Programme Information

<table>
<thead>
<tr>
<th>Programme Title</th>
<th>Programme Code</th>
<th>HECoS Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological and Physical Chemistry</td>
<td>F1U2</td>
<td>For Registry Use Only</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Award</th>
<th>Length of Study</th>
<th>Mode of Study</th>
<th>Entry Point(s)</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRes</td>
<td>12 months</td>
<td>Full-time</td>
<td>Annually in October</td>
<td>90</td>
</tr>
</tbody>
</table>

Ownership

<table>
<thead>
<tr>
<th>Awarding Institution</th>
<th>Teaching Institution</th>
<th>Associateship</th>
<th>Faculty</th>
<th>Department</th>
<th>Main Location(s) of Study</th>
<th>Various Locations including White City campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial College</td>
<td>Imperial College</td>
<td>N/A</td>
<td>Faculty</td>
<td>Department</td>
<td>Main Location(s) of Study</td>
<td>Various Locations including White City campus</td>
</tr>
<tr>
<td>London</td>
<td>London</td>
<td></td>
<td>Faculty</td>
<td>Chemistry</td>
<td>Various Locations including White City campus</td>
<td></td>
</tr>
</tbody>
</table>

External Reference

Relevant QAA Benchmark Statement(s) and/or other external reference points: Master's Degree in Chemistry

FHEQ Level: Level 7

EHEA Level: 2nd Cycle

External Accreditor(s) (if applicable)

<table>
<thead>
<tr>
<th>External Accrider 1</th>
<th>Accreditation received</th>
<th>Accreditation renewal</th>
<th>N/A</th>
</tr>
</thead>
</table>

Collaborative Provision

<table>
<thead>
<tr>
<th>Collaborative partner</th>
<th>Collaboration type</th>
<th>Agreement effective date</th>
<th>Agreement expiry date</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Specification Details

Programme Lead	Dr Laura Barter
	Dr Rudiger Woscholski
Student cohorts covered by specification	2022-23 entry
Date of introduction of programme	October 01
Programme Overview

Advances in the understanding of biomolecular processes have often depended upon the collaborative efforts of biochemists, chemists, and physicists. This course will enable you to bridge the gap that can exist between the physical and bioscience disciplines due to differences in language, perspective and methodology. You will receive training from both academic and industrial leaders in the biology and physical sciences fields. At the end of this course graduates will be ideally placed to undertake PhD studies in collaborative multidisciplinary research project, or to seek employment within the agri-science or biomedical industrial sector.

Learning Outcomes

The programme will enable you to:

1. **Demonstrate** a deep understanding of the core concepts in biological and physical chemistry, associated to your chosen research area, with the ability to **conceptualise** and **explore** theories, data and methods relevant to the field.
2. **Employ** research and digital techniques, including information retrieval, experimental design and statistics, modelling, sampling, biomolecular and physical/chemical/engineering techniques, and laboratory safety.
3. **Independently evaluate** and **apply** the essential facts, concepts, principles, and theories relevant to your project.
4. **Perform** research within a multi-disciplinary environment, **developing** management and communication skills, including problem definition, project design, decision processes, teamwork, written and oral reports, scientific publications.
5. **Critically evaluate** your own and others’ work, including an appreciation of novelty, application to research challenges and its significance to the wider research community.
6. **Recognise and critically appraise** broader issues in biophysical and biochemical research including the aspects of digital tools and technologies relevant to the research area.
7. **Compose and deliver** written, oral and visual science communications, which are effective at conveying the message to a variety of audiences.
8. **Demonstrate** laboratory and/or computational skills required to perform biophysical and biochemical research.
9. **Design** a novel research project and **compose** a corresponding grant proposal, appropriate for submission to an academic funding body.
10. **Propose** tractable research objectives for your research project.

The Imperial Graduate Attributes are a set of core competencies which we expect students to achieve through completion of any Imperial College degree programme. The Graduate Attributes are available at: www.imperial.ac.uk/students/academic-support/graduate-attributes

Entry Requirements

Academic Requirement

The minimum requirement is normally a 2:1 UK Bachelor’s Degree with Honours in a physical science or engineering based subject (or a comparable qualification recognised by the College). Applicants with at least 50% physical sciences content in Life Sciences/Biomedical degrees may be considered.

