are in the same subject area as the field of study and are offered to students in order to offer an element of choice in the curriculum and from which students are able to select. Elective modules can be compensated.
Year 3 - FHEQ Level 6
Students study all core and compulsory modules (there is choice within modules).

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Core/ Compulsory/Elective</th>
<th>Group</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM60002</td>
<td>Advanced Chemistry Topics 1 for Molecular Physics</td>
<td>Core</td>
<td></td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>CHEM60005</td>
<td>Advanced Chemistry Topics 2 for Molecular Physics</td>
<td>Core</td>
<td></td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>CHEM60013</td>
<td>Practical Chemistry 3 for Molecular Physics</td>
<td>Core</td>
<td></td>
<td>1-3</td>
<td>25</td>
</tr>
<tr>
<td>I-Explore</td>
<td>I-Explore</td>
<td>Compulsory</td>
<td></td>
<td>1-2</td>
<td>5</td>
</tr>
<tr>
<td>CHEM60015</td>
<td>MSc Chemistry Research Proposal and Literature Review</td>
<td>Compulsory</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Credit Total 60

Year 4 - FHEQ Level 7
Students study all core modules. Students choose two electives from group A.

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Core/ Elective</th>
<th>Group</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM70001</td>
<td>Advanced Catalysis</td>
<td>Elective</td>
<td>A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CHEM70005</td>
<td>Advanced Stereochemistry, Synthesis and Biosynthesis</td>
<td>Elective</td>
<td>A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CHEM70006</td>
<td>Molecular Imaging</td>
<td>Elective</td>
<td>A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CHEM70007</td>
<td>From Molecules to Medicine</td>
<td>Elective</td>
<td>A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CHEM70010</td>
<td>Sustainable Chemistry</td>
<td>Elective</td>
<td>A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CHEM70004</td>
<td>Advanced Interfacial Science</td>
<td>Core</td>
<td>A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CHEM70048</td>
<td>Chemistry of Nanomaterials</td>
<td>Elective</td>
<td>A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CHEM70049</td>
<td>Membrane Biophysics</td>
<td>Elective</td>
<td>A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CHEM70050</td>
<td>Plastic Electronics from Materials Chemistry to Device Applications</td>
<td>Elective</td>
<td>A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CHEM70051</td>
<td>Renewable Energy from Solar Cells to Fuel Cells</td>
<td>Elective</td>
<td>A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CHEM70009</td>
<td>Research Project</td>
<td>Core</td>
<td></td>
<td>1-3</td>
<td>45</td>
</tr>
</tbody>
</table>

Credit Total 60
Progression and Classification

Progression

In order to progress to the next level of study, you must have passed all modules (equivalent to 60 ECTS) in the current level of study at first attempt, at resit or by a compensated pass.

The overall weighted average for each year must be 40.00%, including where a module(s) has been compensated, in order for you to progress to the next year of the programme.

Classification

The marks from modules in each year contribute towards the final degree classification.

In order to be considered for an award, you must have achieved the minimum number of credits at the required levels prescribed for that award and met any programme specific requirements as set out in the Programme Specification.

Your classification will be determined through:

i) Aggregate Module marks for all modules

ii) Year Weightings

For this award, Year 1 is weighted at 7.50%, Year 2 at 20.00%, Year 3 at 36.25% and Year 4 at 36.25%.

The College sets the class of undergraduate degree that may be awarded as follows:

i) First 70.00% or above for the average weighted module results

ii) Upper Second 60.00% or above for the average weighted module results

iii) Lower Second 50.00% or above for the average weighted module results

iv) Third 40.00% or above for the average weighted module results

Please find the full Academic Regulations at https://www.imperial.ac.uk/about/governance/academic-governance/regulations/. Please follow the prompts to find the set of regulations relevant to your programme of study.

Programme Specific Regulations

N/A
Supporting Information

The Programme Handbook is available at: N/A

The Module Handbook is available at: N/A

The College’s entry requirements for postgraduate programmes can be found at: www.imperial.ac.uk/study/pg/apply/requirements

The College’s Quality & Enhancement Framework is available at: www.imperial.ac.uk/registry/proceduresandregulations/qualityassurance

The College’s Academic and Examination Regulations can be found at: www.imperial.ac.uk/about/governance/academic-governance/regulations

Imperial College is an independent corporation whose legal status derives from a Royal Charter granted under Letters Patent in 1907. In 2007 a Supplemental Charter and Statutes was granted by HM Queen Elizabeth II. This Supplemental Charter, which came into force on the date of the College's Centenary, 8th July 2007, established the College as a University with the name and style of "The Imperial College of Science, Technology and Medicine". www.imperial.ac.uk/admin-services/secretariat/college-governance/charters/

Imperial College London is regulated by the Office for Students (OfS) www.officeforstudents.org.uk/advice-and-guidance/the-register/

This document provides a definitive record of the main features of the programme and the learning outcomes that a typical student may reasonably be expected to achieve and demonstrate if s/he takes full advantage of the learning opportunities provided. This programme specification is primarily intended as a reference point for prospective and current students, academic and support staff involved in delivering the programme and enabling student development and achievement, for its assessment by internal and external examiners, and in subsequent monitoring and review.

Modifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Approved</th>
<th>Date</th>
<th>Paper Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>