For further information on entry requirements, please go to PG: www.imperial.ac.uk/study/pg/apply/requirements/pgacademic

Non-academic Requirements

None

English Language Requirement

Standard requirement (PG)

Please check for other [Accepted English Qualifications](http://www.imperial.ac.uk/study/pg/apply/requirements/englishtest)

Admissions Test/Interview

Candidates will be invited for interview in person or online.
Learning & Teaching Approach

Learning and Teaching Delivery Methods
The course's aim is to teach the practice of science with the learning and teaching strategy being constructively aligned with the knowledge, skills and abilities required by professional scientists in academia, government, industries, and NGOs.
Most of the weighting of the course is focussed on the research component- e.g. via a proposal writing exercise and research project – which reflect the major activities undertaken by modern scientists. In addition, the taught component exposes you to fields outside your immediate project area, including generic research skills at the interface of physical and biological sciences and the entrepreneurial skills of designing and prototyping equipment relevant to this research area.
Across the programme, a range of teaching methods are used including laboratory work, computational work, tutorials, seminars, lectures, practicals, workshops, facility tours and online material.

Overall Workload
Your overall workload consists of face-to-face sessions and independent learning. While your actual contact hours may vary according to the optional modules you choose to study, the following gives an indication of how much time you will need to allocate to different activities at each level of the programme. At Imperial, each ECTS credit taken equates to an expected total study time of 25 hours. Therefore, the expected total study time is 2250 hours per year comprising approximately 125 hours for the Python Biodata analysis workshop, 125 hours of webinar preparation, 250 hours for the experimental planning and protocol design group workshop & practical, 250 hours of planning and designing the research project guided by your supervisors, and 1500 hours of individual research project work.

Assessment Strategy

Assessment Methods

Each assessment is designed to test your appropriate acquisition of separate skills required for the furthering of a career in chemical biology research and associated professional paths (All assessments are linked to the intended learning outcomes listed above as indicated in brackets).

The Webinar presentation assess your ability to condense a body of knowledge on a subject treated in a textbook and orally present this summary clearly with the help of visual tools using a narrated PowerPoint presentation (Learning outcomes 1, 2, 3, and 7).

The Python Biodata analysis assessments will test your understanding and communication of various prototyping methods and experimental evaluation of the created prototype equipment (Learning outcomes 2, and 6-8).

The Experimental planning and protocol design module assesses your ability to apply your knowledge and understanding to design and evaluate an experimental protocol for a biochemical assay. The design of the assay will be assessed through a group workshop and presentation, while the evaluation of this design will be performed individually (Learning outcomes 1-5, and 7–9).

The Project proposal will assess your aptitude to critically analyse published scientific literature, plan the work packages necessary to complete the research project and reflect on the ethical, safety and commercial/societal considerations (Learning outcomes 1,3, 5-8 and 10).

The Research Project will be judged through a manuscript, a presentation, and an oral examination. The manuscript will evaluate your skills at presenting, describing and critically discussing your own experimental data in the format typical of an article published in peer-reviewed journals. At the presentation, you will be assessed on your ability to present your research to your examiners with the help of visual tools in a clear, concise fashion, summarising your findings and their relevance. You will also be tested on your ability to answer questions directly relevant to your project. Your oral examination will probe your knowledge and understanding of the relevant literature, methodology and research outcomes including theoretical and practical knowledge of the subject area, of the experimental techniques used and their limitations as well as the proposed follow-on work (Learning outcomes 1-8 and 10).
Academic Feedback Policy

With the exception of the major research project module you will receive feedback within 2 weeks of submission and where this is not possible students will be advised. This feedback should inform learning and performance in subsequent modules.

The College’s Policy on Academic Feedback and guidance on issuing provisional marks to students is available at: www.imperial.ac.uk/about/governance/academic-governance/academic-policy/exams-and-assessment/

Re-sit Policy

The College’s Policy on Re-sits is available at: www.imperial.ac.uk/student-records-and-data/for-current-students/undergraduate-and-taught-postgraduate/exams-assessments-and-regulations/

Mitigating Circumstances Policy

The College’s Policy on Mitigating Circumstances is available at: www.imperial.ac.uk/student-records-and-data/for-current-students/undergraduate-and-taught-postgraduate/exams-assessments-and-regulations/

Additional Programme Costs

This section should outline any additional costs relevant to this programme which are not included in students’ tuition fees.

<table>
<thead>
<tr>
<th>Description</th>
<th>Mandatory/Optional</th>
<th>Approximate cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laptop with camera and microphone</td>
<td>Mandatory</td>
<td>£400-600</td>
</tr>
</tbody>
</table>

Important notice: The Programme Specifications are the result of a large curriculum and pedagogy reform implemented by the Department and supported by the Learning and Teaching Strategy of Imperial College London. The modules, structure and assessments presented in this Programme Specification are correct at time of publication but might change as a result of student and staff feedback and the introduction of new or innovative approaches to teaching and learning. You will be consulted and notified in a timely manner of any changes to this document.
Programme Structure

Year 1 - FHEQ Level 7
Students study all core modules.

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>Core/ Compulsory/ Elective</th>
<th>Group</th>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM70028</td>
<td>Webinar Design and Delivery</td>
<td>Compulsory</td>
<td>N/A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CHEM70029</td>
<td>Python Biodata Analysis</td>
<td>Compulsory</td>
<td>N/A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CHEM70032</td>
<td>Experimental Planning and Protocol Design</td>
<td>Compulsory</td>
<td>N/A</td>
<td>1-3</td>
<td>10</td>
</tr>
<tr>
<td>CHEM70030</td>
<td>Proposal for Biophysical Chemistry Research Project</td>
<td>Core</td>
<td>N/A</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>CHEM70031</td>
<td>Biophysical Chemistry Research Project</td>
<td>Core</td>
<td>N/A</td>
<td>2-3</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Total</td>
<td></td>
<td></td>
<td></td>
<td>90</td>
</tr>
</tbody>
</table>

1 Core modules are those which serve a fundamental role within the curriculum, and for which achievement of the credits for that module is essential for the achievement of the target award. Core modules must therefore be taken and passed in order to achieve that named award. Compulsory modules are those which are designated as necessary to be taken as part of the programme syllabus. Compulsory modules can be compensated. Elective modules are those which are in the same subject area as the field of study and are offered to students in order to offer an element of choice in the curriculum and from which students are able to select. Elective modules can be compensated.
Progression and Classification

Award of a Postgraduate Degree (including MRes)
To qualify for the award of a postgraduate degree a student must have:
1. accumulated credit to the value of no fewer than 90 credits
2. pass all modules of the programme

Classification of Postgraduate Taught Awards

The College sets the class of Degree that may be awarded as follows:
1. Distinction: The student has achieved an overall weighted average of 70.00% or above across the programme.
2. Merit: The student has achieved an overall weighted average of above 60.00% but less than 70.00%.
3. Pass: The student has achieved an overall weighted average of 50.00% but less than 60.00%.
 a. For a Masters, students must normally achieve a distinction (70.00%) mark in the dissertation or designated final major project (as designated in the programme specification) in order to be awarded a distinction.
 b. For a Masters, students must normally achieve a minimum of a merit (60.00%) mark in the dissertation or designated final major project (as designated in the programme specification) in order to be awarded a merit

Programme Specific Regulations

N/A
Supporting Information

The Programme Handbook is available upon enrolment.

The Module Handbook is available upon enrolment.

The College’s entry requirements for postgraduate programmes can be found at: www.imperial.ac.uk/study/pg/apply/requirements

The College’s Quality & Enhancement Framework is available at: www.imperial.ac.uk/registry/proceduresandregulations/qualityassurance

The College’s Academic and Examination Regulations can be found at: www.imperial.ac.uk/about/governance/academic-governance/regulations

Imperial College is an independent corporation whose legal status derives from a Royal Charter granted under Letters Patent in 1907. In 2007 a Supplemental Charter and Statutes was granted by HM Queen Elizabeth II. This Supplemental Charter, which came into force on the date of the College's Centenary, 8th July 2007, established the College as a University with the name and style of "The Imperial College of Science, Technology and Medicine". www.imperial.ac.uk/admin-services/secretariat/college-governance/charters/

Imperial College London is regulated by the Office for Students (OfS) www.officeforstudents.org.uk/advice-and-guidance/the-register/

This document provides a definitive record of the main features of the programme and the learning outcomes that a typical student may reasonably be expected to achieve and demonstrate if s/he takes full advantage of the learning opportunities provided. This programme specification is primarily intended as a reference point for prospective and current students, academic and support staff involved in delivering the programme and enabling student development and achievement, for its assessment by internal and external examiners, and in subsequent monitoring and review.

Modifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Approved</th>
<th>Date</th>
<th>Paper Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curriculum Review</td>
<td>Programmes Committee</td>
<td>25/01/22</td>
<td>PC.2021.30</td>
</tr>
</tbody>
</table>